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Abstract

This bachelor thesis presents the implementation of a real-time phase stabilization system for
an optical lattice, utilizing Fast Fourier Transform (FFT) and acousto-optic steering. The
chosen hardware platform is a Field-Programmable Gate Array (FPGA), offering low-latency
and flexibility in implementation.
A prototype of the stabilization system was developed on a PC to gain insights into the
system’s characteristics. While this prototype demonstrates the feasibility of the stabilization
approach, it highlights the limitation with a feedback rate of 20Hz in effectively controlling
higher-frequency lattice phase fluctuations. The final FPGA design successfully calculates
the lattice phase within 6.22µs. Operating at a feedback rate of 1 kHz, this implementation
achieves stabilization to within ±10−2π of the setpoint. Furthermore, this work provides a
detailed analysis of the phase measurement error based on simulations of the implemented cal-
culation method. The measurements are expected to be accurate up to ±10−2π with potential
for significant improvement when using a camera with higher intensity resolution.
These results are relevant for future experiments with ultracold atoms in optical lattices be-
cause phase stabilization enables precise control and alignment of lattices relative to each other,
which can be used to access and perform measurements on single atoms of the lattice. The
next steps towards implementation of the phase stabilization in the real quantum experiment
include improving the accuracy of the phase measurement and extending the current approach
to two-dimensional lattices.
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Chapter 1

Introduction

As a platform for analog quantum simulators, ultracold atoms trapped in optical lattices
have gained increasing attention in research. The principle of analog quantum simulators
is to approximate a real system as well as possible by a well-controlled quantum system in
order to solve complex many-body problems. An ultracold quantum gas interacts with a light
crystal, effectively mimicking how electrons behave in solid-state materials. The lattice acts
as a potential on the ultracold atoms, attracting them to either maxima or minima of light
intensity.[1]
One advantage of optical lattices is their many degrees of freedom, as different lattice con-
figurations can be realized by varying intensity and lattice spacing or utilizing structures of
multiple superimposed lattices (superlattices).[2]

The Lattice group in the Quantum Optics group at ETH Zurich has realized such an experi-
mental setup with optical lattices. For future experiments, it is of great interest to gain access
to individual atoms in the lattice. As proposed in reference [3], two superimposed accordion
lattices can be used as a method to increase the distance between atoms. Accordion lattices
are lattices with variable spacing. In this case, the lattice spacing has to be controllable over
a wide range of values because the lattice constant must be repeatedly doubled and halved
during the expansion process. Such a range of lattice constants can be realized by changing
the angle between the interfering beams that form the lattice. However, in such a setup, it
cannot be avoided for the beams to travel long distances before they interfere.[3]
On the path to the optical lattice the phases of the laser beams are subject to drifts caused, for
example, by small fluctuations in temperature, pressure or mechanical noise. As the relative
phase between the beams changes, the position of the maxima in the lattice shifts, which
results in an unstable lattice. Since the experiment requires precise alignment of two lattices
relative to each other, stabilizing the relative phase between the beams is necessary.
This can be achieved with acousto-optic steering of the laser beams.[3] To measure the phase
of the optical lattice, images of the lattice are taken with a camera and analyzed with the
Discrete Fourier Transform (DFT).[4]

The objective of this work is to implement the proposed stabilization method for a one-
dimensional lattice. This involves extracting the lattice phase in real-time using the Fourier
transform and generating a control signal for acousto-optic steering. The target is to stabilize
lattice drifts of frequencies up to 100Hz.
In a first step, the algorithm is tested on a PC-based prototype to gain further insight into
the behavior of the system and to provide a proof of principle for the stabilization mechanism.
In a second step, the design is implemented on a Field-Programmable Gate Array (FPGA) to
achieve the maximum feedback rate, equal to the image acquisition rate of the camera.
Chapter 2 covers the theoretical background necessary to understand the system. Following
this, Chapter 3 explains the methods used during implementation and testing. The implemen-
tation on the PC and the FPGA will be described in Chapter 4, followed by the test results
in Chapter 5.
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Chapter 2

Background

2.1 One-Dimensional Optical Lattices

Figure 2.1: Example of a one-dimensional lattice in the xz-plane formed by two laser
beams

A one-dimensional lattice can be created using two laser beams of the same wavelength that
meet at an angle, as shown in Figure 2.1. For the purpose of this work, it is sufficient to
consider the beams as plane waves in the xz-plane with intensity I of the following form

Ei(x, z, t) =
√
I cos (±kxx+ kzz − ωt+ ϕi) (2.1)

where i = 1, 2 for the rays travelling in positive and negative x directions, respectively. kx and
kz are the components of the wave vector in the x and z directions, ω is the angular frequency,
and ϕi is the phase of the plane wave.
The total field is then given by the sum of the two plane waves, resulting in an interference
pattern of the form

I(x) = 2I cos2
(
kxx+

∆ϕ

2

)
(2.2)

∆ϕ = ϕ1 − ϕ2 being the relative phase between the beams, also called lattice phase in the
following. The lattice has a spacing of

d =
λ

2 sin θ
(2.3)

with λ the wavelength of the laser and θ the angle under which the beams interfere.[4]

2
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2.2 Lattice Phase Measurement

As can be seen in Equation 2.2 the lattice phase ∆ϕ influences the position of the maxima
within the lattice. Drifts of this lattice phase with a frequency of up to several Hertz can
often not be avoided. This leads to undesired instability of the lattice, which makes active
stabilization necessary. To generate the feedback for this stabilization, the lattice phase can
be extracted using the Fourier transform of the lattice.
For the one-dimensional Fourier transform, the following convention is used

F [f(x)](q) =
1√
2π

∫ ∞

−∞
f(x)e−iqx dx (2.4)

The transform of the intensity distribution in Equation 2.2 is given by

F [I(x)](q) = I

√
π

2

(
ei∆ϕδ(q − 2kx) + e−i∆ϕδ(q + 2kx) + 2δ(q)

)
(2.5)

The lattice phase can now be extracted by calculating the phase of the Fourier transform at
q = 2kx:

∆ϕ = arctan

(
ℑ (F [I(x)](2kx))

ℜ (F [I(x)](2kx))

)
(2.6)

For this purpose, the value of kx need not be known in advance. The value of kx can be
extracted by determining the maximum absolute value in the positive half of the transform,
provided that the component at q = 0 is filtered out.[4]

2.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an optimized algorithm to compute the DFT of a signal
with length N , assuming N = 2n. The general formula for the DFT of a signal x0, ..., xN − 1
is

Xk =
N−1∑
n=0

xne
−2πikn/N (2.7)

for k = 0, ..., N − 1.
The FFT algorithm recursively splits the signal into its even and odd components using the
identity

Xk =

N/2−1∑
n=0

x2ne
−4πikn/N + e−2πik/N

N/2−1∑
n=0

x2n+1e
−4πikn/N

Xk+N/2 =

N/2−1∑
n=0

x2ne
−4πikn/N − e−2πik/N

N/2−1∑
n=0

x2n+1e
−4πikn/N

(2.8)

for k = 0, ..., N/2− 1.
This reduces the computation time from O(N2) to O(N logN).
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2.4 Spectral Leakage and Windowing

For simplicity, in the following the Fourier transform of a function of time will be considered,
the principles are the same for functions of space. As described in the previous section the
DFT only samples the signal at N points, and thus, only over a finite interval ∆T . Because
the DFT assumes a periodic function, the function is implicitly extended periodically.
This circumstance does not pose an issue when the transform time ∆T aligns as an integer
multiple of the fundamental period T of the signal. In that case, the values at the edges of the
transform window are the same and, as a consequence, there is no discontinuity at the signal
edges.
In contrast to that, if ∆T is not a multiple of T , the periodic extension causes jumps at the
edges of the sampling window (see Figure 2.2).

Figure 2.2: Periodic extension with boundary discontinuities; (∆T = 5 s is not an in-
teger multiple of the period T = 20

9 s); original signal (blue), periodic extension
(orange and green) causes discontinuities at t = 0s and t = 5s

As a consequence, high frequency components are added to the signal, typically much higher
than the Nyquist rate. They are aliased into lower frequencies, resulting in a smeared-out
version of the original spectrum, a phenomenon called spectral leakage. Spectral leakage
causes the ideal δ-peaks of the sine signal in Fourier space to spread into wider peaks. This
effect is shown in Figure 2.3.[5]

Figure 2.3: FFT of a signal with frequency leakage; the δ-peaks of the sine-functions
widen due to discontinuities at the edges of the sampling window
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Spectral leakage can be reduced by multiplying the sampled signal with a window function.
Windowing reduces the discontinuities as the window function approaches zero at the bound-
aries. A large number of window functions for different use cases exists, the most popular
for sinusoidal signals being the Hanning and the Hamming window. For this application, the
Hanning window proved to reduce the error due to spectral leakage the most among several
windows tested.
The Hanning window has the form

w[n] = 0.5− 0.5 cos

(
2πn

N

)
(2.9)

for n = 0, ..., N − 1.
This window is suitable for this application because of its good side lobe suppression (meaning
little ripple close to the main lobe) and high frequency resolution (closely spaced Fourier
components can be distinguished).[5]

2.5 PID Control

PID control is a control technique widely used in industry. It aims to correct the error e(t)
between the setpoint and the measured signal by generating an output signal u(t) that depends
on a P (proportional) part, an I (integral) part and a D (derivative) part. In case of a discrete
signal, the output is calculated as follows

u[n] = Kpe[n] +Ki

n∑
j=0

e[n] +Kd(e[n]− e[n− 1]) (2.10)

where Kp, Ki and Kd are parameters that must be tuned to the particular system.
The proportional part allows the output to react to errors quickly, but cannot eliminate the
steady-state error because the proportional correction approaches zero as the error decreases.
To correct this steady-state error, the integral part must be added, which ensures that the
error goes to zero as the system reaches steady-state. The derivative part causes the output
to respond more strongly to a rapidly changing error signal, and is therefore sensitive to noise
in the signal. For this reason, the derivative part is set to zero in this work, meaning that only
a PI controller is used.



Chapter 3

Methods

3.1 Test Setup

Figure 3.1: Laser setup with beam paths; common beam path (green), beam 1: phase
modulated (dark blue), beam 2: not modulated (light blue)

To test the stabilization mechanism, a lattice is generated and captured with a camera as
shown in Figure 3.1. The laser used has a wavelength of 1064 nm. With a beam splitter two
beams are created, each of which then passes through an Acousto-Optic Deflector (AOD).
The AODs receive a sinusoidal analog input signal whose frequency determines the deflection
angle (which in this case is held constant). The phase of the input signal determines the phase
of the outgoing beam, so the relative phase can be changed by phase modulation at one of the
AOD’s inputs. In order to generate the analog signals a function generator with an external
port for modulation is used.
The first order deflections of the AODs get reflected by a series of mirrors before they hit the
camera. The resulting lattice constant d is measured to be 28.1 µm. This matches the expected
spacing of the image on the camera in the new experiment of the Lattice group. By applying
Equation 2.3, the angle at which the beams intersect was determined to be approximately
1.08◦.
An exemplary image and the calculated FFT is presented in Figures 3.2 and 3.3. The Fourier
peaks are positioned at ±0.0356 2π

µm , as one would expect with lattice spacing d = 1
0.0356µm =

28.1µm.

Figure 3.2: Lattice image with 128x512
pixels equivalent to 640x2560 µm;
bright lines correspond to high in-
tensity and dark lines to low in-
tensity of light

Figure 3.3: Fourier spectrum of a row of
the lattice image

6
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Figure 3.4: Test setup; overview of signal flow: a phase signal for the function generator
is calculated from the camera images, by modulating the input of one AOD, the
relative phase of the beams can be controlled

The goal of this project is to generate a signal for the function generator that determines the
phase modulation. A schematic drawing of the high-level setup is shown in Figure 3.4.

In an initial version, the feedback signal is generated using a PC. This serves as a prototype to
gain more insights into the behavior of the system and potential problems. For this PC-based
design, the camera signals are processed using the frame grabber MicroEnable 5 marathon
ACL by Basler and the corresponding driver software. The calculation of the FFT and lattice
phase are implemented in Python. The results are sent to the PI controller, whose output is
converted to an analog signal using the System Demonstration Platform (SDP) board and the
EVAL-AD5791SDZ Digital-to-Analog Converter (DAC) board described in Section 3.2.4. At
the same time, the results are displayed in the Graphical User Interface (GUI).

The final version is then implemented on an FPGA, which allows a higher feedback rate
and serves as an embedded solution for the experiment. The FPGA used is described in
Section 3.2.2. Image processing and control signal generation are directly integrated into the
Programmable Logic (PL) of the FPGA. The digital feedback is sent to the AD5791 DAC that
outputs an analog signal.
In addition, with the PmodDA3 DAC described in Section 3.2.3 an analog output signal
corresponding to the lattice phase is generated. In this manner, the phase stabilization can be
monitored with an oscilloscope when using the FPGA. As part of a previous student project, a
GUI was implemented to communicate to the FPGA via Ethernet.[6] This allows the camera
settings and PI parameters to be configured and sent to the FPGA.
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3.2 Hardware

3.2.1 Camera

Figure 3.5: GO-5000M-PM camera by JAI; front and back view with two CL ports [7]

The camera used to capture the lattice is JAI’s GO-5000M-PMCL. It is a monochrome area
scan camera with a CMOS sensor offering 2560 x 2048 pixel resolution and 5 µm pixel dimen-
sion. Area scan cameras can capture two-dimensional images, in contrast to line scan cameras
that acquire single lines of pixels and typically have much higher frame rates. The camera has
two Camera Link (CL) ports and is powered via Power over Mini Camera Link because this
powering method offers the highest frame rates. Additionally, the camera supports selecting
a region of interest and binning options.[7]
The image is sent in 3-tap mode, meaning three pixels along the x-axis (having the same y-
coordinate) are sent in parallel. The camera has an intensity resolution of 8 bits. The camera
receiver that converts the raw camera signal to the intensities of the three pixels on the FPGA
was implemented in a previous student project and is reused for this work.[8]
The pixel clock rate can be set to 84.99MHz, 72.85MHz, or 48.57MHz. As this defines how
fast pixels can be sent, the highest possible clock rate, 84.99MHz, is chosen. The maximum
frame rate depends on the region of interest, which is defined by the width and height of the
transmitted image. A detailed formula can be found in reference [7]. Table 4.1 summarizes
some important values.

Height (pixels) Width (pixels) Maximum frame rate (frames per second(fps))

2048
2560 47.8
1024 71.8
512 71.8

1024
2560 95.1
1024 142.7
512 142.7

512
2560 187.7
1024 281.6
512 281.6

256
2560 365.7
1024 548.8
512 548.8

128
2560 695.4
1024 1043.8
512 1043.8

64
2560 1267.4
1024 1901.1
512 1901.1

Table 3.1: Camera speed for different image dimensions; using a pixel clock of 84.99MHz
and 3-tap acquisition mode
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Since the goal is to stabilize phase drifts of up to 100Hz, a frame rate of at least 1000 fps is
required. To achieve this, the image height is set to 128 pixels resulting in a maximum frame
rate of 1043.8 fps. The width does not have such a strong effect on the frame rate and is set
to 512 pixels, as this roughly corresponds to the width of the beam on the image (see Section
5.1.1 for more detail on the effect of different image widths).
For this work, which focuses on one-dimensional lattices, the image height could even be
decreased further, since only one line of the image is needed. However, because the implemen-
tation will eventually need to be extended to two-dimensional lattices, the image height is not
reduced further than 128 pixels.
The camera supports sending a test image that consists of a horizontal ramp in intensity. This
feature is used for testing and debugging.

In summary, every time the camera is powered up it has to be configured by sending the
following commands over CL:

• CLCF = 2, the pixel clock is set to high (84.99MHz)

• WTC = 512, the image width is set to 512 pixels

• HTL = 128, the image height is set to 128 pixels

• OFC = 1256, the offset in x-direction is set, for example to 1256 pixels

• OFL = 904, the offset in y-direction is set, for example to 904 pixels

• AR = 962, the frame period is set to 962 µs, corresponding to a frame rate of 1040 fps

• TPN = 0 or 1, the image mode is set to normal mode or to test image mode

3.2.2 FPGA

Figure 3.6: FPGA platform: Mars EB1 with Mars XU3 module by Enclustra [9][10]

In order to correct phase drifts of up to 100Hz, the goal of this project is a feedback loop
running at a rate of at least 1 kHz. On an FPGA the image processing steps can run in parallel,
whereas on a computer they need to be executed sequentially. By using an FPGA, the output
latency can thus be reduced. This additionally enables more complex algorithms that could
be useful for two-dimensional lattices. For instance, it would be possible to transform multiple
lines of an image while the image is being transmitted.
In addition, the reconfigurable PL allows easy customization of the image processing algorithm
for further development. This makes FPGA a suitable hardware platform for the project.
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The specific device used is the Mars XU3 FPGA module in combination with the Mars EB1
base board by Enclustra (see Figure 3.6).
The Mars XU3 is a System-on-Chip (SoC) module embedding the Xilinx Zynq UltraScale+
MPSoC. It combines PL and Processing System (PS) (including a 64-bit quad-core Arm
Cortex-A53).[9] The PL consists of:

• Look-Up Tables (LUTs): combinatorial logic is implemented using predefined truth ta-
bles

• DSP48 slices: prebuilt 25-bit and 18-bit multiplier circuitry

• Block Random Access Memory (BRAM): user-defined RAM for storing and passing
values

The Mars EB1 base board provides two Mini Camera Link ports (supporting Power over Mini
Camera Link), an Ethernet RJ45 connector, Micro USB 2.0, and I/O-pins that are used for
the DACs.[10]

3.2.3 PmodDA3

Figure 3.7: PmodDA3: 16-bit reso-
lution DAC board [11]

Figure 3.8: PmodDA3 interface
connector signal descriptions
[11]

Digilent’s PmodDA3 is a 16-bit resolution DAC board with an output range of 0V to 2.5V.
The operating voltage is set to 3.3V. A slightly modified Serial Peripheral Interface (SPI)
protocol is used for communication, using the pins listed in Figure 3.8 (only interface J1 is
used).
The Chip Select (CS) pin has to be driven low while the 16 data bits are sent on the DIN pin.
When the LDAC pin is logic low, the output signal is updated. In this application, the output
should be updated with each input value sent. For this reason, the LDAC pin is connected
to ground. The SPI clock is transmitted via the SCLK pin during the transaction. GND and
DVDD pins are connected to ground and operating voltage respectively.[11]
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3.2.4 EVAL-AD5791SDZ

Figure 3.9: EVAL-AD5791SDZ: 20-
bit resolution DAC board [12]

Figure 3.10: SDP-B Evaluation
Board: used for communi-
cation between the PC and
EVAL-AD5791SDZ [13]

The EVAL-AD5791SDZ evaluation board serves as a DAC board to generate an analog feed-
back signal. Its main component is Analog Devices’ 20-bit resolution AD5791 DAC. Using
the on-board amplifier, the reference voltage is buffered and inverted resulting in an output
voltage range of −10V to 10V. The DAC supports a sampling rate of up to 1MSPS.[12]

Communication to the DAC is based on SPI protocol. As with the PmodDA3, the LDAC pin
is connected to ground. The pins SDO (communication from slave to master), Reset and CLR
(clear) are not used.
Before the DAC register (the register containing the output value) is written to, it has to be
configured by writing to the control register. For this application, the value 0b0010 0000 0000
0000 0001 0010 is written, corresponding to a reference input voltage of up to 10V and binary
coding for the DAC register values instead of 2’s complement representation (see Figure 3.11).

Figure 3.11: Control register of the AD5791 DAC chip [12]

When sending values from the PC to the DAC, an additional board is used to generate the SPI
signals. The SDP-B evaluation board (see Figure 3.10) has a USB communication interface
and can be connected directly to the EVAL-AD5791SDZ. To communicate with the SDP
board, Analog Devices’ Analysis, Control, Evaluation Software is installed on the PC. It can
be controlled via Python. However, it only allows an update rate of 20Hz. Higher update
rates lead to a delay in the reaction of the output signal.
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3.2.5 Function Generator

To generate the analog input signals for the AODs, the Siglent SDG 2122X Function Generator
is used. Both outputs are set to sine waves with a frequency of 120MHz (determining the
defelection angle) and an amplitude of 370mVpp. The phase modulation of one output is
activated. It is controlled by the analog input channel of the function generator, which has
a range of ±6V and 0◦ to 360◦. A voltage of −6V measured at the input of the function
generator corresponds to output phase of 0◦, whereas a voltage of 6V corresponds to 360◦.
Examining the lattice phase behavior when changing the function generator input from 6V
to −6V, a jump in lattice phase was observed. Therefore, no rewinding at the input voltage
boundaries is possible with the current function generator.

3.3 PI Tuning

An online tuner application was used to tune the parameters of the controller.[14] In order
to characterize the system, a step was generated at the output of the DAC and the resulting
lattice phase measured. This data was passed to the tuner, which fits a first-order model to the
data and calculates the appropriate PI parameters. The parameters can be scaled to adjust
the responsiveness of the controller. However, the obtained values were only used as a starting
point since some fine tuning was necessary to achieve the desired stability.

For the PC-based design, the parameters Kp = 0.5 and Ki = 0.1 are used. The proportional
part is relatively small compared to the integral part because, on the one hand, the lattice
phase can have a large steady-state error. On the other hand, the feedback rate in the PC-
based design is of the same order as the phase fluctuations, which means that the proportional
value must be set conservatively to avoid oscillations and instability.

The FPGA-based design does not suffer from this limitation. The output value is updated
at a rate of 1 kHz, which allows a slightly increased proportional parameter relative to the
integral parameter. Using the method described above, the values Kp = 0.43 and Ki = 0.016
were chosen, as they result in a fast and stable response (see Section 5.3.2 for results).



Chapter 4

Implementation

The following chapter emphasizes the key components of the implementation. The initial ver-
sion is based on a PC, but as it primarily serves as a prototype, it is not extensively optimized
for low latency. Greater emphasis is placed on the second phase, namely the implementation
on an FPGA.

4.1 PC-Based Prototype

The stabilization of the lattice on the PC is based on a Python application. Figure 4.1 outlines
the structure of the system. On the top level, the application is implemented with PyQt, a
tool for building cross-platform desktop applications. Several subprocesses are managed by
the main application:

• Frame grabber management: control the acquisition settings of the frame grabber
and manage memory resources for continuous image acquisition

• Image callback: executed for each received image: includes reading frame grabber
memory, calculating FFT, finding the maximum value and calculating the phase of the
Fourier component

• PI control: calculate the output voltage from the phase

• Digital-to-analog conversion: set configuration of DAC chip and send the calculated
voltage to the DAC

• Graphical User Interface (GUI): manage user inputs and update display

Each subprocess will be described in the following sections.

Figure 4.1: High-level block diagram of the PC-based design
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4.1.1 Frame Grabber Management

This process consists of two phases: initialization and continuous acquisition.
In the initialization phase, first of all, a connection to the frame grabber is established. Fol-
lowing that, the acquisition settings are communicated to the frame grabber. This mainly
includes the image dimension, camera sensor type, as well as tap mode (3-tap in this case).
These settings are read from an initialization file that has to be updated if one of the settings
is changed. Apart from that, memory resources on the frame grabber are blocked. They are
used to store the images during continuous acquisition.
As soon as the image acquisition starts, two steps are repeated: At the location the image
pointer currently points to, the newest image is stored along with some metadata. After that,
the image pointer is moved to the next memory block to prepare for the next image.
Basic C++-based functions to communicate to the frame grabber and manage the memory
pointer are provided by Basler as part of the Framegrabber Software Development Kit (SDK).

4.1.2 Image Callback

For each received image, the image callback function is executed. It comprises three steps:
fetching the image, calculating the FFT, and from that the lattice phase.
First of all, the memory buffer associated with the received image number is accessed and the
stored data is converted into an image array. Next, the center line of the image is multiplied
element-wise with the Hanning window, of which the FFT is then calculated. Next, the result
of the FFT is filtered: only the Fourier components with indices ≥ 30 (to filter out the peak
at q = 0) and ≤ 256 (to filter out the negative half of the transform) are considered for the
next step. Finally, the phase of the maximum Fourier component is returned.
To calculate this phase numpy.arctan2() function is used, which has the advantage that the
phase is also defined if the real part of the Fourier component is zero. Additionally, in contrast
to numpy.arctan() (that has an output within ±π

2 ), its output range is ±π, which matches
the actual range of the lattice phase.
Still, this can lead to discontinuities when the lattice phase is close to π or −π. To adjust
for this, the calculated value is compared to the previous phase value. If the absolute value
of the difference is larger than 4, the phase value is adjusted by adding or substracting 2π.
Subsequently, the output range is effectively extended beyond ±π.
This callback function can be executed at up to 1 kHz. Above this rate, certain images are
not processed.

4.1.3 PI Control

The PI output is calculated according to Equation 2.10, with Kd = 0. Next, the output is
clamped to a range of ±6V .
As the analog signal can only be updated at a rate of 20Hz while the phase calculation runs at
1 kHz, the PI controller uses the average of all phases calculated since the last output update
for calculation.
One additional factor to be considered is the sign of the PI output. Depending on which AOD
is phase modulated the effect of the output on the lattice phase changes sign. To account for
this, the PI control output needs to be inverted. Alternatively, the phase modulation can be
applied to the other output of the function generator.
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4.1.4 Digital-to-Analog Conversion

For communication between the EVAL-AD5791SDZ and the PC, Analog Devices’ ’Analysis,
Control, Evaluation’ (ACE) Software is used. It communicates to the SDP-B board via serial-
USB, that then generates the SPI signals for the EVAL-AD5791SDZ. This however, proved
to be the bottleneck of the system in terms of feedback rate. The ACE software only allows
updating the analog output at 20Hz.
The operation using the SDP board is straightforward: As described in Section 3.2.4, in order
to use the DAC, first of all, the control register has to be initialized. After that, the values
received from the PI module can be directly passed on to the DAC register.

4.1.5 Graphical User Interface

One of the main goals of the PC-based prototype is to gain more insight into the system. For
real-time monitoring a GUI has been implemented, displaying the most important information
(see Figure 4.2). This includes the current camera image, the time evolution of the lattice phase
and the two-dimensional FFT of the image. In addition, it provides a control interface to start
and stop image acquisition and analog output, set the PID parameters and store the phase
signal.
While for the lattice phase calculation a one-dimensional FFT is implemented, the two-
dimensional FFT allows additional insights into the system. The main purpose is to detect
whether the camera axis is aligned with the lattice. This is important as a misaligned lattice
results in a lower Fourier peak and a less accurate phase measurement. Figure 4.3 highlights
the difference between an aligned and an unaligned camera in the two-dimensional transform.
The tilt of the lattice relative to the image boundaries causes a rotation in Fourier space.
To avoid delay, the GUI is only updated at a rate of 1Hz. In particular the calculation of
the two-dimensional FFT cannot be included in the image callback function as this causes too
much delay. Thus, the two-dimensional FFT is only calculated when the GUI is updated (at
1Hz).

Figure 4.2: GUI for the PC-based design; upper left: control bar to start and stop
image acquisition, analog output, set PID parameters and save phase signal to
file; below that: camera image; upper right: lattice phase over time; lower right:
two-dimensional FFT of the camera image
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Figure 4.3: Comparison of 2D-FFT for a lattice aligned with the camera and a tilted
lattice; left: Fourier transform of a lattice aligned with the camera axis; right:
Fourier transform of a lattice tilted by 4.2◦ relative to the image axis; the maxima
corresponding to the lattice spacing are visibly rotated off the x-axis for the tilted
lattice

4.2 FPGA-Based Design

4.2.1 Overview

In the course of several previous projects, a camera interface and an interface to a host PC
were developed.[6][8][15] The interfaces are used in this design with only small adjustments.
Connections for a second camera are available but not in use in the current implementation.
The high-level block design highlighting the overall architectue is presented in Figure 4.4.

Figure 4.4: High-level block design of the FPGA-based design; interfaces to the host
PC, the on-board system controller are managed with an AXI Interconnect; the
camera interface is implemented on PL
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The main focus of this project is the image processing block, as well as the PID controller and
SPI interface. As depicted in Figure 4.5 the signal passes through several stages in the image
processing block:

• First In, First Out (FIFO) Input Wrapper: multiply the pixel values with the
Hanning window function and arrange the values for the FIFO

• FIFO: serialize the values and change clock domain

• FFT Input Wrapper: wrap the values of the FIFO into the format expected by the
FFT module, generate valid and configuration signals

• FFT: calculate the FFT of the signal

• Find Max: find the maximum value of the FFT and pass it on to the Cordic module

• Cordic: calculate the phase of the Fourier component

Each of the stages is explained in more detail in the following sections.

Figure 4.5: Signal flow of the image processing module; custom modules (red) and Xilinx
IP cores (orange)

4.2.2 FIFO Input Wrapper

The input from the camera interface consists of the 85MHz pixel clock, frame valid (fval),
line valid (lval), data valid (dval) signals and three neighbouring pixel intensities. With two
counters, signals for the x and y coordinates of the current pixels are generated. A vector
containing the values of the Hanning window function with a width of 8 bits is initialized from
an external file.
If the y-counter is at 64 (which corresponds to the center line of the image), the three input
pixel values are multiplied with the corresponding entry of the Hanning vector. Because both
factors of the multiplication have a width of 8 bits, the result is 16 bits wide. The three
multiplication results are concatenated, with 16 bits of additional zeros in the end because the
FIFO expects a data width of a power of 2. A valid signal is generated to indicate when the
FIFO should read incoming values to its internal buffer.
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4.2.3 FIFO

In order to serialize the pixel data a FIFO stage is used. FIFOs read the input with the read-
clock’s frequency and output the data with the write-clock’s frequency in a first-in-first-out
manner. It is possible to have differing read- and write-widths, in that case, one read-value is
split into multiple write-values.
The incoming signal contains three data points per clock cycle, while the FFT module expects
one data point per clock cycle as input. The FIFO can only split the data by powers of 2.
Consequently, a write width of 64 bits is chosen and the signal is split into four 16 bit values
that are sent sequentially at the output.
The resulting signal contains one data point per clock cycle, of which three consecutive values
contain actual camera signal. Because in the FIFO Input Wrapper module 16 bits of zeros
were appended, every fourth data point contains no real camera signal.
To decrease the latency of this step, a higher clock frequency is employed to output the data
points. The camera interface already utilizes a 300MHz clock generated by the PS, and by
utilizing this existing clock, there is no need to generate an additional one. All subsequent
modules of the image processing block are clocked with 300MHz.

4.2.4 FFT Input Wrapper

The purpose of the FFT Input Wrapper module is to translate the received values into the
correct format and a range of ±1. Additionally, a valid signal, last signal (which is only high on
the last input value) and config signal (determining the internal settings of the FFT module)
are generated.
As explained in the previous sections, the data generated by the FIFO still contains invalid
data every fourth cycle. However, the valid signal generated by the FIFO does not account
for that. For this purpose, two data counters are introduced. The first counter counts all
incoming data points and sets the valid signal to zero every fourth cycle. The second counter
only counts the data points containing real values. With this second data counter, the valid
signal is set to zero after 512 samples and the last signal is asserted on the last data point.
The counters are reset after every frame.
The input of the FFT module is expected to be in 2’s complement fixed point format with 1
integer bit and 15 fractional bits. As a consequence, the 16 bit input value is automatically
interpreted to be in a range of ±1. However, the camera signal is unsigned, meaning the values
first have to be transformed to 2’s complement. This can be achieved by flipping the Most
Significant Bit (MSB) as explained in Figure 4.6.
As a last step, 16 bits of zeros are appended to the 16 bit real part data to represent the
imaginary component of the camera signal.
Xilinx’s FFT module allows changing FFT parameters during runtime by using the config
input. This feature is not needed for the current design, thus, the config valid signal is set to
constant zero to keep the initial configuration.

Figure 4.6: Conversion of unsigned input to 2’s complement by MSB flip; exemplary on
3 bit data in fixed point format with two fractional bits
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4.2.5 FFT

Xilinx provides an Intellectual Property core (IP core) to calculate the FFT of an input signal.
For maximum throughput, AXI (Advanced eXtensible Interface) Stream Interface is chosen.
An important setting is the scaling and rounding method of the FFT. This determines if and
how the intermediate results get rounded or truncated. To achieve maximum precision the
unscaled option is chosen, meaning that the full bit growth is carried to the output. This
results in an output width of 25 bits each for real and imaginary part. The resulting sequence
x0, ..., x511 is provided one value per clock cycle via AXI Stream Interface. The indices 0 to
255 correspond to positive k values and the indices 256 to 511 to negative k values.
In addition, the IP core provides two options to order the output: natural and bit-reversed.
Bit-reversed means that the order of the individual bits of the Fourier index is reversed. For an
example of a 4-point FFT, this means the outputs are in the order: x0, x2, x1, x3 (00,10,01,11)
instead of x0, x1, x2, x3 (00,01,10,11).
Bit-reversed order reduces the latency, as it is the internal order of calculation of the FFT
algorithm, which is why this option is chosen.[16]

4.2.6 Find Max

To find the Fourier component corresponding to the lattice spacing, the maximum peak (apart
from the peak at q = 0) has to be detected. For that purpose, the absolute values of the
incoming FFT results need to be compared. To avoid a division, the square of the absolute
value is compared instead. This is implemented with several registered stages as presented in
Figure 4.7. Two additional registers are introduced to store the current maximum absolute
value and the corresponding real and imaginary part.
The index counter counts the number of inputs from the FFT, bit-reverses this number to get
the real index, and generates a flag that signals whether this index is in the valid range. The
valid range includes all indices ≥ 30 (to filter out the peak at q = 0) and ≤ 255 (to filter out
the negative half of the transform).
As soon as all FFT results have been received, the real and imaginary part of the detected
maximum get passed on to the next stage.

Figure 4.7: Find Max module signal flow; blue signal paths are only connected if the
corresponding condition is true
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4.2.7 Cordic

The Cordic IP core takes cartesian coordinates (x, y) and calculates the angle between the ray
connecting this point to the origin and the positive x-axis. This is equivalent to calculating
arctan 2(x, y). The difference between arctan 2(x, y) and arctan(x, y) is that arctan 2(x, y) is
also defined when x = 0. Moreover, the output range of arctan 2(x, y) is ±π as explained for
the PC-based design (Section 4.1.2). Consequently, the lattice phase is extracted by calculating
arctan 2(maxreal,maximag).
The output width is set to 20 bits to match the resolution of the DAC.

4.2.8 PI Control

Following the image processing stages, a module to calculate a PI control signal is necessary.
As shown in Figure 4.4 the results of the image processing, meaning the calculated phases,
get passed on directly to the PID module. Additionally, the PI parameters and the setpoint
are sent via Ethernet from the host PC and get sent to the PID module through the PS. As
mentioned in Section 2.5, the D parameter of the controller is set to zero.
The PID module is clocked with 300MHz, however, the lattice phase is updated at a rate of
1 kHz. This is equivalent to a very long dead time in the system and would lead to saturation
of the integral term. For this reason, a clock divider is added to the PID module. The clock
divider generates a clock of approximately 10 kHz. The output is only updated with this clock
frequency.
The PI output is calculated in three steps: Firstly, the error is calculated from the calculated
lattice phase and the setpoint. Secondly, a preliminary value for the PI signal is calculated
using Equation 2.10. In a last step, 0x80000 is added to the output to adjust for the fact that
0x80000 corresponds to an analog voltage of 0V. Additionally, the output signal is clamped
to ±6V . Simultaneously, the old integrator value and the previous error are stored for the
next cycle.

Particular attention is required during the initial step, which involves computing the error
signal. Because the phase is in a range of ±π, discontinuities might occur at the boundaries of
this range. It is impractical to extend the phase range as for the PC-based design (discussed
in Section 4.1.3) because this would demand more bits to represent the phase.
Instead, the error calculation is adjusted slightly: In a first step, a temporary error is calculated
by subtracting the input phase from the setpoint. This temporary error needs an additional
bit because it is in a range of ±8 (radian), rather than ±4 (radian). If the absolute value of
this error is larger than 5, 2π is either subtracted or added to the temporary error based on
its sign, and the result is written to the final error register. The final error register maintains
the original bit count, with a range of ±4.



4. Implementation 21

4.2.9 Digital-to-Analog Conversion

As described in Sections 3.2.3 and 3.2.4, two DACs are in use. They require two different
modules for communication.

Analog Phase Signal

On the one hand, the PmodDA3 board is used to output an analog lattice phase signal. Digikey
has created a module with an adapted SPI implementation for the PmodDA3. Only 16 bits of
data can be sent through this interface, consequently, only the upper 16 bits of the calculated
phase are passed on to the DAC. An additional complication is caused by the fact that the
data is clocked at 300MHz while the DAC is clocked with 50MHz. This is resolved by adding
a FIFO between the PID module and the SPI module to allow clock domain crossing.

Analog Feedback Signal

On the other hand, to generate the analog feedback signal for the function generator the EVAL-
AD5791SDZ board is used. Standard SPI protocol is used for communication, however, as
described in Section 3.2.4, before sending values to the DAC register, the DAC has to be
initialized by a write to the control register. For this purpose, a finite state machine is added
to the communication module as depicted in Figure 4.8.
The state machine starts in the INIT state. Every write operation consists of four steps:
PREP, SPI BOOT, SPI SEND, and UPDATE. These steps set the correct value to be written,
pull down the slave select signal, wait for a predefined number of cycles before actually sending
the data, and then setting slave select back to high and updating internal flags.
The PREP state differs depending on the previous states of the state machine. In a first
iteration, initial zeros are written to the DAC register (PREP: DAC INIT VAL). Secondly,
the configuration value is written to the control register (PREP: DAC CONFIG). After that,
the state machine repeatedly sends the current module input to the DAC register (PREP:
DAC NEXT SIGNAL).
To improve signal quality, the clock signal is only generated if the new value is different from
the previous value written to the DAC register.
Similar to the signal path for the PmodDA3, the input to the SPI module passes through a
FIFO to change from the 300MHz clock to 50MHz used by the SPI module.

Figure 4.8: SPI finite state machine; the red loop shows the state trajectory repeated
for every new DAC value
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4.2.10 Utilization and Timing

A detailed breakdown of the utilization of each module on the FPGA can be found in Appendix
B. In summary, the design utilizes only a minor portion of the available resources, making it
feasible to duplicate the image processing block, such as adding similar processing capabilities
for a second camera.
Furthermore, Table 4.1 highlights the latency of the image processing implementation. The
result of the phase is available 6.217µs after the last value of the line has been received.
For comparison, transmitting a single line of the image consumes 2.012µs (excluding the gap
between two lines). As a result, multiple lines of the image can in principle be utilized for phase
calculations without requiring additional resource allocation. This possibility holds potential
utility for an implementation for two-dimensional lattices.
Intuitively, to analyze two-dimensional lattices, using a two-dimensional FFT is the most
straight-forward approach. A naive implementation of such an approach yields a latency on
the order of 10−2s though, which makes it impractical considering the sampling rate should
be at least 1 kHz. It is, thus, preferable to use an algorithm utilizing only one-dimensional
transforms if possible.

Module Latency (cycles) Latency (µs)

FIFO Input Wrapper 2 0.0067
FIFO 684 2.278

FFT Input Wrapper 1 0.0033
FFT 1151 3.837

Find Max 3 0.01
Cordic 24 0.08
Total 1865 6.217

Table 4.1: Latency of image processing modules in cycles and absolute time (for a
300MHz clock)



Chapter 5

Results

5.1 Analysis of Phase Measurement Error

Deviations between actual and calculated lattice phase can result from several sources of error
that will be analyzed in the following.
First, an error is introduced by the algorithm itself, because it calculates the Fourier transform
of a discrete, finite signal (instead of a continuous, periodic signal). The transform length (or
image width) has a significant impact on this error. Second, the camera’s intensity measure-
ments have only finite resolution and therefore cannot reflect the intensity pattern of the lattice
with perfect precision. Moreover, the measured camera signal may contain noise that distorts
the result of the FFT. Finally, when working with the FPGA, an error is introduced because
of the fixed-point arithmetic and finite bit size of the signals.

5.1.1 Algorithmic Error

The algorithmic error is the error inherent with the phase calculation method. It is analyzed
by generating two intensity patterns of the form I1/2(x) = cos(2π10x+ϕ1/2)

2, where 10 is twice
the lattice spacing in pixels, x ranges from 1 to the transform length N , and ϕ1/2 are two phase
values. The algorithm is applied to calculate the phase difference between the two signals for
several random phases. The calculated phase difference ϕcal is compared to the actual phase
difference ϕreal = ϕ1 − ϕ2 and the result ∆ϕ = |ϕcal − ϕreal| is analyzed.
This method simulates the actual test environment because for stabilization only the relative
phase between two images is of importance and not the absolute value of the calculated phase.

The results are depicted in Figure 5.1. With smaller transform sizes, the algorithmic error
tends to increase due to the reduced resolution in reciprocal space (the frequency resolution
∆f inversely scales with N).
Additionally, it is noteworthy that transform lengths that align as multiples of the lattice
spacing exhibit significantly reduced error. This is caused by the implicit periodic extension
inherent in the DFT algorithm. If the transform length is a multiple of the lattice spacing,
there are almost no discontinuities at the signal edges (see Section 2.4).
However, the lattice spacing will change dynamically in the experiment, hence, the error has
to be minimized over a range of lattice spacings, so this identity cannot be leveraged. For this
reason, in the following sections the maximum phase deviation will be compared.
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Figure 5.1: Algorithmic error without windowing; the absolute difference between calcu-
lated and actual phase values in units of π for different transform lengths; average
error (orange) and maximum error (blue)

The maximum error can be reduced significantly by multiplying the signal by a window func-
tion (see Figure 5.2). Windowing reduces boundary discontinuities and spectral leakage (see
Section 2.4). The Hanning function is used as it produces the smallest error for this application.
All following analysis is based on the algorithm with incorporation of the Hanning window.

Figure 5.2: Algorithmic error with windowing; maximum phase error without window-
ing (orange) compared to Hamming window (green) and Hanning window (blue)

Additionally, it is of interest whether the phase error decreases or increases if the difference
between the two phases is small. In reality, the phase difference between two consecutive
pictures is very small, so this could influence the effective accuracy of the algorithm. However,
Figure 5.3 underlines that there is no direct correlation between phase error ∆ϕ and magnitude
of the phase difference ϕreal.
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Figure 5.3: Correlation between between phase error ∆ϕ and magnitude of the phase
difference ϕreal; transform length of N = 29 = 512; with Hanning window

5.1.2 Finite Intensity Resolution Error

As shown in Figure 5.2, the algorithmic error approaches zero with increasing transform length
N . For large transform lengths, however, the finite intensity resolution error dominates. The
current camera has a resolution of 8 bits or 28−1 = 255 of which only approximately 6 bits or
26 = 64 is effectively used for the lattice. By using a camera with higher intensity resolution,
the error could be decreased. Figure 5.4 exemplarily compares resolutions of 6, 8 and 12 bits.

Figure 5.4: Phase error for 6-bit (orange), 8-bit (green) and 12-bit (red) intensity resolu-
tion with Hanning window, as comparison the phase error without finite intensity
resolution (blue)

Not only does the image signal possess finite resolution, but the Hanning window function
can also only be implemented with limited bit precision. Employing 8 bits for the Hanning
function, the resulting error is negligible, on the order of 10−5π.
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5.1.3 Image Noise

The investigation of image noise involved the introduction of a random noise signal with an
amplitude of 2 and a constant offset of 10 to the intensity signal with finite bit resolution.
These values were selected to align with the characteristics of the measured camera signal.
The intensity signal (not considering the noise added) has an amplitude of 26−11 because not
the whole range of 8-bit values is used in the current setup. The resulting intensity pattern is
I1/2(x) = (26 − 11) ∗ cos(2π10x+ ϕ1/2)

2 + 10 + random[−2,2].
Figure 5.5 illustrates that this addition of noise introduces an extra source of error to the
phase calculation. In Figure 5.6, the same noise was applied, but this time to an intensity
signal with an amplitude of 212 − 11. In effect, this reduces the relative noise amplitude. A
comparison between Figures 5.5 and 5.6 clearly demonstrates that the error attributed to noise
significantly diminishes with an improved signal-to-noise ratio.

Figure 5.5: Phase error with added noise (orange) and without added noise (blue) for
6-bit intensity resolution and a noise amplitude of 2 (3.7% of the signal range)
with Hanning window; this corresponds to the situation in the current setup

Figure 5.6: Phase error with added noise (orange) and without added noise (blue) for
12-bit intensity resolution and a noise amplitude of 2 (0.05% of the signal range)
with Hanning window

5.1.4 FPGA Error

In contrast to the PC, where floating point numbers are used, the FFT on the FPGA utilizes
fixed point arithmetic and finite word length. This can introduce an error, especially for very
small and very large results. To quantify this error, the camera’s test image mode is employed.
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The test image comprises a horizontal ramp (refer to Figure 5.7), and its Fourier spectrum is
depicted in Figure 5.8.

Figure 5.7: Camera test image: horizontal ramp

Figure 5.8: FFT of the test image

The FFT of a single line from this image is computed using both the PC and the FPGA (with
values extracted using an ILA debug core). Figure 5.9 displays the absolute difference between
the results obtained from the PC and the FPGA-based calculations. Notably, the imaginary
component exhibits a more substantial deviation than what could be attributed solely to finite
bit resolution. One possible explanation is the finite precision of the internally stored phase
factors required for the transform.

Figure 5.9: FFT deviation between PC and FPGA; absolute value of the difference
between the FFT results calculated on PC and FPGA split into real and imaginary
part
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In principle, only the error of the phase at the maximum of the FFT is of importance and not
the absolute accuracy of the FFT. The amplitude of the error is distributed evenly over the
spectrum, meaning that larger Fourier components have smaller relative errors. For the phase
calculation, the imaginary and real part have to be divided. Consequently, the phase error
is smaller for points with large Fourier amplitudes. Since the phase is only calculated at the
peak corresponding to the lattice spacing, only the phase error of large Fourier components is
of interest.
In Figure 5.10 only the phase error for Fourier components larger than 1

100 of the maximum
amplitude are shown. This cutoff value is chosen arbitrarily but demonstrates the correlation.
The phase error is below 1.2 ∗ 10−3π for this range, but for Fourier components larger than 1

10
of the maximum amplitude this reduces to 10−4π.

Figure 5.10: FFT phase error of Fourier components with large amplitude; the phase
errors of all components smaller than 1

100 of the maximum amplitude are set to
zero

However, the FFT of the test image has a very different shape than that of the real lattice
images. Consequently, the behavior of the FPGA-based phase error needs to be further in-
vestigated with real images to substantiate these claims. At the moment, it is not possible
to transfer the images acquired with the FPGA via Ethernet. For this reason, an in-depth
analysis of the phase accuracy for real lattice images is not yet possible efficiently. For this
purpose, as well as general debugging and monitoring applications, it would be beneficial to
implement a mechanism to transfer the images via Ethernet in future projects.

5.1.5 Summary of Error Effects

Based on the findings from the preceding sections, we can estimate the overall error under
various conditions. In this discussion, we will primarily consider the algorithmic and finite-
intensity errors since the error analysis for the FPGA is not yet fully robust. Additionally,
the error cause by camera noise, which is of relatively low amplitude and difficult to influence,
will be disregarded.

As discussed in Section 5.1.1, incorporating a Hanning window function leads to a significant
reduction in error. Besides the window function, two key factors that can be adjusted are the
intensity resolution of the camera and the image width (or equivalently, the transform length).
Figure 5.11 illustrates the phase error for various combinations of these parameters.

The results indicate that a minimum intensity resolution of 10 bits and a transform length
of 26 = 64 result in a maximum error of 10−3π. Increasing the transform length further
only marginally reduces the error, while enhancing the intensity resolution beyond 10 bits can
further improve accuracy. With a resolution of 12 bits and a transform length of at least
27 = 128, the maximum phase error is reduced to 3 ∗ 10−4π.
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Figure 5.11: Phase error as a function of intensity resolution and transform length;
color scale depicts the maximum relative phase error in units of π with Hanning
window

For the results of the following sections it is important to be aware of the phase measurement
accuracy of the current test setup. As explained before, the intensity of the optical lattice is
equivalent to an effective intensity resolution of 6 bit. Additionally taking the camera noise
and transform length of 29 = 512 into consideration, a maximum phase error of 10−2π is
obtained (see Figures 5.5 and 5.11).

5.2 Phase Measurement

A typical phase signal has a drift of approximately 0.5π over the range of 5 s to 30 s with faster
fluctuations in a range of 0.1π (see Figure 5.12). Decomposing the signal into its spectral
components, it can be seen that the phase drift contains relevant frequency components up to
50Hz to 100Hz (see Figure 5.13).

Figure 5.12: Lattice phase measurement over 12.5 s using FPGA
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Figure 5.13: Frequency spectrum of the unstabilized lattice phase

By inspecting the phase measurement over a shorter period of time, as in Figure 5.14, it is
observable that the value of the calculated phase differs between consecutive pictures by up to
8 ∗ 10−3π. Taking into consideration the analysis in Section 5.1.5, where the accuracy of the
phase measurement for the current setup was estimated to be 10−2π, it can be concluded that
the sample-to-sample phase differences are not caused by a physical phase drift but are a result
of the measurement error. These fluctuations are of course not expected to be stabilizable with
a controller.

Figure 5.14: Lattice phase measurement over 0.1 s using FPGA; close-up of the mea-
surement shown in Figure 5.12 between 2 s to 2.1 s; for easier identification of
the fluctuation range, the signal is centered around zero; the sampling period of
1ms is reflected in the step-wise change of the signal; signal fluctuations within
these steps are caused by the DAC ouput noise and oscilloscope measurement
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5.3 PI Control

5.3.1 PC-based Control

Figure 5.15 shows a direct comparison of two phase measurements taken with the PC, one with
stabilization, the other without. The setpoint is set to zero constantly in this first case. It is
evident that the higher frequency fluctuations cannot be stabilized using a PI controller with
an update rate of 20Hz. Nevertheless, the long-term drift of the phase can be removed with
stabilization. This is underlined by the comparison of the two signals in frequency domain
depicted in Figure 5.16. The frequency components up to approximately 1Hz are shifted to
higher frequencies.
These results show that the feedback stabilization works in principle, but it requires a signif-
icantly higher update rate than 20Hz to stabilize the frequency components up to 50Hz to
100Hz.

Figure 5.15: Comparison of unstabilized and stabilized phase signal with PC-based de-
sign; the setpoint is set to zero for the whole time range (orange dashed line);
axis ranges have been adjusted to match for both signals

Figure 5.16: Comparison of unstabilized and stabilized phase signal in frequency domain
with PC-based design
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In a second test, a step input is given as setpoint. The step response of the control system is
shown in Figure 5.17. The phase stabilizes around the new setpoint successfully, however, the
transition is relatively slow. Because the signal fluctuations are faster than the feedback rate,
the PI parameters have to be chosen conservatively to avoid oscillations. A side effect of this
is low responsiveness of the controller to a change in setpoint.

Figure 5.17: Step response with PC-based design

5.3.2 FPGA-based Control

The same tests are also performed with the FPGA calculating the output signal instead of the
PC. Figure 5.18 displays the results of stabilization to a constant setpoint of zero. The lattice
phase reaches the setpoint in 10ms after the controller is activated. It stays within ±10−2π
of the setpoint.
Comparing the stabilized signal with the unstabilized one in frequency domain yields the
results shown in Figure 5.19. With the active stabilization the frequency components of up to
45Hz can be reduced. To compare, the sample rate of the phase measurement is 1 kHz. The
bandwidth of the controller can thus be estimated to be 45Hz.

Figure 5.18: Stabilized signal with FPGA-based design; left: stabilization over the span
of 3.5 s; right: zoom into the first 20ms of the stabilization process
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Figure 5.19: Comparison of unstabilized (purple) and stabilized (green) phase signal in
frequency domain with FPGA-based design

Secondly, a step is again applied as a setpoint as seen in Figure 5.20. The lattice phase reaches
the new setpoint within 10ms and stays within a range of ±10−2π after that.

Figure 5.20: Step response with FPGA-based design

Further work is necessary to enable a change of setpoint over multiple lattice sites. This is
difficult due to the jump of the phase output at ±π and the limited range of the function
generator output. It was observed that changing the output of the function generator from
360◦ to 0◦ causes a significant jump in the lattice phase so simple rewinding at the range
boundaries is not possible.
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Conclusion

The goal of this work was the implementation of a real-time phase stabilization of an optical
lattice based on FFT and acousto-optic steering. The target platform chosen is an FPGA,
which allows for a low-latency yet flexible implementation.

To gain more insight into the system, a prototype of the stabilization system was implemented
on a PC. Testing demonstrated the feasibility of the phase stabilization approach but also
underlined that a feedback rate of 20Hz is not enough to control higher frequency lattice
phase fluctuations.

The final FPGA design enables calculation of the lattice phase in 6.22µs and uses only a
small portion of the FPGA resources. Using this to realize a feedback rate of 1 kHz results in
successful stabilization to within ±10−2π of the setpoint. The fluctuations of ±10−2π are a
result of the limited accuracy of the phase measurement, and can thus not be removed using
a PI controller. Apart from that, the active feedback allows the lattice phase to track the
setpoint closely, with a settling time of 10ms.

Additionally to the results of the control mechanism, the phase measurement error was ana-
lyzed in detail. Although additional tests are necessary to get definite results for the phase
error on the FPGA, with the current setup phase measurements are expected to be accurate
up to ±10−2π. This could be improved by using a camera with better intensity resolution and
signal-to-noise ratio. The accuracy heavily depends on the transform length or the dimensions
of the image equivalently. It was demonstrated that transform lengths of at least 26 = 64
pixels at an intensity resolution of at least 10 bits yield an accuracy of ±10−3π. A higher
intensity resolution, for example to 12 bits would lead to further improvement of the accuracy.

These considerations are important for future work on lattice phase stabilization. A priority
for future work is the improvement of the phase measurement accuracy with a higher intensity
resolution. Additionally, alternative cameras with a higher sampling rate will be investigated,
possibly improving the bandwidth of the controller.
Moreover, one of the next steps is to extend the current approach to two-dimensional lattices
including lattice structures consisting of multiple superimposed lattices. Firstly, this probably
necessitates the incorporation of a second camera, which is already attainable with the existing
design, requiring only minor adjustment. Secondly, processing not only one line of the image,
but also the image’s columns will most likely be necessary. As the transform length in vertical
direction can only be increased at the cost of camera sample rate, it is important to consider
the trade-off between transform length and measurement accuracy.
Additionally to the extension to two-dimensional lattices, the current design can be extended
by using a function generator with a phase modulation range larger than 0◦ to 360◦, which
would enable rewinding at lattice site boundaries to control the position of the lattice over
multiple sites. Furthermore, sending the images acquired on the FPGA would be beneficial
for analysis and monitoring in the future, which could be achieved by extending the existing
Ethernet interface.
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Appendix A

Alternative Phase Calculation
Methods

A.1 Phase-Shifting Interferometry

In this work, an approach to stabilize the lattice phase using the FFT of the image was pursued.
As the lattice’s shape and spacing is known to a certain degree, the FFT approach does not
make use of all the information available. An alternative method to calculate the lattice phase
making use of the known shape of the interference pattern is presented in this chapter.

Instead of multiple lattice sites, only one period of the lattice is imaged with the camera. This
results in an intensity distribution of the form

I(Θ) = A cos2
(
Θ

2
+

∆ϕ

2

)
=

A

2
+

A

2
cos2 (Θ +∆ϕ)

=
A

2
+

A

2
(cos(Θ) cos(∆ϕ)− sin(Θ) sin(∆ϕ))

with Θ = 0, 2π
N−1 , ..., 2π − 2π

N−1 , 2π and N is the number of data points of the image row.

Both sin(∆ϕ) and cos(∆ϕ) can be extracted from this intensity pattern with the appropriate
choice of probing points Θ. An algorithm proposed by Schwider et al [17] and Hariharan et
al.[18] utilizes 5 measurements of the intensity:

sin(∆ϕ) = 2

(
I

(
3π

2

)
− I

(π
2

))
cos(∆ϕ) = 2I(π)− I(0)− I(2π)

∆ϕ = arctan

(
2(I(3π2 )− I(π2 ))

2I(π)− I(0)− I(2π)

)

This method is based on phase-shifting interferometry, where an accurate measurement of the
phase difference between two waves is of importance.[19]

The suitability for this application was investigated with simulations based on the same ap-
proach as in Section 5.1.1. Figure A.1 presents the accuracy of the calculated relative phase
between two simulated images. The phase measurement error is displayed for different devi-
ations from the expected lattice spacings. This influences the accuracy because this method
relies on an accurate knowledge of the period of the lattice in order to probe the lattice at the
right points. Additionally, it is assumed that the lattice spacing is a multiple of 4 (in pixels).
The reason for this is that, the 5-point algorithm can use the value of the single pixels directly.
In this case, the phase shifting method surpasses the FFT algorithm in accuracy.
If the lattice spacing is not a multiple of 4, the points at I(π2 ), I(π) and I(3π2 ) cannot be probed
directly.

A-1



Alternative Phase Calculation Methods A-2

Figure A.1: Algorithmic maximum error of phase-shifting method for a range of devi-
ations between real lattice spacing and expected lattice spacing; the expected
lattice spacing is set to d = 4 pixels for this analysis

However, similar to the FFT phase calculation method, the phase shifting method’s accuracy
decreases if the finite intensity resolution of the data points is taken into account. Figures A.2
and A.3 display the algorithmic error for 6-bit and 12-bit intensity resolution, respectively.

Figure A.2: Algorithmic maximum error of phase-shifting method for 6-bit intensity
resolution and a range of deviations between real lattice spacing and expected
lattice spacing; the expected lattice spacing is set to d = 4 pixels for this analysis

Figure A.3: Algorithmic maximum error of phase-shifting method for 12-bit intensity
resolution and a range of deviations between real lattice spacing and expected
lattice spacing; the expected lattice spacing is set to d = 4 pixels for this analysis
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These results demonstrate that the error of this method is of similar order as for the FFT
approach.

However, this approach comes with some additional challenges. In contrast to the FFT ap-
proach, the lattice spacing cannot be validated using this measurement technique, meaning its
accuracy is dependent on the estimate of the lattice spacing.
Moreover, to adapt this method for general lattice spacings that aren’t multiples of 4 pixels, ad-
ditional techniques like weighted means or calculations of the smallest common multiple must
be introduced. Using a weighted mean approach, the two pixels closest to the points x = π

2 , π,
and 3π

2 can be employed to estimate I(π2 ), I(π), and I(3π2 ), respectively. Alternatively, multiple
lattice sites can be imaged, allowing the utilization of pixels at x = π

2 + 2n1π, π + 2n2π, and
3π
2 + 2n3π (where n1, n2, n3 ∈ N) as probing points.

Furthermore, it remains uncertain whether the phase-shifting method can be extended as
elegantly to more complex lattice structures as the FFT approach. One advantageous charac-
teristic of phase measurement using FFT is that superimposed lattices with different lattice
spacings show as distinct peaks in the Fourier transform, which allows separate calculation of
their lattice phases. Separating such superimposed lattices using the phase-shifting method is
more challenging. Because of this and the fact that the accuracy is not significantly higher,
the phase-shifting-interferometry method was not pursued further.

A.2 Phase Overlap Scanning

Apart from the phase-shifting interferometry method described in the previous section, one
could also imagine calculating the phase by comparing the overlap of the real intensity pattern
over one period of the lattice with pre-generated signals of a specific phase.
For this, functions of the following form are stored:

Ii(x) = cos2 (kxx+ ϕi)

for N equally spaced phases ϕ = −π
2 ,−

π
2 + π

N , ..., π2 − π
N and i = 0, 1, ..., N − 1.

The N functions can all be generated from the same data points by circular rotation, meaning
only one table of values has to be stored effectively. In principle, multiple kx can also be
generated with the same table of values.
To determine the lattice phase, the overlap oi with the acquired intensity pattern Ireal(x) is
calculated for all N phase values as follows:

oi =

R−1∑
j=0

Ireal(j) ∗ Ii(j)

where R is the number of pixels of the image line.
The resulting lattice phase is the ϕi with the largest overlap oi. The accuracy of this algorithm
is mainly limited by the number N of phase values probed, as it is accurate to approximately
1
2N . However, a deviation between the expected and lattice spacing, or kx equivalently, in-
creases the algorithmic error.
Similar to the FFT approach, this method is also heavily limited by the finite intensity reso-
lution of the camera. The measurement accuracy was determined in simulations. The results
revealed maximum errors of 4 ∗ 10−2π for 8-bit and 1.5 ∗ 10−2π for 12-bit intensity resolution,
with no further reduction achievable even with a larger N . It can be concluded that this
method has a slightly lower maximum accuracy compared to the other two approaches, while
also requiring a larger number of pixels. Hence, it was omitted in favor of the current FFT-
based phase calculation.



Appendix B

FPGA Resource Utilization

Resource CLB LUTs CLB Registers CARRY8 F7 Muxes F8 Muxes
Total available 70560 141120 8820 35280 17640
axis spi dac 163 0.231% 74 0.052% 1 0.011% 0 0.000% 0 0.000%
async fifo phase 122 0.173% 165 0.117% 0 0.000% 0 0.000% 0 0.000%
async fifo pid 122 0.173% 165 0.117% 0 0.000% 0 0.000% 0 0.000%
Mars XU3 block design 8575 12.153% 9137 6.475% 72 0.816% 268 0.760% 37 0.210%
pmod3 spi 63 0.089% 97 0.069% 6 0.068% 0 0.000% 0 0.000%
image processing total 3419 4.846% 5820 4.124% 337 3.821% 0 0.000% 0 0.000%
arctan (cordic) 1430 2.027% 1479 1.048% 224 2.540% 0 0.000% 0 0.000%
fft input wrapper 13 0.018% 30 0.021% 0 0.000% 0 0.000% 0 0.000%
fft 1582 2.242% 3904 2.766% 84 0.952% 0 0.000% 0 0.000%
fifo 1 0.001% 1 0.001% 0 0.000% 0 0.000% 0 0.000%
fifo input wrapper 277 0.393% 83 0.059% 18 0.204% 0 0.000% 0 0.000%
find max 116 0.164% 302 0.214% 11 0.125% 0 0.000% 0 0.000%
pid controller 167 0.237% 193 0.137% 16 0.181% 0 0.000% 0 0.000%
xcounter 37 0.052% 35 0.025% 0 0.000% 0 0.000% 0 0.000%
ycounter 18 0.026% 14 0.010% 0 0.000% 0 0.000% 0 0.000%
TOTAL 12464 17.664% 15458 10.954% 416 4.717% 268 0.760% 37 0.210%

Resource CLB LUT as Logic LUT as Memory Block RAM DSPs
Total available 8820 70560 28800 216 360
axis spi dac 60 0.680% 163 0.231% 0 0.000% 0 0.000% 0 0.011%
async fifo phase 40 0.454% 122 0.173% 0 0.000% 1.5 0.694% 0 0.000%
async fifo pid 30 0.340% 122 0.173% 0 0.000% 1.5 0.694% 0 0.000%
Mars XU3 block diagram 1941 22.007% 6235 8.836% 2340 8.125% 2 0.926% 0 0.816%
pmod3 spi 19 0.215% 63 0.089% 0 0.000% 0 0.000% 0 0.068%
image processing total 885 10.034% 2734 3.875% 685 2.378% 4.5 2.083% 58 3.821%
arctan (cordic) 260 2.948% 1424 2.018% 6 0.021% 0 0.000% 0 2.540%
fft input wrapper 6 0.068% 13 0.018% 0 0.000% 0 0.000% 0 0.000%
fft 572 6.485% 904 1.281% 678 2.354% 2 0.926% 54 0.952%
fifo 1 0.011% 1 0.001% 0 0.000% 1 0.463% 0 0.000%
fifo data wrapper 53 0.601% 277 0.393% 0 0.000% 1.5 0.694% 0 0.204%
find max 55 0.624% 115 0.163% 1 0.003% 0 0.000% 4 0.125%
pid controller 48 0.544% 167 0.237% 0 0.000% 0 0.000% 2 0.181%
xcounter 9 0.102% 37 0.052% 0 0.000% 0 0.000% 0 0.000%
ycounter 5 0.057% 18 0.026% 0 0.000% 0 0.000% 0 0.000%
TOTAL 2975 33.730% 9439 13.377% 3025 10.503% 9.5 4.398% 58 4.716%

Table B.1: Resource utilization on the FPGA; configurable Logic Blocks (CLBs), Look-
Up Tables (LUTs), Multiplexers (Muxes), Block RAM, Digital Signal Processing
(DSP) blocks utilization in absolute units and percentage of available resources;
split into the various submodules of the design; Mars XU3 block design includes
the clock generation and the Ethernet interface, and the resources would thus not
have to be doubled to accomodate a second image pocessing module
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