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Abstract

We consider two-phase sampling schemes where one component of the auxiliary informa-

tion is known in every point (”wall-to wall”) and a second component is available only

in the large sample of the first phase, whereas the second phase yields a sub-sample with

the terrestrial inventory data based on general tree inclusion probabilities. We propose

a generalized version of the classical two-phase regression estimator, for global and lo-

cal estimation and derive its asymptotic design-based variance. Cluster and two-stage

sampling procedures are also considered.



1 Introduction

The motivation for this work is due to the increasing need of using national or regional

inventories for local estimation in order to meet tighter budgetary constraints, which

is only feasible under extensive use of auxiliary information, provided e.g. by remote

sensing. It is hoped that the proposed estimators will contribute to achieve this objective,

particularly because they are easy to implement in software packages like SAS or R.

There is an extensive literature on the problem of small area estimation (or small domain

estimation in general sampling). In this paper we shall investigate the properties of some

estimators in the model-assisted framework, in which prediction models are used to

improve the efficiency but are not assumed to be correct as in the model-dependent

approach. The validity of the statistical procedures is ensured by the randomization

principle: i.e. we are in the design-based inference framework, which has a definite

advantage in official statistics. The reader is referred to (Koehl et al. (2006), section 3.8)

for a good review of small-area estimation in forest inventory that presents alternative

techniques, in particular Bayesian. Let us now define the sampling scheme.

The first phase draws a large sample s1 of n1 points xi ∈ s1 (i = 1, 2 . . . n1) that are

independently and uniformly distributed within the forest area F . At each of those points

auxiliary information is collected, very often coding information of qualitative nature

(e.g. following the interpretation of aerial photographs) or quantitative (e.g. timber

volume estimates based on LIDAR measurements). We shall assume that the auxiliary

information at point x is described by the row vector ZZZt(x) = (ZZZ(1)t(x),ZZZ(2)t(x)) ∈ <p+q

(the upper index t denotes the transposition operator). The first component ZZZ(1)(x) ∈ <p

of this vector is known at all points x ∈ F , it is the exhaustive part of the auxiliary

information, e.g. it could be given by thematic maps. The second componentZZZ(2)(x) ∈ <q

is known only at points x ∈ s1.

The second phase draws a small sample s2 ⊂ s1 of n2 points from s1 according to
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equal probability sampling without replacement. In the forested area F we consider a well

defined population P of N trees with response variable Yi, i = 1, 2 . . ., e.g. the timber

volume. The objective is to estimate the spatial mean Ȳ = 1
λ(F )

∑N
i=1 Yi, where λ(F )

denotes the surface area of F (usually in ha). For each point x ∈ s2 trees are drawn from

the population P with probabilities πi, for instance with concentric circles or angle count

techniques. The set of trees selected at point x is denoted by s2(x). From each of the

selected trees i ∈ s2(x) one determines Yi. The indicator variable Ii is defined as

[1] Ii(x) =


1 if i ∈ s2(x)

0 if i 6∈ s2(x)

At each point x ∈ s2 the terrestrial inventory provides the local density Y (x)

[2] Y (x) =
1

λ(F )

N∑
i=1

Ii(x)Yi
πi

=
1

λ(F )

∑
i∈s2(x)

Yi
πi

The term 1
λ(F )πi

is the tree extrapolation factor fi with dimension ha−1. Because of

possible boundary adjustments λ(F )πi = λ(F ∩ Ki), where Ki is the inclusion circle of

the i-th tree. In the infinite population or Monte Carlo approach one samples the function

Y (x) (Mandallaz (2008)) for which the following important relation holds:

[3] Ex(Y (x)) =
1

λ(F )

∫
F

Y (x)dx =
1

λ(F )

N∑
i=1

Yi = Ȳ

Where Ex denotes the expectation with respect to a random point x uniformly distributed

in F . This establishes the link between the infinite population (continuum) {x ∈ F |

Y (x)} and the finite population of trees {i = 1, 2 . . . N | Yi}.

We shall work with the following linear models (see Mandallaz (2008), Chapter 6, and

Mandallaz (2012) for more details)
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1. The large model M

Y (x) = ZZZ(x)tβββ +R(x) = ZZZ(1)t(x)βββ(1) +ZZZ(2)t(x)βββ(2) +R(x)

with βββt = (βββ(1)t,βββ(2)t). The intercept term is contained in ZZZ(1)(x) or it is a linear

combination of its components.

The theoretical regression parameter βββ minimizes

∫
F

(Y (x)−ZZZt(x)βββ)2dx

It satisfies the normal equation

( ∫
F

ZZZ(x)ZZZt(x)dx
)
βββ =

∫
F

Y (x)ZZZ(x)dx

and the orthogonality relationship

∫
F

R(x)ZZZ(x)dx = 000

in particular the zero mean residual property

1

λ(F )

∫
F

R(x)dx = 0

2. The reduced model M1

Y (x) = ZZZ(1)t(x)ααα +R1(x)

The theoretical regression parameter ααα minimizes

∫
F

(Y (x)−ZZZ(1)t(x)ααα)2dx
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It satisfies the normal equation

( ∫
F

ZZZ(1)(x)ZZZ(1)t(x)dx
)
ααα =

∫
F

Y (x)ZZZ(1)(x)dx

the orthogonality relationship

∫
F

R1(x)ZZZ(1)(x)dx = 000

in particular the zero mean residual property

1

λ(F )

∫
F

R1(x)dx = 0

.

Let us emphasize the fact that we do not assume that the regression models are correct:

the inference is based on the sampling design, that is we are doing model-assisted (and

not model-dependent or model-based) inference in the sense of Särndal (see Särndal et al.

(2003)).

2 The generalized regression estimator

We need the following design-based least squares estimators of the regression coefficients

of the reduced model, which are essentially solutions of sample copies of the normal

equations

α̂ααk =
( 1

nk

∑
x∈sk

ZZZ(1)(x)ZZZ(1)(x)t
)−1 1

nk

∑
x∈sk

Y (x)ZZZ(1)(x)

:= (AAA
(1)
k )−1

1

nk

∑
x∈sk

Y (x)ZZZ(1)(x) k = 1, 2[4]

4



For the large model we set

[5] β̂ββk =
( 1

n2

∑
x∈sk

ZZZ(x)ZZZ(x)t
)−1 1

n2

∑
x∈sk

Y (x)ZZZ(x) := AAA−1k
1

n2

∑
x∈s2

Y (x)ZZZ(x)

Note that only α̂αα2 and β̂ββ2 are observable and that in general the vector consisting of the

first p components of β̂ββ2 is not equal to α̂αα2 (they are if the corresponding explanatory

variables are orthogonal in the classical least squares sense).

The large model yields the predictions Ŷ (x) = ZZZt(x)β̂ββ2 and the reduced model the pre-

dictions Ŷ1(x) = ZZZ(1)t(x)α̂αα2.

The generalized regression estimate is defined as

[6] Ŷgreg =
1

λ(F )

∫
F

Ŷ1(x)dx+
1

n1

∑
x∈s1

(Ŷ (x)− Ŷ1(x)) +
1

n2

∑
x∈s2

(Y (x)− Ŷ (x))

This estimator is the Monte Carlo version of Särndal’s regression estimator for two-phase

sampling in finite population (see Särndal et al. (2003), equation 9.7.20). It is clear by

the law of large numbers that β̂ββ2 and α̂αα2 are asymptotically design-unbiased estimators

of βββ and ααα. This implies at once that

E1,2Ŷreg = E1E2|1Ŷreg ≈ Ȳ

E2|1 denotes the conditional expectation of the second phase given the first phase (i.e.

simple random sampling without replacement in the population s1) and E1 denotes the

expectation with respect to uniformly distribution points of the first phase (i.e. to Ex).

The generalized regression estimate is therefore asymptotically design-unbiased.

To understand the potential usefulness of Ŷgreg we shall assume for the time being that

the model is external, i.e. not fitted by the inventory data, and that the regression
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coefficients have given fixed values. Using the well known variance decomposition

[7] V(Ŷgreg) = V1E2|1(Ŷgreg) + E1V2|1(Ŷgreg)

we get the design-based variance as

[8] V(Ŷgreg) =
1

n1

Vx(R1(x)) + (1− n2

n1

)
1

n2

Vx(R(x))

The variances Vx(·) are calculated under the uniform distribution in F of the random

point x. An unbiased estimate of the variance is given by

[9] V̂(Ŷgreg) =
1

n1

1

n2 − 1

∑
x∈s2

(R1(x)− ˆ̄R1)
2 + (1− n2

n1

)
1

n2(n2 − 1)

∑
x∈s2

(R(x)− ˆ̄R)2

where ˆ̄R1 = 1
n2

∑
x∈s2 R1(x) and likewise for ˆ̄R.

This should be compared with the standard result for the variance of the regression

estimator Ŷreg under the large model

[10] Ŷreg =
1

n1

∑
x∈s1

Ŷ (x) +
1

n2

∑
x∈s2

(Y (x)− Ŷ (x))

whose theoretical variance is given by

[11] V(Ŷreg) =
1

n1

Vx(Y (x)) + (1− n2

n1

)
1

n2

Vx(R(x))

Thus, by using also the exhaustive information the variance of the observations in [11]

is replaced by the variance of the residuals under the reduced model, a very nice and

intuitive result indeed. To have better insight consider the design-based coefficients of
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determination

[12] R2
1 =

Vx(Ŷ1(x))

Vx(Y (x))
and R2 =

Vx(Ŷ (x))

Vx(Y (x))

According to (Mandallaz (2008), equation 5.4) the reduction in variance is easily found

to be

[13] V(Ŷreg)− V(Ŷgreg) = V(Y (x))
(R2 −R2

1

n1

+
1−R2

n2

)
> 0

We now give an alternative definition of Ŷgreg based on the estimated regression coefficients

which is essential to derive the design-based variance with internal models, i.e. fitted

with the inventory data at hand, and for future generalization to the small-area estimation

problem. To this end we need the following mean values

[14] Z̄ZZ
(1)

=
1

λ(F )

∫
F

ZZZ(1)(x)dx, ˆ̄ZZZ
(1)
1 =

1

n1

∑
x∈s1

ZZZ(1)(x), ˆ̄ZZZk =
1

nk

∑
x∈sk

ZZZ(x), k = 1, 2

The regression estimate can be rewritten as

Ŷgreg = (Z̄ZZ
(1) − ˆ̄ZZZ

(1)
1 )tα̂αα2 + ( ˆ̄ZZZ1 − ˆ̄ZZZ2)

tβ̂ββ2 +
1

n2

∑
x∈s2

Y (x)

= (Z̄ZZ
(1) − ˆ̄ZZZ

(1)
1 )tα̂αα2 + ˆ̄ZZZt

1β̂ββ2[15]

The last equations follows from the fact that the sum of the residuals is zero by construc-

tion. Note that it suffices to know the integral of ZZZ(1)(x) and not necessarily the values

at all points x ∈ F .
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3 Variance estimate

To obtain a first estimate of the variance we can treat the internal model as an external

one and replace in [8] the theoretical residuals by their empirical versions R̂1(x) = Y (x)−

Ŷ1(x) = Y (x)−ZZZ(1)t(x)α̂αα2 and R̂(x) = Y (x)− Ŷ (x) = Y (x)−ZZZt(x)β̂ββ2, which have zero

means, to obtain

[16] V̂(Ŷgreg) =
1

n1

1

n2

∑
x∈s2

R̂2
1(x) +

1

n2

(1− n2

n1

)
1

n2

∑
x∈s2

R̂2(x)

To derive better variance estimates we shall use the g-weights technique (for details see

Mandallaz (2008), section 6.2, for the Monte Carlo approach and Särndal et al. (2003),

sections 6.5 and 6.6 for finite populations). The g-weights are defined by

g2(x) = 1 + ( ˆ̄ZZZ1 − ˆ̄ZZZ2)
tAAA−12 ZZZ(x) = ˆ̄ZZZt

1AAA2

−1
ZZZ(x)

g
(1)
1 (x) = 1 + (Z̄ZZ

(1) − ˆ̄ZZZ
(1)
1 )t(AAA

(1)
1 )−1ZZZ(1)(x) = Z̄ZZ

(1)t
(AAA

(1)
1 )−1ZZZ(1)(x)[17]

That the two versions of the g-weights are equivalent is a consequence of the zero residual

sum for any local density (see Mandallaz (2008), section 6.2). The g-weights are therefore

of order 1 + Op(n
− 1

2
k ) in probability. Note that they depend not only on the point x

but also on the entire sample s2, though weakly. Straightforward algebra leads to the

following important calibration properties

1

n2

∑
x∈s2

g2(x)ZZZ(x) = ˆ̄ZZZ1

1

n1

∑
x∈s1

g
(1)
1 (x)ZZZ(1)(x) = Z̄ZZ

(1)
[18]
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and also to

1

n1

∑
x∈s1

g
(1)
1 (x)Y (x) =

1

n1

∑
x∈s1

Y (x) + (Z̄ZZ
(1) − ˆ̄ZZZ

(1)
1 )β̂ββ

(1)

1

1

n2

∑
x∈s2

g2(x)Y (x) =
1

n2

∑
x∈s2

Y (x) + ( ˆ̄ZZZ1 − ˆ̄ZZZ2)
tβ̂ββ2

= ˆ̄ZZZt
1β̂ββ2 = Ŷreg[19]

Ŷreg is the standard regression estimator based on the large model only (Mandallaz (2008),

section 5.1). The last equation in [19] follows again from the fact that the residuals sum

up to zero. Also, note that the first quantity in [19] is not observable.

Intuitively, because the g-weights provide perfect estimates for the means of the auxiliary

variables, they must perform well for the response variables if the models are adequate.

Let us define

[20] ∆ = (Z̄ZZ
(1) − ˆ̄ZZZ

(1)
1 )t(α̂αα2 − α̂αα1)

Then, using [19] and [15] we obtain after some algebra the following formal decomposition

of the regression estimate

[21] Ŷgreg =
1

n1

∑
x∈s1

g
(1)
1 (x)Y (x) +

1

n2

∑
x∈s2

g2(x)Y (x)− 1

n1

∑
x∈s1

Y (x) + ∆

This is a purely formal identity because only the second term is observable. In the defini-

tion [20] the first factor is of order O(n
− 1

2
1 ) in design-probability and likewise the second

factor of order O(n
− 1

2
2 ). Thus ∆ is of order = O(n−12 ) in design-probability and can be

neglected with respect to the first three terms in [21], which are of order O(1).

In many applications with categorical explanatory variables it can happen that the matri-

ces occurring in [17] are singular, in which case generalized inverse must be used instead.
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In this case any particular solution β̂ββ
∗
2 of the consistent normal equations can be used

and all statistically relevant quantities like g-weights and predictions are independent of

the particular solution chosen and equations [18] remain valid (see Renssen and Martinus

(2002) for details and further references).

We introduce the theoretical residuals R1(x) and R(x) by the relations

Y (x) = R1(x) +ZZZ(1)t(x)βββ(1)

Y (x) = R(x) +ZZZt(x)βββ[22]

Substituting these equalities into [21] and using [18] we obtain following expression for

the error term

Ŷgreg − Ȳ =
( 1

n1

∑
x∈s1

g
(1)
1 (x)R1(x)− 1

λ

∫
F

R1(x)dx
)

+
( 1

n2

∑
x∈s2

g2(x)R(x)− 1

n1

∑
x∈s1

R(x)
)

+ ∆[23]

This is the Monte Carlo version of equation 9.7.18 given in Särndal et al. (2003).

According to general heuristic principles (described in Mandallaz (2008), section 6.2 and

Särndal et al. (2003), section 6.6) it can be expected that the following variance estimate

based on the g-weights has better performances

[24] V̂(Ŷgreg) =
1

n1

1

n2

∑
x∈s2

(g
(1)
1 (x))2R̂2

1(x) +
1

n2

(1− n2

n1

)
1

n2

∑
x∈s2

g22(x)R̂2(x)

This is the perfect Monte Carlo analogy of equation 9.7.22 in Särndal et al. (2003).

We now propose a different technique to obtain the design-based variance of Ŷgreg which

is better suited for the small-area estimation problem. The starting point is the following

important result for the design-based variance of the regression coefficients based on the
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Taylor linearization technique (for proofs see Mandallaz (2008), p. 125 and Mandallaz

(2012)) which leads to the asymptotic covariance matrices

[25] ΣΣΣβ̂ββk
= AAA−1

( 1

nk
ER2(x)ZZZ(x)ZZZt(x)

)
AAA−1

where AAA = ExZZZ(x)ZZZt(x) and

[26] ΣΣΣα̂ααk
= (AAA(1))−1

( 1

nk
ER2

1(x)ZZZ(1)(x)ZZZ(1)t(x)
)

(AAA(1))−1

We use the variance decomposition [7] on [15]. One gets

E2|1Ŷgreg = (Z̄ZZ
(1) − ˆ̄ZZZ

(1)
1 )tα̂αα1 + ˆ̄ZZZt

1β̂ββ1 ≈ Z̄ZZ
(1)t
α̂αα1

because ˆ̄ZZZ
(1)t
1 α̂αα1 and ẐZZ

t

1β̂ββ1 both tend to Ȳ asymptotically. Therefore, one has

V1E2|1(Ŷgreg) = Z̄ZZ
(1)t

ΣΣΣα̂αα1Z̄ZZ
(1)

=
n2

n1

Z̄ZZ
(1)t

ΣΣΣα̂αα2Z̄ZZ
(1)

To calculate V2|1(Ŷgreg) we note that

Ŷgreg − E2|1Ygreg = (Z̄ZZ
(1) − ˆ̄ZZZ

(1)
1 )t(α̂αα2 − α̂αα1) + ˆ̄ZZZt

1(β̂ββ2 − β̂ββ1) ≈ ˆ̄ZZZt
1(β̂ββ2 − β̂ββ1)

because by the law of large numbers the first term is of order O(n−12 ) and the second of

order O(n
− 1

2
2 ). Using the Taylor expansion given in Mandallaz (2008) (at point (AAA1, β̂ββ1)

instead of (AAA, βββ)) we get

β̂ββ2 − β̂ββ1 ≈ AAA−11

( 1

n2

∑
x∈s2

R(x)ZZZ(x)
)
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By the properties of simple random sampling without replacement within s1 and the

approximations n2−1
n1−1 ≈

n2

n1
,
∑

x∈s1 R(x)ZZZ(x) = 0 (orthogonality relationship), we obtain

after some algebra

E1V2|1(Ŷgreg) = (1− n2

n1

)Z̄ZZ
t
ΣΣΣβ̂ββ2

Z̄ZZ

To get asymptotic estimates of the covariances matrices one can replace AAA by AAA1 or AAA2,

and likewise AAA(1) by AAA
(1)
1 or AAA

(1)
2 . To ensure the important calibration properties [18] we

will use

[27] V̂(Ŷgreg) =
n2

n1

Z̄ZZ
(1)t

Σ̂ΣΣα̂αα2Z̄ZZ
(1)

+ (1− n2

n1

) ˆ̄ZZZt
1Σ̂ΣΣβ̂ββ2

ˆ̄ZZZ1

with

[28] Σ̂ΣΣβ̂ββ2
= AAA−12

( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZt(x)
)
AAA−12

and

[29] Σ̂ΣΣα̂αα2 = (AAA
(1)
1 )−1

( 1

n2
2

∑
x∈s2

R̂2
1(x)ZZZ(1)(x)ZZZ(1)t(x)

)
(AAA

(1)
1 )−1

are the estimated design-based covariance matrices of the regression coefficients un-

der the large and reduced models, which have also been discussed in a totally different

context, i.e. model-dependent least squares theory under non-standard conditions, by

Huber (1967) and Gregoire and Dyer (1989), they are sometimes called robust covari-

ance matrices. It is straightforward to see that [27] and [24] are equal.

To get further insight into Ŷgreg we note that one can write

[30] AAA2 =

 AAA
(1)
2 AAA

(12)
2

AAA
(12)t
2 AAA

(2)
2
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with AAA
(k)
2 = 1

n2

∑
x∈s2 ZZZ

(k)(x)ZZZ(k)t(x), k = 1, 2 and AAA
(12)
2 = 1

n2

∑
x∈s2 ZZZ

(1)(x)ZZZ(2)t(x).

Developing the normal equations accordingly one obtains after some algebra the well-

known relation

[31] β̂ββ
(1)

2 = α̂αα2 − (AAA
(1)
2 )−1AAA

(12)
2 β̂ββ

(2)

2

where β̂ββ
t

2 = (β̂ββ
(1)t

2 , β̂ββ
(2)t

2 ). Substituting in [15] we obtain

Ŷgreg = Z̄ZZ
(1)t
β̂ββ
(1)

2 + ˆ̄ZZZ
(2)t
1 β̂ββ

(2)

2 + δ

where δ = (Z̄ZZ
(1) − ˆ̄ZZZ(1))t(AAA

(1)
2 )−1AAA

(1,2)
2 β̂ββ

(2)

2 , which is of order O(n
− 1

2
1 ) in design-probability.

Hence, we have the asymptotic equivalence

[32] Ŷgreg
.
= Z̄ZZ

(1)t
β̂ββ
(1)

2 + ˆ̄ZZZ
(2)t
1 β̂ββ

(2)

2

which is intuitively very appealing: the exhaustive component ZZZ(1)(x) occurs with its

known true mean and the non-exhaustive component ZZZ(2)(x) with its estimated mean

from the large sample, as compared with the classical two-phase estimator

[33] Ŷreg = ˆ̄ZZZtβ̂ββ2 = ˆ̄ZZZ
(1)t
1 β̂ββ

(1)

2 + ˆ̄ZZZ
(2)t
1 β̂ββ

(2)

2

One could also consider

[34] Ŷgregmod = Z̄ZZ
(1)t
β̂ββ
(1)

2 + ˆ̄ZZZ
(2)t
1 β̂ββ

(2)

2

as a further estimator in its own right. If AAA
(1,2)
2 = 000, i.e. if the exhaustive and non-

exhaustive components are orthogonal (”independent”) then we have exactly Ŷgregmod =

Ŷgreg. We do not advocate the use of Ŷgregmod when ZZZ(1)(x) and ZZZ(2)(x) are non-orthogonal
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because, as we found out by simulations, Ŷgregmod can have a larger variance than Ŷreg

with moderate sample sizes. Beside, the resulting formulae for the asymptotic covariance

are more cumbersome than [27]. For these reasons we shall not consider Ŷgregmod any more

and we now proceed to adapt the previous results to the important small-area estimation

problem.

4 Generalized small-area estimators

We consider a small area G ⊂ F and we want to estimate

ȲG =
1

λ(G)

N∑
i=1

IG(i)Yi =
1

λ(G)

∫
G

Y (x)dx

where IG(i) = 1 if the i-th tree is in G, otherwise IG(i) = 0. Strictly speaking the

last equality holds if boundary adjustments are performed in G, whereas they are in

most instances only performed with respect to F . We shall need the following notation:

s1,G = s1 ∩G, s2,G = s2 ∩G, nk,G =
∑

s∈s2 IG(x), k = 1, 2 (restriction of the samples and

sample sizes to G, note that the nk,G are random variables). The simplest solution is to

restrict the generalized regression estimator [6] to G, i.e. to consider the generalized

small-area estimator

[35] ŶG,greg =
1

λ(G)

∫
G

Ŷ1(x)dx+
1

n1,G

∑
x∈s1,G

(Ŷ (x)− Ŷ1(x)) +
1

n2,G

∑
x∈s2,G

(Y (x)− Ŷ (x))

and treat the internal model as an external one to obtain the estimated conditional vari-

ance (i.e. given the nk,G)

[36]

V̂(Ŷgreg) =
1

n1,G

1

n2,G − 1

∑
x∈s2,G

(R̂1(x)− ˆ̄R1,G)2 +(1− n2,G

n1,G

)
1

n2,G(n2,G − 1)

∑
x∈s2

(R̂(x)− ˆ̄RG)2
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where ˆ̄R1,G = 1
n2,G

∑
x∈s2,G R1(x) and likewise for ˆ̄RG. This variance estimate neglects

the uncertainty of the regression coefficients but there is empirical evidence that this is

acceptable in large samples (see Mandallaz (2012) for examples with Ŷreg).

We can rewrite ŶG,greg as

[37] ŶG,greg = (Z̄ZZ
(1)
G − ˆ̄ZZZ

(1)
G )tα̂αα2 + ˆ̄ZZZt

1,Gβ̂ββ2 +
1

n2,G

∑
x∈s2,G

R̂(x)

where we have set

Z̄ZZ
(1)
G =

1

λ(G)

∫
G

ZZZ(1)(x)dx, ˆ̄ZZZ1,G =
1

n1,G

∑
x∈s1,G

ZZZ(x) = ( ˆ̄ZZZ
(1)t
1,G ,

ˆ̄ZZZ
(2)t
1,G)t

The essential difference with Ŷgreg = ŶF,greg is that the mean residual term in [37] does

no longer vanish in general, which makes the calculation of the variance very difficult. To

bypass this difficulty we use the technique presented in Mandallaz (2012) by extending

the model with the indicator variable IG(x) of the small area G, which insures zero

mean residual over F and G. We can include IG(x) in ZZZ(1)(x) or ZZZ(2)(x). It seems

more natural to include it in the first component so that the zero mean residual properties

will hold for both the reduced and the large model. Also, it is reasonable to assume that

the perimeter and consequently the surface area of G are known. We consider therefore

the following extended models with auxiliary vectors: ZZZ t(x) = (ZZZ(1)t(x),ZZZ(2)t(x)), where

ZZZ(1)t(x) = (ZZZ(1)t(x), I tG(x)) and ZZZ(2)t(x) = ZZZ(2)t(x). To have a uniform notation through-

out we also change the notation for the second component, i.e. we will use ZZZ(2)(x) instead

of ZZZ(2)(x) in this section. We have therefore the following set up

1. The large extended model M

Y (x) = ZZZ(x)tθθθ +R(x) = ZZZ(1)t(x)θθθ(1) +ZZZ(2)t(x)θθθ(2) +R(x)
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with θθθt = (θθθ(1)t, θθθ(2)t). The intercept term is contained in ZZZ(1)(x) or it is a linear

combination of its components.

The theoretical regression parameter θθθ minimizes

∫
F

(Y (x)−ZZZ t(x)θθθ)2dx

It satisfies the normal equation

( ∫
F

ZZZ(x)ZZZ t(x)dx
)
θθθ =

∫
F

(Y (x)ZZZ(x)dx)

and the orthogonality relationship

∫
F

R(x)ZZZ(x)dx = 000

in particular the zero mean residual properties

1

λ(F )

∫
F

R(x)dx =
1

λ(G)

∫
G

R(x)dx = 0

2. The reduced extended model M1

Y (x) = ZZZ(1)t(x)γγγ +R1(x)

The theoretical regression parameter γγγ minimizes

∫
F

(Y (x)−ZZZ(1)t(x)γγγ)2dx

16



It satisfies the normal equation

( ∫
F

ZZZ(1)(x)ZZZ(1)t(x)dx
)
γγγ =

∫
F

Y (x)ZZZ(1)(x)dx

and the orthogonality relationship

∫
G

R1(x)ZZZ(1)(x)dx = 000

in particular the zero mean residual properties

1

λ(F )

∫
F

R1(x)dx =
1

λ(G)

∫
G

R1(x)dx = 0

We can obviously apply mutatis mutandis all the previous results. The estimated regres-

sion coefficients are

γ̂γγ2 =
( 1

n2

∑
x∈s2

ZZZ(1)(x)ZZZ(1)t(x)
)−1 1

n2

∑
x∈s2

Y (x)ZZZ(1)(x)

:= (AAA(1)
2 )−1

1

n2

∑
x∈s2

Y (x)ZZZ(1)(x)[38]

and

[39] θ̂θθ2 =
( 1

n2

∑
x∈s2

ZZZ(x)ZZZ t(x)
)−1 1

n2

∑
x∈s2

Y (x)ZZZ(x) :=AAA−12

1

n2

∑
x∈s2

Y (x)ZZZ(x)

The estimated covariance matrices are according to [28] and [29]

Σ̂ΣΣθ̂θθ2
= AAA−12

( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZ t(x)
)
AAA−12

Σ̂ΣΣγ̂γγ2 = (AAA(1)
1 )−1

( 1

n2
2

∑
x∈s2

R̂2
1(x)ZZZ(x)ZZZ t(x)

)
(AAA(1)

1 )−1

[40]
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where R̂(x) = Y (x)−ZZZ t(x)θ̂θθ2 and R̂1(x) = Y (x)−ZZZ(1)t(x)γ̂γγ2 are the residuals.

Because the sum of the residuals over s2,G is now zero we can write the new small-area

estimator ˆ̃YG,greg as in [15]

[41] ˆ̃YG,greg = (Z̄ZZ(1)
G − ˆ̄ZZZ(1)

G )tγ̂γγ2 + ˆ̄ZZZ tGθ̂θθ2

where we have set

Z̄ZZ(1)
G =

1

λ(G)

∫
G

Z(x)dx, ˆ̄ZZZ(1)
G =

1

n1,G

∑
x∈s1,G

ZZZ(1)(x)

To get an estimate of the design-based variance we use mutatis mutandis [27]

[42] V̂( ˆ̃Ygreg) =
n2

n1

Z̄ZZ(1)t
G Σ̂ΣΣγ̂γγ2Z̄ZZ

(1)
G + (1− n2

n1

) ˆ̄ZZZ tGΣ̂ΣΣθ̂θθ2
ˆ̄ZZZG

5 Generalization to cluster sampling

We follow the description of cluster sampling as defined in Mandallaz (2008) (especially

section 5.5) and Mandallaz (2012). A cluster is identified by its origin x, uniformly

distributed in F̃ ⊃ F . The geometry of the cluster is given by M vectors e1, . . . eM

defining the random cluster xl = x + el. M(x) =
∑M

l=1 IF (xl) is the random number of

points of the cluster falling into the forest area F . We define the local density at the

cluster level by Yc(x) =
∑M

l=1 IF (xl)Y (xl)

M(x)
, likewise we set ZZZc(x) =

∑M
l=1 IF (xl)ZZZ(xl)

M(x)
. The set F̃

above can be mathematically defined as the smallest set {x ∈ R2 | M(x) 6= 0}. In the

first phase we have n1 clusters identified by x ∈ s1 and in the second phase n2 clusters
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with x ∈ s2, obtained by simple random sampling from s1.

We shall use the model-based approach, in which the regression coefficient βββc at the cluster

level, under the large model with ZZZt = (ZZZ(1)t(x),ZZZ(2t)(x)), minimizes

∫
F

M(x)(Yc(x)− βββtcZZZc(x))2dx

In the pure design-based approach the weights will be M2(x) but this leads to non-zero

mean residual (thought close zero in practice), and the definitions of the regression esti-

mator and of the normal equation are slightly different (see Mandallaz (2008), section 5.5

for details). The choice of M(x) rather than M2(x) as weights is suggested by the model-

dependent approach. When Yc(x) is the mean of the M(x) observations, its variance can

be expected to be inversely proportional to M(x). This procedure leads to the normal

equation (∫
F

M(x)ZcZcZc(x)ZcZcZc
t(x)dx

)
βββc =

∫
F

M(x)Yc(x)ZcZcZc(x)dx

and to
∫
F
M(x)Rc(x) = 0. An asymptotically design-unbiased estimate β̂ββc,2 for βββc can be

obtained by taking a sample copy of the above equation, i.e.

β̂ββc,2 =
( 1

n2

∑
x∈s2

M(x)ZZZc(x)ZZZt
c(x)

)−1( 1

n2

∑
x∈s2

M(x)Yc(x)ZZZc(x)
)

:= AAA−1c,s2

( 1

n2

∑
x∈s2

M(x)Yc(x)ZZZc(x)
)

[43]

The empirical residuals at the cluster level are

R̂c(x) = Yc(x)−ZZZt
c(x)β̂ββc,2
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which satisfy the orthogonality relation

∑
x∈s2

M(x)R̂c(x)ZZZc(x) = 0

and in particular the zero mean residual property

∑
x∈s2 M(x)R̂c(x)∑

x∈s2 M(x)
= 0

With obvious notational changes we get the corresponding results under the reduced

model with ZZZ(1) alone, where the regression coefficient αααc minimizes

∫
F

M(x)(Yc(x)−αααtcZZZ(1)
c (x))2dx

with estimate

α̂ααc,2 =
( 1

n2

∑
x∈s2

M(x)ZZZ(1)
c (x)ZZZ(1)t

c (x)
)−1( 1

n2

∑
x∈s2

M(x)Yc(x)ZZZc(x)
)

:= (AAA
(1)
c,2)−1

( 1

n2

∑
x∈s2

M(x)Yc(x)ZZZ(1)
c (x)

)
[44]

The residuals for the reduced model are R̂1,c(x) = Yc(x)−ZZZ(1)t
c (x)α̂ααc,2 and enjoy the same

properties as R̂c(x).

Using mutatis mutandis exactly the same arguments as in simple random sampling we

get the asymptotic robust design-based estimated covariance matrices

Σ̂ΣΣβ̂ββc,2
= AAA−1c,2

( 1

n2
2

∑
x∈s2

M2(x)R̂2
c(x)ZZZc(x)ZZZt

c(x)
)
AAA−1c,2

Σ̂ΣΣα̂ααc,2 = (AAA
(1)
c,1)−1

( 1

n2
2

∑
x∈s2

M2(x)R̂2
1,c(x)ZZZc(x)ZZZt

c(x)
)

(AAA
(1)
c,1)−1[45]
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where AAA
(1)
c,1 = 1

n1

∑
x∈s1 M(x)ZZZ

(1)
c (x)ZZZ

(1)t
c (x).

We define the generalized regression estimator in cluster sampling directly by

adapting [15]

[46] Ŷc,greg = (Z̄ZZ
(1) − ˆ̄ZZZ

(1)
c,1)tα̂ααc,2 + ˆ̄ZZZt

c,1β̂ββc,2

where the mean is now defined as

ˆ̄ZZZt
c,1 =

∑
x∈s1 M(x)ZZZc(x)∑

x∈s1 M(x)

and similarly for ˆ̄ZZZ
(1)
c,1 .

With the same technique as in simple random sampling we obtain the estimated design-

based variance

[47] V̂(Ŷc,greg) =
n2

n1

Z̄ZZ
(1)t

Σ̂ΣΣα̂ααc,2Z̄ZZ
(1)

+ (1− n2

n1

) ˆ̄ZZZt
c,1Σ̂ΣΣβ̂ββc,2

ˆ̄ZZZc,1

For small-area estimation we shall work with the extended model

ZZZ t(x) = (ZZZ(1)t(x),ZZZ(2)t(x))

with ZZZ(1)t(x) = (ZZZ(1)t(x), I tG(x)), ZZZ(2)t(x) = ZZZ(2)t(x) and IG(x) is the indicator of the

small area G. At the cluster level we have ZZZ(1)t
c (x) = (ZZZ

(1)t
c (x), I tc,G(x)) where Ic,G(x) =∑M

l=1 IG(xl)

M(x)
. In extensive inventories we can reasonably assume that all the points of a

cluster lying in the forest area F will belong to the same small area G so that in fact

Ic,G(x) ≡ 1 for all x ∈ G̃ = {x |
∑M

l=1 IG(xl) > 0}. This ensures again that we will have

zero mean residual over F and G. For the regression estimates in the extended model we
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have

[48] γ̂γγc,2 = (AAA(1)
c,2)−1

( 1

n2

∑
x∈s2

M(x)ZZZ(1)
c (x)Y (x)

)

with AAA(1)
c,2 = 1

n2

∑
x∈s2 M(x)ZZZ(1)

c (x)ZZZ(1)t
c (x). Likewise we get

[49] θ̂θθc,2 =AAA−1c,2
( 1

n2

∑
x∈s2

M(x)ZZZc(x)Y (x)
)

with AAAc,2 = 1
n2

∑
x∈s2 M(x)ZZZc(x)ZZZ tc(x).

We define as in [41] the generalized small-area estimator by

[50] ˆ̃Yc,G,greg = (Z̄ZZ(1)
G − ˆ̄ZZZ(1)

c,G)tγ̂γγc,2 + ˆ̄ZZZ tc,Gθ̂θθc,2

where we have set

Z̄ZZ(1)
G =

1

λ(G)

∫
G

Z(x)dx, ˆ̄ZZZ(1)
c,G =

∑
x∈s1,G M(x)ZZZ(1)

c (x)∑
x∈s1,G M(x)

, ˆ̄ZZZc,G =

∑
x∈s1,G M(x)ZZZc(x)∑

x∈s1,G M(x)

The estimated design-based covariance matrix are now

Σ̂ΣΣγ̂γγc,2 = (AAA(1)
c,1)−1

( 1

n2
2

∑
∈s2

M2(x)R̂2
1,c(x)ZZZ(1)

c (x)ZZZ(1)t
c (x)

)
(AAA(1)

c,1)−1

Σ̂ΣΣθ̂θθc,2
= AAA−1c,2

( 1

n2
2

∑
∈s2

M2(x)R̂2
c(x)ZZZc(x)ZZZ tc(x)

)
AAA−1c,2[51]

with the residuals in the extended models R̂1,c(x) = Yc(x) − ZZZ(1)t
c (x)γ̂γγc,2 and R̂c(x) =

Yc(x)−ZZZ tc(x)θ̂θθc,2 and AAAc,1 = 1
n1

∑
x∈s1 M(x)ZZZc(x)ZZZ tc(x).

We obtain as in [27] the estimated design-based variance
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[52] V̂(Ŷc,G,greg) =
n2

n1

Z̄ZZ(1)t
G Σ̂ΣΣγ̂γγc,2Z̄ZZ

(1)
G + (1− n2

n1

) ˆ̄ZZZ tc,GΣ̂ΣΣθ̂θθc,2
ˆ̄ZZZG,1

As shown in Mandallaz (2012) it is straightforward to consider simultaneously several

small areas by extending the model with as many small area indicator variables.

6 Generalization to two-stage sampling

In many applications costs to measure the response variable Yi are high. For instance,

a good determination of the volume may require that one records DBH, as well as the

diameter at 7m above ground and total height in order to utilize a three-way volume

function. However, one could rely on a coarser, but cheaper, approximation of the volume

based only onDBH. Nonetheless, it may be most sensible to assess those three parameters

only on a sub-sample of trees. We now briefly formalize this simple idea, which is used in

the Swiss National Forest Inventory. The reader is referred to (Mandallaz (2008), section

4.4, 4.5, 5.4 and 9.5) for details. For each point x ∈ s2 trees are drawn with probabilities

πi. The set of selected trees is denoted by s2(x). From each of the selected trees i ∈ s2(x)

one gets an approximation Y ∗i of the exact value Yi. From the finite set s2(x) one draws a

sub-sample s3(x) ⊂ s2(x) of trees by Poisson sampling. For each tree i ∈ s3(x) one then

measures the exact variable Yi. Let us now define the second stage indicator variable

[53] Ji(x) =


1 if i ∈ s3(x)

0 if i 6∈ s3(x)

To construct a good point estimate, we must have the residual Ri = Yi − Y ∗i which is

known only for trees i ∈ s3(x). The generalized local density Y ∗(x) is defined according
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to

Y ∗(x) =
1

λ(F )

(
N∑
i=1

Ii(x)Y ∗i
πi

+
N∑
i=1

Ii(x)Ji(x)Ri

πipi

)

=
1

λ(F )

 ∑
i∈s2(x)

Y ∗i
πi

+
∑
i∈s3(x)

Ri

πipi

[54]

where the pi are the conditional inclusion probabilities for the the second stage sampling,

i.e. pi = P(Ji(x) = 1 | Ii(x) = 1). It follows from general principles presented in

(Mandallaz (2008), sections 4.4 and 4.5) that one can use all the previous results by

replacing everywhere the exact local densities Y (x), or Y (xl) in cluster sampling, by the

corresponding generalized local densities Y ∗(x) or Y ∗(xl). The second-stage variance is

automatically taken into account.

7 Example: Post-stratification

We consider the forested area F embedded in a subset F̃ , which in many national inven-

tories is simply the whole country or part of it. Hence, F̃ \ F = F0 is the non-forested

area. The forested area itself is partitioned in L strata Fk, i.e. F = ∪Lk=1Fk. We assume

that the surface areas λ(F̃ ) and λ(F0) are known exactly, whereas the surface areas

of the strata λ(Fk) for k ≥ 1 are not. The first-phase sampling consists of n1 points,

uniformly distributed in F̃ (set s1), out of which n2 points (set s2) are selected by equal

probability sampling without replacement (in practice one uses grids and sub-grids). The

local density Y (x) is set to zero whenever x ∈ F0 (even if trees in F could be selected from

x ∈ F0), and is calculated according to [2] if x ∈ F (i.e. with boundary adjustments if nec-

essary). This ensures that
∫
F̃
Y (x)dx =

∫
F
Y (x)dx =

∑N
i=1 Yi. We define the (random)

sample sizes n1k =
∑

x∈s1 IFk
(x) , n2k =

∑
x∈s2 IFk

(x) for k ≥ 0 and n1F =
∑L

k=1 n1k,

n2F =
∑L

k=1 n2k.
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For the reduced model we define the one dimensional explanatory vector according to

ZZZ(1)(x) = IF (x). Trivial calculations lead to α̂αα = ˆ̄Y t
F = 1

n2,F

∑
x∈s2 Y (x) (i.e. the empirical

mean of Y (x) in the forested area F ). We get Z̄ZZ
(1)

= pF = λ(F )

λ(F̃ )
. For the g-weight one

obtains g(1)(x) = pF
n1

n1F
IF (x). For the predictions one obtains Ŷ1(x) = ˆ̄YF IF (x).

For the large model, we define ZZZ(2)(x) as the L dimensional vector defined by the indi-

cator variables of all strata in the forested area, i.e. ZZZ(2)(x) = (Z1(x), Z2(x), . . . ZL(x))t,

Zk(x) = IFk
(x) for k = 1, 2 . . . L. Note that all the components of ZZZ(x) are zero for x 6∈ F .

The (L+ 1, L+ 1) matrix AAA =
∑

x∈s1 ZZZ(x)ZZZ(x)t is almost diagonal

AAA =



n2F n21 n22 n23 ... n2L

n21 n21 0 0 ... 0

n22 0 n22 0 ... 0

... ... ... ... 0

n2k ... 0 n2k ... 0

... ... ... ... 0

n2L 0 0 ... 0 n2L


but it is singular because the first column is the sum of the last L columns. We set

βββ = (β0, β1, . . . βL)t. A particular solution of the singular normal equation is easily found

to be β̂0 = ˆ̄YF and β̂k = ˆ̄Yk − ˆ̄YF where ˆ̄Yk = 1
n2,k

∑
x∈Fk

Y (x) (this corresponds to

the solution of the standard one-way ANOVA). This leads to the intuitively obvious

predictions Ŷ (x) = 0 for x ∈ F0 and Ŷ (x) = ˆ̄Yk for x ∈ Fk. Note also that all empirical

residuals are zero outside F .

The standard regression estimate (with respect to F̃ ) based on the large model alone is
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easily found to be [19]

Ŷreg = Ŷpost,standard =
L∑
k=1

n1k

n1

ˆ̄Yk =
1

n2

∑
x∈s2

g2(x)Y (x)

Since this algebraic identity is true for an arbitrary density Y (x) we have

[55] g2(x) =
n2

n1

n1k

n2k

for x ∈ Fk, k = 0, 1, 2, . . .

Simple algebra yields then for [15] the result

[56] Ŷgreg = Ŷpost,new = (pF − p̂F ) ˆ̄YF +
L∑
k=1

p̂k
ˆ̄Yk

where we have set pF = λ(F )

λ(F̃ )
, p̂F = n1F

n1
and p̂k = n1k

n1
. For n1, n2 →∞ this is obviously a

consistent estimate of the density with respect to F̃ , i.e. of ȲF̃ = 1
λ(F̃ )

∑N
i=1 Yi.

The standard post-stratified estimate, i.e. with respect to F̃ but without knowledge of

the exact surface area λ(F ) and λ(F̃ ), is given by the second term only (see Mandallaz

(2008), section 5.2.1):

[57] Ŷpost,standard =
L∑
k=1

p̂k
ˆ̄Yk

The new estimate [56] is intuitively appealing: if the number of points falling in the

forested area F is above or below its expected value, then the classical estimate is corrected

accordingly. Tedious but simple calculations and the approximations n2k − 1 ≈ n2k lead

to the following estimated variances

[58] V̂(Ŷpost,new) =
1

n1n2

p2F
p̂2F

(n2F − 1)σ̂2
F + (1− n2

n1

)
L∑
k=1

p̂2k
σ̂2
k

n2k
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where pk = λ(Fk)

λ(F̃ )
, p̂k = n1k

n1
, σ̂2

F = 1
n2F−1

∑
x∈s2∩F (Y (x)− ˆ̄YF )2.

The main advantage of the g-weight variance estimate is that the strata weights pk are

estimated from the large sample and the contribution of the strata to the variance is

inversely proportional to the sample sizes n2k. Result [58] is similar to previous findings

given in (Mandallaz (2008), pp 84 and 107-108).

The asymptotic variance (n1, n2 →∞ ) is then

[59] V̂(Ŷpost,new) =
1

n1

pFσ
2
F + (1− n2

n1

)
1

n2

L∑
k=1

pkσ
2
k

where σ2
F = 1

λ(F )

∫
F

(Y (x) − ȲF )2dx is the overall variance within F and the σ2
k =

1
λ(Fk)

∫
Fk

(Y (x) − Ȳk)
2dx (with the strata means Ȳk = 1

λ(Fk)
) are the variances within

strata.

To calculate the variance of Ŷpost,standard we use the external model assumption and equa-

tion [5.5.1] in Mandallaz (2008) to get

V(Ŷpost,standard) =
1

n1

Vx∈F̃ (Y (x)) + (1− n2

n1

)
1

n2

Vx∈F̃ (R(x))

where R(x) = 0 for x 6∈ F and R(x) = Y (x)− Ȳk for x ∈ Fk.

Noting that ȲF̃ = Ȳ = pF ȲF , R̄F̃ = R̄F = 0 and writing (Y (x)− Ȳ ) = (Y (x)− ȲF + ȲF −

pF ȲF ) we obtain after some algebra the asymptotic variance of the standard post-stratified

estimate with respect to F̃ as:

[60] V(Ŷpost,standard) =
1

n1

(pFσ
2
F + pF (1− pF )Ȳ 2

F ) + (1− n2

n1

)
1

n2

L∑
k=1

pkσ
2
k > V(Ŷpost,new)

Hence, as expected, using the exhaustive information IF (x) reduces the variance.

In practice forest inventories occasionally present totals over the entire region F̃ based

on post-stratification with the non forested area F0 = F̃ \F viewed as a further ordinary
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stratum, that is λ(F̃ ) is known, but neither λ(F0), not the λ(Fk) are known. We have

therefore to consider the following estimates of totals and their asymptotic variances:

T̂post,standard = λ(F̃ )Ŷpost,standard

V(T̂post,standard) = λ2(F̃ )
( 1

n1

(pFσ
2
F + pF (1− pF )Ȳ 2

F ) + (1− n2

n1

)
1

n2

L∑
k=1

pkσ
2
k

)
T̂post,new = λ(F̃ )Ŷpost,new

V(T̂post,new) = λ2(F̃ )
( 1

n1

pFσ
2
F + (1− n2

n1

)
1

n2

L∑
k=1

pkσ
2
k

)
[61]

In the present framework, because F is assumed to be known, we can also consider the

conditional estimate based only on the n1F and n2F points falling into F , that is

Ŷpost,cond =
L∑

k=L

ˆ̃pk
ˆ̄Yk

V(Ŷpost,cond) =
1

n1F

σ2
F + (1− n2F

n1F

)
1

n2F

L∑
k=1

p̃kσ
2
k

T̂post,cond = λ(F )Ŷpost,cond

V(T̂post,cond) = λ2(F )V(Ŷpost,cond)[62]

where we have set ˆ̃pk = n1k

n1F
and p̃k = λ(Fk)

λ(F )
. Using the facts that p̃k = pk

pF
, λ(F ) = pFλ(F̃ ),

E(n1F ) = n1pF , E(n2F ) = pFn2), we see that in large samples Ŷpost,cond and T̂post,new are

equivalent and better than V(T̂post,standard), in the sense that

V(T̂post,new) ≈ V(T̂post,cond) < V(T̂post,standard)

This fact is surprisingly not widely known and many national inventories are using esti-

mators related somehow to T̂post,standard. Usually the decision for x /∈ F is easy (implying

necessarily Y (x) = 0 ), whereas the delineation of the forested area can be more problem-
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atic (i.e. to decide for x ∈ F , even if Y (x) = 0 is still possible). With the technological

advances in remote sensing it is only a matter of time until we can assume that F and

λ(F ) are known with the same accuracy as F̃ and λ(F̃ ). From a pragmatic point of view

and as far as the estimation of total is concerned a coarse delineation by polygons defining

a set F containing the ”true” forest should suffice (so that pF is close to 1 and the extra

variance term pF (1− pf )Ȳ 2
F is small).

We emphasize again the fact that the surface areas of the strata within the forest area

need not be known. In any case, the conditional estimator Ŷpost,cond and the new esti-

mator T̂post,new should be preferred to the occasionally used practice with T̂post,standard,

particularly if F̃ is much larger than F .
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