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We consider estimating a rank one matrix µ⋆ν
⊤
⋆ ∈ Rd×d

from i.i.d. observations (yi,xi, zi) drawn in an online, mini-
batched fashion according to the model yi = ⟨xi,µ⋆⟩ ·
⟨zi,ν⋆⟩+ϵi. To do so, we consider minimizing the population
loss corresponding to the negative log-likelihood, namely
L̄(µ,ν) = E{

(
yi−⟨xi,µ⟩·⟨zi,ν⟩

)2}, which we emphasize is
a non-convex function of the inputs. Towards minimizing the
population loss, consider an iterate (µt,νt). We take mini-
batches of size m with samples (yi,xi, zi)

m
i=1 and form the

data a⊤
i =

[
z⊤
i νtx

⊤
i x⊤

i µtz
⊤
i

]
for each 1 ≤ i ≤ m;

define the pair of diagonal matrices W = diag(Xµt), W̃ =
diag(Zνt); and collect the vectors ai into a concatenated data
matrix A = [a1 | a2 | . . . | am]⊤ =

[
W̃X | WZ

]
∈

Rm×2d. We then consider the following stochastic prox-linear
update to define the next iterate (µt+1,νt+1)
[
µt+1

νt+1

]
= A−1

λ

(
A⊤(y + diag(WW̃ )

)
+ λm

[
µt

νt

])
,

where λ denotes an inverse step-size parameter and Aλ =
A⊤A + λmI . Our main contribution is to provide a deter-
ministic prediction of the trajectory of the iterative method
defined in the previous display under the pair of assumptions
{xi, zi}i≥1

i.i.d.∼ N(0, Id) and ∥µ⋆∥2 = ∥ν⋆∥2 = 1. More
concretely, we obtain the following.

a) Sharp, deterministic predictions which adapt to prob-
lem error: Consider running one-step of the prox-linear update
starting from a pair (µ♯,ν♯) and let [µ⊤

+ | ν⊤
+]

⊤ denote
the next iterate. For all minibatch sizes 1 ≤ m ≤ d and
a large range of step-sizes λ ≳ (1 + σ)d/m, we derive an
explicit, deterministic, four-dimensional prediction that closely
tracks the error of its empirical counterparts. We additionally
prove a non-asymptotic guarantee on our predictions, showing
that its fluctuations scale as

∥µ♯ν
⊤
♯ −µ⋆ν

⊤
⋆ ∥F+σ

λ
√
m

, up to poly-
logarithmic in dimension factors. Note that this guarantee—
in contrast to previous work [1], [2]—provides bounds on
the deviation which scale with the current estimation error
∥µ♯ν

⊤
♯ − µ⋆ν

⊤
⋆ ∥F . This, in turn, enables a transparent con-

vergence analysis of the iterations for all noise levels σ ≥ 0.
Our proof reposes on a variant of El Karoui, et.

al’s leave-one-out method [3]. In particular, given the
ground truth µ⋆ and a current iterate µ♯, we let U =

{µ⋆,P
⊥
µ⋆

µ♯/∥P⊥
µ⋆

µ♯∥2,u3, . . . ,ud} denote an orthonormal
basis of Rd. We obtain a closed form expression for each of
the projections ⟨µ+,u⟩, u ∈ U. We then use standard tools
in random matrix theory to obtain deterministic predictions of
each of these projections.

b) Fine-grained convergence analysis: We use our deter-
ministic predictions to execute an iterate-by-iterate analysis of
the stochastic prox-linear algorithm from a local initialization.
This analysis reveals several fine-grained properties of the
convergence behavior. In particular, for the step-size choice
λ−1 ≍ m/(d(1 + σ2)) and batch size m ≳ polylog(d), we
show that it takes τ = Θ

(
d(1+σ2)

m · log
(

1
σ2

))
many iterations

in order to guarantee an error ∥µτν
⊤
τ − µ⋆ν

⊤
⋆ ∥2F ≲ σ2. This

reveals a linear speed-up in the batch size m for all noise
levels σ ≥ 0. As a consequence, the total sample complexity
for reaching estimation error σ2 is O(d(1 + σ2) log(1/σ2)).
Moreover, for other step-size choices λ−1 ≲ m/(d(1 + σ2)),
we show that it takes τ = Θ

(
λ · log

(
λm
dσ2

))
many iterations

to guarantee an error ∥µτν
⊤
τ − µ⋆ν

⊤
⋆ ∥2F ≲ σ2d

λm , which in
turn quantifies the dependence of the convergence behavior
on the step-size λ−1. That is, decreasing the step-size λ−1

introduces a tension between the increasing iteration complex-
ity and decreasing eventual estimation error. Note that our
guarantees on iteration complexity are sharp in the sense that
our bounds provide both upper and lower bounds on the rate
of convergence.

Our convergence proofs rely on properties of the determin-
istic predictions. In particular, we first prove that the deter-
ministic predictions enjoy sharp linear convergence. We then
apply the deviation bounds on the deterministic predictions to
transfer this property to the empirical iterates.
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