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Abstract

The increasing relevance of panoptic segmentation is tied to the advancements in autonomous driving and
AR/VR applications. However, the deployment of such models has been limited due to the expensive na-
ture of dense data annotation, giving rise to unsupervised domain adaptation (UDA). A key challenge in
panoptic UDA is reducing the domain gap between a labeled source and an unlabeled target domain while
harmonizing the subtasks of semantic and instance segmentation to limit catastrophic interference. While
considerable progress has been achieved, existing approaches mainly focus on the adaptation of semantic
segmentation. In this work, we focus on incorporating instance-level adaptation via a novel instance-aware
cross-domain mixing strategy IMix. IMix significantly enhances the panoptic quality by improving instance
segmentation performance. Specifically, we propose inserting high-confidence predicted instances from the
target domain onto source images, retaining the exhaustiveness of the resulting pseudo-labels while reducing
the injected confirmation bias. Nevertheless, such an enhancement comes at the cost of degraded semantic
performance, attributed to catastrophic forgetting. To mitigate this issue, we regularize our semantic branch
by employing CLIP-based domain alignment (CDA), exploiting the domain-robustness of natural language
prompts. Finally, we present an end-to-end model incorporating these two mechanisms called LIDAPS,
achieving state-of-the-art results on all popular panoptic UDA benchmarks.
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Chapter 1

Introduction

1.1 Focus of this Work

Panoptic segmentation [38] unifies semantic and instance segmentation by not only assigning a class la-
bel to each pixel but also segmenting each object into its own instance. The common approach when
tackling panoptic segmentation is to deconstruct it into two subtasks and later fuse the resulting dense pre-
dictions [33, 63]. The challenge in such an approach lies in the contradictory nature of the individual task
objectives [33]. While semantic segmentation seeks to map the embeddings of semantically similar object
instances into a class-specific representation, instance segmentation aims to learn discriminative features to
separate instances from one another, resulting in conflicting gradients from two different objectives.

Despite the apparent challenges, the rich semantic information with instance-level discrimination is cru-
cial for downstream applications such as autonomous driving or AR/VR. Yet, the complexity and cost of ac-
quiring such panoptic annotations heavily hinder the real-world deployability of such models. Furthermore,
given the variance in data distribution between different domains caused by geographical changes, object
selection, weather conditions, or sensor setups, models trained on previously acquired annotated data often
perform poorly in new domains. This phenomenon, known as the “domain gap”, remains a further limiting
factor. To this end, recent works have focused on incorporating data-efficiency into panoptic segmentation
through the task of unsupervised domain adaptation (UDA) [33, 93, 63]. In contrast to the aforementioned
supervised setting, in panoptic UDA a model is trained on labeled source domain images and unlabeled tar-
get domain images with supervision only available on the source domain. This allows (i) available labeled
data to be used to tackle further domains (real-to-real adaptation) or (ii) to reduce annotation requirements
altogether (synthetic-to-real adaptation).

However, under a panoptic UDA setting, balancing both tasks and limiting the effects that arise from the
contradictory objectives becomes more challenging due to the lack of a supervisory signal on the target do-
main. In Tab. 1.1, we provide an overview of SOTA panoptic UDA methods [33, 93, 63] based on different
criteria. Apart from CVRN [33] that avoids the problem by completely decoupling the two tasks and train-
ing individual networks, i.e., fully rely on task-specific representations (TR), previously proposed methods
that utilize more memory-efficient unified network architecture (e.g. exploiting both shared (SR) and task-
specific representations have tackled panoptic UDA by only adapting the semantic segmentation branch
to improve panoptic quality. Specifically, EDAPS [63] utilizes ClassMix [57] to generate semantically
cross-domain mixed inputs that align the target domain to the source, and, UniDAformer [93] hierarchically
calibrates the semantic masks across generated regions, superpixels, and pixels. Such SOTA methods for
panoptic UDA are thus able to learn good semantic segmentation masks in the target domain, however, are
prone to predict inaccurate instance segmentation masks due to the conflicting objectives. This problem is
more prominent when multiple overlapping or occluded object instances are present in a scene. An example
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CHAPTER 1. INTRODUCTION

Figure 1.1: While previous SOTA methods for panoptic UDA such as EDAPS [63] achieve good semantic
segmentation performance, they struggle to predict correct object boundaries and thus instance segmentation
masks.

Table 1.1: Comparison of LIDAPS with SOTA on
different aspects such as self-training (ST) type; ST
feature space: semantic (Sem) vs. instance (Inst);
shared (SR) vs. task-specific (TR) representations;
sampling strategies: ClassMix [57] vs. proposed IMix
(Sec. 3.3); and proposed CLIP-based domain align-
ment (CDA).

Method ST SemST InstST SR TR ClassMix IMix CDA

CVRN [33] Offline X X X
UniDAformer [93] Online X X X
EDAPS [63] Online X X X X
LIDAPS (Ours) Online X X X X X X X

Figure 1.2: The two main contributions, IMix
and CDA help improving the UDA panoptic
(mPQ) over the SOTA on four UDA benchmarks
S!C, C!F, S!M and C!M (Sec. 4).

is shown in Fig. 1.1 where it can be seen that while EDAPS correctly predicts the semantic segmentation
masks for the “car” (top-left) and “person” (bottom-right) classes, it fails to identify individual instance
boundaries resulting in the merger of objects. This limitation is expected, given the lack of adaptation for
instance segmentation. In fact, in the current literature, the adaptation on an instance-level for panoptic UDA
remains heavily underexplored [33, 93], with no work in instance-level cross-domain mixing.

In this work, we propose a novel instance-aware mixing strategy IMix (Sec. 3.3), to improve the recog-
nition quality of a panoptic UDA model directly. With IMix, we leverage the panoptic predictions of a
model to generate a cross-domain input image consisting of high-confidence instances from the target do-
main pasted onto a source image and finetune itself through self-supervision (Sec. 3.2). By employing
target-to-source mixing, we retain the exhaustiveness of the generated panoptic pseudo-label, i.e. each ob-
ject within the scene always has an associated instance label. This allows us to reduce the confirmation bias
while directly learning target instance segmentation on a simpler source background.

While IMix enhances panoptic quality via improved instance segmentation performance, the enhance-
ment is limited due to a drop in semantic segmentation performance (Table 4.2). The model finetuned with
IMix becomes subject to catastrophic interference, yielding the ability to map semantically similar objects
into a joint embedding in favor of increased instance separability [26]. To remedy this, we propose em-
ploying CLIP-based domain alignment (CDA) to act as a regularizer on the semantic branch (Sec. 3.4). In
essence, CDA continually aligns both the target and source domains with a pre-trained frozen CLIP [59]
model. Specifically, we leverage the rich feature space of CLIP to construct class-wise mean embeddings
from a set of static text prompts. We then compute their inner product with the semantic decoder features to
generate per-pixel-text similarity maps following DenseCLIP [60] that can be directly supervised via ground
truth or pseudo-target labels.

2



CHAPTER 1. INTRODUCTION

Finally, we combine our two proposed modules with a unified transformer backbone and individual task
decoders to construct LIDAPS, a language-guided instance-aware domain-adapted panoptic segmentation
model. Our proposed LIDAPS, while improving instance segmentation, is also able to enhance the semantic
quality through CDA. For example, LIDAPS predicts correct semantic and instance segmentation masks for
the motor-bike (top-right) and the rider (botom-left), while EDAPS fails to do so (Fig. 1.1).
In summary, our contributions are as follows:

1. We introduce IMix, a novel target-to-source instance-aware cross-domain mixing strategy that gen-
erates exhaustively labeled source images with target instances for improved recognition quality (i.e.
reduced false positives and negatives).

2. We reduce the catastrophic forgetting that arises when training with IMix by introducing CLIP-based
domain alignment (CDA) as a regularizer for semantic segmentation.

3. We combine both proposed modules to form LIDAPS, a language-guided instance-aware domain-
adapted panoptic segmentation model that achieves state-of-the-art results across multiple panoptic
UDA benchmarks (Fig. 1.2).

While we propose an end-to-end model with LIDAPS, our individual contributions remain orthogonal to the
development of better panoptic UDA frameworks and are model-agnostic. Furthermore, both contributions
can be detached during inference and thus do not induce any memory or computational constraints on the
final method.

1.2 Thesis Organization

This thesis contains an Introduction chapter 1 where we introduce the problem that we tackled. Then, there
is the Related works chapter 2 where the different groups of work and the employed approaches in the field
of segmentation are introduced, including UDA panoptic segmentation. Moreover, we discuss prior litera-
ture that use language and augmentation to improve performance. Additionally, we address how different
previous works compare to ours. In the Methods chapter 3, after some explanations on preliminary knowl-
edge that needs to be first understood. our two attempts that yielded two mechanisms that complement each
other are introduced. Furthermore, in this chapter, we introduce a pipeline that incorporates the two mech-
anisms, resulting in a new set of state-of-the-arts(SOTA) scores across diverse panoptic UDA benchmarks.
In the Experiments chapter 4, we first, provide details on the datasets, implementation details and evaluation
metrics that we use. Secondly, we present the results of our work including the new SOTA scores in compar-
ison to prior works, a Table consisting of an ablation study on the proposed mechanisms, an additional Table
comparing a semantic mixing strategy as well as the direction of mixing, another Table finding the optimal
threshold hyperparameter for IMix(our novel mechanism), and finally, some qualitative results showcasing
our impressive instance segmentation improvement in comparison to EDAPS [63], a SOTA work addressing
the same problem. In the Discussion chapter 5, we discuss the numbers reported in the previous chapter
and analyze their significance. Furthermore, in the Conclusion chapter 6, we summarise the main contri-
butions of this thesis. Lastly, in the Appendix, there are several sections discussing additional results and
the different attempts that did not result in performance enhancement, yet were apart of the journey to find-
ing the correct methods. In section A.4.1, we discuss the attempts that were made to enhance the EDAPS
model by changing the backbone. In section A.4.4, the other methods we attempted for self-training on
target instances are presented. In Sec. A.4.2, the alignment of the instance decoder embedding with CLIP is
discussed. Lastly, in section A.4.3, a failed mixing strategy that we tried out is presented.
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Chapter 2

Related Work

Numerous studies have investigated semantic, instance, and panoptic segmentation in different settings,
encompassing unsupervised domain adaptation (UDA), domain generalization (DG), unsupervised, self-
supervised, vanilla, open-vocabulary, and multi-dataset paradigms unified under one taxonomy. In the fol-
lowing section, we provide an overview of works within these domains. Our work specifically focuses
on addressing unsupervised domain adaptation (UDA) for panoptic segmentation. Panoptic segmenta-
tion [9, 38, 81, 46, 76, 31, 82, 3] is becoming increasingly important with the rise of autonomous driving
and AR/VR. Furthermore, we delve into the works using the guidance of language in segmentation and the
spectrum of augmentation techniques employed to enhance segmentation for domain adaptation and how
these works differ from our proposed mechanisms for enhancing UDA panoptic segmentation.

2.1 Segmentation Fields

2.1.1 Unsupervised domain adaptation(UDA)

Approaches in the domain of Unsupervised Domain Adaptation (UDA) for panoptic segmentation take input
images from both source and target domains, along with the source ground truth label. The methodology
involves training the model in a supervised manner on the source images. To achieve good performance
on the unlabeled target images, these methods incorporate UDA techniques applied to the unlabeled target
images such as, adversarial strategies [25, 50, 74, 24, 18, 72, 75], multiple resolution [27, 28], pseudo-
label-based self-training on the target images [99, 5, 4, 37, 35, 19], contrastive learning [5, 43, 10], reg-
ularizors [7, 34, 70, 69, 95], domain adaptive architecture design [93, 52], large language-vision model
knowledge distillation [4], style augmentation[33, 43] and ClassMixing [97, 71, 8, 2, 26, 63, 34].

The approach of pseudo-label-based self-training trains the model on the pseudo-labels of the targets
images generated by a teacher network [5, 4, 37, 35, 19, 93, 33, 86] or the model itself [99, 39]. The ap-
proach presented in [35] employs two sets of teacher/student networks. One set is utilized for training on
the source, while the other adapts to the target. These sets engage in a mutual supervision mechanism,
generating pseudo-labels for each other. In contrast, the work introduced in [19] addresses the refinement
of pseudo-labels through implicit neural representations, while [87] focuses on denoising pseudo-labels,
particularly around boundaries, before engaging in self-training. The methodology in [37] unfolds in two
phases: initially, the student is trained on the pseudo-labels of the teacher, and subsequently, in the second
phase, the teacher leverages the student’s region proposals to formulate pseudo-label predictions. The idea
of the contrastive learning approach[5, 43, 10] or regularizors[7] in this setting is to pull together the embed-
dings of the same classes within the same domain or across domain. Additionally, there are few works such
as [4] that align with large language-vision models to try to enhance the performance in a domain adaptive
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CHAPTER 2. RELATED WORK

setting. Another UDA technique is augmentation where they try to stylize images in order to robustify to
domain invariance [33, 43], or translate the style of the source images to target using Diffusion models,
GANS, etc [41, 10]. Some augmentations include semantic mixing strategies [57] where pixels are pasted
from source images to target images [71, 8, 2, 26, 97, 34] to synthesize new images to train on. The work
[8], does copy-pasting in a scheduled and dynamic way based on the pixel class count and individual class
performances. [2] does the mixing based on pixel count hierarchy. These works belong to panoptic[93, 33],
instance[10, 7, 4, 37] and semantic[52, 8, 5, 2, 43, 19, 35, 71, 41] segmentation. However, unlike existing
work, we explore instance-aware cross-domain mixing to adapt the instance branch while simplifying the
learning of difficult target objects by pasting them onto easy-to-segment source backgrounds. Furthermore,
unlike previous work, we are the first to exploit the domain-robustness of language-vision models to further
align the source and target domains for panoptic UDA.

2.1.2 Weakly supervised domain adaptation

Works in the WDASS setting such as [13], relax UDA by allowing some annotated pixels in the target
domain. [13] does semantic segmentation by using contrastive learning to align embeddings of the same
class within and across domains and additionally uses self-training on pseudo labels.

2.1.3 Open vocabulary

Open vocabulary seeks to extend its generalizability beyond the constrained set of classes that are seen dur-
ing the training phase. In this category, different works focus on panoptic, instance, and semantic segmenta-
tion. For panoptic segmentation, works like [82, 6, 90, 79] contribute, while others, such as [20, 78, 96, 36],
specialize in instance segmentation. Semantic segmentation is addressed by works like [84, 47, 51, 85].
Noteworthy is [67], which tackles instance and semantic segmentation without merging the results into a
panoptic annotation. Most works in this field use distillation or integrate large pre-trained language-vision
models [47, 82, 90, 84, 67, 20, 85, 79]. Architectures in [82, 90, 51, 67] leverage substantial language-vision
backbones. For example, [82] adopts a frozen text-to-image diffusion UNet as a backbone, while [90] uses
a frozen convolutional CLIP backbone with the Mask2Former base architecture as a mask generator. In-
corporation methods are diverse, with [6] utilizing both image and text CLIP encoders, building upon the
Mask2Former model while [20] distills knowledge from a pre-trained open-vocabulary image classification
model (teacher) into a two-stage detector (student) via embedding alignment. Some works like [85, 47]
use two-stage methods to predict masks, subsequently using CLIP for mask classification. [47] extends
this concept by incorporating mask prompt tuning and CLIP tuning. Additionally, [36] leverages large lan-
guage models for image segmentation based on text inquiries. It’s noteworthy that certain open-vocabulary
works, like [78, 96], forego the utilization of language. In the absence of language integration, [78] uses
stop-gradients to prevent the model from classifying unannotated objects as background, transformers, and
contrastive learning. On the other hand, [96] employs augmentation techniques by copy-pasting pseudo
masks onto new backgrounds, synthesized from stable diffusion images and real images. Evaluation in
open-vocabulary segmentation often involves zero-shot and few-shot settings, where zero-shot testing en-
tails testing a model on classes not encountered during training, and few-shot testing involves scenarios
where only a limited number of examples have been seen during training. Unlike UDA, these works do not
use unsupervised training.

2.1.4 Domain Generalization

In Domain Generalization (DG) segmentation, the goal is to generalize a model trained on source images
to target images without updating the parameters of the model. One mainstream tactic in these works is to
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augment the features of source images to resemble those of target images. For instance, the works [73, 15]
use CLIP-encoded text prompts to augment the source images. Another tactic is to directly augment the
source image [58, 42] using stylization techniques or image-conditioned diffusion models[58, 56]. For
example, the work [42] stylizes the source images, and [58] uses a conditioned diffusion model to translate
the style of the image.

Some works, such as [73, 17], incorporate large vision-language models into their architecture to align
their embeddings with more generic embeddings. [73] utilizes a CLIP vision encoder for image encoding
and a CLIP text encoder for the classification of their generated masks. Meanwhile, [17] demonstrates
how a frozen diffusion backbone is robust to domain invariance. They additionally learns scene prompts
for test-time domain adaptations on the target domain. However, while they claim to outperform Unsuper-
vised Domain Adaptation (UDA) semantic segmentation as well as DG semantic segmentation, they do not
explore panoptic segmentation.

The works explained above fall under semantic [42, 15, 58, 17], and instance segmentation [73].

2.1.5 Text supervised

A new category of work has emerged in semantic segmentation where no mask annotations are available and
these models solely exploit large vision-language models and image caption pairs[83, 88, 91]. [88] aligns
vision and text CLIP embeddings in a sparse way to remove the bias towards contextual pixels. Moreover,
the work [91] addresses this problem by generating its own artificial segmentation pair data to train on using
word tokens. In particular, [23] does semantic segmentation by aligning the pixel embeddings with CLIP
embeddings and also forcing the model to make the same pixel class predictions as CLIP. These works are
typically evaluated on zero-shot benchmarks.

2.2 Language and Augmentation for Segmentation

2.2.1 Language in Segmentation

Several segmentation studies incorporate language to enhance their performance. This trend originated
with DenseCLIP [60], an extension of CLIP [59] designed for dense downstream applications. While we
also leverage dense per-pixel text similarity maps similar to DenseCLIP, as opposed to applying align-
ment on supervised images, we utilize the maps to align both the source and target domains via ground
truth and generated pseudo-labels with domain-invariant CLIP text embeddings. Importantly, unlike Dense-
CLIP which applies this knowledge distillation to the encoder features, we apply deep in the semantic
decoder to prevent losing class-agnostic features in the shared encoder that are key for the task of instance
segmentation. Open-vocabulary segmentation works also largely integrate language into their architec-
ture [47, 82, 90, 84, 67, 20, 85, 79]. These works do not perform unsupervised domain alignment. In
previous works [83, 88, 91, 32], mask annotations are unavailable, and large vision-language models are
solely relied on for knowledge distillation. In contrast, we leverage the direct supervision available from
a source domain. Some domain generalization segmentation works [73, 17] also incorporate language to
align their source embeddings with large language-vision embeddings to generalize to the target domain.
However, these works [17, 73] do not address instance segmentation which is specifically challenging given
that CLIP mainly consists of semantic knowledge. Moreover, while some works [40, 92, 68] investigate the
incorporation of CLIP in UDA, only a few explore its effects in UDA segmentation. For instance, Chap-
man et. al [4] uses CLIP for UDA instance segmentation on an image level. In contrast, our work utilizes
CLIP in a panoptic setting and calculates the text similarity on a pixel level.
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2.2.2 Augmented Data for Domain Adaptation

A key strategy in UDA segmentation involves training on augmented images. A common approach is the
stylization and augmentation of images [33, 43, 42, 54, 29, 1] or the features of source images [48, 73, 15].
Another approach is to leverage diffusion models and GANs to translate the style of source images or
to synthesize training images [41, 10, 66, 58, 56, 11, 45, 77]. An alternative mainstream tactic is cross
domain mix sampling (CDMS) [98, 71]. ClassMix [57], a CDMS technique, pastes pixels from half of
the source image semantic classes onto the target image [71, 8, 2, 26, 97, 34]. However, instance-aware
mixing for the domain invariance enhancement of the instance decoder remains largely unexplored. Lu et.
al [49] explores instance mixing from source-to-target for UDA in action detection but neglects to refine
the pseudo-masks. In contrast, in our work, we employ confidence-based thresholding to refine the pseudo-
instance-masks which we find is key to reduce the confirmation bias. Furthermore, we apply the mixing in
the opposite direction which yields a considerable performance gain by avoiding further bias injected due to
an incomplete set of pseudo-labels arising from false negative predictions.
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Chapter 3

Materials and Methods

In this section, we start by introducing the preliminaries for unsupervised domain adaptation (UDA) for
panoptic segmentation (Sec. 3.1). Having established the groundwork, we construct a baseline pipeline by
utilizing a mean-teacher framework and adapt the semantic branch via cross-domain mixing following the
literature (Sec. 3.2). We then identify and tackle the shortcomings of this baseline model by introducing a
novel instance-aware cross-domain mixing strategy (IMix) (Sec. 3.3), and reduce the resulting catastrophic
interference by regularizing the semantic branch via CLIP-based domain alignment (CDA) (Sec. 3.4). Com-
bining all modules, we build our model LIDAPS which we illustrate in Fig. 3.1.

3.1 Preliminary

3.1.1 Panoptic Segmentation

This kind of segmentation is commonly tackled by breaking it down into its subtasks: semantic and instance
segmentation. A panoptic segmentation model is thereby trained on a panoptic segmentation loss Lpan given
by the sum of a semantic and an instance loss:

Lpan = Lsem + Linst. (3.1)

In this work, for semantic segmentation, we use pixel-wise categorical cross-entropy loss, while for in-
stance segmentation, we follow a top-down approach, and compute RPN and RoIAlign box regression and
classification losses following MaskRCNN [22].

3.1.2 Panoptic UDA

This is the task of transferring knowledge from a learned source domain to a target domain. In this setup,
a machine learning model � is trained on both source Ds = {ds

i
}Ns

i=1 and target domain images Dt =
{dt

i
}Nt

i=1, with direct human annotated supervision only available on the source domain via semantic yssemi
2

RH⇥W⇥C and instance labels y
s

insti 2 RH⇥W⇥B . Here C denotes the number of semantic classes and B

denotes the number of ground truth instances given images of size H ⇥W .
The naı̈ve approach to tackling panoptic UDA is to treat the problem similar to standard supervised

training, and thus only train with the supervision from the source labels via the source loss Ls. However,
the variance in data distribution between the source and target images, i.e. the “domain gap”, severely limits
the transferability of learned knowledge across domains. Such a naı̈ve approach consisting of only a source
loss thus remains inadequate for achieving a good performance on the target domain.

Self-training is a common technique used to reduce the domain gap between source and target by lever-
aging a model’s own predictions to extend the supervision onto the target domain [100, 95, 53, 71, 94, 30,
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Figure 3.1: Illustration of the LIDAPS pipeline. (Green) The baseline panoptic UDA model is built on a
mean-teacher framework and consists of a common transformer encoder and individual task decoders. The
student model is supervised directly from source domain labels as well as semantically mixed inputs whose
labels are generated by the teacher model. (Blue) We apply IMix to further adapt the instance segmentation
branch of LIDAPS, mixing high-confidence predicted target instances with source images. Blue paths are
only active during the fine-tuning phase. (Orange) We regularize the semantic branch via CLIP-based do-
main alignment that utilizes target DenseCLIP maps to reduce catastrophic forgetting.

26, 63]. In this work, we adopt a self-training approach that entails both the supervised loss on the source
domain Ls

pan, alongside a self-supervised loss Lss
pan, resulting in the final training objective:

argmin
�

Ls

pan + Lss

pan (3.2)

3.2 Establishing a Baseline for Panoptic UDA

In a self-training framework, a model learns from its own predictions. This however can result in confirma-
tion bias as the model trains on incorrect pseudo-labels, therefore commonly, predictions are refined prior
to application [19, 87]. The mean-teacher framework [70] proposes a simple but effective way to generate
stabilized on-the-fly pseudo-labels by leveraging the fact that the stochastic averaging of a model’s weights
yields a more accurate model than using the final training weights directly. A mean-teacher framework
is therefore built with two models, namely the student that is trained (e.g. via gradient decent), and the
teacher ✓ whose weights are updated based on the exponential moving average (EMA) of successive student
weights:

�t+1  ↵�t + (1� ↵)✓t 1 (3.3)

1We use the notation for the model and its weights interchangeably for readability.
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for time step t and ↵ that denotes the smoothing coefficient.
While the mean-teacher extends the supervision for the target domain, the supervisory signal remains

highly noisy and may still destabilize the training process. A common solution applied in UDA setups
is to employ cross-domain mixing to generate images that contain both noisy target domain information
alongside clean source domain ground truth annotations [71, 8, 2, 26, 97, 34]. Specifically, the teacher
network ✓ predicts the pseudo-labels for the target image that forms the augmented input for the student via
a cut-and-paste operation on the source image. Formally, given a binary mask of semantic labels to be cut
Msem 2 {0, 1}H⇥W and target semantic pseudo-labels generated by the teacher model ytsem, the semantic
cross-domain mixed sampling (DACS) can be defined as:

x̃ = Msem � x
s + (1�Msem)� x

t

ỹsem = Msem � y
s

sem + (1�Msem)� y
t

sem
(3.4)

with � denoting a dot product, ·̃ indicating the mixed domain. Such DACS operations leveraging Class-
Mix [57] coupled with self-training have shown significant performance gains when tackling semantic
UDA [26], with the core idea stemming from consistency regularization [57, 64, 70, 69] which states that
predictions for unlabelled data should be invariant to perturbations or augmentation.

The semantic loss on the source domain is explained in Eq. 3.5 which defines a categorical cross-entropy
loss on the predicted class probability for each pixel.

Ls

sem(ŷ
s

sem, y
s

sem) = �
X

i,j,c

(yssem log(ŷssem))i,j,c (3.5)

Following [63], the self-supervised semantic loss applied to the semantic-aware mixed image [57] is
shown in Eq. 3.8. The augmented or mixed image generated using the ClassMix [57] contains pixels from
both the source and the target domain images. For the source pixels, we compute the categorical cross-
entropy loss between the predicted and groundtruth semantic class labels. For the target pixels, we compute
a weighted categorical cross-entropy loss as it takes into account the confidence of the pseudo-semantic
class labels predicted by the teacher network.

Thus, kt(i,j) defines the per-pixel confidence score for every pseudo-label predicted by the teacher net-
work [71]. y

t
sem is the per-pixel pseudo-label as shown in Eq. 3.6 where ✓sem(the semantic decoder of the

teacher) predicts per-pixel-class probabilities.

y
t

sem =


argmax

c0
(✓sem(x

(t)))i,j

�
(3.6)

Formally, the self-supervised loss for the semantically adapted self-training baseline, built on a weighted
cross-entropy, is given by:

Lss

pan = Lsem(ˆ̃ysem, ỹsem) (3.7)

with ·̂ denoting the prediction of the model and

Lsem(ˆ̃ysem, ỹsem) =

8
<

:
Ls
sem(ˆ̃ysem, y

s
sem), if M(h,w,c)

sem = 1,

�
P

k
t

(h,w)

⇣
y
t
sem log(ˆ̃ysem)

⌘

(h,w,c)
, otherwise

(3.8)

Specifically, we apply a standard supervised loss on pixels coming from the source image (M(h,w,c)
sem =

1), and apply a weighted cross-entropy on the pixels coming from the target image, supervised via the
teacher generated pseudo-label (ytsem). We illustrate this baseline in Fig. 3.1 - green.

Given that semantic segmentation forms one-half of panoptic segmentation, such a baseline approach
that adapts the semantic maps between the source and target domains via DACS can contribute significantly
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Figure 3.2: EDAPS [63] pipeline from the EDAPS paper.

to reducing the domain gap for panoptic segmentation. However, such an approach forgoes a crucial element
of panoptic UDA altogether, adapting the instance segmentation task between two domains. In fact, DACS
does not generate augmented images containing sufficient instance-specific information to adapt the instance
branch. In the following section, we tackle the adaptation of instance segmentation between a source and
target domain to improve panoptic segmentation performance.

3.2.1 EDAPS

�t+1  ↵�t + (1� ↵)✓t

EDAPS[63], a state-of-the-art Unsupervised Domain Adaptation (UDA) panoptic segmentation model, forms
the basis of our research. Utilizing a mixed transformer backbone (MiT-B5) with task-specific decoders, it
integrates a semantic decoder inspired by DAFormer[26] and an instance decoder from MaskRCNN[22],
featuring a proposal-based top-down instance decoding approach as illustrated by them[63] in Fig. 3.2
Additionally, EDAPS integrates rare class sampling, benefiting from more frequent sampling of under-
represented classes and ClassMix[71] which does self-training on semantic mixed-domain images using
pseudo-labels coming from a semantic decoder teacher network.

3.3 Instance-Aware Mixing (IMix)

We propose a novel mixing strategy called IMix, to reduce the domain gap when tackling instance segmen-
tation. The goal of IMix is to apply cross-domain mixed sampling while not only retaining instance-level
information but also simplifying the recognition of target objects by presenting them within source environ-
ments. A sample image utilizing IMix is compared to DACS in Fig. 3.7.

However, mixing source and target domain information on an instance level raises a crucial challenge,
stemming from how the two tasks are supervised. Unlike semantic segmentation where losses are applied
on a pixel level, instance segmentation is typically supervised by the injective function that maps the set of
ground truth objects to the set of predicted instances. Therefore an instance segmentation model remains
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prone to confirmation bias if ground truth label exhaustiveness is not guaranteed, i.e. the model will learn to
incorrectly identify objects as background if every visible object within the scene does not have an associated
instance mask (see Fig. 3.8(d) for an example of false negative).

A mixing operation must account for such a challenge. We thus construct IMix such that the operation
is handled from target-to-source, avoiding the incompleteness of instance labels that may emerge from false
negative predictions. Formally we define our instance-aware mixing operation IMix as follows:

x̃ = Minst � x
t + (1�Minst)� x

s

ỹinst = Minst � y
t

inst + (1�Minst)� y
s

inst
(3.9)

with y
t

inst and y
s

inst denoting the target pseudo-label and source ground truth label respectively, and Minst 2
{0, 1}H⇥W the sum of binary instance masks based on the teacher’s prediction.

Specifically, we cut the instances from the teacher model’s output and paste them onto a source image,
constructing the mixed pseudo-label by merging the ground truth instance labels with the teacher’s predic-
tions. Utilizing the source image as a background ensures that all visible objects have corresponding mask
annotations. Furthermore, given that a model learns a source domain much more efficiently thanks to the
available direct supervision, with IMix, we simplify the recognition task of target instances by presenting
them on easy-to-separate source domain environments.

However, while retaining exhaustiveness limits confirmation bias caused by false negative predictions, a
self-supervised model is still prone to such effects due to false positives as well. In other words, if incorrect
instance masks are pasted on the mixed image, the model will learn to affirm its preexisting biases, causing
an increased number of false positive predictions. To reduce the number of such cases, we propose a simple
but effective confidence filtering step. We predict a confidence score alongside the instance masks of each
object [22]. We apply filtering based on the predicted confidence values to redefine the joint mixing mask
as:

Minst =
X

i2I
[hti > ⌧ ] ytinst,i (3.10)

with I denoting the set of predicted instances ytinst,i the predicted i’th instance mask, ht
i

the corresponding
confidence score and ⌧ the threshold hyperparameter. Thus, our self-supervised panoptic loss from Eq. 3.7
can be updated as:

Lss

pan = Lsem(ˆ̃ysem, ỹsem) + Linst(ˆ̃yinst, ỹinst) (3.11)
In Fig. 3.8, we show an example where in (c) confidence-filtered target instances are pasted onto the

source image while in (d) all source instances are pasted on to the target image. In Fig. 3.8(c), we can see
that the target instances all have masks while in Fig. 3.8(d), the encircled instance (the truck) in red does
not have a corresponding mask which is indicative of a false negative. When going from target to source,
only the confidence-filtered instances are copies and thus inherently, all of the pasted instance objects have
a corresponding mask. On the other hand, when remaining in the target image, target instances with absent
pseudo-masks remain.

As commonly seen in multitask frameworks, the increase in supervisory signals from one task may
cause catastrophic forgetting for another, i.e. the weights in the network that are important for one task
may be changed to meet the objectives of another [40]. We observe similar behavior in our training when
fine-tuning LIDAPS on IMix (please refer to Sec. 4). Specifically, the performance gains of our model for
panoptic segmentation are hindered by the drop in semantic quality. In the following section, we address
this problem by introducing a language-based regularization for semantic segmentation.

3.3.1 Losses

While the mechanisms we propose (i.e., IMix and CDA) are model agnostic, here we provide detailed math-
ematical notations of the all losses we used in our end-to-end trainable model, LIDAPS. These formulas have
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been introduced in prior works, nevertheless, we provide them for the sake of reproducibility. Moreover, we
explain how the supervision changes in our novel proposed mechanism, IMix.

As explained in Eq. 3.1, a panoptic loss function consists of two terms; an instance segmentation and a
semantic segmentation loss term. Our instance decoder [22] consists of an RPN network and a refinement
(Ref) network. Each part has its own losses as shown in Eq. 3.12.

Linst = LRPN + LRef (3.12)

The RPN loss function [61] has two terms, one for the “objectness” (LRPN
Cls ) and another one for the

bounding-box (or region proposal) regression (LRPN
Box ) loss as seen in Eq. 3.13. The RPN takes a prede-

fined set of anchor boxes and the convolution feature map (encoding the input image) as inputs and it is
optimized for correctly localizing objects present in the image. For each predicted bounding box, it predicts
an “objectness” score indicating whether that box encompasses an object instance or not. The RPN box
classification loss LRPN

Cls is a binary cross-entropy loss which is computed between the predicted l̂ and the
ground truth l box class labels. For RPN, the boxes have binary class labels, i.e., a class label “1” denotes
that the box region contains an object instance and a label “0” indicates that there is no object present within
the box region. This loss encourages the RPN to predict region proposals with high “objectness” scores
which are later used by the box refinement head for final object detection.

For the bounding-box regression loss LRPN
Box , an L1 loss is used. which is computed between the pre-

dicted (q̂) and ground truth (q) bounding box coordinate offsets. Note, the regression loss is only computed
for positive predicted boxes [61].

LRPN = LRPN
Cls + LRPN

Box (3.13)

LRPN

Cls = LBCE

⇣
l̂, l

⌘
(3.14)

LRPN
Box = �RPN

X

i2x,y,w,r

L1(q̂i, qi) (3.15)

LIDAPS is trained on both the source Ds = {xs
i
}Ns

i=1 and mixed Dt = {xt
i
}Nt

i=1 domain images contain-
ing target regions/pixels.

Thus, we use Q to denote the groundtruth bounding-boxes when training the student network on the
source domain images. While training on the augmented images (output by the IMix), Q represents a union
set of the groundtruth source and confidence-filtered pseudo-bounding-boxes from target as shown in Eq.
3.16. qs denotes the groundtruth bounding-boxes of the source image, while q

t denotes pseudo-bounding-
boxes (predicted by the teacher network) on the target image. Here, hi is the confidence score predicted for
the i-th box and the i-th mask by the teacher network.

Q =

(
Qs = q

s

i
if Source

Qs [
S

i
[hi > ⌧ ] qt

i
if IMix

(3.16)

The refinement network consists of a box-head and a mask-head following FastRCNN [16]. As seen in
Eq. 3.17, the box-head is trained using a box classification loss LRef

Cls and a box regression loss LRef
Box, while

the mask-head has a mask segmentation loss LRef
Mask.

LRef = LRef
Cls + LRef

Box + LRef
Mask (3.17)

The box-head takes as inputs the RoIAlign [22] features and the region proposals output by the RPN
network, and predicts refined bounding-boxes and their classification scores. The classification scores are
the softmax probability scores for all the thing classes plus a background class(Cthings+1).
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Similar to the RPN, the box-head has a box classification loss LRef
Cls and a box regression loss LRef

Box. The
box classification loss is computed between the predicted per-class probabilities Pcl and the groundtruth
u 2 U class labels for each predicted box as in Eq. 3.18. Unlike RPN, where the box classification loss is a
binary cross-entropy loss, LRef

Cls is a categorical cross-entropy loss for multi-class classification.

LRef
Cls = LCE(Pcl, u) (3.18)

The box regression loss is computed between the predicted v̂u,i and ground truth vi bounding boxes as
in Eq. 3.19. The predicted bounding box by the box-head v̂c,i is for the class c 2 C. Having predictions for
all classes mitigates the competition between the classes.

LRef
Box = �Ref

X

i2x,y,w,r

L1(v̂u,i, vi) (3.19)

Similar to RPN training, the box-head is trained on both source and target domain bounding boxes Q.
While training on the source image, we use the groundtruth source bounding-boxes, and for training on
augmented images (output by IMix), we use a union set of the groundtruth source and pseudo bounding-
boxes as in Eq. 3.16.

U denotes the ground-truth source bounding box class labels Us when training the student network
on the source domain images. While training the student network on the augmented images generated by
the IMix, U represents a union set of groundtruth source bounding boxes and confidence-filtered pseudo
bounding-box class labels as shown in Eq. 3.20.

U =

(
Us = u

s

i
if Source

Us [
S

i
[hi > ⌧ ] ut

i
if IMix

(3.20)

The mask-head predicts C masks of dimension w⇥h for each of the RoIs. Each predicted mask , m̂c, is
for an ROI and a specific class. This mitigates the competition in between the classes. Each predicted mask
is associated to a groundtruth mask m 2 Masks. When training with IMix, Masks contains confidence-
filtered pseudo-masks m

t from the target as well as groundtruth masks from the source m
s as shown in

Eq. 3.21.

Masks =

(
Maskss = m

s

i
if Source

Maskss [
S

i
[hi > ⌧ ] mt

i
if IMix

(3.21)

Eq. 3.22 indicates the binary cross-entropy loss computed between the predicted m̂ and groundtruth
masks m, where u 2 C denotes the ground truth class label for the predicted mask.

1

w ⇥ h

X

1i,jh

mi,j log(m̂u,i,j) + (1�mi,j) log(1� m̂u,i,j). (3.22)

Before training with IMix, we first pass the target images through the instance decoder of the teacher
network ✓inst in order to gather the predictions which serve as pseudo-class labels, pseudo-masks, pseudo-
bounding-boxes for the student network training. The instance decoder of the teacher network provides
per-class probabilities for each of the regions of interest. We use the class with the highest probability as the
pseudo-label for the i-th ROI which is shown below:

y
t

insti =


argmax

c0
(✓inst(x

(t)))i

�
(3.23)
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3.4 CLIP-based Domain Alignment (CDA)

A simple but effective solution to reducing catastrophic forgetting when multitask learning is to leverage the
embedding space of a pre-trained model as an anchor, i.e. the intermediate features as continual auxiliary
targets, which is also commonly employed in unsupervised domain adaptation frameworks to limit overfit-
ting onto the source domain [26, 63]. In this work we exploit both use cases for weight anchoring by relying
on CLIP [59] embeddings to regularize the semantic branch of our network. CLIP is trained on a very
large-scale image-text pair dataset, providing a diversified, robust world model. We argue that by semanti-
cally aligning each domain to the CLIP embedding space, we can implicitly enforce domain invariance. In
other words, we train our model such that the features of a source or target image both aim to generate high
similarities to a joint CLIP embedding. An illustration of CLIP-based domain alignment (CDA) can be seen
in Fig. 3.1 - orange.

However, to be able to exploit CLIP features to avoid the divergence of semantic features of source and
target images, regularization needs to be applied deep within the network. This of course imposes limita-
tions on the expressibility of the features or effectiveness of the regularization when directly using CLIP
embeddings as targets. To this end, we construct a pixel-level representation from natural language prompts
following DenseCLIP [60] and only supervise the similarity to the semantic decoder features. Specifically,
our CLIP-based domain alignment strategy follows two steps as illustrated in Fig. 3.9. We first generate
class-wise mean CLIP features by mean pooling over the CLIP embeddings generated from P text prompts
for C semantic classes following set precedent [60], with P denoting the number of text prompts per class
(Fig. 3.9a-c). Each row in the resulting matrix represents a CLIP embedding that encodes meaningful se-
mantic information about a particular class. These embeddings act as anchors within our alignment module,
with each generated semantic feature (Fig. 3.9d) aiming to achieve high similarity with a semantically cor-
responding vector. Finally, we compute the per-pixel text similarity maps �sim through the inner product of
the decoder features and mean CLIP features (Fig. 3.9e).

Formally, the CLIP-based domain alignment loss can be stated as follows:

LCLIP = � 1

HWC

HX

h=1

WX

w=1

CX

c=1

[y(h,w) = c] log
⇣
ŷ

sim
(h,w,c)

⌘
, (3.24)

with [·] denoting the indicator function and ŷ
sim denoting the embedding-text similarity probability given

by:

ŷ
sim
(h,w,c) =

exp
⇣
�

sim
(h,w,c)

⌘

P
C

c0=1 exp
⇣
�

sim
(h,w,c0)

⌘ . (3.25)

In our proposed LIDAPS model, the CLIP loss is incorporated in our Lsem loss.
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Figure 3.3: Source Image

Figure 3.4: Target Image

Figure 3.5: DACS

Figure 3.6: IMix (ours)

Figure 3.7: Comparison of instance-aware cross-domain mixing (IMix) to DACS that operates on semantics
and thus does not preserve instance-level information.
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Figure 3.8: When using IMix to paste source instances from source to target (c), exhaustive pseudo-masks
for the target instances are not guaranteed. For instance, in (d) the truck has no pseudo-mask. In (c), this
exhaustiveness is guaranteed because only target instances with predicted pseudo-masks are pasted onto the
source image. Thus, training on samples mixed from target to source allows the model to learn on pseudo-
groundtruth sets with no false negative examples.
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Figure 3.9: Illustrates the pipeline used to compute the pixel-text similarity map for CLIP-based domain
alignment. We generate class-wise CLIP mean features from a series of fixed text prompts (a-c). The
similarity maps can then be computed by taking their inner product with the semantic decoder features.
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Chapter 4

Experiments and Results

4.1 Implementation Details

We train our method on a single NVIDIA GeForce RTX 3090. We use an AdamW optimizer with a learning
rate of 6⇥ 10�5, a weight decay of 0.01, starting with a linear learning rate warmup for 1.5k iterations, and
afterward a polynomial decay. Furthermore, we train over 50k iterations with a batch size of two, consisting
of cropped images of size 512x512. We apply a warmup training phase of 40k iterations and only enable
IMix in the last 10k iterations. For the RPN and box refinement head losses, we set the loss weights �RPN

and �Ref to 1.0. Following EDAPS[63], we use MiT-B5 [80] as our encoder backbone (shared by the in-
stance and semantic decoders), MaskRCNN [22] as instance decoder and DAFormer [26] semantic head as
the semantic decoder. For CLIP-based domain alignment, we use CLIP [59]1 as the pre-trained text encoder.
We empirically set the IMix confidence threshold at 0.75 unless stated otherwise.

4.2 Datasets

We evaluate our method on the popular panoptic UDA benchmarks. For synthetic-to-real adaptation, we use
SYNTHIA [62] as the source domain which contains 9,400 synthetic images. For the target domain, we use
the Mapillary Vistas [55] dataset and Cityscapes [12]. Cityscapes contains 2,975 training images and 500
validation images, while Mapillary Vistas contains 18,000 training images and 2,000 validation images. For
real-to-real adaptation, we use two different benchmarks. First, we train with Cityscapes as the source and
Mapillary Vistas as the target domain, and second, we train with Cityscapes as the source and the adverse
weather dataset Foggy Cityscapes [65] as the target domain.

4.3 Evaluation Metrics

We report the mean panoptic quality (mPQ) for panoptic segmentation, which measures both the semantic
quality (SQ) and the recognition quality (RQ). To highlight the individual task performances, we further
report the mIoU for semantic segmentation over 20 classes, and mAP for instance segmentation over 6 thing
classes. All reported values are the averaged scores over three runs with three different seeds (1, 2, 3).

1https://huggingface.co/openai/clip-vit-large-patch14
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4.4 Results

We compare our proposed LIDAPS with other state-of-the-art (SOTA) UDA panoptic segmentation methods
on four different benchmarks including SYNTHIA! Cityscapes (S!C), SYNTHIA! Mapillary Vistas
(S!M), Cityscapes! Mapillary Vistas (C!M) and Cityscapes! Foggy Cityscapes (C!F). As seen in
Tab. 4.1, our model consistently outperforms existing works across the board, exceeding the performance
of previous SOTA by up to +3.6 mPQ. In particular, for SYNTHIA! Cityscape, our method reaches 44.8
mPQ. Specifically, our work improves the mPQ through a significant gain in mAP as shown in Table 4.2.
Similar trends are observed when considering benchmarks such as Cityscapes! Foggy Cityscapes, SYN-
THIA!Mapillary Vistas, and Cityscapes to Mapillary Vistas, where our method outperforms the previous
SOTA by +2.9%, +2.6%, and +1.4% mPQ respectively. Furthermore in Fig. 4.1, we provide qualitative
results demonstrating the capabilities of LIDAPS. Compared to EDAPS [63], LIDAPS can better separate
semantically similar neighboring instances by leveraging instance-aware adaptation via IMix and retain its
semantic quality via CDA. Furthermore, in Tables 4.2, 4.3 and 4.4 we show results studying the different
design choices such as the pasting direction for IMix, the effects of our different components and the optimal
threshold for our model.

Table 4.1: Class-wise comparison to SOTA on four different benchmarks for UDA panoptic segmentation.
Reported results are averaged over three runs with three different seeds.
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mSQ mRQ mPQ

SYNTHIA! Cityscapes
FDA[86] 79.0 22.0 61.8 1.1 0.0 5.6 5.5 9.5 51.6 70.7 23.4 16.3 34.1 31.0 5.2 8.8 65.0 35.5 26.6
CRST[99] 75.4 19.0 70.8 1.4 0.0 7.3 0.0 5.2 74.1 69.2 23.7 19.9 33.4 26.6 2.4 4.8 60.3 35.6 27.1
AdvEnt[75] 87.1 32.4 69.7 1.1 0.0 3.8 0.7 2.3 71.7 72.0 28.2 17.7 31.0 21.1 6.3 4.9 65.6 36.3 28.1
CVRN[33] 86.6 33.8 74.6 3.4 0.0 10.0 5.7 13.5 80.3 76.3 26.0 18.0 34.1 37.4 7.3 6.2 66.6 40.9 32.1
UniDAformer[93] 73.7 26.5 71.9 1.0 0.0 7.6 9.9 12.4 81.4 77.4 27.4 23.1 47.0 40.9 12.6 15.4 64.7 42.2 33.0
EDAPS[63] 77.5 36.9 80.1 17.2 1.8 29.2 33.5 40.9 82.6 80.4 43.5 33.8 45.6 35.6 18.0 2.8 72.7 53.6 41.2
LIDAPS(ours) 80.8 48.8 80.8 17.6 2.5 29.9 34.6 42.9 82.8 82.9 44.4 40.5 51.7 39.2 27.4 10.7 74.4 57.6 44.8

Cityscapes! Foggy Cityscapes
DAF[7] 94.0 54.5 57.7 6.7 10.0 7.0 6.6 25.5 44.6 59.1 26.7 16.7 42.2 36.6 4.5 16.9 70.6 41.7 31.8
FDA[86] 93.8 53.1 62.2 8.2 13.4 7.3 7.6 28.9 50.8 49.7 25.0 22.6 42.9 36.3 10.3 15.2 71.4 43.5 33.0
AdvEnt[75] 93.8 52.7 56.3 5.7 13.5 10.0 10.9 27.7 40.7 57.9 27.8 29.4 44.7 28.6 11.6 20.8 72.3 43.7 33.3
CRST[99] 91.8 49.7 66.1 6.4 14.5 5.2 8.6 21.5 56.3 50.7 30.5 30.7 46.3 34.2 11.7 22.1 72.2 44.9 34.1
SVMin[21] 93.4 53.4 62.2 12.3 15.5 7.0 8.5 18.0 54.3 57.1 31.2 29.6 45.2 35.6 11.5 22.7 72.4 45.5 34.8
CVRN[33] 93.6 52.3 65.3 7.5 15.9 5.2 7.4 22.3 57.8 48.7 32.9 30.9 49.6 38.9 18.0 25.2 72.7 46.7 35.7
UniDAformer[93] 93.9 53.1 63.9 8.7 14.0 3.8 10.0 26.0 53.5 49.6 38.0 35.4 57.5 44.2 28.9 29.8 72.9 49.5 37.6
EDAPS[63] 91.0 68.5 80.9 24.1 29.0 50.1 47.2 67.0 85.3 71.8 50.9 51.2 64.7 47.7 36.9 41.5 79.2 70.5 56.7
LIDAPS(ours) 92.3 70.0 83.2 23.8 31.9 56.4 47.7 68.8 86.6 72.5 53.2 53.6 68.0 56.6 42.8 45.9 80.2 73.2 59.6

SYNTHIA!Mapillary Vistas
FDA[86] 44.1 7.1 26.6 1.3 0.0 3.2 0.2 5.5 45.2 61.3 30.1 13.9 39.4 12.1 8.5 7.0 63.8 26.1 19.1
CRST[99] 36.0 6.4 29.1 0.2 0.0 2.8 0.5 4.6 47.7 68.9 28.3 13.0 42.4 13.6 5.1 2.0 63.9 25.2 18.8
AdvEnt[75] 27.7 6.1 28.1 0.3 0.0 3.4 1.6 5.2 48.1 66.5 28.4 13.4 40.5 14.6 5.2 3.3 63.6 24.7 18.3
CVRN[33] 33.4 7.4 32.9 1.6 0.0 4.3 0.4 6.5 50.8 76.8 30.6 15.2 44.8 18.8 7.9 9.5 65.3 28.1 21.3
EDAPS[63] 77.5 25.3 59.9 14.9 0.0 27.5 33.1 37.1 72.6 92.2 32.9 16.4 47.5 31.4 13.9 3.7 71.7 46.1 36.6
LIDAPS(ours) 76.5 25.2 64.2 14.0 0.2 29.1 35.6 35.3 72.1 94.4 33.8 18.3 50.3 33.9 19.3 5.9 73.9 47.7 38.0

Cityscapes!Mapillary Vistas
CRST[99] 77.0 22.6 40.2 7.8 10.5 5.5 11.3 21.8 56.5 77.6 29.4 18.4 56.0 27.7 11.9 18.4 72.4 39.9 30.8
FDA[86] 74.3 23.4 42.3 9.6 11.2 6.4 15.4 23.5 60.4 78.5 33.9 19.9 52.9 8.4 17.5 16.0 72.3 40.3 30.9
AdvEnt[75] 76.2 20.5 42.6 6.8 9.4 4.6 12.7 24.1 59.9 83.1 34.1 22.9 54.1 16.0 13.5 18.6 72.7 40.3 31.2
CVRN[33] 77.3 21.0 47.8 10.5 13.4 7.5 14.1 25.1 62.1 86.4 37.7 20.4 55.0 21.7 14.3 21.4 73.8 42.8 33.5
EDAPS[63] 58.8 43.4 57.1 25.6 29.1 34.3 35.5 41.2 77.8 59.1 35.0 23.8 56.7 36.0 24.3 25.5 75.9 53.4 41.2
LIDAPS(ours) 49.1 44.3 70.1 26.5 29.9 37.4 37.2 43.2 80.0 46.1 35.9 25.0 57.1 41.6 29.6 28.4 76.6 54.9 42.6
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Ground Truth EDAPS LIDAPS

Figure 4.1: Qualitative results from SYNTHIA ! Cityscape comparing EDAPS [63] to our proposed LI-
DAPS.

Table 4.2: Ablation study on proposed modules. Starting from a baseline EDAPS*, we individually intro-
duce our instance-aware cross-domain mixing (IMix) and CLIP-based domain alignment (CDA).

EDAPS⇤ IMix CDA mSQ mRQ mPQ mIoU mAP
3 72.3±0.2 53.3±0.8 41.0±0.4 58.0±0.2 34.1±1.0

3 3 73.0±0.0 54.7±0.8 42.3±0.6 57.7±0.3 39.5±2.3

3 3 73.9±0.3 55.0±0.6 42.9±0.6 59.6±0.6 34.4±0.6

3 3 3 74.4±0.28 57.6±0.294 44.8±0.2 59.6±0.6 42.6±0.7

Table 4.3: Ablation study on mixing strategy for panoptic segmentation comparing (i) the mixing direction
when applying IMix, (ii) the effects of ClassMix when applied from target-to-source as opposed to source-
to-target. The baseline is EDAPS*+CDA.

Method Copy Paste mSQ mRQ mPQ mIoU mAP
Baseline - - 73.9±0.3 55.0±0.6 42.9±0.6 59.6±0.6 34.4±0.6

(i) + IMix Source Target 62.0±3.3 37.6±0.63 29.3±0.5 56.2±0.7 1.9±1.9

Target Source 74.4±0.2 57.6±0.2 44.8±0.2 59.6±0.6 42.6±1.7

(ii) + ClassMix [57] Target Source 73.5±0.2 53.9±0.7 42.1±0.6 58.6±0.8 34.8±0.9

Table 4.4: Hyperparameter study on the confidence-filtering threshold applied to the pseudo-masks for IMix.

Filter mSQ mRQ mPQ mIoU mAP
0 73.3±0.1 52.1±0.4 40.0±0.4 59.2±0.8 28.7±1.3

0.25 74.0±0.1 54.8±0.3 42.5±0.3 59.3±0.7 36.8±1.3

0.5 74.4±0.5 56.5±0.3 44.0±0.3 59.2±0.7 40.8±1.2

0.75 74.4±0.2 57.6±0.2 44.8±0.2 59.6±0.6 42.6±0.7

1 73.9±0.4 55.0±0.7 42.9±0.6 59.6±0.6 34.4±0.6
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Table 4.5: Ablation study on EDAPS and LIDAPS in an equalized setting where EDAPS is trained for 50k
iterations on three different benchmarks.

Method mSQ mRQ mPQ mIoU mAP
SYNTHIA! Cityscapes

EDAPS 72.4±0.4 53.2±1.0 40.8±0.9 57.5±0.7 33.7±0.6

LIDAPS 74.4±0.28 57.6±0.294 44.8±0.2 59.6±0.6 42.6±0.7

SYNTHIA!Mapillary Vistas
EDAPS 72.9±0.4 46.1±0.2 36.6±0.2 55.4±4.1 32.8±0.3

LIDAPS 73.9±1.9 47.7±0.2 38.0±0.2 58.8±0.5 38.7±0.2

Cityscapes! Cityscapes foggy
EDAPS 79.2±0.1 71.2±0.0 57.3±0.2 83.0±0.6 60.4±0.4

LIDAPS 80.2±0.1 73.2±0.6 59.6±0.6 87.1±0.7 65.3±0.6

Table 4.6: Ablation study on the FD component. We include feature distance (FD) in our proposed LIDPAS
model (LIDAPSFD) and compare its performance to LIDAPS.

Method mSQ mRQ mPQ mIoU mAP
LIDAPSFD 74.0±0.3 56.1±1.3 43.7±0.9 58.6±0.8 40.3±0.9

LIDAPS 74.4±0.28 57.6±0.294 44.8±0.2 59.6±0.6 42.6±0.7
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Chapter 5

Discussion

In this chapter, we discuss the ablation studies on SYNTHIA! Cityscapes to demonstrate the effectiveness
of our proposed components.

5.1 Effects of Network Components

In Tab. 4.2, we isolate the effects of the different modules of our proposed pipeline. Starting from the
baseline EDAPS*, we introduce our cross-domain instance mixing (IMix) which significantly improves the
panoptic segmentation performance (+1.3% mPQ) through instance segmentation (+5.4% mAP). Due to
their contradictory goals, the improvement in instance segmentation comes in lieu of semantic performance
(�0.3% mIoU) that becomes subject to catastrophic interference. To remedy this we propose our next
contribution, CLIP-based domain alignment (CDA). First, we separately introduce CDA to understand its
isolated effects. As observed, the module aids the panoptic segmentation performance with a +1.9% mPQ
improvement, which solely stems from the gains in semantic segmentation (+1.6% mIoU increase as op-
posed to the relatively unchanged mAP). Next, we showcase the combined effects of the two components
which improve both the semantic and instance segmentation performance of our baseline, allowing LIDAPS
to achieve 44.8% mPQ. As seen, the final model demonstrates significant gains in instance segmentation
(+8.5 mAP) thanks to IMix, while retaining its semantic segmentation gains from the CLIP-based domain
alignment (+1.6% mIoU).

5.2 Cross-Domain Mixing direction

We investigate the impact of the mixing direction for IMix. Specifically, we compare the effects of source-
to-target mixing, in which we cut ground truth instance masks from a source image and paste them onto
a target image, to our proposed target-to-source mixing, where we rely on the filtered predicted instances
from the target domain to augment onto a source image. As seen in Tab. 4.3 (i), cross-mixing from source-
to-target substantially degrades the panoptic performance, specifically the instance segmentation quality.
Comparing pasting masks from target-to-source versus pasting from source-to-target, we observe significant
benefits in favor of the former approach. Copying from source-to-target((i) first row), we take groundtruth
instance masks from the source domain and paste them onto the target domain, creating a new augmented
image. The new augmented image contains a mixture of source instances and target instances. The masks
of the target instances are predicted using the teacher network while the groundtruth masks of the source
instances are available. Subsequently, the instance decoder (and the backbone encoder) are trained on all
of the masks from this augmented image. Copying from target-to-source((i) second row), representing our
LIDAPS model, pseudo masks predicted by the teacher on the target image with a confidence above the
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threshold 0.75, are pasted onto the source image to create a new augmented image. The new augmented im-
age contains both source instances and target instances where the source instance have groundtruth masks.
We find that cross-mixing from source-to-target substantially degrades the baseline mPQ from 42.9 to 29.33
and the baseline mAP performance from to 34.4 to 1.90. This degradation can be attributed to the absence of
groundtruth masks for the target instance, where only teacher-predicted pseudo masks are available. Some
of these pseudo-masks may have low confidence levels but are nevertheless trained on. Additionally, filter-
ing out low-confidence pseudo masks in this scenario results in supervision with a set of incomplete masks,
as instances with deleted pseudo masks would still persist in the image. This highlights the superiority of
pasting from target-to-source for achieving better segmentation performance as it allows us to dispose of
low-confidence masks and their instances.

Furthermore in Tab. 4.3 (i) and (ii), we isolate the effects of the mixing task by fixing the mixing di-
rection. Specifically, we compare an inverted ClassMix [57] that cuts and pastes semantic masks from
target-to-source, to our proposed IMix strategy that works on an instance level. As seen, the inverted Class-
Mix slightly underperforms compared to the baseline model and significantly underperforms compared to
IMix (�2.7% mPQ). We speculate that this is because there is already a ClassMix in the base EDAPS
model(pasting in the opposite direction).

5.3 Confidence-Filtering Threshold

In Tab. 4.4, we aim to identify the optimal threshold in our IMix strategy for filtering out pseudo-masks
with confidence levels below that threshold on the SYNTHIA ! Cityscapes setting. In this Table, the
warmup of the experiments consists of EDAPS⇤+CDA and the refinement phase includes IMix with different
confidence filtering thresholds. Setting the threshold at 1. indicates disabling IMix during the refinement
phase. This can be considered as our baseline for this Table. When employing IMix with filters of 0 and
0.25, the performance experiences an mPQ decrease by 2.9% and 0.4%. This indicates that such thresholds
are too low to filter out the low quality pseudo-masks. In contrast, for the 0.5 and 0.75 thresholds, the
mPQ performance improves respectively by +1.1% and +1.9%. This finding suggests that filtering out
pseudo masks with a confidence level around 0.75 enhances the model’s segmentation performance over
all evaluation metrics, making it the most effective threshold for refinement in this SYNTHIA!Cityscapes
context. We find that this threshold needs to be finetuned for different domain shifts. For SYNTHIA !
Mapillary and Cityscapes!Mapillary we find that the best threshold is 0.9 while for Cityscapes! Foggy
Cityscapes, 0.75 remains the optimal threshold.

5.4 EDAPS*

In our experiments, the EDAPS* baseline follows the same setting as EDAPS [63] except that it does not
include the features distance regularizer (FD) that EDAPS has. FD uses ImageNet features as an anchor in
order to hinder the learned encoder from forgetting the knowledge it starts out with when initialized with
a pre-trained ImageNet encoder. The regularizer is explained in Eq. 5.1. Noteworthy is that FD is applied
only on source images in areas corresponding to thing classes. In Table 4.6 we show how the inclusion of
FD hinders the performance of our method and thus explains why this component was removed from our
experiments. We speculate that this is because the embedding spaces of ImageNet and CLIP are not aligned,
therefore, aligning with both gives rise to a drop in performance. Additionally, EDAPS* is trained for 50k
iterations instead of 40k which is the duration of training reported for EDAPS. In Table 4.5, we compare
EDAPS with LIDPAS, both trained for 50k iterations. We can see that LIDAPS persists on beating EDAPS
on three different benchmarks.
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LFD = kEncImgNet(x
s)� Enc✓(x

s)k (5.1)
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Chapter 6

Conclusion

In this work, we tackle the task of unsupervised domain adaptation for panoptic segmentation. To this end,
we introduce a framework LIDAPS that reduces the domain gap between target and source images by lever-
aging instance-aware cross-domain mixing. Specifically, we propose a novel mixing strategy IMix, that cuts
and pastes confidence-filtered instance predictions from the target to the source domain, and thus retains
the exhaustiveness of the resulting pseudo-labels while reducing the injected confirmation bias. To limit the
effects of emerging catastrophic forgetting, we then propose a CLIP-based domain alignment mechanism
that employs CLIP embeddings as anchors for both the source and target domain. While these proposed
mechansims can be combined with any off-the-shelf segment method, we put together an end-to-end model
that incorporates our methods which we named LIDAPS. Our resulting LIDAPS model consistently outper-
forms existing SOTA models on popular UDA panoptic benchmarks.
AI tools Here I describe where I used AI tools for. After having written my thesis, I used ChatGPT1(Online
version 3.5) to check spelling mistakes and to explore options for making my own text more coherent by
better phrasing the sentence connections and correcting grammar mistakes.

6.1 Limitations

Depending on the source and target domain, the threshold for pseudo-mask confidence filtering needs to be
manually found with experiments. Moreover, we show that this threshold is different on different bench-
marks. In future work, we will explore the prediction of the threshold using a jointly trained neural network.
Furthermore, during the refinement phase where IMix is enabled (last 10k iterations), we are adding one
forward pass and one backward pass to each iteration which increases the runtime.

1OpenAI. (2023). ChatGPT (3.5 version https://chat.openai.com) [Large language model].
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Appendix A

Additional Results and Explored Directions

A.1 Overview

In this appendix, we provide additional results and an insight into the explored directions that did not result
in performance improvement. In section A.2, some quantitative results of our method in comparison to
the EDAPS[63] is provided. In section A.4.1, the different backbones that we tried to use for EDAPS are
discussed. In section A.4.2, the alignment of the instance decoder embeddings with the CLIP model is
reported and analyzed. In section A.4.3, another attempted strategy for mixing is explained and discussed.
In section A.4.4, self-training on the target domain directly without any mixing is explored.

A.2 Additional Qualitative Results

In this section, we provide additional qualitative panoptic segmentation results in Fig. A.1.

A.3 Embedding Plotting

In this section, we provide plot embeddings of the semantic decoder to study how the embeddings look
like with the incorporation of each component. Fig. A.2(a) illustrates the EDAPS* embeddings, Fig. A.2(b)
illustrates the EDAPS*+CDA embeddings while Fig. A.2(c) illustrates EDAPS*+CDA+IMix or otherwise
called LIDAPS embeddings. We can see that the visualizations do not show the improvement we see in
qualitative and quantitative results. We speculate that this is because we are using PCA and TSNE to project
embeddings of 768 and 256 dimentionality to 2 dimensions which destroys much of the properties that yield
improvements.

A.4 Other Explored Attempts

A.4.1 Backbone

Within this thesis, different backbones were tested including a UNET diffusion pre-trained backbone, a clip
pre-trained vision transformer, and a CLIP pre-trained ResNet(ResNet101 and ResNet50). We experimented
with these different backbone architectures.
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Figure A.1: Additional qualitative results on SYNTHIA ! Cityscape UDA benchmark comparing
EDAPS [63] to our proposed LIDAPS. Our proposed LIDAPS model predicts improved semantic and in-
stance segmentation for several classes including “motor-bike” (a), “rider” (b), “person” (c) and “car” (d,e).

Pre-trained Diffusion UNET

According to [17], the UNET diffusion pretrained backbone, has a disentangled embedding space in terms
of real and synthetic features. By using this frozen backbone as an encoder and fine-tuning their decoder
on source domain data, they obtain impressive semantic segmentation results on target domain data. Unlike
(unsupervised domain adaptive) UDA methods, they do not have access to the domain data during train-
ing. Following this, we studied how a UNET diffusion pre-trained model would affect EDAPS’s panoptic
quality, once it replaced EDAPS’s current MiT-B5 backbone architecture. In a source-only setting, we no-
ticed that the mPQ endured a significant drop due to a significant drop in the instance segmentation score,
mAP. However, when training solely the semantic decoder, then we notice an improvement in the semantic
segmentation score, mIoU. We conclude that the UNET diffusion pre-trained embedding space does not
preserve features that are suitable for the instance segmentation task.

Vision Transformer

The mixed transformer(MiT-B5) [80] used in EDAPS is an optimized version of the vision transformer
for semantic segmentation. However, the existing pre-trained weights for MiT-B5 are from training on the
ImageNet dataset while there exist pre-trained weights for ViT [14] from a CLIP training setting. Since
the CLIP training is done on a larger dataset than ImageNet, the CLIP pre-trained weights supposedly is
more domain-robust and have richer semantic knowledge. Hence, through experimentation, we investigated
whether a CLIP pre-trained ViT would do better than MiT-B5. We allow it to train for a longer number of
iterations than the latter since it is less optimized [80]. Changing the architecture to ViT did not enhance
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Figure A.2: Plotting of the semantic decoder embeddings from models with different components. The plots
do not show a significant difference because the dimension projection does not preserve the information that
yields significant improvement when going from EDAPS* to LIDAPS.

our results. This is not surprising given that the plain vision transformer is non-hierarchical meaning that
it outputs features of the same scale which can be detrimental for segmentation. According to the work
[44], this can be circumvented by adding a pyramid network. Therefore, similar to [44], we added a feature
pyramid network at the output of ViT. This change increased the performance in comparison to a source-
only EDAPS setting. However, in the UDA setting, EDAPS performed better during a shorter number of
iterations.

ResNet

Replacing the backbone with the architectures ResNet101 and ResNet50 and training from scratch did not
improve the panoptic quality of the model.

A.4.2 CLIP Alignment on the Instance Decoder

In addition to aligning the embeddings from the semantic decoder with clip embeddings, inspiring from [89],
we align the instance embeddings which are the ROI aligned features of the groundtruth instance boxes with
the CLIP embeddings of the resized cropped instance groundtruth boxes. Since the instance decoder aims
for separability between instances of the same class, it is not suitable to use CLIP text embeddings which
contain only the name of the class. However, CLIP vision embeddings are more suitable since they can
encompass more information about an object instance than only its class. Before applying the CLIP vision
encoder, the crop of the ground truth instance needs to be upsampled to 224x224 which is the required
size for the CLIP vision encoder. Hence, crops that are below a certain threshold are not considered for
alignment. This alignment is done via an L2 regularizer. Adding this regularisor to EDAPS*+CDA did
not improve the results. In order to investigate this further, we attempted to predict the class of the object
inside each crop using the CLIP vision and text encoders. The predicted class is the CLIP text encoding
that has the most similarity with CLIP vision embedding. For this, we consider one mean text embedding
for each of the 8 thing classes. We plot a grid illustrating the number of different groundtruth predictions
in Fig. A.3. We speculate that some of the misinterpretations are due to crops (which are boxes, not masks)
that can contain multiple instances. For instance, a crop of a bicycle will most likely contain its rider as
well. One solution would be to put the pixels not within the instance object to zero. However, having many
black pixels is outside of the distribution that CLIP has been trained on and would fail.
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Figure A.3: Using a CLIP [59] vision encoder and a CLIP text encoder, we calculate the similarity between
the CLIP vision embedding of every groundtruth crop and the CLIP text embeddings of the eight thing
classes. We do this for (a) SYNTHIA dataset and (b) the Cityscapes dataset. The predicted class consists
of the text embedding that has the most similarity with the vision embedding. This analysis illustrates that
using the CLIP vision encoder locally does not give good results as there are many false predictions.

A.4.3 Mixing Source to Source

Comparing the Cityscapes [12] and the SYNTHIA [62] datasets in the scope of domain adaptation from
SYNTHIA to Cityscapes, we realized that in most Cityscapes images, there are many overlapping cars that
create significant occlusions. In an attempt to bridge this gap, we decided to paste overlapping groundtruth
SYNTHIA cars several times in each training image. An example is illustrated in Fig. A.4. However,
training on these augmented samples did not improve our results.

A.4.4 Target Self-training for the Instance Decoder

In order to explore the instance self-training further, we experimented with different strategies:

• Only target: We explored training the instance branch (the instance decoder and the shared encoder)
on the target images using as supervision the pseudo-instances predicted by the teacher. This method
did not improve the scores.

• Only target with coefficients: In another attempt, similarly to the self-supervised semantic decoder
training loss, within the cross entropy loss of the encoder, we took into account the confidence scores
of the pseudo-masks. This experiment also did not improve the scores.

• In this experiment, we intended on self-training the instance decoder branch on the target images
using only the confidence-filtered pseudo-masks generated by the teacher. However, deleting certain
low-confidence pseudo-masks can result in false negatives as deleting a pseudo-mask can yield a
target instance having no associated supervised mask. To evade this issue, we do not penalize via
the objectness loss (binary classification loss) of the RPN when the groundtruth label is 0 and the
predicted label is 1. We consider that this could be a case where the mask of an instance is not
amongst the filtered or predicted pseudo-masks. This attempt also failed to improve the results.
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Figure A.4: Several groundtruth source cars are pasted onto the source image in order to mimic the overlaps,
occlusions, and number of cars in the Cityscapes dataset
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