mzuriCh ETH Library

Magnet

A local network for Lilith computers

Report

Author(s):
Hoppe, Jiri

Publication date:
1983-11

Permanent link:
https://doi.org/10.3929/ethz-a-000295130

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgenossische Technische Hochschule Zirich, Institut fur Informatik 57

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000295130
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische HochsChule
Zirich

institut fir Informatik

Jiri Hoppe

MAGNET
A LOCAL NETWORK FOR LILITH COMPUTERS

November 1983 57

Address of the author:

Institut fiir Informatik
ETH-Zentrum
CH-8092 Ziirich

@ 1983 Institut fir Informatik, ETH Ziirich

MAGNET

A Local Network for Lilith Computers

Jiri Hoppe
Institute for Informatics
ETH Zurich

Abstract

The basic concepts and ideas of the local network Magnet connecting a number of
personal computers Lifith are described. The rationals for the choice of the Ethernet
system are discussed. The structure of the hardware design of the interface is
shown. The three lower levels of the Magnet software are described and some
details of the implementation are discussed. Several application programs are
described.

Keywords:

local area networks, personal compulers, communication, message exchange,
remote files, remote procedure calls, Modula-2

1. Introduction

The introduction of the personal computer Lilith {Wir81] as a work-station at the
{nstitut tiir Informatik of ETH Zurich changed significantly the working style of afl
users. A large amount of the work Is now carried out locally on a personal station
without any connection to the “ouisikle world”. The users of Lilith edit their
programs, compile and execute them, type reporis, draw schematics on thelr
personal workstations without taking care of the activities of other users in
neighbour offices. For some apptications, however, communrication among users is
necessary: they work on a common prolect and need exchange of files containing
the recent version of programs and data, they need access to the central file store,
or they use some central devices like printers or tape stations.

The project Magnet was started to enable & communication between individual
Lilith stations. The goal of the project was 1o provide a lecal network connecting up
o hundred Liliths located in the main building of the Institute.

The network should connect mainly one type of computer LItith, and eventually
some other minicomputers. Connecting large mainframes, ameall microcomputers or
even terminals I8 not considered. The network should be used for locel
communication only, there is no aim to provide a campus-wide network supporting a
large number of different computers. The transmission speed of the network should
be above 1 Megabit/sec In order to satisfy applications like remote disk access or
picture animation. Since the network interface should be used in all Liliths, the
hardware costs for each station should be kept fow.

Section two of this paper describes the rationals to choose an Ethernet based
network, the thind section gives an overview of the hardware structure. The fourth
section discusses the software; three levels of software are described. The last
section decribes some application programs based on the Magnet network.

2. The Choice of the Network System

A local network connecting a small number of personal computers has giready been
implemented by several manufacturers. When the Magne! project was starled, the
possibilities of adopting an already existing system for Lilith were checked. The
following systems were chosen for the closer evaluation: the Cambridge
Ring[Hpr78], the Cobus System of Swiss Federal Institute of Technology
Lausanne[Som76], the experimental Ethernet of Xerox [Met?6] and our own
development using commercially available HDLC chips.

There is a strong discussion in ihe literature about advantages and disadvantages of
various systems for local communication. Numerous simulations prove that some
systems are better than others. Tha author is of the opinion that for the expected
applications of the network, and for the expected ioad, all above mentioned systems
would give about the same performance. Any speed over 500kbit/sec would satisfy
most applications, since at such speed the performance limitation is given by the
sfow software rather than by the actual transmission rate. A transmission of a
packet of 128 words, each having 16 bits, takes aboul 2msec, assuming a
transmission rate of 1 Mbit/sec. That is many times shorter than an average disk
access and in about the same order as many software levels need to propagate the
packet from or to the end user.

The argument that high speed is needed becauss the cable is used simultaneousty
by many users is hard to justify. Our measurements (see section 6) and experiences
of other users of local networks show, that for the expected apptications the
average load of the system is very low. The cable is mostly used below 5%, thus
keeping a lot of free capacity even for special applications.

It seems that differences of various methods will be noticed only by applications with
strong real lime restrictions, where the full speed of the transmission medium is
needed. Since the Lilith computer is not used at the institule for any such
applications, we do not expect probliems where the transmission speed would be a
severe limitation.

Last but not least, there are no aims to extend the network to becomea a universal
network with thousands of stations over the whole campus. The network should stay
strictly local.

At the end of the first part of the evaluation there were only two significant criteria
for the choice of the system:

1) The analog part of the network {connection between the interface and the cable)
should he simple and reliable. The transmission of high speed data over long
distances is a complex problem needing a very careful design. Since there is only
little knowhow at the institute about analog technology, we were anxious t0 adopta
commercialy available solution. Because of some unscived &nalog problems the
Cobus system was excluded from further evaluation.

2) The cost of the network should be kept fow. The complete network interface
should occupy only one board of the Lilith computer, this means it should consist of
at most 70 chips. Since the version of the Cambridge ring available at that time
definitely exceeded this complexity, it was excluded from further evaluation.

In summer 1980 we discovered that there was an "experimental” Ethernet interface
being developed at Stanford University. This interface uses a very smart design by
means of finite state machines; it requires only about 30 chips for packet handling
including framing, CRC-check, and collision detection. To build a simple interface
only two DMA channels are needed. Since the transcievers could be obtained off
the shelf, thus solving the analog problem, it was decided to use the Ethernet for the
local network of Lilith computers. The "experimental” Ethernet uses a transmission
speed of 3 Mbit/sec. 1t is a predecessor of the 10 Mbit/sec Ethernet that is now
standardized in [Eth82]. Both Ethernets base on the same principle, the signals on
the cable and the packet formats are, however, incompatible.

3. The Hardware

An Ethernet network is based on the CSMA/CD (carrier sense muftiple access with
collision detection) principle [Met76). All stations of the network are connected by a
common serial bus. The access control is completely distributed, i.e. there is no
central station giving permissions to access the bus. A station that is ready to
transmit, listens to the signals on the cable. [t waits until there is no traffic and
immediately starts transmitting. Due to the distributed control, it is possible that
more than one station is ready to transmit and therefore several stations start
transmitting simultaneously, thus disturbing each other. Such a situation is called a

collision. In such a case all stations transmit an additional signal to jam the signals
on the cable so that the collision will be cerainty noticed by all stations and all
stations will abort the fransmission. Every station waits for a short time and repeats
the transmission.

The hardware of the network system can logically be divided into the following parts:
coaxial cable, transceiver, transmitter, receiver, and DMA channels to main memory
with some contro! logic.

The coaxial cable connects all computers of a Magnet network. The length of the
cable is limited to about 600 meters and there may be up to 100 computers
connected to it. These limitations are given by the propagation speed of the signals
{iength) and by the reflexions caused by each transceiver (maximal number of
stations). The cable Is a 75 Chm RG11 type as used for cable television.

The transceiver converts the analog signal from the coaxial cable to a digital signal
with TTL level for the receiver or converls the TTL signal back to the analog signal to
be transmitted on the cable. Additionally, the transceiver detects a collision - a state
when more than one station tries to send on the cable.

The transmitter listens to the traffic on the cable, and waits until no other station
transmits. When the cable becomes free, the transmitter starts sending the data as
they are supplied by the DMA controller. The CRC (cyclic redundancy check) is
computed during the transmission and appended at the end of the packet. Whena
collision is detected during a transmission the signal on the cable is jammed , the
transmitter abandons the packet, and the controller is notified about the collision.

The receiver listens 1o signais on the cable. When the start of a packet is detected,
{he receiver checks the first byle of the information containing the destination
address of the packet. If this address matches the content of the address filter, the
packet wili be further processed, otharwise It is ignored. The Incomming data are
converted from the serial to the parafie! form and passed to the receiver DMA
controller. The CRC is computed and compared at the end of the packet with the
CRG computed by the transmitter. If a difference is encountered, the packet is
marked to have a parity error.

The data flow between main memory and transmitter/receiver part is controlied by
two DMA channels, one for each direction. Both channels are built using the AMD
20940 chips containing all necessary counters.

The distributed control of the Ethernet system allows a situation where two or more
packets addressed 10 one station may arrive very close together (head-to-taif) with &
gap of only a few microseconds. Since the software cannot act that fast and
prepare new buffers for the next packet, a hardware mechanism Is built in allowing
reception of up to 18 such head-to-tail packets without any software action. The
packets are stored in a circular buffer in the main memory and the pointers to each
buffer are stored in a first-in-first-out buffer. The software can later extract the
packets from the circular buffer and reassemble them.

Upon nofification of a collision the controller starts the retransmission algorithm.
The controller waits a shor{ period of time (in the range of about 50 microseconds)
and tries to repeat the transmission. If another collision occurs, the controller waits
twice as long and tries again. Up to seven retries are perfomed automatically by the
hardware always waiting twice as long as the previous time. A station dependent

]transciever l

— transmitter

™| retransmission l

transmitter DMA

1

auxiliary

receiver
memory data
receiver DMA
address bus
pointer buffers
Hardware overview

Fig.1

generation of these time intervals assures that no two station wait in the same
phase. 1f all seven tries were unsuccessfull, the hardware sends an interrupt and
sets a bit in the status register, indicating the failure.

4. The Magnet Software

The Magnet software consists of a number of modules, enlarging the existing virtua)
machine of the Lilith’s operating system Medos-2 [Knu83] by introducing new
features.

These modules may be divided into 3 hierarchical layers. They correspond to the
lower 5 levels of the ISO (international Standard Organization) model. The level 6
{presentation level) is empty In the Magnet system since ihere is the same
representation of data in the homogeneous environment of Lilith computers. Leve!
7 (application level) is not considered 10 be a part of Magnet. The Magnet system
does not exactly follow the recommendations of ISO. The system is kept less
general but tailored to the requirements of a local network for personal computers.
In this way, & large amount of the overhead needed in a heterogeneous environment
is omitted. :

The lowest level of the Magnet software is built by modules handling the basic flow
of information between processes. They describe the format of information and the
fiow of data between a cormmon buffer pool, drivers, and user processes.

The next leve! provides procedures for locating of named services in the network
and maintaining connections between such services.

The above two levels are used by system programs only and are not accessible to
normal user programs. Such programs use a number of network access methods
that are iImplemented in the third level. A user can choose the representation of the
network, that matches in the best way his applications. Currently, three network
access methods have been or are being implemented: remote messages, remote
tiles, and remote procedure calls.

These three levels of Magnet are enlarged by a module Nucleus providing functions
needed for multiprogramming. The module Nucleus can be considered to belong to
the underlying operating system. :

Note: The description of software objects in this report does not always exactly
correspond to their declaration in definition modules. For reason of clarity same
obfects are not mentioned at afl, for some other objects different names are used
that can be better understood by ther reader, or some procedures have simplified
parameter list,

4.1. Low Level Software
4.1.1. Module Nucieus

The module Nucleus builds the lowest level of the system. The current version of
Lilith’s operating system Medos-2 [Knu83] supports only a primitive handling of
concurrency. A network system, however, requires a comfortable support of
concurrent activities including data transfer between processes, time out handling,
process scheduling, etc. To salisfy such needs, a Nucleus with operations

user program

Remote Remote Remote

Messages Files Procedure Calls

Connections

MagnetlO

MagnetBase

Nucleus

Medos-2

Software overview

Fig. 2
salisfying the network requirements was developed to enhance the functions of
Medos-2.

The Nucleus represents the concurrent activities as processes sharing one
processor. Some of these processes may be Interrupt driven. A process is created

by a call of procedure

PROCEDURE CreateProcess{processCode : PROC;
stackSize : CARDINAL;
VAR done : BOOLEAN)

The procedure processCode contains the code of the process, stackSize
determines the size of the working stack of the process; done designates the result
of the creation.

The processes communicate by passing messages through a common port. A
process can send a message to a port by a cal! of the procedure

PROCEDURE SendMsg{VAR p : Port;
VAR answerPort : Port;
VAR msg : Message)

If a process is waiting for a message in a port p, it will be resumed by a call of
SendMsg. If no processes are waiting, messages are stored in the port. The
answerPort is used in master-siave relations to identify the port, where the answer
from the slave back 10 the master should be sent to. The identitication of the
answerPort is transferred inside a message and can be extracted from the message
by the call of the procedure

PROCEDURE GetAnswerPort(msg : Message): PortPointer
A process may wait for a message by
PROCEDURE WaitMsg{VAR p : Port; VAR msg : Message)

If there are no messages stored in the port, the process calling WaitMsg Is delayed
and resumed when the first message arrives. If there is at least one message in the
port at the time of the call, the process is not delayed, it felches the message and
continues processing.

A similar procedure allows processes 0 wait for a message but to specify a maximal
time limit to wait ({timeout). H no message arrives within the specified tims, the
process is resumed and notified about the faiiure.

PROCEDURE WaitMsgTimeOut(VAR p : Port;
VAR msg : Message;
timeout : CARDINAL;
VAR ok : BOOLEAN)

The timeout is given in muitiples of 20 msec, ok specifies whether the procedure
was terminated due to an arrival of a message or due ¢ a time out.

The device drivers are represented as processes, each of them controlling one
device. They are declared in & module with priority higher or equal 1o the interrupt
priority of the device. Such processes may wait on a device interrupt by & call of

PROCEDURE WaitIO(dev : DeviceNumber)

The parameter dev is an identification of a device. It may be interpreted as an
interrupt vector.

4.1.2 Addressing

The network services are performed by service processes residing in different
computers on the network, A network service is addressed by two fields in the
header of packet: the hardware address of a station and an identification of a port.
in the future a third field will be included: identification of a network when more
Magnet networks will be interconnected.

The hardware address is a number between 0 and 255. A station may be opened to
a combination of such addresses, but in most cases only two addresses are opened:
the own address, as determined by the hardware identification of the interface
(switch), and the broadcast address, accepted by all stations. The station address
of the packet is interpreted by the hardware. Only packets with addresses matching
the content of the hardware address filter are accepted for further processing .

The port is used to identify one of many services that are implemented within one
station. in most cases there is only one process waiting for packets from one port,
we may say that in this case the port is used to identify a process.

Station Address l
¥
Port Ident DTDD OO O
Process O O O O O O 0O
station 1 station 2
Addressing
Fig3

There are iwo kinds of ports reserved for arriving packets.

1) predefined ports reserved for fixed services like name server, file system, remote
procedure calls efc.

2) private ports created by user application programs.

Most network procedures handling with ports use the foliowing identification of
ports: The parameter designaling the port is of type ADDRESS. H the value of this
parameter is a small number (currently less than 16), it is assumed that it designates
a predefined port. A larger value designates an address of a private port. In the
following parts of the report we call the type used for port addressing Porifdent.

Ports are opened by a call of

PROCEDURE OpenMagnetPort(portId : Portldent;
VAR done : BOOLEAN)

When a port is no longer used H I8 closed by a call of

10

PROCEDURE CloseMagnetPort{portld : Portldent;
VAR done : BOGLEAN)

If a program ferminates without closing its ports the system will close them
automatically.

4.1.3 Basic DataTypes

The main flow of information between local processes of the Magnet system is
performed by messages containing communication packets. in order o hide a
direct access to the structures of the Nucleus, the messages are renamed at the
Magnet leve! to envelopes. It shows a similarity of the packet transport with postal
SErvices.

Envelopes are structured objects with different access rules depending on the fevel
of the network system. There are three levels of access (see fig. 4): At the Nucleus
level only the header of an envelope is defined, the other part of the envelope
contains data with unknown structure. The next two levels have no access to the
header of an envelope, since this is defined as a hidden type in the Nucleus. In
these levels a structured access to the content of the envelope - to the packet - is
provided. Such a packet consists of two parts: the header of a packet and a user
specified part. The header is common to all magnet applications. H contains the
destination and source addresses, sequence numbers, elc.

Packet =
RECORD
destAdr + CARDINAL; ({* destination address ¢)
srcAde : CARDINAL; {* source address *)
destPort : Portldent; {* destination port *)

returnPort : Portident; {+ reply port »)

connKeys : INTEGER; (* idents for connecticns #}

xsum : BITSET; {* soft checksum #)

segqhr : CARDINAL; (= sequence number *)

pLength : CARDINAL; (* length of the packet *)

packetType : CARDINAL; {* type of the packet *)
END

The user part is left unspecified at the lower level of Magnet. Its content is defined
separately for each application, mostly as a record type with variant parts. This part
is appended by the systemn to the basic packet.

Nucleus MagnetBase User
Message Packet
header header User Packet
F 3
envelope I packet user
pointer pointer pointer
Structure of a packet

Fig.4

11

The basic idea of introducing three levels of access is to provide a clear structuring
of the network by hiding low level structures from unauthorized access from higher
levels of system. This method provides in all levels of system a structured access to
ali fields of a packet with high-level pregramming techniques, The Magnet system
never uses an assembly-like access 10 a packet represented as an unstructured
sequence of bytes. The structured definition increases the reliability of the system
and enforces clear communication among different programs.

The language Moduta offers the following method for such a hierarchical structuring
of the data access: The access to the envelope and to both parts of the packet are
performed by three pointers: envelope-pointer, packet-pointer, and a
user-packet-pointer. The first two pointers are type bound 1o types defined in
modules Nucleus resp. MagnetBase. The third type is left unspecified, it is defined
as a universal type ADDRESS. Such a type is compatible with all pointer types in
Modula-2. A user may therefore declare a pointer to his private type and assign this
pointer to the user part of the packet.

Such a method offers good flexibility. It is, however, a potential source of serious
problems. The user part of an envelope has a maximal size, defined at the time of
the generation of the system, If the size of the user type fits into this space no
problem occurs. If, however, the size of the user type exceeds the maximal size, the
user may overwrite data outside of the envelope. To prevent such run time errors
every procedure providing the user with envelopes checks the size of the user type.

4.1.4 Baslc Flow of Informatlon

There is a closed flow of envelopes among ali Magnet processes maintained by a
common pool of empty envelopes. A process needing an envelope for
communication requests it by a call of

PROCEDURE GetEmptyEnvelope{VAR env : Envelope;
VAR packet : PacketPtr;

VAR userInfo : ADDRESS;

maxSize : CARDINAL)

The packet and userinfo points to the packets encompassed in the env. Afier the
use, the envelope is refurned back to the pool by

PROCEDURE ReturnEmptyEnvelope{VAR env : Envelope)

Both procedures are implemented by means of a port emptyPort where envelopes
are sent by SendMsg or requested by WaitMsg.

Such a common poo! of envelopes has advantages for the network system, bul
unfortunatety infroduces also some problems. The advantage is that the memory is
better utilized, since more processes share the common pool, and that there is an
automatic way of buffering during the communication between processes. A
number of incomming packets is stored in a port until the target process becomes
ready and fetches them.

There are two basic problems: A common pool with a fixed size is a potential source
of deadlccks when some processes are programmed in a way that they may posses
more than one envelope. The other difficulty is a complicated handling of situations

12

where a process acquires an envelope and dies due 1o a run time error before the
envelope is returned back. Such envelopes must be retrieved by the system that
keeps information about the current owner of an envelope.

The experience gained shows that a common buffer pool is a better solution than a
systemn where every process is responsible for its buffers. The above mentioned
disadvantages are handled by careful design of processes and by routines retrieving
{ost envelopes.

4.1.5 The Module MagnetBase

The module MagnetBase declares the type Packet, the procedures handling the
common envelope pool, and the administration of open ports as described above.
Additionally the implementation body of the module MagnetBase includes the
drivers for the receiver and the transmitter. Both drivers are implemented as
concurrent processes, The communication among other processes of the network
sysfem and the drivers is performed by exchange of messages through
communication ports. A process ready to transmit a packet sends an envelope
containing the packet to the xmitReg port. The transmitter fetches the envelope
from this port, transmits the enclosed packet, and returns a message fo the source
process with a status information indicating whether the transmission was
successful or falled due to too many collisions.

The transmitier has the following structure:

PROCESS Transmitter;
VAR env : Envelope;
pp i Portldent;
BEGIN
LooP
(* wait for a packet to be sent *)
WaltMsg{xmitReq, env);
pp := GetAnswerPort{env);
(* set DMA 1nfo into 2940 =)
DMA.info := {ADR{packet); length({packet)};
start transmission;
WaitI0o (xmit);
envt.reply := status of the tranmission;
SendMsg{pp, env)
END
END Transmitter;

The structure of the receiver process is more complicated than the structure of the
transmitter. The incoming packets are stored by the hardware in a circular buffer in
the main memory and the pointers to each packet are stored, together with the
status information, in a FIFO buffer. The receiver process {akes this information
from the buffer, and checks the status. if the packet was received correctly, it is
copied into an envelope buffer and sent to a waiting process according to the
destination port specified in the header of the packet.

13

The process Receiver has the following structure:
PROCESS Receiver;

VAR
env : Envelope;
packet : PacketPointer;
userInfo : ADDRESS;
BEGIN
LOOP
WaitIO(rec);
fetch all packet pointers from the FIFQ;
FOR all pointers DO
IF {statusInfo = noErrors} AND
{No overflow in circular buffer) THEN
GetEmptyEnvelope(env, packet, userInfo};
copy packet from the circular buffer
to the packet;
IF packett.destPort is opened THEN
SendMsg{packett.destPort, packet);
ELSE
ReturnEmptyEnvelope(env, packet, userInfo);
END
END
END
END

END Receiver;

4.1.6 Exchange of Packets - the Module MagnetlO

The module Magnet!Q provides procedures for higher level communication with the
two driver processes. It hides the structuring of the system into processes and the
using of ports to communicate with drivers. The communication with these
processes is established by the two procedures

PROCEDURE Transmit{VAR envelope : Envelope;
VAR reply : Reply)

PROCEDURE Receive(VAR port : Port;
VAR envelope : Envelope:
VAR packet : PacketPtr;
VAR upserInfo : ADDRESS;
timeout : CARDINAL;
maxSize : CARDINAL);:

The procedure Transmit computes the soft-checksum, and sets the source address
in the packet. All other fields must be already filled by the higher levels of the
Magnet system. Next, the transmitter is activated by sending the envelope to the
xmitReq port.

The procedure Receive waits for an envelope from the receiver process, adpr&eged
to a port, and makes some low level checking, like checksumming or ignoring
damaged packets. The packet points to the packet information enclosed m_i'he
envelope and userlnfo points o the user part of the packet. The timeout specifies

14

the maximal time to walit for a packet and maxSize Is used 1o check the maximal size
of the user part of the packet {see 4.1.3).

A simple protoco! for an often used information exchange, where a master sends
one request that must be acknowledged by exactly one answer from a slave, is
handled by the procedure

PROCEDURE TransmitAndRecieve
{ commDesc : CommunicationDescriptor;
VAR xmitEnv : Envelope; ‘
VAR recEnv : Envelope:;
VAR packet : PacketPtr,
VAR userInfo : ADDRESS;
maxSize : CARDINAL)

The commDesc keeps some constants for the protoco! (timeout length, sequence
number, receiver porl, efc.), xmitEnv encompasses the request packet to be
transmitled, recEnv contains (possibly after some reiries) the received packet. The
procedure TransmitAndReciove sends a packet contained in xmitEnv to the slave
station and waits for an answer. If a packet arrives with a sequence number
coresponding to values specified in commDesc it is copied to the recEnv and the
procedure is left. If no packet is received during a period of time given by timeout or
a wrong packet arrives, another xmitEnv is sent and the procedure waits again for
an answer. This cycle is repeated until either a correct packet is received or the
maximal number of retries is exceeded.

4.2 Connections

Only very few applications of Magnet exchange single, individual packets with no
relation between consecutive packets. Mostly a large number of related packets,
belonging to the same session, is exchanged in a row. We call such a session a
connaction.

Station A Station B

Connection Connection
Processes Descriptors Descriptors Processes

Connections
Fig.5
A connection establishes a communication channe! between two processes by

15

exchange of opening packets. The actual communication on this channel is carried
out by means of similar procedures as defined in the Module Magnet/O. The
important difference is that the header of the packet is now hidden to the user and it
is copied by the raodule Connections from a connection descriptor. At the end of a
session the communication channel is closed.

An important feature of a connection is the possibility to check the status of the
partner station any time to find out if it is still active, or inactive due to hardware
problems, abortion, efc.

The module Connections containg an array of connection descriptors. They are
allocated when a connection Is opened. For the user, a connection is represented
by a connection identifier which is actually an index to the above array.

Connections are established between named services only. This means that every
service must be known by its name in the network before it is accessed. The module
Connections provides faciliies to locate such services and to return their
charactorization consisting of the hardware address and the identification of the
port{see 4.1.2.). A service is installed in the network by the call of

PROCEDURE InstallService(name : ARRAY OF CHAR;
portid s Portldent;
VAR servicelnfo : ARRAY OF CHAR;
VAR result : Result)

The name designates the logical name of the service, portid is the identification of
the port (see 4.1.2) and servicelnfo is text Information used differently by various
services, This procedure sets the name into a small memory resident data base and
checks if there is no other station in the network with the same name. In case there
is already such a name known in the network, the service is removed, since there
cannot be two services with the same name.

A connection to an already installed service is opened by the call of

PROCEDURE OpenConnection(partnerName : ARRAY OF CHAR;
localPortId : Portldent;

VAR connld : Connectionld;
VAR servicelnfo : ARRAY OF CHAR;
VAR result : Result)

The partnerName is the name of the partner service, localPortld is the identification
of the local port. The connld is a connection identifier that is later used for packet
exchange. This procedure locates first the named service and gets its
characterization. Next, packets are exchanged that open conneclions and allocate
descriptors in both stations. The descriptors are initiated with values describing the
characterization of the pariner station.

The location of the named service is based on the following principte: The
procedure sends a packet with a broadcast destination address of the name server
type containing the searched name. This packet is received by all active stations of
one network and dispatched there to a process handiing name requests. This
process compares the name specified in the request with the internal data base
containing the logical names of local services. If a match is found, the process
sends a packet back to the sender with his physical address and the corresponding

18

poﬂ_ident‘rficatlon. If no match is found no reply is sent back. if no packel is
reogzlved‘wlthin a certain time Interval, the sender retries several times. If several
retries failed, it is assumed that there is no active service with the given name.

The state of a connection can be tested by
PROCEDURE ConnectionActive(connld : Connectionld) : BOOLEAN

_The state of connections Is internally monitored by a process sending lest packets
in reguiar intervals to the partner station. If the partner station is active and the
corresponding connection is still opened the test packet is acknowledged. If the
test packet does not acknowledge several times the process assumes that the
connection was aborted and marks the local descriptor as inactive. This mark is
read by the procedure ConnectionActive.

Above the level of the module Connections, the users have no access to the header
of a packet (see 4.1.3). They only access the user part of a packet. All procedures

of the module Connections use therefore only a user pointer instead of an envelope
pointer.

The flow of empty envelopes is maintained by the procedures

PROCEDURE GetEmptyPacket(VAR userPtr : ADDRESS:
) maxSize : CARDINAL)
PROCEDURE. ReturnEmptyPacket(VAR userPtr : ADDRESS)

They corvespond to the similar procedures of the module MagnetBase.
The exchange of packets between stations is performed by procedures

PROCEDURE Transmit(conrnld : Connectionid;
VAR userPtr : ADDRESS;
VAR packetPar: PacketParam)

PROCEDURE Receive{ VAR port : Port;
VAR connld : Connectionld;
VAR userPtr : ADDRESS;
VAR packetPar: PacketParam;
maxS5ize : CARDINAL}

PROCEDURE TransmitAndReceive
{ connld : Connectionld;
VAR xmitUserPtr : ADDRESS;
VAR recUserPtr : ADDRESS;
VAR packetPar : PacketParam;
maxSize : CARDINAL)

These procedures comrespond to the equally named procedures in the module
MagnetlO. The connld describes the connection, packetPar is used to keep a copy
of some information that is contained in the now inaccessible header of a packet
(length, sequence numbers, hardware status of & received packet, etc.)

17

4.3. Basic Communication Methods

The described modules build & basic structure used by all communications in the
network. The normal users of the network are, however, not encouraged to access
these levels directly. They should use the network via three basic nelwork access
methods: remote messages, remote tiles, and remote procedure calls.

4.4. Remote Messages

Remote messages offer to the user a similar service of exchanging dala as offered
by the module Nucleus. In Nucleus, processes communicate by exchanging
messages through ports. Such processes and ports must be declared in the same
processor. The module RemoteMessages enhances this communication by &
possibility of message exchange between different processors.

There is no higher protocol implemented at this level, the messages are delivered
according to the best effort strategy. The system trigs its best to deliver a message
but does not guarantee a secure arrival, This must be achieved by user implemented
higher prolocols. The module RemoteMessages operates only as a transport
service for data beween two stations. Such a free exchange of messages allows the
user to experiment with Magnet, to introduce new concepts, or to implement new
protocols.

The structure of the module RemoteMessages is very similar to the structure of the
module Connections. The main difference is another approach to the handting of
data contained in a packet. Up 1o the module Connections the data are enclosed in
envelopes that are required before and returned after use. In this way it was
possible to transfer data through many levels of the system and through many
processes without copying. At the level of RemoteMassages the data are handled
as a universal type ARRAY OF WORD with unspecified content. The user supplies
his private variables for transmission or reception and the module copies the datato
or from the envelope.

The module RemoteMessages has a similar representation of connections as the
module Connections. Two kinds of connections are supported: The one-to-one
connection is used between two equal stations {e.g. two stations playing a game of
chess remotely). The N-fo-one connection is used for master-slave applications
where one slave services a number of users.

A connection between two stations is opened by the call of

PROCEDURE OpenConnection
{srcName, destName : ARRAY OF CHAR;
VAR connDesc : ConnectionDescriptor;
timeQut : CARDINAL)

The srcName and destName specify the own ang the remote station names. These
names are temporary inserted as service names into the network and after a
successful opening removed again. The connDesc is used o keep all information
necessary for message exchange (e.9. station address, remote port identification)
and a port that is used to receive packets. The opening procedure includes a
protocol with retransmissions and limeouts.

When a connection has been established the communication is carried out by calls

18

of two procedures

PRCCEDURE SendRemoteMsq
{ VAR connDesc : ConnectionDescriptor;
data + ARRAY OF WORD:
length ¢ CARDINAL)

and

PROCEDURE WaitRemoteMsg
{ VAR connDesc : ConnectionDescriptor;
VAR data : ARRAY OF WORD;
VAR length : CARDINAL;
timeout : CARDINAL)

Their semantic comresponds to the similar procedures of the module Nucleus, The
SendRemoteMsg sends the data to the remote station specified in connDesc. The
WaitRemoteMsg wails until a packet arrives from the station specified in connDese
and copies its content into data. The timeout specifies the maximum waiting time in
multiples of 20 msec. The data may have an arbitary length. 1n case the data do not
fit into a single packet, they will be transfered in more packets.

The N-to-one connection is used for master-stave applications. A typical example of
this kind is & data base server that accepts queries from a number of users,
processes these queries, and sends replies back to the user. Such an application
must handle a large number of connections concurrentty and must be able {0 open
and close new connections every time. Additionally to the connection descriptors
used for the network communication, the slave has a local descriptor for each
connection. This descriptor Is used 10 keep private data like pointers to the opened
files for data base access. To allow the identification of local descriptors, every
message contains an index of the local descriptor.

The remote message system provides for N-to-one connections the following
method: the user uses for the communication the same remole message protocol as
described above. The server calls the procedure

PROCEDURE Listen{name : ARRAY OF CHAR;
VAR userConnDescr : ARRAY OF
ConnectionDescriptor;
workProc : WorkProcedure;
VAR nameOk + BOOLEAN)

This procedure is a Kind of combination of OpenConnection and WaitRemoteMsy.
This procedure installs itself as a service name in the system. The amay of
connectionDescriptors is used 10 keep information about every connection. The
body of the procedure contains a semi-infinite loop. In this loop the slave waits for
any arriving packet. If this packet is of the cpen connection type, a hew connection
descriptor from the field userConnDescr is allocated, and a confirmation packet is
sent back to the user. f a packet with data arrives, the procedure finds the
comresponding descriptor and calls a procedure workProc. This procedure has a

type
TYPE WorkProcedure =
PROCEDURE({ConnectionDescriptor, VAR ARRAY OF WORD,
VAR CARDINAL)

19

The first parameter specifies the communication descriptor, the second where the
arriving data should be copied into, and the third is the identification of the
connection used 1o find the local descriptor. The server now processes the request
and sends back the answer to the user identified by the connection descriptor using
SendRemoteMsg.

4.5 Remote Files

The remote filos method supports access to files residing in a remote station in a
way identical to how files on a local medium (disk) are accessed. in order to
understand this method it is necessary to discuss the operation principle of the
general fite system of the Medos-2 operating system.

4.5.1 The Generail File System of the Operating System Medos

The file system of the operating system Medos-2 was designed to support a number
of various devices in such a way that a uniform interface to all drivers from user
programs is achieved. The file system enables installation or removal of device
drivers dynamically during the execution of a program, without the need for a time
consuming system reconfiguration or a rebooting of the system. Typical devices are
disks, magnetic tapes, or printers.

A Medos file is represented in a user program by a record variable containing
pointers 1o the data buffers, information needed by the file system to connect a file
with its device driver, and an area for parameter exchange between the user
program and the driver. The data buffers are owned and maintained by each driver
in order 10 enable efficient buffer handling even for more complicated applications
{e.g. read ahead):

A file descriptor has the foflowing structure:

TYPE File =
RECORD
(* buffer pointers *)
bufAdr, elemAdr, inAdr, topAdr : ADDRESS;
(* communication parameters between user and driver #)
eof : BOOLEAN;
result : Response;
CASE com : Command OF
create, open :
fileNr, versionNr : CARDINAL;
{ Tookup, rename :
new : BOOLEAN
| setRead, setWrite, setModify:
| setPosition, getPosition:
pos : Position

END;
(* connection between file and driver =)
mt s MediumType;
subMedium : ADDRESS
END

The operations on files are performed through a collection of procedures declared
in the module FileSystem. These procedures may be divided according to their
function into the following groups:

- general file handling: aliows creation, deletion, renaming, setting, and reading of

the current position, setting of the working mode (read, write, modify), and
performing of a block data transfer according to the working mode.

- stream operations: perform sequential reading and writing of data of either word or
byte size.

- direct call procedures enable direct activation of a device driver. This feature will
be explained fater in this text.

- installation and removal of drivers.

4.5.1.1. Information Flow Between User and Driver

The exchange of information between a user program and different device drivers is
performed according to the following principle:

Every device driver is installed in the file system by éubmming three entities :

- the device identification consisting of two letters, optionally followed by & number
(e.g. DK’ or 'MT1’)

- two procedures which will be activated by the file system when actions by a
specific driver are required. They have the following type:

TYPE
FileProcedure = PROCEDURE (VAR File);
DirectoryProcedure = PROCEDURE (VAR File, ARRAY OF CHAR);

The DirectoryProcedure is called with a string parameter specifying the name of a
file. Such a name is needed in case of opening or renaming of an existing file. All
other activities are performed by the FileProcedure.

The names of files are structured in a way similar to qualified identifiers in the
language Modula-2. They consist of a sequence of simple identifiers separated by
dots. The first identifier of a file name specifies the device.

Exampie:

DK.temp,MOD
is the file "temp.MOD" on a device “DK"

MT1.john.mary.ann. joseph
is the file "john.mary.ann.joseph" on the device “"MT1"

Only the device name is interpreted by the file system, the other part of a file name is
left for interpretation by each driver.

When a user calls a general {see above) procedure of the file system, the
parameters of his call are copied to the parameter tields of the file descriptor, the
appropriate driver is chosen and its FifeProcedure or DirectoryProcedure is called.
This procedure performs the action, transfers data {if necessary) to or from a buffer,
and writes the result into the result fieid in the file descriptor.

The direct call procedures select the sappropriate driver and aclivate its
FileProcedure or DirectoryProcedure. It is assumed that the user already has copled

all parameters into the parametor fields of the file,

4.5.1.2. Access to Remote Files Through the General File System

The access to remote files is performed in the same way as the access to any other
device. The general file system has no notion of the network, it accepts only an
Instatlation of the Magnet driver and forwards all requests for remote files 10 this
driver. The user of a remote file sees only one difference between a local and a
remote fite: the device specification in the file name.

user
F
disk file fgir;%eoie
system system ¢ ™ master
user machine
remote machine
A
dsk || fie |, e
system gystem slave

Data path during the remote file access
Fig.6

4.5.1.3. Naming of Remote Files

The magnet network system provides procedures for installation of & remote file
server as a device in the general file system. As mentioned in the description of the
file name, the first identifier in the composed file name specifies the device. This
identitier is only two characters iong. Since two characlers are 100 shori for a
unigue neetwork identification of a remote server, a concept of nicknames was
introduced. A nickname is a free chosen two letter identification which is used as an
abbreviation for a full service name as described in 4.2. A nickname Is used as a
device specification in a file name, but the remote file driver keeps the full service
name for the procedure OpenConnection (see 4.2) ,

A remote file server identifies itself by making its name known to the network. For
example such a server may be called John to identify the disk cartridge of John, or
centralF$ to identify the central file store. A user of remote files connects the logical
name of a fite server (e.g. John or centralFS) to a freely chosen device name {two
characters: e.q. AB or XY), and informs the local file system, that all requests

23

concerning the chosen device name (e.9. AB or XY) should be forwarded to the
remote file driver.

A connection between a nickname and a fult name of a remote file system is
perfomed by a call of

PROCEDURE InstallRemoteMedium{nickName : ARRAY OF CHAR;
remoteName : ARRAY OF (HAR;
VAR done : BOOLEAN)

This procedure builds a focal table keeping both the nickname and the name of the
remoie file system and informs the file system about an installation of a new medium
nickname

4.5.2. Implementation of Remote Files

The file exchange Is performed by two modules: the FileMaster performing
operations in the users computer, and the FileSlave performing operations in the
remote computer (see Fig. 6).

The FileMaster implements two procedures FileCommand and DirectoryCommand
which are submitted to the general file system for access to remote files. All
nicknames share the same two procedures. When activated, these two procedures
check the integrity of a request, maintain local descriptors for each opened file, and
transform parameters of procedure calls to packets that are transmitted to the
partner station. These packets may optionally contain data.

The structure of a packet for file services is the following:

FilePacket =
RECORD
slaveld : Fileld; (* id of the remote file *)
masterid : Fileld; (* id of the master file +)
fcEof : BOOLEAN; (= end of file)
fRes : Response;
CASE PacketType OF
fileldentification :
CASE Command OF
open, create:
fileNr, versionNr : CARDINAL;
{* description of the remote medium)
mediumType : MediumType:
mediumir : CARDINAL;
] Yookup, rename:
fileName : MagFileName;
END;
| fileQperation:
CASE Command OF
setpos, getpos, length :
highPos, lowPos : CARDINAL;
| ...,

END;
1nCount : CARDINAL; (* # of bytes read in)

elCount : CARDINAL; (*» current # of bytes #)
CASE withData : BOOLEAN OF (* data transport s)
TRUE : fiteData : ARRAY [0..maxData-1] OF WORD
| FALSE: (* nothing)
END;
END; (= CASE packetType)
END;

The packets for remote files may be of two types. The fifeldentification packets are
used for actions where the identification of a file is necessary {(open, lookup,
rename,..). The fileOperation packets are used for all other actions.

The packets are received on the other station by a process FifeSlave. This process
checks the consistency of incoming packets, maintains local descriptors for every
opened file, and converts received packets to calls of the appropriate local device
driver. When the driver action has been finished, a reply packet is sent back to the
master. This packet may optionally contain data.

The path of a file request through the system is shown in the following example:

A user on the station A" wants {o copy files from a disk cartridge called John. He
activates the name server that locates this cariridge at station '8’ and locaily installs
a freely chosen medium 'XY' to represent the cartridge of John. Now he looks up
the file temp.MOD on the remote canrlridge. The file name on the local station has
the name XY.temp.MOD. On the remote station this file name wili be converted to
DK.temp.MOD in order t0 get to the disk (DK) driver.

The information enclosed by {...} in this example is an informal description of some
kind of parameter transmission.

actor actlon
A.user Lookup(file, °*XY.temp.MOD', FALSE)
A.FileSystem DirectoryCommand

{magnetdriver,lookup, 'XY.temp.MOD*}

A .RemoteFileMaster convert name to DK,temp.MOD,
find station with nickname XY => B
open connection to B

A.RemoteF ileMaster SendPacket
{connection=8, fileldent,
Tookup, 'DK.temp.MOD'}

A+B .MagnetDrivers A.transmit and B.receive packet
B.RemoteFileSlave receive packet, check parameters
B.RemoteFileSlave DirectoryCommand

{ 0K, tookup, 'temp.MOD" }
B.DiskSystem perform lookup

25

B.RemoteFileSlave SendPacket{dest=A, result = done)
B+A.MagnetDrivers B.transmit and A.receive packet
A.RemoteFileMaster copy packet.result => Tile.result

A.user continue

The structure of the FileCommand procedure of the Magnet driver is the following:

PROCEDURE FileCommand{VAR f : File);
VAR filePacket : FilePacketPtr;
BEGIN
WITH f DO
check the command and the file for consistency;
IF command IN {create,open} THEN
assign a new local descriptor;
open a port inside of local descriptor;
open connection to the remote station
END;
WITH localDescriptor DO
GetEmptyPacket{FfilePacket);
WITH packet DO
copy info from 'f' and local descriptor
to 'filePacket’;
if necessary copy file data to the packet;
TransmitAndReceive (desc.connection,
filePacket, filePacket);
IF received packet 1s OK THEM
copy info from ‘packet’ to 'f';
if necessary copy data from packet to 'f'
END
END;
ReturnEmptyPacket(f{lePacket)
END;
END
END FileCommand;

The process FileSlave has the following structure:

PROCESS FileSlave;
VAR filePacket : FilePacketPtr; connld : Connectionld;
BEGIN
LOOP {+ forever *)
Receive{fileSlavePort, connld, filePacket}):
WITH packet DO
IF packetType is OK THEN
IF command IN {create, open} THEN
assign a new local descriptor
END;
WITH localDescriptor DO
copy info from packet to localDescriptor.file;

28

1f necessary copy data from packet
to localDescriptor.file;
activate either FileCommand or DirectoryCommand;
copy info from file and local descriptor
to packet;
1f necessary copy file data to the packet;
exchange station and port addresses;
Transmit{connld, filePacket)
END
ELSE ReturnEmptyPacket(fiiePacket)
END
END
END
END FileSlave;

4.5.2.1. File Transfer Protocol

The protocol used for packet communication Is very simple, since the passive
Ethernet can neither duplicate packets nor change the sequence of arriving
packets. Although the probability that packets will arrive correctly is very high, there
is a small possibility that a packet may be lost, '

The protocol between the FileMaster and FileSlave is based on answering every
request packet from the master by a reply from the stave. The master wili not send
any further packets (exept in case of a timeout) unti! a reply has arrived from the
stave,

Sequence numbers and a timeout mechanism are provided to recognize lost
packets. Each packet contains a sequence number compuied module 32768. The
request packets are sent from the master to the slave, and the slave responds with a
packet with the same sequence number, the same packet type, and the same local
identifications of the file. The master accepis only answers, where the above
information is correct. Wrong packets are discarded and the request packet is
retransmitted. A timeout mechanism is provided to supervise lost packets. Packets
received more than once are filtered. The above function is provided by the
procedure TransmitAndReceive from the module Connection.

The slave keeps a local copy of the result of the last operation. When a packet is
received with a sequence number less than the expecied one, the last reply was

lost. The slave copies the last result of the operation to a packet and transmits it

back. When the sequence number in the packet corresponds to the expected
number, the local device driver is activated and a packet with the result of the
operation is returned to the master.

The slave processes one request after the other in the sequence as they are
delivered from the slave port. There is no overlapping of network and disk activities.
This serialized way allows a number of users to have shared access to one slave
with virtually no handling of concurrency at the stave level. The current version of
remote files does not support a protocol controlling data consistency cver several
fite accesses. For such application a higher (e.g. locking) protocol is needed.

27

4.6. Remote Procedure Call

The third method used 10 access the network is called Remote Procedure Call. 1tis
based on a principle similar to the idea of remote files. The access {0 a file Is done
either locaily (local access), or parameters of the operation are transmitted 1o a
remote station, the operation is executed there, and the result of the operation is
transmitted back (remote access).

A procedure call may be either executed locally - this is the norma! way as Known in
all high-level programining languages. The other possibility to execute a procedure
calt is to send a packet containing the identification of a procedure and its
parameters to a remote machine, let this machine execute the procedure, and send
a packet with a result back to the calling machine,

The implementation of this concept is heavily influenced by the separate
compilation facility of the language Modula-2, Remote procedures are declared in
the same way as local procedures in a definition module. Only procedures with
some restricted properties are atlowed. The parameters must not be of pointer type
and no global variables residing in a non-local machine must be accessed. The
pointer types are excluded because of difficulties connected with dereferencing
necessary to access the actuat data. Global variables known to different stations
would have to be copied every time they are accessed. The cost of such copying is
prohibitive. For this reason no common global variables are allowed.

For one definition module with remote procedures, three different implementation
modules exist: one on the calling station and two at the called station. The
procedures of the module in the calling station accept the procedure calls,
transform their parameters into packets, send these packets 10 the remote station,
wait for a response, and return back to the user.

At the remote stalion these packets are received by a reciprocal module that calls
the actual procedure with the parameters copled from a packet, After the return
from the procedure, the results of the cal! are copied into a packet and sent back.

Only the module with the actual procedures must be programmed by hand. These
procedures perform the actual operation. The calling and reciprocal module are
automatically generated by a preprocessor reading the symbol files of a definition
maodule and producing a Modula-2 source file.

This project is in an early stage of development. For this reason, no details about
the implementation are given in this paper.

5. Network Services

On fop of the basic Magnet sysiem a number of service programs have been
implemented. Since most of these services will be described in papers appearing
tater, only a short description of each service is given here.

5.1. Program magnetFiles

The program magnetFifes enables access to remote files from programs working
with files but not explicitly importing any Magnet modules. The program
magnotFiles collects all necessary Magnet modules (both the master and the sfava)

28

and starts the command interpreter on top of it. In this way, the current virtual
machine of the Medos-2 operating system is enhanced by a new device: the remote
file.

The name of a user disk is specified in a designated entry in the file User.Profile.
This file is used in the Medos-2 environment to keep user dependent parameters of
service programs {e.g. the default name of a font for the editor). When the program
magnetFiles is started, the name of a disk is installed in the network. A user of a
remote station may now connect this name with a freety chosen local medium name
- called nickname (see 4.5.1.3). When the connection was successfully established,
the remote files are accessed in the same way as local files by insering the
nickname as medium name in front of a the file name,

The programs running most often on top of magnetFiles are copy and debug. The
application of a debugger has some interesting aspects and should be considered
here in more detail.

The program debug is used to analyze a memory dump that is produced when a
user program was aborted due to a run-time error. The debugger reads this dump
file and produces human readable information by applying information gained from
refarence and listing files produced during compilation,

When several persons work on a commaon project such reference tiles are located
on different disks. A user may debug only private parts of programs where the
debugging information is available, To enable debugging of the entire program, all
reference and listing files must be copied to a single disk. Such a solution is
impractical. The disk keeps a large number of unnecessary files that might even be
outdated and do not correspond o the most recent version of the program. Using
magnetFiles, a better solution is achieved. The debugger is started on top of
magnetFiles and the reference files are fetched through the remote file access.
There are no private copies of files, and the version always comresponds to the
actual version of the program.

5.2. Remote Printer Prisma

The Magnet network provides access {o a laser beam printer Cannon LBP10. One
Litith computer is reserved as a server of this printer. Users of Liliths access the
server from their personal computer through Magnet.

The communication between a user station and a printer is based on the remote file
protocol. The file to be printed is first formated on the user station. Such a
formatting is necessary to transform the different file formats used by different
editors to a common printer file format. Next, the formatted file is copied via Magnet
by the remote file protocol to the device PR residing in the printer server station.
This device acts as a spooling system, that copies the printer file onto a local disk,
and generates a queue entry for the printer process. This process fetches entries
from the input queue and prints corresponding files as they are read from a local
disk,

5.3. MallBox

The mailbox system provides services enabling an exchange of electronic mail. A
user sends letters elther fo another user or to a group of users. Another user may
get a directory of his mailbox, choose one letter from it, and copy this letter either

onto his screen or onto a file.

Access to the maitbox is based on. the following principte. Every operation is
considered {0 be a finalized transaction. In a session where the user performs
several operations {getling a directory, reading one letter, sending another letter,
elc), the mailbox system does not keep track of previous operations. This solution
was chosen to minimize the problems with inaclive sessions, that do no exchange
any messages for a longer time. In such a situalion the server must decide either 1o
consider the session as aborled and clean it up, or to wait for a possible restart of
the activity.

The dialog between the user and server is based on the master-slave relation where
the server is always the master, 'n this way, the server has the possibility to
supervise timeouts and abort sessions in case where no responses from the user
arrive.)

The communication is performed in three phases. In the request phase the user
sends an attention packet 10 the server, The server {akes over the control and asks
the user which action should be performed. The user answers with a packet
specifying the action. The server now performs the action. if any data exchange
between server and user is needed (e.g. copying of a letter), the remote file protocol
is used in the data exchange phase. In the end phase the server sends a reply
packet to the user containing information about the result of the action. This packet
must be confirmed by the user,

5.4, Centrai File Store

The central file server provides access to a large disk storage. The Fujitsu disk drive
M2351A with a capacity of 470 MByte and an average access time of 30 msec is
used. This central file server allows concurrent access by many users, each having
his private directory. For the data transfer the remote file protocol is used.

5.5. Future Services Considered for Implementation
The following services and programs are considered for future implementation:
time/date : this service returns information with the current time and date

bootstrap : this service enables booting of a Lilith computer from Magnet instead
from the local disk

clearing house : this service has a small database with information about the users
and services of the system. It provides operations to identify names of user and
services, and to authenticate their passwords.

distributed Joader : this loader enables loading and executing of programs which are
stored on remote disks. This extension needs only a small change in the searching
strategy of the current loader, since the loader uses the remote file system.

remote execution : when a user leaves his computer he may set it into a fisten mode
in which the station is avaiiable for use by other stations. Another user may acquire
this station and download his program into this station for execution. In this way, a
distributed program using a number of processors may be executed.

o

picture animation : the remote execuiion may be used for programs running a
distributed picture animation. A number of processors compute the next picture
and send it on demand to the master computer. Another packet format will be used
for the picture transfer, since the hardware allows to transmit the complete picture
(about haif a mitlion bits) in just one packet.

access {0 other networks : In the future there wili be more Magnet networks on the
campus. These Magnets will be interconnected by & slow link {9.6kbit/sec) using
the local campus network Kometh.

6. Measurements

The basic Magnel software up to the module Connections needs 5428 words
(decimal} of memory. This figure does not include the working space of processes
and the memory used to keep the envelopes. The above entities are aflocated from
the heap. The storage reguirement of the individual modules is as follows:

Nucleus 998
MagnetBase 1638
MagnetlQ 360
Connections 2416

The module RemoteFileMaster requires 1657 words plus 139 words for each file that
can be opened. The module RemoteFileSlave needs 1072 words.

The speed of the network was measured when exchanging packets at the level of
Connections. Two processes Master and Slave were used. The Master produced
packets and sent them by TransmitAndReceive to the slave, the Sfave received them
by Receive and sent them back by Transmit. The packet had a data length of 128
words with a header of 9 words. The achieved data rate was 66 kbyles/sec.

The speed of the remote file protocol was measured by reading of a sequential file.
The data transfer rate is 10 kbyte/sec. For comparison, the same file was read by a
local disk access. The local access data rate is about 40 kbyte/sec. it corresponds
to a transfer of three sectors per disk revolution. This speed is given by the
interleaving factor of 12 sectors in a track having 48 sectors. The speed of the
remote access corresponds 10 one sector per 1.3 revolutions. The remote file
access is 100 slow to catch the next sector, so that one full disk revolution is lost.

The long time average utilisation of the cable is neglectable, the cable is most of the
time idle. During the file transfer between two stations the utilization is between 1%
to 2%, some simple hardware tests utilize about 3% of the cable capacity. This
measurement confirms the assumption that the software and not the hardware is
the bottleneck of the system.

7. Concluslion

The Magnet network was installed at the Institute for Informatics in the fall of 1982.
Over 10 stations were connecled in the first phase, in summer 1983 another 20
stations were connected. At the beginning, only the program magnetFiles was
available aflowing a simple exchange of files. The utilization of the cable was at that
time virlually zero. The availability of the network triggered & development of a

31

number of service programs. Since a printer, an electronic mail system, and a file
server keeping the most recent version of system programs were instatled, Magnet
started to be a really useful tool for afl members of the institute.

The basic system, consisting of both hardware and sofiware parts (without
application programs), was developped in average by one and haif men during 30
months, Since in the university environment the main assigment is teaching and
only a little time is left for research, we may assume that the whole project needed
about one and half man-year.

In the following part we like to summarize our experiences gained during the
development of Magnet:

The interfacing of Lilith was a relatively straight forward task, since the bus structure
of the computer is rather simple. There were no serious problems either with the
DMA, or with the bus access, or with interrupts. The only essential problem we
encountered was the [imited storage size of Lilith. The size of all modules needed
for implementation of the printer server exceeded the size of the available memory.
We spent some time cutting off parts of programs fo fit the whole system into the
machine at costs of limited security and flexibility.

The language Modula-2 was an ideal too) for programming. Especially the concepls
of separate compliation influenced significantly the design of Magnet. The
possibility of programming at low levels of the system allowed that the entire system,
inclusive Nucleus and drivers, were programmed in a high-level language. The
whole project could not have been developped in such a short time i as
programming tool an assembly language or Fortran were used.

We would report only positively about the operating system Medos-2 if concurrency
would be supported. The introduction of a home-grown Nucleus did not soive all
problems, since the lower levels of Medos-2 make sometimes other assumptions
about the behaviour of the user program then Nucleus does. Especially in case of
an error, both systems behave differently, causing some situations where only the
booting of the machine resolves the problem. We hope that the new version of
Medos-2 will solve ali these problems.

An important feature of the hardware design was the possibility that a single
interface was able to transmit packets and receive them immediately. This feature
allowed nearly all testing of the sofiware to be done on a single computer. Cnly in
the tinal phase more machines were used to confirm the previous testing. This
feature accelerated significantly the testing and debugging, since always all
debugging information was available on a single machine and very seldom several
stations were needed for a test session.

The development of the software was not always a straight forward process since
unfortunately some important concepts were realized 100 late. In various phases of
the development we had to reorganize the structure of the whole system. The
following example shows one such change: At the early stage of the project we
liked the idea of having the entire declaration of the type Packet in the low level
module MagnetBase. Such a declaration contained in a targe case-variant-record
all fields necessary for all communications on Magnet. The fields for the name
server, remole file access, connections, etc. were already included in the
declaration. Such a declaration allowed a very nice structuring of the system and an
extensive posshbility of compiler control. Problems occured when a small change

32

was done in the declaration of a packet. The definition module had to be changed
and recompiled. After such a change ail higher modules had to be recompiled even
when they were not directly influenced by the change. We had 10 leave the policy of
keeping the entire declaration in a low-level module and introduced the more flexible
but less secure concept described in 4.1.3.

The problems of recovery from errors are not discussed In details in this report.
Every level of software provides some functions providing facilities for error
recovery of higher levels. An example could be retrieving of lost envelopes (4.1.4),
resolving a deadiock situation in cases of mutually biocked envelopes, or checking
of activity of a connection (4.2). These problems will be discussed in a later
appearing paper.

We are very offen asked, why the ofd 3 Mbit/sec version of the Ethernet was chosen
and not the new 10 Mbit/sec version. When the project was started in 1980, there
were no LSI chips for the 10 Mbit Ethernet available. The controller had to be built
using discrete components resulting in a interface with a very large size and much
higher price than for a 3 Mbit version. Unforlunately the higher speed of the new
Ethernet cannot be any more handied by the conventional TTL logic, some parts
must use a faster ECL technology, which requires another supply voltages. Another
problem of the 10 Mbit Ethernet is the higher memory load, During a transmission of
a packet a memory accessis needed every 1.8 microseconds. If a full duplex
operation (the transmitted packet is immediately received back) is allowed, the
memory must be accessed every 0.6 microsecond. This is faster than the Lilith
memory allows, 50 that an on board buffering of data would be included.

8. Acknowledgements

| would like to thank here afl colleagues who helped me install and implement the
Magnet network. My special thanks are due to Andy Bertholsheim from Stanford
University for his help with the hardware design. Beat Frey helped me very much
with the hardware debugging and he designed toghether with Herbert Ruckstuhl the
mailbox system. The name server and remote messages were implemented by
Bernhard Wagner, Leo Geissmann implemented the printer server. Svend Erik
Knudsen's excellent design of the operating system Medos enabled the introduction
of remote files without any significant problems. Many thanks are due 1o Prof. N.
Wirth, who initiated the whole project.

8. Literature

[Er82] The Ethernet, A Local Area Network,
Digital Equipment Co, Intel Co, Xerox Co, 1882

[Hpr78] A. Hopper:
Local Area Communications Networks
Ph.D. Thesis, University of Cambridge 1978

[Knu83} S.E.Kudsen:
Medos-2, a Modula-2 Oriented Operating System
ETH Dissertation, ETH Ziirich, 1983

[Met76] R.M. Metcalfe, D.R. Boggs:

33

Ethernet: Distributed Packet Switching for.Local Computer
Networks,
Communication ACM July 1976

[Som78] R.Sommer;
COBUS, a Firmware Controlled Data Transmission Systern
" EUROMICRO, North-Holland 1976

[wirg1] N Wirth:
The Personal Computer Lilith,

Software development Environments, A.l. Wasserman, Ed.
IEEE Computer Society Press, 1981

fwirg2] N. Wirth:
Programming in Modula-2, Springer 1982

Appendix
Definition Modules

The description of the Magnet objects used in this report does not always exactly
correspond to their declaration in definition modules. For reason of clarity some
objects are not mentioned at all, for some other objects different names are used
that could be betler understood by the reader, or some procedures have a simplified
parameter list. The following appendix lists the definition modules of Nucleus,
MagnetBase, MagnetlQ, Connections, RemoteFileMaster, and RemoteFileSiave.
The definition module for the remote messages is not included, since it is still under
development and some changes may be expected. It will be published in a later
appearing report.

{::::nnnnn::::taaaanttuca------::::::---::a-:-)

{= *)
(= *)
DEFINITION MODULE Nucleus;
(' -}
(= Author Jirka Hoppe .}
(e Institut fuer Informatik *)
(= ETH Zurich *)
(= Switzerland &)
(* D)
(= version 8/12/82 =)
s)

(----n---cnscnnst-'--a-u--------:::::nnct:ttts)

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED

{=TYPE2) Port, MsgPointer, PortPointer,

{*VAR») nilPort, debugPrint,

{*PRGCEDURE) CreateProcess, SendMsg, WaitMsg, WaitMsgTimeOut,
MessageCall, WaitI0, Pause, CreateMsg, GetlInfoPointer,
GetInfoSize, GetAnswerPort, InitPort, QueuedMsg,
StartSystem, PointsToNilPort, GetOwnerProcess, Processld,
IsMainProcess;

TYPE ProcPointer; (e« hidden =)
MsgPointer; (+ hidden =)
PortPointer = POINYER TQ Port;
devIndex = [7..15];

TYPE Port = RECORD
(= pointer to the noxt waiting process)
nextWProc : ProcPainter;
(* pointer to the next waiting message +)
nextWMsg : MsgPointer;
END;

VAR nilPort : Port; (= will be used as a dummy return address s}
debugPrint : BOOLEAN; (= TRUE «> debug info will be displayed =}

PROCEDURE CreateProcess(ProcessCode : PROC; (+ this procedurs wil) be a process =)
[e e EE *} stackSize + CARDINAL; (» size of tha stack =)
VAR done : BOOLEAN);
{* creates a procass from the procedure 'ProcessCods*®
and assigns a stack with ‘stacksize' to it,
‘dona’ specifies if the creation was succesfull =)

35

PROCEDURE CreateMsg(VAR msg : MsgPointer; (» message to be created =)
(& +) sizalnfo : CARDINAL ; (+ size of the information »)
VAR done : BODLEAN);
(* assignes the necessary amount of storage from the current heap,
initializes the hidden information and returns a pointer to the message,
done = TRUE if everything was OK =)

PROCEDURE StartSystem(keepMain : BOOLEAN);

(- ——————————————————— :)

(= after all initfalization has been dong: start system
If keepMain = TRUE then the initializing prozess is introduced
as a process as well =)

PROCEDURE InitPort({ VAR port : Port);

[] initializes the port)

PROCEDURE SendMsg(VAR port : Port; (= send msg to this port =)

(a=——mmm e »} VAR answerPort : Port; (» sender of the message)
VAR msg : MsgPointer);

(* sends the message 'msg' to the ‘port’
‘answerPort' specifies where the answer should be sent,
if no ‘answerPprt' is negded =) use the 'nilPort’,
if there is a process waiting in the ‘port' it will be resumed,
if there is np process, the message will be queued)

PROCEDURE WaitMsg{ VAR port : Port; (* get messags from this port =)
[e h L] *) VAR msg : MsgPeointer };
(* receives a message from ‘port’,
if there is no message in the 'port', the cailing process is delayed,
the precedurs 'GetAnswerPort' may be used to find the port
where the answer message should he sent »)

PROCEDURE WaitMsgTimeQut{ VAR port ¢ Port; (» gat message from this port »)
(- *) VAR msg : MsgPointer ;
timeJut : CARDINAL;
VAR ok : BOOLEAN);

(* similar to WaitMsg, but a timesut in multiples of 2Bmsec
may be specified,
ok=TRUE if there was no time qut »}

PROCEDURE MessageCall{ VAR port : Port; {* raceiver port »)
{#———---------————-3) VAR request: MsgPointer; {» send from me to the
othar process +)
VAR answer ; MsgPointer); (* answer from
the other process »)

{= corresponds to the pair

SendMsg{port, locaiPert, requast);

WaitMsg(localPort, answer);)

PROCEQURE WaitIO(devNr : devIndex };

{#m—mmmmmmemeea

{* delays a process until interrupt from the device 'devNr' cccurs »)
PROCEDURE Pause(ticks : CARDINAL);

{» delays a process until tickss28msec
if 'ticks' is @ »> the ¢alling process stays ready
but another ready precesses will be startad «}

PRCCEDURE QueuedMsg{ port : Part} : CARDINAL;

(- ---------------- .
{* returns the number of waiting messages in the port »)

PROCEDURE GetAnswerPort(msg : MsgPointer): PortPeinter;
(1 ———————————————————— .
(* returns the port where the answer should be sant
this port is specified in the procedurs 'SendMsg'
procedure 'PointsTolilPort' may be used to find if the 'nilPort' was used »)

35

PROCEDURE PointsToNilPort(pP : PortPointer) : BOOLEAN:
(* TRUE if the pP points to the nilPart =)

?ﬂQCEDURE GetInfoPointer(msg : MsgPointer)}: ADDRESS;
*)

(* returns the pointer to the user part of messaga =)

?RUCEDURE GetInfoSize(msy : MsgPointer): CARDINAL;
L e L *)

{* return the size of the user part of message =)

{=---~ the following part ic used for cleaning up and debugging only ----~-x)

?RUCEDURE GetOwnerProcess(msg : MsgPointer) : ADDRESS;
LR] t) !

(* returns the current owner of a message)

PROCEDURE ProcessId():ADDRESS;

(* gives the identification of the current process *)

?ROCEDURE IsMainProcess(fd : ADDRESS} : BOOLEAN;
(+ returns TRUE if the id (returned from ProcessId) is the main process »)

END Nucleus.

a7

(u"na:----t-u--o‘n.a--n-n:--;-aaaa--------::o)

(=)
(MAGNET *)
(= =)
DEFINITION MODULE MagnetBase;
(* *)
I Author Jirka Hoppe *)
(» Institut fuer Informatik ®)
{* ETH Zurich *)
(= Switzerland)
(= *)
(* version 18/4/83 3
(*)

(t"ctlllll-!ll:sstttltl!l!!lnnni!.nnnnllllaai)

FROM SYSTEM IMPORT ADDRESS;
IMPORT Nucleus;

EXPORY QUALIFIED

(*CONSTs) maxhctivePort,
(=TYPE+} Portlumbars, Raply, Packet, PacketPointer, fnvalape, Port,
(*VAR®) entryPort, xmitReq, mDebug,

(+PROCEDUREs) LocalStatAdr, OpenMagnetPort, CloseMagnetPort, PortOpened,
OpenfilterAddress, CloseFilterAddress,
GetEmptyEnvelope, ReturnEmptyEnvelope, LetDtherWork,
MagnetBaseLevel, StopMagnet, MaxUserTypeSize,
GotEnvelopePointers;

(- ——————————— -)

CONST

maxdctivePort = 15; (+ MAGNET can handle so many predefined opened ports *)

TYPE
Envelope = Mucleus. MsgPointer; (s packets are sent inside of a Ervalope =}
Port = Kucleus.Part; {+ used for addressing =)

PortNumbers = [B..maxActivePort]; (s predefined ports L)]

Reply = (pOk, pTimeOut, tooManyRetries, soft¥sumEr, hardXsumEr, lengthErcor,
abortied, dmaOver, overRun, badConnection, otherErs);

Packet =
RECORD
destAde : CARDINAL; (= must be the first word in the packet,
destination address =)

XSUM 1 BITSET; (*+ soft checksum of the packet; Znd field in the packets)
srchdr 1 CARDINAL; {= source address =)

destPart : ADDRESS; (= destination port for the packet +)

returnPorti: ADDRESS; (= reply port »)

connKeys : CARDINAL; (= packed identifiers of .the connactiaon «}

seqhr : CARDINAL; (s sequence number =)

plength : CARDINAL; (+ length of the packet *)

reply : Reply;

(* the next field is overlaid by be the user specified type
it can be accessed by the 'userInfo' pointer
specified in various procedures »)
packetType : CARDINAL;
END;

PacketPointer = POINTER 70 Packet;

(wrummmmm)
VAR
entryPort : ARRAY PortNumbers OF Port; (= distributor of received packets
predefined ports onlys)
xmitReq 1 Port; {+ port for transmitter requests =)

mDebug 1 BOOLEAN; (» debupging switch =)

(a --------------- l)
PROCEDURE OpenMagnetPort{portId: ADDRESS; VAR done : BOGLEAN);
{* vnusuasmmrenans— o apen a port to raceive packets

portld is either a small integer indicating predefined ports
or a pointer to a Port «)

PROCEDURE CloseMagnetPort{portId: ADDRESS; VAR done : BOOLEAN);
(% e close a pert
pertld is aither a small integer indicating predefined ports
or a psinter to a MagnetPorta)

PROCEDURE PortOpenad(portld : ADDRESS) : BOOLEAN;
(#-—mmmmmm TRUE it this port is opened for magnet services .«)

PROCEDURE GetEmptyEnvelope{VAR envelope : Envelops;
(#=meuusnse s =) VAR packet : PacketPointer;
VAR userInfo : ADDRESS;
maxSize : CARDINAL);

{* gots an ampty envelops from the ‘empiyPackets’ port,

assignes tha ‘packet’ to a pointer to the packat subfield

and 'userInfa' to a pointer to the user part of packet

maxSize specifies the size of the user part of the packete)> use TSIZE(userType)

")

PROCEGURE ReturnEmptyEnvelope(VAR envelopa : Envelope);
(4= returns an envelope back to the emptyPacket porta)
PROCEDURE GetEnvelopePointers{ envelope : Envelope;
L =) VAR packet : PacketPointer;

VAR wserInfo : ADDRESS);
{* returns the pointers to the content of tha envelope =)

PROCEDURE {panFilterAddress{n : CARDINAL};

A ——————— t) -
{* cpens the hardware address filter for packets with a new address =)

PROCEDURE €losaFiltarAddress(n : CARDINAL);
{*» closes a hardware address filter of a statign s)

PREOCEDURE LetOtherWork;
[el roleases the processor in favour of other processes s)

PROGCEDURE MaxUserTypeSize(): CARDINAL;

(l ----------------------- l)
(» returns the size of the user specified part of packet =)

PRGCEDURE LocalStatAdr() : CARDINAL;
(% ------——-—-———- raturns the address of the station as read from the hardware =)

PROCEDURE MagnetBaseLevel(): CARDINAL;
(#=un returns the declaration leve) of MagnetBase)

PROCEDURE StopMagnet;
(puvvuumie e ——— turns off the magnet interface =)

END MagnetBase.

39

(naaaa---n-tn-nn-O!-!‘sttk:aatu.“n“‘--n--“n)

(* =)
(» MAGNET *)
(* *)
DEFINITION MODULE MagnetIO;

(=)

Author Jirka Hoppe ")
(Institut fuer Informatik *)
(» ETH Zurich .)
(» Switzerland *)
(*) *)
(= version 18/4/83 2)
(» ")

(*nsnressansnnascercrassasnasasannnanvarsnnnas)

{* some routines making the use of the cable more comfortable »}
FROM SYSTEM IMPORT WORD, ADDRESS;
FROM MagnetBase IMPORT Port, Reply, PacketPeointar, Envelops;

EXPORT QUALIFIED

{«CONST#+) seqNrModute, retryFlag, CommDesc, noXsum,

(«TYPE «} DisplayProc,

{*PROC »} Transmit, Receive, TransmitAndReceive,
InstattDisplayProc. RemoveDisplayProc, Read;

CONST
noXsum = {P,..15}; (+ this xsum is always ok for 'Receive' =)
seqNrModulo = 18GBRAYL; (+ seguence numbers are computed MOD segNrModule «)
retryFlag = @; (= This bit is set into the sequence aumber
if the packet is transmitted twice »)
TYPE
CommDesc = RECGRD (= control of the communication by TransmitAndReceive s)
portIld : ADDRESS; (» AGR{port}s)
sgNr : CARDINAL; {» saquence Nr of the packet =)

{* sgNr < packet.segNr «> ignore »)

{* sqiir > packet.seqNr .«> ignore but retransmit=)

ratries : CARDINAL; (= nr of retries =)
timefut : CARDENAL; (» timeout interva) betwaen retries »)
END;

DisplayProc = PROCEDURE{CARDIRAL, ADDRESS);
{+ display the content of user part of a packet; used for debugging only
CARDINAL = packetType, ADDRESS = pointer to the uvser part »)

PROCEDURE Transmit(VAR enveiope : Envalope; (= envelope of packet
[. to be transmitted »)
VAR reply : Reply);
{* transmit a packet, compute soft xsum, all other fields must be set;
packet.plangth is the size of the user part of packet
after the transmission the packet is returned to the empty packet poecl,
reply designates the success «)

PROCEDBRE Receive(VAR part 1 Part; {= wait for packets for this port =}
(e tett e =}VAR envelope : Envelope; (s envelope to be received =)
VAR packet : PacketPointer; (» paints to the enclosed received
packat =)

VAR usarInfo : ADDRESS; (= points to the user part of packet =)
timeOut : CARDINAL;
max3ize : CARDINAL);
(* waits unti] the packet tp 'port' arrives OR the timsout expires
packet is assigned to the packet part of the anvelope
the 'userInfo' points to the user part of the packet
xsum is recomputed and checked:
timeout = B => waits forevaer
max5ize is the maximal size of the user part => use TSIZE{userTypo) »)

PROCEDURE TransmitAndReceive
(

.)

{ commDesc: CommDesc; (+ descriptor of communications)

VAR xmitEnv : Envelope; {+ envelopa to be transmittied =)

VAR recEnv : Envelope; {+ recieved envelope +)

VAR packet : PacketPointer; (= points to to enclosed raceived packet =)
VAR userInfe: ADDRESS; {* points to the user part of packat »)

maxSize : CARDINAL);

{* corresponds to
REPEAT
Transmit{amitEnv,reply)
- Recieve(portld, recEnv, timeOut)
UNTEL {reply=pOk) AND (recPacket.packetType=pType) OR {too many retires) =)

PROCEDURE Instat1fisplayProc{type : CARDIRAL; proc : DisplayPrac;
{= - ») VAR done : BOOLEAN);
{* install disptay procedurs for debugging fer the packet type 'type' =}

PROCEDURE RemoveDisplayProc{type : CARDINAL);
(- *)
{* remove display procedurs for the packet type 'type') =)

PROCEDURE Read{ VAR ch : CHAR);
(- the same as Terminal.Read but with a better waiting «)

END MagnetlIO.

41

(:---::us-“a--------------:::--:s:aannn.-----)

(=)
(= MAGNET *)
(= *}
DEFINITION MODULE Comnections;
(= *)
(¢ Authors Jirka Hoppe and Bernhard Wagner *)
(= Institut fuer Informatik *)
(= ETH Zurich *)
(a Switzerland *)
(= *)
{* version 23/2/83)
(* 0

(n----;n:n:s-aa---n---atanncs‘--a:n---------.-)

FROM SYSTEM IMPORY ADDRESS;
FROM Nuclaus IMPORT Port;
IMPORT MagnetBasel;

EXPORT QUALIFIED
(«CONST») seqNrModula,
(aTYPEs) Conngctionld, PacketParam, Result, Reply,
(*PROCEDURE+} QpenConnection, CloseConnection, ConnectionActive,
InstaliService, RemoveService,
GetEmptyPacket, ReturnEmptyPacket,
Transmit, Receive, TransmitAndReceive;

CONST
segi+Moduio = 19988Bb; {+ limit for sequence numbar =)

TYPE
Connectionld; (s hidden - an identification of a connection «}

Raply = MagnetBase.Reply;

PacketParam « RECORD
length : CARDINAL; (* Vength of packet INJOUT «)

segNum : CARDINAL; (+ sequence nummer IN/QUT =)

repl : Reply; (= reply from packet GUT =)

timQut : CARDINAL; (+ time to wait for packets IN =}

retry : CARDINAL; (= nr of retries IN =)
END;

Result = {connlk, connNotOk, tonaParamErr, connFull, connOtherEsr);

(¢ ====== procedures handling connections ===m== &)

PROCEOURE OpenConnecticn{ partnarName : ARRAY OF CHAR;
(#mmm e +} localPortId : ADDRESS;
VAR connld : Connectionid;
VAR serviceInfo : ARRAY OF CHAR;
VAR result : Result);
PROCEDURE ClaseConnection{ connld + Conrectionld;
(--- a} VAR result i Result);
PROCEDURE ConnectionActive{connId : Connecticnld) :BOOLEAN;
[*}
PROCEDURE InstallService(locaIName : ARRAY OF CHAR;
[t a) lecalPortld : ADDRESS;
servicelnfo 1 ARRAY OF CHAR;
VAR result : Result);
PROCEGYRE RemoveService(localName : ARRAY DF CHAR;

{#mmmmmgmmm e =) VAR result : Result);

42 _ 43

{v =mun= fiow of empty packets =mm=== 1) :' (----on--------------;-a--------..-c--------n-)
. . =)
PROCEDURE GetEmptyPacket(VAR userPtr : ADDRESS; maxSize : CARDINAL); E E- MAGNET *)
(e =) ; T o)
. DEFINITICN MODULE RemoteFileMastar;
PROCEDURE ReturnEmptyPacket{VAR userPtr : ADDRESS}; : (* *)
{Fmm e e *) (r Auther Jirka Hoppe .)
. (= Institut fuer Informatik *)
(» ===== exchange of packets via Magnet ===== s} (» ETH Zurich *)
{ Switzarland)
PROCEBURE Transmit(connld ¢ Connectionld; (* *)
(Hmmmmmnnnae .. " userPtr : ADORESS; (s version 11/4/83 *)
VAR packetPar : PacketParam}; (e *)
(.Ul.!l"l'!!.....‘l'.lllI.I.--'-“ll!n...llnl)
PROCEDURE Receive(VAR part : Part;
(#=mmmmmmmmmmme «) VAR connld : Connectionld; EXPORT QUALIFIED InstallRemoteMedjum, RemoveRemoteMedium;
VAR userPtr : ADDRESS;
VAR packetPar : PacketParam;
maxSize + CARDINAL}); PROCEDURE InstallRemotoMedium
L e L)
PROCEDURE TransmitAndReceive(connld : Connectionld; (localMadium 1 ARRAY OF CHAR; (wname of local mediumw)
[T =) kmitUserPtr : ADDRESS; _ partnerMedium : ARRAY OF CHAR; (sname of remote mediume)
VAR reclUserPtr : ADDRESS; timeQut 1 CARDINAL; (*maximal time to wait for ona response
VAR packetPar : PacketParam; from remete medium =)
maxSize : CARDIMNALY; VAR done 1 BOOLEAN};
(+ install the Magnet Remote System Master ss a device in tha laocal file system
END Connections. - . the devite is czlled locally ‘localMedium’ {egq. XY)

the remotn devica is called 'partnerMedium’ (eq. John0K) +)

PROCEDURE RemoveRemoteMedium

)
(localMadium : ARRAY OF CHAR; (*name of the local mediume}
VAR done : BOOLEAN):

END RemoteFileMaster.

(-----------ooo-o----n--s-----n-----c---------)

(*)
(e MAGHNET *)
(* *}
PEFINIYION MOOULE RemotefileSiave;
{* ")
(* Author Jirka Hoppe .}
[Institut fuer Informatik)
(* ETH Zurich o)
(e Switzerland *)
(» =)
(* version 12/11/82 .
(* *)

(-------u--.----.---n--:------------as-----on-)
EXPORT QUALIFIED readOnly;

VAR readOnly : BOOLEAN; (* =TRUE => no write access is allowed)
END RemotefileSlave.

Berichte des Instituts fiir Informatik

1978
*Np.25

Nr,26
*Np.27

1979
=Nr. 28
*Nr.29

*Nr.30

=N, 31

Nr, 32
*Nr. 33

1980

«Nr,34

=Nr.35

*Nr.36

Nr.37
*Nr.38
=N, 39

1981

*Hr. 40

Nr. 41

U, Ammann:

£E. Zachos:

N. Wirth:

J. Nievergelt,
J. Weydert:

A.C. Shaw:

B. Thurnherr,
C.A. Zehnder:

A.C. Shaw:

E. Engeler:
N. Wirth:

R. Harti,

J. Rebsamen,
B. Thurnherr:
H.
R

Nigeli,

H.
.Schoenberger:

J. Hoppe:
N. Wirth:

Hp. BiirkTer,
C.A. Zehnder:

H. Burkhart,
J. Nievergelt:

A. Meier,
C.A. Zehnder:

N. Wirth:

T.M. Fehimann:

Error Recovery in Recursive Descent Parsers
and Run-time Storage Organization

Kembinatorische Logik und $-Terme

MODULA-2

Sites, Modes and Trails: Telling the User
of an Interactive System where he is,
what he can do, and how to get to places

On the Specification of Graphic Command
Languages and their Processors

Global Data Base Aspects, Consequences
for the Relational Model and a Conceptual
Schema Language

Software Specification Languages based
on regular Expressions

Algebras and Combinators

A Collection of PASCAL Programs

Meta Data Base Design - Consistent
Description of a Data Base Management
System

Preventing Storage Qverflows in
High-level Languages

A Simple Nucleus written in Modula-2
MODULA-2 (seccnd edition)

EDV-Projektentwicklung - Ein Arbeitsheft
fiir Informatik-Studenten

Structure-oriented editors
Fldchenmodel1-Register: Die Strukturen

wichtiger geographischer DatensammTungen
der Schweiz

The Persona? Computer Litith

Theerie und Anwendung des Graphmodells der
Kombinatorischen Logik

Nr.42 E. Graf:
«Nr.43 H. Burkhart:
*Nr.44 J. Nievergelt,
F.P. Preparata:
N 45 M. Reimer,
J.M. Schmidt:
Hr.,46 J. Nievergelt,
H.Hinterberger,
K.C. Sevcik:
1982
Nr.47 J. Nievergelt:
Nr.48 P. LHuchli:
Mr.49 A. Meier:
«Nr. 508 J. Rebsamen,
M, Reimer,
P. Ursprung,
C.A. Zehnder:
1983
sNe.51 K.J.Lieberherr
S.E. Knudsen:
Nr.52 F.L.0stler:
Nr.63 R.P.Brigger,
M. Reimer:
Mr.54 K.Hinrichs,
J.Nievergelt:
Nr.66 C.A.Zehnder
(Ed.):
Nr.56 J. Gutknecht:
Nr.57 J. Hoppe:
* out of stock

Probabilistische Algorithmen und
Computer-unterstiitzte Untersuachungen von
probabilistischen Primalitdtstests

Konzepte zur Systematisierung der
Benutzerschrittstelle in interaktiven
Systemen und ihre Anwendung auf den Entwurf
von Editoren

Ptane-sweep Algorithms for Intersecting
Geometric Figures

Transaction Procedures with Relational
Parameters

The Grid File: An adaptable, symmetric
multi-key file structure

Errors in dialog design and how to svoid them

PG - Ein interaktives System fiir die Manipulation
von Figuren der projektiven Goometrie

A Graph Grammar Approach to Geographic Data Basses

LIDAS
A Database System for the Personal Computer Lilith
The Database Management

Zeus: A Hardware Descriptien Language for VLSI

An SMD Disk Coatroller for the Litith Computer

Predicative Scheduling: Integration of Locking
and Optimistic Methods

The grid file: a data structure designed to
support proximity queries on spatial objects

Database Techniques for Professional
Workstations

System Programming in Modula-2:
Mouse and Bitmap Display

MAGNET: A Local Network for Lilith Computers

