
ETH Library

Labeling downtown

Report

Author(s):
Neyer, Gabriele; Wagner, Frank R.

Publication date:
1999-05

Permanent link:
https://doi.org/10.3929/ethz-a-009905621

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgenössische Technische Hochschule Zürich, Departement Informatik, Institut für Computersysteme 324

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-009905621
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Eidgenossische
Technische Hochschule
ZOrich

Departement lnformatik
I nstitut fOr
Theoretische lnformatik

Labeling Downtown

Gabriele Neyer
Frank Wagner

Technical Report #324, 1999

Mai 1999

ETH ZOrich
Departement lnformatik
lnstitut fOr Theoretische lnformatik
Prof. Dr. P. Widmayer

Address:

G. Neyer, lnstitut fOr Theoretische lnformatik
ETH ~entrum, CH-8092 Zurich, Switzerland:
e-ma1l: neyer@ inf.ethz.ch

T~i~~~~p~rtfis available via h~tp:/(www.inf.ethz.ch/publications/tech-reports or
< p. p.1n .ethz.ch/pub/pubhcatlons/tech-reports/

© 1999 Departement lnformatik, ETH ZOrich

Labeling Downtown t

Gabriele Neyer+ and Frank Wagner §

Abstract

American cities, especially their central regions usually have a very regular street
pattern: We are given a rectangular grid of streets, each street has to be labeled with a
name running along its street, such that no two labels overlap. For this restricted but yet
realistic case an efficient algorithmic solution for the generally hard labeling problem gets
in reach.

The main contribution of this paper is an algorithm that guarantees to solve every
solvable instance. So far we are not able to provide a runtime analysis that guarantees
efficiency, but the empirical behavior is polynomial without a single exception. The com
plexity status of the problem is open, we show that a slight generalization, namely the
labeling of a cylinder shaped downtown, is NP-hard.

Finally, we present efficient algorithms for three special cases including the case of
having no labels that are more than half the length of their street.

1 Introduction

Q Cz Gn The general city map labeling problem is too
r''r-'"\----,---,--,--,-,----,_,-.,..~,..1 --,..,-,-~ hard to be automated yet [NH]. In this paper

R!lse: hJood Dr. i _;;;I :!, 1':1 ' we focus on the downtown labeling problem, a
R I I ~I <lli I

2 .Ma Ie¥foo(Av .. ·:-··i -~~·-;§'ji.,Sj.... simple special case, that is still non-trivial. In

.
1

R9.s."WR9<![Ay.j fcl5f~- ~~_·······] .. ······- fact, the complexity status is open .
... .ii ---+-i,---; .,:..pvi~shire.ll vd·+·-·- --.,··--;· The clearest way to model it, is to abstract

-- .. -~--l~ -~-1-:gi.-B-"-iedtiif•- ~ --~ ~h!:!~:::::~ :;:~~::i::~e~h~a~!%~s i~:\:
······· ~--~-~ ~1--';iKlsll;J)i····· -~--~ placed along their streets we abstract to be tiles

R. M; h~~~l~<::~U~.~~-[:-.I~t~~~~ ~:j tha~wr~~~bl=P~~~~n~nt;~:: ~~n:_b::~~:~l~:~e
Figure 1: American downtown street map.

tiling of the board placing all the labels along
their streets. .

Our main algorithm is kind of an adaptive backtracking algorithm that is guaranteed to
find a solution if there is one, and that empirically has a strictly bounded depth of backtrack
ing, namely one. We conjecture it to be efficient in general.

t This work was partially supported by grants from the Swiss Federal Office for Education and Science
(Projects ESPRIT IV LTR No. 21957 CGAL and NO. 28155 GALlA), and by the Swiss National Science
Foundation (grant "Combinatorics and Geometry").

I Institut fiir Theoretische Informatik, ETH Ziirich, CH-8092 Ziirich, email:neyer@inf.ethz.ch
§ Thansport-, Informatik- und Logistik- Consulting (TLC), Kleyerstrafle 27, D-60326 Frankfurt am Main

and Institut fiir Informatik, Freie Universitat Berlin, Takustraf3e 9, D-14195 Berlin, email:Frank.Wagner@tlc.de

1

The complexity of our problem is unknown, but there is a well studied family of related
problems from Discrete Tomography [Woe96, GG95] that yields a NP-hardness result for a
slightly more general labeling problem, taking place on a cylinder instead of a rectangle.

We round up the paper by giving efficient solutions to special cases: There is a polynomial
algorithm, if

• no label is longer than half of its street length

• all vertical labels are of equal length

• the map is quadratic and each label has one of two label lengths

One general remark that helps to suppress a lot of formal overhead: Often, we only discuss
the case of horizontal labels or row labels and avoid the symmetric cases of vertical labels and
columns or vice versa.

2 Problem Definition

Let G be a grid consisting of n. rows and m columns. Let R = { R1, ... , Rn} and C =
{ Ct, ... , Cm} be two sets of labels. The problem is to label the i1h row of G with K and the
·th I f G . h ' J c? umn o w1t Cj such that no two labels overlap. We will represent the grid G by a
matnx.

Definition 2.1 (Label problem (G,R,C,n,m))

Instance: Let Grl_;'f: be a two dimensional array of size n x m, Gi,j E {0, r, c}. Let R; be the
label of the ' row and let r; be the length of label R; 1 < i < n. Let C. be the label of
h

th '-- t
t e i column and let c; be the length of label C;.

Problem: For each row i set r; consecutive fields of G;,. to r and for each column j set Cj
consecutive fields of G.,j to c.

o: :ause no label can be longer than the length of the row or column, respectively.
ImtJally, we set G;,j = 0 which denotes that the field is not yet set. Let [a, b[be an interval

su~h.that G;,x E {0, r }, forx E [a, b[. We say that Gi,[a,b[is free for row labeling. Furthermore,
th1s mterval has length b - a. We also say that G;,. contains two disjoint intervals of length
at least l bza J that are free for row labeling, namely [a, a+ l bza J(and [a+ l bza J, b[.

3 General Rules

Assume we have a label with length longer than half of its street length. No matter how
we po~ition the. label on its street, there are some central fields in the street that are always
occup1ed by th1s label. We therefore can simply mark these fields occupied. It is easy to
see that these occupied fields can produce more occupied fields. The following rules check
whether there is sufficiently large space for each label and determines occupied fields.

Rule 3.1 (Conflict) ~et I = [a, b[be the longest interval of row i that is free for row labeling.
If r; > b- a, then row' can not be labeled, since it does not contain enough free space for row
labeling. In this case we say that a conflict occurred and it follows that the instance is not
solvable.

2

Rule 3.2 (Large labels) Let I = [a, b[be the only interval in G;,. that is free for feasible
row labeling. Observe that the fields that are occupied simultaneously when R; is positioned
leftmost and rightmost in I have to be occupied by R; no matter where it is placed. These

fields we set to r and call them preoccupied.

Procedure 1 PREPROCESSING (G, R, C, n, m)

1) repeat {
2) G' = G;
3) run Rule 3.2 on (G,R,C,n,m) and on (GT,C,R,m,n);
4) if Rule 3.1 yields a conflict on (G,R,C,n,m) or on (Gr,c,R,m,n) then
5) return "conflict";
6)}until {G = G';)
7) return true;

Our PREPROCESSING Procedure 1 iteratively executes the Rules 3.1 and 3.2 until none
of them yields a further change to the label problem or a conflict occurrs. In the latter
case we have that the instance is not solvable. We will spell out special cases where the
successful preprocessing implies solvability. Furthermore, the preprocessing underlies the

following considerations.
For each unfixed label that is limited to just one interval of at most twice its length or to

two intervals of exactly its length we can check whether these labels can be simultaneously
positioned without conflicts. This can be done since all possible label positions of these rows
and columns can be encoded in a set of 2SAT clauses, the satisfaction of which enforces the
existence of a conflict free label positioning of these labels. On the other hand a conflict free
label positioning of these labels implies a satisfying truth assignment to the set of clauses.
Even, Itai and Shamir [EIS76] proposed a polynomial time algorithm that solves the 2SAT
problem in time linear in the number of clauses and variables.

We therefore represent each matrix field G;,j by two boolean variables. We have the
boolean variable G;,j = r and its negation G;,j = r which means G;,j of r or G;,j E {0, c}.
As the second variable we have G;,j = c and its negation G;,j = c which means G;,j of c or
G;,j E {0, r }. Of course these two variables are coupled by the relation (Gij = r)--+ (Gij =c).

Those rows and columns, where the possible label positions are limited to just one interval
of at most twice its length or to two intervals of exactly it length, we call dense. We now
encode all possible label positions of the dense rows and columns in a set of 2SAT clauses the
satisfaction of which yields a valid labeling of these rows and columns and vice versa.

Property 3.1 (Density Property I) Let G;,. be a row that contains exactly two maximal
intervals each of length r; that are disjoint and free for feasible row labeling. Let these intervals
be [a, b[and [c, d[, 1 ::; a < b < c < d::; n + 1. Then, a valid labeling exists if and only if the

conditions

1. (Gi,a = r) H (Gi,a+1 = r) H (Gi,a+2 = r) H · · · H (Gi,b-1 = r),
2. (Gi,c = r) H (Gi,c+1 = r) H (Gi,c+2 = r) H · · · H (Gi,d-1 = r),
3. (Gi,a = r)"" (Gi,c = r)

are fulfilled.

3

(Gi,a = r) H (Gi,a+1 = r) can be written as the 2SAT clauses (G· _ r v G· - r)
(G G) '•" ,,a+t - ,

i,a = r V i,a+1 = r and since the condition (G;,a = r) .,.. (G;,c = r) can be written
as (Gi,a - r V G;,c = r), (G;,a = r V G;,c = r) it is easy to see that the complete Densitiy
Property 3.1 can be written as a set of 2SAT clauses. The feasible label placements are
(Gi,a = r, ... ,Gi,b-1 = r) and (Gi,c = r, ... ,Gi,d-1 = r).

Property 3.2 (Density Property II) Let G;,. be a row that contains only one maximal
mterval [a,b[that is free for feasible row labeling, r; < b- a::; 2ri. Then, a valid labeling for
the row exzsts if and only if the conditions

1. (Gi,a = r)-+ (Gi,a+l = r)-+ (Gi,a+2 = r)-+ · · ·-+ (Gi,b-r;-1 = r),

2. Gi,b-r; = r, ... , Gi,a+ri-1 = r, and

3. (Gi,a = r) "'"(Gi,a+r; = r), (Gi,a+l = r).,.. (Gi,r;+l = r), .. . ,
(Gi,b-r;-1 = r)"'" (Gi,b = r)

are fulfilled.

Analogously to the first Density Property, the conditions of the second Density Prop
erty can ~e formulated as a set of 2SAT clauses. All feasible label placements are (G;,a =
r,G~,a+l- r, ... ,Ga+ri-1 = r), (Gi,a+l = r,Gi,a+2 = r, ... ,Ga+ri = r), (Gi,a+2 = r,Gi,a+3 =
r," .,Ga+ri+l = r), ... , (Gi,b-ri = r,Gi,b-ri+l = r, ... ,Gi,b = r). Note that the properties
work analogously for columns.

Theorem 3.1 T~e 2SAT formula of all dense rows and columns can be created in O(nm)
tzme. The 2SAT mstance can be solved in O(nm) time.

;roof: The number of variables is limited by 2nm. For each dense row we have at most
2n clauses. Analogously, for each dense column we have at most ~m clauses. Altogether we
h. ave 0(nm) clauses. Thus, the satisfiability of the 2SAT instance

2
can be checked in O(nm)

ttme [EIS76]. · 0

Procedure 2 calls Procedure 1, our preprocessing. In case of success, all dense rows and
columns a~e encod~~ as. a set of 2SAT clauses with the aid of Density Property 3.1 and 3.2.
Then, the1r solvabthty 1s checked e.g. by invoking the 2SAT algorithm of Even Itai d
Shamir [EIS76]. ' an

Procedure 2 DRAW CONCLUSIONS (G, R, C,,n, m)

1) ifPREPROCESSING{G,R,C,n,m) then{
2) F := the set of 2SAT clauses of the dense rows and column-
3) ifF is satisfiable then return true;} '
4) ret urn false;

Lemma 3.1 The PREPROCESSING Procedure 1 and the DRAW_CONCLUSIONS Procedure 2
can be implemented in O(nm(n + m)) time.

Pro~f: The rules only need to be applied to those rows and columns in which an entry was
prevwusly set to r or c. A setting of a field Gi,j can only cause new settings in row i or

4

column j, which by themselves can again cause new settings. The application of the rules
on a row and a column takes time 0(n + m). Since at most 2nm fields can be set we yield
that the preprocessing can be implemented such that its running time is O(nm(n + m)). In
Theorem 3.1 we proved that the 2SAT clauses can be generated and checked for solvability
in O(nm) time. Thus, in total we need at most O(nm(n + m)). 0

Thus, we can solve dense problems:

Theorem 3.2 In case that each row and each column of a preprocessed labeling in
stance (G,R,C,n,m) either fulfills the Density Property 3.1 or 3.2, Procedure 2
DRAW _CoNCLUSIONS decides if the instance is solvable. In case of solvability we can gen
erate a valid labeling from a truth assignment. The overall running time is bounded by

O(nm(n+m)).

4 A General Algorithm

In this section we describe an algorithmic approach with a backtracking component that solves
any label problem. Empirically it uses its backtracking ability in a strictly limited way such
that its practical runtime stays in the polynomial range. After performing the PREPROCESS
ING and satisfyability test for dense rows and columns (see Procedure 2 DRAW _CONCLUSIONS),
we adaptively generate a tree that encodes all possible label settings of the label problem.
Each node in the first level of the search tree corresponds to a possible label setting for the
first row label. In the i1h level the nodes correspond to the possible label settings for the
ith row, depending on the label settings of all predecessor rows. Thus, we have at most m
possible positions for a row label and at most n levels. Our algorithm searches for a valid
label setting in this tree by traversing the tree, depth-first, generating the children of a node
when necessary.

In the algorithm, we preprocess matrix G and check the solvability of the dense rows and
columns by invoking Procedure 2 DRAW _CONCLUSIONS. We further mark all these settings
permanently. When we branch on a possible label setting for a row, we increase the global
timestamp, draw all conclusions this setting has for the other labels by invoking Procedure 2
DRAW _CONCLUSIONS and timestamp each new setting. These consequences can be a limita
tion on the possible positions of a label or even the impossibility of positioning a label without
conflicts. After that, we select one of the newly generated children, increase the timestamp
and again timestamp all implications. When a conflict occurs, the process resumes from the
deepest of all nodes left behind, namely, from the nearest decision point with unexplored al
ternatives. We mark all timestamps invalid that correspond to nodes that lie on a deeper level
than the decision point. This brings the matrix G into its previous state without storing each
state separately. Let the algorithm return a valid label setting for all rows. Since Procedure 1
ensures that each column i contains an interval of length at least c; that is free for column
labeling we can simply label each column and yield a valid label setting. The algorithm is
given in Algorithm 1, and in the Procedures 1, 2, and 3.

5

Algorithm 1 LABEL (G, R, C, n, m)

1) timestamp:= 1;
2) if DRAW_CONCLUSIONs(G,R,C,n,m) yields a conflict
3) return "not solvable";
4) timestamp each setting;
5) let w be the first row that is not yet labeled;
6) if POSITION -AND_BACKTRACK (w, G,R, C, n, m, timestamp) {
7) label all columns that are not yet completely labeled;
8) return G; }
9) else
10) return "not solvable";

Procedure 3 PosiTION-AND..BACKTRACK (w, G, R, C, n, m, timestamp)

1) while there are untested possible positions for label r w in row w {
2) locaLtimestamp:=timestamp:=timestamp+ 1;
3) label row w with rw in one of these positions;
4) timestamp each new setting;
5) if DRAW_CONCLUSIONS(G,R,C,n,m) then {
6) timestamp each new setting;
7) if there is a row w that is not yet labeled {
8) if POSITION-AND_BACKTRACK(w, G, R,C, n, m) then
9) ret urn true;
10) }
11) else ret urn true;
12)
13)
14)
15) }

}
timestamp each new setting;
mark locaLtimestamp invalid;

16) return false;

We impl_eme?ted the ba_cktracking algorithm and tested it on over 10000 randomly gen
erated l~behng mstances With n and m at most 100. All solvable instances were solved by
performmg at most one backtracking step per branch. This gives rise to the following conjec
ture:

Conjecture 4.1 We conjecture that each instance of the label problem (G, R, C, n, m) is
solved by Algorithm 1 with backtracking depth one. The worst case runtime is then
O(n2 m 2 (n + m)).

In order to calculate the worst case run time according to this conjecture we study the
worst case behavior of the algorithm with backtracking depth one. The algorithm behaves in
the worst case when each label is positioned first in all places that cause a conflict before it is
positio?ed in a conflict free place. A row label can be positioned in at most m diff~rent places.
Each time when a label is positioned the Procedure 2 DRAW _CONCLUSIONS is called which
needs at most O(nm(n + m)) time. Thus, the time for positioning a row label is b~unded

6

by O(nm2 (n + m)) time. Since n rows have to be labeled the backtracking approach with
backtracking depth one needs at most 0(n2 m 2

(n + m)) time. 0

5 Complexity Status

Figure 2: Cylinder label problem

Instead of labeling an array we now label
a cylinder consisting of n cyclic rows and m
columns. Figure 2 shows an example of an
cylinder instance. We show that this prob
lem is NP-complete by reducing a version
of the Three Partition problem to it. Our
proof is similar to an NP-completeness proof of
Woeginger [Woe96] about the reconstruction of
polyominoes from their orthogonal projections.
Woeginger showed that the reconstruction of a
two-dimensional pattern from its two orthogo
nal projections H and V is NP-complete when
the pattern has to be horizontally and vertically
convex. This and other related problems, also
discussed in [Woe96] show up in the area of dis
crete tomography.

Definition 5.1 (Cylinder Label problem (Z,R,C,n,m))

Instance: Let Zn,m be a cylinder consisting of n cyclic rows and m columns. Let Ri be the
label of the i'h row and let ri be the length of label Ri, 1 ~ i ::; n. Let Ci be the label of
the ith column and let Ci be the length of label Ci, 1 :0: i :0: m.

Problem: For each row i set ri consecutive fields of Zi,· to r, for each column j set Cj
consecutive fields of Z.,j to c.

Our reduction is done from the following version of the NP-complete Three Partition

problem [GJ79].

Problem 5.1 (Three Partition)

Instance: Positive integers a1 , ..• a3k that are encoded in unary and that fulfill the two condi
tions (i)E[!

1
ai = k(2B+1) for some integerB, and (ii)(2B+1)/4 <a;< (2B+1)/2

for 1 :<::: i :<::: 3k.
Problem: Does there exist a partition of a1 , ••• , a3k into k triples such that the elements of

every triple add up to exactly 2B + 1 ?

Theorem 5.1 The Cylinder Label problem is NP-complete.

Proof: Cylinder Problem E NP: The cylinder problem is in NP since it is easy to check
whether a given solution solves the problem or not.
Transformation: Now let an instance of Tree Partition be given. From this instance we
construct a cylinder label problem consisting of n = k(2B + 2) rows and m = 3k columns.
The vector r defining the row label length is of the form:

7

(m,m- 1, .. . ,m- 1,m,m-1, ... ,m-1, ...)

(2B +!)-times (2B +!)-times

Since a row label of length m occupies the whole row, those rows with label length m have
no free space for column labeling. Therefore the rows with label length m subdivide the rows
in k blocks, each containing 2B + 1 rows each of which has one entry that is free for column
labeling when the row is labeled. The vector defining the column label length is of the form:

(a,,az, ... ,a3k)

The transformation clearly is polynomial.
The Tree Partition instance has a solution <* the Cylinder Label instance has a
solution:
":;.": Let (x,, y,, z,), ... , (xk. Yk, Zk) be a partition of a,, ... , a3k into k triples such that
x; + Yi + z; = 2B + 1, 1 ::; i ::; k. For each i, (x;, y;, z;) = (af, a9 , ah), for some in
dices f,g, and h, 1 ::; i,j, g, h ::; 3k. We now label the columns f, g, and h among
themselves in the i-th block of rows. More precisely, in column f we label the fields
zf,(i-!)(2B+2)+2 = c, ... , ZJ,(i-!)(2B+2)+!+c., = c. In column g we label the fields

Z 9,(i-!)(2B+2)+2+c.1 = c, · · ·, Zg,(i-!)(2B+2)+l+c.,+l+cag = c. In column h we label the fields
zh,(i-!)(2B+2)+2+c.1+ca9 = c, · · ·, Zh,(i-!)(2B+2)+l+ca

1
+c.

9
+cah = C. It then follows that the

rows j(2B + 2) + 1 are free for row labeling, for 0 ::; j ::; k. Thus, we can label them with
their labels of length 3k = m. All other rows have exactly one entry occupied by a column
label. Since the rows are cyclic we can label each of these rows with a label of length 3k - 1.
"{=": Let Z be a solution of the Cylinder Label instance. Each row contains at most one
entry that is occupied by a column label. Each column label a; has length (2B + 1)/4 <
a; < (2B + 1)/2, 1 ::; i::; 3k. Therefore, exactly three columns are label in the rows j(2B +
2) + 2, ... , (j + 1) (2B + 2), for 0 ::; j ::; k - 1. Fnrthermore the label length of each triple
~ums up to 3k and thus partitions a1 , ... , a3k

1
into k triples. Thus solves the Three Partition

mstance. · o

6 Solvable Special Cases

In the following section we derive an O(nm) time algorithm for the special case where no
label is longer than half of its street length. We think that this case applies especially to large
downtown maps, where the label length is short in respect to the street length. In Section 6.2
we solve the label problem when each vertical label is of equal length. In many american
cities the streets in one orientation (e.g. north-south) are simply called 1-st Avenue, 2-nd
Avenue, These names have all the same label length and thus the label problem can be
solved with the algorithm in Section 6.2. In Section 6.3 we give an algorithm for quadratic
maps, where each label has one of two label lengths. The algorithm of the last two cases have
runtime O(nm(n + m)).

6.1 Half Size

Let (G, R, C, n, m) be a label problem. In this section we study the case where each row label
has length at most [T J and each column label has length at most [~ J. We show that the
label problem is solvable in this case.

8

5
7
8
6
5
8
8
7

illiltlm
Ri

Figure 3: Solution of a typical half size label
problem according to Algorithm 2.

Figure 4: Typical downtown map where the ver
tical street names have constant length.

Algorithm 2 HALF_SOLUTION (G, R, C, n, m)

1) label the rows 1, ... , l ~ J leftmost;
2) label the rows [~ J + 1 ::; n rightmost;
3) label the columns 1, ... , l T J bottommost;
4) label the columns ['!] J + 1, ... , m topmost;

Theorem 6.1 Let (G,R,C,n,m) be a label problem. Letr;::; ['!]J and letc;::; l~J. Then,
Algorithm 2 computes a solution to Problem 2.1 in O(nm) time.

Proof: Take a look at Figure 3.

6.2 Constant Vertical Street Length

In this section we consider the special case of the label problem (G, R, C, n, m) where all
column labels have length I. This problem we denote with (G, R, C, n, m, l). We show that
we can decide whether the label problem (G, R, C, n, m, l) is solvable or not. We further give
a simple algorithm that labels a solvable instance correctly. All results of this section are
assignable for the constant row length case.

Theorem 6.2 (Constant Column Length) Let (G,R,C,n,m,l) be a label problem with
c; = l, 1 ::; i ::; n. The instance is solvable if and only if no conflict occurred in the Prepro
cessing 1.

We assume that l ::; l T J. Otherwise, row r ~ l contains no fields that. are free for :ow
labeling. The next lemma states that the preoccupied fields are symmetnc to the vert1cal
central axis of G.

Lemma 6.1 Let (G, R, C, n, m, I) be a successfully preprocessed label problem. After the pre
processing each row has the form [aba], where

Gi,l = 0, ... , Gi,a = 0, Gi,a+! = X, ... , Gi,a+b = X, Gi,a+b+! = 0, • · ·, Gi,m = 0

for x = r or x = c, m <': b <': 0 and 2a + b = m.

9

Proof: Initially we have G;,j = f/J for 1 :<::: i :<::: n, 1 :<::: j :<::: m. Executing Rule 3.2 on each
row i with length r; > T yields Gi,m-r;+I = r, ... , Gi,r; = r. Thus, all r-entries of G are
symmetric to the vertical mid axis of G. Remember that each column has label length I.
Therefore, executing Rule 3.2 on each column i yields that for each entry G;,j that is set
to c the fields Gi,j+I = c, ... , Gi,m-j+I = c, if 1 :<::: T; and Gi,m-j+l = c, ... , Gi,j-1 = c, if
T :<::: i :<::: m. Therefore, all c-entries of G are symmetric to the central vertical axis of G. Thus,
until now each row i has the form [aba], where G;,1 = f/J, •.. , G;,a = f/J, Gi,a+I = x, ... , Gi,a+b =
x,Gi,a+b+I = f/J, ..• ,G;,m = f/J for x,y E {r,c}, b :2: 0, 2a + b = m and 1 :<::: i :<::: n. Assume
that the repeated execution of Rule 3.2 on row i of form [aba] and x = c does change an
entry of G;, .. In this case a < r; and it follows that the instance is not solvable. Therefore,
the repeated execution of Rule 3.2 on a column can not change the instance and the lemma
follows. 0

Algorithm 3 CoNSTANT COLUMN LENGTH (G, R, C, n, m, I)

1) ifPREPROCESSING(G,R,C,n,m) {

2) tabet the columns 1, ... , rT 1 - 1 bottommost;
3) label the columns [';l, ... ,m topmost;
4) label the rows 1, ... , n in the free space;
5) }

Lemma 6.2 Let (G, R, C, n, m, I) be a successfully preprocessed label problem. Then Algo
rithm 3 computes a feasible solution to (G, R, C, n, m, I) in 0(nm(n + m)) time.

Proof: Since (G, R, C, n, m, l) is preprocessed successively it follows that each column contains
an interval of length at least l that is free for column labeling. Assume that after processing
steps 2-3 there exists a row i not containing an interval of length r; that is free for row labeling.
We make a case distinction according to the length of R;:

Case r; > [T l: We know that the fields Gi,m-r;+I = r, ... , G;,r, = r were set in the prepro
cessing. Furthermore, Lemma 6.1 yields ,that no other entry of G;,. was set to c in the
preprocessing. Therefore, each column G.,j with 1 :<::: j < m - r; + 1 or r; + 1 :<::: j :<::: m
contains either one interval of length at least 21 that is free for column labeling or two
intervals each of length at least l that is free for column labeling. From the symmetry of
the label problem and since the column labels of the columns j with 1 :<::: j < m- r; + 1
are labeled bottom most and the labels j with r; + 1 :<::: j :<::: m are labeled top most
it follows that either the fields G;,l, ... , Gi,m-r;+I are free for row labeling or the fields
Gi,r;+I, .. . , Gi,m· Thus, G;,. contains an interval of length r; that is free for row labeling.
Contradiction.

Case r; :<::: [';l: Lemma 6.1 yields that this row has the form [aba] with G;,1 = f/J, .. • ,G;,a =
f/J, Gi,a+I = c, ... , Gi,a+b = c, Gi,a+b+I = f/J, .•• , G;,m = f/J, b :2: 0 and 2a + b = m.
Since the instance is solvable it follows that a :2: r;. With the same arguments as
above it follows that either the fields G;,1 , .•• , Gi,r; are free for row labeling or the fields
Gi,m-r;+I, ... , G;,m are free for row labeling. Contradiction.

The running time is dominated by the preprocessing and thus O(n3). 0

See Figure 5-8 for an example. Figure 4 shows a typical downtown city map in which all
vertical streets have the same length.

10

Figure 5: Matrix of a label problem with con
stant column length after the successful prepro
cessing. Entries that are set in the preprocessing
are colored black and gray.

Figure 7: Matrix of a constant column length
problem after the successful preprocessing. En
tries that are set in the preprocessing are colored
black and gray.

11

Figure 6: Solution of the label problem of the
left figure.

Figure 8: Solution of the label problem of the
left figure.

6.3 Two Different Label Lengths

Let (G, R, C, n, n) be a label problem. In this section we study the case when any row
label and any column label has length It or length lz. This special case we denote with
(G, R, C, n, n, lb lz). We give an algorithm which solves this problem.

Theorem 6.3 (Two different label lengths) Let (G, R, C, n, n, lh 12) be a quadratic label
problem such that r; E {II> lz} and q E {It, /z}. The instance is solvable if and only if no
conflict occurred in the Preprocessing Procedure 1.

W.l.o.g let It 2: lz. In case that It ~ l ~ J Theorem 6.1 yields that the instance is solvable.
In case that It > l ~ J and lz > l ~ J it is easy to see that the instance is not solvable. Therefore,
throughout this section and the next two subsections we assume that It > l ~ J and 12 < l ~ J.

6.3.1 The Case It + 12 > n

Similarly to the half size solution we are going to label these instances in a windmill like
manner. The critical rows and columns are the central rows and columns n -It + 1, ... , It·
From the regularity of the label length we can make some useful observations about the
existence of long labels (of length II) in the central rows and columns.

Observation 6.1 Let (G, R, C, n, n, It, lz) be a solvable label problem. At most one of the
label sets { Rn-t1 +t, ... , R1,} and { Cn-t. +I, ... , C1,} has elements of length lt.

The label problem has the nice property that intervals that are free for labeling in the
central rows and columns are also free for labeling in the outer rows and columns.

Observation 6.2 Let [a, b[be an interval of row G;,. that is free for row labeling, n- It <
i ~ It· Then, [a, b[is free for row labeling in all rows.

Proof: Assume there exists a row i' and a column j E [a, b[such that G;',j = c. In case that
Cj = It it follows that G;,j = c for n - It < i ;~ lt. Contradiction. In case that Cj = 12 it
follows that G;•,j = c for n-It < j ~ It· Therefore, row i' contains not enough free space
for row labeling and we get a contradiction since the preprocessing would not be successful in
this case. o

Observation 6.3 Let (G,R,C,n,n,lt,lz) be a label problem that was successfully prepro
cessed. There exist two disjoint intervals [at, az[, [a3, a4[each of length at least 12 such that
Gi,a1 , ••• , A;,a2 -t and A;,a., ... , A;,a,-t are free for row labeling for all rows 1 ~ i ~ n.

Proof: Assume there exists a row i with r; = 12 that does not contain two intervals of
length at least lz that are free for row labeling (with Observation 6.2 we can assume that
n-It < i ~ It). From the preprocessing Rule 3.2 follows that R; causes an occupied entry
G;,j = r for some 1 < j ~ n. Then, each row label Rk of length 12 (n-It < k ~II) causes an
occupied row entry Gk,j = r for j. Each row label Rk of length It and n-It ~ k ~It causes
an occupied row entry Gk,j = r for j as well since It > lz. From Cj ;:::: 12 and since n-It < 12
and n-It < lz it follows that there is not enough free space for column label Cj. Therefore,
the preprocessing would have found a conflict which is a contradiction to our assumption. o

12

Algorithm 4 Two DIFFERENT LABEL LENGTH, it+ 12 > n (G, R, C, n, n, it, lz)

1) if PREPROCESSING (G,R,C,n,m) {
2) let [at, a2[, [a3, a4[be two disjoint maximal intervals of G each of size at least lz

that are free for row labeling in each row;
3) let [bt, b2 [, [b3, b4 [be two disjoint maximal intervals of G each of size at least lz

that are free for column labeling in each column;
4) label the rows 1, ... , b3 - 1 in the leftmost possible sufficiently large interval that

is free for row labeling;
5) label the rows b3 , ... , n in the rightmost possible sufficiently large interval that is

free for row labeling;
6) label the columns 1, ... , a3 - 1 in the bottommost possible sufficiently large

interval that is free for column labeling;
7) label the columns a3, ... , n in the topmost possible sufficiently large interval that

is free for column labeling;
8) }

These observations lead to Algorithm 4 that solves these kind of instances.

Lemma 6.3 Let (G, R, C, n, n, it, 12) be a label problem with two different label lengths. If
no conflict occurred in the Preprocessing Procedure 1 then Algorithm 4 computes a feasible
solution for (G, R, C, n, n, it, lz) in O(n3) time.

Proof: The rows i E {1, .. . ,b3 - 1} of label length lz are labeled inside G;,t, .. . ,G;,a2-t,

not conflicting with any preoccupied column entry from the preprocessing. The rows
i E {b3, .. . ,n} oflabellength 12 are labeled inside G;,a., ... ,G;,n, not conflicting with any
preoccupied column entry from the preprocessing. The columns j E {1, .. . ,a3- 1} of label
length 12 are labeled inside Gb,,j, ... , Gn,j, not conflicting with any preoccupied row entry
from the preprocessing. The columns j E {1, ... , a3- 1} of label length lz are labeled in
side Gt,j, . .. ,Gb

2
-t,j, not conflicting with any preoccupied row entry from the preprocessing.

Since all four su bmatrices are disjoint it follows that no conflict occurs between any two labels
of length 12 • Assume that there exist two indices i, j, 1 ~ i, j ~ n such that G;,j is set to r
and to c.
Case 1 < i < b3 , 1 < j < a3 : From the observations made above follows that either a label of
length 12 overlaps with a label of length It or two labels of length It overlap.

Let two labels of length It overlap. Since the preprocessing was successful and the jth

column is labeled bottommost it follows that all entries Gk,j = c with 1 ~ k < b3 are
preoccupied fields and therefore set in the preprocessing. These preoccupied fields have been
considered in the positioning of label r;. Contradiction. In case that r; = lz and Cj = It we
come to a contradiction with the analog considerations. In case that r; = It and Cj = lz we
know that column j is labeled below row b3 - 1 and yield a contradiction.
Other Cases: All other cases work analogously, since the whole labeling is symmetric.

The preprocessing clearly dominates the running time. Thus the running time is 0(n3
).

0

13

qll q12 q13 q14 q15

q21 q22 q2l q24 q25 x2

q31 q32 q33 q34 q35 x3

q41 q42 q43 q44 ~5 x4

q51 'ls1 q53 q54 'Iss
n

n
x3

x4
x2

xl
Figure 9: Solution of a problem with two different
label length and 11 + /2 > n after the execution of
Algorithm 4. Entries that were occupied in the pre
processing are colored dark, all others are shaded.

Figure 10: Subdivision of a matrix.

6.3.2 The Case It + l2 ~ n

We subdivide each column and each row into intervals. As interval points we define x1 = 12 ,

x2 =n-It, X3 = It and X4 = n -l2. Note that x1 ~ x2 ~ X3 ~ X4. These intervals subdivide
the matrix G into several areas. We denote these areas with the indices q11 , ••• , q55 as defined
in Figure 10. \

Similarly to the case 11 + 12 > n we can make some observations about the label length of
solvable instances in the central rows and columns X2 + 1, ... , X3.

Observation 6.4 Let (G, R, C, n, n,l1,l2) be a solvable label problem. At most one of the
label sets {Rx2+J, .• • , Rx3 } and {Cx2 +J, ... ,Cx3 } has elements of length l1.

W .l.o.g we assume that Rx2+!, ... , Rx3 have length l2.

Observation 6.5 A preoccupied row entry G;,j = r for rows with label length It can only
occur if i E { x2 + 1, ... , x3 } or j E { x2 + 1, ... , x3 }. For rows with label length 12 it can only
occur if i E { x2 + 1, ... , x3 }. Analogously, a preoccupied column entry G;,j = c for columns
with label length 11 can only occur if i E {x2 + 1, ... , x3 } or j E {x2 + 1, ... , x3}. For columns
with label length 12 it can only occur if j E {x2 + 1, ... ,xs}.

Proof: Assume G;,j = r and 0 ~ i ~ x2 and 0 ~ j ~ x2. In case that r; = l2 we yield
that this preoccupied entry must have been induced by at least one column entry G;',j' = c
with X3 < i' ~ n. In case that r; = It we also yield that this preoccupied entry must have
been induced by at least one column entry G;',j' = c with x3 < i' ~ n since otherwise all
preoccupied fields are contained in the interval [x 2 + 1, x3] of row i. Assume G;,j = r and
0 ~ i ~ x2, X2 < j ~ Xs and r; = l2. We again yield that this preoccupied entry must
have been induced by at least one column entry G;',j' = c with x3 < i' ~ n and one with
1 ~ i 1 ~ x2 • Since both possibilities are again caused by preoccupied fields where neither of

14

the two indices lies inside [x 2+ 1, x3] we come to a contradiction. All other cases work exactly
analogous. 0

Lemma 6.4 We differ between two classes of instances.

Case 1: No label of length b causes a preoccupied entry. Let [a, b[be an interval of row
G;,. that is free for row labeling, x2 < i ~ X3. Then, [a, b[is free for row labeling in all
rows. Analogously, let [c, d[be an interval of column G.,j that is free for column labeling,
x 2 < j ~ x3 . Then, [c, d[is free for column labeling in all columns.

Case 2: There exist labels of length 12 that cause preoccupied fields. Then, there exists
an interval [a, b[of length at least b and [a, b[n[x2 + 1, x3] = 0 such that either the
fields G;,., ... , Gi,b-1 are free for row labeling for each i E { X2 + 1, x3} or the fields
G a,j, ... , Gb,j are free for column labeling for each i E { x2 + 1, x3}.

Proof:

Case 1: Let [a, b[as defined in the corollary, case 1. Assume there exists a row i' and a
column j E [a, b[such that G;•,j = c. Since no column with a label of length l2 causes
a preoccupied entry we get that Cj = /t. It follows that G;,j = c for x2 < i ~ X3.

Contradiction.

Case 2: There exist labels of length 12 that cause preoccupied fields. Consider the matrix
G with all preoccupied fields of labels of length /t. Observe that in case that a pre
occupied column entry G;,j = c, with i E [x2 + 1, x3] exists, then also G;',j = c for
all i E [x 2 + 1, x3]. Furthermore, in case that a preoccupied row entry G;,j = r, with
j E [x2 + 1, x3] exists, then also Gi,j' = r for all j' E [x2+ 1, X3]. These preoccupied fields
induce (a part of the) preoccupied fields of labels of length b. Concrete, let a column
j E [x 2 + 1, x3] with Cj = 12 cause a preoccupied entry G;,j = c, then also G;,j' = c for
all columns j' E [x 2 + 1, x3], which follows from the observation made above.
Case i E { x2 + 1, ... , x3}: Since the preprocessing was successful there exists a row in
terval [a, b[in row i of length at least l2 that is free for row labeling and [a, b[<:;; [1, x2]
or [a, b[<:;; [x3 + 1, n]. Assume there exists a row i' E {x2 + 1, ... , xs} with i' of i and a
j 1 E {a, ... , b- 1} with G;',j' =c. Then, Cj' = 12 since otherwise also G;,j' =c. Since
j' ~ { x2 + 1, ... , x3 } we yield with Observation 6.5 a contradiction.
Case i ~ {x2 + 1, ... , x3}: In case that no i E {x2 + 1, ... , xs} exists such that G;,j = c,
j E {x 2 + 1, ... , x3 } and Cj = 12 , it follows there exists an interval [a, b[oflength at least
12 and [a, b[n[x2 + 1, x3] = 0 such that the fields Ga,j, ... , Gb,j are free for row labeling
for each j E {x2+ 1, ... ,x3}

All non listed cases are symmetric and follow analogously. 0

15

Algorithm 5 Two DIFFERENT LABEL LENGTH, it+ h < n (G, R, C, n, n, it, 12)

0) if PREPROCESSING(G, R, C, n, n) {
Part 1
1)
2)
3)
4)
5)
Part 2
6)
7)
8)

9)

10)

11)
12)

13)
14)
15)

16)

17)
18)
19)

20)

21)
22)
23)

XI := 12; X2 :=n-It; X3 := /t; X4 := n- l2;
label the rows 1, ... , X2 leftmost;
label the rows x3 + 1, ... , n rightmost;
label the columns 1, ... , x2 bottommost;
label the columns X3 + 1, ... , n topmost;

forall i E { x2 + 1, x3} such that c; = l1
label an interval of B.,; of size It that is free for column labeling with C;;

let I:= {It:= [a1ob1[, •. . ,Ip := [ap,bp[} be all maximal intervals ofG;,. of
length at least l2 that are free for row labeling, for all rows and X2 < i :::; x3;

let J := {J1 := [e1 , !I[, ... , Jq := [eq,!q[} be all maximal intervals of B.,; of
length at least 12 that are free for column labeling, for all columns and
X2 < i :::; X3;

if {h\[x2 + 1,x3], .. . ,Ip\[x2 + 1,x3]} contains an interval [a,b[of length at
least 12{
label the rows x2 + 1, ... , X3 leftmost, right of column a- 1;
for each i E { x2 + 1, ... , x3 } label column i in an arbitrarily chosen interval

that is free for column labeling;
}
else {

if {J1 \[x2 + 1, x3], ... , Jq \[x2 + 1, x3]} contains an interval [e, f[of length at
least h{
for each i E {x2 + 1, ... ,x3 } with c; = l2 label columns i topmost, below row

e- 1· 1
'

}
else {

let [a1 , a2[, [a3, a4[be two disjoint intervals from {It, ... , Iv} each of length at
least l2 such that A;,. is free for row labeling, X2 < i :::; x3;

let [b1, b2[, [b3, b4[be two disjoint intervals from {J1, ... , Jq} each of length at
least 12 such that B.,; is free for column labeling, X2 < i :::; x3;

label the rows x2 + 1, ... , b3 - 1 leftmost, right of column a1 - 1;
label the rows b3, ... , X3 rightmost, left of column a4;
for each i E { x2 + 1, ... , b3 - 1} with c; = l2 label column i bottommost, above

row b4;
24) for each i E {b3, ... , x3} with c; = l2 label column i topmost, below row b1- 1;
25) } } }

Lemma 6.5 Let (G,R,C,n,n,l1,l2) be a label problem with two different label lengths and
with It + 12 < n. If no conflict occurred in the Preprocessing Procedure 1 then Algorithm 5
computes a feasible solution for (G, R, C, n, n, lt, 12) in O(n3) time.

Proof: Let (G,R,C,n,n,lt,l2) be a solvable and preprocessed label problem. We first we
show that no conflict occurs in part 1 of Algorithm 5. Note that in step 2 only fields in
the fields q11 , q 12, q13 , q21 , q22 and q23 of matrix G are set to r. In step 3 only fields in

16

fields q43, q44 , q45 , q53 , q54 and q55 of matrix G are set to r. In step 4 only fields in the
fields q31 , q32, q4 1o q42 , q51 and q52 of matrix G are set to c. In step 5 only fields in the
fields q14 , q15, q24 .q25 , q34 and q35 of matrix G are set to c. Since no field is named twice
and since no conflict occurred in the preprocessing no conflict occurred until now. Note,
that the labels of length It only occupy fields in the fields qu, q21o q51·qs2, q14, q15, q45 and
q55 • Thus, in the first part of the algorithm we found a conflict free position for the labels
{R1, .•• , Rx

2
, Rxs+l• ... , Rn, C1o ... , Cx,Cxs+l• ... ,Cn}· Figure 11 shows an example.

Let i E [x2 + 1, x3] such that r; = h. Let It = [a1o b1[, ... ,lp = [ap, bp[be all maximal
intervals of G;,. of length at least h that are free for row labeling, for all i E [x2 + 1, x3] with
r; = 12. Let J1 = [e1,J1[, ••• , Iq = [eq,Jq[be all maximal intervals of G.,j of length at least h
that are free for column labeling, for all j E [x2+ 1, x3] with Cj = l2. We assumed w.l.o.g. that
rx

2
+1 = l2, ... , rx

3
= l2. Since the preprocessing was successful, for each i E {x2 + 1, ... , X3}

with c; = It there is an interval [e, f[of G.,; that is free for column labeling. These columns
are labeled in steps 6 and 7. All fields of G;,j with i,j E {x2 + 1, ... , X3} that are set to c
in steps 6-7 were occupied in the preprocessing. Thus, none of the label placements further
influences the amount of free space for row labeling in the rows x2 + 1, ... , X3.

Case {it \[x2 + 1, x3], ... ,lp \[x2 + 1, x3]} contains an interval [a, b[of length at least l2: This
case is treated in steps 10-13. The labeling is trivially correct.

Case {J1 \[x2 + 1, x3], ... , Jq \[x2 + 1, x3]} contains an interval [e, f[of length at least l2:
Analogously to the previous case steps 14-17 yield a valid labeling.

Case- all intervals of {It \[x2 + 1, x3], ... ,lp \[x2 + 1, x3], J1 \[x2 + 1, x3], ... , Jq \[x2 + 1, X3]}
have size smaller tha,n h: With Lemma 6.4 we yield that labels of length l2 do not
produce preoccupied fields. Thus each row i E { X2 + 1, ... , X3} with r; = l2 contains
at least two disjoint intervals of length at least l2 that are free for row column labeling.
Analogously, each column j E { x2 + 1, ... , x3} with Cj = l2 contains at least two disjoint
intervals of length at least 12 that are free for column labeling. With Lemma 6.4 follows
that { ft, ... ,lp} contains two disjoint intervals [a I> a2[, [a3, a4[each of length at least l2
such that G;,a,, ... , G;,a2 _ 1 and G;,a3 , ••• , G;,a,-l are free for row labeling, X2 < i :::; X3.
Analogously, {Jl> ... , Jq} contains two disjoint intervals [bt, b2[, [b3, b4[each of length at
least 12 such that G 01 ,;, ••• , G02 _ 1,; and G 03 ,;, ••• , Go,-l,i are free for column labeling,
x 2 < i :::; x3 • Assume that steps 18-24 do not yield a conflict free labeling. Assume that
there exists two indices i, j, 1 :::; i :::; n, 1 :::; j :::; m such that G;,j was set to r and to c.
We make a case distinction according to i and j.
Case x2 < i < b3 and x2 < j < a3 : No conflict can occur since the columns X2 +
1, ... , a3 - 1 with length 12 are labeled below b3 - 1. The columns with label length It
are labeled right of a2 - 1.
Case x2 < i < b3 and a3 < j < x3: No conflict can occur since the rows X2 + 1, ... , b3 -1
are labeled left of the column a3.
Case b3 < i < x3 and x2 < j < a3 : No conflict can occur since the rows b3, ... , X3 are
labeled right of the column a3 - 1.
Case b3 < i < x3 and a3 < j < x3: No conflict can occur since the columns X2 + 1, ... , X3
are labeled above row b3.

Thus, in all cases we found a conflict free labeling and the running time is again dominated
by the preprocessing 0(n3). D

See Figure 11 and 12 for an illustration.

17

Figure 11: Matrix of a problem with two differ
ent label lengths and 11 + 12 :o; n after the exe
cution of Algorithm 4 part 1. Entries that were
occupied in the preprocessing are colored black,
all others are shaded.

References

Figure 12: Solution of the label problem of the left
figure.

(EIS76] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5(4):691-703, December 1976.

(GG95] R.J. Gardner and P. Gritzmann. Descrete tomography: Determination of finite sets
by x-rays. Technical Report TR-95-13, Institute of Computer Science, University of
Trier, Austria, 1995.

(GJ79] M.R. Garey and D.S. Johnson. Computers and Intractibility, A Guide to the Theory
ojNP-Completeness. W. H. Freeman and Company, New York, 1979.

(NH] G. Neyer and H. Hennes. Map labeling with application to graph labeling. GI
Forschungsseminar:Zeichnen von Graphen, Teubner Verlag, to appear.

(Woe96] G.J. Woeginger. The reconstruction of polyominoes from their orthogonal projec
tions. Technical Report SFB-Report 65, TU Graz, Institut fiir Mathematik, A-8010
Graz, Austria, April 1996.

18

Eidgenossische
Technische Hochschule

Ziirich

Ecole polytechnique tederale de Zurich
Politecnico federale di Zurigo

Swiss Federal institute of Technology Zurich

Departement lnformatik
Department of Computer Science

Using Optimistic Atomic Broadcast
in Transaction Processing Systems

Bettina Kemme
Fernando Pedone
Gustavo Alonso
Andre Schiper

Technical Report #325, 1999

