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Singularities Make Spatial Join Scheduling Hard�

Gabriele Neyer and Peter Widmayer

fneyer� widmayerg�inf�ethz�ch
Institute for Theoretical Computer Science

���� ETH Zurich� Switzerland

Abstract

It is long known that scheduling relational joins� where relations reside on
disk� is NP�hard in general� This result motivated a number of heuristics
for scheduling spatial joins� where spatial data are distributed on disk blocks
in spatial clusters� Since spatial clustering makes use of the rich structure of
Euclidean space� the NP�hardness of relational join scheduling does not imply
NP�hardness for spatial join scheduling� We show that indeed for a class
of popular spatial clustering techniques used for spatial data structures� an
optimum page fetch schedule can be computed in linear time� In full generality�
we prove spatial join scheduling to be NP�hard� Our proof makes extensive
use of a particular singularity� this leaves room for the development of further
e�cient scheduling algorithms for interesting spatial data structures�

� Introduction

In databases in general and spatial databases in particular� join processing is one of
the most expensive operations� One of the reasons is that for large databases� main
memory capacity is a bottleneck� Pages may need to be fetched from disk more than
once in order to compute a join� Since disk access time usually is the dominant part
of the join computation time� it pays to schedule disk accesses carefully� This is not
always easy� For two relations on disk� where each page contains a set of tuples� and
an equijoin over some attribute� it is an NP�hard problem to �nd an optimal disk
access schedule �MKY�	
�

�We acknowledge the support of the ESPRIT IV LTR Project No� ����� �CGAL	� An extended
abstract is to appear in Proceedings of the Eighth Annual International Symposium on Algorithms
and Computation
 ISAAC���
 Singapore
 December �����
 �����
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ThisNP�hardness result has motivated a �urry of heuristics for scheduling spatial
joins in spatial databases over the past decade
 for a recent account� see e�g� �DP��
�
In spatial databases� however� the data are not spread over disk pages arbitrarily�
Virtually all spatial data structures partition the data space geometrically into cells�
and they store those geometric objects on a page that lie within a cell� Therefore� the
NP�hardness of the relational join scheduling problem does not imply NP�hardness
for spatial join scheduling�

In this paper� we study the complexity of the spatial join scheduling problem�
The spatial join is based on two �di�erent� partitions of a rectangular data space
into isothetic rectangles� Each rectangle is a cell that represents a page� where the
geometric data stored in the page lie geometrically within the cell� The join operation
computes some predicate based on spatial locality� For concreteness� let two sets of
points from the same rectangular universe be maintained in the two cell partitions�
and let the join predicate be the equality for points� To compute the join� any two
pages whose cells overlap need to be in main memory at the same time� Let us now
assume that memory capacity is severely limited� Only two pages can be kept in main
memory at any given time� The spatial join scheduling problem asks for the smallest
number of disk accesses and the corresponding disk access schedule such that any two
pages whose cells intersect meet in main memory at some point in time�

We show that for an important class of cell partitions� the spatial join scheduling
problem is not hard at all� It can be solved in linear time whenever no two rectangles�
one from each partition� share some part of their boundary� This is likely to be
true for data structures that compute the cell partition according to the data that
are stored� such as k�d�trees in their disk variant �k�d�B�trees� or hB�trees� The
scheduling algorithm is simple enough to be useful in practice� Therefore� in these
cases a heuristic for a spatial join is a loss of both� e�ciency and quality of the
solution� as compared with the exact solution�

For the general case� where cell boundaries of both partitions are allowed to coin�
cide� we show that the scheduling problem is indeed NP�hard� This comes as a late
�but �rst� justi�cation for the search for heuristics over the past decade� We prove
NP�hardness by reducing the ��SAT problem to our scheduling problem� The reduc�
tion is based on the proof in �GJT��
� but has the extra complication of requesting
that the �gadgets� be embedded into two rectangular space partitions�

Our complexity results give a �rst answer to the question of when one might use a
heuristic to schedule a spatial join� But even data structures that produce partition
lines according to some regular scheme that is fairly independent of the data� so that
cell boundaries may equal each other� do exhibit a high degree of regularity� and
therefore also in this case good join scheduling algorithms might exist�

More precisely� let R be a two�dimensional rectangle that represents the data
space� and let a rectangular partition of R be a set of isothetic rectangles that partition
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R� For two rectangular partitions A�B of a rectangle R� we call a sequence � of pairs
�i � �ai� bi�� ai � A� bi � B� i � 	� � � � � n� where each pair �a� b� with a � A�
b � B� a � b �� � appears in the sequence� a page fetch schedule for A and B� Here
and throughout the paper� the intersection of two rectangles is the closure of the
intersection of their topological interiors� The number of page fetches in a schedule
� � ��i�i�������n is the number of changes in consecutive pairs �i� �i�� � �
 more
precisely� it is de�ned as

�
�fi� 	 � i � n � 	j ai �� ai��g

�
� �

�
�fi� 	 � i � n � 	j bi ��

bi��g
�
�� ��

Let G � �V�E� be an undirected graph� V is a set of vertices� E is a multiset of
edges� A path of length k � � from vertex v to vertex w in G is a sequence of vertices
�v � x�� x�� � � � � xk � w
 with fxi� xi��g � E for � � i � k� 	� A cycle is a path from
a vertex to itself� i�e�� a path �v�w
 with v � w� A Hamiltonian path of G is a path of
length jV j � 	 in which every vertex of V appears exactly once� A Hamiltonian cycle
is a cycle in which every vertex appears exactly once� except the �rst vertex which
has to be equal to the last vertex�

We will study the following problem�

Problem ��� �rectangular join scheduling�

Instance� Two rectangular partitions A�B of a rectangle R�

Problem� Find a page fetch schedule realizing the minimum number of page fetches�

In order to attack this problem� let A � B denote the join of two rectangular
partitions A�B� de�ned as A �B � fa � bja � A� b � B� a � b �� �g�

Proposition ��� Let A� B be two rectangular partitions of R� Then A�B is also a
partition of R into rectangles�

Proof� A and B consist of rectangles� Thus� every element in A � B is the cut of a
rectangle in A with a rectangle in B� Since the cut of two rectangles is a rectangle�
it follows that A �B is a partition of R into rectangles� �

We identify A � B with a graph� the rectangular overlay graph �ROG� GA�B�
de�ned as follows�

De�nition ��� �ROG� Let R be a two dimensional rectangle� A� B two partitions
of R� Let A�B be the join of the two rectangular partitions� A ROG GA�B is a graph
where each rectangle of A � B is associated with a vertex� there is an edge between
two di�erent vertices �a� b� and �c� d� if a � c or b � d� a� c � A� b� d � B�
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Figure 	 shows a rectangular parti�

Figure 	� Rectangular partitions�

tion� the join of two rectangular parti�
tions and the corresponding ROG� Let
n denote the number of rectangles in

A �B� i�e� the number of pairs of rectangles from A and B that intersect� Our goal
is to order the n pairs in such a way that the number of changes in consecutive pairs
is minimum� Since two consecutive pairs change in at least one element� n� 	 is the
minimumpossible number of changes� Furthermore� in a sequence with n�	 changes�
any two consecutive vertices have a common edge� Since a change corresponds to a
page fetch� we get�

Proposition ��� There is a page fetch schedule with n� 	 page fetches if and only
if GA�B has a Hamiltonian path�

Proof� ��	�� Let � be a sequence of pairs �ai� bi� that solves the Problem 	�	 and
has n � 	 consecutive changes� Each pair in the sequence corresponds to a rectangle
of A � B and each rectangle of A � B corresponds to a vertex in GA�B� Since
two consecutive pairs have one element in common they correspond to two pairs of
rectangles ��ai� bi� and �ai��� bi���� in A � B that ful�ll ai � ai�� or bi � bi��� With
De�nition 	�	� the corresponding vertices of GA�B are incident� Since every rectangle
of A � B corresponds to exactly one pair in �� it follows that the sequence de�nes a
Hamiltonian path in GA�B�

�
��� Let � be the sequence of vertices in a Hamiltonian path of a graph GA�B�
Each vertex corresponds to a rectangle of A � B and therefore to a pair �a� b� of
rectangles with a � A and b � B� Two vertices u and v of GA�B are incident if the
corresponding rectangles �u � au � bu and v � av � bv� ful�ll au � av or bu � bv�
au� av � A� bu� bv � B� Therefore� it follows that in the corresponding sequence of
pairs of rectangles consecutive pairs di�er in exactly one element� Thus� the number
of consecutive changes is n� 	� �

This leaves us with the Hamiltonian path problem for GA�B�

Problem ��� �ROG Hamiltonian path�

Instance� A ROG GA�B�

Problem� Does GA�B contain a Hamiltonian path�

In the next section� we argue that whenever the rectangles of A and B are in
general position� the scheduling problem is easy� Section � shows that for unrestricted
rectangle position� the problem is hard� An approximate solution for the scheduling
problem can be obtained as follows� We assign each edge of GA�B a distance one
and make the graph complete by adding edges of distance two� Now� it is easy to
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see that the scheduling problem corresponds to �nding a traveling salesman tour of
minimum length in the complete graph� Papadimitriou and Yannakakis have given a
polynomial time approximation algorithm with worst�case ratio �

�
for the special case

of the traveling salesman problem for which all distances are either one or two �PY��
�

� Spatial Join Scheduling without Singularities is

Easy

Let R be a rectangle� Let A� B be two rectangular partitions of R� We request that
the rectangles lie in general position in the sense that no two rectangles a � A and
b � B share a �part of a� common boundary �apart from the common boundary sides
of R�� More precisely�

De�nition ��� �	common boundary
�
Let �x�� x�
 be an interval on the x	axis� Let �y�� y�
 be an interval on the y	axis� Then
�x�� x�
 � �y�� y�
 de
nes an axis parallel rectangle containing all points �x� y� with
x� � x � x� and y� � y � y��
Let a � �xa�� x

a
�
 � �ya�� y

a
�
 � A and b � �xb�� x

b
�
 � �yb�� y

b
�
 � B be two rectangles� Two

rectangles a and b share a common boundary if
�xa�� x

a
�� � �xb�� x

b
�� �� � and yai � ybj � or �y

a
� � y

a
�� � �yb�� y

b
�� �� � and xai � xbj

for at least one pair� i� j � f	� �g� i �� j�

De�nition ��� �dual graph� Let R be a partition of a rectangle into rectangles�
The dual graph Gd of R is a graph where each rectangle of R is associated with a
vertex� Two di�erent vertices u and v are joined by an edge if the corresponding
rectangles touch �in more than a single point��

Kranakis �Kra��
 pointed out to us that Czyzowicz et� al� �CRCS���
 showed the
following theorem�

Theorem ��� ��CRCS��
�� If a rectangle R is partitioned into n rectangles� then
the dual graph of R has a Hamiltonian path�

In order to apply Theorem ��	 to a ROG GA�B we identify the dual graph of R with
the ROG GA�B�

Lemma ��� Let A� B be two rectangular partitions that lie in general position of a
rectangle R� Let A �B be the join of A and B� Let the ROG be GA�B � �V�E� and
the dual graph be �A � B�d � �V �� E��� Then V � V � and E � E��
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Proof� Clearly� the de�nition of the vertices in GA�B corresponds to the de�nition of
the vertices in the dual graph �A � B�d� Let fu� vg be an edge in �A � B�d� By the
de�nition of the dual of a rectangular partition it follows that u and v correspond to
two rectangles u � au�bu and v � av�bv of A�B that share a common boundary side�
Since the rectangular partitions A and B lie in general position� the corresponding
rectangles u and v ful�ll� au � av or bu � bv� au� av � A� bu� bv � B� Thus the
corresponding vertices of u and v in GA�B are connected by an edge� �

It has been shown �CRCS���
 that the rectangular dual graphs are internally ��
connected� hence they are Hamiltonian� by a theorem of Tutte �Tut��
� We can then
use the algorithm in �CN��
 to �nd a Hamiltonian path in GA�B in linear time�

� Spatial Join Scheduling is NP�Hard

We now consider the unrestricted case� i�e� two rectangles of di�erent partitions may
have a common boundary�

Problem ��� �ROG Hamiltonian circuit�

Instance� A ROG GA�B for two rectangular partitions A�B of a universe R�

Problem� Does GA�B contain a Hamiltonian circuit�

The remainder of this paper is devoted to a proof of the main result�

Theorem ��� The ROG Hamiltonian circuit problem is NP	complete�

Clearly� the ROG Hamiltonian circuit problem is in NP� Our construction of
the NP�hardness proof for the ROG Hamiltonian circuit problem is based on the
reduction from ��SAT in the NP�hardness proof of the planar Hamiltonian circuit
problem in �GJT��
�

Problem ��� ���SAT�

Instance� A boolean formula in conjunctive normal form with exactly three literals
per clause�

Problem� Is there a satisfying truth assignment for the formula�

Garey� Johnson and Tarjan express the formula by combining logic elements like
�exclusive	or� and �three	input	or� to a logic graph� In a second step� they design
graph components that have the functionality of the logic elements� and then embed
these components into a graph according to the logic graph�
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��� Construction of the logic graph

For the sake of making the presentation self�contained� let us recall the construction
of the logic graph as de�ned in �GJT��
� This section closely follows the presentation
in �GJT��
� and it is even taken literally in some places�
First� we introduce the logic �exclusive	or� graph�

De�nition ��� �Logic 	exclusive�or
� The �exclusive	or� graph is a subgraph that
acts like two separate edges� one connecting vertices u and u� and the other connecting
vertices v and v�� with the constraint that for each graph G that contains this graph as
a vertex induced subgraph� exactly one of these two edges must occur in any Hamil	
tonian circuit of G� In this case� we say that the edges fu� u�g and fv� v�g have been
�connected� by an �exclusive	or��

De�nition ��� �Logic 	three�input�or
� The �three	input	or� graph is a subgraph
that acts like three separate edges� one connecting vertices u and u�� one connecting
vertices v and v�� and the other one connecting vertices w and w�� with the constraint
that for each graph G that contains this graph as a vertex induced subgraph� at least
one of these three edges must occur in any Hamiltonian circuit of G� In this case�
we say that the edges fu� u�g� fv� v�g and fw�w�g have been �connected� by a �three	
input	or��

The logic graph consists of edges as usual and the logic components �exclusive�or�
and �three�input�or�� as follows�

De�nition ��� �Logic Graph� Let an instance of 
	SAT be given by a set V of n
variables and a set C of m clauses over V� For each of the variables xi� 	 � i � n�
we construct four vertices vi�� vi�� vi� to vi	 and for each clause Cj� 	 � j � m we
construct six vertices wj�� wj�� wj�� wj	� wj
 and wj�� These vertices are connected
by the following edges�

�� two copies each of fvi�� vi�g and fvi�� vi	g� 	 � i � n�

�� fvi�� vi�g� 	 � i � n�


� fvi	� vi����g� 	 � i � n� 	�

�� fvn	� wm�g�

�� fv��� w��g�

�� two copies of fwj�� wj�g� fwj�� wj	g and fwj
� wj�g� 	 � j � m�
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�� fwj�� wj�g� fwj	� wj
g� 	 � j � m�

�� fwj�� wj����g� 	 � j � m� 	�

For each i� we connect one copy of fvi�� vi�g to one copy of fvi�� vi	g with an
�exclusive	or�� For each j� we connect one copy each of fwj�� wj�g� fwj�� wj	g and
fwj
� wj�g with a �three	input	or��

Now let us consider each literal pjk in F � If pjk � xi� we use an �exclusive	or� to
connect the copy of fwj��k��� wj��kg not connected to a �three	input	or� with the copy
of fvi�� vi�g which is not connected to fvi�� vi	g with an �exclusive	or�� If pjk � �xi� we
use an �exclusive or� to connect that copy of fwj��k��� wj��kg with a copy of fvi�� vi	g
which is not connected to fvi�� vi�g with an �exclusive	or��

See Figure � for a schematic of this
X

X

X

X

V

X

X

X

V

X

X

X
X X

X

V

x y z w

x
y

x w
z

x y z w

z w y
y

Figure �� A logic graph�

construction for F � �x
 y
 z�� ��x

�y 
 w� � �y 
 �z 
 �w�� A X symbol�
izes an �exclusive�or� relation and a
V symbolizes a �three�input�or� rela�
tion� The dark shaded part is the logic
graph for a variable and its negation�
and the light shaded part is the logic
graph for a clause� Garey� Johnson
and Tarjan prove�

Theorem ��� ��GJT���� The logic graph constructed for a 
	SAT formula F as
de
ned in De
nition 
�
 has a Hamiltonian circuit if and only if F is satis
able�

Thus� the Hamiltonian circuit problem for these logic graphs is NP�complete�
This completes our presentation of the logic graph from �GJT��
�

The idea of the proof condensed in � sentences is the following� We use the same
transformation of a ��SAT formula into a logic graph� In a second step� we transform
the logic elements into ROG components which have the same functionality as the
logic elements� The ROG components are then combined according to the logic
graph� In order to embed crossing logic �exclusive	or� elements into a ROG� we solve
a channel routing problem in knock knee mode and then transform the solution into a
ROG which has a Hamiltonian circuit if and only if the corresponding ��SAT formula
is satis�able�

��� Transformation into a ROG

In order to be able to combine the ROG components� we design each component to
have a standard length �SL� or a multiple of SL� Furthermore� we unify the interfaces
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of the components� For the left �right� top� bottom� front of a component we de�ne
interfaces LFI �RFI� TFI� BFI��

Figure � shows a TFI� Its mirror image on the horizon�

Figure �� TFI�
tal axis is a BFI� A ��� ������ rotation and swapping the
dashed with the dotted lines gives a LFI �RFI�� A dotted
and dashed border line is de�ned as LFB �RFB� TFB� BFB�� All interfaces have
standard length �SL� or a multiple of SL and can be �plugged together��

Each logic component consists of logic edges with a relation �e�g� �exclusive	or���
For each logic edge e of a logic component there exist two vertices u� v in the corre�
sponding ROG component such that for any Hamiltonian circuit in the logic graph
that contains edge e� there is a Hamiltonian circuit in the ROG that enters the com�
ponent through u and leaves it through v� We say u� v act like an edge �build a logic
edge�� Any two vertices p� q of the ROG component that are connected to other
components and do not build a logic edge have the following property� For any ROG�
there is no Hamiltonian circuit that enters the component at p and leaves it at q�

Lemma ��� � 	exclusive�or
 ROG� Figure � shows a ROG component that has
the functionality of the logic �exclusive	or� graph�

1 2        3        4        5                            6        7 8

9                    10      11      12      13      14     15                   16

17 18    19      20      21      22    23                     24

25         26     27      28      29      30      31     32       33        34

u

u’

v

v’

Figure �� �exclusive�or��

u’

u v

v’

Figure �� Local state�

More precisely� Figure � shows a horizontal �exclusive�or� ROG component tied
to edge fu� u�g� fv� v�g� The dark gray shaded part shows the connection of the com�
ponent with its surroundings� A ��� rotation and swapping the dashed with the
dotted lines results in a vertical �exclusive�or�� The proof of this theorem as well
as the proofs of the following theorems concerning ROG components is based on the
following observation� Consider two edges �x� y�� �y� z�� where y has degree �� Thus�
any Hamiltonian circuit has to visit these edges in consecution� A connected ver�
tex induced subgraph that is connected to other components by exactly two edges is
called a chain� Any Hamiltonian circuit through a graph containing such a compo�
nent as a vertex induced subgraph enters the component and visits all vertices before
the component is left� E�g� in Figure � there are only four vertices u� u�� v� v� where
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a path can enter or leave the component� and four horizontal chains� The theorem
is proven by observing that �any path from u to v� �v to u�� u to v� u� to v�� can
only visit 	 or � chains� and �there is no Hamiltonian circuit that enters and leaves
the component twice� combined with showing that there is a Hamiltonian path that
enters and leaves the component through u� u� �or v� v��� For the sake of completeness
we will spell out the complete proofs�

Proof� We show that the graph ful�lls the ROG properties and has the functionality
of the logic �exclusive�or� as de�ned in De�nition ��	�

	� The dotted lines divide the area of the component into rectangles
 the dashed
lines do the same� In the join of the dotted and dashed rectangular partition�
each rectangle is identi�ed with a vertex� Two vertices u and v are joined by an
edge if the corresponding rectangles u � au�bu and v � av�bv from the original
partitions satisfy� au � av or bu � bv� au� av � A� bu� bv � B� Furthermore� the
left �right� bottom� top� interface corresponds to LFI �RFI� BFB� TFB��

�� First� we observe that the vertices in each of the sets f�� �� �g� f		� 	�� 	�g�
f	�� ��� �	g� f��� ��� ��g are chains� The component can be visited through �
edges� fu� 	g� fv� �g� fu�� ��g and fv�� ��g� Assume there exists a Hamiltonian
path that enters this component through u� visits all vertices of the component�
and leaves it through v� Any Hamiltonian path has to visit chain f�� �� �g� It
follows that the path starting with fu� 	g has to visit chain f�� �� �g before any
other chain is visited� since the only possibilities to visit this chain are given by
path �	� �� �� �� �� ���� and path ��� �� �� �� �� ����� where vertex 	 only is adjacent
to u� � and �� One possibility to leave the chain is ��� �� �� � ���� �� �� ��� Since � is
the only vertex adjacent to v� there is no path visiting the other chains before
leaving the component through v�� The other possibility to leave the chain
is given by �	� �� �� ���� �� 	��� Since v� � and 	� are the only vertices that are
adjacent to vertex �� it also follows that there is no path visiting the other chains
before leaving the component through v�� Thus� there exists no Hamiltonian
path that enters this component through u and leaves it through v�

Since the number of chains is even and any path from u to v� visits an odd
number of chains� it follows that there is no Hamiltonian path that enters the
component through u and leaves it through v��

From the symmetry of this component and the above reasoning it follows that
there is no Hamiltonian path that uses all � edges fu� 	g� fv� �g� fu�� ��g and
fv�� ��g�

Figure � shows a Hamiltonian path that enters the component through u and
leaves it through u�
 we call this a local state of the component� A Hamiltonian
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path that enters the component through v and leaves it through v� is symmetric
to this path� Any Hamiltonian path through a graph containing this component
as a vertex induced subgraph has only these two possibilities to enter and leave
the component�

Thus it follows that the component acts like two separate edges� one connecting
u and u� and the other connecting v and v�� with the constraint that exactly
one of these two logic edges must occur in any Hamiltonian circuit of G� Thus�
the edges fu� u�g and fv� v�g have been �connected� by an �exclusive�or��

�

This ROGwith the functionality of the logic

Figure �� Variable and its nega�

tion�

�exclusive�or� graph can be modi�ed geomet�
rically for various purposes� Figure � shows a
ROG component for a variable and its nega�
tion� Without the gray shaded part �the �dou�
ble�edges��� the con�guration corresponds to
a �exclusive�or� where the pairs of vertices fu� u�g
and fv� v�g are laid out along one straight bound�
ary�

Figure � shows the layout of the pairs of vertices fu� u�g
u u’

v

v’

Figure �� �turn��

and fv� v�g around the corner� which is called a �turn��
More precisely� it is a 	left�top�turn
 ROG� A rotation
of this con�guration of 	��� � ����swapping the dashed
lines with the dotted lines� ����� swapping� is a 	right�
bottom�turn
� �	left�bottom�turn
�	right�top�turn
��

A logic �double	edge� consists of � di�erent vertices

n m l k j i

h
ge fdcb

au u’

Figure �� �double�edge��

that are combined by two edges� Any Hamiltonian path
visits a vertex exactly once and from the construction of
the logical graph it follows that exactly one edge of each
�double�edge� occurs in a Hamiltonian path�

Lemma ��� �	double�edge
 ROG� In combination with an �exclusive	or� and
�three	input	or� ROG component the ROG for a �double	edge� as shown in Figure �
acts like the logic �double	edge��

We say the upper �lower� logic edge of the logic �double�edge� occurs in a path�
if in the �double�edge� ROG edges fb� cg and ff� gg �fi� jg and fm�ng� occur in a
path�
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Proof� First� it is easy to see� that the dotted �resp� dashed� lines form a rectangular
partition� Furthermore� the component has left �right� interface LFI �RFI�� Since the
graph ful�lls the properties of De�nition 	�	 it follows that this component is a ROG�

A �double�edge� exists in the logic graph only in combination of two �exclusive�
ors� or one �exclusive�or� and one �three�input�or�� In each local state of an �exclusive�
or� ROG component �and �three�input�or� ROG component� as we will see later� in
a Hamiltonian path either both edges fb� cg and ff� gg �fi� jg and fm�ng resp�� occur
or none of them� Since u has degree �� edge fu� ag has to appear in any Hamiltonian
circuit� thus exactly one of the edges fb� cg and fm�ng has to appear in any Hamilto�
nian circuit� The �double�edge� con�guration is symmetric� such that this condition
also holds for the other direction and other side� �

In the logical graph� the con�gurations for the variables are simply combined with
edges� This functionality is provided by placing the ROG components of Figure �
next to each other�

Lemma ��� �	three�input�or
 ROG� Figure � shows the �three	input	or� com	
ponent tied to the �logic� �double	edge� fu� u�g� fv� v�g and fw�w�g� Without the
light gray shaded part� the component corresponds to the pure �three	input	or� ROG
component�

The entire Figure is a ROG con�guration for a clause�

 
u v v’ w

a b

c d e f

g h i j k l
u’ w’

Figure �� �clause��

 

Figure 	�� Local state�

Proof� First� we observe that the component ful�lls the ROG properties and has
right �left� interface RFI �LFI� three times in consecution� We subdivide the �gure
into three components �dark shaded in Figure ��� Each component is linked to other
components by � edges� E�g� the leftmost dark shaded component is combined to
the edges a� c� g and h� Observe that any Hamiltonian circuit in a graph G which
contains this graph as a vertex induced subgraph must visit the edges a through f �
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Observe that any dark shaded component has � edges connecting it to the outside� at
least � of them have to be taken� and every Hamiltonian circuit visits a component
an even number of times� Thus� the following condition holds� If edge g is visited in
a Hamiltonian circuit� then edge h is also visited� Similarly� if edge i is visited� then
also edge j is visited
 if edge k is visited then also edge l is visited� Furthermore� any
Hamiltonian circuit has to visit at least one of these pairs of edges� since these edges
are the only edges that enter the component� Figure 	� shows a possible local state
with the lower edge of �double�edge� fu� u�g and fv� v�g taken� Thus� this subgraph
acts like three �double�edges�� one connecting u and u�� one connecting v and v� and
the other connecting w and w�� with the constraint that at least one of the three lower
edges must occur in any Hamiltonian circuit of G� �

Since the ROG for the logical graph of a clause shown in Figure � consists of
a �three�input�or� combined with three �double�edges�� the entire Figure � builds a
ROG for a clause� In the logical graph� the con�gurations for the clauses are combined
with single edges� This functionality is provided by placing these components next
to each other�

��� Embedding of �exclusive�or�s between literals and vari�

ables

We now have constructed the ROG components for the variables and the clauses� To
conclude the construction we have to embed the �exclusive�or� connections between
the literals of the clauses and the variables� Each literal of each clause is connected
to exactly one variable� But a variable can be connected to more than one clause�
We call this con�guration a �multiple	exclusive	or� graph�

We combine a con�guration of a variable x and its negation �x to k� l �exclusive�
ors� that combine the variable with the corresponding literals� where k �l� is the
number of occurrences of variable x ��x�� We divide each ROG component for a
variable and its negation �see Figure �� at its vertical central line� Then� we stretch
each part such that it has width k �l� times SL� The gray shaded part of Figure 		
shows the �multiple�double�edge�
ROG which acts like a �double�edge� and builds the connection between the stretched
con�guration of a variable and its negation and � � 	 �exclusive�ors��
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Figure 		� Variable with two adjacent �exclusive�ors��

a
b

c
d

e
f

g
h

v   v’

Figure 	�� �multiple�double�edge�� local state with upper edge taken and lower edges

taken�

Lemma ��
 �	multiple�double�edge
� The ROG shown in Figure �� acts like a
�double	edge� where the gray shaded part can be copied �k � � times� and juxtaposed
horizontally� The ROG has to be combined with k �exclusive	or�s on its lower inter	
face and one stretched �exclusive	or� on its upper interface�

Proof� For the logic lower �upper� edge it is easy to see that the vertices a� b� c and d

�f � g� h and i� can be visited independently from the fact whether the lower �upper�
edge is taken or not� Since v and v� have degree � and there is no path from v to v�

visiting both edges the component acts like a �double�edge�� �

Observe that the horizontal length of the con�guration for all variables is equal
to the horizontal length of the con�guration for all clauses �which is �m times SL�
where m is the number of clauses��

In our embedding of the �exclusive�or� lines we have to handle �crossing�exclusive�
or� lines� The property which permits this is that �exclusive�or� lines can be con�
nected in series� to cross over an edge of G� when that edge is required to occur in
any Hamiltonian circuit�

Lemma ��� �	crossing�exclusive�or
 ROG� Figure �
 shows the ROG compo	
nent of two �crossing	exclusive	or� lines in connection with the edges fu� u�g� fv� v�g�
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u’

 p’

v’v

q’

q

u

p

Figure 	�� �crossing�exclusive�or��
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fp� p�g and fq� q�g� This component acts like four separate edges with the property
that in any Hamiltonian circuit in a graph G which contains this graph as a vertex
induced subgraph� either fu� u�g or fv� v�g are connected by an edge and either fp� p�g
or fq� q�g are connected by an edge�

Proof� First� observe that the ROG in Figure 	� �without the gray shaded parts�
ful�lls the ROG properties�

Figure 	� shows the logic components the con�p

u

q

X

v

XX X X

p

q

vu’

’

’

’

Figure 	�� Logic �crossing�

exclusive�or��

�guration is composed of
 the bold dashed lines
show a possible local state� Between fp� p�g and
fq� q�g we have � chains� as in the �exclusive�or�
con�guration� except that these chains are dis�
continued in the middle by �double�edge� con�
�gurations� These �double�edges� are combined
with �exclusive�or� con�gurations� Similarly to
all other �double�edges� in this construction� ex�

actly one edge of these �double�edges� has to be in any Hamiltonian circuit� Thus�
this graph acts like an �exclusive�or� for edge fp� p�g and fq� q�g� Which one of these
�double�edges� is in the Hamiltonian circuit is determined by the edge fu� u�g� Edge
fu� u�g is connected to the rest of the component by an �exclusive�or�� Thus� if fu� u�g
is in a Hamiltonian circuit� the left edge of a �double�edge� can not be in the Hamil�
tonian circuit and all right edges have to� Therefore� it follows that edge fv� v�g is not
in the Hamiltonian circuit� Thus� it follows that edge fu� u�g and fv� v�g are joined
by an �exclusive�or�� independently from the edges fp� p�g and fq� q�g� �

Another important ROG con�guration for theq

p’

p

q’

v

v’

u’u

Figure 	�� �knock�knee��

embedding of the �exclusive�or� lines connecting lit�
erals with variables is the one shown in Figure 	��
This component is called �knock	knee�� reminiscent
of a certain wiring mode in VLSI design� The ROG
component is tied to the edges fu� u�g� fv� v�g� fp� p�g
and fq� q�g� Without the dark shaded part the com�
ponent is a top�left�knock�knee
 its mirror image
with respect to the horizontal axis is a top�right�
knock�knee� An inspection of the �gure reveals
that this con�guration consists of two independent
�exclusive�or� con�gurations �fu� u�g �exclusive�or�

fv� v�g� fp� p�g �exclusive�or� fq� q�g� providing interfaces LFI� RFI� TFI and BFI�
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��� Routing problem

We now transform the problem of embedding the �exclusive�or� lines connecting
literals with variables into a channel routing problem in knock�knee mode�

Let pij be the i�th literal in the j�th clause� 	 � i � �� 	 � j � m� Let x�� � � � � xs
be the variables
 let kr be the number of occurrences of literal xr� and let �kl be
the number of occurrences of literal �xr� In VLSI design terminology� we create a
channel with �m bottom terminals pij in the order of their appearance in the clauses�
Then� we create �m top terminals x���� � � � � x��k�� �x���� � � � � �x���k�� � � � � xn��� � � � � xn�kn �
�xn��� � � � � �xn��kn � such that each literal occurs exactly as many times as needed in the
clauses� Then� the following top to bottom nets are created� Terminal pij builds a top
to bottom net with xp�q ��xp�q�� if pij is the q�th occurrence of xp ��xp� in the ordered
set of clauses�

Now� the problem is to �nd a routing that connects the terminals of each net�
where knock�knees are allowed� This can be done in O�m� time with an algorithm
due to �MPS��
�

For a net consisting of � terminals ti and tj� we say ti is the starting terminal� if
the column of ti lies left of the column of tj� In this case tj is the terminating terminal�
The width of the channel is O�m� and the height is bounded by the density� which
in turn is O�m��

Algorithm � �MPS��� Channel Routing �columns� nets�

forall columns from left to right do
if there are only starting terminals in the current column
if both starting terminals belong to one net
combine the terminals by a straight line�

else
if there are two tracks occupied by one net
close the net and use its tracks for the starting nets�

else
use a free track for every starting net�

else
close a terminating net and use its track for the other net �if any� which
has a terminal in the current column�

Figure 	� shows the solved routing problem according to formula F � �x 
 y 

z� � ��x 
 �y 
 w� � �y 
 �z 
 �w��
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x        y        z        x        y        w       y        z        w

y        y        y        z        z        w        wxx

Figure 	�� Solved routing problem�

��	 Combination of all ROG components

From a solution of the knock�knee routing problem we get a ROG layout as follows�
We draw a dotted square around each internal grid point� such that the square is
axis parallel� the corners are equidistant from the grid points and the side length
corresponds to the minimumdistance of two grid�points� Figure 	� shows all possible
dotted squares that can occur in the routing�

Figure 	�� Routing con	gurations 
from left to right�� edge� cross� knock�knee� turn� empty�

In order to transform the solution into a ROG� the con�gurations for the variables
are placed above the con�guration of the clauses� with distance SL times the number
of needed tracks in the solution of the routing problem� Thus� the space between the
clause and variable ROG con�gurations can be subdivided into squares of size SL by
SL� These squares are then �lled with the corresponding ROGs�

Observe that an empty dotted square of a column only occurs in connection with
a horizontal �exclusive�or�� a �turn�� or another empty dotted square� In this empty
dotted square we �ll in ROG component �empty� which is shown in Figure 	�� stretch
it to �ll all adjacent empty dotted squares of the column� and combine it with the
adjacent �exclusive�or� or �turn��
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In Algorithm �� the construction of the ROG is described more formally�
Up to now we left open how to

Figure 	��
�empty�


shaded��

S

S1

S2

S1

Figure 	�� �leftmost�� and

�rightmost edge��

embed the leftmost logic edge fv����
w���g and the rightmost logic edge
fvn�	� wm�	g �see Figure ��� Observe
from the logic graph that both edges
must be used in any Hamiltonian cir�
cuit� Thus� we can embed the left�
most edge with the con�guration in
Figure 	�� with the S part stretched
according to the size for the embed�
ding of the �exclusive�or� lines� Sim�
ilarly� the rightmost edge can be em�
bedded �see Figure 	��� This edge
can be used to �ll the empty space
behind the variables and the clauses
according to the number of addition�
ally used channels for the routing
�stretch S	 and S��� The graph thus
constructed ful�lls the ROG proper�
ties and has a Hamiltonian circuit i�
the initial ��SAT formula has a truth assignment�

   

Figure ��� Complete ROG�

Figure �� shows the complete ROG which has a Hamiltonian circuit if and only
if the corresponding ��SAT formula F � �x 
 y 
 z� � ��x 
 �y 
 w� � �y 
 �z 
 �w� is
satis�able�
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Algorithm � Transformation �F�GA�B�

Input� An instance F of 
	SAT�
Output� A ROG GA�B which has a Hamiltonian circuit if and only if F
is satis
able�

�	�Solve the Routing Problem described in Section 
�� for F �
���Arrange the ROG component of the logical graph for a clause m times in

consecution �see Figure ���
���For the i	th variable and its negation we take ROG component

	exclusive�or
 with logic edges in a horizontal line �see Figure ��� Let
k �l� be the number of occurrences of literal x ��x�� We divide this
component at its vertical central line� Then� we stretch the left �right�
part in the horizontal direction� such that it has width k �l� times SL
�see Figure ���� We then combine the left �right� part with a
	double�edge
 �see Figure �� in case k � 	 �l � 	� and a
	multiple�double�edge
 �see Figure ���� otherwise� After that� we
put it next the ROG component of the i� 		th variable and its negation�

���Arrange the row of ROG components for the variables above the row of
ROG components for the clauses� with distance SL times the number of
used tracks in step ��

���We divide the space between the row of the ROG components for the
variables and the row of the ROG components for the clauses into
squares SL�SL� which correspond to the dotted squares from step ����

���for each dotted square do
��� insert the corresponding ROG component at the corresponding place in the

ROG�
case edge� 	exclusive�or
 �see Figure ���
case cross� 	crossing�exclusive�or
 �see Figure �
��
case knock	knee� 	knock�knee
 �see Figure ����
case turn� 	turn
 �see Figure ���
case empty� 	empty
� connect it to a �turn� or �horizontal	edge� ROG
as described below �see Figure ����

���Insert ROG component left edge at the left side of the ROG �see
Figure ���� For this� stretch side S to the size of the number of used
tracks times SL�

���Insert ROG component right edge at the right side of the ROG �see
Figure ���� For this� stretch side S	 to the size of the number of
additionally used channels times SL and stretch side S� to the size of
the number of used tracks times SL�
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Lemma ��� �polynomial reduction� The reduction from 
	SAT to ROG Hamil	
tonian Circuit takes polynomial time�

Proof� The ROG component for the clauses can be constructed in linear time� since
the ROG component for each clause is equal to Figure � which has �xed size�

The ROG component for the variables can also be constructed in linear time�
since each component is either equal to Figure � or equal to a stretched version of
that �gure� and the stretching factor is bounded by the number of clauses times SL�

The routing problem is solved in linear time� using at most O�m�� space� where m
is the number of clauses� Thus� the transformation from the routing problem to the
construction of the ROG for the whole embedding of the �exclusive�or� lines� takes
at most quadratic time and needs O�m�� space� since the ROG components for the
routing con�gurations �see Figure 	�� have �xed size�

The ROG con�gurations of edge fvn	� wm	g and edge fv��� w��g have a �xed size
and can be embedded in O�	� time and space� Thus� it follows that the reduction is
polynomial�

Theorem ��� The ROG Hamiltonian Path Problem ��� is NP	complete�

Proof� Since the leftmost logic edge fv��� w��g has to be in any Hamiltonian circuit�
by deletion of this edge and closing the left side with a LFB� the NP�completeness
proof of the Hamiltonian path problem carries over� �

As a consequence� we get�

Theorem ��
 �rectangular join scheduling� Rectangular join scheduling is NP	
complete�

Proof� An algorithm solving the rectangular join scheduling problem also solves the
ROG Hamiltonian path problem�
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