
Diss. ETH No. 20995

Distributed and Event-Based
State Estimation and Control

A dissertation submitted to

ETH Zurich

for the degree of

Doctor of Sciences

presented by

SEBASTIAN TRIMPE
Diplom-Ingenieur Elektrotechnik, Hamburg University of Technology

born July 20, 1981
citizen of Germany

accepted on the recommendation of

Prof. Dr. Raffaello D’Andrea, examiner
Prof. Dr. Manfred Morari, co-examiner

Prof. Dr. Jan Lunze, co-examiner

2013

Institute for Dynamic Systems and Control
ETH Zurich
Switzerland

c© 2013 Sebastian Trimpe. All rights reserved.

Acknowledgments

I worked toward this thesis for almost five years – a significant portion of
my life – and the fantastic people around me contributed greatly to the
meaningfulness of this time period. Without them, I would not have enjoyed
my time in Zurich as much as I did, and this thesis would not have been
possible in its present form.

I owe my deepest gratitude to my advisor Raffaello D’Andrea. I feel hon-
ored having been one of Raff’s students and having had the chance to learn
from him in many different respects: through his creativity, his enthusiasm,
his broad expertise, and his brilliant thinking, all of which had significant
impact on my work. At the same time, I thank Raff for giving me the op-
portunity, the support, and the trust to take leadership and to develop my
own research direction. Further I am extremely thankful for the great per-
sonal relationship that we have, and I have many fond memories of our years
working together. I would sometimes go to see Raff in his office with an idea
or a problem, and we would end up arguing and doing math on the white
board for one, two, or sometimes three hours to rigorously address the tech-
nical or mathematical issue at hand. During these sessions we would often
find solutions and gain new insight, and just as often, we would raise new
questions too. Inevitably I would walk out of Raff’s office with a renewed
sense of enthusiasm for my research. These discussions were true highlights
of my PhD.

My gratitude extends to my co-examiners Manfred Morari and Jan Lunze.
Not only am I thankful to them for providing me with valuable feedback on
my doctoral thesis, but also for the years of excellent support I have received
from them, which began well before the final steps of my doctoral studies.

When Jan Lunze invited me to visit his lab at the Ruhr-Universität
Bochum in late 2009, we had just completed the Balancing Cube as the
experimental test bed for my doctoral studies, and I was seeking to define

3

Acknowledgments

my research agenda for the years to come. My visit in Bochum, as well as
many conversations with Prof. Lunze and his students thereafter, stimulated
my interest in the area of event-based state estimation and control and were
influential for many ideas that I developed during in my PhD research. I
would like to thank Prof. Lunze for this excellent scientific exchange and his
great support of my work.

Equally, I want to thank Manfred Morari. ETH Zurich is an excellent
environment for controls research, and the synergies that exist between the
controls groups play an important role in this. My home for the past five years
was the Institute for Dynamic Systems and Control (IDSC), and the Auto-
matic Control Laboratory headed by Manfred Morari and John Lygeros was
my second home. The various joint seminars and classes, yearly ski-weekends,
and many personal interactions served to create strong ties between the two
control labs, and were extremely valuable to me, both professionally and per-
sonally. My sincerest thanks go to Manfred Morari for attracting me to ETH
Zurich, for his valuable feedback on my work, and for his personal support.

Much of the five years has been spent with my colleagues at IDSC –
either in the lab, or outside the lab at group events and trips. What an
honor to have been part of this wonderful group, where people strive for
both individual and collective excellence and support each other with their
diverse skills. We have learned from each other in so many ways. Some of
these “working” relationships have developed into friendships that will last
for life.

First of all, I thank Angela Schoellig, with whom I had the pleasure to
share an office for the entire duration of my doctoral studies. Angela, who
began her studies at IDSC around the same time I did, was my partner
in the PhD process; I’d like to thank her for our many discussions – both
scientific and otherwise; for her excellent teamwork when being teaching as-
sistants; for shaping the research group with her ideas and mindset; for her
friendship; and, simply, for the great time we had in K33. I am very glad
that Philipp Reist was also my office mate for a number of years; I would
like to thank Philipp especially for the happiness and care that he brought
to the group; for many stimulating discussions; for his expertise in being the
only local in our group for a long time; for teaching me to understand Swiss
(not just the language); and for being a great friend. Likewise, I thank Sergei
Lupashin, Raymond Oung, and Markus Hehn for being fantastic colleagues
during all my years at IDSC and friends. I extend my thanks to all other
present and past members of our group: Felix Althaus, Federico Augugliaro,
Frédéric Bourgault, Dario Brescianini, Daniel Burch, Marc-Andre Corzillius,
Matt Donovan, Guillaume Ducard, Carolina Flores, Hans Ulrich Honegger,
Mike Hamer, Nico Hübel, Max Kriegleder, Cason Male, Gajamohan Mo-

4

hanarajah, John Morrell, Mark Mueller, Katharina Munz, Oliver Purwin,
Francisco Ramos, Robin Ritz, Geo Robson, Michael Sherback, Hallie Siegel,
Igor Thommen, Stefania Tonetti, and Markus Waibel.

The day when our colleague and friend Geo Robson died in an accident
was the saddest day of my time at IDSC. I feel deep gratitude that I had the
chance to meet and work with Geo. Geo’s passion for his dream, his great
personality, and his joy in life are what persist.

Building the experimental test bed of the Balancing Cube would not
have been possible without the incredible efforts of my collaborators on the
project. My special thanks goes to Matt Donovan for his contributions to the
concept, the design, and the realization of the Balancing Cube. Furthermore,
I am indebted to Daniel Burch, Sergei Lupashin, Hans Ulrich Honegger, and
Gajamohan Mohanarajah for their technical support and problem solving
skills. I also owe my gratitude to the many students who helped develop-
ing the Balancing Cube and who later used the platform for experimental
research projects with me.

I would like to thank Katharina Munz, Brigitte Rohrbach, Annina Fattor,
Claudia Wittwer, Aleksandra Vukovic, and Stefan Sieber for their adminis-
trative support of my work, and Hallie Siegel and Carolina Flores for their
excellent help with all types of media design. I especially thank Hallie for
her constructive feedback on my writing; I was glad to be able to benefit
from her excellent skills in science communication. Finally, I want to thank
all other members of IDSC and, in particular, Lino Guzzella and his group
for making our institute such a wonderful working environment.

Over the course of my PhD, I had many discussions and interactions
with researchers in controls and related fields – during summer schools, con-
ferences, workshops, and when presenting my work at the lab to visitors or
when visiting other research groups; these played an important role in my de-
velopment as a researcher. I am particularly thankful to Bob Bitmead, Karl
Henrik Johansson, Jan Lunze, and Richard Murray for fruitful discussions
during my visits of their research groups, and also to Karl Johan Åström for
giving an inspiring talk on event-based control during his visit at ETH early
on in my PhD.

Furthermore, I want to thank my former advisors from the Hamburg
University of Technology, Andreas Kwiatkowski, Herbert Werner, Gerwald
Lichtenberg, Edwin Kreuzer, and Wolfgang Meyer, as well as Tarek Zohdi
from the University of California at Berkeley, for sparking my interest in
systems, dynamics, automation, and control.

I also thank my parents, Hannelore and Gerd, and my sisters, Christina
and Nora, for supporting me in becoming who I am.

5

Acknowledgments

Finally, and most importantly, I thank my wife Britta and my son Joris.
There are so many things that I need to thank you for, but let me combine
all of these into just one word: thank you for your love.

Sebastian Trimpe
Zurich, Spring 2013

Thesis Cover

Carolina Flores is gratefully acknowledged for the photo of the Balancing
Cube on the cover of this thesis.

Thesis Template

I thank my colleagues Angela Schoellig and Sergei Lupashin for providing
the LATEX template for this thesis, which builds upon the basic template
provided by Leif Andersson from Lund University, who is also gratefully
acknowledged.

Financial Support

The Swiss National Science Foundation (SNSF) is gratefully acknowledged
for funding this research in part under the grant “Distributed Estimation
and Control of Mechatronic Systems.”

6

Abstract

In this thesis, state estimation and control are considered for dynamic sys-
tems with multiple distributed control agents (each equipped with sensing,
actuation, and computation) that share data with each other over a broad-
cast network in order to coordinate their actions. With the state estimation
algorithms that are developed for this class of systems, each agent can esti-
mate the full state of the networked system based on its own sensor measure-
ments and the sporadically transmitted measurements of the other agents.
In order to ensure an efficient use of the shared communication resource,
each agent transmits its sensory data only when certain events indicate that
new data is required to meet a certain estimation performance. A balancing
cube serves as the test bed to demonstrate that these event-based estimation
algorithms can be used for event-based control when combining them with
standard state-feedback controllers. The experimental results show that the
event-based control system significantly reduces average network traffic as
compared to a system that uses periodic data transmission.

The two main parts of this thesis are 1) the development of distributed
and event-based state estimation methods, and 2) the design and construc-
tion of the Balancing Cube as a test bed for distributed estimation and
control.

The key feature of the algorithms for distributed and event-based esti-
mation is that each agent in the network broadcasts its local sensor measure-
ments to all other agents only if the data is required in order for the other
agents to meet a certain estimation performance. To be able to make this
decision, each agent implements a state estimator that is connected to the
broadcast network (a common bus). Since the state estimate is computed
based on data received over the bus only (the local sensor data is used only
when also broadcast), the estimates are the same on all agents and repre-
sent the common information in the network. The estimator can hence be

7

Abstract

used to make the transmit decision: if the common estimate of a particular
measurement is already “good enough,” it is not necessary to communicate
this measurement; if the common estimate is poor, on the other hand, the
measurement is transmitted so that all agents can update their estimates.

Two different decision rules for determining whether an estimate is “good
enough” are considered in this work: the first compares the real-time mea-
surement to the estimator’s prediction (measurement-based triggering), and
the second makes the transmit decision based on the estimation error vari-
ance (variance-based triggering). In addition to the different triggering mech-
anisms, the developed estimator variants differ in their use of the state esti-
mation algorithms (Kalman filters or modified Luenberger observers).

Theoretical guarantees are obtained for some of the event-based esti-
mation methods developed herein. For event-based state estimation with
variance-based triggering (Paper I), the resulting update equation for the es-
timation error variance of the Kalman filters is a deterministic equation with
switching (the switching modes correspond to the available measurements).
This variance update equation represents a new type of Riccati equation,
whose iterations typically converge to periodic solutions. This convergence
is proven for the special case of a scalar system. In another event-based es-
timation variant, a suitable measurement-based triggering rule is combined
with a linear state estimator that switches between pre-computed static gains
(Paper III). Here, it is proven that the event-based state estimator mimics
a centralized Luenberger observer with periodic communication of all mea-
surements up to a guaranteed bound.

The usefulness of the developed algorithms for event-based control is
demonstrated through experiments on an unstable system. The event-based
control system consisting of the event-based state estimators and static-gain
state-feedback controllers is used to stabilize the Balancing Cube (Paper II
and Paper III).

The Balancing Cube (Paper IV) is a dynamic sculpture that can balance
autonomously on any of its edges or corners. When standing on a corner,
the cube represents a three-dimensional inverted pendulum with six rotat-
ing arms mounted on its inner faces that keep the cube in balance. The
arms are designed as self-contained modular units (called modules) that are
equipped with sensors, actuation, a computer, and a battery. The modules
exchange data over a shared communication bus. They constitute the agents
in the distributed and networked control system; their joint objective is the
stabilization of the cube. The Balancing Cube combines the challenges of
nonlinear unstable dynamics with distributed control and networked com-
munication, making it a rich platform for research in dynamics and control.

In addition to serving as motivation and experimental platform for the

8

event-based estimation and control methods herein, the Balancing Cube also
led to research results in other areas. These results are also part of this thesis.
For example, the algorithm that was developed to estimate the cube’s tilt
from multiple inertial sensors (Paper IV) can be applied to any rigid body
with only rotational degrees of freedom. Since this estimation method does
not rely on a dynamic system model, it works independently of the rigid body
dynamics (such as slow or fast motion, or when changing the system’s mass
configuration). The limiting property of the matrix exponential (Paper V)
is another result that was triggered by a concrete problem on the cube. The
mathematical result is useful for obtaining simplified models of dynamic
systems with sufficiently different time scales, such as the cascaded control
system with high-gain inner feedback loops that is used on the cube.

9

10

Kurzfassung

In dieser Dissertation werden Verfahren zur Regelung und Zustandsschät-
zung für dynamische Systeme mit mehreren verteilten Agenten entwickelt.
Jeder Agent ist mit eigener Sensorik, Aktorik, und Rechnerleistung aus-
gerüstet und tauscht mit anderen Agenten Daten über ein gemeinsames
Broadcasting Netzwerk aus. Mit Hilfe der entwickelten Zustandsschätzver-
fahren kann jeder Agent den vollständigen Zustandsvektor des vernetzten
Systems basierend auf seinen lokalen Sensormessdaten und auf sporadisch
von anderen Agenten übertragenen Daten schätzen. Um eine effiziente Nut-
zung des Kommunikationsnetzwerks zu gewährleisten, sendet jeder Agent
seine Sensormessdaten nur zu bestimmten Ereignissen, welche anzeigen, dass
neue Messdaten erforderlich sind um eine gewisse Schätzgüte zu erreichen.
Ein balancierender Würfel (“Balancing Cube”) dient als Versuchsstand zur
experimentellen Demonstration, dass die ereignisbasierten Zustandsschätz-
verfahren bei Kombination mit geeigneter Zustandsrückführung auch zur
ereignisbasierten Regelung verwenden werden können. Die experimentellen
Resultate zeigen, dass mit diesem Ansatz die durchschnittliche Auslastung
des Netzwerks gegenüber periodischer Datenübertragung deutlich reduziert
wird.

Die Entwicklung von verteilten und ereignisbasierten Schätzverfahren ei-
nerseits, und der Entwurf und die Konstruktion des Balancing Cube als ein
experimenteller Versuchsstand für verteilte Zustandsschätzung und Rege-
lung andererseits, bilden die beiden Hauptteile dieser Dissertation.

Das Hauptmerkmal der Algorithmen für verteilte und ereignisbasierte
Schätzung besteht darin, dass jeder Agent des Netzwerks seine lokalen Sen-
sormessdaten nur dann an alle anderen Agenten überträgt, wenn diese Daten
für die anderen Agenten notwendig sind, um eine bestimmte Schätzgüte zu
erzielen. Um diese Entscheidung treffen zu können, verwendet jeder Agent
einen zweckbestimmten Zustandsschätzer, welcher anhand der über das ge-

11

Kurzfassung

meinsame Netzwerk (Bus) kommunizierten Messdaten den Systemzustand
schätzt. Da diese Zustandsschätzung somit ausschliesslich auf solchen Daten
basiert, die über den Bus empfangen wurden (die lokalen Messdaten werden
nur dann verwendet, wenn sie auch über den Bus kommuniziert werden),
sind die Schätzungen auf allen Agenten gleich und repräsentieren somit die
gemeinsame Information im Netzwerk. Der Schätzer kann daher verwendet
werden, um zu entscheiden, ob eine Sensormessung gesendet werden soll oder
nicht: Ist die gemeinsame Schätzung einer bestimmten Messung bereits “gut
genug”, so ist die Übertragung dieser Messung nicht nötig; wenn die gemein-
same Schätzung jedoch schlecht ist, wird die Messung über den Bus gesendet,
so dass alle Agenten ihre jeweiligen Schätzungen aktualisieren können.

Für die Entscheidung, ob eine Messung “gut genug” ist, werden zwei un-
terschiedliche Regeln untersucht: bei der einen, werden die tatsächlichen Sen-
sormessungen mit ihrer Vorhersage durch den gemeinsamen Schätzer vergli-
chen (Messdaten-basiertes Senden, engl. “measurement-based triggering”);
wohingegen die andere Regel auf der Schätzfehlervarianz basiert (Varianz-
basiertes Senden, engl. “variance-based triggering”). Zusätzlich zu diesen
zwei Sendemechanismen unterscheiden sich die in dieser Arbeit entwickelten
Varianten für ereignisbasierte Zustandsschätzung noch in den verwendeten
Schätzalgorithmen (Kalman Filter oder modifizierter Luenberger Beobach-
ter).

Für einige der hierin entwickelten ereignisbasierten Schätzverfahren wer-
den theoretische Garantien hergeleitet. Bei ereignisbasierter Zustandsschät-
zung mit Varianz-basiertem Senden (Paper I) erfolgt die Iteration der Schätz-
fehlervarianz gemäss einer deterministischen Gleichung mit schaltendem Ver-
halten, wobei die Schaltmodi den zum jeweiligen Zeitpunkt zur Verfügung
stehenden Messungen entsprechen. Diese Iterationsgleichung stellt einen neu-
en Typ einer Riccatigleichung dar, deren Lösungen typischerweise asympto-
tisch periodisches Verhalten aufweisen. Die Konvergenz gegen periodische
Lösungen wird für den Spezialfall eines skalaren Systems bewiesen. Für ei-
ne weitere Variante der ereignisbasierten Schätzung (schaltender linearer
Schätzer mit Messdaten-basiertem Senden, Paper III), wird gezeigt, dass
der ereignisbasierte Zustandsschätzer einen zentralen Luenberger Beobach-
ter mit periodischem Zugriff auf alle Messdaten bis auf einen beschränkten
Fehler approximiert.

Die Möglichkeit, die entwickelten Schätzalgorithmen für ereignisbasierte
Regelung zu verwenden, wird anhand von Experimenten mit einem insta-
bilen System demonstriert: Das ereignisbasierte Regelsystem bestehend aus
einem ereignisbasierten Zustandsschätzer und einem Regler mit statischer
Zustandsrückführung kann zur Stabilisierung des Balancing Cube auf einer
seiner Ecken oder Kanten verwendet werden (Paper II und Paper III).

12

Der Balancing Cube (Paper IV) ist eine dynamische Skulptur, welche
selbstständig auf einer beliebigen Kante oder Ecke balancieren kann. Wenn
der Würfel auf einer seiner Ecken steht, stellt er ein dreidimensionales inver-
ses Pendel dar, welches von sechs rotierenden Armen auf seinen Innenflächen
im Gleichgewicht gehalten wird. Die Arme sind als eigenständige modula-
re Einheiten (genannt “Module”) ausgelegt. Jedes Modul ist mit Sensoren,
einem Aktuator, einem Computer und einem Akku ausgerüstet; und die
Module tauschen untereinander Daten über einen gemeinsamen Kommuni-
kationsbus aus. Die Module bilden dabei die Agenten des verteilten und ver-
netzten Regelungssystems; ihr gemeinsames Ziel besteht darin, den Würfel
zu stabilisieren. Der Balancing Cube vereint damit die Herausforderungen
einer nichtlinearen und instabilen Streckendynamik mit verteilter Regelung
und Netzwerk-basierter Kommunikation, und stellt somit eine interessante
Problemstellung für regelungstechnische Forschung dar.

Im Rahmen des Balancing Cube Forschungsprojektes sind neben ereig-
nisbasierten Regelungs- und Schätzverfahren noch weitere Forschungsergeb-
nisse erzielt worden, deren Anwendung über die konkrete Problemstellung
des Balancing Cube hinausgehen. Zum Beispiel wurde eine Methode zur
Schätzung der Neigung des Würfels aus den Messdaten mehrerer Inertial-
sensoren entwickelt (Paper IV). Mit dieser Methode kann die Neigung belie-
biger Starrkörper mit ausschliesslich rotatorischen Freiheitsgraden geschätzt
werden. Ausserdem funktioniert dieses Schätzverfahren unabhängig von der
Dynamik des Starrkörpers (so zum Beispiel für langsame und schnelle Be-
wegungen oder bei einer Veränderung der Massenkonfiguration), weil der
Algorithmus nicht auf einem Model der Systemdynamik beruht. Die Grenz-
werteigenschaft der Matrixexponentialfunktion (Paper V) ist ein weiteres
Beispiel für ein Forschungsergebnis, welches aus einem konkreten Problem
bei der Entwicklung des Würfels hervorging. Das mathematische Resultat ist
nützlich zum Beispiel bei der Berechnung vereinfachter Modelle von dyna-
mischen Systemen mit stark unterschiedlichen Zeitkonstanten, wie beispiels-
weise der Kaskadenregelung mit schnellen inneren Regelkreisen, die auf dem
Balancing Cube verwendet wird.

13

14

Contents

Preface . 19

1. Introduction . 21
1.1 Scope and Motivation . 22
1.2 Thesis Outline . 30

2. Contributions . 33
2.1 Distributed and Event-Based State Estimation (Part A) 33
2.2 The Balancing Cube: A Test Bed for Distributed Estima-

tion and Control (Part B) 44
2.3 List of Publications . 49
2.4 Invited Talks . 50
2.5 Supervised Student Projects 51
2.6 Outreach . 52

3. Future Directions . 55
3.1 Distributed and Event-Based State Estimation (Part A) 55
3.2 The Balancing Cube: A Test Bed for Distributed Estima-

tion and Control (Part B) 58

References . 59

A. DISTRIBUTED AND EVENT-BASED STATE ESTI-
MATION . 63

Paper I. Event-Based State Estimation with Variance-Based
Triggering . 65
1. Introduction . 66
2. Event-Based State Estimator 72
3. Illustrative Examples . 75
4. Asymptotic Periodicity for Scalar Problem 80

15

Contents

5. Discussion . 99
Appendix . 101
A. Proof of Lemma 1 . 101
B. Proof of Lemma 2 . 106
References . 107

Paper II. An Experimental Demonstration of a Distributed
and Event-Based State Estimation Algorithm 111
1. Introduction . 112
2. State Estimation Algorithm 114
3. Application to the Balancing Cube 120
4. Concluding Remarks . 126
Acknowledgements . 129
Appendix . 129
A. State Space Model and Feedback Gains of the Balancing

Cube . 129
References . 131

Paper III. Event-Based State Estimation with Switching Sta-
tic-Gain Observers . 133
1. Introduction . 134
2. Estimation Problem Formulation 137
3. Event-Based State Estimator 139
4. Analysis . 140
5. Experiments . 143
6. Concluding Remarks . 146
Acknowledgements . 148
References . 148

B. THE BALANCING CUBE: A TEST BED FOR DIS-
TRIBUTED ESTIMATION AND CONTROL 151

Paper IV. The Balancing Cube: A Dynamic Sculpture as
Test Bed for Distributed Estimation and Control 153
1. Introduction . 154
2. Design . 159
3. Operation . 164
4. Modeling . 165
5. Control System Architecture 175
6. State Estimation . 177
7. Control . 183
8. Experiments . 189

16

9. Concluding Remarks . 192
Acknowledgments . 194
References . 194
Sidebar 1: Balancing Cube on Tour 200
Sidebar 2: What Is the Cube’s Maximal Balancing Range? . . . 201
Sidebar 3: Time Scale Separation Algorithm 203
Sidebar 4: What Is the Effect of Integral Action in the Controller? 205
Sidebar 5: Why Are the Top Modules Used Less? 208
Sidebar 6: How Steady Can the Cube Balance? 213
Sidebar 7: Other Balancing Shapes 218

Paper V. A Limiting Property of the Matrix Exponential . 219
1. Introduction . 220
2. Notation and Preliminaries 222
3. Condition Based on the Log-norm of K(α) 223
4. K(α) with Special Functional Dependency 230
5. Concluding Remarks . 235
Appendix . 235
A. Proof of Fact 1 . 235
B. Proof of Fact 2 . 235
References . 236

17

18

Preface

This thesis reports the results of the author’s doctoral studies at the Institute
for Dynamic Systems and Control (IDSC) at ETH Zurich from March 2008
until February 2013 under the supervision of Prof. Raffaello D’Andrea.

The thesis is structured as a cumulative dissertation with its main parts
consisting of five self-contained research articles (three journal, two confer-
ence) that have been published or submitted for publication throughout the
doctoral studies. Three introductory chapters provide an introduction to the
topics considered in this work, give an overview of the contributions of this
thesis, and point to directions for future research.

This thesis contributes to the field of distributed and event-based esti-
mation and control for networked systems. In particular, the main contri-
butions are: the development and theoretical analysis of distributed and
event-based state estimation algorithms for networked systems; the develop-
ment of a test bed for networked and distributed estimation and control (the
Balancing Cube); and the experimental validation of event-based control on
this test bed by combining the estimation algorithms developed herein with
standard state-feedback control. The results on event-based state estima-
tion and their application on the Balancing Cube make up Part A of this
thesis. The design, modeling, and control of the test bed are presented in
Part B, along with further research contributions that lie outside the area
of event-based estimation and control.

19

20

1

Introduction

Advances in sensor and computer technology in the last several decades
(see [1]–[3]) make it now viable to embed sensors, high performance com-
puting, and communication technology into almost any engineering system.
Embedded systems connect with each other, for example, to form large sen-
sor networks whose sensing and monitoring capabilities exceed those of a
single sensing device (for example, real-time traffic monitoring [4], and au-
tonomous ocean monitoring systems [5,6]). To leverage the full potential of
the vast amount of available information that comes with inexpensive sens-
ing, computation, and communication, however, engineering systems must
be enabled to make decisions and act autonomously based on this data.

This doctoral thesis considers control systems where multiple autonomous
agents make their control decisions based on feedback data from their local
sensors and data received from other agents. The agents exchange data over
a shared communication network in order to coordinate their actions and
to achieve a joint objective, such as the stabilization of the interconnected
dynamic system. Such systems, where multiple controller, sensor, and actu-
ator units communicate over a shared multi-purpose network, are referred
to as networked control systems (NCSs) [7]–[11].

Traditional control system design typically assumes a fixed communica-
tion structure and periodic data transmission between the controller, the
sensors, and the actuators. In contrast, NCSs allow for more flexible com-
munication structures where the entities of the network can connect and
exchange data when needed. The communication medium is not longer ex-
clusively dedicated to a single feedback control loop, but shared by multiple
controllers. The design of safe and efficient NCSs requires the development
of novel design methodologies that take the network into account as a shared
resource, and address the design of a network access strategy in tandem with
the design of the estimation and control algorithms that rely on the network

21

Chapter 1. Introduction

data. This work focuses on the development and experimental validation
of estimation and control methods that ensure (in addition to the control
objectives) an efficient use of the shared communication resource by invok-
ing the transmission of feedback data only when certain events indicate that
new data is necessary (for example, when an error signal crosses a threshold
level).

The thesis is separated into two parts that contain its main contribu-
tions. With the distributed and event-based state estimation algorithms that
are developed in Part A, each agent of an NCS can estimate the complete
state of the interconnected dynamic system while, at the same time, sensor
data is exchanged between the agents only when required to meet a certain
estimation performance. Part B describes the design of the Balancing Cube
as a test bed for distributed estimation and control, which was developed as
part of these doctoral studies. The Balancing Cube is a dynamic sculpture
that can balance autonomously on any one of its edges or corners through
the joint action of six rotating arms on its inner faces that constitute the
control agents of the NCS.

The event-based state estimation algorithms of Part A were successfully
used for event-based control in experiments on the cube: the state estimates
computed on each control agent were used with a state-feedback control law
to compute control commands for the agent’s actuator. For the event-based
state estimation methods in Part A, theoretical guarantees are presented
herein. The effectiveness of the methods for event-based control (when
the event-based estimators are combined with state-feedback controllers) is
demonstrated through experiments on the cube.

The sections below introduce the scope and the motivation of this work
in greater detail (Sec. 1.1) and present the outline of this thesis (Sec. 1.2).

1.1 Scope and Motivation

Figure 1.1 depicts the class of the networked control systems that is con-
sidered in this thesis. Multiple sensor-actuator agents (sensor, actuator,
and algorithm block in Fig. 1.1 are together considered as one agent) are
distributed spatially along a dynamic system. The dynamic system may
have unstable modes and dynamic coupling between the agents. Each agent
observes part of the system state through its sensors, and it computes com-
mands to its local actuator based on the local sensor data, the data received
from the other agents over the common bus, and a feedback law. The feed-
back controller typically consists of a state estimator and a state-feedback
law. Each agent is responsible for deciding when to broadcast its local sensor

22

1.1 Scope and Motivation

data over the bus. By exchanging data over the network, the agents cooper-
ate with each other to achieve a common objective, for example, stabilization
of the dynamic system.

The following list summarizes key properties of the NCSs considered in
this work:

Unstable and coupled dynamics. Being a balancing object with
multiple actuated arms mounted on the same rigid body, the test bed
developed in Part B is unstable and the agents’ dynamics are coupled.
For the control and estimation algorithms developed herein, we do not
impose restrictions on the system dynamics with respect to stability
or the dynamic coupling. For the development of the algorithms in
Part A, we assume linear dynamics.

Noisy output measurements. The sensor measurements that are
available from the system are corrupted by noise. Not all system
states are measured.

Distributed control system. There is no hierarchical order among
the agents of the NCS and, in particular, there is no central control
unit.

System

S A S A S A

Common Bus

Algorithm
- State Estimation

- Transmit Logic

- Control

Algorithm
- State Estimation

- Transmit Logic

- Control

Algorithm
- State Estimation

- Transmit Logic

- Control

. . .

Data flow:

periodic

sporadic

Figure 1.1 Abstraction of the networked control systems considered in this
thesis. Multiple sensor (S) and actuator (A) units are distributed spatially along
a dynamic system. Each sensor and actuator is associated with an algorithm

block; and sensor, actuator, and algorithm together are denoted as an agent.
Each agent runs control and estimation algorithms, and decides whether or not to
transmit its local sensor measurements to its peers over the common bus. Solid
lines indicate periodic data flow (at every instant of an underlying discrete-time

sampling), and dashed lines indicate sporadic transmission of data (not at every
instant).

23

Chapter 1. Introduction

Stabilizability and detectability. From all inputs (actuators) ta-
ken together, the system is assumed to be stabilizable; and from all
outputs (sensor measurements) taken together, the system is assumed
to be detectable. Yet, the system needs neither be stabilizable nor
detectable from the local sensors and actuators of a single agent alone.

Communication network. Since the communication network must
support the exchange of feedback data required for stabilization,
we use a reliable communication network (Controller Area Network
(CAN)) to connect the control agents of the test bed developed in
Part B. The shared bus of this network type allows all other agents
to receive the data if any agent puts data on the bus. For the develop-
ment of the event-based estimation algorithms in Part A, we assume
an ideal bus network where communication is without delay and data
loss.

The framework of the NCS shown in Fig. 1.1 includes other types of
networked systems, to which the algorithms developed herein can be equally
applied. For example, the agents may be heterogeneous in the sense that
some agents may be missing local actuators or sensors. If all actuators are
removed, the system in Fig. 1.1 represents a sensor network [12, 13], where
multiple sensors observe a dynamic process and transmit their measurements
over the bus. One or more estimator nodes connected to the bus receive
the data and estimate the process state, for example, for the purpose of
monitoring the process from a remote location.

The work herein aims to develop algorithms for general systems within
the class of NCSs considered. The results therefore contribute to the fun-
damental research in the field. To validate the assumptions made in the
theoretical development, as well as to trigger new research questions, the
Balancing Cube was developed as a physical representation of an NCS. The
problems addressed in this thesis (such as coordination of multiple control
agents, network-based control, management of a shared communication re-
source) play an important role in many application areas. Examples of to-
day’s application areas for multi-agent or networked control include sensing
and monitoring systems [4]–[6], transportation systems (for example, vehicle
platooning [14]), distribution systems (autonomous warehouse [15]), and in-
dustrial automation [16]. Communication networks and their consideration
in the design of control and estimation algorithms will become even more
important as the number of interconnected entities is expected to increase
in future engineering systems such as cyber-physical systems [17, 18] with
envisioned application domains like transportation, power systems, smart
buildings, mobile robots, and process industry.

24

1.1 Scope and Motivation

Part A. Distributed and Event-Based State Estimation

A key assumption in traditional control system design is the continual flow
of data from the sensors to the controller, and the controller to the actuator.
In continuous-time control [19, 20], the data signals are continuous in time
(for example, an analog voltage signal representing a sensor measurement);
thus, the controller receives new information about the plant continuously.
In discrete-time or digital control [21, 22], data is exchanged periodically
at equidistant sampling instants (for example, a digital sensor transmitting
measurements every 10ms). The periodic sampling rate of a discrete-time
control system is a design parameter and usually chosen to be significantly
larger than the natural frequency of the process that is controlled. Both
paradigms have in common that the instants when data is transmitted de-
pend on time (every time for continuous-time control and at equidistant
instants for discrete-time control), and that they are fixed during the system
design, rather than adapted to the state of the system during operation.
In order to guarantee the continual flow of data in the implementation of
traditional control systems, dedicated communication hardware is usually
required for each data link between sensors, controllers, and actuators (for
example, every sensor is connected to the controller through an individual
link, and the link is used exclusively to communicate that sensor’s measure-
ments).

In networked control systems, however, data is exchanged between sensor,
actuator, and control units over a multi-purpose network. Multiple control
loops are typically closed over the same network, and the different entities
may exchange data of various content (for example, in addition to sensor
data and control commands of typical feedback control systems, data for
system health monitoring or higher-level tasks such as adaptation may be
exchanged). For the design of cost effective networked control systems, it is
vital to consider the communication network as a shared resource and design
network access strategies (who talks to whom and when) in tandem with the
control and estimation algorithms that use the network. This requires the
development of design methodologies that extend beyond traditional control
design.

Event-based estimation and control approaches fall into this category of
algorithms that consider the estimation and control design problem jointly
with the design of a communication strategy. Event-based control started
with the work in [23, 24] and has since developed into an active field of
research (see [25] for an overview). In traditional control systems, communi-
cation is time-triggered. In event-based systems, however, data is exchanged
only when certain events indicate that new data is required in order to meet

25

Chapter 1. Introduction

some specification of the control system (such as a stability criterion, or con-
trol or estimation performance). This way, the transmission of data can be
linked to its relevance for control or estimation, which allows for an efficient
and adaptive use of the communication resource.

Part A of this thesis focusses on the development of event-based state esti-
mation methods for a process that is observed by multiple sensors connected
over a common bus (such as in Fig. 1.1). In particular, we seek to develop
algorithms that enable each agent to (i) estimate the full state of the dynamic
system, and (ii) transmit sensor data only when the data is required for the
other agents in order to meet a certain estimation performance. If objective
(i) was considered exclusively, an optimal strategy would be for all sensors to
communicate their measurements at every time step (provided the network
capacity allowed this), since this would maximize the information available
for state estimation. On the other hand, if one only cares about minimizing
communication, no communication at all would be the obvious solution. Yet,
some inter-agent communication is required to obtain bounded estimation
errors for the problem at hand since the system is generally not detectable
from the local sensors of an agent. It is therefore clear that considering the
objectives (i) and (ii) simultaneously will yield a trade-off between estima-
tion performance and average communication rates. The developed state
estimation methods are distributed because the transmit decision is made
locally by every agent.

While the focus of the development and theoretical analysis in this part
of the thesis is on methods for event-based state estimation, we also com-
bine the algorithms with state-feedback controllers to obtain an event-based
control system. The feasibility of this approach for event-based control is
demonstrated through experiments on the Balancing Cube test bed. The
experimental results for event-based control are also described in Part A
of this thesis. An overview of the contributions of this part to the field of
event-based state estimation and control is given in Sec. 2.1.

Part B. The Balancing Cube: A Test Bed for Distributed Estima tion and
Control

An independent goal of these doctoral studies was the development of a
three-dimensional dynamic sculpture that can balance autonomously on a
single point. Like a troupe of acrobats balancing in formation1, the sculp-
ture has multiple identical balancing modules that adjust their motion and

1The first ideas for building a self-balancing dynamic sculpture by Raffaello D’Andrea

were inspired by the Cirque du Soleil performance “Statue Act,” where two individuals
achieve various balance poses through coordination and precise control of their bodies.

26

1.1 Scope and Motivation

coordinate with each other. The balancing modules are designed as self-
contained units equipped with sensors, actuation, computation, and power;
and they coordinate with each other by exchanging data over a network. The
system therefore falls into the class of NCSs depicted in Fig. 1.1 making it a
test bed for the research results of Part A as well as further results presented
in this part.

The key challenges in the design of such a dynamic sculpture can be
summarized as follows:

Balancing. The sculpture needs active stabilization to be able to
balance on a single point.

Modular design. The balancing modules are self-contained units
equipped with sensing, actuation, computation, communication, and
power. The modular design allows their use for balancing different
shapes such as a cube, a pendulum, or a tetrahedron (the first two
were realized within this work).

Coordination. Since the balancing modules are mounted on the
same rigid body, the dynamics of the individual units are coupled.
Thus, the modules must coordinate with each other (for example, by
exchanging data over a communication network).

Interaction. The sculpture is dynamic and interactive. Users initi-
ate the sculpture’s autonomous balancing by placing it on one of its
tips. They can interact by pushing the sculpture. The structure must
thus be able to withstand repeated falls.

We began by building an inverted pendulum (Fig. 1.2, right) that served
as a one-dimensional prototype of the cube. The pendulum’s single degree
of freedom is stabilized by a single balancing module. Once this proof-
of-concept was complete, we built the Balancing Cube – a full 3D multi-
body inverted pendulum (Fig. 1.2, left) – which has six balancing modules
mounted on its inner faces and is more than two meters tall when standing
on one of its corners.

Building the Balancing Cube represented a system design challenge that
required the integration of various components including the mechanical
structure, the actuation mechanism, the sensor systems, the electronics, the
computer hardware, the communication network, and the control system.
In addition to the system integration, the main contributions within these
doctoral studies were the design and the implementation of the control and
estimation algorithms that enable the cube to balance. The control chal-
lenges that the above design poses are:

27

Chapter 1. Introduction

Figure 1.2 The Balancing Cube (left) is a dynamic sculpture that can balance
autonomously on any one of its corners or edges through the action of six balancing
modules on its inner faces. Each module carries actuation, sensing, computation,

and power; and it coordinates with its peers by exchanging data over a communi-
cation network. The inverted pendulum (right) is a one-dimensional abstraction
and early prototype of the cube. The Balancing Cube in the shown configuration
is about 2m tall; the pendulum body has a length of roughly 1.5m.

Nonlinear unstable dynamics. The cube standing on one of its
edges or corners represents a 1D/3D inverted pendulum with unstable
and nonlinear dynamics. The basal control objective is stabilization.

Underactuated mechanical system. Since the degrees of freedom
of the cube body are not actuated, the system is underactuated, [26].

Distributed control. Each of the balancing modules controls its
angular motion relative to the cube body. There is no centralized
unit that controls all actuators.

Networked communication. The balancing modules exchange da-
ta with each other over a shared communication bus.

Within these doctoral studies, the Balancing Cube served multiple purposes:
the cube served as an experimental platform for testing and verifying the
developed estimation and control methods, it triggered new research ques-
tions and results, it supported education, and it was used as a means for
communicating controls research to the general public.

28

1.1 Scope and Motivation

Experimental platform. The developed test beds (Balancing Cube
and inverted pendulum) were used to demonstrate that the control
and estimation algorithms developed in this thesis work on physical
systems, to verify that assumptions made in the design and develop-
ment of these algorithms are justified from a practical point of view,
and to quantify the performance of the methods in an experimental
setting.

All algorithms developed in Part A of this thesis were demonstrated
experimentally on the Balancing Cube platform. In particular, these
experiments showed that the event-based estimation methods can be
used for event-based control.

Motivation for research problems. The challenges that we faced
during the design of the Balancing Cube motivated research questions
and triggered results that were not anticipated at the start of the
project (see Sec. 2.2).

The problem formulation in Part A of this thesis was largely moti-
vated by the Balancing Cube: in order to estimate the full system
state on each module (which is then used for state-feedback control),
exchange of some sensor data between the modules is necessary; how-
ever, the rates at which transmission of this data is required is not
obvious and depends on the type of sensor. This motivated the de-
velopment of the event-based algorithms where the transmit decision
on each module is made on-line based on the relevance of the data
for state estimation.

Educational platform. Not only did the cube lead to publishable
research results, all project participants also gained hands-on experi-
ence in the practical design of modern control systems. In addition to
representing an engineering challenge for these doctoral studies, the
Balancing Cube served as the object of a two-semester-long design
class for ten Master-level students, and it supported twelve individual
student projects (see Sec. 2.5). Overall, the cube project facilitated
learning at all academic levels.

Demonstrations and exhibitions. We have used the Balancing
Cube to explain our research result to non-scientific audiences in
demonstrations, presentations, and exhibitions (see Sec. 2.6). The
Balancing Cube is an excellent means of communicating the princi-
ples of dynamic systems and control: because it builds on our intuitive
understanding of balance, it allows the audience to visualize concepts
such as stability (the cube does not fall) and feedback control (it takes

29

Chapter 1. Introduction

action based on where it is leaning), without requiring an education
in engineering or physics.

1.2 Thesis Outline

The contributions of this thesis are summarized in Chapter 2; in particular,
the context and the contribution of each paper included in this thesis is
explained. In addition, lists are provided of all publications, invited talks,
supervised student projects, and outreach activities that were part of these
doctoral studies.

Chapter 3 gives a brief account of possible future research directions ema-
nating from this work.

The main part of this thesis consists of five research papers. Each paper can
be read as a self-contained document. The notation between any two papers
may differ slightly. Related work is reviewed in each paper.

Part A on Distributed and Event-Based State Estimation comprises the
following papers:

Paper I

S. Trimpe and R. D’Andrea, Event-based state estimation with
variance-based triggering, submitted to IEEE Transactions on
Automatic Control.

Paper II

S. Trimpe and R. D’Andrea, An experimental demonstration of
a distributed and event-based state estimation algorithm, in
Proc. of the 18th IFAC World Congress, Milan, Italy, Aug. 2011, pp.
8811–8818.

Paper III

S. Trimpe, Event-based state estimation with switching static-
gain observers, in Proc. of the 3rd IFAC Workshop on Distributed
Estimation and Control in Networked Systems, Santa Barbara, CA,
USA, Sep. 2012, pp. 91–96.

30

1.2 Thesis Outline

And Part B on The Balancing Cube: A Test Bed for Distributed Estimation
and Control includes these papers:

Paper IV

S. Trimpe and R. D’Andrea, The Balancing Cube: A dynamic
sculpture as test bed for distributed estimation and control,
IEEE Control Systems Magazine, vol. 32, no. 6, pp. 48–75, Dec. 2012.

Paper V

S. Trimpe and R. D’Andrea, A limiting property of the matrix
exponential, submitted to IEEE Transactions on Automatic Con-
trol.

31

32

2

Contributions

This chapter provides an overview of the contributions of this thesis. In
Sec. 2.1, the distributed state estimation problem considered in Part A of
this thesis is stated, the key ideas of the event-based approach are explained,
and the publications of this part are put in context. Section 2.2 summarizes
the results and research contributions of Part B of this thesis (development
of the Balancing Cube test bed). The sections 2.3 to 2.6 list all publications,
invited talks, supervised student projects, and outreach activities that were
part of these doctoral studies.

2.1 Distributed and Event-Based State Estimation (Part A)

In this section, we formulate the distributed estimation problem and discuss
the key ideas of the event-based approach to address it. The problem formu-
lation and the key ideas are shared by Paper I to Paper III. The contribution
of each of these papers is discussed at the end of this section.

Problem Formulation

The first part of this thesis deals with state estimation for networked sys-
tems (such as the one shown in Fig. 1.1) where communication of sensor
measurements is costly. The state of the dynamic system is to be estimated
recursively from measurements by the distributed sensors and a model of the
system. Sensor measurements shall, however, only be exchanged sporadically
between the network agents in order to keep the network traffic low. Figure
2.1 depicts the considered estimation problem (the NCS in Fig. 1.1 has been
reduced to the components essential for the state estimation problem).

All agents in Fig. 2.1 are of the same type: each one has access to local
sensors and runs a state estimator. This is motivated by the Balancing Cube

33

Chapter 2. Contributions

x(k)

System

S S S

Common Bus

Algorithm
- State Estimation
- Transmit Logic

Algorithm
- State Estimation
- Transmit Logic

Algorithm
- State Estimation
- Transmit Logic

. . .

Data flow:

periodic

sporadic

y1(k) y2(k) yN(k)

Figure 2.1 Distributed state estimation problem. The graphic is condensed

from Fig. 1.1 to include only the components relevant for state estimation. Each
agent i estimates the system state x(k) based on its own measurements yi(k)
(received periodically) and on other agents’ data communicated sporadically over
the bus. Each agent is responsible for making the decision at time k of whether

or not to broadcast its local measurement yi(k).

test bed with six identical balancing modules. Each module is equipped with
local sensors and computes state estimates to be used for feedback control.
The algorithms developed in this part readily apply to different estimation
scenarios, where only some agents are equipped with local sensors. In a
remote estimation scenario, for example, one or several pure estimator agents
(without local sensors) are connected to the communication bus at a remote
location (as shown in Fig. 1 of Paper I). They receive data from the sensor
agents and use it to estimate and monitor the system’s state. For simplicity,
we assume in the description below that every agent has local sensors and
a state estimate is to be maintained on every agent. The type of sensors on
every agent can be different.

For the analysis of the event-based state estimation method presented
herein, we consider a discrete-time, stochastic, linear time-invariant (LTI)
system. The key ideas presented below are not confined to this specific class
of dynamic systems and can readily be extended to time-varying or nonlinear
system. We consider the LTI process

x(k) = Ax(k−1) +B u(k−1) + v(k−1), (2.1)

where x(k) is the process state vector, u(k) is a known input vector, v(k) is
zero-mean process noise with a known covariance, and k is the discrete-time

34

2.1 Distributed and Event-Based State Estimation (Part A)

index. The process is observed by N sensors with measurements

y1(k) = C1 x(k) + w1(k)

y2(k) = C2 x(k) + w2(k)

...

yN (k) = CN x(k) + wN (k),

(2.2)

where w1(k) to wN (k) are zero-mean, mutually independent measurement
noise vectors with covariance matrices R1 to RN . When all measurements
are combined, the system is assumed to be detectable; that is, (A,C) is
detectable, where C := [CT

1 , . . . , C
T
N]T. Notice that we do not assume de-

tectability from any individual sensor ((A,Ci) does not need to be detectable
for any i), and we do not make any assumption on the dynamic coupling (A
is a general square matrix).

The results of this part of the thesis address the following estimation
problem for the networked system in Fig. 2.1 with process and measurement
equations given by (2.1) and (2.2):

Problem 2.1 On every agent i and at every time step k,

(i) estimate the system state x(k) based on the system model (2.1), (2.2)
and measurements received over the common bus and from the local
sensors; and

(ii) transmit the local measurement yi(k) if, and only if, the other agents
in the network cannot predict this measurement “well enough” (based
on the system model and past measurement data).

The considered problem has two parts: in addition to a state estimation
algorithm, some transmit logic must be designed, which locally decides on
every sensor whether or not to transmit a measurement. Different solutions
to this problem are developed herein; the methods differ in their choice of
the state estimation algorithm (problem part (i)), and/or in the way they
assess a prediction as “good enough” (part (ii)), which will yield different
implementations of the transmit logic.

The estimation problem given by part (i) only, when neglecting part (ii)
and communicating all measurements y1(k), . . . , yN (k) at every instant k, is
solved by the classic Kalman filter [27, 28]. The Kalman filter is the best
unbiased linear estimator that minimizes the estimation error variance. In
addition, if process and measurement noise are Gaussian distributed, the

35

Chapter 2. Contributions

Kalman filter is the optimal Bayesian estimator in the sense that it keeps
track of the full conditional probability density function of the state x(k)
conditioned on all past measurements. We refer to this Kalman filter (which
has access to all measurements) as the full communication Kalman filter ; it
serves as a reference and comparison to the event-based estimator developed
herein.

Remark 2.1 The estimation problem in Problem 2.1 is not formulated as
an optimization problem; we do not seek, for example, an optimal trans-
mit logic (as is done for a scalar problem in [25], for example). Instead,
we take the full communication case as the baseline (for which the Kal-
man filter is well-known as the optimal state estimator), and then decide
for each measurement if we can do without while not compromising the es-
timator performance too severely. This design approach results in tractable
event-based estimation algorithms, whose design and implementation is a
straightforward extension of well-known discrete-time estimation techniques
(such as the Kalman filter).

Remark 2.2 For the results herein, we take an abstract view of the net-
work and assume the communication to be ideal; that is, we assume that
data transmission is instantaneous (without delay) and that no data is lost.
This may be partly ensured by low level communication protocols. The Con-
troller Area Network (CAN) that is implemented on the Balancing Cube is
an example of a reliable network, where data loss occurs very rarely. (See
Sec. 3.1 for a discussion of extensions of the results herein to unreliable net-
works.)

Remark 2.3 For the design and analysis of the estimation algorithms
herein, we assume that the input u(k) in (2.1) is known to the estimators
on all agents. In practice, this may be the case if u(k) is a known reference
input or if the inputs are communicated to the estimators at every time
step k (required, for example, when u(k) is computed locally from feedback
control laws). Section 3.1 briefly discusses how the periodic communication
of inputs can be avoided in the latter case.

In Paper II and Paper III, the event-based estimation algorithms are
used on the Balancing Cube for event-based feedback control; that is, the
inputs u(k) to the actuators are computed from the local event-based state
estimates and a state-feedback law. If every agent broadcasts its control
input to all other agents at every time step, and if an ideal network with

36

2.1 Distributed and Event-Based State Estimation (Part A)

identical estimates on all agents is assumed, the stability of the feedback
control system follows from the stability of the event-based estimator and the
stability of the state-feedback controller (similar to the separation principle
for linear systems, see [21] for example). In any practical situation where
the network is not perfectly ideal, however, the estimates of the individual
agents are not exactly identical, and stability of the closed-loop system must
be analyzed separately from the stability of the controller and the stability
of the estimator.

Even though closed-loop stability is not shown herein for the case of
combining the event-based estimators with state-feedback controllers, the
effectiveness of this approach is validated experimentally by showing that the
event-based control system can stabilize the Balancing Cube. (See Sec. 3.1
for a discussion of future work in this direction.)

Key Ideas of the Event-Based State Estimation Approach

Figure 2.2 depicts the algorithms that are implemented on every agent from
Fig. 2.1 in order to address Problem 2.1. The key ideas of the event-based
state estimation approach are explained below by explaining the function of
each block in Fig. 2.2.

In order to link the transmit decision of a particular measurement to its
relevance for state estimation (Problem 2.1, (ii)), each agent implements a
copy of the common estimator, which computes a state estimate based on
the system model (2.1), (2.2) and measurements that are received over the
common bus. Notice from Fig. 2.2 that the common estimator uses local sen-
sor measurements only if they are also transmitted over the bus. Since each
agent has access to the data on the bus, the common estimator represents
the common information in the network. Each agent makes the transmit de-
cision for its local measurements based on the common estimator: generally
speaking, if the common estimator’s prediction of a measurement is already
satisfactory by some measure of estimation performance, this measurement
need not be communicated; if the prediction is poor, the measurement is
transmitted so that all agents can update their estimates.

In principle, the common estimator can be any recursive state estima-
tion algorithm that fuses model-based predictions with measurement updates
(see, for example, [29] for an overview of recursive state estimation tech-
niques). Herein, we consider Kalman filters [27,28] (in Paper I and Paper II)
and a Luenberger observer [30] with suitable modifications (Paper III). Both
estimators recursively compute x̌(k|k) and x̌(k|k−1), the common estimate
of x(k) based on all measurements received over the network up to and in-
cluding time k and time k−1, respectively. The Kalman filter additionally

37

Chapter 2. Contributions

Local

Sensors

Common Bus

Local

Estimator

S

Transmit

Logic

Common

Estimator

Data flow:

periodic

sporadic

Figure 2.2 Event-based state estimation approach. The block diagram shows
the algorithms implemented on a single agent of Fig. 2.1. Each agent runs a

copy of the common estimator, which estimates the process state based on data
received over the common bus and thus represents the common information in the
network. The agent uses the common estimate (or its error variance) together with
a transmit logic to decide whether or not to broadcast the local measurements.

Optionally, a local estimator can be used to obtain a better estimate by exploiting
the local sensor data in addition to the data from the bus. Solid lines indicate
periodic data links and dashed lines indicate event-based communication.

computes the variance of the estimation error ě(k|k) = x(k) − x̌(k|k) and
the variance of the prediction error ě(k|k−1) = x(k)− x̌(k|k−1), which we
denote by P̌ (k|k) and P̌ (k|k−1), respectively.

The design of the transmit logic in Fig. 2.2 depends on the way estima-
tion performance is quantified; that is, how one decides whether or not the
common prediction of a particular measurement is “good enough.” In Pa-
per II and Paper III, we consider a constant threshold logic on the prediction
error of a measurement; that is, we use the transmit rule

transmit yi(k) ⇔ ‖yi(k)− Ci x̌(k|k−1)‖ ≥ δi, (2.3)

where the scalar δi is a tuning parameter and ‖·‖ is some vector norm. Since
the triggering rule (2.3) is based on the real-time measurement, we refer
to it as measurement-based triggering. Another quantity that represents a
measure of prediction quality is the prediction variance of a measurement; it
essentially captures the uncertainty in predicting the measurement based on
past data and the process model. A triggering rule where the transmission
of a measurement is triggered by a condition on the prediction variance

38

2.1 Distributed and Event-Based State Estimation (Part A)

P̌ (k|k−1) is referred to as variance-based triggering ; for example,

transmit yi(k) ⇔ Ci P̌ (k|k−1)CT
i +Ri ≥ δi, (2.4)

(Ci P̌ (k|k−1)CT
i +Ri is the prediction variance of the scalar measurement

yi(k)). A variance-based triggering rule similar to (2.4) is used in Paper I.
The triggering rules (2.3) and (2.4) define the instants at which data is

transmitted. As opposed to continuous-time or discrete-time state estima-
tion (see [29]), data transmission does not explicitly depend on time, but is
triggered by events that are defined by the right-hand sides of (2.3) and (2.4).
Following common terminology in event-based control (see [31], for example),
the transmit logic block is also called an event generator to emphasize its
role of generating events (data transmissions). Both the measurement-based
triggering rule (2.3) and the variance-based triggering rule (2.4) can be eval-
uated locally by each agent, which allows for the distributed implementation
of the event-based estimation method.

The common estimator together with the transmit logic constitute the
event-based state estimator. The common estimate is the same on all agents
(the estimator uses the same model and receives the same input data un-
der the assumption of an ideal network). Therefore, the common estimator
ensures consistency in the network. To this end, it is important that local
sensor data is used to update the common estimate if, and only if, it is also
shared with the other agents. In order to improve the state estimation per-
formance as compared to the common estimator, each agent can implement
a second estimator, called local estimator (see Fig. 2.2). The local estimator
exploits all data that is locally available; that is, the local sensor data at ev-
ery time step (solid line) and the data sporadically received over the network
(dashed line). The use of the local estimator is optional; if the performance
of the common estimator is satisfactory, the agent may use the common
estimate for whatever is the purpose of state estimation on the agent (for
example, feedback control).

Remark 2.4 Setting the transmit thresholds δi in (2.3) or (2.4) to zero
means that measurement data is transmitted at every time step k; that is,
the performance of the standard discrete-time state estimator (Kalman filter
or Luenberger observer) is recovered. Therefore, the proposed approach
to event-based estimation can be regarded as a direct extension of well-
known state estimation methods for discrete-time systems (with periodic
communication of sensor data). The resulting algorithms are straightforward
to design and implement: building on top of the design of a standard discrete-
time state estimator, the only additional tuning parameters are the transmit
thresholds δi.

39

Chapter 2. Contributions

Remark 2.5 The two triggering approaches (2.3) and (2.4) yield funda-
mentally different analysis problems. Because the rule (2.3) depends on the
measurement yi(k), which is a random variable according to (2.2), the trans-
mit decision itself becomes a random variable. When the triggering rule (2.4)
is used with a Kalman filter, on the other hand, the evolution of the filter
variance P̌ (k|k−1) (and therefore of the transmit decision) is governed by a
deterministic update equation. The variance iteration can be analyzed off-
line, and its solutions are typically asymptotically periodic as is discussed in
Paper I.

The key features of the proposed event-based state estimation approach can
be summarized as follows:

Event-based communication. Data transmission is not time-
based (periodic or continuous), but caused by triggering conditions
on real-time measurement data such as in (2.3) or on the estimation
variance as in (2.4). Data transmission is thus linked to the relevance
of the data for the state estimation task.

Prior model knowledge. The state estimators that are used (Kal-
man filter and modified Luenberger observer) fuse state predictions
based on the model (2.1) with measurement data that is received over
the network. Thus, the estimators inherently use model-based pre-
dictions to (partly) compensate for not receiving some measurements.
Rather than using the last received measurements (or a state estimate
based on those measurements), state and measurement estimates are
updated using the process model even if no data is received. Trans-
mission of measurement data only occurs if the prior knowledge given
by the set of past measurements and the model is not sufficient.

Information sets. The state estimates by the common estimator
and by the local estimator are based on different information sets. The
local estimator computes an estimate based on all measurement data
that is locally available (local sensor data and data from the network),
while the common estimator uses the data from the network only.
The common estimate essentially represents the baseline information:
every agent has at least this information about the system state. It is
essential to distinguish local information from common information
in order to be able to make a measurement transmit decision based
on the measurement’s relevance for all other agents.

Distributed decision making. Each agent is responsible for mak-
ing the transmit decisions for its local measurements. Since the agent

40

2.1 Distributed and Event-Based State Estimation (Part A)

knows what model the other agents use for making their state predic-
tions (in the common estimator), the agent can assess when it is time
to transmit new data to its peers. The agents cooperate in that they
share the complete system model, and there is an implicit agreement
that each agent sends new data whenever relevant.

Overview of Papers

Papers I to III, which include the main results of Part A of this thesis,
all follow the basic approach outlined above. They differ in the estima-
tor implementation (Kalman filter or modified Luenberger observer), the
triggering rule (measurement-based triggering or variance-based triggering),
and whether or not a local estimator is implemented (see Table 2.1 for an
overview). The context and the contribution of each of these papers are
summarized next.

Table 2.1 Overview of the papers on event-based state estimation that are
included in this thesis.

Estimation

Algorithm

Triggering

Rule

Local

Estimator

Focus

Paper I Kalman filter variance-
based

no theory

Paper II Kalman filter measurement-
based

yes experiments

Paper III switching
Luenberger-
type observer

measurement-
based

no theory &
experiments

Paper I

[P1] S. Trimpe and R. D’Andrea, “Event-based state estimation with
variance-based triggering,” submitted to IEEE Transactions on Auto-
matic Control.

Context This paper presents a Kalman filter as state estimator and vari-
ance-based triggering (similar to (2.4)) for the transmit decision. The paper
focuses of the theoretical analysis and the convergence properties of the
event-based state estimator.

41

Chapter 2. Contributions

Contribution The variance-based triggering condition is introduced as a
novel triggering mechanism, as opposed to triggering on real-time state or
measurement data (see discussion of related work in the paper). The update
equation for the Kalman filter prediction variance P̌ (k|k−1) is derived; it
represents a new type of Riccati equation with switching that corresponds
to the available measurements at a time step and that depends on the vari-
ance at the previous step. Simulation results of this Riccati equation for the
Balancing Cube system and other examples suggest that the variance itera-
tion asymptotically converges to a periodic solution. For the scalar problem
(scalar process with a single scalar measurement), we prove the asymptotic
periodicity of the variance solution under certain assumptions. Since a pe-
riodic sequence for P̌ (k|k−1) corresponds to a periodic transmit sequence
via (2.4), this result links time-triggered (periodic) and event-based state
estimation. The event-based approach provides a practical way to design
periodic sensor transmit rates for a multi-sensor network by specifying tol-
erable bounds on the estimator performance.

Related Publications

[R3] S. Trimpe and R. D’Andrea, “Reduced communication state estimation
for control of an unstable networked control system,” in Proc. of the
50th IEEE Conference on Decision and Control and European Control
Conference, Orlando, FL, USA, Dec. 2011, pp. 2361–2368.

[R4] S. Trimpe and R. D’Andrea, “Event-based state estimation with
variance-based triggering,” in Proc. of the 51st IEEE Conference on
Decision and Control, Maui, HI, USA, Dec. 2012, pp. 6583–6590.

(The numbering of the publications corresponds to the list of all publications
within these doctoral studies provided in Sec. 2.3.)

We first presented event-based state estimation with variance-based trigger-
ing in the conference publication [R3]. This publication includes experimen-
tal results (not contained herein) of applying the method on the Balancing
Cube, where periodic sensor transmit schedules are obtained from a periodic
solution to the variance iteration and implemented for the cube’s sensors.
The event-based state estimators on each agent are used for feedback control
to stabilize the cube.

A preliminary version of the convergence result for the switching Riccati-
type equation (the variance iteration of the event-based estimator) for the
scalar problem was presented in [R4], but all proofs of intermediate results
(Propositions 1 to 6 and Lemmas 1 to 3 in Paper I) were omitted.

42

2.1 Distributed and Event-Based State Estimation (Part A)

Paper II

[P2] S. Trimpe and R. D’Andrea, “An experimental demonstration of a
distributed and event-based state estimation algorithm,” in Proc. of the
18th IFAC World Congress, Milan, Italy, Aug. 2011, pp. 8811–8818.

Context This paper demonstrates the use of event-based state estimation
for feedback control in experiments on the Balancing Cube.1 The blocks
shown in Fig. 2.2 are implemented on the cube’s six balancing modules.2

The measurement-based triggering rule (2.3) is applied for each of the twelve
sensors that are used in this experiment. The estimate by the local estimator
in Fig. 2.2 is used as input to a state-feedback controller that computes the
commands for the local actuator.

Contribution The basic approach for distributed and event-based state
estimation as outlined in the introduction of this section was first presented
in this paper. The paper’s focus is on the experimental demonstration of
using the event-based estimation method for event-based control on the Bal-
ancing Cube by combining it with a static state-feedback controller on every
agent (a theoretical analysis of convergence or stability properties is not con-
tained). The experimental results show that the cube can balance with the
distributed and event-based controllers, and a significant reduction of the
average communication rates is achieved compared to periodic communica-
tion. The results exemplify the expected trade-off between communication
and control performance: in the presented experiment, a reduction of aver-
age communication rates by roughly a factor 16 is accompanied by a decrease
in control performance (measured as the state RMS) by a factor of 1.5.

Paper III

[P3] S. Trimpe, “Event-based state estimation with switching static-gain
observers,” in Proc. of the 3rd IFAC Workshop on Distributed Estimation
and Control in Networked Systems, Santa Barbara, CA, USA, Sep. 2012,
pp. 91–96.

1In these experiments, the cube balances on one of its edges rather than on a corner,
which avoids the discussion of secondary issues in the paper such as a more complex model
and control design. The cube can, however, also balance on a corner using event-based

control as we demonstrated during the interactive presentation of the paper at the 2011
IFAC World Congress (see Sec. 2.6 and Fig. 2.3).

2The paper uses slightly different terminology. The local estimator is described in

Sec. 2.2 as the “receiver algorithm,” and the common estimator with transmit logic is
described in Sec. 2.3 as the “sender algorithm.”

43

Chapter 2. Contributions

Context In contrast to Paper I and Paper II, this paper uses a linear
estimator that switches between static gains, which are obtained from the
design of a centralized Luenberger observer with periodic communication of
all measurements. Combined with the measurement-based triggering rule
(2.3), the resulting event-based estimator mimics the Luenberger observer
with full communication. The paper presents theoretical guarantees for the
estimation error, as well as experimental results of using the method for
event-based control on the cube.

Contribution The event-based estimator proposed in this paper is com-
pared to the Luenberger observer with periodic communication of all mea-
surements: the difference between the state estimates of the two estimators
is shown to be bounded (even for the case that v(k) and wi(k) in (2.1) and
(2.2) are unbounded). The state estimator switches between pre-computed
gains and is therefore computationally less expensive than the Kalman fil-
ter used in Paper II. The reduction of average sensor communication rates
achieved by using the switching Luenberger-type observer for feedback con-
trol is demonstrated in experiments on the Balancing Cube; the experimental
results are qualitatively similar to those in Paper II.

2.2 The Balancing Cube: A Test Bed for Distributed
Estimation and Control (Part B)

The design challenge of building a self-balancing dynamic sculpture as de-
scribed in Sec. 1.1 was successfully met: the Balancing Cube shown in
Fig. 1.2 (left) was realized as part of these doctoral studies.

The cube is stabilized by six rotation arms, called the balancing modules,
which are mounted on the cube’s inner faces. Each balancing module is
equipped with embedded sensing, actuation, computation, and power; and
it is connected to a communication bus. The Balancing Cube is therefore a
concrete realization of the networked control system (NCS) in Fig. 1.1. The
individual components of the cube’s NCS are summarized in Table 2.2. The
details of the design, the modeling, and the control of the cube are described
in Paper IV. A video of the system is available in [32].

The development of the Balancing Cube started in fall 2007 within the
project-based design class !And Yet It Moves taught by Raffaello D’Andrea
and Matt Donovan at ETH Zurich. The author of this thesis joined the
class in spring 2008 as a teaching and research assistant. At the end of
this two-semester class, the team (consisting of the instructors, the author,
two technicians, and ten Master-level students from electrical engineering,

44

2.2 The Balancing Cube (Part B)

Table 2.2 Technical realization on the Balancing Cube of the components of
the networked control system (NCS) shown in Fig. 1.1.

NCS Component Technical realization on the Balancing Cube

System Balancing Cube (a multi-body 3D inverted pendulum)

Common bus Controller Area Network (CAN)

Control agent: Balancing module (rotating arm):

Sensors (S) Absolute encoder (measurement of arm angle)
3-axis accelerometer (mounted on the cube body)
3-axis rate gyro (mounted on the cube body)

Actuator (A) DC motor (rotating the arm relative to cube body)

Algorithm block Single-board computer, 200MHz ARM9 processor

mechanical engineering, and computer science) completed the conceptual
design of the Balancing Cube and the construction of a functional, one-
dimensional prototype (an earlier iteration of the pendulum shown in Fig. 1.2
(right)), which included most of the components to be used in the final design
of the cube. After another year, the Balancing Cube was completed as part of
these doctoral studies in August 2009, when it first balanced autonomously
on one of its corners. As intermediate steps in the development process, the
cube was balanced (first on an edge, then on a corner) using state feedback
from the motion capture system of the institute’s Flying Machine Arena [33].

Since its completion, the Balancing Cube has served as a research plat-
form for the results herein, it has supported twelve student projects (see
Sec. 2.5), and it was used as a means of communicating controls research to
the general public, including three public exhibitions (see Sec. 2.6).

Overview of Papers

The design, modeling, and control of the Balancing Cube as a test bed for
distributed estimation and control is described in Paper IV. The cube repre-
sents a multi-body 3D inverted pendulum [34] and, as such, is a rich platform
for research in dynamics an control (see references in Paper IV for other re-
sults on the control of 3D pendulum systems). At its time of completion,
the Balancing Cube was the only cube that could balance autonomously on
a corner. At that time, the only other self-balancing cube that the author
was aware of was sold by Quanser Inc., [35]. Quanser’s cube can balance on
a fixed edge using a single actuation mechanism. Since that time, the Cubli
(Swiss German for “small cube”) has been developed at IDSC as a follow-up

45

Chapter 2. Contributions

project of the Balancing Cube. The Cubli is equipped with three momentum
wheels, which it uses together with a braking mechanism to jump up and to
balance, [36].

The Balancing Cube’s main function within this thesis is as a test bed
for distributed and networked estimation and control. Being a concrete
realization of the NCS in Fig. 1.1 (see Table 2.2), the cube motivated the
problem formulation investigated in Part A of this thesis, and it served as
an experimental test bed for validating and evaluating the obtained results
(see Sec. 2.1). In particular, we were able to show through experiments on
the cube that the event-based estimation method developed in Part A can
be used for event-based control.

In addition to supporting the research on distributed and event-based
state estimation and control, the development of the cube led to research
results in other areas. An example is the accelerometer-based tilt estimation
algorithm presented in Paper IV, which can be used to estimate the tilt
of any rigid body with only rotational degrees of freedom. The estimate
is independent of the system dynamics and no dynamic model is required
for the estimator design. Another example is the matrix exponential result
in Paper V, which was motivated by the concrete problem of modeling the
cascaded control system on the cube. The individual contributions of these
two papers are summarized below.

Additional research topics that are not contained in this thesis were ex-
plored on the Balancing Cube as part of student projects. These topics
include system identification, modeling of gear backlash, trajectory learn-
ing, and self-tuning control (see Sec. 2.5).

Paper IV

[P4] S. Trimpe and R. D’Andrea, “The Balancing Cube: A dynamic
sculpture as test bed for distributed estimation and control,” IEEE
Control Systems Magazine, vol. 32, no. 6, pp. 48–75, Dec. 2012.

Context This paper describes the design, modeling, and control of the
Balancing Cube. The control system design is presented for the case where
all modules share their sensor data over the network at every time step
(i.e. the dashed lines connecting the algorithm blocks with the common bus
in Fig. 1.1 would be solid). Since every agent has access to all measure-
ments, the design of a controller and a state estimator can be considered
as centralized problems. The cube’s balancing performance is demonstrated
with experimental data.

46

2.2 The Balancing Cube (Part B)

Contribution The Balancing Cube is introduced as a test bed for dis-
tributed estimation and control. The system represents a multi-body 3D
inverted pendulum. The cube distinguishes itself from other inverted pen-
dulum systems by its distributed control agents (the balancing modules),
and from many other test beds for multi-agent or distributed control by
possessing unstable and coupled dynamics.

The control system design for the cube is separated into the design of a
standard Linear Quadratic Regulator (LQR) as state-feedback controller and
a state estimator that is tailored to the specific problem. The state estimator
exploits the facts that the cube has only rotational degrees of freedom, and
that measurements from multiple inertial sensors are available, to generate
an estimate of the cube’s tilt that is independent of the rigid body dynamics.
In particular, the estimator provides an accurate tilt estimate for whatever
motion of the cube (slow or fast), and no assumption on near equilibrium
configuration is made. As opposed to the event-based estimators in Part A,
this estimator relies on the periodic transmission of all sensor data, but it
does not require a dynamic system model. It is thus inherently robust to
modeling errors or changes in the system (for example, in the mass or module
configuration). The developed tilt estimation algorithm is applicable to any
rigid body with only rotational degrees of freedom that is equipped with
multiple inertial sensors.

The results in this paper show that the design of a dynamic sculpture as
described and motivated in Sec. 1.1 (Part B) is actually feasible. The mod-
eling and design techniques developed in this paper can readily be extended
to build other balancing sculptures.

Related Publications

[R2] S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation of a
rigid body with only rotational degrees of freedom,” in Proc. of the IEEE
International Conference on Robotics and Automation, Anchorage, AK,
USA, May 2010, pp. 2630–2636.

The estimation algorithm for estimating the tilt of the Balancing Cube from
measurements of multiple inertial sensors was first introduced in [R2]. The
paper also presents the experimental validation of the algorithm using a
motion capture system.

Paper V

[P5] S. Trimpe and R. D’Andrea, “A limiting property of the matrix
exponential,” submitted to IEEE Transactions on Automatic Control.

47

Chapter 2. Contributions

Context This paper presents a limiting property of the matrix exponen-
tial, which can be used to obtain simplified models of dynamic systems that
exhibit significantly different time scales, such as a cascaded control system
with fast inner feedback loops. The Balancing Cube uses such a cascaded
control system with a fast velocity feedback loop implemented locally on each
balancing module. The motivation for investigating the limiting property of
the matrix exponential originated from the concrete problem of modeling
the cascaded control system of the Balancing Cube.

Contribution We state conditions on the matrix function K(α) (α a
scalar parameter), for which the following limiting property holds (for t > 0
and any complex-valued matrix A):

lim
α→∞

exp

([
A11−K(α) A12

A21 A22

]

t

)

=

[
0 0

0 eA22t

]

. (2.5)

The property (2.5) holds if −K(α) becomes arbitrarily small (“negative in-
finite”) in one of the following ways: (i) the log-norm of −K(α) approaches
negative infinity; or (ii), for certain polynomial functions −K(α), the matrix
associated with the largest power of α is stable (its eigenvalues have negative
real part). The result (ii) is obtained as an extension of established results
by Campbell et al., [37,38]. The result (i) is proven independently of these.

If matrix A is the system matrix of a linear system with state vector
(x1, x2), and if K(α) is a static feedback gain matrix applied on the states
x1, then the result (2.5) means a decoupling of the states in the limit as
the controller gains become arbitrarily large (see introductory example in
Paper V, equations (3)–(5)).

Related Publications

[R1] S. Trimpe and R. D’Andrea, “A limiting property of the matrix
exponential with application to multi-loop control,” in Proc. of the Joint
48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference, Shanghai, China, Dec. 2009, pp. 6419–6425.

We first derived the condition (i) (the log-norm of −K(α) approaching neg-
ative infinity) for the result (2.5) to hold in [R1]. Therein, we also present
a time-scale separation algorithm that makes use of the property (2.5) to
obtain a simplified model of a cascaded control system with fast inner loops,
and we use this modeling approach in the design of a controller that stabi-
lizes the inverted pendulum in Fig. 1.2 (right). The time-scale separation
algorithm is summarized and applied to the Balancing Cube in Paper IV.

48

2.3 List of Publications

2.3 List of Publications

This section lists all articles and conference contributions that were published
or submitted during these doctoral studies. The publications [P1]–[P5] are
included in this thesis (Part A and Part B). The publications [R1]–[R4]
are related results that were (partly) integrated into the journal articles
[P1,P4,P5].

The journal manuscripts [P1] and [P5] are currently under review. Pre-
liminary results of [P1] are published in [R1]; and the results in [P5] are
based on the conference publications [R3,R4].

Publications Included in this Thesis

(order as appearing in this thesis)

[P1] S. Trimpe and R. D’Andrea, “Event-based state estimation with
variance-based triggering,” submitted to IEEE Transactions on Auto-
matic Control.

[P2] S. Trimpe and R. D’Andrea, “An experimental demonstration of a
distributed and event-based state estimation algorithm,” in Proc. of the
18th IFAC World Congress, Milan, Italy, Aug. 2011, pp. 8811–8818.

[P3] S. Trimpe, “Event-based state estimation with switching static-gain
observers,” in Proc. of the 3rd IFAC Workshop on Distributed Estimation
and Control in Networked Systems, Santa Barbara, CA, USA, Sep. 2012,
pp. 91–96.

[P4] S. Trimpe and R. D’Andrea, “The Balancing Cube: A dynamic
sculpture as test bed for distributed estimation and control,” IEEE
Control Systems, vol. 32, no. 6, pp. 48–75, Dec. 2012.

[P5] S. Trimpe and R. D’Andrea, “A limiting property of the matrix
exponential,” submitted to IEEE Transactions on Automatic Control.

Related Publications

(chronological order)

[R1] S. Trimpe and R. D’Andrea, “A limiting property of the matrix
exponential with application to multi-loop control,” in Proc. of the Joint
48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference, Shanghai, China, Dec. 2009, pp. 6419–6425.

49

Chapter 2. Contributions

[R2] S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation of a
rigid body with only rotational degrees of freedom,” in Proc. of the IEEE
International Conference on Robotics and Automation, Anchorage, AK,
USA, May 2010, pp. 2630–2636.

[R3] S. Trimpe and R. D’Andrea, “Reduced communication state estimation
for control of an unstable networked control system,” in Proc. of the
50th IEEE Conference on Decision and Control and European Control
Conference, Orlando, FL, USA, Dec. 2011, pp. 2361–2368.

[R4] S. Trimpe and R. D’Andrea, “Event-based state estimation with
variance-based triggering,” in Proc. of the 51st IEEE Conference on
Decision and Control, Maui, HI, USA, Dec. 2012, pp. 6583–6590.

Technical Report

[TR1] S. Trimpe and R. D’Andrea, “Numerical models and controller design
parameters for the Balancing Cube,” IDSC, ETH Zürich, Tech. Rep.,
2012. [Online].
Available: http://dx.doi.org/10.3929/ethz-a-007343301

2.4 Invited Talks

Below is a list of seminars and workshops where the author of this thesis
was invited to present research results of his doctoral studies. Presentations
at international conferences of the conference papers in Sec. 2.3 are not
included. Invited talks addressing a general audience are listed in Sec. 2.6
as part of the author’s outreach activities.

[T1] Hamburg University of Technology (TUHH), Hamburg, Germany,
“The Balancing Cube,” Alumni-Workshop at the Institute of Control
Systems (Prof. H. Werner), Nov. 2009.

[T2] Ruhr-Universität Bochum (RUB), Bochum, Germany, “The Balancing
Cube,” Seminar at the Institute of Automation and Computer Control
(Prof. J. Lunze), Dec. 2009.

[T3] Ruhr-Universität Bochum (RUB), Bochum, Germany, “Reduced com-
munication state estimation for networked control systems,” Seminar at
the Institute of Automation and Computer Control (Prof. J. Lunze), Nov.
2011.

50

http://dx.doi.org/10.3929/ethz-a-007343301

2.5 Supervised Student Projects

[T4] Royal Institute of Technology (KTH), Stockholm, Sweden, “Event-
based state estimation for networked control systems,” Seminar at the
Automatic Control Laboratory (Prof. K. H. Johansson), May 2012.

[T5] University of Southern California (USC), Los Angeles, CA, USA,
“Event-based state estimation for networked control systems,” Seminar
at the Center for Robotics and Embedded Systems (Prof. F. Valero-
Cuevas, Prof. G. S. Sukhatme), Sep. 2012.

[T6] California Institute of Technology (Caltech), Pasadena, CA, USA,
“Event-based state estimation for networked control systems,” Seminar
at the Control and Dynamical Systems group (Prof. R. M. Murray, Prof.
J. C. Doyle), Sep. 2012.

[T7] Technische Universität München (TUM), Munich, Germany, “Event-
based state estimation for networked control systems,” Workshop on
“Event-based control and optimization” (Deutsche Forschungsgemein-
schaft Schwerpunktprogramm 1305), Oct. 2012.

2.5 Supervised Student Projects

Below is a complete list of student projects that were supervised at ETH
Zurich as part of the author’s doctoral studies.

Master Thesis

six months, full-time research project

[M1] D. Akay, “Alternative modeling tools and system identification for the
Balancing Cube,” Fall 2009.

[M2] M. Spirig, “A learning strategy for swinging motions of an inverted
pendulum,” Fall 2010.

[M3] S. Dössegger, “Improving the balancing performance of the cube –
adaptation and learning to make the cube balance more steadily,” Spring
2012.

Master Semester Project

semester-long, part-time project

[S1] G. Mohanarajah, “Single-board computer operating system,” Fall 2008.

51

Chapter 2. Contributions

[S2] V. Baumann, “Modeling and simulation of the Balancing Cube,” Spring
2009.

[S3] L. Wunderli, “Determining the mode of the Balancing Cube based on
local sensor information,” Fall 2009.

[S4] A. Köberl, “Backlash modeling for the Balancing Cube,” Spring 2010.

[S5] N. Voellmy, “User interface for the Balancing Cube,” Fall 2010.

[S6] K. Nottensteiner, “Moving the Balancing Cube – a gain scheduling
approach,” Fall 2010.

[S7] K. Schindler, “Event-based state estimation on the cube – experimental
study of recent event-based state estimation algorithms,” Fall 2012.

Studies on Mechatronics

semester-long, part-time literature study

[L1] L. Wunderli, “Attitude estimation for the Balancing Cube,” Spring
2009.

[L2] A. Widmer, “Networked and distributed control systems – physical
control systems similar to the Balancing Cube,” Fall 2011.

2.6 Outreach

Throughout the doctoral project, the Balancing Cube and corresponding
research were presented to the general public and to the media in exhibitions,
festivals and lab demonstrations.

Exhibitions

Nacht der Forschung (Researchers’ Night), Zurich, Switzerland, Sept.
25, 2009.

Organized by ETH Zurich and the University of Zurich as part of the Euro-
pean Researchers’ Night, more than 25’000 visitors joined approximately 600
researchers for this event around lake Zurich to gain insights in the worlds
of science, technology, medicine, and industry.
(http://www.nachtderforschung.ethz.ch/en)

Festival Della Scienza, Genoa, Italy, Oct. 23–25, 2009.

The annual Festival Della Scienza is one of the largest science festivals in

52

http://www.nachtderforschung.ethz.ch/en

2.6 Outreach

Italy.
(http://www.festivalscienza.eu)

18th IFAC World Congress, Milan, Italy, Aug. 31, 2011.

The triennial IFAC (International Federation of Automatic Control) World
Congress is one of the largest international conferences for automatic con-
trol. The Balancing Cube was shown in one of the interactive sessions (see
Fig. 2.3).
(http://www.ifac2011.org/)

Lab Demonstrations

From 2009 to 2013, the Balancing Cube was shown in more than 120 lab
demonstrations to guests from academia, schools, media, government, and
industry.

Invited Talks to a General Audience

Swiss Science Center Technorama, Winterthur, Switzerland, “The Bal-
ancing Cube,” General assembly of Schweizerische Gesellschaft Pro Techno-
rama, May 2011.

Figure 2.3 The Balancing Cube at the 2011 IFAC World Congress in Milan,
Italy. (Photo by Raffaello D’Andrea.)

53

http://www.festivalscienza.eu
http://www.ifac2011.org/

Chapter 2. Contributions

IEEE Conference on Decision and Control (CDC), Orlando, FL,
USA, “A cube that balances itself on a corner,” Workshop for high school
students and teachers on “Ideas and Technology of Control Systems,” Dec.
2011.

IEEE Conference on Decision and Control (CDC), Maui, HI, USA,
“A cube that balances itself on a corner,” Workshop for middle and high
school students and teachers on “Ideas and Technology of Control Systems,”
Dec. 2012.

Selected Media Coverage

NZZ Format, “Die Intelligenz der Roboter,” Swiss TV (SF1), Switzerland,
Apr. 2010.

IEEE Automaton Blog, “Amazing Robotic Sculpture Balances Itself on
One Corner,” May 2010.

Daily Planet, Discovery Channel, Canada, Jan. 2011.

World Radio Switzerland, Switzerland, Jun. 2011.

c’t Magazin, magazine for computer technology, Germany, Jul. 2012.

54

3

Future Directions

Two main themes in this work are the consideration of the communication
network in a networked control system (NCS) as a shared resource, and the
design of control and estimation algorithms in tandem with a network ac-
cess strategy. While managing the communication cost is important even for
today’s NCS, it will be vital for the next generation of engineering systems
that will tightly integrate the physical world with computation and commu-
nication. Referred to as cyber-physical systems (CPSs) [17,18], these highly
integrated systems will extend present-day networked systems in the number
of interconnected entities, size, and complexity. As a consequence, communi-
cation costs will become an even more significant factor which must be taken
into account in the control system design if CPSs are to meet their potential
in envisioned application areas such as transportation, power systems, smart
buildings, mobile robots, and process industry.

The results in this thesis demonstrate the potential of event-based esti-
mation and control strategies to ensure an effective use of the shared com-
munication resource in NCS. Open questions and promising directions for
future research that arise from the results herein are briefly discussed in this
chapter.

3.1 Distributed and Event-Based State Estimation (Part A)

Open questions or direct extensions of the event-based state estimation al-
gorithms presented in Part A of this thesis are pointed out in the respective
papers. Here, we discuss extensions and directions for future research in a
broader sense.

55

Chapter 3. Future Directions

Event-Based Output-Feedback Control

The experimental results on the Balancing Cube showed that the event-
based estimation methods developed herein can be combined with state-
feedback controllers to form an event-based output-feedback control system.
The analysis in this work, however, focuses on theoretical guarantees for the
pure estimation problem (such as boundedness of the estimation error). The
theoretical analysis of the event-based output-feedback system as used to
balance the cube in Paper II and Paper III is an interesting direction for
future research. In particular, the question of whether theoretical stability
results can be obtained for the event-based control scheme used herein is an
obvious candidate for further investigation.

When the control input u(k) is computed by the individual agents based
on the agent’s local estimate from the event-based estimator, the full input
vector is not known by all agents. In order to satisfy the assumption of
known inputs u(k), which is used in the analysis of the event-based estima-
tion schemes in Paper I and Paper III, each agent must broadcast its input at
every time step over the network. While this simplifies the analysis, it may
be counterproductive for the overall objective of saving communication (de-
pending on the number of inputs relative to the number of measurements).
It seems thus reasonable to use a similar event-triggering scheme also for the
inputs; that is, to communicate the inputs only if they differ by more than a
threshold from the previously communicated value or a common prediction
of the inputs. Another approach to avoid the communication of the inputs
at every time is used in Paper II: the inputs of all other agents are estimated
based on the agent’s local estimate and the (known) control laws used by the
other agents. Whether stability for this approach can be proven is another
open question.

Related problems on event-based control with output measurements have
been considered, for example, in [39]–[42] for a single event-based control loop
and, for a distributed setting where triggering decisions are made by multiple
entities, in [43] (deterministic output measurements without noise) and in
[44] (partial state measurements). Results on the optimal structure of event-
based control systems with a single event-triggered loop (the combination of
a certainty-equivalence state estimator with a controller, similar to what is
used herein) are reported in [39,45].

Unreliable Networks

The use of a reliable, wire-based communication network on the Balancing
Cube was a deliberate design decision since the network must support the
communication of feedback data necessary for stabilization. The reliable

56

3.1 Distributed and Event-Based State Estimation (Part A)

broadcast network (a common bus) allows an efficient implementation of the
distributed transmit decision making: since data on the bus is received by
every agent, the estimates by the common estimator are the same on all
agents, and they thus reflect the common information in the network. In
other words, the common bus ensures consistency in the network.

When broadening the event-based state estimation method to other types
of networks, such as wireless networks that may exhibit packet drops, the
principle ideas of this work still apply. When making a transmit decision, for
example, it is still useful to distinguish information sets such as local infor-
mation (all data available to a single agent) and common information (data
available to every agent). However, when one cannot rely on data reach-
ing every agent due to delays and packet drops, the key problem becomes
how the common information can be captured locally on every agent with
minimal overhead. The common estimator, if implemented as in Fig. 2.2,
would then only approximate the common information. The lack of perfect
information may partly be compensated for by making more conservative
transmit decisions. For this approach to work, the consistency of the com-
mon estimators (within bounds) will have to be guaranteed; that is, one
must ensure that the difference between any two agents’ common estimates
does not drift.

Large Scale Systems

The implementations of the common and local estimators (see Fig. 2.2) con-
sidered herein use the full process model (2.1) for making state predictions.
For networks with a medium number of agents and states, this is effective
since the predictions are as accurate as the model permits, and arbitrary dy-
namic couplings are feasible. However, for large scale systems with a large
number of agents and states (such as in future CPSs), simulating the full
dynamics is infeasible.

The extension of the approach herein to such large scale systems will
require the use of reduced complexity models for making the predictions in
the estimators. By decoupling the full system into subsystem (while possibly
neglecting weak couplings) and using the subsystem models as the basis for
the estimator design, the complexity of the estimator implementations can
be reduced. In addition, the subsystem dynamics may be approximated by
lower complexity models. One could imagine that each agent (or subnetwork
consisting of multiple agents) communicates an approximate model of its
dynamics to those agents whose states are affected by this agent. The other
agents use this approximate model for making their predictions, and they
will receive new measurement data from the originating agent whenever these
predictions are off. In general, the use of approximate low complexity models

57

Chapter 3. Future Directions

will be at the expense of more frequent communications.

3.2 The Balancing Cube: A Test Bed for Distributed
Estimation and Control (Part B)

The insights that were gained from the design of the Balancing Cube led to a
follow-up project at the IDSC: the Cubli is a small cube (edge length of 15 cm
compared to 1.2m for the Balancing Cube) that can jump up and balance
on a corner, [36]. It uses momentum wheels mounted on three of its faces as
actuation mechanisms. To jump up, the wheels are rotated at high angular
velocities, and then suddenly braked, causing the cube to jump up using
conservation of angular momentum. While the focus of the Balancing Cube
platform is on distributed estimation and control, the Cubli is controlled
by a centralized unit and a research focus is on nonlinear control strategies.
The Cubli uses the same tilt estimation algorithm that was developed for
the Balancing Cube (see Paper IV).

The Balancing Cube has proven to be a robust platform for demonstra-
tions and exhibitions (Sec. 2.6) and will continue to be used in this capacity
at IDSC and external events.

58

References

[1] M. Hilbert and P. López, “The world’s technological capacity to store,
communicate, and compute information,” Science, vol. 332, pp. 60–65,
Apr. 2011.

[2] O. Kanoun and H.-R. Tränkler, “Sensor technology advances and future
trends,” IEEE Transactions on Instrumentation and Measurement,
vol. 53, no. 6, pp. 1497–1501, Dec. 2004.

[3] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, oppor-
tunities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp.
1247–1256, Aug. 2003.

[4] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and
A. M. Bayen, “Evaluation of traffic data obtained via GPS-enabled
mobile phones: The mobile century field experiment,” Transportation
Research Part C: Emerging Technologies, vol. 18, no. 4, pp. 568–583,
2010.

[5] Liquid Robotics, Inc., [accessed 19.06.2013]. [Online]. Available:
http://liquidr.com

[6] J. Appelgren, “Robotic adventure across the Pacific: 313 days, 17,486
nautical km, one cyclone, millions of data points,” IEEE Robotics
Automation Magazine, vol. 20, no. 2, pp. 24–30, Jun. 2013.

[7] A. Bemporad, M. Heemels, and M. Johansson, Networked Control
Systems, ser. Lecture Notes in Control and Information Sciences.
Springer, 2011, vol. 406.

[8] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, Jan. 2007.

59

http://liquidr.com

References

[9] T. Yang, “Networked control system: a brief survey,” IEE Proceedings
- Control Theory and Applications, vol. 153, no. 4, pp. 403–412, Jul.
2006.

[10] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked
control systems,” Control Engineering Practice, vol. 11, no. 10, pp.
1099–1111, 2003.

[11] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control
systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84–99,
Feb. 2001.

[12] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp.
393–422, 2002.

[13] G. J. Pottie, “Wireless sensor networks,” in Information Theory
Workshop, Jun. 1998, pp. 139–140.

[14] A. A. Alam, A. Gattami, and K. H. Johansson, “An experimental
study on the fuel reduction potential of heavy duty vehicle platooning,”
in Proc. of the 13th International IEEE Conference on Intelligent
Transportation Systems, Sep. 2010, pp. 306–311.

[15] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI Magazine,
vol. 29, no. 1, pp. 9–19, 2008.

[16] P. Neumann, “Communication in industrial automation – what is going
on?” Control Engineering Practice, vol. 15, no. 11, pp. 1332–1347, 2007.

[17] K.-D. Kim and P. Kumar, “Cyber-physical systems: A perspective
at the centennial,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1287–1308, May 2012.

[18] M. Broy, E. Geisberger, M. Cengarle, P. Keil, J. Niehaus, C. Thiel,
and H.-J. Thönnißen-Fries, Cyber-Physical Systems: Driving force for
innovation in mobility, health, energy and production, acatech, Ed.
Springer, Berlin, Dec. 2011, vol. 8.

[19] K. Ogata, Modern Control Engineering, 4th ed. Upper Saddle River,
NJ, USA: Prentice Hall, 2002.

[20] J. Lunze, Regelungstechnik 1, 6th ed. Springer, 2007.

[21] K. Åström and B. Wittenmark, Computer-controlled systems: theory
and design, ser. Prentice-Hall information and system sciences series.
Prentice Hall, 1997.

60

[22] J. Lunze, Regelungstechnik 2, 4th ed. Springer, 2006.

[23] K. J. Åström and B. Bernhardsson, “Comparison of periodic and event
based sampling for first-order stochastic systems,” in Proc. of the 14th
IFAC World Congress, Beijing, China, 1999, pp. 301–306.

[24] K. Årzén, “A simple event-based PID controller,” in Proc. of the 14th
IFAC World Congress, Beijing, China, 1999, pp. 423–428.

[25] M. Lemmon, “Event-triggered feedback in control, estimation, and
optimization,” in Networked Control Systems, ser. Lecture Notes in
Control and Information Sciences, A. Bemporad, M. Heemels, and
M. Johansson, Eds. Springer, 2011, vol. 406, pp. 293–358.

[26] M. W. Spong, “Underactuated mechanical systems,” in Control Prob-
lems in Robotics and Automation, ser. Lecture Notes in Control and
Information Sciences, B. Siciliano and K. Valavanis, Eds. Springer,
1998, vol. 230, pp. 135–150.

[27] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” ASME Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.

[28] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Mineola, New
York: Dover Publications, 2005.

[29] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. Wiley-Interscience, 2006.

[30] D. Luenberger, “An introduction to observers,” IEEE Transactions on
Automatic Control, vol. 16, no. 6, pp. 596–602, Dec. 1971.

[31] J. Lunze and D. Lehmann, “A state-feedback approach to event-based
control,” Automatica, vol. 46, no. 1, pp. 211–215, Jan. 2010.

[32] G. Robson, S. Trimpe, M. Donovan, and R. D’Andrea.
(2009) The Balancing Cube (video). Institute for Dynamic
Systems and Control, ETH Zurich. [Online]. Available:
http://www.youtube.com/watch?v=gbT XoSIlEo

[33] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback,
and R. D’Andrea, “A platform for aerial robotics research and demon-
stration: The Flying Machine Arena,” Mechatronics, to appear.

[34] J. Shen, A. K. Sanyal, N. A. Chaturvedi, D. S. Bernstein, and N. H.
McClamroch, “Dynamics and control of a 3D pendulum,” in Proc. of
the 43rd IEEE Conference on Decision and Control, Paradise Island,
Bahamas, Dec. 2004, pp. 323–328.

61

http://www.youtube.com/watch?v=gbT_XoSIlEo

References

[35] Quanser Inc., “Cube,” [accessed 19.06.2013]. [Online]. Available:
http://www.quanser.com

[36] M. Gajamohan, M. Merz, I. Thommen, and R. DAndrea, “The Cubli:
A cube that can jump up and balance,” in Proc. of the IEEE/RSJ Inter-
national Conference on in Intelligent Robots and Systems, Vilamoura-
Algarve, Portugal, Oct. 2012, pp. 3722–3727.

[37] S. L. Campbell and N. J. Rose, “Singular perturbation of autonomous
linear systems,” SIAM Journal on Mathematical Analysis, vol. 10, no. 3,
pp. 542–551, 1979.

[38] S. L. Campbell, “Singular perturbation of autonomous linear systems
II,” Journal of Differential Equations, vol. 29, no. 3, pp. 362–373, 1978.

[39] A. Molin and S. Hirche, “Structural characterization of optimal event-
based controllers for linear stochastic systems,” in 49th IEEE Confer-
ence on Decision and Control, Atlanta, GA, USA, Dec. 2010, pp. 3227–
3233.

[40] L. Li and M. Lemmon, “Weakly coupled event triggered output
feedback control in wireless networked control systems,” in Proc. of
the 49th annual Allerton Conference on Communication, Control, and
Computing, University of Illinois at Urbana-Champaign, IL, USA, Sep.
2011.

[41] D. Lehmann and J. Lunze, “Event-based output-feedback control,” in
19th Mediterranean Conference on Control Automation, Corfu, Greece,
Jun. 2011, pp. 982–987.

[42] G. A. Kiener, D. Lehmann, and K. H. Johansson, “Actuator saturation
and anti-windup compensation in event-triggered control,” Discrete
Event Dynamic Systems, pp. 1–25, Sep. 2012.

[43] M. C. F. Donkers and W. P. M. H. Heemels, “Output-based event-
triggered control with guaranteed L∞-gain and improved and decen-
tralized event-triggering,” IEEE Transactions on Automatic Control,
vol. 57, no. 6, pp. 1362–1376, Jun. 2012.

[44] C. Stoecker and J. Lunze, “Event-based control with incomplete
state measurement and guaranteed performance,” in Proc. of the 3rd
IFAC Workshop on Distributed Estimation and Control in Networked
Systems, Santa Barbara, CA, USA, Sep. 2012, pp. 49–54.

[45] A. Molin and S. Hirche, “On the optimality of certainty equivalence
for event-triggered control systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 2, pp. 470–474, Feb. 2013.

62

http://www.quanser.com

Part A

Distributed and Event-Based

State Estimation

64

Paper I

Event-Based State Estimation with

Variance-Based Triggering

Sebastian Trimpe · Raffaello D’Andrea

Abstract

An event-based state estimation scenario is considered where mul-
tiple distributed sensors sporadically transmit observations of a linear
process to a time-varying Kalman filter via a common bus. The trig-
gering decision is based on the estimation variance: each sensor runs
a copy of the Kalman filter and transmits its measurement only if
the associated measurement prediction variance exceeds a tolerable
threshold. The resulting variance iteration is a new type of Riccati
equation, with switching between modes that correspond to the avail-
able measurements and whose choice depends on the variance at the
previous step. Convergence of the Riccati-type iteration to periodic
solutions is typically observed in simulations. A periodic solution facil-
itates a straightforward implementation of the transmit decision: each
sensor transmits its measurements with a fixed periodic sequence. We
prove asymptotic periodicity of the Riccati-type equation for a scalar
process.

Submitted to IEEE Transactions on Automatic Control, 2012.

65

Paper I. Event-Based State Estimation with Variance-Based Triggering

1. Introduction

Novel control strategies and improvements in sensor, actuator and network
technology will allow the next generation of control systems to tightly inte-
grate the physical world with computation and communication. Referred to
as cyber-physical systems (CPSs) [1], these highly integrated systems will
extend present-day networked systems (such as networked control systems
(NCSs) [2] and wireless sensor networks (WSNs) [3]) in both size and com-
plexity.

As the number of interconnected entities in future CPSs increases, the
cost of communication will become a significant factor. Communication is
costly even in today’s networked systems. In NCSs, where a multi-purpose
communication network is shared by many different control, sensor and ac-
tuator units, a sensor node cannot transmit its measurement without pre-
venting other units from using the network or causing load-induced delays.
In WSNs, the transmission of a sensor measurement to a remote estimator
consumes energy that is often a significant fraction of the system’s overall
energy balance.

While the future of CPSs in areas such as transportation, power systems,
smart buildings, mobile robots and process plants is promising, the cost of
communication must be managed if CPSs are to meet their potential. It will
be vital, for example, to consider the communication network as a shared
resource, and to design the control and estimation algorithms in tandem
with the network access strategy.

This article considers the problem of estimating the state of a dynamic
system from multiple distributed sensors in a scenario where the communi-
cation of sensor measurement is costly. We propose a method where data
is transmitted only when certain events indicate that the data is required
to meet constraints on the estimator performance (expressed as tolerable
bounds on the error variance). Thus the transmit decision is linked to its
contribution to the estimator performance and data is exchanged only when
needed.

Figure 1 depicts the distributed state estimation problem and the event-
based communication strategy used to address it. The key idea is that each
agent transmits its local sensor measurement only if it is required in order
to meet a certain estimation performance. To be able to make this decision,
each agent implements a state estimator that is connected to the common
bus. Since the state estimate is computed based on data received over the
bus only (the local sensor data is used only when also broadcast) and since
we assume a loss and delay-free network, the estimates are the same on all
agents and represent the common information in the network. The estimator

66

1. Introduction

x̌(k), P (k)

Estimator

x(k)

y1(k)

Process

Transmit

Estimator

P (k)

Sensor 1

Logic

x̌(k), P (k)

Common Bus

yM (k)

Transmit

Estimator

P (k)

Sensor M

Logic

x̌(k), P (k)

Figure 1. Distributed event-based state estimation problem. The state x(k)
of a linear process is observed by M sensor agents, which sporadically transmit
their measurements yj(k) over a common bus. (Solid lines denote continuous flow
of data, dashed lines indicate event-based communication, and communication is

assumed without delay and data loss.) Estimator nodes connected to the bus
receive the measurements and keep track of the conditional state mean x̌(k) and
variance P (k). Each sensor makes the decision whether to transmit its local
measurement based on the estimation variance P (k), thus linking the transmit

decision to the estimation performance. The gray blocks constitute the event-
based state estimator to be designed herein. The depicted scheme can be applied
in different scenarios where communication is costly. In a monitoring application,

a remote estimator centrally fuses all sensor data received from the bus (as shown
here). In a networked control system, where the agents are also equipped with
actuation, the state estimates can be used locally for feedback control.

can hence be used to make the transmit decision: if the other agents’ estimate
of a particular measurement is already “good enough,” it is not necessary
to communicate this measurement; if the common estimate is poor, on the
other hand, the measurement is transmitted so that all agents can update
their estimates. The estimators are implemented as time-varying Kalman
filters, which compute the mean and variance of the state conditioned on the
received measurements.

Different decision rules for determining whether an estimate is “good

67

Paper I. Event-Based State Estimation with Variance-Based Triggering

enough” are conceivable. In [4,5], for example, a constant threshold logic on
the difference between the actual measurement and its prediction mean is
used. Herein, we consider a different approach where the decision is based on
the variance: a measurement is broadcast if its prediction variance exceeds
a tolerable bound, which indicates that the uncertainty when predicting the
measurement is too large. If a transmission is triggered by a condition on
the estimation variance, we refer to this as variance-based triggering.

As opposed to making the transmit decision based on real-time measure-
ment data (where, for a stochastic process, the transmit decision is a random
variable), the approach herein permits an off-line analysis of the (determin-
istic) estimation variance iteration, provided that the observed process is
stationary and its statistics are known in advance. Specifically, if a peri-
odic solution of the variance iteration is found, it corresponds to a periodic
sending sequence for each sensor, and hence allows for a straightforward
implementation of the resulting communication logic. The periodic sending
sequence can be computed in advance and fixed for each sensor.

The variance iteration for the event-based state estimator, which is de-
rived in Sec. 2, represents a Riccati-type equation with switching that cor-
responds to the available measurements at a time step and depends on the
variance at the previous step. We applied the event-based estimation method
to the NCS of the Balancing Cube [6], and present the results of simulating
the Riccati-type equation in Sec. 3. These results suggest that the variance
iteration converges to a periodic solution (observed to numerical accuracy).
In Sec. 4, we investigate the special case of a scalar process and prove a theo-
rem that guarantees the asymptotic convergence of the Riccati-type equation
to a periodic solution with a known period. We conclude with a discussion
of the applicability and extensions of the method in Sec. 5.

We first presented the event-based state estimation method with variance-
based triggering in [7], where we focused on the experimental application on
the Balancing Cube (not repeated herein). This article includes the proofs
for the convergence result of the scalar Riccati-type equation, which were
omitted in a preliminary version of the result in [8].

1.1 Related Work

Event-based strategies are a popular means of ensuring efficient use of the
communication resource in NCSs or CPSs (see [9] and references therein).
As opposed to traditional time-triggered transmission of data, event-based
approaches transmit data only when required to meet a certain specification
of the control system (e.g. closed-loop stability, control or estimator per-
formance). Event-based state estimation problems with a single sensor and
a single estimator node have been studied in [9]–[16], for example. Event-

68

1. Introduction

based state estimation problems for distributed or multi-agent systems have
been looked at in [4, 5, 17].

The basic idea of implementing state estimators on the agents of an NCS
in order to reduce communication of sensor data was first presented in [18].
Therein, each agent uses a model to predict the other agents’ measurements
at times when these are not transmitted (because the prediction error is
below a threshold), and the agent resets parts of the state vector when
new measurement data becomes available. In contrast, the Kalman filters
used herein fuse model-based predictions with the received measurements.
Communication schemes like these where, in order to reduce network traffic,
sensor data is not sent at every time step, are also referred to as controlled
communication, [2, 13, 19].

In most of the above-mentioned references for the single sensor/single
estimator case, the sensor node transmits a local state estimate (obtained
from a Kalman filter on the sensor) to the remote estimator, rather than the
raw measurement. While this seems to be the method of choice for the single
sensor agent case (the local state estimate contains the fused information of
all past measurements), communicating raw measurements has a practical
advantage for the case of multiple agents with coupled dynamics. For an
agent to fuse another agent’s measurement with its local state estimate, it
must know the variance of the measurement conditioned on the state. This is
usually known in form of a sensor model. To optimally fuse another agent’s
state estimate (with coupled dynamics), on the other hand, the variance
associated with the estimate would have to be known. Since this variance is,
however, only known to the agent that generated the estimate, it would have
to be communicated over the network as well, hence, increasing the network
load. The method herein makes no assumptions on the dynamic coupling
between the system parts that are observed by the various sensors.

In the above-mentioned references on event-based estimation, an event
is triggered by some condition on real-time data (measurement or state);
that is, in a stochastic framework, data transmission is a random event. In
contrast, the variance-based trigger used herein depends on the prediction
variance at the previous step. The resulting variance iteration is determin-
istic and depends on the problem data only. A condition on the variance to
trigger sensor transmissions is considered in [20] in a slightly different frame-
work. Therein, the authors consider two heterogeneous sensors: a condition
on the estimator variance is used to decide which of the sensors will transmit
its measurement to a remote estimator at any given time step. Whereas the
average communication rate is constant in [20], we seek to reduce the average
sensor transmission rate, and to have the option to not transmit any data at
a time step. The authors in [20] also observe convergence of the estimator

69

Paper I. Event-Based State Estimation with Variance-Based Triggering

variance to periodic sequences in their scenario, but they do not prove this
convergence.

The Riccati iteration obtained for the event-based estimation problem
herein is related to Riccati equations of other well-known Kalman filtering
problems with different sensor transmission policies.

• Full communication. If the estimator has access to all sensor measure-
ments at every time step, the considered problem reduces to the classic
Kalman filtering problem for linear time-invariant systems, [21]. The
variance iteration of the filter then becomes the discrete-time Riccati
equation, whose convergence properties are well known.

• Fixed periodic transmission. With a-priori fixed periodic transmission
of sensor data, the problem can be cast as a linear periodic system with
a periodically varying measurement model. The estimator variance
evolves according to the discrete-time periodic Riccati equation, whose
convergence properties are studied in [22], for example. The problem
considered herein is different in that we do not assume a-priori a peri-
odic transmit sequence, but we show that a periodic sequence results
from the event-based estimation problem.

• Data arrival as random process. In Kalman filtering with intermittent
observations [23], measurement data arriving at the filter is subject to
random data loss modeled as a Bernoulli process. Hence, the estima-
tion variance itself becomes a random variable. In [23], the authors
show that there exists a critical value for the data loss probability, be-
yond which the variance becomes unbounded. In contrast to measure-
ment transmissions being governed by an external (random) process,
the measurement transmission herein is triggered “internally” by the
estimator whenever new data is needed.

1.2 Notation and Preliminaries

We use R, Z, N, and N
+ to denote real numbers, integers, nonnegative

integers, and positive integers, respectively. By E [·|·] and Var [·|·], we denote
the conditional expected value and the conditional variance. A normally
distributed random variable z with mean m and covariance matrix V is
denoted by z ∼ N (m,V).

For i, j ∈ Z and N ∈ N
+, we define the binary operator ‘−N ’ as follows:

i−N j =

{

mod(i−j,N) if mod(i−j,N) > 0

N if mod(i−j,N) = 0,
(1)

70

1. Introduction

where mod(i,N) ∈ {0, . . . , N−1} is the (nonnegative) remainder of i divided
by N . Hence, ‘−N ’ is the subtraction with subsequent modulo N operation,
except that a resulting 0 is replaced by N .

The matrix In×n denotes the n-by-n identity matrix; the subscript is
omitted if the dimension is clear from context. For a matrix A ∈ R

m×n, Aj:

denotes the jth row, and [Aj:]j∈J with J ⊆ {1, . . . ,m} denotes the matrix
constructed from stacking the rows Aj: for all j ∈ J . Further, diag[Ajj]j∈J

denotes the diagonal matrix with entries Ajj , j ∈ J , on its diagonal.
We define the binary indicator function 1X such that 1X = 1 if statement

X is true, and 1X = 0 otherwise.
Consider the iteration

p(k+1) = h(p(k)), p(0) = p0 ≥ 0, (2)

with a function h : D → R
n, D ⊆ R

n. For h being applied m times, we
write hm; that is, for m ∈ N,

p(k+m) = hm(p(k)) = h(h(. . . (h
︸ ︷︷ ︸

m

(p(k)) . . .))), (3)

where h0(p(k)) := p(k). For the domain of a function h, we write dom(h).
We use the following definitions to characterize periodic solutions of (2):

Definition 1—adapted from [24] Let p∗ ∈ dom(h). Then p∗ is called
an N -periodic point of (2) if it is a fixed point of hN , that is, if

hN (p∗) = p∗. (4)

The periodic orbit of p∗, {p∗, h(p∗), h2(p∗), . . . , hN−1(p∗)}, is called an N -
cycle, and N is called the period.

Definition 2 A solution to (2) is called asymptotically N -periodic for the
initial condition p(0) = p0 if

lim
m→∞

hmN (p0) = p∗, (5)

where p∗ is an N -periodic point of (2).

For a function h and collections of intervals I1 and I2, we write I1 h−→ I2 to
indicate that each interval from I1, when mapped by h, is contained in an
interval in I2; that is,

I1 h−→ I2 ⇔ ∀I1 ∈ I1, ∃I2 ∈ I2 : h(I1) ⊆ I2. (6)

71

Paper I. Event-Based State Estimation with Variance-Based Triggering

2. Event-Based State Estimator

We consider the stochastic linear time-invariant system

x(k) = Ax(k−1) + v(k−1) (7)

y(k) = C x(k) + w(k), (8)

where k is the discrete time index, x(k) ∈ R
n is the state, y(k) ∈ R

M

its observation (M the number of sensors), and all matrices are of corre-
sponding dimensions. The process noise, the measurement noise, and the
initial state x(0) are assumed mutually independent, normally distributed
with v(k) ∼ N (0, Q), w(k) ∼ N (0, R), x(0) ∼ N (x0, P0), Q ≥ 0, R > 0, and
P0 ≥ 0. We assume that (A,C) is detectable (i.e. the process is detectable
when measurements from all sensors are combined, but not necessarily from
an individual sensor), (A,Q) is stabilizable, and R is diagonal. The latter
assumption means that the measurement noise is mutually independent for
any two sensors considered, which is often the case in practice. The pre-
sented state estimation method can, however, be readily extended to the
case of block diagonal R by sending blocks of correlated measurements at
once.

Remark 1 For ease of notation, we consider an unforced system; that is,
no input u(k−1) in (7). Provided the inputs are known by all sensor agents
at all times (such as when they represent a known reference signal or when
they are shared over the network), the extension of the event-based state
estimator to this case is straightforward, and the analysis of the estimator
variance in Sec. 3 and 4 remains unchanged.

We seek an algorithm to recursively compute an estimate of the state x(k)
from measurements received up to time k, and the problem parameters given
by (A,C,Q,R, P0). If the full measurement vector y(k) is available at time
k, the problem is solved by the standard Kalman filter (Sec. 2.1). In Sec. 2.2,
we present the event-based state estimator, which consists of a Kalman filter
that uses a reduced set of measurements as an input and a rule for deciding
whether to transmit a measurement.

2.1 Full Communication Kalman Filter

It is well known that the Kalman filter is the optimal Bayesian state estima-
tor for the process (7), (8) because it keeps track of the Gaussian conditional
probability distribution of the state x(k) conditioned on all measurements
up to time k, Y(k) := {y(1), . . . , y(k)} (see [21], for example). To distinguish

72

2. Event-Based State Estimator

this Kalman filter from the event-based filter derived below, we refer to it
as the full communication Kalman filter. Under the above assumptions, the
state prediction variance Var [x(k)|Y(k−1)] converges to P̄ > 0, which is the
unique positive solution to the discrete algebraic Riccati equation (DARE):

P̄ = AP̄AT +Q−AP̄CT(CP̄CT +R)−1CP̄AT. (9)

We write P̄ = DARE(A,C,Q,R).

2.2 Event-Based Kalman Filter

Denote by J(k) ⊆ {1, . . . ,M} the subset of sensors that transmit their mea-
surement at time k. We make precise how we choose J(k) later in this
section. Since communication is assumed to be instantaneous and without
data loss, J(k) is also the set of measurements available at the estimator at
time k. The corresponding measurement equation is then given by

ỹ(k) = C̃(k)x(k) + w̃(k), (10)

where ỹ(k) = [yj(k)]j∈J(k) is the vector of those measurements available at

time k, w̃(k) ∼ N (0, R̃(k)), and output and measurement noise variance
matrices are constructed as

C̃(k) = [Cj:]j∈J(k), R̃(k) = diag[Rjj]j∈J(k). (11)

Notice that ỹ(k) ∈ R
m(k), w̃(k) ∈ R

m(k), C̃(k) ∈ R
m(k)×n, and R̃(k) ∈

R
m(k)×m(k) have time varying dimensions with m(k) ≤ M , which includes

the case m(k) = 0; that is, at time k there is no measurement available at
the estimator. In order to avoid special treatment of this case, we use the
convention that the measurement update step in the Kalman filter below is
omitted in case m(k) = 0.

For any given sequence of C̃(k) and R̃(k), the distribution of the state
x(k) conditioned on the set of available measurements Ỹ(k) = {ỹ(l) | 0 ≤
l ≤ k} is Gaussian, [21]. The Kalman filter keeps track of the conditional
means and variances, x̌(k|k−1) = E [x(k)|Ỹ(k−1)], x̌(k|k) = E [x(k)|Ỹ(k)],
P̌ (k|k−1) = Var [x(k)|Ỹ(k−1)], and P̌ (k|k) = Var [x(k)|Ỹ(k)]. The filter
equations are

x̌(k|k−1) = Ax̌(k−1|k−1) (12)

P̌ (k|k−1) = AP̌ (k−1|k−1)AT +Q (13)

Ǩ(k) = P̌ (k|k−1) C̃T(k)
(
C̃(k)P̌ (k|k−1)C̃T(k) + R̃(k)

)−1
(14)

73

Paper I. Event-Based State Estimation with Variance-Based Triggering

x̌(k|k) = x̌(k|k−1) + Ǩ(k)
(
y(k)−C̃(k)x̌(k|k−1)

)
(15)

P̌ (k|k) =
(
I−Ǩ(k)C̃(k)

)
P̌ (k|k−1). (16)

The filter is initialized with x̌(0|0) = x0 and P̌ (0|0) = P0.
For notational convenience, we use P (k) := P̌ (k|k−1) for the state pre-

diction variance. The prediction variance captures the uncertainty about
x(k) given all measurements up to the previous time step k−1. Similarly,
Var [yj(k)|Ỹ(k− 1)] = CjP (k)CT

j + Rjj captures the uncertainty in pre-
dicting the measurement yj(k). A measurement yj(k) is transmitted and
used to update the estimator if, and only if, its prediction variance exceeds
a tolerable bound. Since the event-based Kalman filter cannot do better
than the full communication filter, we use a threshold δ on the difference
Var [y(k)|Ỹ(k−1)] − limk→∞ Var [y(k)|Y(k−1)] = Cj(P (k) − P̄)CT

j for the
transmit decision. Hence, we use the transmit rule

transmit yj(k) ⇔ Cj

(
P (k)− P̄

)
CT

j ≥ δj (17)

for sensor j, where the design parameter δj captures the tolerable deviation
of the jth sensor measurement prediction variance from the full communica-
tion, steady-state variance. For ease of notation, we introduce the transmit
function

γj(k) := 1Cj(P (k)−P̄)CT
j ≥δj . (18)

Having established the transmit rule (17), we can now make the set J(k)
of all sensors transmitted at time k precise:

J(k) = {j | 1 ≤ j ≤ M, Cj

(
P (k)− P̄

)
CT

j ≥ δj}. (19)

The matrices C̃(k) and R̃(k) for k ∈ N are well defined by (11), (19), and
knowledge of P (k) = P̌ (k|k−1).

The Kalman filter (12)–(16) together with the variance-based transmit
decision (17) is referred to as the event-based state estimator with variance-
based triggering. Since the Kalman filter (12)–(16) is the optimal Bayesian
state estimator for any sequences C̃(k) and R̃(k), it is also optimal for those
sequences given by (11) and (19). In other words, given the rule (17) (which
captures the objective to use relevant measurements only), the filter (12)–
(16) is the optimal state estimator for the estimation problem given by (7),
(10), (11), and (19). Clearly, if δj = 0 for all sensors, the full communication
Kalman filter is recovered.

74

3. Illustrative Examples

2.3 Switching Riccati-Type Iteration

The update equation for the estimator prediction variance P (k) is obtained
by combining (11), (13), (14), (16), and (19):

P (k+1) = AP (k)AT +Q

−AP (k)
(
Č(P (k))

)T(
Č(P (k))P (k)

(
Č(P (k))

)T
+ Ř(P (k))

)−1

· Č(P (k))P (k)AT

=: H(P (k)), (20)

where Č(P (k)) := C̃(k) and Ř(P (k)) := R̃(k) have been introduced to
emphasize their dependence on P (k) by (11) and (19); and H(·) denotes the
map from P (k) to P (k+1). The system given by (7), (10), and (11) can be
regarded as a switching system with modes given by the possible values of
J(k). The modes of the system are switched as a function of the prediction
variance at the previous step through (19). Thus, (20) is a Riccati-type
iteration with switching that depends on the variance at the previous step.

According to (20), the sequence P (k) for k ∈ N
+ can be computed from

the problem data (A, C, Q, R, P0), and the tuning parameters δj . Notice
that this is fundamentally different from approaches such as [4], where the
decision whether to transmit a measurement is based on the actual real-time
measurement. Since the measurement is a random variable, the Kalman filter
variables P (k) and P̌ (k|k) become random variables themselves; whereas
here, they are deterministic and can be computed off-line from the problem
data. This will allow the analysis of the Riccati-type iteration (20) in the
following sections.

3. Illustrative Examples

We provide two examples to illustrate the behavior of the Riccati-type it-
eration (20) for the event-based state estimator. The solutions are asymp-
totically periodic in both examples. Periodic solutions of the Riccati itera-
tion correspond to periodic transmit sequences, which gives rise to a time-
triggered implementation of the event-based design with low complexity (the
sensor nodes do not need to run a copy of the estimator then). (Matlab files
to reproduce the simulation results of this section are provided as supple-
mentary material.)

75

Paper I. Event-Based State Estimation with Variance-Based Triggering

3.1 Scalar Problem

Consider the system (7), (8) with a single sensor (M = 1), a scalar pro-
cess (n = 1), and the parameters (small letters are used to indicate scalar
quantities):

Example 1 a = 1.2, c = q = r = 1, δ = 3, p0 = p̄.

Figure 2(a) shows the results from simulating (20).
As expected, the prediction variance p(k) grows at times where no mea-

surement is available. Once the threshold is exceeded, a measurement is
transmitted (γ(k) = 1) and the estimator variance drops. The solution in
Fig. 2(a) asymptotically converges to a periodic solution with period N = 3.

Figures 2(b) and 2(c) illustrate that, for different values of δ (all other
parameters are the same as in Example 1), asymptotically periodic solutions
with very different periods can be obtained. Notice that the period does not
vary monotonically with δ.

3.2 Multivariate Problem of the Balancing Cube

The event-based state estimation method was used in [7] to reduce the
average communication in the networked control system of the Balancing
Cube [6]. Here, we present the simulation results of (20) that were used to
find periodic transmit sequences for this system.

The Balancing Cube is a multi-body system consisting of a rigid cube-
shaped aluminum structure (with an edge length of 1.2m) and six rotating
arms that are mounted at the centers of the cube’s inner faces. The arms
constitute the control agents, each one carrying sensing, actuation, compu-
tation, and power. They coordinate by exchanging data over a wire-based
broadcast network; thus, the system has the architecture of Fig. 1 (with the
sensor agents also equipped with actuation). By controlling the actuated
arms, the cube can balance on any of its corners or edges. In [7], the event-
based state estimator from Sec. 2.2 is implemented on each agent, and the
state estimates are used for feedback control.

Consider the system (7), (8) with n = 8, m = 12,

A =

[
I6×6 0

A21 A22

]

, and C =

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

, (21)

76

3. Illustrative Examples

p
(k
)

Iteration k

γ
(k
)

0 3 6 9 12 15

0

1

2.26

4.26

7.13

(a) δ = 3

p
(k
)

Iteration k

γ
(k
)

0 5 10 15 20 25

0

1

1.98

4.09

(b) δ = 0.2

p
(k
)

Iteration k

γ
(k
)

0 19 38 57 76 95

0

1

2.36
4.4

7.34

11.57

17.66

(c) δ = 9.6167

Figure 2. Simulation results for the scalar Example 1 and different values of the

threshold parameter δ. The top graph of each sub-figure shows the variance iter-
ates p(k) (dots) and the transmit threshold p̄+ δ/c2 (dashed). The bottom graph
shows the corresponding transmit sequence γ(k). All solutions are asymptotically
periodic with periods N = 3, 5, 19 from (a) to (c).

77

Paper I. Event-Based State Estimation with Variance-Based Triggering

Table 1. States and sensors of the Balancing Cube model (21).

State Physical Meaning

x1 angle arm 1

x2 angle arm 2

x3 angle arm 3

x4 angle arm 4

x5 angle arm 5

x6 angle arm 6

x7 angle cube

x8 ang. vel. cube

Meas. Sensor

y1 angle encoder arm 1

y2 rate gyro arm 1

y3 angle encoder arm 2

y4 rate gyro arm 2

y5 angle encoder arm 3

... ...

y11 angle encoder arm 6

y12 rate gyro arm 6

which represents a model of the cube (when balancing on edge) that is rel-
evant for state estimation. All states and measurements of the model (21)
are summarized in Table 1. Since the system inputs are irrelevant for the
estimation problem, they are omitted in (21). For each arm, there is an
encoder measuring the arm angle relative to the cube structure, and a rate
gyro (mounted on the cube body) measuring the angular rate of change of
the cube body. Please refer to [6] for a detailed description of the system
and to [7] for details on the model (including the numerical values of A21

and A22).
In the Kalman filter, we use

Q = diag ([1 1 1 1 1 1 0.01 1]) (22)

R = diag ([0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1]) , (23)

which were found to yield satisfactory performance in experiments using
the full communication filter (Sec. 2.1) for feedback control. The steady-
state solution (9) of the full communication Kalman filter is (rounded to two
decimal places):

P̄ =

1.09 0 0 0 0 0 0 0
0 1.09 0 0 0 0 0 0
0 0 1.09 0 0 0 0 0
0 0 0 1.09 0 0 0 0
0 0 0 0 1.09 0 0 0
0 0 0 0 0 1.09 0 0
0 0 0 0 0 0 0.72 0.13
0 0 0 0 0 0 0.13 1.17

 . (24)

For the design of the event-based state estimator (Sec. 2.2), the only
additional design parameters are the threshold parameters δj in (17): we
chose δenc = 48 for the angle encoders and δgyro = 4 for the rate gyros.

78

3. Illustrative Examples

P
1
1
(k
)

P
1
2
(k
)

P
7
7
(k
)

P
8
8
(k
)

Iteration k

1000 1050 1100 1150

1000 1050 1100 1150

1000 1050 1100 1150

1000 1050 1100 1150

1
2
3
4
5
6

0.75

0.8

0.85

0

0.1

0.2

0.3

0.4

0
10
20
30
40
50

Figure 3. Simulation results of the variance iteration (20) for the Balancing
Cube model (21) after 1000 steps. Shown are some elements of P (k) (dots) and
the transmit threshold P̄jj+δj (dashed). Notice that there is no explicit threshold
on P12(k) and P77(k). The solution approaches an N -cycle with period N = 50.

The result for simulating (20) starting at P (0) = P̄ is shown in Fig. 3. The
obtained solution converges to an N -cycle with period N = 50. In fact, the
iteration P̃ (k+1) = H50(P̃ (k)) yields the fixed point

P̃ ∗ =

1.10 0 0 0 0 0 0 0
0 1.10 0 0 0 0 0 0
0 0 1.10 0 0 0 0 0
0 0 0 1.10 0 0 0 0
0 0 0 0 1.10 0 0 0
0 0 0 0 0 1.10 0 0
0 0 0 0 0 0 0.75 0.14
0 0 0 0 0 0 0.14 1.19

 . (25)

79

Paper I. Event-Based State Estimation with Variance-Based Triggering

Interpretation of Periodic Solution A periodic solution of the vari-
ance iteration (20) corresponds to periodic sensor transmission via (17). In
this example, the following transmit sequences γj(k) are obtained:

γj(k) = 1k=50(k), for j = 1, 3, . . . , 11 (encoder) (26)

γj(k) = 1k=5(k) + 1k=10(k) + · · ·+ 1k=50(k), for j = 2, 4, . . . , 12 (gyro).
(27)

Instead of running the full event-based state estimator given by (12)–(16)
and (17) on each sensor (see Fig. 1), the periodic transmit schedule γj(k)
can be implemented for the transmit logic block at lower computation and
memory requirements. This approach was applied to the Balancing Cube
in [7]. Periodic solutions thus allow for the recovery of a time-triggered (pe-
riodic) state estimator implementation. The sampling periods of the sensors
are, however, not design parameters as in usual time-triggered estimation,
but they result from the event-based approach where the designer specifies
tolerable bounds on the estimator performance.

4. Asymptotic Periodicity for Scalar Problem

For the specific problems in the previous section, we observed in simulations
that the Riccati-type iteration (20) approaches periodic solutions (i.e. con-
vergence to periodic solutions was interpreted from simulation results rather
than proven). In this section, we address the convergence problem and derive
a theorem for the scalar version of (20) that guarantees asymptotic period-
icity of the solution under certain assumptions to be derived in this section
as well.

The question, under what conditions is the periodic transmission of sen-
sor data the optimal solution for the event-based estimation problem posed
by (7), (10), (11), and (19), is of theoretical interest for understanding the
connection between time-triggered and event-based estimation. On the other
hand, checkable conditions for asymptotic periodicity are also of practical
value as they provide a means of identifying periodic solutions other than by
simulating (20) and having to interpret the result (where it may happen that
one has not simulated long enough to find a solution with a larger period).

The subject of study in this section is the scalar version of (20); that is,
the nonlinear recursive equation

p(k+1) = a2 p(k) + q − 1c2(p(k)−p̄)≥δ
a2 c2 p2(k)

c2 p(k) + r
(28)

80

4. Asymptotic Periodicity for Scalar Problem

p(0) = p0 ≥ 0, (29)

for the parameters |a| > 1, c 6= 0, q > 0, r > 0, δ > 0 (small letters
are used to indicate scalar quantities). In particular, we consider unstable
dynamics (|a| > 1), which is the more challenging case, since communication
of measurements is required for the estimation error variance to be bounded.
We derive conditions that guarantee the solution of (28) to be asymptotically
N -periodic, and give an algorithm to compute the period N . After some
preliminaries in Sec. 4.1, we use an illustrative example in Sec. 4.2 to outline
the convergence proof, which then follows in Sec. 4.3 to 4.6 with the main
result being stated in Sec. 4.6 (Theorem 2).

4.1 Preliminaries

Since q > 0 and r > 0, (28) can equivalently be written as

p(k+1)

q
= a2

p(k)

q
+ 1− 1 p(k)

q
− p̄

q
≥ δ

c2q

a2 c2q
r

(p(k)
q

)2

c2q
r

p(k)
q + 1

. (30)

By redefining p(k), c2, and δ as p(k)/q, c2q/r, and δ/(c2q), respectively, we
can assume without loss of generality that q = r = 1. Henceforth, we study
the iteration

p(k+1) = h(p(k)), p(0) = p0 ≥ 0, (31)

with h defined by

h : [0,∞) → [0,∞)

p 7→ a2 p+ 1− 1p≥p̄+δ
a2 c2 p2

c2 p+ 1

(32)

with parameters |a| > 1, c 6= 0, δ > 0; and with p̄ = DARE(a, c, 1, 1). The
graph of h is shown in Fig. 4 together with the graph of the function g,

g : [0,∞) → [0,∞)

p 7→ a2 p+ 1− a2 c2 p2

c2 p+ 1
,

(33)

which represents the variance iteration of the full communication Kalman
filter.

We summarize some properties of h, which will be useful later.

81

Paper I. Event-Based State Estimation with Variance-Based Triggering

p

h
(p
),
g
(p
)

0 p1 p̄+ δ p2
0

1

p1

p2

Figure 4. The functions h (black) and g (gray). The filled circle indicates a
closed interval boundary, whereas the unfilled circle indicates an open interval
boundary. The dotted diagonal represents the identity map p = p. The inter-
section of g with the identity diagonal represents the solution p̄ to the DARE

(9). The dashed box represents the set [p1, p2), which is invariant under h. For
p ≥ p̄+ δ, h(p) = g(p).

Proposition 1 Let p1 := h(p̄+ δ) and p2 := a2(p̄+ δ) + 1. The following
properties of h hold:

(i) h is continuous and strictly increasing on [p1, p̄+ δ) and on [p̄+ δ, p2].

(ii) h is differentiable on (p1, p̄+ δ) and on (p̄+ δ, p2).

(iii) h is injective on [p1, p2).

(iv) h([p1, p2)) = [p1, h(p2)) ∪ [h(p1), p2) ⊆ [p1, p2).

(v) ∀p ∈ [0,∞), ∃m ∈ N : hm(p) ∈ [p1, p2).

Proof. From the definitions of h and g in (32) and (33), we get

p1 = h(p̄+ δ) = g(p̄+ δ) < p̄+ δ < a2(p̄+ δ) + 1 = p2. (34)

We first show that

h(p1) > h(p2), (35)

82

4. Asymptotic Periodicity for Scalar Problem

which will be useful later. Let p̃ := p̄+ δ. Then, with (34),

h(p1) = a2p1 + 1 = a2g(p̃) + 1 = a4p̃+ a2 + 1− a4c2p̃2

c2p̃+ 1
,

h(p2) = g(p2) = a4p̃+ a2 + 1− a2c2(a2p̃+ 1)2

c2(a2p̃+ 1) + 1
.

Hence,

h(p1)− h(p2) = − a4c2p̃2

c2p̃+ 1
+

a2c2(a2p̃+ 1)2

c2(a2p̃+ 1) + 1

=
a4c4p̃2 + a4c2(a2 − 1)p̃2 + a2c4p̃+ 2a4c2p̃+ a2c2

(c2p̃+ 1)(a2c2p̃+ c2 + 1)
,

which is strictly greater than zero because of p̃ ≥ 0, |a| > 1, c 6= 0; and (35)
follows. Next, we prove the statements (iii)–(v) ((i) and (ii) are omitted as
they follow directly from (32) and (33)).

(iii): h is injective on each of the intervals [p1, p̄ + δ) and [p̄ + δ, p2)
separately by (i). Furthermore, by (i),

h([p1, p̄+ δ)) = [h(p1), lim
pրp̄+δ

h(p)) = [h(p1), p2), (36)

h([p̄+ δ, p2)) = [h(p̄+ δ), lim
pրp2

h(p)) = [p1, h(p2)), (37)

where p ր p̄+δ denotes the left-sided limit (p approaches p̄+δ from below).
From (35), [p1, h(p2)) ∩ [h(p1), p2) = ∅. Therefore, h is injective on [p1, p2).

(iv): Follows from (36), (37), and (35).
(v): We consider four cases for p ∈ [0,∞).
First case: p ∈ (0, p1). We first show that the sequence hk(p), k ≥ 0 is

eventually greater than p1. For hk−1(p) ∈ (0, p1), h
k(p) = a2hk−1(p) + 1 >

a2hk−1(p). Hence, for p, h(p), . . . , hk−1(p) ∈ (0, p1), hk(p) > a2kp. Since
limk→∞ a2kp = ∞, there exists an m ∈ N such that

hm−1(p) ∈ (0, p1) and hm(p) ∈ [p1,∞). (38)

Next, notice that h((0, p1)) = (h(0), h(p1)) = (1, h(p1)) ⊆ [1, p2) because
h(p1) < p2 by (iv). Since hm−1(p) ∈ (0, p1), it follows that hm(p) =
h(hm−1(p)) ∈ [1, p2). Together with (38), this implies that hm(p) ∈ [p1,∞)∩
[1, p2) = [p1, p2).

Second case: p = 0. After one iteration, h(p) = h(0) = 1 ∈ (0, p1); that
is, the claim follows from the first case.

83

Paper I. Event-Based State Estimation with Variance-Based Triggering

Third case: p ∈ [p1, p2). Follows with m = 1 from (iv).
Fourth case: p ∈ [p2,∞). Since h(p) = g(p), the sequence hk(p) = gk(p),

k ≥ 0, with p, h(p), . . . , hk−1(p) ∈ [p2,∞) evolves as for the full communica-
tion Kalman filter. By the convergence properties of the full communication
Kalman filter, [21], limk→∞ gk(p) = p̄ and, by (34), p̄ < p̄+ δ < p2. Hence,
there exists an m ∈ N such that hm−1(p) ∈ [p2,∞) and hm(p) ∈ [0, p2). Since
h([p2,∞)) ⊆ [h(p2),∞) ⊆ [p1,∞) by (iv), we have hm(p) = h(hm−1(p)) ∈
[p1,∞). Therefore, hm(p) ∈ [0, p2) ∩ [p1,∞) = [p1, p2).

For h([p1, p2)) ⊆ [p1, p2) in Proposition 1, (iv), we also say that [p1, p2) is
an invariant set under h. By Proposition 1, (iv) and (v), every solution of
(31) enters [p1, p2) for some m and remains within for all k ≥ m. Therefore,
attention can be restricted to the interval [p1, p2) for studying conditions for
asymptotic periodicity in the following.

From Proposition 1, (iii), the inverse of h exists on the range of h on
[p1, p2), which is h([p1, p2)) = [p1, h(p2)) ∪ [h(p1), p2) by (iv). Hence, we
define the inverse h−1 as

h−1 : [p1, h(p2)) ∪ [h(p1), p2) → [p1, p2)

y 7→ h−1(y) such that h(h−1(y)) = y.
(39)

The convergence proof in the following subsections is based on the con-
traction mapping theorem (also known as Banach’s fixed point theorem).

Theorem 1—Contraction Mapping Theorem, [25] Let ‖·‖ be a norm
for Rn and S a closed subset of Rn. Assume f : S → S is a contraction map-
ping: there is an L, 0 ≤ L < 1, such that ‖f(p) − f(p̃)‖ ≤ L‖p − p̃‖ for all
p, p̃ in S. Then f has a unique fixed point p∗ in S. Furthermore, if p(0) ∈ S
and we set p(k+1) = f(p(k)), then

‖p(k)− p∗‖ ≤ Lk

1− L
‖p(1)− p(0)‖ (k ≥ 0). (40)

Equation (40) implies that p(k) converges to p∗ as k → ∞ for any p(0) ∈ S.

4.2 Illustrative Example and Outline of the Proof

We now illustrate, by means of Example 1, the main ideas that are used in
Sec. 4.3 to 4.6 to prove asymptotic periodicity of (31).

The graph of h for the parameters of Example 1 is shown in Fig. 5. Since
there is no intersection with the identity diagonal, h has no fixed point, as

84

4. Asymptotic Periodicity for Scalar Problem

expected. The graph of h3, which is depicted in Fig. 6, does, however, have
three intersections in [p1, p2) with the identity diagonal. Hence, h3 has three
fixed points in this interval corresponding to the 3-cycle shown in Fig. 2(a).

We illustrate below how Theorem 1 can be used to systematically prove
that h3 has these three fixed points, and that they are (locally) attractive.
This approach is then generalized in Sec. 4.3 to 4.6 to general solutions of
(31). To be able to apply Theorem 1 (with n = 1, f = h3, and ‖·‖ = |·|),
there are two key requirements:

(R1) a suitable closed set S that is invariant under h3 must be constructed,
and

(R2) h3 must be a contraction mapping on S.

As it shall be seen later, the discontinuities of the function h3 play a
crucial role in the development. The function h3 has two discontinuities,
which can be seen as follows:

• h(p) is continuous for all p ∈ [p1, p2) except at d1 := p̄+ δ.

• h2(p) = h(h(p)) is continuous at p if h is continuous at p and if h is
continuous at h(p), [26]. Hence, points of discontinuity are d1 (discon-
tinuity of h); and d2 ∈ [p1, p2) such that p̄ + δ = d1 = h(d2). Since
d1 ∈ dom(h−1), the inverse h−1 exists and d2 = h−1(d1).

• Similarly, h3(p) = h(h2(p)) is continuous at p if h2 is continuous at p
and if h is continuous at h2(p). Points of discontinuity are d1 and d2
(discontinuities of h2); and (potentially) d3 ∈ [p1, p2) such that p̄+δ =
d1 = h2(d3) ⇔ d2 = h(d3). But since d2 /∈ dom(h−1) (cf. Fig. 5), such
a d3 does not exist. Hence, h3 has the discontinuities d1 and d2.

The discontinuities d1 and d2 subdivide [p1, p2) into three disjoint subin-
tervals: [p1, p2) = I3 ∪ I2 ∪ I1 with I3 := [p1, d2), I2 := [d2, d1), and I1 :=
[d1, p2). Figure 7 illustrates where one of the subintervals, I1, is mapped
by repeated application of h. It can be seen that h3(I1) ⊆ [d1, p2) = I1.
Furthermore, since h(p2) < d2 (cf. Fig. 5), the same property holds for the
closure of I1; that is, [d1, p2] is invariant under h

3,

h3([d1, p2]) ⊆ [d1, p2]. (41)

Notice that h([d1, p2]) and h2([d1, p2]) (the same intervals as h(I1) and h2(I1)
in Fig. 7, but with closed right bounds) are closed intervals contained in I3
and I2, respectively. It can be shown that, under h3, they are invariant and
attractive for any point in I3 and I2, respectively. Hence, we can construct
closed sets invariant under h3 (requirement (R1)).

85

Paper I. Event-Based State Estimation with Variance-Based Triggering

p

h
(p
)

p1 d2 d1 p2
p1
d2

d1

p2

Figure 5. The function h for a = 1.2, c = 1, δ = 3 on the interval [p1, p2) =
[2.20, 8.13). The function has a discontinuity at d1 = p̄ + δ = 4.95. The slope of
h is a2 on (p1, d1) and bounded by g′(d1) on (d1, p2) (cf. Fig. 4).

p

h
3
(p
)

p1 d2 d1 p2
p1
d2

d1

p2

Figure 6. The function h3 for a = 1.2, c = 1, δ = 3 on the interval [p1, p2) =
[2.20, 8.13). The function has two discontinuities at d1 = p̄ + δ = 4.95 and

d2 = 2.74.

For (R2), we focus again on the interval I1. Consider the derivative of
h3 on (d1, p2). By the chain rule, for p ∈ (d1, p2),

d(h3)

dp
(p) = h′(h2(p)) · h′(h(p)) · h′(p), (42)

where h′ refers to the first derivative dh
dp . Similar to the argumentation in

86

4. Asymptotic Periodicity for Scalar Problem

p

p1 d2 d1 p2

h3(I1)

h2(I1)

h(I1)

I1

Figure 7. Mapping of the interval I1 under repeated application of h. On
the top line, the interval I1 = [d1, p2) is shown as a thick line. This interval is
mapped to h(I1) = [h(d1), h(p2)) = [p1, h(p2)) (cf. Fig. 5), shown on the second

line from above. Notice that the obtained interval is significantly shorter due to
the slope of h being significantly less than one on [d1, p2) (cf. Fig. 5). The intervals
h2(I1) = h(h(I1)) and h3(I1) = h(h2(I1)) (third and fourth line from above) are
obtained accordingly. The interval length increases for the latter two mappings,

since the slope of h is greater than one on [p1, d1). Still, after one cycle of three
mappings, the resulting interval is contained in the original one, i.e. h3(I1) ⊆ I1.

Fig. 7, one can see that h((d1, p2)) ⊆ (p1, d2) and h2((d1, p2)) ⊆ h((p1, d2)) ⊆
(d2, d1). From Fig. 5, it can be seen that h′(p) = a2 for all p ∈ (p1, d2) ∪
(d2, d1) and that h′(p) < g′(d1) for all p ∈ (d1, p2). Therefore, for p ∈
(d1, p2), we get from (42) the following:

d(h3)

dp
(p) < a2 · a2 · g′(d1) = a4g′(p̄+ δ) = 0.084. (43)

From this, it follows (by the application of the mean value theorem, [26])
that for any closed interval S ⊆ (d1, p2), the contraction mapping property in
Theorem 1 holds with L = a4g′(p̄+ δ) < 1. Even though the closed interval
[d1, p2] is not contained in (d1, p2), Ĩ1 := h3([d1, p2]) is contained (see Fig. 7).
Furthermore, Ĩ1 is itself invariant under h3, which follows directly from (41):
h3(Ĩ1) = h3(h3([d1, p2])) ⊆ h3([d1, p2]) = Ĩ1. Theorem 1 thus ensures that
there exists a unique fixed point in Ĩ1, and that every starting point in Ĩ1
converges to this fixed point. Furthermore, since

h3(I1) = h3([d1, p2)) ⊆ h3([d1, p2]) = Ĩ1, (44)

the fixed point is attractive for all points in the original interval I1.
For the intervals I2 and I3, one can proceed similarly and, hence, show

that every point in [p1, p2) converges to a fixed point of h3. Furthermore,
we know by Proposition 1, (iv) and (v), that every solution to (31) ends
up in [p1, p2). Therefore, the solution to (31) for the considered example is
asymptotically 3-periodic for any initial value p0 ≥ 0.

87

Paper I. Event-Based State Estimation with Variance-Based Triggering

To treat the general case in the remainder of this section, we proceed
analogously to this example. The construction of N closed subintervals of
[p1, p2) that are invariant under hN proceeds in two steps. First, half-closed
intervals Ii are generated that cover [p1, p2) and possess the sought invariance
property (Sec. 4.3). Second, closed intervals Ĩi ⊆ Ii are constructed that
inherit the invariance property from their supersets (Sec. 4.4). In Sec. 4.5,
we show that hN is a contraction mapping on these intervals, which then
allows us (in Sec. 4.6) to apply Theorem 1 and conclude that solutions to
(31) are asymptotically N -periodic.

4.3 Invariant Subintervals (Left-Closed, Right-Open)

Motivated by the example of the previous subsection, the left-closed, right-
open intervals Ii are obtained by splitting up [p1, p2) through a sequence of
points {d1, d2, . . . }, di ∈ [p1, p2), which represent discontinuities of hN and
are obtained by iteratively applying h−1 until some di /∈ dom(h−1). We give
an algorithm to compute these discontinuities:

Algorithm 1

d1 := p̄+ δ
while di ∈ dom(h−1)

di+1 := h−1(di)
increment i

end while
N := i+ 1.

If there exists an m ∈ N such that dm /∈ dom(h−1), Algorithm 1 terminates,
and the obtained sequence {d1, d2, . . . } is finite. For all problems of an
exhaustive search that we have conducted, this has actually been the case.
For the purpose of this article, we assume henceforth that the algorithm
terminates.

Assumption 1 Algorithm 1 terminates.

The assumption is essentially checked by running Algorithm 1 for a concrete
problem; if the algorithm terminates, the assumption is true.

Proposition 2 Let Di := {d1, . . . , di} with di defined by Algorithm 1.
The following statements hold:

(i) ∀di, dj ∈ DN−1 with i 6= j, di 6= dj .

88

4. Asymptotic Periodicity for Scalar Problem

(ii) di /∈ [h(p2), h(p1)], ∀i < N−1,
dN−1 ∈ [h(p2), h(p1)).

(iii) hi is continuous on [p1, p2) \ Di, ∀i ≤ N−1,
hN is continuous on [p1, p2) \ DN−1.

Proof. (i): Proof by contradiction. Assume there exist di, dj ∈ DN−1 with
i 6= j and di = dj . Assume w.l.o.g. j > i and let m := j − i ≤ N − 2. Then,
from Algorithm 1, di = dj = h−1(dj−1) = h−2(dj−2) = · · · = h−m(di); that
is, the sequence of di’s is periodic with period m, and Algorithm 1 never
terminates, which contradicts with Assumption 1.

(ii): By Assumption 1, the sequence {d1, d2, . . . } defined by Algorithm 1
is finite and equal to DN−1. Therefore, di ∈ dom(h−1) for all i < N−1
and dN−1 /∈ dom(h−1). From dom(h−1) = [p1, h(p2))∪ [h(p1), p2) (see (39)),
it follows that di /∈ [h(p2), h(p1)) for all i < N − 1. Furthermore, di 6=
h(p1) can be seen by contradiction: assuming di = h(p1), it follows from
h(p1) ∈ dom(h−1) and p1 ∈ dom(h−1) that there is di+2 ∈ DN−1 with
di+2 = h−2(di) = h−1(p1) = p̄+ δ = d1, which contradicts with (i).

Since h−1 maps to [p1, p2) (see (39)), we have dN−1 = h−1(dN−2) ∈
[p1, p2). Together with dN−1 /∈ dom(h−1), this implies that dN−1 ∈ [p1, p2)\(
[p1, h(p2)) ∪ [h(p1), p2)

)
= [h(p2), h(p1)).

(iii): First, we prove by induction that hi is continuous on [p1, p2) \ Di

for all i ≤ N − 1. From Proposition 1, (i), it follows that the statement is
true for i = 1. Assume the statement holds for some i ≤ N − 2 (induction
assumption (IA)); and consider

hi+1(p) = h(hi(p)), p ∈ [p1, p2). (45)

If hi is continuous at p and h is continuous at hi(p), then the composition
hi+1 is continuous at p, [26]. Hence, hi+1 is guaranteed to be continuous on
[p1, p2) except for the points Di and the point p̃ with hi(p̃) = d1 (d1 is the
discontinuity of h). But hi(p̃) = d1 ⇔ p̃ = h−i(d1) = di+1 (since i ≤ N−2,
the i-times application of the inverse map, h−i, is defined). Therefore, hi+1

is continuous on [p1, p2) \ (Di ∪ {di+1}) = [p1, p2) \ Di+1.
Next, we prove that hN is continuous on [p1, p2)\DN−1. For this, consider

hN (p) = h(hN−1(p)), p ∈ [p1, p2). (46)

By the same argument as above, hN is guaranteed to be continuous on
[p1, p2) except for the points DN−1 and the point p̃ with hN−1(p̃) = d1 ⇔

89

Paper I. Event-Based State Estimation with Variance-Based Triggering

I3

p1 p2
R

d3 d1 d4 d2

I5 I1 I4 I2

Figure 8. The left-closed, right-open subintervals I = {I1, I2, I3, I4, I5} gener-

ated by the points D4 = {d1, d2, d3, d4} cover the interval [p1, p2).

h(p̃) = h−(N−2)(d1) = dN−1. But a point p̃ with h(p̃) = dN−1 does not exist
in [p1, p2) since dN−1 ∈ [h(p2), h(p1)) (by (ii)), which is not in the range of h
(by Proposition 1, (iv)). Therefore, hN is continuous on [p1, p2) \DN−1.

The pointsDN−1 divide the interval [p1, p2) intoN subintervals I := {I1, . . . ,
IN} as illustrated in Fig. 8. The intervals are named such that Ii has di
as a lower bound for i ≤ N − 1, and IN has the lower bound p1. A formal
definition of the intervals is given next. Let Π : {1, . . . , N−1} → {1, . . . , N−1}
be a permutation of the di’s such that

dΠ(i) < dΠ(i+1), ∀i ∈ {1, . . . , N − 2}. (47)

Furthermore, let i and ī be the indices of the smallest and greatest di,
i.e. Π(1) = i and Π(N−1) = ī. Then define

Ii := [di, dΠ(Π−1(i)+1)) ∀i ≤ N − 1, i 6= ī (48)

Iī := [dī, p2) (49)

IN := [p1, di); (50)

that is, interval Ii has di as a lower bound (closed) and the next bigger
element from DN−1 as an upper bound (open) (except for the intervals at
the boundaries of [p1, p2)). Since each interval is uniquely specified from
(48)–(50) by either its lower or its upper bound, we sometimes omit either
one of them and write [d, ∗) or [∗, d). For the interior (the largest contained
open interval) of Ii, we write int(Ii).

Proposition 3 All intervals Ii ∈ I are mutually disjoint and nonempty.

Proof. Disjointness of the intervals is given by their construction and Propo-
sition 2, (i). Furthermore, because of Proposition 2, (i), the intervals (48) are

90

4. Asymptotic Periodicity for Scalar Problem

not empty. Since dī ∈ DN−1, it follows that dī ∈ [p1, p2) and dī < p2; there-
fore, interval Iī in (49) is not empty. To see that IN in (50) is not empty,
we assume that it is and lead this to a contradiction. From [p1, di) = ∅
it follows that p1 = di (p1 > di is not possible since di ∈ [p1, p2)). From
di = p1 ∈ dom(h−1), it follows that di+1 is defined by Algorithm 1 and
di+1 = h−1(di) = h−1(p1) = h−1(h(p̄ + δ)) = p̄ + δ = d1. But di+1 = d1
(with i ≥ 1) contradicts Proposition 2, (i).

Proposition 4 The following statements hold:

(i) h(IN) ⊆ IN−1, h(IN−1) ⊆ IN−2, . . . , h(I2) ⊆ I1, and h(I1) ⊆ IN .

(ii) h(int(IN)) ⊆ int(IN−1), h(int(IN−1)) ⊆ int(IN−2), . . . , h(int(I2)) ⊆
int(I1), and h(int(I1)) ⊆ int(IN).

The following lemma is used in the proof of this proposition (statements
(i) and (ii)) and later in Sec. 4.4 ((iii) and (iv)).

Lemma 1 Consider the collection I = {I1, . . . , IN} of intervals Ii defined
by (48)–(50); and let Iint := {int(I1), . . . , int(IN)}. The following statements
hold:

(i) I h−→ I.

(ii) Iint h−→ Iint.

(iii) Iī−N1 =

{

[dī−1, dN−1) ī > 1

[p1, dN−1) ī = 1.

(iv) int(IN−1) =

{

(dN−1, di−1) i > 1

(dN−1, p2) i = 1.

Proof. The proof is given in Appendix A.

91

Paper I. Event-Based State Estimation with Variance-Based Triggering

Proof of Proposition 4. We present the proof of (i) and (ii) simultaneously
(where required, we distinguish (i) from (ii) by placing the latter in square
brackets). From Lemma 1, (i) and (ii), we know that, for any I ∈ I [I ∈ Iint],
h(I) is contained in an interval of I [Iint]. Since the intervals are disjoint
(Proposition 3), there is exactly one interval that contains h(I). Therefore,
it suffices to consider only the lower bound of an interval to identify where
the interval is mapped to.

Notice that, since h is strictly increasing (Proposition 1, (i)), for all
[a, b) ∈ I [(a, b) ∈ Iint], h([a, b)) = [h(a), limpրb h(p)) [h((a, b)) = (h(a),
limpրb h(p))]; that is, the bounds of the mapped interval are given by the
map of the bounds of the argument interval. From Algorithm 1, it follows
that h(di) = di−1 for all i ∈ {2, . . . , N−1}. Since there is exactly one interval
in I [Iint] with di−1 as lower bound, for all i ∈ {2, . . . , N−1},

h(Ii) = h([di, ∗)) = [di−1, ∗) ⊆ Ii−1 (51)

[h(int(Ii)) = h((di, ∗)) = (di−1, ∗) ⊆ int(Ii−1)]. (52)

Similarly, since h(d1) = h(p̄ + δ) = p1 by the definitions of d1 and p1, it
follows that

h(I1) = h([d1, ∗)) = [p1, ∗) ⊆ IN (53)

[h(int(I1)) = h((d1, ∗)) = (p1, ∗) ⊆ int(IN)].

From Proposition 2, (ii), it follows that h(p1) ∈ [dN−1, ∗) = IN−1 [h(p1) ∈
(dN−1, ∗) = int(IN−1)]. Therefore,

h(IN) = h([p1, ∗)) = [h(p1), ∗) ⊆ IN−1 (54)

[h(int(IN)) = h((p1, ∗)) = (h(p1), ∗) ⊆ int(IN−1)].

Corollary 1 The following statements hold:

(i) hN (Ii) ⊆ Ii ∀Ii ∈ I.
(ii) hN (int(Ii)) ⊆ int(Ii) ∀Ii ∈ I.

Proof. (i) and (ii) follow directly from Proposition 4 and the fact: for two
sets S1, S2 and a function f , S1 ⊆ S2 ⇒ f(S1) ⊆ f(S2).

92

4. Asymptotic Periodicity for Scalar Problem

4.4 Invariant Closed Subintervals

The intervals I cover the whole domain of interest [p1, p2), and they are
invariant under hN . However, closed intervals are required if Theorem 1 is
to be applied. The proposition below states that such subintervals Ĩi ⊆ Ii
exist. Another technical assumption is required for this proposition:

Assumption 2 h(p2) 6= dN−1.

Notice that with h(p2) ≤ dN−1 by Proposition 2, (ii), this implies

h(p2) < dN−1. (55)

Proposition 5 There exists a collection of intervals Ĩ = {Ĩ1, Ĩ2, . . . , ĨN}
such that for all i ∈ {1, . . . , N} the following statements hold:

(i) Ĩi is closed.

(ii) Ĩi ⊆ int(Ii) ⊆ Ii.

(iii) hN (Ĩi) ⊆ Ĩi.

(iv) h2N (Ii) ⊆ Ĩi.

Proof. We define N intervals Ĩ1, . . . , ĨN and prove that the properties (i)–
(iv) hold for these. Let m1 := ī+ 1 (> 1). We define recursively

ĨN−1 := hm1([dī, p2]), (56)

Ĩi−N1 := h(Ĩi) ∀i ∈ {1, . . . , N−1}, (57)

where ‘−N ’ is defined in (1).
We first show that (i)–(iii) hold for ĨN−1. Notice that ī ∈ {1, . . . , N−1}.

We have

h([dī, p2]) =
Prop. 1 (i)

[h(dī), h(p2)] =

{
[dī−1, h(p2)] if ī > 1

[p1, h(p2)] if ī = 1

⊆
(55)

{
[dī−1, dN−1) if ī > 1

[p1, dN−1) if ī = 1
=

Lem. 1 (iii)
Iī−N1. (58)

93

Paper I. Event-Based State Estimation with Variance-Based Triggering

From Proposition 4, it follows that, for all i ∈ {1, . . . , N} and for all m ∈ N,

hm(Ii) ⊆ Ii−Nm, (59)

hm(int(Ii)) ⊆ int(Ii−Nm). (60)

With this and (58),

hī([dī, p2]) = hī−1(h([dī, p2])) ⊆ hī−1(Iī−N1) ⊆ I(̄i−N1)−N (̄i−1) = IN ,

and

ĨN−1 = hm1([dī, p2]) = hī+1([dī, p2]) ⊆ h(IN) =
(50)

h([p1, di))

=
Prop. 1 (i)

{
[h(p1), di−1) if i > 1

[h(p1), p2) if i = 1

⊆
Prop. 2 (ii)

{
(dN−1, di−1) if i > 1

(dN−1, p2) if i = 1
=

Lem. 1 (iv)
int(IN−1) ⊆ IN−1. (61)

Thus, (ii) holds for ĨN−1.
Property (i) can be seen as follows: h([dī, p2]) = [h(dī), h(p2)] is closed.

From (58) and Proposition 1, (i), it follows that h is continuous and strictly
increasing on h([dī, p2]). Similarly, by (59), hm([dī, p2]) = hm−1(h([dī, p2])) ⊆
hm−1(Ii−N1) ⊆ Ii−Nm, m ≥ 1; thus, h is continuous and strictly increasing
on hm([dī, p2]). Since, for a continuous and strictly increasing function f
and a, b ∈ R, f([a, b]) = [f(a), f(b)] (the image of a closed interval under f
is a closed interval), hm([dī, p2]) is closed for any m ≥ 1 and, in particular,
for m = m1.

To show (iii) for ĨN−1, let m2 := N −m1 (≥ 0). We then get with (61),
(59), and (49), hm2(ĨN−1) ⊆ hm2(IN−1) ⊆ I(N−1)−Nm2

= Iī = [dī, p2) ⊆
[dī, p2]. Property (iii) then follows by

hN (ĨN−1) = hm1(hm2(ĨN−1)) ⊆ hm1([dī, p2]) =
(56)

ĨN−1.

Hence, we have shown that (i)–(iii) hold for i = N − 1. We next prove
(i)–(iii) for i ∈ {1, . . . , N − 2, N} by induction.

Induction assumption (IA): (i)–(iii) are valid for some i ∈ {1, . . . , N−1}.
Show that this implies that (i)–(iii) hold for i−N 1.

Property (ii) holds since

Ĩi−N1 =
(57)

h(Ĩi) ⊆
IA (ii)

h(int(Ii)) ⊆
(60)

int(Ii−N1) ⊆ Ii−N1.

94

4. Asymptotic Periodicity for Scalar Problem

Since Ĩi ⊆ Ii (IA (ii)), h is continuous and strictly increasing on Ĩi.
Moreover, Ĩi is closed (IA (i)). Together, this implies that the image under
h, Ĩi−N1 = h(Ĩi), is also closed; hence, (i) is true.

Property (iii) can be seen to hold by

hN (Ĩi−N1) =
(57)

hN+1(Ĩi) = h(hN (Ĩi)) ⊆
IA (iii)

h(Ĩi) =
(59)

Ĩi−N1.

This completes the proof of statements (i)–(iii).
To see statement (iv), take Ii ∈ I for any i ∈ {1, . . . , N}. Letm3 := i−N ī

(≥ 1). Then, from (59) and (49), hm3(Ii) ⊆ Ii−Nm3
= Ii−N (i−N ī) = Iī =

[dī, p2) ⊆ [dī, p2], and, with this and (56), hm1+m3(Ii) = hm1(hm3(Ii)) ⊆
hm1([dī, p2]) = ĨN−1. Let m4 := (N −N i) − 1 (0 ≤ m4 ≤ N − 1). Then,
with the preceding expression, (56), and (57), we get

hm1+m3+m4(Ii) = hm4(hm1+m3(Ii)) ⊆ hm4(ĨN−1)

= Ĩ(N−1)−Nm4
= Ĩ(N−1)−N ((N−N i)−1) = Ĩi. (62)

Now, consider three different cases for i.
First case: i = N . Since m1+m3+m4 = (̄i+1)+(N− ī)+(N−1) = 2N ,

(iv) follows directly from (62).
Second case: ī < i < N . Since m1 + m3 + m4 = (̄i + 1) + (i − ī) +

(N − i − 1) = N , (62) reads hN (Ii) ⊆ Ĩi, which implies (iv) as follows:
h2N (Ii) = hN (hN (Ii)) ⊆

(62)
hN (Ĩi) ⊆

(iii)
Ĩi.

Third case: 1 ≤ i ≤ ī. Since m1+m3+m4 = (̄i+1)+(i− ī+N)+ (N −
i− 1) = 2N , (iv) follows from (62).

4.5 Contraction Mapping

In this section, we show that hN is a contraction mapping (i.e. it has a
Lipschitz constant strictly less than one, cf. Theorem 1) on each of the
intervals Ĩ. To this end, we first derive an upper bound less than one on the
derivative of hN for the interior of the intervals I.

Proposition 6 hN is differentiable on all open intervals int(Ii), Ii ∈ I.
Furthermore, there exists an L, 0 ≤ L < 1, such that

∣
∣
∣
∣

d(hN)

dp
(p)

∣
∣
∣
∣
< L ∀p ∈ int(Ii), ∀Ii ∈ I.

The following Lemma is needed in the proof.

95

Paper I. Event-Based State Estimation with Variance-Based Triggering

Lemma 2 For all p ∈ [p1, p̄+ δ), there exists an m(p) ∈ N
+ such that

p, h(p), . . . , hm(p)−1(p) < p̄+ δ and hm(p)(p) ≥ p̄+ δ. (63)

Furthermore, there exists an N̄ ∈ N
+ (independent of p) such that m(p) ≤

N̄ , and

a2N̄ < a2
p̄+ δ

p1
. (64)

Proof. The proof is given in Appendix B.

The lemma says that if p(0) starts anywhere in [p1, p̄+δ), there is a maximum
number N̄ of iterations (31), for which p(k) remains in [p1, p̄+ δ).

Proof of Proposition 6. Take any Ii ∈ I and p̃ ∈ int(Ii).
Differentiability: By Proposition 1, (ii), h is differentiable at p̃. We prove

by induction that hj is differentiable at p̃ for all 1 ≤ j ≤ N .
Induction assumption (IA): hj is differentiable at p̃. By the chain rule,

[26], hj+1(p̃) = h(hj(p̃)) is differentiable at p̃ if hj is differentiable at p̃ (IA),
and h is differentiable at hj(p̃). From Proposition 4, (ii), it follows that

hj(p̃) ∈ int(Ii−N j). (65)

Since h is differentiable on any interval int(I), I ∈ I (Proposition 1, (ii)),
the differentiability of hj+1 at p̃ follows.

Contraction mapping: By the chain rule,

(hN)′(p̃) = h′(hN−1(p̃)) · (hN−1)′(p̃) =
∏

j∈{0,...,N−1}

h′(hj(p̃)) =
∏

p∈P

h′(p),

(66)

with P := {p̃, h(p̃), . . . , hN−1(p̃)}. Notice from (65) for j ∈ {0, 1, . . . , N−1}
that, for every point p ∈ P, there is exactly one interval I ∈ I such that
p ∈ int(I).

Let IL ⊂ I denote the set of all intervals I ∈ I with I < p̄+ δ (intervals
left of the discontinuity p̄ + δ), and let IR ⊂ I denote the set of all I ∈ I
with I ≥ p̄ + δ (intervals right of the discontinuity p̄ + δ). Furthermore,
let NL and NR denote the number of elements in IL and IR, respectively.
Notice that NL ≥ 1 and NR ≥ 1 by the construction of the intervals. Then,

h′(p) = a2 > 0 ∀p ∈ int(I), I ∈ IL, (67)

96

4. Asymptotic Periodicity for Scalar Problem

p1 p2
R

d3 d1d7 d2d4 d8 d6 d5

I9 I4 I8 I3 I7 I2 I6 I1 I5

Figure 9. Illustration of the intervals I obtained for the parameter values a =
1.2, c = 1, and δ = 9.6 (for better visibility the relative scaling of the intervals
has been adapted). There are two distinct interval subsequences satisfying (70):

I1 = {I4, I3, I2} and I2 = {I9, I8, I7, I6}.

follows directly from (32); and

0 < h′(p) = g′(p) < g′(p̄+ δ) ∀p ∈ int(I), I ∈ IR, (68)

where the first inequality follows from g′(p) = a2

(c2p+1)2 > 0, and the sec-

ond inequality follows from g′ being strictly decreasing, which is seen from

g′′(p) = − 2a2c2

(c2p+1)3 < 0. With these results, it follows from (66) that

0 < (hN)′(p̃) < a2NL
(
g′(p̄+ δ)

)NR
. (69)

Since a2 > 1 and g′(p̄+ δ) < 1, whether the map hN is contractive depends
on the ratio of NR to NL, which is investigated next.

Define a subset I ⊂ I as a maximum sequence ofm intervals Iℓ, Iℓ−N1, . . .
all being left of p̄+ δ:

I :=
{
Iℓ, Iℓ−N1, . . . , Iℓ−N (m−1)

}
, m ≤ NL, (70)

such that Iℓ, Iℓ−N1, . . . , Iℓ−N (m−1) ∈ IL, and Iℓ−N (N−1), Iℓ−Nm ∈ IR,

Let there be κ ≥ 1 distinct interval sequences (70), which we call I1, . . . , Iκ

with m1, . . . ,mκ their numbers of elements, respectively. An example with
two interval sequences I1, I2 is provided in Fig. 9. Notice that NL =
m1 + · · ·+mκ.

From Lemma 2, it follows that mj ≤ N̄ for all j ≤ κ (N̄ is as defined in
Lemma 2), and

NL = m1 + · · ·+mκ ≤ κN̄. (71)

For each sequence of intervals Ij , j ≤ κ, there is at least one distinct interval
I ∈ IR (namely, Iℓ−NM); hence,

NR ≥ κ. (72)

97

Paper I. Event-Based State Estimation with Variance-Based Triggering

Combining (71) and (72), we obtain the sought bound on the ratio of NL

and NR: NL ≤ κN̄ ≤ NRN̄ . With this result, we can rewrite (69),

0 < (hN)′(p̃) < a2NL
(
g′(p̄+ δ)

)NR

≤ a2NL a2(NRN̄−NL) (g′(p̄+ δ))NR =
(
a2N̄ g′(p̄+ δ)

)NR
. (73)

Using (64) from Lemma 2, we get

a2N̄g′(p̄+ δ) < a2
p̄+ δ

p1
g′(p̄+ δ). (74)

The right-hand side in (74) depends on the problem parameters, and it can be
shown to be less than one (the proof is omitted due to space constraints; the
symbolic calculation is provided in a supplementary Matlab script). With
this, the statement of Proposition 6 follows from (73) with L := (a2N̄ g′(p̄+
δ))NR < 1.

Corollary 2 hN is a contraction mapping on any interval of Ĩ (defined
in Proposition 5); that is, there exists an L, 0 ≤ L < 1, such that

|hN (p)− hN (p̃)| ≤ L|p− p̃| ∀p, p̃ ∈ Ĩi, ∀Ĩi ∈ Ĩ.

Proof. Take any p, p̃ ∈ Ĩi with p̃ < p without loss of generality. By Propo-
sition 2, (iii), and 5, (ii), hN is continuous on [p̃, p] and, by Proposition 6,
hN is differentiable on (p̃, p). The claim then follows from the mean value
theorem, [26].

4.6 Main Result

Equipped with the results of the previous subsections, we can now state the
main result of this section:

Theorem 2 Under Assumptions 1 and 2, the solution to (31) is asymp-
totically N -periodic for any initial condition p0 ≥ 0.

98

5. Discussion

Proof. By Proposition 1, (iv) and (v), it follows that there exists an m1 ∈ N

such that
hm1N (p0) ∈ [p1, p2). (75)

Since the disjoint intervals I cover [p1, p2), there exists a unique i ∈ {1, . . . ,
N} such that

hm1N (p0) ∈ Ii. (76)

By Proposition 5, (iv),
h(m1+2)N (p0) ∈ Ĩi. (77)

From Proposition 5, (i) and (iii), Corollary 2, and Theorem 1, it follows
that there exists a unique fixed point p∗i of hN (hence, an N -periodic point
of (31)) in Ĩi and that, for all p̃ ∈ Ĩi,

lim
m→∞

hmN (p̃) = p∗i . (78)

In particular, for p̃ = h(m1+2)N (p0) and by (77),

lim
m→∞

hmN
(
h(m1+2)N (p0)

)
= lim

m→∞
h(m1+2+m)N (p0)

= lim
m→∞

hmN (p0) = p∗i . (79)

Theorem 2 essentially offers a sufficiency test for periodicity (if the two
assumptions are satisfied, convergence to a periodic solution with a known
period is guaranteed) as an alternative to simulating (28) and having to
interpret the result.

5. Discussion

The proposed method for event-based state estimation is a direct extension
of the classic Kalman filter to a distributed estimation problem with costly
communication. Starting from the design of a discrete-time Kalman filter
with access to all sensor measurements at every sampling time, the presented
method allows the designer to trade off communication requirements with
estimation performance by selecting suitable thresholds for each sensor (these
thresholds are the only additional tuning parameters).

The estimation method can be implemented as shown in Fig. 1, where
each sensor computes the variance of the estimator on-line and uses it to

99

Paper I. Event-Based State Estimation with Variance-Based Triggering

decide whether or not to broadcast its measurement. This way, the algo-
rithm can adapt the sensor transmit rates in real time (for example, for non-
stationary noise processes or to respond to packet drops). Alternatively, a
periodic solution to the estimator variance iteration for a stationary process
allows the recovery of a time-based implementation: the periodic transmit
sequence can be precomputed and implemented on a sensor as a time-based
schedule, which reduces the computational requirements on the sensor. The
rate of the periodic transmission is, however, not a design parameter as in
traditional time-sampled estimation, but obtained from an event-based ap-
proach, where the designer specifies tolerable bounds on the estimation error
variance. Hence, the method can be used as a tool for designing update rates
in a sensor network.

The presented event-based estimator is the optimal Bayesian estimator
given the triggering policy that a measurement is transmitted if, and only
if, its prediction variance exceeds a given threshold (equation (17)). The
event-based estimator variance being periodic in the limit (which was proven
herein for the scalar case under certain assumptions) means that a periodic
transmit schedule is optimal for this problem in steady state. The result thus
creates an interesting link between event-based and time-based optimal state
estimation. Whether the convergence result for the scalar case generalizes
to the matrix case (i.e. to equation (20)) is an open question.

Various extensions of the presented event-based estimation approach are
conceivable. Instead of making the transmit decision based on a measure-
ment’s prediction variance, it could be based on its prediction error; that is,
the difference between the measurement and its prediction mean (see [4,5]).
A promising approach is to combine the two methods by augmenting fixed
minimum sensor communication rates to keep the variance bounded with
triggering thresholds on real-time prediction errors. If improving the esti-
mator performance locally on each agent is of interest (for example, when
the estimate is used in feedback for controlling an actuator), a second esti-
mator can be used to compute an improved estimate from using the data
received from the network and, additionally, exploiting its local sensor data
at every time step (see [4]).

100

Appendix

Appendix

A. Proof of Lemma 1

For the proof of Lemma 1 (at the end of this section), we need the following
lemma and corollary.

Lemma 3 Let I = {I1, I2, . . . , IN} be a collection of nonempty, mutu-
ally disjoint intervals Ii := [ai, bi) (or Ii := (ai, bi)) with ai, bi ∈ R. A
unique representation of I is given by the sets L = {a1, a2, . . . , aN} and
U = {b1, b2, . . . , bN} of all lower and upper bounds, respectively, in the fol-
lowing sense: the collection Ī := {Ī1, Ī2, . . . , ĪN} of intervals constructed
such that, for all i, j with 1 ≤ i, j ≤ N ,

Īi := [αi, βi) (or Īi := (αi, βi)), αi ∈ L, βi ∈ U , (80)

Īi 6= ∅, and Īi ∩ Īj = ∅, (81)

exists, it is unique, and Ī = I.
This lemma is useful, since it allows one to work with the (unordered) sets
of interval bounds L and U instead of the actual intervals. The unique
relationship between the bounds (which lower bound belongs to which upper
bound) essentially follows from all intervals being disjoint and nonempty.

Proof. We present the proof simultaneously for the case of left-closed, right-
open intervals Īi = [αi, βi) and for the case of open intervals Īi = (αi, βi)
(where required to distinguish the two, the latter case is augmented in square
brackets).

Since, for all i ≤ N , Ii ∈ I is nonempty, ai < bi. Since the intervals I
are mutually disjoint, there exists a permutation of indices Π̃ : {1, . . . , N} →
{1, . . . , N} such that

aΠ̃(1) < bΠ̃(1) ≤ aΠ̃(2) < bΠ̃(2) ≤ · · · ≤ aΠ̃(N) < bΠ̃(N).

Assume w.l.o.g. (by renaming of the intervals in I) that

a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aN < bN . (82)

Notice that the choice

αi = ai and βi = bi for 1 ≤ i ≤ N (83)

101

Paper I. Event-Based State Estimation with Variance-Based Triggering

satisfies (80), (81), and Ī = I trivially. Hence, a collection of intervals Ī
satisfying (80) and (81) exists; it remains to show that the choice (83) is
unique.

We first show that, for any ai ∈ L, there is exactly one interval in Ī that
has ai as a lower bound. We will show this by contradiction.

• Assume there is more than one interval with ai as a lower bound; that
is, there are [ai, bj), [ai, bℓ) ∈ Ī [(ai, bj), (ai, bℓ) ∈ Ī] with bj , bℓ ∈ U
and bj > ai, bℓ > ai (otherwise the intervals would be empty, which
contradicts with (81)). But then, [ai, bj)∩ [ai, bℓ) = [ai, min(bj , bℓ)) 6=
∅ [(ai, bj)∩(ai, bℓ) = (ai, min(bj , bℓ)) 6= ∅], which contradicts with (81).

• Assume there is no interval in Ī that has ai as a lower bound. Then,
there can only be N − 1 intervals in total, since it follows from the
previous discussion that each of the remaining aj ∈ L \ {ai} can be
chosen at most once as a lower bound. This contradicts with (80) (the
collection Ī having N elements).

Analogously, it can be shown that, for any bi ∈ U , there is exactly one
interval in Ī that has bi as an upper bound. The detailed proof is omitted.

Now, take αi = ai for any i ∈ {1, . . . , N}. From the discussion above, it
follows that there is an interval [αi, βi) ∈ Ī [(αi, βi) ∈ Ī], βi ∈ U . We prove
by contradiction that this implies βi = bi, and, hence, that the choice (83)
is unique.

Assume βi = bj , bj 6= bi. Then, from the above discussion, there exists
also an interval [aℓ, bi) ∈ Ī [(aℓ, bi) ∈ Ī], aℓ ∈ L. For [ai, bj) [(ai, bj)] to
be nonempty, it follows that ai < bj , which implies by (82) that bi ≤ bj .
Similarly, for [aℓ, bi) [(aℓ, bi)] to be nonempty, aℓ < bi implying aℓ ≤ ai. But
then, [ai, bj) ∩ [aℓ, bi) = [ai, bi) 6= ∅ [(ai, bj) ∩ (aℓ, bi) = (ai, bi) 6= ∅], which
contradicts (81).

Corollary 3 Let I1, I2 be two collections of nonempty and mutually
disjoint intervals. Let L1 and U1 be the sets of lower and upper bounds,
respectively, of I1; and let L2 and U2 be the sets of lower and upper bounds,
respectively, of I2. If L1 = L2 and U1 = U2, then I1 = I2.

Proof. Follows directly from Lemma 3.

Proof of Lemma 1. (i), (ii): Statements (i) and (ii) are treated simultane-
ously ((ii) in brackets where required).

102

A. Proof of Lemma 1

By Proposition 3, the intervals

I = {I1, I2, . . . , IN} = {[p1, dΠ(1)), [dΠ(1), dΠ(2)), . . . , [dΠ(N−1), p2)}

are mutually disjoint and nonempty. Therefore, also the intervals

Iint = {int(I1), int(I2), . . . , int(IN)}
= {(p1, dΠ(1)), (dΠ(1), dΠ(2)), . . . , (dΠ(N−1), p2)}

are mutually disjoint and nonempty. Hence, by Lemma 3, I [Iint] is uniquely
represented by the sets of lower and upper bounds

L =
{
p1, dΠ(1), . . . , dΠ(N−1)

}
=
{
p1, d1, . . . , dN−1

}
, (84)

U =
{
dΠ(1), . . . , dΠ(N−1), p2

}
=
{
p2, d1, . . . , dN−1

}
(85)

and the conditions (80) and (81) (note that the sets L and U are the same
for I and Iint, but (80) is different).

Define the collection of images of h on I [Iint] as

Ih :=
{
h
(
[p1, dΠ(1))

)
, h
(
[dΠ(1), dΠ(2))

)
, . . . , h

(
[dΠ(N−1), p2)

)}

[Iint,h =
{
h
(
(p1, dΠ(1))

)
, h
(
(dΠ(1), dΠ(2))

)
, . . . , h

(
(dΠ(N−1), p2)

)}
].

Hence, by definition,

I h−→ Ih [Iint h−→ Iint,h]. (86)

Since, by Proposition 1, (i), h is strictly increasing on each Ii = [a, b) ∈ I
[Ii = (a, b) ∈ Iint], it holds that h([a, b)) = [h(a), limpրb h(p)) [h((a, b)) =
(h(a), limpրb h(p))]. Therefore, the sets of lower and upper bounds of Ih
[Iint,h] are given by

Lh :=
{
h(a) | a ∈ L

}
=
{
h(p1), h(d1), h(d2), . . . , h(dN−1)

}

=
{
h(p1), p1, d1, . . . , dN−2

}
, (87)

Uh :=
{
lim
pրb

h(p) | b ∈ U
}
=
{
h(p2), lim

pրd1

h(p), h(d2), . . . , h(dN−1)
}

=
{
h(p2), p2, d1, . . . , dN−2

}
, (88)

where we used the facts that h is continuous from the right at all a ∈ L and
continuous from the left at all b ∈ U \ {d1}; and that

h(d1) = h(p̄+ δ) = p1 (def. of p1), (89)

103

Paper I. Event-Based State Estimation with Variance-Based Triggering

p1 p2
R

h(p1)h(p2) dN−1d d

Figure 10. Illustration of the enlargement of the intervals [d, h(p2)) and
[h(p1), d) to [d, dN−1) and [dN−1, d). The points unspecified are elements from

{d1, . . . , dN−2}. All intervals remain nonempty and mutually disjoint.

h(di) = di−1, 2 ≤ i ≤ N−1 (by Alg. 1), (90)

lim
pրd1

h(p) = a2(p̄+ δ) + 1 = p2 (def. of p2). (91)

Since h is injective (Proposition 1, (iii)), h(I1 ∩ I2) = h(I1)∩ h(I2) holds
for any I1, I2 ⊆ [p1, p2), [27]. From this, and the fact that the intervals I
[Iint] are disjoint, it follows that the mapped intervals Ih [Iint,h] are also
disjoint. Furthermore, since h is not constant on any interval I ∈ I (it
is strictly increasing by Proposition 1, (i)), the intervals Ih [Iint,h] are all
nonempty. Hence, by Lemma 3, Ih [Iint,h] is uniquely represented by Lh

and Uh. Notice that Lh and Uh have the same elements as L and U except
for h(p1) and h(p2) in Lh and Uh, and dN−1 in L and U . We show next that
the intervals Ih [Iint,h] are contained in the intervals of I [Iint].

To see this, notice first that the elements of Lh ∪ Uh ∪ L ∪ U = {p1, p2,
h(p1), h(p2), d1, . . . , dN−1} have the following order relation:

p1 ≤ · · · · · ·
︸ ︷︷ ︸

other di’s

< h(p2) ≤ dN−1 < h(p1) < · · · · · ·
︸ ︷︷ ︸

other di’s

< p2, (92)

because

p1 < h(p2) ((34) and Prop. 1, (i)),

h(p1) < p2 (Prop. 1, (iv)),

h(p2) ≤ dN−1 < h(p1) (Prop. 2, (ii)),

di ∈ [p1, h(p2)) ∪ (h(p1), p2), ∀i ∈ {1, . . . , N−2} (Prop. 2, (ii)).

Therefore, the upper bound of [∗, h(p2)) ∈ Ih [(∗, h(p2)) ∈ Iint,h] can be
changed to dN−1, and the lower bound of [h(p1), ∗) ∈ Ih [(h(p1), ∗) ∈ Iint,h]
to dN−1, without affecting the mutual disjointness and the nonemptiness of
the intervals. This modification of the intervals is illustrated in Fig. 10, and
we make it formal next.

104

A. Proof of Lemma 1

Let d be the lower bound of [∗, h(p2)) ∈ Ih [(∗, h(p2)) ∈ Iint,h], and let d
be the upper bound of [h(p1), ∗) ∈ Ih [(h(p1), ∗) ∈ Iint,h]. Then, define

Ĩh :=
{
I ∈ Ih | I 6= [d, h(p2)) and I 6= [h(p1), d)

}
∪
{
[d, dN−1), [dN−1, d)

}
,

(93)

that is, Ĩh has the same elements as Ih except for the replacements [d, h(p2))
→ [d, dN−1) and [h(p1), d) → [dN−1, d). Similarly, define

Ĩint,h :=
{
I ∈ Iint,h | I 6= (d, h(p2)) and I 6= (h(p1), d)

}

∪
{
(d, dN−1), (dN−1, d)

}
. (94)

Since, from (92), [d, h(p2)) ⊆ [d, dN−1) [(d, h(p2)) ⊆ (d, dN−1)] and [h(p1), d)
⊆ [dN−1, d) [(h(p1), d) ⊆ (dN−1, d)], it follows from (86) that

I h−→ Ĩh [Iint h−→ Ĩint,h]. (95)

The lower and upper bounds of Ĩh (Ĩint,h) are given by

L̃h :=
{
dN−1, p1, d1, . . . , dN−2

}
, (96)

Ũh :=
{
dN−1, p2, d1, . . . , dN−2

}
. (97)

Since the intervals Ĩh [Ĩint,h] are nonempty and mutually disjoint, and L̃h =

L and Ũh = U , it follows from Corollary 3 that Ĩh = I [Ĩint,h = Iint]. Using
this result, statements (i) and (ii) are given by (95).

(iii): First, notice that 1 ≤ ī ≤ N − 1 and

h(Iī) =
(49)

h([dī, p2)) =
(89),(90)

{
[dī−1, h(p2)) if ī > 1

[p1, h(p2)) if ī = 1.
(98)

Since h(Iī) ∈ Ih, it follows that

d =

{

dī−1 if ī > 1

p1 if ī = 1
(99)

(d has been defined above as the lower bound of the (unique) interval in Ih
that has h(p2) as an upper bound). Notice that in I, there is exactly one
interval with dī−1 as lower bound (for ī > 1) and exactly one interval with

105

Paper I. Event-Based State Estimation with Variance-Based Triggering

p1 as lower bound. Therefore, it follows from [d, dN−1) ∈ Ĩh = I (see (93)),
and (48)–(50) that

[d, dN−1) =

{
[dī−1, dN−1) if ī > 1

[p1, dN−1) if ī = 1
=

{
Iī−1 if ī > 1

IN if ī = 1
= Iī−N1. (100)

(iv): Notice that 1 ≤ i ≤ N − 1 and

h(int(IN)) =
(50)

h((p1, di)) =
(90),(91)

{
(h(p1), di−1) if i > 1

(h(p1), p2) if i = 1 .
(101)

Since h(int(IN)) ∈ Iint,h, it follows that

d =

{

di−1 if i > 1

p2 if i = 1 ,
(102)

and, from (dN−1, d) ∈ Ĩint,h = Iint (see (94)) and (48)–(49),

(dN−1, d) =

{
(dN−1, di−1) if i > 1

(dN−1, p2) if i = 1
= IN−1. (103)

B. Proof of Lemma 2

Take p ∈ [p1, p̄+ δ). Let k ∈ N
+ such that p, h(p), . . . , hk−1(p) < p̄+ δ (such

a k exists since p < p̄+ δ). Then, from (32),

hk(p) = a2 hk−1(p) + 1 > a2 hk−1(p), (104)

and, therefore,
hk(p) > a2k p. (105)

Since |a| > 1, limk→∞ a2kp = ∞. Hence, there exists an m(p) ∈ N
+ such

that (63) holds.
Now, we seek the largest possible integer m(p) over all p ∈ [p1, p̄+ δ), for

which (63) holds. Since hk(p1) ≤ hk(p) for all p ∈ [p1, p̄+ δ) and k ≤ m(p),
the greatest m(p) such that (63) holds is N̄ ∈ N

+ defined by

p1, h(p1), . . . , h
N̄−1(p1) < p̄+ δ and hN̄ (p1) ≥ p̄+ δ. (106)

106

References

Hence, N̄ is independent of p, and m(p) ≤ N̄ . From (105) and (106), it
follows that

a2(N̄−1) p1 < hN̄−1(p1) < p̄+ δ ⇒
(p1>0, a2>0)

a2N̄ < a2
p̄+ δ

p1
.

References

[1] K.-D. Kim and P. Kumar, “Cyber-physical systems: A perspective
at the centennial,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1287–1308, May 2012.

[2] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, Jan. 2007.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol. 38,
no. 4, pp. 393–422, 2002.

[4] S. Trimpe and R. D’Andrea, “An experimental demonstration of a
distributed and event-based state estimation algorithm,” in Proc. of the
18th IFAC World Congress, Milano, Italy, Aug. 2011, pp. 8811–8818.

[5] S. Trimpe, “Event-based state estimation with switching static-gain ob-
servers,” in Proc. of the 3rd IFAC Workshop on Distributed Estimation
and Control in Networked Systems, Santa Barbara, CA, USA, Sep. 2012,
pp. 91–96.

[6] S. Trimpe and R. D’Andrea, “The Balancing Cube: A dynamic
sculpture as test bed for distributed estimation and control,” IEEE
Control Systems Magazine, vol. 32, no. 6, pp. 48–75, Dec. 2012.

[7] ——, “Reduced communication state estimation for control of an unsta-
ble networked control system,” in Proc. of the 50th IEEE Conference
on Decision and Control and European Control Conference, Orlando,
FL, USA, 2011, pp. 2361–2368.

[8] ——, “Event-based state estimation with variance-based triggering,” in
Proc. of the 51st IEEE Conference on Decision and Control, Maui, HI,
USA, Dec. 2012, pp. 6583–6590.

[9] M. Lemmon, “Event-triggered feedback in control, estimation, and
optimization,” in Networked Control Systems, ser. Lecture Notes in

107

Paper I. Event-Based State Estimation with Variance-Based Triggering

Control and Information Sciences, A. Bemporad, M. Heemels, and
M. Johansson, Eds. Springer Berlin / Heidelberg, 2011, vol. 406, pp.
293–358.

[10] O. C. Imer and T. Basar, “Optimal estimation with limited measure-
ments,” in Proc. of the 44th IEEE Conference on Decision and Control
and the European Control Conference, Seville, Spain, Dec. 2005, pp.
1029–1034.

[11] L. Li, M. Lemmon, and X. Wang, “Event-triggered state estimation in
vector linear processes,” in Proc. of the American Control Conference,
Baltimore, MD, USA, Jul. 2010, pp. 2138–2143.

[12] M. Rabi, G. V. Moustakides, and J. S. Baras, “Multiple sampling for
estimation on a finite horizon,” in Proc. of the 45th IEEE Conference on
Decision and Control, San Diego, CA, USA, Dec. 2006, pp. 1351–1357.

[13] Y. Xu and J. P. Hespanha, “Estimation under uncontrolled and
controlled communications in networked control systems,” in Proc. of
the 44th IEEE Conference on Decision and Control and the European
Control Conference, Seville, Spain, Dec. 2005, pp. 842–847.

[14] R. Cogill, S. Lall, and J. P. Hespanha, “A constant factor approximation
algorithm for event-based sampling,” in Proc. of the American Control
Conference, New York, NY, USA, Jul. 2007, pp. 305–311.

[15] J. Sijs and M. Lazar, “On event based state estimation,” in Hybrid
Systems: Computation and Control, ser. Lecture Notes in Computer
Science, R. Majumdar and P. Tabuada, Eds. Springer Berlin /
Heidelberg, 2009, vol. 5469, pp. 336–350.

[16] J. Sijs, M. Lazar, and W. P. M. H. Heemels, “On integration of event-
based estimation and robust MPC in a feedback loop,” in Proc. of the
13th ACM international conference on hybrid systems: computation and
control, New York, NY, USA, 2010, pp. 31–40.

[17] J. Weimer, J. Araujo, and K. H. Johansson, “Distributed event-
triggered estimation in networked systems,” in Proc. of the 4th IFAC
Conference on Analysis and Design of Hybrid Systems, Eindhoven,
Netherlands, Jun. 2012, pp. 178–185.

[18] J. K. Yook, D. M. Tilbury, and N. R. Soparkar, “Trading computation
for bandwidth: reducing communication in distributed control systems
using state estimators,” IEEE Transactions on Control Systems Tech-
nology, vol. 10, no. 4, pp. 503–518, Jul. 2002.

108

References

[19] Y. Xu and J. P. Hespanha, “Optimal communication logics in networked
control systems,” in Proc. of the 43rd IEEE Conference on Decision and
Control, Atlantis, Bahamas, Dec. 2004, pp. 3527–3532.

[20] H. Sandberg, M. Rabi, M. Skoglund, and K. H. Johansson, “Estimation
over heterogeneous sensor networks,” in Proc. of the 47th IEEE
Conference on Decision and Control, Cancun, Mexico, Dec. 2008, pp.
4898–4903.

[21] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Mineola, New
York: Dover Publications, 2005.

[22] S. Bittanti, P. Colaneri, and G. De Nicolao, “The difference periodic
Riccati equation for the periodic prediction problem,” IEEE Transac-
tions on Automatic Control, vol. 33, no. 8, pp. 706–712, Aug. 1988.

[23] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, Sep.
2004.

[24] S. Elaydi, An Introduction to Difference Equations, 3rd ed., ser.
Undergraduate Texts in Mathematics. Springer New York, 2005.

[25] W. G. Kelley and A. C. Peterson, Difference equations: an introduction
with applications. San Diego, USA: Academic Press, Inc., 1991.

[26] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill,
1976.

[27] E. T. Copson, Metric spaces. Cambridge University Press, 1968.

109

110

Paper II

An Experimental Demonstration

of a Distributed and Event-Based State

Estimation Algorithm

Sebastian Trimpe · Raffaello D’Andrea

Abstract

A distributed state estimation algorithm that makes use of model-
based predictions to reduce communication requirements in a net-
worked control architecture is tested on an unstable system. A cube
balancing on one of its edges serves as the test platform, and six ro-
tating bodies on the cube’s inner faces constitute the agents in the
control network. Each agent carries a computational unit, which runs
estimation and control algorithms, and is associated with local sen-
sors and an actuator. Measurement data is shared among the agents
over a broadcast network. Each agent maintains two estimates of
the system state: the first reflecting the common knowledge in the
network, and the second additionally including all local sensor infor-
mation. An agent’s sensor measurement is only broadcast if it deviates
from the common estimate of that measurement by more than a spec-
ified threshold. Experimental results show that the number of com-
municated measurements required for stabilizing the system can be
significantly reduced with this event-based communication protocol.

Published in Proc. of the 18th IFAC World Congress, 2011, pp. 8811-8818.

DOI: 10.3182/20110828-6-IT-1002.00564.

c©2011 IFAC. NOTICE: This is the author’s version of a work that was accepted for

publication in Proc. of the 18th IFAC World Congress, 2011. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural formatting, and
other quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive version

was subsequently published in Proc. of the 18th IFAC World Congress, 2011, [Volume
18, Part 1], DOI: 10.3182/20110828-6-IT-1002.00564.

111

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

1. Introduction

In most traditional control systems, a communication medium is dedicated
exclusively to the exchange of data between the plant and the controller.
However, recent developments in the area of networked control systems (see
[1] for an overview) suggest a different view and regard communication as a
shared resource. Multiple agents share a network and may exchange data of
various content, in addition to sensor data and control commands of typical
feedback control systems.

Viewing communication as a resource may also be useful from an archi-
tectural point of view. On a system level, one may distinguish between
time-critical tasks (e.g. real-time feedback control) and non-time-critical
tasks (e.g. adaptation). Clearly, sufficient resources (such as communica-
tion bandwidth) must be allocated to the critical tasks in order to maintain
the operation of the system in times of need. On average, however, the full
capacity of the resource is rarely exploited. In such cases, unused resources
may be reallocated to non-critical tasks, resulting in improved system per-
formance in the long run.

From control theory it is known that sensor feedback is critical, for ex-

Figure 1. The Balancing Cube is an example of a networked control system:
six rotating modules, each having sensors, actuation, and computational unit,
share information over a network to balance the cube on its edge.

112

1. Introduction

ample, for stabilization of unstable systems, disturbance rejection, and when
dealing with uncertainties. In other situations, a system may operate satis-
factorily open-loop, at least for limited time periods. In event-based control,
sensor feedback caused by certain events (such as a measurement exceeding
a threshold) is used as an alternative to time-triggered sending (see [2] and
references therein). Lunze and Lehmann [3] use the deviation of the actual
state from the trajectory of the closed-loop system with continuous sensor
feedback to decide if an event should be triggered. Hence, the feedback loop
is closed only when required.

At a high level, a similar idea can be applied to reduce the communica-
tion in networked control systems with multiple agents, each associated with
local sensors and actuators. The agents may use a process model to make
predictions about all other agents’ sensor measurements. Using the same
model, each agent also makes predictions about its own state or measure-
ments. If the prediction of its local data deviates significantly from the true
data, the local data is broadcast to all other agents, which can then update
their estimates. Communication schemes like these (where, in order to re-
duce network traffic, sensor data is not sent at every time step) are referred
to as controlled communication, cf. [1]. The distributed estimation algorithm
of this paper falls into this class of algorithms, which have previously been
proposed in [4]–[6].

The implementation of the method for distributed state estimation in
this work makes use of two independent discrete-time Kalman filters: one
uses the measurement data that has been broadcast and is thus globally
known and identical for all agents, and the other additionally exploits all
local measurements. Each agent bases its decision to broadcast its local
measurements on a comparison of the actual measurement to the common
estimate of the system. Using this communication protocol, the Kalman
filters receive a varying number of measurements (including none) at every
time step.

A related problem for state estimation in networked control systems is
considered in [7]. The authors analyze Kalman filtering for the scenario
where non-delivery of measurement data results from packet drops rather
than a decision made by some agent on the network. They model the ar-
rival of a measurement as a binary random variable that is independent of
the process data (states and measurements). In contrast, the delivery of a
measurement in the presented approach is purposefully chosen to depend on
past measurements.

The distributed estimators exploit the prediction capabilities of the Kal-
man filter to compensate for the deliberate non-communication of measure-
ments. Zhang et al. [8] use a similar idea for a different purpose in that they

113

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

Algorithm

Plant

. . .Algorithm Algorithm

S A S A S A

Network

Figure 2. The considered networked control architecture: the blocks A and S
denote (possibly heterogeneous) actuator and sensor units; the Algorithm block

includes estimation and control algorithms as well as the communication logic.

exploit model-based predictions to compensate for network-induced delays.
The Balancing Cube, a 1.2 m cube that can balance autonomously on

any of its edges or corners1 (see Fig. 1), serves as the platform for test-
ing the distributed estimation algorithm presented in this paper. Six ro-
tating modules located on each inner face of the cube enable the cube to
balance. The modules are self-contained units that carry sensors, an ac-
tuator, a battery, and a computer. The modules share information over a
communication network. Experiments demonstrate that the distributed es-
timation algorithm combined with the event-based communication protocol
allows a significant reduction of the average number of communicated sensor
measurements while keeping the cube balanced.

This paper is organized as follows: The distributed estimation algorithm
with event-based communication is presented in Sec. 2. An overview of
the physical test bed – the Balancing Cube – is given in Sec. 3, where the
experimental results are also presented. The paper concludes with remarks
in Sec. 4.

2. State Estimation Algorithm

Figure 2 shows the network control architecture considered in this work. The
block Algorithm represents a computational unit that runs the estimation
and control algorithm and also handles the communication with the other
units. Each unit is associated with local sensors (S) and actuators (A).
Hence, the algorithm determines the appropriate commands for its actuator

1 Videos may be found online at http://www.cube.ethz.ch.

114

2. State Estimation Algorithm

based on local sensor data, as well as data possibly received from the network.
The combination of computational unit, sensor, and actuator will be referred
to as agent for the remainder of this paper. The total number of agents is
denoted by N .

The data unit that is sent over the network is a scalar sensor measure-
ment. We assume that data is broadcast over the network; that is, if an
agent sends a measurement, then all other agents receive this measurement.
Furthermore, we take an abstract view of the network and assume the com-
munication to be ideal; that is, we assume that the communication of mea-
surements is instantaneous and no data is lost. This may be partly ensured
by low level communication protocols. It is recognized however that sending
only scalar measurements may not always be the best approach. For network
protocols that require a minimum data length, it may be more efficient to
send the full measurement vector. The method presented in the following
can readily be adapted to this scenario.

We consider the common setup of a linear stochastic process given by a
discrete-time state space model,

x(k) = Ax(k−1) +B u(k−1) + v(k−1) (1)

y(k) = C x(k) + w(k), (2)

where k is the time index; x(k), v(k) ∈ R
n; u(k) ∈ R

m; y(k), w(k) ∈ R
p;

and all matrices are of corresponding dimensions. The process and mea-
surement noise, v(k) and w(k), are random variables with v(k) ∼ N (0, Q)
and w(k) ∼ N (0, R), where N (m,V) denotes a normally distributed ran-
dom variable with mean m and covariance matrix V . All noise sources are
assumed temporally independent; and R is assumed diagonal. The initial
state x(0) is also assumed to be normally distributed with known mean x0

and covariance P0.
In the proposed setup, each agent maintains an estimate of the full system

state x(k), which is input to a state feedback controller. Hence, the question
of effective data communication rests with the state estimator: the objective
is to maintain an estimate of the full system state x(k) on each agent with
a limited exchange of data between the agents. Two key issues will be
addressed: (1) how to make use of the varying sets of measurements that
arrive at an agent (receiver algorithm), and (2) how to decide if local sensor
data should be broadcast over the network (sender algorithm).

Before addressing the distributed estimation problem with these two
points in Sec. 2.2 and 2.3, the standard results for centralized state esti-
mation (i.e. with access to the full measurement vector y(k)) are presented
in Sec. 2.1. The centralized case will serve as a baseline for the distributed

115

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

estimation method.

2.1 Centralized estimation

It is well known that the optimal state estimator of the system given by
(1) and (2) is the time-varying Kalman filter. It is optimal in the sense
that it keeps track of the entire conditional probability density of the system
state x(k) conditioned on all measurements and control inputs up to time k
(cf. [9]). The Kalman filter can be given in the following recursive form,

x̂(k|k−1) = Ax̂(k−1|k−1) +Bu(k−1) (3)

P (k|k−1) = AP (k−1|k−1)AT +Q (4)

K(k) = P (k|k−1)CT
(
CP (k|k−1)CT +R

)−1
(5)

x̂(k|k) = x̂(k|k−1) +K(k)
(
y(k)− Cx̂(k|k−1)

)
(6)

P (k|k) =
(
I−K(k)C

)
P (k|k−1) (7)

where x̂(k|k−1) denotes the expected value of the state x(k) given all mea-
surements and inputs up to time k−1, x̂(k|k) is the expected value of x(k)
given all data up to time k, and P (k|k−1) and P (k|k), respectively, are their
covariance matrices. The filter is initialized by x̂(0|0) = x0 and P (0|0) = P0.
There are many different variants of the Kalman filter; which implementa-
tion of the Kalman filter is used does not matter for the method presented
below.

For simplicity, static state feedback is considered,

u(k−1) = F x̂(k−1|k−1), (8)

where F denotes the matrix feedback gain. The exposition of the proposed
method can, however, be adapted to controllers with states. Each agent
is responsible for a subset of the control input vector u(k). To ease the
exposition, an index denoting the elements of the vector is not used unless
otherwise noted.

It is assumed that both the Kalman state observer (3)–(7) and the feed-
back controller (8) are designed such that the given control objective is
satisfied.

In a network with sufficient communication bandwidth, a conceptually
equivalent implementation of the centralized Kalman filter (3)–(7) on the
distributed control network in Fig. 2 would be to communicate at every
time step all measurement data to all agents. Each agent can then simply
run a copy of the estimator (3)–(7) and the controller (8). With this design

116

2. State Estimation Algorithm

as a starting point, the objective is to develop a distributed and event-driven
estimation scheme that utilizes less communication bandwidth on average,
but that may revert to the centralized design if required.

2.2 Distributed estimation: receiver algorithm

The receiver of agent i denotes the algorithm that uses all information avail-
able at time k to compute an estimate of the system state x(k). The coun-
terpart in the event-driven estimation scheme, i.e. the sender algorithm, is
derived in the next section. It should be noted, however, that both the
receiver and sender algorithms run on each agent in parallel.

The following notation is used to distinguish the different types of mea-
surements that are available to agent i at time k:

ȳi(k) ∈ R
p̄i local sensor data

ỹi(k) ∈ R
p̃i(k) data received over the network

yi(k) ∈ R
pi(k) all available data, yi(k) = (ỹi(k), ȳi(k)).

The dimension of ỹi(k) and hence yi(k) is time-varying because of the vary-
ing and a-priori unknown number of measurements received. In particular,
p̃i(k) = 0 in the case where no measurement is received at time k by agent
i.

The elements of the vectors ȳi(k), ỹi(k), and yi(k) are subsets of the
elements of the full measurement vector y(k) in (2). Analogous notation is
used to denote the output matrices and the measurement noise,

ȳi(k) = C̄i x(k) + w̄i(k) (9)

ỹi(k) = C̃i(k)x(k) + w̃i(k) (10)

yi(k) = Ci(k)x(k) + wi(k), (11)

where C̄i, C̃i(k), Ci(k) are of appropriate dimensions, and w̄i(k) ∼ N (0, R̄i),
w̃i(k) ∼ N (0, R̃i(k)), and wi(k) ∼ N (0, Ri(k)). Note that the dimension of
the matrices C̃i(k), Ci(k), R̃i(k), and Ri(k) are time-varying due to the
varying dimension of the corresponding measurement vector. This includes
the case where C̃i(k) and R̃i(k) have zero rows when no measurement is
received. In order to avoid special treatment of this case, the Kalman filter
equations below should be understood such that the measurement update
step is skipped if no measurement is available.

A time-varying Kalman filter that determines an estimate x̂i(k|k) of the
system state x(k) on agent i, taking into account all available measurements
up to and including time k, is designed analogously to the filter (3)–(7) for

117

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

the centralized case:

x̂i(k|k−1) = Ax̂i(k−1|k−1) +Bûi(k−1) (12)

Pi(k|k−1) = APi(k−1|k−1)AT +Q (13)

Ki(k) = Pi(k|k−1)CT
i (k)

·
(
Ci(k)Pi(k|k−1)CT

i (k) +Ri(k)
)−1

(14)

x̂i(k|k) = x̂i(k|k−1) +Ki(k)
(
yi(k)− Ci(k)x̂i(k|k−1)

)
(15)

Pi(k|k) =
(
I−Ki(k)Ci(k)

)
Pi(k|k−1). (16)

To avoid misunderstanding, it should be reemphasized here that the index
i in x̂i(k|k) does not denote the i-th element of x̂(k|k), but agent i’s state
estimate. Similarly, ûi, given by

ûi(k−1) = F x̂i(k−1|k−1), (17)

is agent i’s estimate of what the control input to the whole system should
be; in particular, agent i uses the components corresponding to its actuator
as actual control commands.

We note that the distributed estimator (12)–(16) is the same as its cen-
tralized counterpart (3)–(7) if all sensor data is communicated.

2.3 Distributed estimation: sender algorithm

In the previous section, we assumed that each agent receives a varying num-
ber of sensor measurements from the other agents in the network. This sec-
tion addresses the sending decision: agent i’s sender algorithm determines if
the local sensor data ȳi(k) should be sent to all other agents on the network.

Following the key idea discussed in the introduction, agent i only sends
its local measurements if it determines it is necessary; that is, if the other
agents’ expectation of the measurement is significantly different. One way
for agent i to estimate the other agents knowledge is to construct another
state estimate x̌i(k|k) that uses only measurements that have been broadcast
to all agents. Hence, this estimator reflects the knowledge that is common to
all agents. This requires that the local sensor data ȳi(k) is only included in
x̌i(k|k) if it is also broadcast to the network. The estimate x̌i(k|k) is again
obtained from a Kalman filter,

x̌i(k|k−1) = Ax̌i(k−1|k−1) +Bǔi(k−1) (18)

P̌i(k|k−1) = AP̌i(k−1|k−1)AT +Q (19)

118

2. State Estimation Algorithm

Ǩi(k) = P̌i(k|k−1) C̃T
i (k)

·
(
C̃i(k)P̌i(k|k−1)C̃T

i (k) + R̃i(k)
)−1

(20)

x̌i(k|k) = x̌i(k|k−1) + Ǩi(k)
(
ỹi(k)− C̃i(k)x̌i(k|k−1)

)
(21)

P̌i(k|k) =
(
I−Ǩi(k)C̃i(k)

)
P̌i(k|k−1) (22)

with the corresponding estimate of the control input

ǔi(k−1) = F x̌i(k−1|k−1). (23)

The estimate x̌i(k|k) ensures consistency in the network, since it is the same
for all agents (whereas the estimate from (12)–(16) is generally different).

With the common estimate x̌i(k|k), agent i can now estimate what all
other agents assume its measurement ȳi(k) is: simply C̄ix̌i(k|k−1). This
estimate can be used with some communication logic to decide if ȳi(k) is
broadcast. Here, a simple threshold logic, applied for each element l of the
measurement vector individually, is used:

send ȳi,l(k) ⇔ |ȳi,l(k)− C̄i,l x̌i(k|k−1)| ≥ δi,l, (24)

where ȳi,l(k) denotes the l-th element of ȳi(k), C̄i,l the l-th row of C̄i, and
δi,l ∈ [0,∞) is a design parameter capturing the tolerated deviation. Because
of its impact on the network communication, we hereafter refer to it as the
communication threshold.

Obviously, the choice δi,l = 0 means that the measurement ȳi,l(k) is
always sent; on the contrary, δi,l → ∞ corresponds to never sending the
measurement. Again, if all sensor data is communicated, the distributed
estimators (12)–(16) and (18)–(22) yield the same estimates as the central-
ized Kalman filter in (3)–(7). Thus, the performance of the optimal state
estimation can be recovered by choosing all δi,l to zero. This turns out to
be very handy for practical implementation and tuning of the algorithm.

We remark that other communication logics are possible: a condition
involving a bound on P̌i(k|k−1) or a combination of a condition on x̌i(k|k−1)
and on P̌i(k|k−1) may be used instead.

2.4 The complete algorithm

Both Kalman filters (12)–(16) and (18)–(22) run in parallel on each agent.
Using the condition (24) and the estimate x̌i(k|k−1), agent i decides if its
associated sensor data is sent. For the purpose of computing the control
input for its actuator, the estimate x̂i(k|k) is used, since it makes use of all
information locally available.

A control loop step using the distributed estimation method of Sec. 2.2
and 2.3 is summarized in Algorithm 1.

119

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

Algorithm 1 Control step on agent i, executed every time step k.

apply component of ûi(k−1) to local actuator

acquire local measurement ȳi(k)

receive ỹi(k) from network (possibly empty)

compute estimate x̂i(k|k) from (12)–(16), (17)

compute estimate x̌i(k|k) from (18)–(22), (23)

for l = 1 to p̄i
if |ȳi,l(k)− C̄i,l x̌i(k|k−1)| ≥ δi,l

send ȳi,l(k)

end if

end for

compute control ûi(k) = F x̂i(k|k)

3. Application to the Balancing Cube

In this section, the effectiveness of the distributed estimation algorithm is
demonstrated on the Balancing Cube, which represents an unstable system.
Six agents are used to stabilize the system. A brief system description is
provided in Sec. 3.1. Even though a complete treatment is beyond the scope
of this paper, a brief explanation of the modeling technique and the control
design is provided. Remarks on the implementation of the state estima-
tion method are given in Sec. 3.2 and experimental results are presented in
Sec. 3.3.

3.1 System description

The Balancing Cube is a multi-body system consisting of a rigid body in
the shape of a cube and six rotating bodies (called modules) on the inner
faces of the cube, see Fig. 3. Each of the six faces of the cube is made of
an X-shaped aluminum structure (cf. Fig. 1 and 3); the edge length of the
cube is 1.2 m. The total mass of the cube is 21.4 kg and the modules have a
base mass of 3.7 kg. In the setup presented here, three of the modules carry
extra weights adding up to a total mass of 5.8 kg.

Though the cube can balance on a corner (presented in [10]), for the
purpose of this study it balances on its edge as shown in Fig. 1 and 3. In
this configuration, the cube body has only one rotational degree of freedom
(the rotational axis is the edge the cube is standing on), which results in a
simpler dynamic model and eases the exposition presented below.

120

3. Application to the Balancing Cube

The modules are actuated by a DC motor and rotate relative to the cube
structure. A drawing of a module with its functional parts is shown in Fig. 4.
When the modules rotate, they exert reactional and gravitational forces (by
shifting the center of mass) on the cube structure. Each module carries a
single-board computer (SBC) that receives data from the sensors and sends
commands to the motor. The computers themselves are connected over a
Controller Area Network (CAN), whose wires run through a slip ring and
along the cube structure. The low level CAN protocols allow each module
to broadcast its local measurements to all other modules on the network.
All components on a module are powered by a battery, which allows for a
normal balancing operation of around 4 hours.

The local sensors associated with each module are an absolute encoder
and an inertial measurement unit (IMU). The absolute encoder measures
the module’s angle relative to its mounting. The IMU is rigidly mounted
to the cube structure (also connected to the SBC through the slip-ring). It
has a tri-axis accelerometer and tri-axis rate gyro. For the demonstration of
the estimation algorithm of Sec. 2, only the absolute encoder and rate gyro
measurements were used. In fact, only one axis of the rate gyro is relevant,
namely the axis parallel to the axis of rotation. Hence, each module has
access to two local measurements (p̄i = 2).

Since each computational unit is connected locally to sensors and the
actuator, and the computers share data over a network, the cube architec-
ture falls into the class of systems considered in Sec. 2. The self-contained

Figure 3. Rendering of the Balancing Cube, shown in the same orientation as
in Fig. 1. The cube has six rotating modules, one on each face.

121

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

modules on the cube play the role of the agents.
In order to stabilize the system about an equilibrium, a cascaded control

architecture is applied. On each motor, a local velocity feedback loop oper-
ates at 1 kHz. This inner loop tracks module angular velocity commands at
a faster rate than the natural dynamics of the cube. With this architecture,
nonlinear effects such as friction and backlash in the actuation mechanism
are mitigated from the perspective of an outer loop (the full state feedback
controller in the form of (8)) which stabilizes the system. The outer control
loop is implemented at a frequency of 60 Hz.

Linear model and feedback controller. To obtain a model of the Bal-
ancing Cube for the design of the state feedback controller and the state
estimator, the time-scale separation technique described in [11] is applied,
where the inner velocity feedback loops are considered as (ideal) high gain
feedback loops. The resulting linear discrete-time model with sampling fre-
quency of 60 Hz reads

[
xs(k)

xf(k)

]

=

[
Ass Asf

0 0

] [
xs(k−1)

xf(k−1)

]

+

[
Bs

I

]

u(k−1) (25)

y(k) = [Cs 0]

[
xs(k)

xf(k)

]

. (26)

Battery

Computer
Absolute

encoder

DC motor

Bevel gear

Slip ring

(connection

to cube)

Figure 4. Rendering of a module with its functional parts. Not shown in this
drawing is the inertial measurement unit that sits in the part of the module that
is attached rigidly to the cube body.

122

3. Application to the Balancing Cube

Table 1. The states and utilized measurements of the Balancing Cube. (Note
that in this table the indices denote elements of a vector; for example, y1 is the

first component of y.)

state physical meaning

xs,1 angle module 1

xs,2 angle module 2

xs,3 angle module 3

xs,4 angle module 4

xs,5 angle module 5

xs,6 angle module 6

xs,7 cube angle

xs,8 cube ang. vel.

xf,1 ang. vel. module 1

xf,2 ang. vel. module 2

xf,3 ang. vel. module 3

xf,4 ang. vel. module 4

xf,5 ang. vel. module 5

xf,6 ang. vel. module 6

meas. sensor

y1 encoder module 1

y2 rate gyro module 1

y3 encoder module 2

y4 rate gyro module 2

y5 encoder module 3

y6 rate gyro module 3

y7 encoder module 4

y8 rate gyro module 4

y9 encoder module 5

y10 rate gyro module 5

y11 encoder module 6

y12 rate gyro module 6

The states2 xf(k) are the angular velocities of the modules, u(k) their ref-
erence values, and xs(k) combines all other states. Notice that the approxi-
mation of the inner velocity loops as high gain feedback results in tracking
of the reference inputs in (25) in one time step, i.e. xf(k) = u(k−1). It has
been verified experimentally that this is a valid approximation. All states
and measurements of the linear model are listed in Table 1. The matrices of
the state space model may be found in Appendix A.

Each module has access to an encoder and a gyro measurement. For
module i, ȳi,1(k) denotes the encoder and ȳi,2(k) the gyro measurement at
time k.

The state equation (25) is used to design a stabilizing LQR feedback
controller; the feedback law is

u(k−1) = [Fs Ff]

[
xs(k−1)

xf(k−1)

]

. (27)

The feedback gain matrices Fs and Ff may also be found in Appendix A.

2The index f corresponds to “fast” and s to “slow.”

123

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

For state estimation, the following reduced state-space representation is
used, which follows from (25), (26) with added process and measurement
noise,

xs(k) = Ass xs(k−1) +Bs u(k−1) +Asf u(k−2) + v(k−1) (28)

y(k) = Cs xs(k) + w(k). (29)

The update equations for x̂(k|k−1), x̂i(k|k−1), and x̌i(k|k−1) in (3), (12), and
(18), respectively, are adapted accordingly. The feedback law (27) becomes

u(k−1) = [Fs Ff]

[
xs(k−1)

u(k−2)

]

. (30)

Truth model. The truth model that is used for experimental comparison
of the different state estimators is based on the nonlinear state estimation
method for the Balancing Cube presented in [10], which is augmented with
further non-causal post-processing. To obtain the “true” state denoted by
xtruth(k), all sensor data (including, in particular, the accelerometer data)
is recorded and the state is obtained in post-processing. The estimate of the
cube tilt obtained from this method has been verified with a camera-based
motion capture system (cf. results in [10]) and has proven to work well on
the cube.

3.2 Implementation of the state estimation algorithm

The noise parameters Q and R of the Kalman filter (3)–(7) applied to the
system given by (28) and (29) were treated as tuning parameters to obtain
satisfactory centralized closed loop performance on the Balancing Cube. The
following parameters were chosen:

Q = diag ([1 1 1 1 1 1 0.01 1]) (31)

R = diag ([0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1]) . (32)

The Kalman filter was initialized with x0 = 0 and P0 = Q/10.
The same parameters were used for the distributed Kalman filters (12)–

(16) and (18)–(22). The only additional parameters that had to be chosen
for the distributed implementation are the communication thresholds: for
all agents i, they were set to δi,1 = 0.02 rad for the absolute encoder mea-
surements and, for the gyro measurements, to about 2.5 times the standard
deviation of the measurement noise, that is, δi,2 = 0.01 rad/s.

124

3. Application to the Balancing Cube

3.3 Experimental results

Generally, it is expected that communicating less than all data will affect the
performance of the feedback control system. If the communication thresholds
δi,l are all zero, then the performance is equivalent to implementing the
centralized state estimator (3)–(7). Below we define the performance and
communication measures used in this work.

For evaluating the closed loop performance, a performance index P is
defined as the root-mean square (RMS) value of the truth model state xtruth,

P :=

√
√
√
√ 1

K

K∑

k=1

(xtruth(k))Txtruth(k), (33)

for data of length K. For a system with state output that is driven by white
noise with unit variance, the RMS value of the system state is equivalent to
the H2 system norm (see e.g. [12]), which is a standard performance measure
for stochastic control systems.

In network control systems the communication rate is commonly mea-
sured as the number of packets sent per time interval, (cf. [6]). Similarly, we
consider the number of measurements sent per M steps as a measure for the
amount of communication. The communication rate is computed as a mov-
ing average over M steps, that is, for the measurement ȳi,l(k) (l denoting
the element of the vector, i the agent), we define

Ri,l(k) :=
number of ȳi,l(k) sent in [(k−M+1)Ts, kTs]

MTs
, (34)

with the sampling time Ts = 1/60 s. The horizon is chosen as M = 100.
Furthermore, the time average R̄i,l of Ri,l(k) and the average total rate R
are defined by

R̄i,l :=
1

K

K∑

k=1

Ri,l(k), R :=
1

N

N∑

i=1

(

1

p̄i

p̄i∑

l=1

R̄i,l

)

. (35)

The communication rates Ri,l(k), R̄i,l, and R all lie in the interval [0, 1] by
definition. In particular, R = 1 corresponds to the case where at each time
step all data is exchanged between the agents, while R = 0 means no data
is exchanged.

Experiment: steady-state balancing. The distributed estimation meth-
od from Sec. 2.2 and 2.3 was implemented on the Balancing Cube in order
to stabilize the cube about the equilibrium configuration shown in Fig. 3.

125

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

Table 2. Communication and performance measures for centralized (eq. (3)–
(7)) and distributed state estimation (Algorithm 1).

R P

centralized estimation 1.000 0.192

distributed estimation 0.060 0.285

Table 3. Average communication rates for the encoder measurements (top row)

and for the gyro measurements (bottom row).

(i, l) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

R̄i,l 0.0048 0.0137 0.0028 0.0014 0.0052 0.0011

(i, l) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)

R̄i,l 0.1059 0.1076 0.0913 0.1374 0.1157 0.1276

Data was recorded over a period of five minutes of balancing. The ob-
tained measures of performance and communication, P and R, are given in
Table 2; they are compared to a run with the centralized Kalman filter of
Sec. 2.1. The average communication rates for the distributed implementa-
tion are listed in Table 3.

The expected trade-off between communication rate and performance can
be observed from these results: tolerating a decrease of performance roughly
by a factor of 1.5 compared to the centralized case allows a reduction in
communication events roughly by a factor of 16.

The communication rates for some of the absolute encoder measurements
are particularly low (significantly less than 1 %, cf. Table 3). Communicating
the positions at every time step is obviously not necessary, since this part of
the system can apparently be predicted very well from the model. Still, this
prediction needs to be updated occasionally with an actual measurement.

For a 30-second sequence, module 1’s estimates of the module angles 1
and 3, the cube angle, and the cube angular velocity obtained by (12)–(16)
and (18)–(22) are shown in Fig. 5. They are compared to the truth model
state xtruth. The same module’s communication rates are shown in Fig. 6.

4. Concluding Remarks

Experimental results demonstrate that the algorithm for distributed state
estimation presented in this paper is an effective tool for reducing the av-

126

4. Concluding Remarks

A
n
gl
e
m
o
d
u
le

1
(r
ad

)
A
n
gl
e
m
o
d
u
le

3
(r
ad

)
C
u
b
e
an

gl
e
(r
ad

)
C
u
b
e
an

g.
ve
l.

(r
ad

/s
)

time (s)

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

-0.02

-0.01

0

0.01

0.02

-0.01

-0.005

0

0.005

0.01

-0.1

-0.05

0

0.05

0.1

-0.1

-0.05

0

0.05

0.1

Figure 5. Agent 1’s state estimates x̌1 (blue) and x̂1 (green), compared to the
truth model state xtruth (red) for its own module angle (top), agent 3’s module

angle, the cube angle, and the cube angular velocity (bottom). The graphs x̂1

and xtruth are practically identical in the top diagram.

erage communication rate in a networked control system. Moreover, it is
a straight-forward tool to implement. First, it is based on the central-
ized design of the commonly used discrete-time Kalman filter. Second, the
communication threshold parameters provide a practical handle for the de-

127

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

R
at
e
R

1
,1

R
at
e
R

1
,2

time (s)

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

Figure 6. Agent 1’s communication rates for its encoder (top) and rate gyro
measurement (bottom).

signer to parametrize the trade-off between communication and estimator
performance. In particular, the performance of the centralized design can
be recovered and hence used as a starting point for fine-tuning the system
performance.

A particularly useful feature of the algorithm presented herein is that the
bandwidth required for sensor feedback is determined autonomously by the
system, and need not be known beforehand. This encompasses the possi-
bility that the average communication rates may vary for different types of
sensors in the system. Furthermore, the system can easily adapt to change in
communication requirements, using only the resources needed at any given
moment. One may, in fact, view centralized estimation as the “fallback”
system, in that it is simply the case where all measurements are communi-
cated.

A theoretical analysis of the presented distributed estimation algorithm
is beyond the scope this paper. Likewise, further study of variants of the
employed algorithm on the Balancing Cube, such as making the sending
decision of a measurement also based on its associated estimation variance,
remain for future research.

128

Acknowledgements

Acknowledgements

The authors would like to thank Jan Lunze for stimulating discussions lead-
ing to the initial idea of this work.

Appendix

A. State Space Model and Feedback Gains of the
Balancing Cube

The matrices of the state space model of the Balancing Cube in (25) and (26)
and the static feedback gain matrices in (27) are given here for completeness:

Ass =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8

a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8

a7,1 = 2.8e-5 a7,2 = -5.6e-5 a7,3 = -2.8e-5 a7,4 = -2e-5

a7,5 = 2.8e-5 a7,6 = 2e-5 a7,7 = 1 a7,8 = 0.017

a8,1 = 0.0033 a8,2 = -0.0067 a8,3 = -0.0033 a8,4 = -0.0024

a8,5 = 0.0033 a8,6 = 0.0024 a8,7 = 0.15 a8,8 = 1

Asf =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ã7,1 ã7,2 ã7,3 ã7,4 ã7,5 ã7,6

ã8,1 ã8,2 ã8,3 ã8,4 ã8,5 ã8,6

129

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

ã7,1 = 6.3e-5 ã7,2 = -0.00032 ã7,3 = -6.3e-5 ã7,4 = -0.00036

ã7,5 = 0.00018 ã7,6 = 0.00036 ã8,1 = 0.0038 ã8,2 = -0.019

ã8,3 = -0.0038 ã8,4 = -0.022 ã8,5 = 0.011 ã8,6 = 0.022

Bs =

0.0167 0 0 0 0 0

0 0.0167 0 0 0 0

0 0 0.0167 0 0 0

0 0 0 0.0167 0 0

0 0 0 0 0.0167 0

0 0 0 0 0 0.0167

b7,1 b7,2 b7,3 b7,4 b7,5 b7,6

b8,1 b8,2 b8,3 b8,4 b8,5 b8,6

b7,1 = -6.3e-5 b7,2 = 0.00032 b7,3 = 6.3e-5 b7,4 = 0.00036

b7,5 = -0.00018 b7,6 = -0.00036 b8,1 = -0.0038 b8,2 = 0.019

b8,3 = 0.0038 b8,4 = 0.022 b8,5 = -0.011 b8,6 = -0.022

C
T
s =

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1

Fs =

−0.175 0.246 0.121 0.106 −0.121 −0.106 −6.31 −2.07

0.295 −0.676 −0.295 −0.258 0.295 0.258 15.4 5.05

0.121 −0.246 −0.175 −0.106 0.121 0.106 6.31 2.07

−0.142 0.288 0.142 0.0165 −0.142 −0.124 −7.39 −2.43

−0.231 0.471 0.231 0.202 −0.339 −0.202 −12.1 −3.97

0.142 −0.288 −0.142 −0.124 0.142 0.0165 7.39 2.43

130

References

Ff =

0.916 0.0567 0.0215 0.0412 −0.0292 −0.0412

0.0524 0.794 −0.0524 −0.1 0.0713 0.1

0.0215 −0.0567 0.916 −0.0412 0.0292 0.0412

−0.0252 0.0664 0.0252 0.974 −0.0343 −0.0483

−0.0412 0.108 0.0412 0.0788 0.87 −0.0788

0.0252 −0.0664 −0.0252 −0.0483 0.0343 0.974

References

[1] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, Jan. 2007.

[2] K. Åström, “Event based control,” in Analysis and Design of Nonlinear
Control Systems, A. Astolfi and L. Marconi, Eds. Springer Berlin
Heidelberg, 2008, pp. 127–147.

[3] J. Lunze and D. Lehmann, “A state-feedback approach to event-based
control,” Automatica, vol. 46, no. 1, pp. 211–215, Jan. 2010.

[4] J. Yook, D. Tilbury, and N. Soparkar, “Trading computation for band-
width: reducing communication in distributed control systems using
state estimators,” IEEE Transactions on Control Systems Technology,
vol. 10, no. 4, pp. 503 –518, Jul. 2002.

[5] Y. Xu and J. Hespanha, “Optimal communication logics in networked
control systems,” in Proc. of the 43rd IEEE Conference on Decision and
Control, Atlantis, Paradise Island, Bahamas, Dec. 2004, pp. 3527–3532.

[6] ——, “Estimation under uncontrolled and controlled communications
in networked control systems,” in Proc. of the 44th IEEE Conference
on Decision and Control and the European Control Conference, Seville,
Spain, Dec. 2005, pp. 842–847.

[7] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and
S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, Sep.
2004.

[8] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control
systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84–99,
Feb. 2001.

131

Paper II. Experim. Demonstr. of Distrib. & and Event-Based State Est.

[9] B. Anderson and J. Moore, Optimal filtering. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

[10] S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation
of a rigid body with only rotational degrees of freedom,” in Proc.
of the IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, USA, May 2010, pp. 2630–2636.

[11] ——, “A limiting property of the matrix exponential with application
to multi-loop control,” in Proc. of the Joint 48th IEEE Conference on
Decision and Control and 28th Chinese Control Conference, Shanghai,
P.R. China, Dec. 2009, pp. 6419–6425.

[12] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design, 2nd ed. Wiley-Interscience, November 2005.

132

Paper III

Event-Based State Estimation with

Switching Static-Gain Observers

Sebastian Trimpe

Abstract

An event-based state estimation problem is considered where the
state of a dynamic system is observed from multiple distributed sen-
sors that sporadically transmit their measurements to a remote esti-
mator over a common bus. The common bus allows each sensor to
run a copy of the remote estimator and to make the triggering deci-
sion based on this estimate: a measurement is transmitted only if its
prediction by the estimator deviates by more than a tunable thresh-
old. The event-based estimator is a switching observer that mimics a
Luenberger observer with full communication of all measurements. It
is proven that the difference between the event-based estimator and
its full communication counterpart is bounded. The reduction of av-
erage sensor communication rates achieved by using the event-based
state estimator for feedback control is demonstrated in experiments
on a balancing cube.

Published in 3rd IFAC Workshop on Distributed Estimation and Control in

Networked Systems, 2012, pp. 91–96.

DOI: 10.3182/20120914-2-US-4030.00022.

c©2012 IFAC. NOTICE: This is the author’s version of a work that was accepted for
publication in 3rd IFAC Workshop on Distributed Estimation and Control in Networked

Systems (2012). Changes resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality control mechanisms may not
be reflected in this document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently published in 3rd IFAC

Workshop on Distributed Estimation and Control in Networked Systems (2012), [Volume
3, Part 1], DOI: 10.3182/20120914-2-US-4030.00022.

133

Paper III. Event-Based State Est. with Switching Static-Gain Observers

x(k)

y1(k)

System
Sensor 1

C
O
M

M
O
N

B
U
S

yN (k)

v(k)

u(k)

continuous data flow

Sensor N

Estimator
x̌(k)

discontinuous data flow

w(k)

u(k)

u(k)

Figure 1. Distributed state estimation problem. The state x(k) of a dynamical
system is observed by measurements yi(k) of N sensors. The system is driven by a

known input u(k) and unknown process and measurement disturbances v(k) and
w(k). The sensor nodes are connected to each other and to a remote estimator
via a common bus. Each sensor decides when to broadcast its local measurement
over the bus. The remote estimator generates an estimate x̌(k) of the state x(k)

based on the received data.

1. Introduction

Figure 1 illustrates the state estimation problem that is considered in this
paper. The state of a dynamic system is estimated from measurements of
multiple sensors distributed along the system. The sensors have computing
capability, and decide when to broadcast their measurement over a common
bus network that all sensors and the estimator are connected to. Since the
system state is not necessarily observable from a single sensor alone, com-
munication from different sensors is required. The objective is to maintain
an estimate of the full system state while, at the same time, reducing the
load on the communication network.

An event-based strategy to addressing this problem is explained in Fig. 2,
which depicts a single sensor node of Fig. 1. The key idea is to implement,
on each sensor, a copy of the remote estimator and an appropriate transmit
decision rule (event generator): a measurement is transmitted only when it
is required to meet a certain estimation performance. The event-based state
estimator consists of the state estimator itself and the event generator.

The common bus (or broadcast network) is a key enabling feature of the
architecture in Fig. 1. It allows all sensors to also listen to the other sensors’
data and, hence, to generate the estimate x̌(k) locally at no additional com-

134

1. Introduction

Sensor i

C
O
M

M
O
N

B
U
S

Estimator
x̌(k)

Event
Generator

yi(k)

u(k)

Figure 2. A single sensor node. Each sensor node listens to all data commu-
nicated from other sensors on the common bus. Therefore, it has access to the
same data set as the remote estimator of Fig. 1 and can implement a copy of the

same. Based on this estimate, the event generator decides when to broadcast the
local measurement.

munication cost. This architecture allows for an effective implementation
of a distributed event triggering scheme (i.e. one where the triggering de-
pends only on local data), since the quantity of interest (the estimate x̌(k))
is actually available locally.

The input signal u(k) is assumed to be accessible at the sensor nodes
for making the estimator updates. For example, u(k) may be an a-priori
known reference input, or u(k) = 0 for an autonomous system. When u(k)
is computed from a feedback control law, it needs to be communicated to
the sensor nodes. In that case, continuously communicating u(k), but only
sporadically transmitting the measurements yi(k) may be beneficial if there
are fewer inputs than measurements. Furthermore, with knowledge of the
inputs, the state estimation problem (which is the focus of this paper) can
be treated without consideration of the feedback control law. This reduces
the complexity of the design problem.

Different measures are conceivable for the event generation (i.e. for the
decision to transmit a measurement). Trimpe and D’Andrea [1] use a con-
stant threshold on the difference of an actual measurement and its prediction
by the estimator as condition to trigger an event. We refer to such a trigger-
ing rule, which depends on (realtime) measurement data, as measurement-
based triggering. This is also the approach taken herein. In contrast, a
triggering condition that is based on the estimator variance is referred to as
variance-based triggering (considered in [2]). Measurement-based triggering
allows for the estimator to react to events in real time, whereas transmit
schedules can typically be computed off-line with variance-based triggering.

In contrast to the previously mentioned work, where the state estimator
is a time-varying Kalman filter, we use a switching Luenberger-type observer

135

Paper III. Event-Based State Est. with Switching Static-Gain Observers

herein. The design is based on a Luenberger observer for the case of syn-
chronous communication of all measurements (referred to as the full commu-
nication state estimator (FCSE)). The event-based state estimator (EBSE)
updates its estimate with the available measurements using the correspond-
ing sub-blocks of the static FCSE gain matrix. Hence, the estimator switches
between different pre-computed static gains. Compared to a time-varying
Kalman filter, where the filter gain is recomputed at every time step from a
few matrix multiplications, the approach taken herein is less computationally
demanding.

The main contributions of this paper are: the proposal of the EBSE as a
switching static-gain observer combined with an appropriate event trigger;
proof of an upper bound on the difference between the EBSE and the FCSE;
and demonstration of the EBSE performance in experiments on an unstable
networked control system (the Balancing Cube; see www.cube.ethz.ch for a
video).

This paper is organized as follows: after a brief review of related work
and an introduction of notation below, the estimation problem is stated in
Sec. 2. The event-based state estimator is derived in Sec. 3, and its stability
is analyzed in Sec. 4. Experimental results on the Balancing Cube testbed
are given in Sec. 5, and the paper concludes with remarks in Sec. 6.

Related Work. The approach to event-based state estimation taken here-
in is conceptually related to the approach for event-based control by Lunze
and Lehmann [3] for a centralized design, and by Stöcker et al. [4] for a
decentralized problem. Therein, the authors design an event triggering rule
such that the difference between the state of a reference system with contin-
uous feedback and the state of the event-based control system is bounded.
Here, the FCSE is the reference estimator, and event triggers are designed
such that the difference of the EBSE to the FCSE is bounded.

Event-based strategies are a popular means of ensuring an efficient use of
the communication resource in control, estimation, and optimization prob-
lems in networked control systems (see [5] for an overview). For a single
sensor and a single estimator node, event-based state estimation problems
have been studied by several researchers (see [5] and references therein). A
distributed estimation problem related to the one herein is addressed by
Weimer et al. [6]. The authors design communication policies for wireless
sensor nodes that may either transmit information to a central estimator,
listen to information from the central estimator, or be turned off. When ei-
ther sensor or estimator transmit data, all data since the last update is sent;
hence, the load per packet is variable whereas it is fixed for the approach
herein.

136

2. Estimation Problem Formulation

Notation. For a vector v ∈ R
n and q ∈ [1,∞], ‖v‖q (or simply ‖v‖)

denotes the vector Hölder norm of v (see [7])

‖v‖ = ‖v‖q =

(∑n

j=1
|vj |q

)1/q

for 1 ≤ q < ∞

max
j∈{1,...,n}

|vj | for q = ∞.
(1)

For a matrix A, ‖A‖q (or simply ‖A‖) denotes the matrix norm of A induced
by the chosen vector norm. For a vector-valued sequence v = {v(0), v(1),
v(2), . . . }, ‖v‖∞ denotes the ℓ∞ norm of v (see [8])

‖v‖∞ := sup
k≥0

‖v(k)‖,

where ‖v(k)‖ is the chosen vector norm.

2. Estimation Problem Formulation

Consider the linear time-invariant (LTI) system

x(k) = Ax(k−1) +B u(k−1) + v(k−1) (2)

y1(k) = C1 x(k) + w1(k) (3)
...

yN (k) = CN x(k) + wN (k), (4)

where k ≥ 1 is the discrete-time index, x(k) ∈ R
n is the system state,

u(k) ∈ R
nu the control input, yi(k) ∈ R

pi , i ∈ {1, . . . , N}, are measurements
by N sensors, v(k) ∈ R

n, wi(k) ∈ R
pi , i ∈ {1, . . . , N}, are disturbances,

and all matrices are of corresponding dimensions. We use y(k) to denote the
vector that combines all measurements; that is,

y(k) :=

y1(k)
...

yN (k)

 =

C1
...

CN

︸ ︷︷ ︸

=:C

x(k) +

w1(k)
...

wN (k)

︸ ︷︷ ︸

=:w(k)

= Cx(k) + w(k).

137

Paper III. Event-Based State Est. with Switching Static-Gain Observers

Hence, y(k), w(k) ∈ R
p with p :=

∑N
i=1 pi. We assume that (A,C) is de-

tectable. Notice that (A,Ci) is not assumed to be detectable; that is, the
system state is not necessarily detectable from any individual sensor alone.

Notice that no assumption on the characteristics of the disturbances v(k)
and w(k) is made. For example, v(k) and w(k) may be random variables with
known statistics in a stochastic setting; or they may be bounded disturbances
in a deterministic setting.

2.1 Full Communication State Estimator

Next, we introduce the FCSE, which uses the full measurement vector y(k)
at every time step and serves as a reference to the EBSE design later:

x̂(k|k−1) = A x̂(k−1|k−1) +B u(k−1) (5)

x̂(k|k) = x̂(k|k−1) + L
(
y(k)− C x̂(k|k−1)

)
, (6)

with the static estimator gain L. The estimator is initialized with some
x̂(0) ∈ R

n. It generates an estimate x̂(k|k) of the state x(k) based on all
past measurements up to, and including, y(k). For ease of notation, we write
x̂(k) := x̂(k|k).

The estimator gain L is designed such that (I − LC)A is stable (i.e. all
eigenvalues have magnitude less than one). If (A,C) is detectable, such
an L is guaranteed to exist (see [9]). It can be designed, for instance, via
pole placement (see [9]) or as the steady-state solution of the Kalman filter
(see [10]).

Let ê(k) := x(k) − x̂(k) denote the estimation error of the FCSE. The
error evolves according to

ê(k) = (I − LC)Aê(k−1) + (I − LC)v(k−1)− Lw(k). (7)

In a state estimation scenario where v(k) and w(k) are bounded disturbances,
the stability of (I −LC)A implies that the estimation error is also bounded.
If v(k) and w(k) are independent random variables with finite variance, (7)
ensures that the estimation error variance is bounded.

2.2 Problem Statement

An EBSE is sought that approximates the estimate x̂(k) of the FCSE (5)–(6)
up to a guaranteed bound, but uses fewer measurements. The EBSE consists
of an event generator and a state estimator (with state x̌(k)) as symbolized
by the blocks in Fig. 2.

The sensor nodes and the remote estimator are assumed to be synchro-
nized in time, and transmission via the communication network is assumed

138

3. Event-Based State Estimator

to be instantaneous and without data loss. Hence, the state estimates x̌(k)
on all nodes are assumed identical.

3. Event-Based State Estimator

In this section we present the EBSE, which addresses the problem stated
above.

Event Generator. The event generator on sensor i decides at every time
step k whether or not to transmit the local measurement yi(k). The measure-
ment yi(k) is transmitted whenever a prediction of that measurement based
on the previous estimate x̌(k−1) is off by more than a tolerable threshold.

Without any information on v(k) and wi(k), a prediction y̌i(k) of the
measurement yi(k) may be obtained from (2)–(4) by setting v(k) = 0 and
wi(k) = 0; that is,

y̌i(k) := Ci

(
Ax̌(k−1) +Bu(k−1)

)
.

Using x̌(k|k−1) := Ax̌(k−1)+Bu(k−1), the employed event triggering rule
is

transmit yi(k) ⇔ ‖yi(k)− Cix̌(k|k−1)‖ ≥ δi, (8)

with threshold parameters δi ≥ 0, i ∈ {1, . . . , N}. Tuning δi allows the
designer to trade off each sensor’s frequency of events (and, hence, the com-
munication rate) for estimator performance. For notational convenience, we
denote δ = (δ1, . . . , δN) ∈ R

N the vector of threshold parameters δi.

State Estimator. Let I(k) denote the tuple of indices of those sensors
that transmitted their measurement at time k; that is,

I(k) :=
(
i | 1 ≤ i ≤ N, ‖yi(k)− Cix̌(k|k−1)‖ ≥ δi

)
. (9)

The filter that is used to generate an estimate x̌(k) := x̌(k|k) of the state
x(k) based on the measurements broadcast up to time k is given by:

x̌(k|k−1) = A x̌(k−1|k−1) +B u(k−1) (10)

x̌(k|k) = x̌(k|k−1) +
∑

i∈I(k)

Li

(
yi(k)− Cix̌(k|k−1)

)
, (11)

139

Paper III. Event-Based State Est. with Switching Static-Gain Observers

where L = [L1, L2, . . . , LN] with Li ∈ R
n×pi is the decomposition of the

estimator gain matrix according to the dimensions of the individual mea-
surements. By rewriting (6) as

x̂(k) = x̂(k|k−1) +
∑

i∈{1,...,N}

Li

(
yi(k)− Cix̂(k|k−1)

)
, (12)

one can see that (11) is obtained from (6) by including only those elements in
the summation where measurements are available. If, at time k, no measure-
ment is transmitted (i.e. I(k) = ∅), (11) is to be understood such that the
summation vanishes; that is, x̌(k|k) = x̌(k|k−1). In order to ease the presen-
tation, this case is not explicitly mentioned hereafter. The filter (10)–(11)
and the triggering rule (8) constitute the EBSE.

We assume henceforth that the EBSE is initialized with the same value
as the FCSE, i.e. x̌(0) = x̂(0). This is a reasonable assumption since we seek
to mimic the FCSE with the EBSE.

Notice that the estimator gains Li in (11) are blocks of the constant
matrix L; that is, the entries can be computed off-line. This is different
from the approach in [1], where a time-varying Kalman filter is used, and the
entries of the estimator gain are recomputed at every step k. The approach
herein thus has lower computational complexity.

For a fixed sequence {I(1), . . . , I(k)}, the filter (10)–(11) is a linear filter.
The index tuple I(k) does, however, depend on y(k) by (9); hence, (10)–(11)
represent a nonlinear filter. It is a switching observer, whose switching modes
correspond to the available measurements at time k.

Notice that any individual mode of the filter may be unstable ((A,Ci)
is not necessarily detectable). Moreover, even if the individual modes were
stable, this would not imply the stability of the switching observer, as dis-
cussed in [11] and [12] (Sec. 6.2). The stability of the presented EBSE
follows from the combination of (10)–(11) with the triggering condition (8).
This is discussed in detail in the next section.

4. Analysis

We introduce the error measures

e(k) := x̂(k)− x̌(k) and (13)

ě(k) := x(k)− x̌(k), (14)

which are analyzed below. The error e(k) is the difference between the state
estimate of the FCSE and the EBSE. It is required to be bounded according

140

4. Analysis

to the problem statement in Sec. 2.2. The error ě(k) is the estimation error
of the EBSE (defined analogously to ê(k) for the FCSE).

Difference of the EBSE to the FCSE. From (5), (10), (11), (12), and
(13), we get

e(k) = x̂(k)− x̌(k)

= Ax̂(k−1) +Bu(k−1)−Ax̌(k−1)−Bu(k−1)

+
∑

i∈{1,...,N}

Li

(
yi(k)− CiAx̂(k−1)− CiBu(k−1)

)

−
∑

i∈{1,...,N}

Li

(
yi(k)− CiAx̌(k−1)− CiBu(k−1)

)

+
∑

i∈Ī(k)

Li

(
yi(k)− CiAx̌(k−1)− CiBu(k−1)

)
,

where

Ī(k) := (1, . . . , N) \ I(k)
=
(
i | 1 ≤ i ≤ N, ‖yi(k)− Cix̌(k|k−1)‖ < δi

)
. (15)

Straightforward manipulation then yields

e(k) =
(

A−
∑

i∈{1,...,N}

LiCiA
)

e(k−1)

+
∑

i∈Ī(k)

Li

(
yi(k)−Cix̌(k|k−1)

)

= (I−LC)Ae(k−1) +
∑

i∈Ī(k)

Li

(
yi(k)−Cix̌(k|k−1)

)
. (16)

The dynamics of e(k) are those of a stable LTI system ((I −LC)A is stable)
with an input which is bounded according to (15). Hence, we have the
following theorem.

Theorem 1 Let all eigenvalues of (I − LC)A have magnitude less than
one (i.e. the error dynamics of the FCSE are stable). Then, the difference
e(k) between the FCSE and the EBSE is bounded for all k. In particular,
there exist constants m > 0 and ρ ∈ [0, 1) such that

‖e‖∞ ≤ m

1− ρ
‖L‖ ‖δ‖ =: emax. (17)

141

Paper III. Event-Based State Est. with Switching Static-Gain Observers

Proof. Rewrite (16): for k ≥ 1,

ē(k+1) = (I − LC)Aē(k) + LĪ(k)∆Ī(k)(k), (18)

where ē(k+1) := e(k); ∆i(k) := yi(k)−Cix̌(k|k−1); ∆Ī(k)(k) denotes the ma-

trix obtained from consecutively stacking the vectors ∆i(k), i ∈ Ī(k), from
top to bottom; and LĪ(k) denotes the matrix from consecutively stacking Li,

i ∈ Ī(k), from left to right.
First, notice that ē(k+1) = (I − LC)Aē(k) is exponentially stable by

assumption. Therefore, there exist constants m > 0 and ρ ∈ [0, 1) such that
for all k0 ∈ N and k ≥ k0,

‖
(
(I − LC)A

)k−k0‖ ≤ mρk−k0 , (19)

[8, p. 212–213, Def. 17, Thm. 33].
Recalling the definition of the vector norm (1), one can see that, for

1 ≤ q < ∞,

‖∆Ī(k)(k)‖qq =
∑

i∈Ī(k)

‖∆i(k)‖qq <
(15)

∑

i∈Ī(k)

δqi ≤
N∑

i=1

δqi = ‖δ‖qq,

and, for q = ∞,

‖∆Ī(k)(k)‖q = max
i∈Ī(k)

‖∆i(k)‖q <
(15)

max
i∈Ī(k)

δi ≤ ‖δ‖q.

Hence, for 1 ≤ q ≤ ∞, ‖∆Ī(k)(k)‖ < ‖δ‖, and

sup
k≥1

‖∆Ī(k)(k)‖ ≤ sup
k≥1

‖δ‖ = ‖δ‖.

Since also
∥
∥LĪ(k)

∥
∥ ≤ ‖L‖, it follows that the input term LĪ(k)∆Ī(k)(k) in

(18) is bounded. Using these results and applying the bounded trajectories
theorem [8, p. 218, Thm. 75] then yields

sup
k≥1

‖ē(k)‖ ≤ m‖ē(1)‖+ m

1− ρ
‖L‖ ‖δ‖.

Equation (17) follows by ē(1) = e(0) = x̂(0)− x̌(0) = 0.

Notice that the bound (17) holds irrespective of the representation of the
disturbances v(k) and wi(k) in (2)–(4). In particular, it holds for the case
where the disturbances are unbounded, such as for Gaussian noise.

142

5. Experiments

Estimator error. The estimation error ě(k) of the EBSE can be written
as

ě(k) = x(k)− x̂(k) + x̂(k)− x̌(k) = ê(k) + e(k). (20)

Therefore, Theorem 1 can be used to deduce properties of the EBSE from
properties of the FCSE. For example, if the estimation error ê(k) of the
FCSE is bounded, then by (20) and Theorem 1, the error ě(k) of the EBSE
is also bounded. In general, Theorem 1 shows that for δi → 0, e(k) becomes
arbitrarily small; that is, the performance of the FCSE is recovered.

5. Experiments

The Balancing Cube shown in Fig. 3 serves as the testbed for demonstrating
the event-based state estimation method. Six rotating arms on the inner
faces of the cube allow the cube to balance on any of its edges or corners.
The arms (called modules) constitute the agents of the networked control
system: each one is equipped with sensors, actuation, and a single-board
computer. The computers share data over a Controller Area Network (CAN)
bus. For the purpose of this paper, the cube balances on one of its edges. The
experimental setup is the same as in [1], where more detailed descriptions of
the system, the linear model, and the controller can be found.

The eight states of the system model (2) are the angles of the six modules
(rotation relative to the cube structure), and the angle and angular rate of
the cube about its axis of rotation. Since each module regulates its angular
velocity locally with a fast feedback controller, the angular velocities of the
six modules are treated as plant inputs. Two types of sensors are used
on each module: an absolute encoder measuring the module angle and a
rate gyroscope measuring the angular velocity of the cube. Hence, N = 12
sensors are used in total. Each module is able to observe its own angle and
the cube states with its local sensors, but the complete system state is not
locally observable.

The gain L of the linear observer (5)–(6) is designed as the gain of a
steady-state Kalman filter. The resulting eigenvalues of (I−LC)A are 0.936,
0.427, and (with algebraic multiplicity 6) 0.382. For the rate gyro sensors, the
transmit threshold δgyro = 0.004 rad/s is used, which corresponds to roughly
one standard deviation of the sensor noise. For the encoders, δenc = 0.008 rad
is chosen.

Every module implements a copy of the EBSE (10)–(11) as shown in
Fig. 2. In addition to using the estimate x̌(k) for the transmit decision in

143

Paper III. Event-Based State Est. with Switching Static-Gain Observers

Figure 3. The experimental testbed: six rotating modules balance a cubic
structure on one of its edges. (See www.cube.ethz.ch for a video.)

the event generator, the estimator feeds an LQR controller that computes
the input to the local actuator (i.e. one of the elements of u(k)). Hence, there
is feedback from the estimators on the sensor nodes to the system input u(k)
(not shown in Fig. 1). A detailed discussion and analysis of the distributed
feedback control system is beyond the scope of this paper and a subject for
future work.

The sensors are sampled, and the controller commands are updated ev-
ery 16.6ms. The control inputs are shared over the CAN bus at every time
step, so that u(k) is available to compute (10) on each module. The net-
work bandwidth is sufficient to broadcast all input and measurement data
within the duration of one time step. Hence, data transmission is assumed
synchronous for all practical purposes.

A truth model state is computed in post-processing from all recorded
sensor data, which also includes measurements from multiple accelerometers
on the cube (see [1] for details). The performance P of the feedback control
system is measured as the root-mean square (RMS) value of the truth model
state. By Ri(k) we denote the average communication rate of measurement
yi. It is computed at time k as the moving average over the last 100 steps.
Furthermore, R̄i denotes the time average of Ri(k) over the duration of the
experiment, and R denotes the average total rate (the average of R̄i over all
sensors i). Hence, R is a measure of the total communication in the network

144

5. Experiments

Table 1. Experimental results.

R P

FCSE 1.000 0.183

EBSE 0.221 0.206

Table 2. Average communication rates R̄i.

Module # 1 2 3 4 5 6

Encoder 0.0001 0.024 0 0 0.022 0

Gyro 0.429 0.406 0.384 0.472 0.453 0.459

(R = 1 means full communication, R = 0 means no communication).
Table 1 shows the communication and performance measuresR and P for

two three-minute balancing experiments: one experiment using the EBSE
and another with the FCSE. The results illustrate the expected trade-off
between control performance and average communication.

In Table 2, the average communication rates R̄i of the individual sensors
are given for the same EBSE experiment. They can be interpreted as follows:
due to local regulation of the module angular velocities, the module angles
can be predicted very accurately from the known velocity input; hence, little
communication is required. The gyro sensors, on the other hand, observe
the unstable mode of the cube; hence, sufficiently high rates are required for
stabilizing the cube. The encoder communication rates of Modules 2 and 5
(on the front and back face of the cube in Fig. 3) are greater than those of
the other modules, because Modules 2 and 5 move more during balancing,
and their motion is affected more severely by gear backlash in the actuation.
Gear backlash is not captured by the linear model (2), and its effect can
therefore not be predicted by (10).

In another experiment, Module 1 was manually displaced during balanc-
ing (a clutch in the actuation mechanism allows the module to slip when
pushed). The communication rates over time are shown in Fig. 4. Clearly,
Module 1’s encoder rate adapts to the external disturbance. While the mod-
ule is being pushed, (10) cannot accurately predict the module angle, hence
its communication rate goes up.

For the same experiment, Fig. 5 illustrates the performance of the EBSE
exemplarily for Module 1’s angle and the cube angle. For q = ∞ in (1),
the bound in (17) is emax = 0.1162. Clearly, the error signals e(k) in Fig. 5

145

Paper III. Event-Based State Est. with Switching Static-Gain Observers

Module 4

Module 2

Module 1

Time (s)

G
y
ro

C
o
m
m
.
R
a
te

E
n
co
d
er

C
o
m
m
.
R
a
te

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0.2

0.4

0.6

0

0.1

0.2

Figure 4. Experimental communication rates. Roughly at 10 s, Module 1 was

displaced by pushing it.

are well below. The conservatism of the bound (17) stems from the upper
bound (19) on the state-transition matrix of the multivariate system (16).

6. Concluding Remarks

The proposed event-based state estimator for a distributed arrangement of
sensors is a direct extension of well-known methods for linear state estima-
tion with synchronous (time-sampled) measurement feedback (such as the
Luenberger observer or the steady-state Kalman filter). The approach allows
one to trade off estimator performance achievable with the full communica-
tion design for communication bandwidth. Experiments on the Balancing
Cube illustrated the ability of the event-based control system to discriminate
different sensor types and adapt the sensor communication rates to the need
for feedback control.

The setup for the experiments on the Balancing Cube is essentially the

146

6. Concluding Remarks

Cube

Module 1

Time (s)

E
rr
o
r
ě
(k
)
(r
a
d
)

E
rr
o
r
e
(k
)
(r
a
d
)

T
ru
e
a
n
g
le

(r
a
d
)

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

−0.02

−0.01

0

0.01

−0.01

0

0.01

−0.4

−0.2

0

0.2

Figure 5. Experimental estimator performance (same data sequence as in
Fig. 4). The estimates of Module 1’s angle and the cube angle are shown. Top
graph: truth model states; middle: difference between FCSE and EBSE (the error

e(k)); bottom: EBSE error ě(k).

same as in [1], but the event-based state estimator implementation herein is
different: a switching Luenberger observer is used instead of a time-varying
Kalman filter. Whereas a time-varying filter is computationally more ex-
pensive, it potentially has a better performance, since the filter gains adapt
on-line to the set of received measurements at a time step. The experimen-
tal results (e.g. in Table 1) should, however, not directly be compared with
those in [1], because different design parameters were chosen. An experi-
mental comparison of the different methods is planned for future work.

147

Paper III. Event-Based State Est. with Switching Static-Gain Observers

Each agent on the Balancing Cube implements a copy of the event-based
state estimator and uses the estimate to compute its local control input. To
satisfy the assumption that the input vector u(k) is available at all sensor
nodes (see Fig. 1), the inputs are shared between the agents over the network.
The experiments demonstrated the performance of the event-based control
system under realistic conditions, where the individual estimates are not
perfectly identical. The stability of the distributed feedback system with
non-identical estimators is, however, not analyzed herein. Strategies for
removing the requirement of the continuous exchange of the control inputs,
as well as the stability analysis of the distributed feedback control system
shall be addressed in future work.

Acknowledgements

The author would like to thank Raffaello D’Andrea, Jan Lunze, and Chris-
tian Stöcker for insightful discussions.

References

[1] S. Trimpe and R. D’Andrea, “An experimental demonstration of a
distributed and event-based state estimation algorithm,” in Proc. 18th
IFAC World Congress, Milan, Italy, Aug. 2011, pp. 8811–8818.

[2] ——, “Reduced communication state estimation for control of an
unstable networked control system,” in Proc. 50th IEEE Conf. on
Decision and Control and European Control Conf., Orlando, Florida,
USA, 2011, pp. 2361–2368.

[3] J. Lunze and D. Lehmann, “A state-feedback approach to event-based
control,” Automatica, vol. 46, no. 1, pp. 211–215, 2010.

[4] C. Stöcker, J. Lunze, and D. Vey, “Stability analysis of interconnected
event-based control loops,” in Proc. 4th IFAC Conf. on Analysis and
Design of Hybrid Systems, Eindhoven, Netherlands, 2012, pp. 58–63.

[5] M. Lemmon, “Event-triggered feedback in control, estimation, and op-
timization,” in Networked Control Systems, A. Bemporad, M. Heemels,
and M. Johansson, Eds. Springer-Verlag, 2011, vol. 406, pp. 293–358.

[6] J. Weimer, J. Araujo, and K. H. Johansson, “Distributed event-
triggered estimation in networked systems,” in Proc. 4th IFAC Conf. on

148

References

Analysis and Design of Hybrid Systems, Eindhoven, Netherlands, 2012,
pp. 178–185.

[7] D. S. Bernstein, Matrix mathematics: theory, facts, and formulas with
applications to linear system theory. New Jersey: Princeton University
Press, 2005.

[8] F. M. Callier and C. A. Desoer, Linear System Theory. Springer-Verlag,
1991.

[9] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory
and design. Prentice Hall, 1997.

[10] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Mineola, New
York: Dover Publications, 2005.

[11] J. Lunze, “Ein Beispiel für den Entwurf schaltender Beobachter,”
Automatisierungstechnik, vol. 48, pp. 556–562, 2000.

[12] G. Böker and J. Lunze, “Stability and performance of switching Kalman
filters,” International Journal of Control, vol. 75, no. 16/17, pp. 1269–
1281, 2002.

149

150

Part B

The Balancing Cube: A Test

Bed for Distributed Estimation

and Control

152

Paper IV

The Balancing Cube: A Dynamic

Sculpture as Test Bed for Distributed

Estimation and Control

Sebastian Trimpe · Raffaello D’Andrea

Published in IEEE Control Systems Magazine, vol. 32, no. 6, pp. 48–75,

Dec. 2012.

DOI: 10.1109/MCS.2012.2214135.

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republish-
ing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Note about this reprint: the original article in the IEEE Control Systems
Magazine includes sidebars, which are given herein as separate sections
(marked by Sidebar 1 to Sidebar 7) at the end of this paper.

153

Paper IV. The Balancing Cube

1. Introduction

The Balancing Cube is a dynamic sculpture that can balance autonomously
on any of its edges or corners (see Fig. 1 to 4). When standing on a corner,
the cube represents a three dimensional inverted pendulum with multiple
actuation, sensing, and control units that are interconnected over a commu-
nication network. The main structural components are the cube body (a rigid
aluminum structure with a cubic shape), and six identical rotating arms lo-
cated on each of the cube’s inner faces. The rotating arms are self-contained
units carrying sensors, actuation, a computer, and a battery. Due to their
modular design, these units are referred to as modules. As they rotate,
they shift the overall center of mass of the system, exert forces on the cube
structure, and can, as a result, influence the cube’s motion. The modules
constitute the agents in the distributed and networked control system; their
joint objective is the stabilization of the cube. A video of the cube can be
found on the project website [1].

Figure 1. The cube balancing on one of its corners. The cube balances through

the action of six rotating arms on the cube’s inner faces. The diagram in Fig. 2
is helpful for visualizing why the sculpture is called a cube: its tips are simply
the corners of a cube. Alternative terms for this shape are the star tetrahedron
and, less commonly used, the stellated octahedron. Self-contained with onboard
sensing, actuation, computation, and communication, the rotating arms are called
modules due to their modular design. The cube’s height from tip to tip is 2.08m.

154

1. Introduction

Figure 2. Corner balancing. The diagram visualizes the cubic shape and the

six modules. It shows the cube in the same orientation as the photo in Fig. 1:
the cube stands on a corner, and all modules are pointing down. Due to their
position on the cube body, two types of modules are distinguished: the bottom
modules and the top modules. The top modules are less effective for balancing

the sculpture, as explained later in the sidebar “Why Are the Top Modules Used
Less?”

Inverted pendulum systems are popular in controls education and re-
search; see for example [2]–[4] and references therein. In the most basic
version, an inverted pendulum is a point mass on a massless link that is con-
nected to a base (ground or moving platform) through a revolute joint with
one degree of freedom (DOF, see Table 1 for acronyms). More generally,
if the pendulum is considered as a general rigid body with three rotational
degrees of freedom at its pivot, the pendulum is referred to as a 3D pen-
dulum, [2]. A defining characteristic of all inverted pendulums is that the
pendulum is pointing upward as seen from the pivot (that is, in opposite
direction to the gravity vector). The corresponding equilibrium is hence
unstable, which makes the system interesting for controls researchers and
educators: in order to balance, the pendulum needs active stabilization by
some actuation mechanism, such as actuated masses or a moving base.

Used as demonstrators for controls research since the 1950s (see [4] and
references therein), inverted pendulum systems have remained popular ex-
periments (simulation or physical) in various current research areas, such
as learning control [5]–[7], networked control [8]–[12], adaptive control [13]–
[15], model predictive control [8, 16, 17], decentralized control [18]–[20], and

155

Paper IV. The Balancing Cube

Table 1. Acronyms used in this article.

Acronym Meaning

CAN controller area network

CG center of gravity

DC direct current

DOF degree of freedom

IMC inter-module communication

IMU inertial measurement unit

LED light-emitting diode

LQR linear-quadratic regulator

MEMS micro-electro-mechanical system

RMS root mean square

SBC single-board computer

SPI serial peripheral interface

WLAN wireless local area network

different branches of nonlinear control [21]–[28]. Common to most inverted
pendulum systems is that the control algorithms are implemented on a single,
central processing unit. In contrast, the Balancing Cube is stabilized by the
joint action of six agents (the modules) with independent processing units,
and the implementation of the feedback control system is distributed among
the agents. The dynamics of the individual agents are coupled through the
cube’s rigid body.

Because data is exchanged between the agents over a digital communi-
cation network, the Balancing Cube qualifies as a networked control sys-
tem, [29]. Other experimental testbeds that have been developed to study
distributed control and/or control of multiple agents over networks include
modular robot systems [30, 31], a two-axis contouring system [32], a system
for handling materials [33], a formation flight experiment [34], and multi-
vehicle systems of various types [31,35]–[37].

The cube is a 3D inverted pendulum when balancing on one of its cor-
ners (denoted as corner balancing). When balancing on one of its edges
(edge balancing) as shown in Fig. 3 and 4, it becomes a 1D inverted pen-
dulum. Moreover, with the six modules on its inner faces, the cube is a
multi-body system and may therefore be qualified as a 1D/3D multi-body
inverted pendulum, [2]. For both edge and corner balancing, different equi-
librium configurations and, hence, different dynamics can be obtained by

156

1. Introduction

Figure 3. The cube balancing on one of its edges. When the cube body is
placed on two of its tips, it has only one rotational degree of freedom left. This

is called edge balancing (see Fig. 4).

varying the nominal angle of the modules. Since the multi-body system has
fewer inputs than DOFs (each of the module DOFs is actuated, the cube
body DOFs are not), it is an underactuated mechanical system, [38]. Over-
all, the system combines the challenges of nonlinear unstable dynamics with
distributed control and networked communication, making it a rich platform
for research in dynamics and control.

Enabled by its control system, the Balancing Cube is a dynamic sculp-
ture: the cube body is kept in balance through the slight corrective move-
ments of the six modules. No external system is required for balancing. Set
on one of its corners, the cube can balance as long as its batteries last (four
or more hours) or until someone pushes it over. With many peoples’ un-
derstanding of balancing, it makes an ideal device for communicating key
concepts of control engineering such as stability, feedback control, and co-
operation to the general public.

The Balancing Cube was built at the Institute for Dynamic Systems and
Control (IDSC) at ETH Zurich, and was completed in 2009. Since then, it
has been demonstrated at public exhibitions and at an international control
conference (see the sidebar “Balancing Cube on Tour”). To the best of the
authors’ knowledge, the cube presented in this article is the only cube to

157

Paper IV. The Balancing Cube

Figure 4. Edge balancing. The cube’s orientation is the same as in the photo
in Fig. 3: the cube stands on an edge, the modules on the front and back face

are pointing down, and the bottom and top modules are rotated away from the
downward position.

date that can balance autonomously on a corner. Another cube, which can
balance on a fixed edge, is sold by Quanser Inc., [39]. Quanser’s cube uses a
single actuation mechanism to stabilize the cube on its edge.

This article explains the design, modeling, and control of the Balanc-
ing Cube, and demonstrates its balancing performance with experimental
data. For the purpose of this article, all sensor data is exchanged between
the agents. This way, the design of the control system can be posed as a
centralized problem, which is addressed by separately designing a state esti-
mator and a state-feedback controller. The resulting control and estimation
algorithms are implemented in a distributed fashion; that is, they are run-
ning on all six agents in parallel with no hierarchical distinction among the
agents. The full communication case presented herein serves as the baseline
for studies with constrained or reduced communication. In [40, 41], two ap-
proaches are presented for the problem of state estimation and stabilization
of the cube with reduced communication.

Whereas the state-feedback controller is designed using standard linear-
quadratic regulator (LQR) design techniques, the state estimator is tailored
to the specific problem. It exploits the facts that the cube has only rotational
DOFs, and that measurements from multiple inertial sensors are available,
to generate an estimate of the cube’s tilt that is independent of the rigid
body dynamics. In particular, the estimator provides a tilt estimate for

158

2. Design

whatever motion of the cube (slow or fast), and no assumption on near
equilibrium configuration is made. The estimation algorithm only requires
geometric system knowledge, namely the sensor locations on the cube. Since
the algorithm does not rely on a dynamic system model, it is inherently
robust to modeling errors or changes in the system (for example, in the
mass or module configuration). The developed tilt estimation algorithm is
applicable to any rigid body with only rotational degrees of freedom that is
equipped with multiple inertial sensors.

This article focuses on the concepts and tools that were used to build
and control the cube. The models that are presented herein include sensor
models capturing the nonlinear dependency of the measurements on the
system states (used for the state estimator design) and a linear model of the
system dynamics (used for the design of the linear state-feedback controller).
Nonlinear dynamic models and nonlinear controllers for similar 3D pendulum
systems (but with different actuation mechanisms) can be found in [21]–[24],
for example.

2. Design

In this section, the hardware design of the Balancing Cube’s two key com-
ponents is discussed: the cube body and the modules.

2.1 Cube body

The cube body is formed by six sheet metal constructions (one for each
face), and eight corner parts (to connect the faces), see Fig. 5. Each of
the cube’s faces is an X-shaped welded construction fabricated from 1.5mm
sheet metal. The particular shape provides support for the modules, which
are mounted in a square slot in the center of each face. The cube’s corners
are CNC-machined aluminum parts. On each corner part, the three adjacent
faces are attached at right angles. The result is a single rigid body in the
shape of a cube with an edge length of 1.2m. The modular construction of
the cube body allows for easy disassembly and transportation.

The total mass of the cube body (without the modules) is 14 kg, and
represents a trade-off between weight and structural integrity. On the one
hand, the structure must be light enough for the modules to manipulate the
cube’s overall center of gravity (CG). On the other hand, the structure must
be strong enough to support the modules and to withstand repeated falls.
The three principal moments of inertia of the cube body are roughly 5 kgm2

(each of the principal axes goes through the center of two opposing cube
faces).

159

Paper IV. The Balancing Cube

Figure 5. Detailed views of the cube’s rigid body. The cube body has six
faces and eight corners. The faces are formed by an X-shaped welded aluminum
construction (top image). Three adjacent faces join at right angles at one of the
eight identical corner parts (bottom).

2.2 Modules

The six modules carry the system’s mechanical and electrical system com-
ponents. At the same time, they constitute the actuation mechanisms that
allow the cube body to balance. One of the cube’s modules is shown in Fig. 6.
Each module is composed of two parts: 1) a square-shaped component that
is fixed to the cube’s rigid body and, 2) a pie-shaped, eccentrically mounted
“arm” that rotates relative to the cube body. Because of its motion relative
to the rigid body, the former is called the nonmoving part and the latter the
moving part of the module.

The cube is actuated by the rotating arms through: 1) gravitational mo-
ments caused by their displacement; and 2) reaction moments caused by their

160

2. Design

Figure 6. A module. Each module consists of a nonmoving part, which is
rigidly mounted to the cube body, and a moving part (the pie-shaped arm), which

rotates relative to the nonmoving part.

acceleration or deceleration. Other actuation mechanisms are conceivable:
in [2, 21] for example, reaction wheels, proof masses, and fans are discussed
as actuators to control a 3D pendulum. Rotating arms were chosen for the
Balancing Cube mostly for aesthetic reasons.

Nonmoving part The nonmoving part connects the module’s moving
part to the cube body. It also houses inertial sensors and a user interface,
see Fig. 7. The nonmoving part is rigidly mounted to the center of the
cube’s face so that the user interface faces outward. The nonmoving part
has a mass of about 1.2 kg. The six nonmoving parts, together with the cube
body, constitute one rigid body that must be balanced through the action
of the moving parts.

The nonmoving part houses an inertial measurement unit (IMU) (Analog
Devices, ADIS16350) with tri-axis accelerometer and tri-axis rate gyroscope.
A lowpass filter onboard the IMU results in accelerometer and gyro noise
standard deviations of σacc = 0.04m/s2 and σgyro = 0.0042 rad/s, respec-
tively. From the IMU measurements, the tilt of the rigid body and its rate
of change are estimated as described in the section “State Estimation.”

The user interface consists of two LEDs and two push-buttons. Located
on each face of the cube, the user interfaces are used to set the state of the
system (for example, calibration mode or balance mode), and to turn the
system on and off.

Connectors on two sides of the nonmoving part (see Fig. 7) connect all

161

Paper IV. The Balancing Cube

Figure 7. The module’s nonmoving part. The user interface has two buttons

and two LEDs indicating the status of the system. Cables running along the cube
structure (not shown) connect the nonmoving parts and allow both the exchange
of data and the synchronization of the power circuits. The inertial measurement
unit (IMU) observing the cube motion sits inside the nonmoving part (not shown).

modules through wires running along the cube structure. One set of wires
connects the modules’ power circuits so that they can all be turned on/off
at once by pressing a button on any module. A second set of wires forms
the data network, allowing communication between the modules.

Moving part The motion of the cube body is influenced by actuating
the moving part of the modules. In addition to the actuation mechanism,
the moving part carries an absolute encoder, a computer, and a battery.
All components are shown in Fig. 8. The moving part has a total mass
of roughly 3.7 kg, however additional weights of up to 1.9 kg can be added
to increase control authority. For the results presented in this article, the
moving parts of the bottom modules (see Fig. 2) are equipped with an extra
mass of 1.9 kg each.

The frame of the moving part is made of sheet metal. A removable
cover of semi-transparent plastic protects the system components from dirt.

162

2. Design

Figure 8. System components on the moving part of a module. The torque
produced by the DC motor of the drive unit is applied between moving part and
nonmoving part through the bevel gear. The clutch in the drive train protects
the motor from mechanical damage. The absolute encoder measures the angle of
the moving part relative to its mounting. All sensors are read by the single-board
computer, which issues commands to the drive unit. The electronic connection to

the components on the nonmoving part is through a slip ring (not shown). The
module is powered by the lithium polymer battery.

Machined aluminum parts attach to the sheet metal frame and hold the
actuation mechanism, which consists of a 60W brushless DC motor with a
planetary gear head (reduction 1:103) to drive the pinion of a bevel gear
(reduction 1:3). The bevel gear is connected to the nonmoving part of the
module and hence the cube body. The motor therefore rotates the moving
part relative to the cube. A clutch is used in the drive train to protect the
motor from mechanical damage (such as when the cube falls) and to protect

163

Paper IV. The Balancing Cube

users if they are unintentionally hit by a rotating module.
The DC motor and the gear head are part of a compact drive unit

(Maxon, MCD EPOS 60W) that also includes a motor shaft encoder and a
digital position and velocity control unit. In normal operation, the control
unit is used in velocity mode to control the motor shaft velocity and, hence
the angular velocity of the module.

The motor receives commands from a single-board computer (SBC) over
a dedicated controller area network (CAN). Through the same interface,
the SBC can also read out motor data, such as the shaft velocity or the
motor current. The SBC (embeddedARM, TS-7260) has a 200MHz ARM9
processor and consumes less than 1W of power. In addition to the motor, it
interfaces with all local sensors, the local user interface, and all other SBCs.

An absolute encoder (Hengstler, AC 36) with 12 bit resolution is attached
to the module’s axis of rotation and hence allows for absolute positioning of
the module’s moving part relative to its nonmoving part. It is connected to
the SBC’s serial peripheral interface (SPI).

The wires connecting the components on the nonmoving part to the SBC
are routed through a slip ring (Moog, AC6846). The IMU is connected to
the SBC over SPI. The SBCs are connected with each other over a CAN
separate from the CAN connecting the motor. The CAN used for the inter-
module communication (IMC) is a broadcast network operating at a data
rate of 500 kBit/s. The network allows the reliable exchange of all absolute
encoder and IMU measurements between all modules every 10ms.

The SBC handles the IMC and runs the estimation and control algo-
rithms that enable the cube to balance. For programming and monitoring
purposes, each SBC also has a wireless local area network (WLAN) module
that allows for a connection to an external computer. A Linux operating
system on the SBC allows easy handling of data and external access.

All components on the module are powered by a 6 cell lithium polymer
battery (FlightPower, EVO 20 3700 mAh 22.2 V). Customized electronics
manage each module’s power locally, including safety shut-off. Each mod-
ule’s battery voltage is additionally monitored by the SBC through its analog
input. When fully charged, the cube can balance on one of its corners for
more than four hours. The batteries can be charged through a connector on
one side of the moving part.

3. Operation

The usual operation of the system is illustrated in Fig. 9. First, a human
operator lifts the cube and brings it near the desired equilibrium. The cube

164

4. Modeling

recognizes its balancing mode, that is, which edge or corner it is standing
on, and rotates its modules to the appropriate starting configuration. After
a short calibration phase, the cube starts to balance autonomously. If the
cube falls, for example, after it was pushed too hard, the operation cycle –
lifting the cube, holding near equilibrium, balancing until disturbed – may
be repeated.

The Balancing Cube is a standalone device (without external systems)
that can operate anywhere there is solid ground. In order to lower the impact
on the structure when the cube falls (such as when the batteries run low or
a viewer pushes the structure too hard) the cube is usually balanced inside
a foam ring. The complete setup is shown in Fig. 9.

In normal operation mode, the operator controls the cube through the
dedicated user interfaces on the cube’s faces, or by guiding or pushing the
cube body (such as during the setup phase). The system uses its inertial
sensors to respond. An external computer can be used for monitoring real-
time data sent over WLAN.

4. Modeling

This section presents the models that are used in later sections for the design
of the state estimation and control algorithms.

Linear dynamic models have proven sufficient for designing controllers
that can stabilize the cube about an equilibrium. The system’s nonlinear
equations of motion are therefore omitted. Nonlinear dynamic models for
similar 3D pendulum systems (with more straightforward actuation mech-
anisms than the rotating arms on the cube) are discussed in [2, 21]–[24].
The multi-body system of the cube is complicated enough so that it is ar-
guable how to best represent it in terms of being comprehensible, manage-
able, and not error-prone – as a system of nonlinear differential equations or
as a computer-based symbolic model, for example. Herein, a 3D multi-body
model in Matlab/Simulink is presented, which is used for nonlinear simu-
lations and to extract linearized dynamic models. For a one dimensional
abstraction of the cube (an inverted pendulum being balanced by a single
module; presented later in the sidebar “Why Are the Top Modules Used
Less?”), the modeling procedure was verified by comparing the computer-
based models to the analytically derived equations of motion.

The design of the global and nonlinear state estimator does not rely on the
linear dynamics model; in fact, it does not rely on any dynamics model. The
sensor models that are the basis of the state estimator design are algebraic
equations expressing the sensor measurements as a (nonlinear) function of

165

Paper IV. The Balancing Cube

Figure 9. Operation of the Balancing Cube. This photo sequence, read from
top to bottom, illustrates a typical operation sequence: lifting the cube, holding
near equilibrium, and finally, balancing autonomously.

the system states. To state these sensor models, only geometric information
about the system (namely the sensor locations on the cube body) is required.

166

4. Modeling

4.1 Multi-body system

The Balancing Cube is a multi-body system, with the cube body and the
modules as rigid bodies. The cube body and the nonmoving parts of the
modules are treated as a single rigid body, which stands with either one or
two of its tips in contact with the ground. The modules’ moving parts are
connected to the cube body through revolute joints. Because of its large
mass, it can be assumed that the supporting points of the cube body do
not slip, and that the cube, therefore, does not experience any translational
motion. The support of the rigid body is hence modeled as a ball joint
with three rotational DOFs for the case of corner balancing. When the cube
balances on its edge, the second ground contact constrains two rotational
DOFs. Hence the cube support is modeled as a revolute joint with one
rotational DOF.

The cube’s body is subject to gravity and moments generated by the
actuation mechanisms (the rotating arms). The latter include gravitational
moments due to displacement of the eccentric moving parts and reaction
moments from accelerating or decelerating the arms. Centripetal forces from
the rotation of the arms are negligible because of low angular rates in typical
operation.

The coordinate frames shown in Fig. 10 are used to describe the orien-
tation of the cube: Ô denotes the inertial frame of reference, and B̂ denotes
the cube body-fixed coordinate frame. The origin of B̂ lies on the cube’s bal-
ancing corner and its axes are along the cube’s edges as depicted in Fig. 10.
The origins of frames Ô and B̂ coincide.

The rotation between the inertial frame Ô and the cube frame B̂ is
expressed by the rotation matrix O

BS. For all rotation matrices, the notation

from [42] is adopted, where the matrix O
BS describes the rotation of B̂ relative

to Ô, and a vector quantity v given in frame B̂, Bv ∈ R
3, is expressed in

frame Ô by Ov = O
BS

Bv.
In this article, the attitude of the rigid body is represented by Z-Y-X-

Euler angles (yaw, pitch, roll) such that (see [42])

O
BS = SZ(α)SY(β)SX(γ), (1)

with

SZ(α) :=

cosα − sinα 0

sinα cosα 0

0 0 1

, SY(β) :=

cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

,

167

Paper IV. The Balancing Cube

ϕ1
ϕ3

ϕ2

ϕ4
ϕ5

ϕ6

ZO

XO

ZB

YB

XB

Figure 10. Coordinate frame definitions and zero module angles. Frame Ô (in
blue with axes XO–YO–ZO, YO axis not shown and pointing inside the drawing
plane) is the inertial frame of reference, and B̂ (green, XB–YB–ZB) is the body-

fixed frame. The cube is shown standing on its corner, where the corner coincides
with the inertial frame origin. For edge balancing, the body frame Y-axis YB is
the balancing axis. The zero directions of the module angles ϕ1, ϕ2, . . . , ϕ6 are
indicated as the dashed black lines (pointing downward, toward the balancing

corner), and the direction of positive rotation is such that the rotation vector
points to the cube’s center.

SX(γ) :=

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

,

where α, β, and γ are the yaw, pitch, and roll Euler angles, respectively.
Notice that the yaw angle α (capturing rotations about the gravity axis)
is irrelevant for balancing since gravity does not excite any yaw motion.
Therefore, the yaw angle is not part of the system state that is considered
later for the controller and estimator design. Because yaw represents a DOF
of the rigid body, it is introduced here nonetheless. The particular choice of
the Euler angle order (Z-Y-X) will result in the yaw angle naturally dropping
out in the derivation of the state estimator later. The pair of pitch and roll
angle (β, γ) is denoted the tilt of the rigid body. When the cube balances on

168

4. Modeling

its edge, the body Y-axis is the axis of rotation; that is, the rotation angle
is β, and γ = 0.

The modules’ rotation vectors are orthogonal to the corresponding cube
face and point to the cube’s center. The angle ϕi is used to denote the
rotation angle of module i relative to the cube body. The zero angles of
ϕi are shown in Fig. 10. The full configuration of the multi-body system is
described by the generalized coordinates

q = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, α, β, γ). (2)

The acceleration that is sensed by an IMU depends on the IMU mounting
position and orientation on the rigid body. Because the IMU is a compo-
nent of the nonmoving part of the module, its position and orientation are
constant in the body frame B̂. The positions of the six IMUs on the cube
body are denoted by Bpi. Each sensor measures accelerations and rotations
in its local sensor frame Âi. The IMU orientation is captured by the rota-
tion matrix Ai

B S. Since the mounting of the IMUs is known, Bpi and
Ai

B S are
known for all sensors.

4.2 3D simulation model

A multi-body model capturing the nonlinear system dynamics in 3D was
built in SimMechanics, which is an extension of Matlab/Simulink for physics-
oriented symbolic modeling of mechanical systems, [43]. A library was cre-
ated that includes models of all system components, in particular, the cube
body and the modules with their actuation mechanism and sensors. The
library facilitates the assembly of models for different simulation scenarios
(for example, corner or edge balancing) and allows for easy modification of
the complete system or its subcomponents. A screenshot of a part of the
model is shown in Fig. 11.

The SimMechanics model provides a convenient simulation platform for
design and verification of the control and estimation algorithms. Further-
more, it is used to automatically generate linearized models about different
equilibrium configurations, as described below. An earlier version of this
model was used for feasibility studies and to support design decisions early
in the project’s development.

4.3 Linear dynamics model

Different static equilibrium configurations can be obtained for both edge and
corner balancing by varying the nominal angles of the modules. Herein, the
two basic configurations in Fig. 1 and 2 (for corner balancing), and in Fig. 3
and 4 (for edge balancing) are considered. The modeling procedure does not,

169

Paper IV. The Balancing Cube

Figure 11. SimMechanics model. Shown is a screenshot of the highest model
level with the cube body block (orange) and the six modules (yellow). Inputs to
the modules are the motor torques, and the outputs are the sensor measurements.
The cube’s ground connection is either to a ball joint (for corner balancing) or a

revolute joint (for edge balancing).

however, depend on the specific equilibrium, and can readily be applied in
the same way for other equilibria. Due to the particular mass configuration
of the cube body and the modules, the range of equilibria is limited. The
maximum that the cube can tilt and still remain in equilibrium is discussed
in the sidebar “What Is the Cube’s Maximal Balancing Range?”

Expressed in generalized coordinates (2), the considered equilibrium for
corner balancing is

qc0 =
(

0, 0, 0, 0, 0, 0, α,−atan(1/
√
2),

π

4

)

. (3)

It corresponds to the cube standing upright (its body diagonal being parallel
to the gravity axis) and all modules pointing downward as shown in Fig. 1
and 2. The yaw angle α is left unspecified and can be arbitrary. The edge

170

4. Modeling

balancing equilibrium configuration shown in Fig. 3 and 4 is given by

qe0 =
(

0, 0,
π

2
,−π

4
, 0,−3π

4
, α,−π

4
, 0
)

. (4)

The dynamics of the multi-body system about an equilibrium configura-
tion (3) or (4) are described by the state-space model

ẋ(t) = Ax(t) +B u(t) (5)

with the system inputs u(t) ∈ R
6 being torques applied to the modules,

and x(t) ∈ R
n the state vector. The system states are the generalized

coordinates of the multi-body system and their time derivatives; that is,
the angles and angular velocities of the modules and the cube body. When
the cube stands on an edge, it has one rotational DOF (the pitch angle β);
when it is balancing on a corner, it has three rotational DOFs. The rotation
about the gravitational axis can, however, be neglected for balancing and
is removed from the state-space equations. The relevant state of the cube
body is therefore fully characterized by the pitch and roll angle, β and γ,
and their derivatives. Hence, n = 14 for edge balancing, and n = 16 for
corner balancing. The physical meaning of states and inputs is summarized
in tables 2 and 3.

Built-in functions in Matlab/Simulink are used to compute numerical
values for the state space model (A,B) from the SimMechanics model. Since
for the controller design procedure it makes no difference whether edge or
corner balancing is considered, the general state space description (A,B) is
used throughout this article. The open-loop poles of the system are listed
in Table 4. The numerical values for the state space matrices (A,B) can be
found in [44].

4.4 Nonlinear sensor model

Functional relations between measurements y and the system states x, which
form the basis for developing the state estimation algorithms, are sought in
this section. The obtained sensor model is linear for the absolute encoder
and nonlinear for the accelerometer and rate gyroscope.

Accelerometer model The previous definitions of the inertial frame Ô,
the body frame B̂, and the IMU frame Âi are used to express the acceleration
Aiyacci measured by the tri-axis accelerometer on module i. The accelerom-
eter located at the position Opi measures the acceleration Op̈i of the cube

171

Paper IV. The Balancing Cube

Table 2. The states of the cube model (5). Roll angle and roll rate, x15 and
x16, are relevant only for corner balancing.

State variable Physical meaning

x1 ϕ1, angle module 1

x2 ϕ2, angle module 2
...

...

x6 ϕ6, angle module 6

x7 ϕ̇1, angular velocity module 1

x8 ϕ̇2, angular velocity module 2
...

...

x12 ϕ̇6, angular velocity module 6

x13 β, cube pitch angle

x14 β̇, cube pitch rate

x15 γ, cube roll angle (corner balancing only)

x16 γ̇, cube roll rate (corner balancing only)

Table 3. The inputs of the cube model (5).

Input variable Physical meaning

u1 torque at module 1

u2 torque at module 2
...

...

u6 torque at module 6

body at this position plus the gravity vector Og plus sensor noise – all in its
local frame Âi. That is,

Aiyacci = Ai

B S B
OS
(
Op̈i +

Og
)
+ Aiwacc

i , (6)

where Aiyacci is module i’s accelerometer measurement (in m/s2), and Aiwacc
i

is measurement noise. The noise is assumed to be zero-mean, band-limited
white noise with standard deviation σacc; that is, E [Aiwacc

i] = 0, E [Aiwacc
i

(Aiwacc
i)T] = σ2

accI, where E [·] denotes the expected value and I denotes the
identity matrix of appropriate dimensions. This noise model is reasonable for

172

4. Modeling

Table 4. Open-loop poles. The linear cube model (5) has 16 poles for corner
balancing and 14 poles for edge balancing. The poles were computed numerically

from the SimMechanics models. The two unstable poles for corner balancing
correspond to the two dimensions of the cube that need to be stabilized. The
pole roughly at 0 for edge balancing is due to the fact that two modules are

horizontal (the top modules in Fig. 4). It corresponds to an eigenmode with
equally directed displacement of these two modules.

Corner balancing Edge balancing

2.92 3.09

2.92 0.0

−2.92 −3.11

−2.92 −1.04

−0.505± 3.8i −0.294± 3.09i

−0.505± 3.8i −0.294± 3.14i

−0.54± 3.97i −0.516± 4.15i

−0.362± 4i −0.315± 4.53i

−0.341± 4.14i −0.559± 0.207i

−0.341± 4.14i –

many MEMS accelerometers once the bias has been removed, and if scaling
and axes cross coupling errors are neglected, [45]. Biases in the state esti-
mates resulting from sensor biases are compensated by using integral action
in the control algorithm. This is explained later in the section “Control.”

From the identity Opi = O
BS

Bpi and the fact that Bpi is constant with
time, it follows that

Op̈i =
O
BS̈

Bpi, (7)

where O
BS̈ denotes the second derivative of the rotation matrix O

BS with re-
spect to time. The matrix O

BS̈ captures the rotational and centripetal accel-
eration terms of the cube rigid body motion. Using (7) and multiplying (6)
with B

Ai
S from the left yields

Byacci = S̃ Bpi +
Bg + Bwacc

i , (8)

where
S̃ := B

OS
O
BS̈ (9)

combines the rotation and acceleration of the rigid body,

Bg = B
OS

Og (10)

173

Paper IV. The Balancing Cube

is the gravity vector in body coordinates, and

Bwacc
i = B

Ai
S Aiwacc

i (11)

is the noise vector rotated to the body frame. The mean and variance of the
noise still satisfy E [Bwacc

i] = 0 and E [Bwacc
i (Bwacc

i)T] = σ2
accI.

Equation (8) expresses an accelerometer measurement as a function of the
rigid body dynamics (captured in S̃), the gravity vector in the body frame
Bg, and sensor noise. This relation is used in the section “State Estimation”
to obtain an estimate of Bg from multiple accelerometer measurements. By
means of (10) and the representation (1) of B

OS, an estimate of the cube tilt
is then obtained.

Rate gyroscope model The six rate gyros measure the angular rate vec-
tor of the cube body: expressed in the body frame of reference B̂,

Bygyroi = Bω + Bwgyro
i , (12)

where Bygyroi is the i-th rate gyro measurement (in rad/s) rotated to the
body frame, Bω is the angular rate vector in the body frame, and Bwgyro

i is
sensor noise with zero mean and variance E [Bwgyro

i (Bwgyro
i)T] = σ2

gyroI.

The body rotation vector relates to the Euler angle rates α̇, β̇, γ̇ by
(see [46], for example)

α̇

β̇

γ̇

 = T (β, γ)Bω, (13)

with the nonlinear transformation

T (β, γ) :=

0 sin(γ)/ cos(β) cos(γ)/ cos(β)

0 cos(γ) − sin(γ)

1 sin(γ) tan(β) cos(γ) tan(β)

 . (14)

The transformation matrix (14) is nonsingular for the considered equilibria
(3) and (4). The equations (12) and (13) are used later to obtain estimates
of the pitch rate β̇ and the roll rate γ̇.

Absolute encoder model The sensor model of the absolute encoder is
straightforward: each absolute encoder measures the corresponding module
angle. Hence, the measurement yenci (in rad) of module i’s absolute encoder
is given by

yenci = ϕi + wenc
i , (15)

where wenc
i is a random variable modeling the quantization error due to finite

encoder resolution.

174

5. Control System Architecture

Plant

S A

SBC

CAN bus

S A

SBC

S A

SBC

Figure 12. Abstraction of the networked control system. The blocks A and S
denote actuator and sensor units. The single-board computer (SBC) runs esti-
mation and control algorithms, and manages the communication with the other
modules over the controller area network (CAN) bus.

5. Control System Architecture

The SBCs on the modules run the estimation and control algorithms, which
enable the cube to balance. Based on its local sensor data and data com-
municated from the other modules over CAN, each module’s SBC computes
commands for its local actuator. The components of the networked control
system are depicted in Fig. 12.

The algorithms implemented on each module comprise a state estimator
and a state-feedback controller. Each module maintains an estimate x̂ of the
full system state x, which it computes from all available sensor data (local
and IMC data). The controller uses this estimate to compute the actuator
command. The block diagram in Fig. 13 represents the implementation of
the feedback-control system.

A crucial question for the design of the estimation and control algorithms
is what data is shared between the modules over CAN. Since CAN is a
broadcast network, if one module sends data, the data can be received by all
the others. For the results presented in this article, all modules share all their
local sensor data (IMU and absolute encoder) over CAN. The capacity of the
network is such that all modules can broadcast their sensor measurements
every 10ms, which is the time step of the feedback controllers Ki. Delays
and losses in the transmission of sensor data are not taken into account in
the design of the algorithms in this article.

With this communication scheme, the available sensor information on
each module is identical. Therefore, the modules can run a copy of the same
state estimator (see Fig. 13). Consequently, the inputs to the controllers Ki

are also identical. Hence, state estimation and control design are treated

175

Paper IV. The Balancing Cube

Plant

K1Estimator

IMC

K2Estimator

K6Estimator

u1

u2

u6

y1

y2

y6

x̂

x̂

x̂

Figure 13. Distributed implementation of the control system. Each module i
runs a state estimator and a controller Ki. The signal yi combines all of module i’s
sensor measurements, and ui denotes its control input. Different communication

protocols can be implemented for the intermodule communication (IMC): for the
design and results presented in this article, each module broadcasts its sensor
measurements to all other modules.

PlantKEstimator
x̂ u y

Figure 14. Centralized design problems. Since each module shares its sen-

sor data with all other modules at every time step, the designs of the state
estimator and the state-feedback controller K can be addressed as centralized
problems. Therein, the state estimator has access to all sensor measurements

y = (y1, . . . , y6), and the state-feedback controller K computes all system inputs
u = (u1, . . . , u6).

as the centralized problem given in Fig. 14: the state estimator has ac-
cess to all measurements and the controller K computes all system inputs.
The distributed implementation of the feedback system in Fig. 13 is then
straightforward: a copy of the estimator runs on each module, and the local
controllers Ki are obtained from K by selecting the output corresponding
to the local actuator.

The communication protocol considered herein represents the case of
maximal information in terms of sensor data and serves as a baseline for

176

6. State Estimation

distributed or event-based algorithms that cope with a reduced set of sensor
data. Depending on what aspect of a distributed and networked control sys-
tem is to be studied, different protocols and topologies can be implemented
on the Balancing Cube by constraining the IMC (for example, reducing the
average communication rate such as in [40,41]).

6. State Estimation

This section addresses the design of the centralized state estimator shown in
Fig. 14. Since the estimator is ultimately implemented on a digital computer,
the estimator equations are expressed in discrete time. For this purpose, the
discrete-time index k ∈ N is used: for a continuous-time signal s(t), s[k]
denotes its value at time t = kTs, where Ts is the sampling time; thus,
s[k] = s(kTs). Measurements are assumed to be acquired at the discrete-
time instants k. The objective of this section is to develop an algorithm
that computes an estimate x̂[k] of the system state x[k] based on all sensor
measurements at time k.

In contrast to many standard methods for state estimation, such as the
Luenberger observer [47] or the Kalman filter [48], the approach to state esti-
mation presented herein requires neither the knowledge of a dynamic system
model (for instance, in the form of (5)) nor knowledge of the system inputs
u[k]. Instead, estimates of all states are computed from the sensor mea-
surements only. In addition to reducing the modeling effort, an immediate
favorable consequence of this approach is that the state estimator is robust
to modeling errors in the system dynamics or their intentional modification
(for example, when weights are added to the modules). Furthermore, the
estimator works both for slow and fast motion, and irrespective of the op-
eration mode (such as corner balancing, edge balancing, or the cube being
moved into starting position by an operator).

The design of the state estimator is addressed below separately for the
module and the cube states.

6.1 Module states

The module angle ϕi is measured by the absolute encoder on module i ac-
cording to the sensor model (15). Since the quantization error is negligible
for the balancing application presented herein, filtering of the encoder mea-
surement is not necessary. The encoder measurement yenci is hence directly
used as the module angle estimate; that is,

x̂i[k] = yenci [k], i = 1, . . . , 6. (16)

177

Paper IV. The Balancing Cube

An estimate of the module angular velocities ϕ̇i may be readily obtained
from the encoder measurements (15); for example, by numerical differen-
tiation combined with appropriate lowpass filtering. Since the motors are
operated with local velocity feedback ensuring fast tracking of velocity com-
mands, actual estimates of the module velocities are not required for the
state-feedback controller. This aspect is discussed in detail in the sec-
tion “Control.”

6.2 Cube states

Estimates of the cube’s tilt (β, γ) and the tilt rates (β̇, γ̇) are obtained from
the measurements of the six IMUs on the cube body, each of which includes
a tri-axis accelerometer and rate gyro. In a first step, the accelerometer
measurements are used to generate an estimate of the tilt angles that is
independent of the rigid body motion. This estimate is fused in a second
step with an estimate of the tilt rates, which itself is obtained from the rate
gyro measurements.

Tilt estimate from accelerometers An estimate of the cube’s tilt is
obtained by the following approach: first, an unbiased estimate Bĝ of the
gravity vector Bg in the body frame is derived as a linear combination
of all accelerometer measurements based on the model (8). Second, the

accelerometer-based tilt estimate (β̂acc[k], γ̂acc[k]) is constructed from the
gravity vector estimate using (10) and the representation (1) for the rotation
matrix B

OS.
In static conditions, a single tri-axis accelerometer mounted on a rigid

body is enough to measure the gravity vector Bg in body frame. In fact, from
(8) it can be seen that, for static conditions where O

BS̈ = 0 and hence S̃ = 0,
each individual accelerometer measurement Byacci is an unbiased estimate
of the gravity vector Bg. The difficulty in the context of the Balancing
Cube arises from the fact that the rigid body moves during balancing, and
therefore S̃ 6= 0 in general.

The tilt estimation method presented herein makes use of multiple ac-
celerometers mounted on the same rigid body. Exploiting the kinematics of
the rigid body with only rotational DOFs and the knowledge of the differ-
ent sensor locations allows one to compensate for the dynamic terms of the
rigid body motion in the accelerometer measurements. The algorithm works
for any rigid body that has only rotational DOFs and measurements from
multiple tri-axis accelerometers. To state the method for the general case,
the constant N is used below to denote the number of sensors (for the cube,
N = 6). The algorithm was first presented in [49].

178

6. State Estimation

Gravity vector estimate. The first objective is to obtain an estimate Bĝ of
the gravity vector from all accelerometer measurements Byacci , i = 1, . . . , N
that is optimal in a least-squares sense. For notational convenience, all N
measurements (8) are combined into one matrix equation,

Y = XP +W, (17)

Y := [Byacc1
Byacc2 . . . ByaccN] ∈ R

3×N , (18)

X := [Bg S̃] ∈ R
3×4, (19)

P :=

[
1 1 . . . 1

Bp1
Bp2 . . . BpN

]

∈ R
4×N , (20)

W := [Bwacc
1

Bwacc
2 . . . Bwacc

N] ∈ R
3×N , (21)

where Y combines all accelerometer measurements, X is the matrix of un-
known parameters, P is the matrix of known parameters (the sensor loca-
tions), and W combines all accelerometer noise vectors, with E [W] = 0 and
E [WTW] = 3σ2

accI. Notice that Y , X, and W in (17) are time varying,
whereas P is constant. The time index k is omitted for ease of notation.

In addition to the sought gravity vector Bg, the unknown matrix X also
contains the matrix S̃, which captures the second derivatives of the rigid
body motion according to (9). In [49], a method is presented for optimally
estimating the entire matrix X. To shorten the exposition, only the results
for optimally estimating the gravity vector Bg are presented here.

An unbiased estimate Bĝ of the gravity vector Bg is sought such that the
2-norm of the estimation error is minimized; that is,

Bĝ = argmin
Bĝ

E
[
‖Bĝ − Bg‖22

]
subject to E

[
Bĝ
]
= Bg, (22)

where ‖·‖2 denotes the vector 2-norm. The estimate Bĝ is restricted to
linear combinations of the measurements Y ; that is, a vector λ ∈ R

N is
sought for Bĝ = Y λ. This approach yields a straightforward implementation:
at each time step, the estimate Bĝ is obtained by a single matrix-vector
multiplication. The following proposition, the proof for which can be found
in [49, Lemma 2.2], states the optimal unbiased linear estimate of the gravity
vector.

Proposition 1 Let the matrices P ∈ R
4×N and Y ∈ R

3×N be given and
satisfy Y = XP + W with unknown matrix X = [Bg S̃] ∈ R

3×4 and the
matrix random variable W ∈ R

3×N with E [W] = 0, E [WTW] = σ2
W I.

179

Paper IV. The Balancing Cube

Assuming P has full row rank, the (unique) minimizer λ∗ ∈ R
N×1 of

min
λ

E
[
‖Y λ− Bg‖22

]
subject to E [Y λ] = Bg (23)

is given by Λ∗ = [λ∗ Λ∗
2] = PT (PPT)−1.

Applying Proposition 1 and reintroducing time index k for all time-variant
quantities yields the gravity vector estimate Bĝ[k],

Bĝ[k] = Y [k]λ∗. (24)

The optimal fusion vector λ∗ is constant and entirely defined by the geometry
of the problem (through P).

In Proposition 1 it is assumed that P has full row rank. In order to obtain
a physical interpretation of this assumption, consider the case where P does
not have full row rank. Then, there exists a nontrivial linear combination of
the rows of P ; that is,

there exists ξ 6= 0 ∈ R
4 such that ξ1 pX + ξ2 pY + ξ3 pZ + ξ4 1 = 0, (25)

where pTX, p
T
Y, p

T
Z ∈ R

1×N are the last three rows of P (the vectors of X, Y,
and Z-coordinates of all sensor locations) and 1T ∈ R

1×N is the vector of all
ones. Expression (25) is equivalent to the statement

there exists ξ 6= 0 ∈ R
4

such that ξ1
BpX,i + ξ2

BpY,i + ξ3
BpZ,i = −ξ4 for all i = 1, . . . , N (26)

where BpX,i,
BpY,i,

BpZ,i denote the X, Y, and Z-coordinate of the i-th sensor
location in the body frame. Since the equation ξ1x+ξ2y+ξ3z = −ξ4 defines
a plane in (x, y, z)-space, condition (26) is equivalent to all N sensors lying
on the same plane. Therefore, the full row rank condition on P is satisfied
if and only if not all sensors lie on the same plane. Moreover, since three
points always lie on a plane, this result implies that at least four tri-axis
accelerometers are required for the method presented herein. For the cube,
the full row rank assumption of P is satisfied.

The gravity vector estimate (24) can be shown to be independent of the
rigid body dynamics (captured in S̃) as follows: from the singular value
decomposition of the parameter matrix P ,

P = U [Σ 0]

[
V T
1

V T
2

]

= UΣV T
1 , (27)

180

6. State Estimation

with U ∈ R
4×4 unitary, Σ ∈ R

4×4 diagonal, V1 ∈ R
N×4, V2 ∈ R

N×(N−4),
and V = [V1 V2] unitary, it can be verified that Λ∗ = V1Σ

−1UT . With this
result and using the partition UT = [UT

1 UT
2], UT

1 ∈ R
4×1, UT

2 ∈ R
4×3, the

gravity vector estimate can be written as

Bĝ = Y λ∗ = XPλ∗ +Wλ∗

= [Bg S̃] UΣV T
1

︸ ︷︷ ︸

P

V1Σ
−1UT

1
︸ ︷︷ ︸

λ∗

+Wλ∗

= [Bg S̃]

[
U1

U2

]

UT
1 +Wλ∗

= [Bg S̃]

[
1

0

]

+Wλ∗ = Bg +Wλ∗. (28)

Obviously, the matrix S̃ does not appear in the estimate; that is, the grav-
ity vector observation is not affected by any motion of the rigid body. As
expected, the sensor noise W does enter the estimation equation.

Tilt (pitch and roll) estimate. With the estimate Bĝ of the gravity vector
in the body frame, (10) can be used to compute an estimate of the rigid
body tilt (β, γ), since the direction of the gravity vector in the inertial frame
is known. Inserting the representation (1) for O

BS, and
Og = [0 0 g0]

T , with
gravity constant g0, (10) can be rewritten as

Bg = ST
X(γ)S

T
Y(β)S

T
Z (α)

Og = g0

− sinβ

sin γ cosβ

cos γ cosβ

 . (29)

Given the estimate of the gravity vector (24), the accelerometer-based tilt
estimate at time k is

β̂acc[k] = atan2
(

−Bĝx[k],
√

Bĝ2y[k] +
Bĝ2z [k]

)

, (30)

γ̂acc[k] = atan2
(
Bĝy[k],

Bĝz[k]
)
, (31)

where atan2 is the four-quadrant inverse tangent. Note that the gravity con-
stant g0 does not need to be known and, hence, the estimator does not to be
calibrated for it. The estimator requires only knowledge of the accelerometer
locations on the cube body.

181

Paper IV. The Balancing Cube

Tilt rate estimate from rate gyros Estimates of the tilt rates are ob-
tained from the rate gyro measurements (12) and the transformation (13).
First, an estimate Bω̂[k] of the rotation vector Bω[k] at time k is computed
by averaging the available rate gyro measurements,

Bω̂[k] =
1

6

6∑

i=1

Bygyroi [k]. (32)

Given that the rate gyro sensors have identical noise variance, the average
represents the best unbiased linear estimate of Bω[k] minimizing the mean
squared error. Using the transformation (13), an estimate of yaw, pitch and
roll rates is given by

ˆ̇α[k]

x̂14[k]

x̂16[k]

 =

ˆ̇α[k]

ˆ̇
β[k]

ˆ̇γ[k]

 = T

(
β̂[k−1], γ̂[k−1]

)
Bω̂[k], (33)

where the transformation matrix T (·, ·) is evaluated at the yet undefined

estimates β̂[k−1] and γ̂[k−1] of pitch and roll angle at the previous time
step. They are made precise in the next subsection. The estimate of the
yaw rate ˆ̇α[k] is not required for the balancing application presented in this
article.

Sensor fusion In order to further reduce the noise level of the tilt es-
timate, the accelerometer-based tilt estimate (30), (31) is fused with the

integrated estimate of the tilt rates (33). The tilt estimate (β̂[k], γ̂[k]) is ob-
tained from a linear combination of accelerometer- and gyro-based estimates
according to

x̂13[k] = β̂[k] = κ1β̂
acc[k] + (1− κ1)

(
β̂[k−1] + Ts

ˆ̇
β[k]

)
, (34)

x̂15[k] = γ̂[k] = κ2γ̂
acc[k] + (1− κ2)

(
γ̂[k−1] + Ts

ˆ̇γ[k]
)
, (35)

where Ts is the sampling time and κ1 and κ2 are tuning parameters, which,
given the noise specifications of accelerometers and rate gyros, can be chosen
to minimize the estimation error variance.

Experimental validation The estimator for the cube states is validated
in [49] using a camera-based global positioning system, which tracks the
position and orientation of the cube body with sub-millimeter precision. The

182

7. Control

main experimental results from [49] are restated here. For further details,
the reader is referred to the original publication.

Figure 15 shows the accelerometer-based tilt estimate (30), (31) in com-
parison to the camera-based reference measurement. For this experiment,
the cube was moved manually about the nominal corner balancing equilib-
rium (3). Additionally, the tilt estimate is included that would result if only
a single tri-axis accelerometer was used to observe the gravity vector (instead
of (24), the accelerometer measurement (8) is used directly as an estimate
of the gravity vector). The data shows that, when the cube is relatively
static (from 45s to 50s), the single-accelerometer-based estimate is satis-
factory. However, when the cube body is moving fast, the estimate suffers
from the dynamic terms that act as disturbances to the single-accelerometer-
based estimator. The experimental data illustrates the result discussed in
(28), namely that the presented (multi) accelerometer-based tilt estimator
compensates for the rigid body dynamics.

Figure 16 shows the comparison of the improved tilt estimates (34) and
(35), which are based on accelerometer and rate gyro data, to the camera-
based reference during autonomous balancing of the cube.

6.3 Summary: The complete state estimator

The complete state estimator is given by the equations (16), (24), and (30)–
(35). It is summarized in the block diagram of Fig. 17. Memory is present
only in the sensor fusion in (34) and (35); hence, the estimator has only two
states. The estimator is nonlinear because of the nonlinear transformations
in (30), (31), and (33).

None of the estimator equations in Fig. 17 depend on the system dy-
namics. The only assumption on the rigid body is that it is pivoting (it
has only rotational DOFs). Hence, the estimator works irrespective of the
system dynamics and, in particular, for slow and fast motion, for different
mass configurations, and for both edge and corner balancing.

7. Control

The design of the centralized controller K shown in Fig. 14 is described
in this section. The controller is designed as a linear-quadratic regulator
(LQR) with additional integrator feedback on the module angles. The con-
troller design is based on the model (5). The main control objective is the
stabilization of (5); that is, to balance the cube about the corresponding
equilibrium (3) or (4).

183

Paper IV. The Balancing Cube

Pi
tc

h
an

gl
e
β

(r
ad

)

Pi
tc

h
er

ro
r

(r
ad

)

Time t (s)

R
ol

l
an

gl
e
γ

(r
ad

)

Time t (s)

R
ol

l
er

ro
r

(r
ad

)

0 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

-0.2

-0.1

0

0.1

0.2

0.5

0.6

0.7

0.8

0.9

1

-0.2

-0.1

0

0.1

0.2

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Figure 15. Verification of the accelerometer-based tilt estimator. For this ex-

periment, the cube was moved manually around the nominal equilibrium (3)
(βc

0
= −0.615 and γc

0
= 0.785). The pitch and roll estimates β̂acc and γ̂acc

are shown in the graphs on the left (in blue) with their camera-based reference

(red). For comparison, the graph in green is the tilt estimate that results if a single
tri-axis accelerometer measurement is used directly as an estimate of the gravity
vector (instead of the fusion equation (24)). The corresponding error signals are
shown on the right. Clearly, the multi-accelerometer-based estimator outperforms

the single-accelerometer one, especially when the cube is being moved fast. The
static biases visible in the estimation error signals result from biases in the ac-
celerometers and/or in the camera system. The biases are, however, irrelevant for

the balancing application, since biases in the state estimates are compensated by
integral action in the controller. This effect is analyzed in the sidebar “What Is
the Effect of Integral Action in the Controller?” (The experimental data is taken
from [49].)

The system (5) captures the linearized pitch and roll dynamics of the
cube; the controller thus locally stabilizes pitch and roll. Control of the
yaw angle is not considered herein (the yaw motion is negligible in typical
operation of the cube). The problem of simultaneously stabilizing yaw, pitch,
and roll angles of a 3D pendulum is addressed in [22]–[24].

184

7. Control

Pi
tc

h
an

gl
e
β

(r
ad

)

Pi
tc

h
er

ro
r

(r
ad

)

Time t (s)

R
ol

l
an

gl
e
γ

(r
ad

)

Time t (s)

R
ol

l
er

ro
r

(r
ad

)

0 10 20 30 400 10 20 30 40

0 10 20 30 400 10 20 30 40

-0.01

0

0.01

0.77

0.78

0.79

0.8

-0.01

0

0.01

-0.63

-0.62

-0.61

-0.6

Figure 16. Verification of the tilt estimator. The data was taken while the
cube was balancing about the nominal equilibrium (3) (βc

0
= −0.615 and γc

0
=

0.785). The pitch and roll estimates β̂ and γ̂, resulting from fusing accelerometer
and rate gyro measurements, are shown on the left (blue) with the camera-based

reference (red). The graphs on the right show the corresponding error signals.
Constant biases in the state estimates are compensated by integral action in the
control algorithm. (The experimental data is taken from [49].)

The drive units are operated in velocity mode; that is, the motor shaft
angular velocity is controlled locally on each drive unit. When neglecting
gear backlash, the shaft velocity is proportional to the module velocity by
the gear ratio; hence the feedback on the drive units is treated as feedback
on the states (x7, . . . , x12). The corresponding controllers are denoted by
Kloc. Their reference input v is computed by the controller K. This cas-
caded control architecture is shown in Fig. 18. It consists of the inner-loop
controllers Kloc and the outer-loop controller K. The inner-loop controllers
Kloc operate at an update rate of 1 kHz, whereas the outer loop runs at rate
of 100Hz. The parameters of Kloc are tuned using a software tool provided
by the manufacturer of the drive unit.

185

Paper IV. The Balancing Cube

Byacc
1 [k]

Byacc
2 [k]

Byacc
6 [k] (24)

Gravity
Vector

x̂16[k]

x̂1:6[k]yenc
1:6[k]

(30), (31)

Tilt
Angles

Sensor
Fusion

(34), (35)

Delay

(32)

Rotation
Vector

(33)

Transform
Tilt Rates

x̂15[k]
x̂13[k]

x̂14[k]

Bĝ[k]

Bygyro
1 [k]

Bygyro
2 [k]

Bygyro
6 [k]

γ̂acc[k]
β̂acc[k]

γ̂[k]
β̂[k]

γ̂[k−1]
β̂[k−1]

Bω̂[k] ˆ̇γ[k]

ˆ̇
β[k]

Figure 17. The state estimator. All encoder, accelerometer, and rate gyro
measurements are input to the estimator; its outputs are the estimates of all

states that are required for feedback control (estimates of the module velocities
x7:12[k] are not required as is discussed in the section “Control”).

In contrast to designing a controller for the system (5) directly (that is, a
controller that computes the torque inputs u), the cascaded architecture with
fast local velocity feedback reduces the complexity of the controller design
problem. In model (5), it is assumed that the torque at the module can be
controlled directly. In reality, however, only the torque at the motor can be
controlled. This is translated to the torque at the module in a nontrivial
way through a transmission system, which involves nonlinearities such as
kinetic and static friction and backlash. The application of high-gain velocity
feedback mitigates the effect of the nonidealities in the actuation mechanism
and allows one to abstract them away for the design of the controller K.

7.1 Simplified model incorporating local feedback loops fro m time
scale separation

The design of the outer-loop controllerK requires a system model that incor-
porates the effect of the inner loops (represented by the dashed block (Ã, B̃)
in Fig. 18). To avoid modeling the details of the local controllers Kloc, the
motor and its local controller are abstracted as a system that achieves a com-
manded module velocity sufficiently fast. In fact, the ideal case of infinitely
fast feedback is considered. This approximation is legitimate as long as the
inner control loop operates sufficiently faster than the outer loop (the track-
ing performance of the inner loop is discussed in the section “Experiments”).
The method described in the sidebar “Time Scale Separation Algorithm” is
used to compute a model of the system (5) that incorporates the feedback

186

7. Control

(A,B)

Kloc

Kloc
x7

x12

x13 · · ·xn

K

(Ã, B̃)

u1v1

x

v6 u6

−

−

x1 · · ·x6

Figure 18. The cascaded control architecture. The block (A,B) denotes the

cube model (5) and the blocks Kloc represent the local velocity controllers on
each drive unit. The dashed block combines the plant with the local feedback
loops. A simplified model (Ã, B̃) for this block is derived in the sidebar “Time

Scale Separation Algorithm” with the assumption of high-gain controllers Kloc.
The controller K is the centralized state-feedback controller that is also shown in
Fig. 14. When comparing Fig. 14 and 18, notice that the inner feedback loops
are not shown in Fig. 14; they can be thought of as included in the block Plant.

Furthermore, the Estimator block is omitted here, since a plant with state output
is assumed for the purpose of controller design.

on the module velocities. The obtained model is a discrete-time model with
the sampling time of the outer-loop controller, Ts = 0.01 s,

x1:6[k+1]

x7:12[k+1]

x13:n[k+1]

︸ ︷︷ ︸

x[k+1]

=

I 0 0

0 0 0

Ã31 Ã32 Ã33

︸ ︷︷ ︸

Ã

x1:6[k]

x7:12[k]

x13:n[k]

︸ ︷︷ ︸

x[k]

+

Ts I

I

B̃3

︸ ︷︷ ︸

B̃

v[k] (36)

where xi:j := (xi, . . . , xj). For easier reference below, the notation from
sidebar “Time Scale Separation Algorithm” is adopted; that is, the module
velocity states x7:12 are denoted by xf (f for “fast”) and the remaining states
by xs (s for “slow”). Notice from (36) that xf[k+1] = v[k] (the module veloc-
ities are equal to the previously commanded reference), which corresponds
to the assumption of ideal feedback loops. By using this approximation in
the controller, no measurements or estimates of the module velocities are
required. Estimates for the states xs are available from the state estimator
shown in Fig. 17.

187

Paper IV. The Balancing Cube

7.2 State-feedback controller design

The controller K is obtained from a discrete-time LQR design. In LQR
design (see [50], for example), a quadratic cost function involving weights on
system states x and system inputs v is minimized, which allows one to trade
off control performance with control effort. The resulting optimal controller
is a static feedback gain.

To ensure zero steady-state error of the module angles, the plant (36)
is first augmented with integrator states on the module angles; that is, the
system model used for the LQR design is

[
x[k+1]

xint[k+1]

]

=

[
Ã 0

[
TsI6×6 0

]
I

] [
x[k]

xint[k]

]

+

[
B̃

0

]

v[k], (37)

where xint[k] are the augmented integrator states, and I6×6 is the 6-by-6 iden-
tity matrix. The augmented integrator states are eventually implemented in
the controller. In addition to ensuring that the module angles are, on av-
erage, at their set points, any offset in the cube tilt estimates (for example,
due to sensor bias or imperfect calibration) is compensated by the integra-
tors. This property of the control system is analyzed in detail in the sidebar
“What Is the Effect of Integral Action in the Controller?”

In addition to the usual weights on states and system inputs in LQR
control, the difference in the control commands v[k]−v[k−1] is also penalized.
This is motivated by the special structure of the model (36): penalizing the
difference in velocity commands corresponds to imposing a penalty on the
applied module torque (the original system input in (5)), since change in
velocity is proportional to acceleration, which itself relates to torque at a
module. Therefore, the cost function

J =

∞∑

k=0

[xT
s [k] xT

int[k]]Q

[
xs[k]

xint[k]

]

+ vT[k]Rv[k] +
(
v[k]− v[k−1]

)T
Θ
(
v[k]− v[k−1]

)
, (38)

is used with suitable weighting matrices Q, R, and Θ (numerical values may
be found in [44]). Since v[k− 1] = xf[k], (38) can be reformulated as a
standard LQR cost with nonzero weights on state and input cross terms,

J =

∞∑

k=0

x̃T [k]

[
Θ 0

0 Q

]

x̃[k] + vT [k] (R+Θ) v[k] + 2x̃T [k]

[−Θ

0

]

v[k], (39)

where x̃[k] := (xf[k], xs[k], xint[k]). The discrete-time LQR design problem
can be solved using standard tools, [50] (such as the Matlab implementation

188

8. Experiments

dlqr). Let F = [F1 F2] be the resulting gain matrix with F1 ∈ R
6×n corre-

sponding to the gains on (xf[k], xs[k]), and F2 ∈ R
6×6 corresponding to the

gains on the integral states xint[k]. Using the approximation x̂f[k] = v[k−1]
in addition, a representation of controller K then is

ζ[k+1] = ζ[k] + [Ts I6×6 0] x̂s[k] (40)

v[k] = F2 ζ[k] + F1

[
v[k−1]

x̂s[k]

]

, (41)

which has the state estimates x̂s[k] from Fig. 17 as input.

8. Experiments

To compare the balancing performance in experiments, the root mean square
(RMS) value of the state estimates,

xRMS
i :=

√
√
√
√1

k̄

k̄∑

k=1

x̂2
i [k] (42)

for data of length k̄, is used (for the experimental evaluation, the motor shaft
velocity measurement from the motor encoder scaled by the gear ratio is used
as an estimate for the module velocity; estimates of all other states are as
in Fig. 17). The RMS values for a sequence of five minutes of undisturbed
balancing on a corner are given in Table 5 (middle column). The data shows
that the RMS values for angular position and velocity differ by more than
one order of magnitude for the bottom modules (1 to 3) versus the top ones
(4 to 6) for corner balancing. The top modules are used significantly less
because the corresponding inputs are much less effective than those of the
bottom ones. This fact is explained by considering the analogy of a one
dimensional abstraction of the Balancing Cube in the sidebar “Why Are the
Top Modules Used Less?”

In a different experiment, the cube was disturbed by pushing one of its
corners. A 60-second balancing sequence with the disturbance applied at 15
seconds is shown in Fig. 19. For a shorter sequence of the same experiment,
the angular velocity command and the actual angular velocity of module 2
are shown in Fig. 20. The data demonstrates the tracking capability of the
inner velocity controllers, which was assumed for the derivation of model
(36) in the sidebar “Time Scale Separation Algorithm.”

189

Paper IV. The Balancing Cube

Table 5. Balancing performance. The root mean square (RMS) value xRMS
i

according to (42) measures the average squared deviation of the state estimates

from the equilibrium x = 0. It is used as a measure for the control performance.
The data for corner balancing shows that the motion of the bottom modules (1
to 3) is an order of magnitude greater than the motion of the top ones (4 to 6).

The reason for this is explained in the sidebar “Why Are the Top Modules Used
Less?” Also for edge balancing, the motion of modules 1 to 3 is greater than the
motion of the modules 4 to 6. The difference is, however, not as pronounced as
for corner balancing. Due to the symmetrical arrangement of modules 1 and 3,

and modules 4 and 6, their RMS values are almost the same. As expected, the
balancing performance on edge is better than on corner since only one dimension
needs to be stabilized (instead of two).

State RMS value xRMS
i RMS value xRMS

i

Corner balancing Edge balancing

angle module 1 0.1036 0.0434

angle module 2 0.1214 0.0581

angle module 3 0.1225 0.0433

angle module 4 0.0080 0.0158

angle module 5 0.0092 0.0255

angle module 6 0.0098 0.0159

angular velocity module 1 0.2688 0.1034

angular velocity module 2 0.3266 0.1446

angular velocity module 3 0.3227 0.1029

angular velocity module 4 0.0275 0.0382

angular velocity module 5 0.0316 0.0658

angular velocity module 6 0.0281 0.0391

cube pitch angle 0.0048 0.0034

cube pitch rate 0.0103 0.0061

cube roll angle 0.0066 –

cube roll rate 0.0144 –

From the data in Table 5 and Fig. 19 and 20, it can be seen that the cube
exhibits slight motion during balancing; that is, it is not perfectly steady.
Some motion of the cube is inevitable due to excitation of the feedback
system by sensor noise. Other effects such as network delays or gear back-
lash may be partially compensated for with a more sophisticated controller
design. A discussion on the achievable balancing performance of the cube

190

8. Experiments

M
od

ul
e

an
gl

e
(r

ad
)

C
ub

e
an

gl
e

(r
ad

)

Time t (s)

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-1

-0.5

0

0.5

1

Figure 19. Corner balancing experiment. The top graph shows module 2’s

angle x̂2 (blue) and module 5’s angle x̂5 (red); the bottom graph shows the cube
pitch x̂13 (blue) and roll x̂15 (red). All angles are about the nominal equilibrium
(3). At roughly 15 s, the cube was disturbed by pushing one of its corners. From

the data, it is obvious that module 2 moves more than module 5. The reason
is that the bottom modules are more effective than the top modules and, hence,
used more by the optimal state-feedback controller. This fact is investigated in
the sidebar “Why Are the Top Modules Used Less?”

based on the H2 system norm is presented in the sidebar “How Steady Can
the Cube Balance?” The slight oscillations during balancing do, however,
enable viewers to perceive the cube as a dynamic sculpture.

Experimental data for balancing the cube on one of its edges is shown in
Table 5 (right column) and Fig. 21. It can be seen that the cube exhibits less
motion in edge balancing compared to corner balancing. This behavior is
expected, since only one DOF needs to be stabilized when on edge (compared
to two for corner balancing) with the same number of actuators.

191

Paper IV. The Balancing Cube

M
od

ul
e

an
gu

la
r

ve
lo

ci
ty

(r
ad

/s
)

Time t (s)

30 31 32 33 34 35 36 37

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 20. Command tracking for corner balancing experiment. The inner
feedback loop on each module with controller Kloc tracks velocity commands
from the outer-loop state-feedback controller K (compare Fig. 18). As an exam-
ple for the tracking performance of the inner loop, the angular velocity (blue) and

the corresponding command (red) are shown for module 2. The module velocity
is computed as the change of the absolute encoder angle signal per time step,
(yenc

2
[k] − yenc

2
[k−1])/Ts. The module velocity signal shows a significant quan-

tization error, which is caused by the quantization of the absolute encoder. The
signal is, however, not used in feedback, but only to demonstrate the tracking ca-
pabilities of the inner feedback loop here. The data is from the same experiment
as in Fig. 19.

9. Concluding Remarks

This article presents the Balancing Cube and, in particular, the control sys-
tem that enables the cube to live up to its name. The cube is a multi-agent
3D inverted pendulum system: stability is achieved through the coordination
of six rotating bodies on the cube – each equipped with sensors, actuation,
and a computer, and all communicating with each other over a digital net-
work. With this architecture, the Balancing Cube combines the challenges of
an unstable nonlinear system, a distributed control system, and a networked
control system.

The concept of balancing a rigid body with multiple modules can also be
used to balance other three dimensional shapes. The modeling techniques as
well as the developed state estimation and control algorithms are generalized
from the concrete representation of the cube, and can be applied to other

192

9. Concluding Remarks

M
od

ul
e

an
gl

e
(r

ad
)

C
ub

e
an

gl
e

(r
ad

)

Time t (s)

0 10 20 30 40 50 60

0 10 20 30 40 50 60

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-1

-0.5

0

0.5

1

Figure 21. Edge balancing experiment. Shown in the top graph are the angles

of modules 1, 2, and 6, x̂1 (blue), x̂2 (red), and x̂6 (green), respectively, and, in
the bottom graph, the cube pitch angle x̂13. All angles are about the nominal
equilibrium (4). At roughly 15 s, the system was disturbed by pushing the cube.

The motion of module 6, which is one of the lighter modules, is less than the
motion of modules 1 and 2.

shapes with slight modification. See the sidebar “Other Balancing Shapes”
for a discussion and some conceptual ideas.

Problems addressed during the design and construction phase of the
project have triggered unanticipated research results that are applicable be-
yond the cube itself. The “Time Scale Separation Algorithm,” first pre-
sented in [51], is an example. Without knowing the details of the feedback
controllers, and yet taking their effects into account, this algorithm yields a
simplified discrete-time model of a continuous-time process under high-gain
feedback on some of its states. A limiting property of the matrix exponen-
tial was also derived in the process. Another example is the algorithm for
estimating the tilt of the cube (presented both in this article and in [49]).
The algorithm can be used to estimate the tilt of any rigid body with only
rotational degrees of freedom from measurements of multiple inertial sensors
without requiring a dynamic system model.

193

Paper IV. The Balancing Cube

For the control and estimation algorithms presented herein, full commu-
nication between the agents is assumed: each agent shares its sensory data
with all its peers at the closed-loop rate. The state estimation and control
design problems can hence be treated in a centralized fashion. In [40,41], the
problem of reduced communication state estimation is addressed. Therein,
event-based communication protocols are used to reduce the amount of sen-
sor data shared over the network while maintaining a certain estimation
performance.

Acknowledgments

The authors’ special thanks goes to Matthew Donovan for his contributions
to the concept, the mechanical design, and the realization of the Balanc-
ing Cube. Furthermore, the authors thank their colleagues at ETH Zurich
– Daniel Burch, Sergei Lupashin, Hans Ulrich Honegger, and Gajamohan
Mohanarajah – as well as all students who have participated in the project
for making the Balancing Cube happen. Carolina Flores is gratefully ac-
knowledged for drawings and photos of the cube in this article. The authors
would finally like to thank Philipp Reist and Raymond Oung for their valu-
able comments and suggestions.

This work was supported by the Swiss National Science Foundation
(SNSF).

References

[1] “Balancing Cube website,” [accessed 13.08.2012]. [Online]. Available:
http://www.cube.ethz.ch

[2] J. Shen, A. K. Sanyal, N. A. Chaturvedi, D. S. Bernstein, and N. H.
McClamroch, “Dynamics and control of a 3D pendulum,” in Proc. of
the 43rd IEEE Conference on Decision and Control, Paradise Island,
Bahamas, Dec. 2004, pp. 323–328.

[3] P. Horáček, “Laboratory experiments for control theory courses: A
survey,” Annual Reviews in Control, vol. 24, pp. 151–162, 2000.

[4] K. Åström and K. Furuta, “Swinging up a pendulum by energy control,”
Automatica, vol. 36, no. 2, pp. 287–295, Feb. 2000.

[5] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Online least-
squares policy iteration for reinforcement learning control,” in Proc. of

194

http://www.cube.ethz.ch

References

the American Control Conference, Baltimore, MD, USA, Jul. 2010, pp.
486–491.

[6] A. P. Schoellig and R. D’Andrea, “Optimization-based iterative learning
control for trajectory tracking,” in Proc. of the European Control
Conference, Budapest, Hungary, Aug. 2009, pp. 1505–1510.

[7] S. Jung and S. S. Kim, “Control experiment of a wheel-driven mobile
inverted pendulum using neural network,” IEEE Transactions on
Control Systems Technology, vol. 16, no. 2, pp. 297–303, Mar. 2008.

[8] R. Findeisen and P. Varutti, “Stabilizing nonlinear predictive control
over nondeterministic communication networks,” in Nonlinear Model
Predictive Control, ser. Lecture Notes in Control and Information
Sciences, L. Magni, D. Raimondo, and F. Allgöwer, Eds. Springer
Berlin / Heidelberg, 2009, vol. 384, pp. 167–179.

[9] H. Gao, X. Meng, and T. Chen, “Stabilization of networked control
systems with a new delay characterization,” IEEE Transactions on
Automatic Control, vol. 53, no. 9, pp. 2142–2148, Oct. 2008.

[10] J. Colandairaj, G. W. Irwin, and W. G. Scanlon, “Wireless networked
control systems with QoS-based sampling,” IET Control Theory Appli-
cations, vol. 1, no. 1, pp. 430–438, Jan. 2007.

[11] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A new method for
stabilization of networked control systems with random delays,” IEEE
Transactions on Automatic Control, vol. 50, no. 8, pp. 1177–1181, Aug.
2005.

[12] X. Liu and A. Goldsmith, “Wireless network design for distributed
control,” in Proc. of the 43rd IEEE Conference on Decision and Control,
Paradise Island, Bahamas, Dec. 2004, pp. 2823–2829.

[13] D. V. Efimov and A. L. Fradkov, “Robust and adaptive observer-
based partial stabilization for a class of nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 54, no. 7, pp. 1591–1595, Jul.
2009.

[14] R.-J. Wai, M.-A. Kuo, and J.-D. Lee, “Design of cascade adaptive
fuzzy sliding-mode control for nonlinear two-axis inverted-pendulum
servomechanism,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5,
pp. 1232–1244, Oct. 2008.

[15] R.-J. Wai and L.-J. Chang, “Adaptive stabilizing and tracking control
for a nonlinear inverted-pendulum system via sliding-mode technique,”

195

Paper IV. The Balancing Cube

IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 674–692,
Apr. 2006.

[16] A. Mills, A. Wills, and B. Ninness, “Nonlinear model predictive control
of an inverted pendulum,” in Proc. of the American Control Conference,
St. Louis, MO, USA, Jun. 2009, pp. 2335–2340.

[17] S. Jung and J. T. Wen, “Nonlinear model predictive control for the
swing-up of a rotary inverted pendulum,” Journal of Dynamic Systems,
Measurement, and Control, vol. 126, no. 3, pp. 666–673, Sep. 2004.

[18] C. R. Magers and A. N. Gündeş, “Low order decentralized stabilizing
controller design for a mobile inverted pendulum robot,” in Proc. of
the American Control Conference, St. Louis, MO, USA, Jun. 2009, pp.
4233–4234.

[19] W. Chen and J. Li, “Decentralized output-feedback neural control
for systems with unknown interconnections,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 1, pp.
258–266, Feb. 2008.

[20] G. Liu, I. Mareels, and D. Nešić, “Decentralized control design of
interconnected chains of integrators: A case study,” Automatica, vol. 44,
no. 8, pp. 2171–2178, 2008.

[21] S. Cho, J. Shen, and N. McClamroch, “Mathematical models for
the triaxial attitude control testbed,” Mathematical and Computer
Modelling of Dynamical Systems, vol. 9, no. 2, pp. 165–192, 2003.

[22] N. A. Chaturvedi, N. H. McClamroch, and D. S. Bernstein, “Stabiliza-
tion of a 3D axially symmetric pendulum,” Automatica, vol. 44, no. 9,
pp. 2258–2265, 2008.

[23] ——, “Asymptotic smooth stabilization of the inverted 3-D pendulum,”
IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1204–1215,
June 2009.

[24] N. Chaturvedi and H. McClamroch, “Asymptotic stabilization of the
inverted equilibrium manifold of the 3-D pendulum using non-smooth
feedback,” IEEE Transactions on Automatic Control, vol. 54, no. 11,
pp. 2658–2662, Nov. 2009.

[25] B. Srinivasan, P. Huguenin, and D. Bonvin, “Global stabilization of an
inverted pendulum – control strategy and experimental verification,”
Automatica, vol. 45, no. 1, pp. 265–269, 2009.

196

References

[26] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, and J.-P. Richard,
“Second-order sliding mode control of underactuated mechanical sys-
tems I: Local stabilization with application to an inverted pendulum,”
International Journal of Robust and Nonlinear Control, vol. 18, no. 4–5,
pp. 529–543, 2008.

[27] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control
of a wheeled inverted pendulum by partial feedback linearization,”
IEEE Transactions on Robotics, vol. 21, no. 3, pp. 505–513, Jun. 2005.

[28] P. Reist and R. Tedrake, “Simulation-based LQR-trees with input and
state constraints,” in Proc. of the IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, USA, May 2010, pp.
5504–5510.

[29] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, Jan. 2007.

[30] K. Gilpin and D. Rus, “Modular robot systems,” IEEE Robotics &
Automation Magazine, vol. 17, no. 3, pp. 38–55, Sep. 2010.

[31] R. Oung and R. D’Andrea, “The distributed flight array,” Mechatronics,
vol. 21, no. 6, pp. 908–917, Sep. 2011.

[32] J. K. Yook, D. M. Tilbury, and N. R. Soparkar, “Trading computation
for bandwidth: reducing communication in distributed control systems
using state estimators,” IEEE Transactions on Control Systems Tech-
nology, vol. 10, no. 4, pp. 503–518, Jul. 2002.

[33] J. E. Luntz and W. Messner, “A distributed control system for flexible
materials handling,” IEEE Control Systems Magazine, vol. 17, no. 1,
pp. 22–28, Feb. 1997.

[34] J. M. Fowler and R. D’Andrea, “A formation flight experiment,” IEEE
Control Systems Magazine, vol. 23, no. 5, pp. 35–43, Oct. 2003.

[35] A. Stubbs, V. Vladimerou, A. T. Fulford, D. King, J. Strick, and
G. E. Dullerud, “Multivehicle systems control over networks: a
hovercraft testbed for networked and decentralized control,” IEEE
Control Systems Magazine, vol. 26, no. 3, pp. 56–69, Jun. 2006.

[36] Z. Jin, S. Waydo, E. B. Wildanger, M. Lammers, H. Scholze, P. Foley,
D. Held, and R. M. Murray, “MVWT-II: the second generation Caltech
multi-vehicle wireless testbed,” in Prof. of the American Control
Conference, Boston, MA, USA, Jul. 2004, pp. 5321–5326.

197

Paper IV. The Balancing Cube

[37] N. Michael, J. Fink, and V. Kumar, “Experimental testbed for large
multirobot teams,” IEEE Robotics & Automation Magazine, vol. 15,
no. 1, pp. 53–61, Mar. 2008.

[38] M. W. Spong, “Underactuated mechanical systems,” in Control Prob-
lems in Robotics and Automation, ser. Lecture Notes in Control and
Information Sciences, B. Siciliano and K. Valavanis, Eds. Springer
Berlin / Heidelberg, 1998, vol. 230, pp. 135–150.

[39] Quanser Inc., “Cube,” Online, [accessed 13.08.2012]. [Online].
Available: http://www.quanser.com

[40] S. Trimpe and R. D’Andrea, “An experimental demonstration of a
distributed and event-based state estimation algorithm,” in Proc. of the
18th IFAC World Congress, Milano, Italy, Aug. 2011, pp. 8811–8818.

[41] ——, “Reduced communication state estimation for control of an unsta-
ble networked control system,” in Proc. of the 50th IEEE Conference
on Decision and Control and European Control Conference, Orlando,
FL, USA, 2011, pp. 2361–2368.

[42] J. J. Craig, Introduction to robotics: mechanics and control, 3rd ed.
Prentice Hall, 2005.

[43] MathWorks Inc., “SimMechanicsTMuser’s guide,” Sep. 2009, [accessed
30.04.2011]. [Online]. Available: http://www.mathworks.com

[44] S. Trimpe and R. D’Andrea, “Numerical models and controller design
parameters for the Balancing Cube,” IDSC, ETH Zürich, Tech. Rep.,
2012. [Online]. Available: http://e-collection.library.ethz.ch/

[45] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation
Technology, 2nd ed. Institution of Engineering and Technology, 2004.

[46] J. Farrell and M. Barth, The global positioning system and inertial
navigation. McGraw-Hill Professional, 1999.

[47] D. Luenberger, “An introduction to observers,” IEEE Transactions on
Automatic Control, vol. 16, no. 6, pp. 596–602, Dec. 1971.

[48] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Mineola, New
York: Dover Publications, 2005, originally published by Prentice-Hall
1979.

[49] S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation
of a rigid body with only rotational degrees of freedom,” in Proc.
of the IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, USA, May 2010, pp. 2630–2636.

198

http://www.quanser.com
http://www.mathworks.com
http://e-collection.library.ethz.ch/

References

[50] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods. Mineola, New York: Dover Publications, 2007, originally
published by Prentice-Hall 1990.

[51] S. Trimpe and R. D’Andrea, “A limiting property of the matrix
exponential with application to multi-loop control,” in Proc. of the
Joint 48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, Shanghai, P.R. China, Dec. 2009, pp. 6419–6425.

199

Paper IV. The Balancing Cube

Sidebar 1: Balancing Cube on Tour

Since its completion in fall 2009, the cube has been exhibited at public
events such as the European researchers’ night in Zurich, Switzerland, [S1],
and the Festival della Scienza in Genoa, Italy, [S2]. More recently, it made
an appearance at the triennial IFAC World Congress in Milan, Italy, [S3],
as part of the interactive presentation of [40] (see Fig. S1).

A large cube balancing on a corner in a public place is an unusual sight,
and tends to attract a good deal of interest. As passers-by stop to push the
cube and test its ability to maintain equilibrium, they engage in a unique
opportunity to learn about control engineering and its limitations.

Figure S1. The Balancing Cube at the 2011 IFAC World Congress in Milan,
Italy. The cube was shown in one of the interactive sessions.

References

[S1] “European researchers’ night,” Zurich, Switzerland, Sep. 2009, [ac-
cessed 13.08.2012]. [Online].
Available: http://www.nachtderforschung.ethz.ch/en

[S2] “Festival della scienza,” Genoa, Italy, Oct. 2009, [accessed 13.08.2012].
[Online]. Available: http://www.festivalscienza.eu

[S3] “18th World Congress of the International Federation of Automatic
Control (IFAC),” Milan, Italy, Aug. 2011, [accessed 13.08.2012].
[Online]. Available: http://www.ifac2011.org

200

Sidebar 2: What Is the Cube’s Maximal Balancing Range?

Sidebar 2: What Is the Cube’s Maximal Balancing Range?

This study investigates how much the cube body can tilt in static equilibrium
by changing the module angles, as compared to the upright configurations
(3) and (4). The maximal tilt calculated below is a theoretical upper bound
on the feasible balancing range (for greater tilt, the multi-body system has
no static equilibrium for any configuration of the modules). The calculations
are based on the SimMechanics multi-body model.

To illustrate the dependency of the cube tilt on the module angles in
static equilibrium for corner balancing, the equilibrium tilt is computed for
the module angles parameterized by

(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) = (φ,−φ, 0,−φ, φ, 0), (S1)

with parameter φ ranging from 0◦ to 180◦. For φ = 0◦, the module config-
uration (S1) is the same as for the nominal “upright” equilibrium (3). The
chosen parameterization affects the equilibrium only in pitch direction; the
roll equilibrium angle is identical to the nominal γ0 in (3) for all φ. The dif-
ference of the resulting equilibrium pitch (denoted by β̄) from the nominal
pitch β0 in (3) is shown in Fig. S2. Additionally, the resulting horizontal
displacement dxy of the cube tip is shown in Fig. S2; it is given by

dx

dy

dz

 :=

(
O
BS(β0, γ0)− O

BS(β̄, γ̄)
)

1.2m

1.2m

1.2m

 , (S2)

dxy :=
√

d2x + d2y, (S3)

where 1.2m is the edge length of the cube. The maximal pitch angle dif-
ference β̄−β0 = −6.74◦ corresponds to the maximal tip displacement of
24.4 cm; it is attained for φ = 102.5◦. As verified by an optimization over
the module angles without the constraint (S1), the maximal displacement
is, in fact, the global maximum for all possible module angles. The module
configuration (S1) with φ = 102.5◦ is, however, not the only configuration
that maximizes the cube tip displacement.

A similar analysis for edge balancing yields a maximal tilt from the up-
right standing cube (β0 in (4)) of 8.15◦, which corresponds to a tip displace-
ment of dxy = 24.1 cm.

The obtained maximal tip displacements represent the maximal range of
static equilibria. In practice, the maximal range of equilibria that can be
stabilized is smaller due to actuation limitations and sensor noise.

201

Paper IV. The Balancing Cube

Pi
tc

h
an

gl
e

β̄
−

β
0

(◦
)

Module angle parameter φ (◦)

T
ip

di
sp

la
ce

m
en

t

d
x
y

(c
m

)

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

25

-8

-6

-4

-2

0

Figure S2. Cube tilt and tip displacement for different corner balancing equi-
libria. The pitch angle β̄ in static equilibrium is shown in the top graph as a

function of the module angle parameter φ (the module angles are parametrized
according to (S1)). For better comparability, the nominal pitch β0 is subtracted;
that is, an angle of 0◦ corresponds to the nominal equilibrium (3), where the cube
is standing upright. For the chosen parameterizations, the roll angle is equal to

the nominal (γ̄ = γ0) and therefore omitted here. The corresponding horizontal
displacement dxy of the cube tip from the upright configuration is shown in the
bottom graph.

202

Sidebar 3: Time Scale Separation Algorithm

Sidebar 3: Time Scale Separation Algorithm

The time scale separation algorithm is a transformation of a continuous-time
state-space model (A,B) to a discrete-time model (Ã, B̃) that represents
(A,B) under high-gain feedback on some of its states through a controller
Kloc (see Fig. S3). The method allows one to obtain a simplified model of
the feedback system without detailed knowledge of the controller Kloc, by
approximating it as an ideal controller with infinite proportional gain. This
approximation is legitimate as long as the time scales of the feedback loop
dynamics are sufficiently smaller than those of the remaining system. The
resulting model can be used, for example, to design an outer-loop controller
that feeds references to the inner-loop controller Kloc. The algorithm was
first presented in [51].

Consider the continuous-time state-space representation

[
ẋf(t)

ẋs(t)

]

=

[
Aff Afs

Asf Ass

]

︸ ︷︷ ︸

A

[
xf(t)

xs(t)

]

+

[
Bf

Bs

]

︸ ︷︷ ︸

B

u(t), (S4)

where the states x(t) are separated into those on which local feedback is
applied (xf(t) ∈ R

nf , index f for “fast”) and the remaining ones (xs(t), index
s for “slow”). To model the controller Kloc, proportional feedback on the
states xf is assumed to be of the form

u(t) = B−1
f F

(
v(t)− xf(t)

)
, (S5)

where v(t) ∈ R
nf is a piecewise constant reference signal changing at a rate

Ts, F = diag(f1, f2, . . . , fnf
) is a diagonal matrix with entries fj , and Bf

(A,B)Kloc

xs(t)

(Ã, B̃)

v[k] u(t)
− xf(t)

x[k]

Figure S3. System with partial state feedback. The system is described by
the continuous-time state-space model (A,B). Feedback loops are closed on some
states xf(t) through controller Kloc with reference input v[k] changing at a rate
Ts. The time scale separation algorithm computes a discrete-time model (Ã, B̃)
with sampling time Ts under the assumption of an ideal feedback controller Kloc

with infinitely high proportional gains.

203

Paper IV. The Balancing Cube

is assumed invertible. The feedback (S5) means that individual loops are
closed on the states xf(t).

To obtain the discrete-time representation (Ã, B̃), the feedback system
given by (S4) and (S5) is first discretized at the sampling rate Ts. To rep-
resent ideal feedback loops, the controller gains fj in (S5) are chosen to

approach infinity in the limit. The model (Ã, B̃) is then obtained using a
limiting property of the matrix exponential, which is derived in [51]. The
resulting model has the structure

[
xf[k+1]

xs[k+1]

]

=

[
0 0

Ãsf Ãss

]

︸ ︷︷ ︸

Ã

[
xf[k]

xs[k]

]

+

[
I

B̃s

]

︸ ︷︷ ︸

B̃

v[k]. (S6)

The details of the derivation are omitted here, but can be found in [51].
Notice from (S6) that xf[k+1] = v[k]; that is, the reference is achieved in
one time step, which corresponds to the infinite gain assumption.

Application to the cube model

The time scale separation algorithm is used to compute a model for the block
(Ã, B̃) in Fig. 18. For this purpose, the state-space model (5) is partitioned
in blocks corresponding to module angles, module velocities, and cube states,

ẋ1:6(t)

ẋ7:12(t)

ẋ13:n(t)

 =

0 I 0

A21 A22 A23

A31 A32 A33

x1:6(t)

x7:12(t)

x13:n(t)

+

0

B2

B3

u(t). (S7)

Through the controllers on each drive unit, local feedback is applied on
the module velocities x7:12(t) (see Fig. 18). Hence, the time scale separation
technique above is applied with xf(t) = x7:12(t) and xs(t) = (x1:6(t), x13:n(t)).
Since each module has an individual torque input, Bf = B2 is invertible. The
reference signals v[k] are the velocity commands sent to the motors at an
update rate of Ts = 0.01 s. The resulting model corresponding to (S6) is

x1:6[k+1]

x7:12[k+1]

x13:n[k+1]

︸ ︷︷ ︸

x[k+1]

=

I 0 0

0 0 0

Ã31 Ã32 Ã33

︸ ︷︷ ︸

Ã

x1:6[k]

x7:12[k]

x13:n[k]

︸ ︷︷ ︸

x[k]

+

Ts I

I

B̃3

︸ ︷︷ ︸

B̃

v[k]. (S8)

The discrete-time model (S8) captures the dynamics of the cube including
the local velocity feedback. The numerical values for the matrices (Ã, B̃)
may be found in [44].

204

Sidebar 4: What Is the Effect of Integral Action in the Controller?

Sidebar 4: What Is the Effect of Integral Action in the
Controller?

Integral control is typically used to improve the steady-state behavior of a
feedback control system. In particular, the quantity whose integral is used
in a feedback controller (for example, a system state) is forced to zero when
the system reaches steady state.*

The control algorithm described in the section “Control” includes in-
tegral feedback on the module angles. The analysis below shows that the
integrators in the controller ensure average zero steady-state error not only
for the module angles, but for all states – despite a possible bias on the
estimates of the cube states (pitch, roll, and their rates). First, the analysis
is presented for a general linear time-invariant system, and then the results
are interpreted for the Balancing Cube.

Consider the discrete-time system

x[k+1] =

[
x1[k+1]

x2[k+1]

]

=

[
A11 A12

A21 A22

]

x[k] +

[
B1

B2

]

u[k]. (S9)

The state measurements

y[k] =

[
x1[k] + w1[k]

x2[k] + w2[k] + d2

]

(S10)

are corrupted by zero-mean sensor noise w[k] = (w1[k], w2[k]) and a static
bias d2. Notice that the measurement of x1 is bias-free. A feedback controller
with integral action on the measurement of state x1 is used,

xint[k+1] = xint[k] + Ts(x1[k] + w1[k]) (S11)

u[k] = F

[
y[k]

xint[k]

]

= [F1 F2 Fint]

x1[k] + w1[k]

x2[k] + w2[k] + d2

xint[k]

 , (S12)

where F is a static gain matrix, and Ts is the sampling time. The following
assumptions are made on the system and the controller:

*For a general discussion of integral action in feedback controllers, see, for example:
K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for Scientists and
Engineers, Princeton University Press, 2008.

[This footnote was added in this reprint; it is not contained in the original publication in
the IEEE Control Systems Magazine.]

205

Paper IV. The Balancing Cube

(A1) B1 has full column rank.

(A2) I −A22 +B2(B
T
1 B1)

−1B1A12 is invertible.

(A3) The closed-loop system given by (S9), (S11), and (S12) is stable.

It is argued below that, under these assumptions, all states x[k] of (S9) have
zero steady-state mean,

lim
k→∞

E
[
x[k]

]
= 0, (S13)

for any static disturbance d2.
The closed loop system given by (S9), (S11), and (S12) reads

x1[k+1]

x2[k+1]

xint[k+1]

 =

A11 +B1F1 A12 +B1F2 B1Fint

A21 +B2F1 A22 +B2F2 B2Fint

TsI 0 I

︸ ︷︷ ︸

=:Ā

x1[k]

x2[k]

xint[k]

︸ ︷︷ ︸

=:x̃[k]

+

B1F2

B2F2

0

︸ ︷︷ ︸

=:B̄

d2 +

B1F1 B1F2

B2F1 B2F2

TsI 0

w[k]. (S14)

Since w[k] has zero mean, taking expected values yields

E
[
x̃[k+1]

]
= ĀE

[
x̃[k]

]
+ B̄ d2. (S15)

From (A3), it follows that E [x̃[k]] converges to a constant x̄,

lim
k→∞

E
[
x̃[k]

]
= x̄, (S16)

which is the solution to
x̄ = Ā x̄+ B̄ d2. (S17)

From the equation for x̄int in (S17) (with Ā and B̄ as defined in (S14)), it
follows that

x̄int = Tsx̄1 + x̄int ⇔ x̄1 = 0, (S18)

which is the aforementioned typical effect of integral action on x1. Using
this result, the top rows of (S17) read

0 = (A12 +B1F2)x̄2 +B1Fint x̄int +B1F2 d2, (S19)

206

Sidebar 4: What Is the Effect of Integral Action in the Controller?

which, with assumption (A1), yields

Fint x̄int = −(BT
1 B1)

−1BT
1 (A12 +B1F2)x̄2 − F2 d2. (S20)

Using this result, (S17) can be solved for x̄2,

x̄2 = (A22 +B2F2)x̄2 −B2(B
T
1 B1)

−1BT
1 (A12 +B1F2)x̄2

−B2F2 d2 +B2F2 d2 (S21)

⇔ (I −A22 +B2(B
T
1 B1)

−1BT
1 A12)x̄2 = 0, (S22)

which, by assumption (A2), has the unique solution x̄2 = 0. Hence, (S13)
holds as claimed. Furthermore, from (S20), it can be seen that the bias d2
maps to steady-state offsets in the integrator states given by the relation

Fint x̄int = −F2 d2. (S23)

Interpretation for the Balancing Cube

The cube model (36) corresponds to (S9) with x1 being the module angles
and x2 the remaining states. The absolute encoder measurements of the
module angles can be considered bias-free. The controller (40)–(41) is of the
form (S11)–(S12), and it can be shown that the assumptions (A1) to (A3)
hold.

Hence, the control system ensures that the deviation from the equilibrium
is zero for all states – on average and in the long run – despite any static
offset in the estimates of the cube states. Such offsets result from IMU sensor
biases and the fact that the cube’s physical equilibrium is not exactly at the
model-based pitch and roll equilibrium angles in (3) and (4).

An intuitive explanation for this property of the feedback system is as
follows: enforced by the integral feedback, the module angles are on average
at the module equilibrium angles given in (3) or (4). These module angles
define a unique equilibrium for the cube tilt parameterized by pitch and roll
angles. Since the feedback control system is stable, the average pitch and roll
angles must be equal to the equilibrium angles – otherwise the cube would
not be in equilibrium on average and, hence, it would fall.

207

Paper IV. The Balancing Cube

Sidebar 5: Why Are the Top Modules Used Less?

When the cube balances on one of its corners, the top modules move consid-
erably less than the bottom ones (see the section “Experiments”). In order
to understand the impact of the mounting position on a module’s ability to
balance the cube, a one dimensional abstraction of the balancing problem
is considered first. The controllability of an inverted pendulum that is bal-
anced by a single module is analyzed as a function of the module’s mounting
height on the pendulum. The insights of the 1D analysis are then interpreted
for the cube.

An inverted pendulum of the above type is shown in Fig. S4. The rotating
arm that balances the planar inverted pendulum about the single rotational
DOF is identical to the moving part of the modules on the cube. The system
is essentially a double pendulum with torque applied at the joint linking the
two bodies (see Fig. S5). This type of double pendulum has also been termed
an acrobot, and it is a typical example of an underactuated system [38,S4].
For the analysis herein, the two bodies are approximated as point masses.

Figure S4. Inverted pendulum. The pendulum is a one dimensional abstrac-
tion of the Balancing Cube: one module balances the pendulum body about one

rotational degree of freedom. This system was built as a prototype prior to the
cube.

208

Sidebar 5: Why Are the Top Modules Used Less?

l1

l

m1

m2

q1

q2

x

z

l2

τ

gravity

Figure S5. Acrobot. The acrobot is an abstraction of the pendulum in Fig. S4.
The module is represented by mass m2, which is linked through a revolute joint

to mass m1 representing the pendulum body, which itself is linked to the ground.
The acrobot is a typical example of an underactuated system: it has two degrees
of freedom (described by the generalized coordinates q = (q1, q2)) with only one
actuator (torque τ applied at the link between m1 and m2). The controllability

of the system about the equilibrium given by q̄ = (π/2, π) and τ̄ = 0 is studied in
this section for different location l of the module link on the pendulum.

The equations of motion of the point-mass acrobot are, [S4],

H(q) q̈ + C(q, q̇) q̇ +G(q) =

[
0

τ

]

, (S24)

where q are the generalized coordinates (angles of the two links, defined in
Fig. S5), τ is the torque applied at the second link, and the matrices are
given by

H(q) =

[
m1l

2
1 +m2l

2 +m2l
2
2 + 2m2l2l cos(q2) m2l

2
2 +m2l2l cos(q2)

m2l
2
2 +m2l2l cos(q2) m2l

2
2

]

,

(S25)

C(q, q̇) =

[−2m2l2l sin(q2)q̇2 −m2l2l sin(q2)q̇2

m2l2l sin(q2)q̇1 0

]

, (S26)

G(q) =

[
(m1l1 +m2l)g0 cos(q1) +m2l2g0 cos(q1 + q2)

m2l2g0 cos(q1 + q2)

]

, (S27)

with g0 the gravity constant and all other parameters as given in Fig. S5.

209

Paper IV. The Balancing Cube

Next, the local controllability of the acrobot about the equilibrium config-
uration of an upright pendulum body and a downward pointing module is an-
alyzed for different values of the link location l. For this purpose, the system
(S24) is linearized about the equilibrium given by q̄ = (π/2, π) and τ̄ = 0.
The obtained state space representation with the state x = (q, q̇) − (q̄, 0)
reads

ẋ =

[
0 I

−H−1(q̄) ∂G
∂q (q̄) −H−1(q̄)C(q̄, 0)

]

x+

0

H−1(q̄)

[
0

τ

]

=

0 0 1 0

0 0 0 1
g0
l1

− g0lm2

m1l21
0 0

g0(l−l1−l2)
l1l2

− g0(m1l
2
1+m2l(l−l2))

m1l21l2
0 0

︸ ︷︷ ︸

=:Ā

x+

0

0
l−l2

m1l21l2

m1l
2
1+m2(l−l2)

2

m1m2l21l
2
2

︸ ︷︷ ︸

=:B̄

τ.

(S28)

For varying l and fixed parameter values g0 = 9.81m/s2, l1 = 0.66m, l2 =
0.2m, m1 = 5.3 kg, m2 = 3.7 kg, which are representative for the pendulum
in Fig. S4, the two smallest singular values of the controllability matrix
C = [B̄, ĀB̄, Ā2B̄, Ā3B̄] are shown in Fig. S6. It can be seen that the system
becomes uncontrollable for l = 0.66m + 0.2m = 0.86m. More generally, it
can be shown from (S28) that for l = l1+ l2 and arbitrary l1, l2, m1, and m2,
the rank of C drops from four to two. That is, for the configuration where
the center of gravity (CG) of the module is at the same height as the CG of
the pendulum, the system becomes locally uncontrollable.

How can this insight be interpreted for the cube? It can be expected that
the location of a module relative to the CG of the cube body is a crucial
factor in how effectively the module can act on it. The top modules’ CG
is above the CG of the cube body, whereas the bottom modules’ CG is
well below (especially since the lower modules are heavier and their CG is
lower). In analogy to the 1D analysis, it can therefore be expected that the
top modules are less effective than the bottom ones. This is confirmed by
the analysis of the singular values of the controllability matrix of the cube
shown in Fig. S7.

In conclusion, the top modules are used less, since they are less effective
for control. The controller resulting from the LQR design seeks to minimize
the total control effort and hence tends to use mainly the more effective
bottom modules (equal weighting provided).

210

Sidebar 5: Why Are the Top Modules Used Less?

l (m)

Si
ng

ul
ar

va
lu

e

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Figure S6. Controllability of the acrobot about the equilibrium q̄ = (π/2, π).

Shown are the two smallest (identical) singular values of the controllability matrix
of the linearized model as a function of the link location l. For l = l1 + l2 =
0.86m the system is uncontrollable. The pendulum in Fig. S4 with l = 0.69m is

controllable.

References

[S4] M. W. Spong, “The swing up control problem for the acrobot,” IEEE
Control Systems Magazine, vol. 15, no. 1, pp. 49–55, Feb. 1995.

211

Paper IV. The Balancing Cube

Si
ng

ul
ar

va
lu

e

×105

Singular value #

Si
ng

ul
ar

va
lu

e

7 8 9 10

1 2 3 4 5 6

0

5

10

15

0

2

4

6

8

Figure S7. Singular values of the controllability matrix for corner balancing.

The controllability of the cube is analyzed for the case that only the top modules
(blue) and the case that only the bottom modules (green) are used. The control-
lability matrix C is computed from the model (5) after removing the states and
inputs corresponding to the unused modules. The first six singular values (top dia-

gram) correspond mainly to motion of the modules, whereas the last four (bottom
diagram) correspond mainly to cube states. The fact that the last four singular
values are smaller than the first six means that the cube states are “harder” to
control than the module states (which is expected since the cube’s degrees of
freedom are not directly actuated). Furthermore, stabilizing the cube is harder
when only the top modules are used compared to using only the bottom ones.
This is indicated by the corresponding singular values being almost one order of

magnitude smaller. Since the top modules are less effective in influencing the cube
motion, they are used less by the optimal LQR controller, which is designed in
the section “Control.”

212

Sidebar 6: How Steady Can the Cube Balance?

Sidebar 6: How Steady Can the Cube Balance?

The cube is not perfectly steady when it balances (see the section “Experi-
ments”). Since the control system relies on sensory feedback for stabilization,
sensor noise (mainly from the IMUs) inevitably excites the closed-loop sys-
tem. In addition, unmodeled effects such as backlash or network-induced
delays not taken into account in the control design can further deteriorate
the balancing performance.

The question of how steady the cube can balance in principle with the
current sensors is analyzed by employing tools from optimal H2 controller
design. The H2 system norm is a measure of the overall gain of a dynamic
system driven by noise: it equals the root mean square (RMS) value of the
system output when the input is white noise of unit intensity, [S5]. Hence, by
appropriately scaling the input and output channels, the H2 norm is used to
analyze the response of the cube (measured as the RMS of its state) to sensor
noise excitation. It corresponds to the achievable balancing performance if
no other nonidealities in the control system are present. For an introduction
to H2 optimal controller design, the interested reader is referred to [S5].

For the H2 analysis and synthesis below, the discrete-time model (36) is
assumed with noisy state measurements; that is,

x[k+1] = Ã x[k] + B̃ v[k] (S29)

ỹ[k] = x[k] + w1[k], (S30)

where the artificial measurement noise w1[k] is assumed to have zero mean
and variance Rn. The variance Rn is chosen below to match the variance of
the state estimates resulting from the state estimation algorithms employed
on the cube. Hence, the state estimation problem is abstracted away for the
purpose of this analysis.

The H2 norm is computed for the closed-loop system given by (S29),
(S30), and, firstly, the actual balancing controller K from (40), (41), and,
secondly, an H2 optimal controller. The analysis allows one to estimate how
well the control system would perform under ideal circumstances (that is,
if the linear model captured the dynamics perfectly). It also allows one to
determine how much could be gained from a more sophisticated controller
design.

H2 analysis of balancing controller

The generalized plant shown in Fig. S8 combines the cube model (36) with
exogenous weighted inputs and outputs that are used to express the analysis
objective. The H2 norm ‖Gw1→z1‖2 from measurement noise input w1[k] to

213

Paper IV. The Balancing Cube

B̃ Delay

Q
1/2
n

R
1/2
n

w2[k]

w1[k] Cz

R̃1/2

K

z1[k]

z2[k]

generalized plant

v[k] ỹ[k]

Ã

Figure S8. Generalized plant used to analyze the cube’s balancing perfor-
mance. The blocks Ã and B̃ represent the cube model (36). The output ỹ[k]

feeds to the controller K, which computes the system input v[k]. The exogenous
input w1[k] and exogenous output z1[k] are used to express the design objective:

input w1[k] is scaled with R
1/2
n (the square root of the measurement noise vari-

ance), and z1[k] are the system states of interest, which are selected from x[k] by

means of the output matrix Cz . Hence, the H2 norm from input w1[k] to output
z1[k], ‖Gw1→z1‖2, is the RMS of the selected state signals when the system is
excited by noise of variance Rn. It is therefore a measure of the cube’s balancing
performance. The additional green signals and blocks (input w2[k] with weighting

Q
1/2
n and output z2[k] with weighting R̃1/2) are required for the H2 controller

synthesis problem to be well defined.

the cube states z1[k] = Czx[k] is a measure of the balancing performance (Cz

is chosen to select a subset of the state vector x[k]). The norm corresponds
to the RMS of the output z1[k] under noise excitation representative of the
sensor noise on the Balancing Cube. The additional green blocks in Fig. S8
are required for the H2 optimal controller design presented later.

To have a noise excitation representative of the actual cube hardware,
the measurement noise variance Rn is chosen to be equal to the variance of
the state estimates presented in the section “State Estimation.” Hence, the
noise variance on the cube states is set to be

Rc
n,cube = diag

(
Var

[
β̂[k]

]
,Var

[ˆ̇
β[k]

]
,Var

[
γ̂[k]

]
,Var

[
ˆ̇γ[k]

])
(S31)

for corner balancing, and

Re
n,cube = diag

(
Var

[
β̂[k]

]
,Var

[ˆ̇
β[k]

])
(S32)

214

Sidebar 6: How Steady Can the Cube Balance?

for edge balancing, where β̂[k],
ˆ̇
β[k], γ̂[k], and ˆ̇γ[k] are the cube state es-

timates in (33), (34), (35). Given the noise variance of the IMU sensors,
first order approximations of the variances in (S31) and (S32) can readily
be computed from the involved estimator equations. Since the quantization
error on the module encoders can be neglected, the noise variances for the
modules states are chosen to be substantially lower than those for the cube
states; hence, the overall noise variance is set to

Rn =

[
10−6 σ̄(Rn,cube) I 0

0 Rn,cube

]

, (S33)

where σ̄(·) denotes the largest singular value.
With the weighting matrix (S33) and output matrix Cz chosen to select

the cube state(s) of interest, the H2 norm of the generalized plant in Fig. S8
from w1[k] to z1[k] can be evaluated for the balancing controller (40), (41).
The results are shown in Fig. S9 in green. The comparison to the experimen-
tal data (blue) reveals that the practically achieved balancing performance
with the current LQR controller is lower than the theoretically achievable
performance.

H2 optimal design

In order to design an H2 optimal controller for the generalized plant in
Fig. S8, some augmentations are necessary to make the H2 synthesis prob-
lem well defined. For this purpose, the generalized plant is augmented with
the process noise input w2[k] (weight Qn) and weighted control signal z2[k]
(weight R̃). The process noise intensity is chosen to be considerably smaller
than the measurement noise, in order to have a negligible effect on the con-
troller design, Qn = 10−6 σ̄(Rn) I. For simplicity and to allow for a fair
comparison in terms of control effort, diagonal weights R̃ = ρ̃I with param-
eter ρ̃ are used for the control input, where ρ̃ = 10−7 has been tuned such
that the H2 gain from input (w1[k], w2[k]) to the output z2[k] is comparable
to the respective gain when using the actual controller (40), (41). The out-
put matrix Cz is chosen as Cz = diag(0.01I12×12, I) to express the primary
design objective of minimizing the cube state variance.

The H2 optimal controller that minimizes the H2 norm from exogenous
input w[k] = (w1[k], w2[k]) to exogenous output z[k] = (z1[k], z2[k]) can
be obtained using standard H2 synthesis tools (for example, the Matlab
implementation h2syn). The resulting H2 gains are shown in Fig. S9 (red).
The resulting smaller gains compared to the LQR design (green) are at
the expense of a higher order controller. The H2 design presented herein
is mainly of interest as a theoretical bound on the balancing performance.

215

Paper IV. The Balancing Cube

z1

H2 norm for different outputs z1 Cube tip displacement (cm)

x13 x14 x13:14
0

0.2

0.4

0.6

0.8

1

0

0.002

0.004

0.006

0.008

0.01

z1

H2 norm for different outputs z1 Cube tip displacement (cm)

x13 x14 x15 x16 x13:16
0

0.5

1

1.5

2

0

0.005

0.01

0.015

0.02

Figure S9. H2 analysis of balancing performance on edge (top diagrams) and
corner (bottom). The bar diagram on the left shows the H2 norm from state noise

input w1 to the cube states x13 through xn, both individually and combined.
These norms are obtained from experimental data (blue), from the linear model
with the actual balancing controller (green), and with the H2 optimal controller
(red). The H2 norm corresponds to the RMS value of the output signals under

noise excitation of the system. The experimental data is the same as in Table 5.
The diagram on the right shows the RMS displacement of the cube tip that
is equivalent to the RMS of the cube tilt angles x13 and x15 (it is computed

analogously to (S2), (S3) in the sidebar “What Is the Cube’s Maximal Balancing
Range?”).

It does not take into account other design objectives that are of practical
importance, such as steady-state behavior or actuator limitations.

In conclusion, the results of this section point to a potential improvement
in the balancing performance of the cube. This may partly be achieved by
taking currently unmodeled effects (such as gear backlash or communication

216

Sidebar 6: How Steady Can the Cube Balance?

delays) into account in the controller design.

References

[S5] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design, 2nd ed. Wiley-Interscience, Nov. 2005.

217

Paper IV. The Balancing Cube

Sidebar 7: Other Balancing Shapes

Because the modules are self-contained, with onboard sensing, actuation,
computation, and communication, they can be arranged into other “balanc-
ing” shapes. Conceptual drawings of such shapes are depicted in Fig. S10.

The tilt estimation method presented in the section “State Estimation”
requires at least four tri-axis accelerometers. If fewer than four modules are
used (such as for the wedge in Fig. S10), additional sensors may be placed on
the balanced body. Alternatively, a model-based state estimation technique
(such as a Kalman filter) can be used to observe the tilt state from rate gyro
sensors only. As far as the modeling process and the design of the control
algorithms are concerned, the same strategy as presented in this article for
the cube may be used for other shapes.

Figure S10. Other balancing shapes. Instead of balancing a cube, the modules
could be used to balance a tetrahedron or a wedge (standing on a tip), for example.

218

Paper V

A Limiting Property of the Matrix

Exponential

Sebastian Trimpe · Raffaello D’Andrea

Abstract

A limiting property of the matrix exponential is proven: if the
(1,1)-block of a 2-by-2 block matrix becomes “arbitrarily small” in
a limiting process, the matrix exponential of that matrix tends to
zero in the (1,1), (1,2), and (2,1)-blocks. The limiting process is such
that either the log norm of the (1,1)-block goes to negative infinity,
or, for a certain polynomial dependency, the matrix associated with
the largest power of the variable that tends to infinity is stable. The
limiting property is useful for simplification of dynamic systems that
exhibit modes with sufficiently different time scales. The obtained
limit then implies the decoupling of the corresponding dynamics.

Submitted to IEEE Transactions on Automatic Control, 2012.

219

Paper V. A Limiting Property of the Matrix Exponential

1. Introduction

The subject of study in this paper is the matrix exponential

exp

([
A11 −K(α) A12

A21 A22

]

t

)

, t > 0 (1)

in the limit as K(α) grows large for α → ∞ in some sense to be made
precise later. All matrices are complex, and α is a real parameter. For
different classes of K(α), we derive sufficient (and in one case also necessary)
conditions on K(α) such that, for all t > 0,

lim
α→∞

exp

([
A11−K(α) A12

A21 A22

]

t

)

=

[
0 0

0 eA22t

]

. (2)

That is, we are interested in conditions that guarantee that the coupling
blocks (1,2) and (2,1) will vanish (in addition to the (1,1)-block).

In addition to being an interesting matrix problem, the result can be ap-
plied to control systems that exhibit significantly different time scales, such
as systems with high-gain feedback on some states. For example, consider
the system

ẋf(t) = A11xf(t) +A12xs(t) + u(t) (3)

ẋs(t) = A21xf(t) +A22xs(t), (4)

with state feedback on the states xf(t) (index f for “fast” and s for “slow”),

u(t) = −K(α)xf(t). (5)

The matrix function K(α) then represents the feedback gain parametrized
by α. The feedback system is depicted in Fig. 1. A more general multi-loop
feedback system with additional reference inputs is considered in [1].

The matrix exponential (1) is the fundamental matrix (see e.g. [2]) of
the feedback system (3)–(5). The limit (2) means that the dynamics of xf(t)
and xs(t) are decoupled in the limit as K(α) grows large. In this context, we
seek to determine what type of feedback yields a decoupling of the states in
feedback from the remaining ones in the limit as the feedback gains become
arbitrarily large.

This question is of interest, for example, when designing multi-loop con-
trol systems with high-gain inner loops, since a decoupling of the states
allows for a simplified system description and, hence, a simplified control

220

1. Introduction

∫
−K(α)

u(t) xf(t)

[

A11 A12

A21 A22

]

xs(t)

ẋf(t)

ẋs(t)

Figure 1. Linear system with feedback on the first part of the state vector, the
“fast” states xf.

design. The matrix result herein is applied in [1] to derive a time-scale sepa-
ration algorithm for a cascaded control system with high-gain inner feedback
loops. The algorithm yields a system description that includes the plant
dynamics and the effect of the inner feedback loops. The obtained repre-
sentation is useful, for example, for designing an outer-loop controller. This
methodology is applied in the design of a cascaded feedback control system
for an inverted pendulum in [1] and for a balancing cube (a multi-body 3-D
inverted pendulum) in [3].

Related to the problem studied herein is the work by Campbell et al.,
[4,5]. The authors consider the matrix exponential with its argument being
a polynomial in 1/ε and derive conditions for its convergence in the limit
as ε → 0+. In [4], for example, Campbell et al. present a necessary and
sufficient condition for pointwise convergence of

exp((A+B/ε)t), t > 0 (6)

as ε → 0+. While they are interested in general convergence to some limit,
we seek conditions that yield the particular limit (2); that is, where the cross
coupling blocks (1,2) and (2,1) vanish.

Before deriving the technical results, this article continues with notation
and preliminaries in Sec. 2. In Sec. 3, we present a sufficient condition for
(2) that is based on the log norm of K(α) (to be defined in equation (8) of
Sec. 2) and that makes no prior assumption on the function type of K(α)
(Theorem 1). In Sec. 4, we present a necessary and sufficient convergence
condition for the case when K(α) is affine (Theorem 4), and we give another
sufficient condition for the case when K(α) has an affine term and an ad-
ditional term in αr, r ≥ 2 (Theorem 5). The latter two results are based
on [4, 5]. Numerical examples illustrating the applicability of the different
theorems are given throughout in Sec. 3 and 4. The article concludes with

221

Paper V. A Limiting Property of the Matrix Exponential

remarks in Sec. 5.
A preliminary version of the result in Sec. 3 (Theorem 1) was first pub-

lished in [1].

2. Notation and Preliminaries

We use R, C, and R
+ to denote real numbers, complex numbers, and non-

negative real numbers, respectively. For the derivations in the paper, we
work exclusively with the vector 2-norm and its induced matrix norm; that
is, for x ∈ C

n and A ∈ C
p×n,

‖x‖ =
(∑n

i=1
|xi|2

)1/2

, ‖A‖ = max
‖x‖=1

‖Ax‖. (7)

For A ∈ C
n×n, µ(A) denotes the log norm of A (associated with the 2-

norm), [6],

µ(A) := max{µ|µ an eigenvalue of (A+A∗)/2}, (8)

where A∗ is the conjugate transpose of A. We shall exploit the following
properties of µ(A), [6]: for A,B ∈ C

n×n and t ∈ R
+,

‖eAt‖ ≤ eµ(A)t (9)

µ(A) ≤ ‖A‖ (10)

µ(A+B) ≤ µ(A) + ‖B‖. (11)

Let spec(A) denote the spectrum of A ∈ C
n×n (the set of all eigenvalues

of A ignoring algebraic multiplicity), and let OLHP denote the open left
half plane in C (i.e. OLHP := {x ∈ C : Rex < 0}), [7]. The matrix A is
called stable if spec(A) ⊂ OLHP, and it is called semistable if spec(A) ⊂
OLHP∪{0} and, if 0 ∈ spec(A), then 0 is semisimple (i.e. its algebraic and
geometric multiplicity are identical), [7]. The index of A, denoted IndexA,
is the smallest nonnegative integer j such that rankAj = rankAj+1, [7].
The Darzin inverse of A is the unique matrix AD satisfying AAD = ADA,
ADAAD = AD, and Aj+1AD = Aj with j = IndexA, [7]. For A,B ∈ C

n×n,
define [A;B] := (I −BDB)A(I −BDB), [5], where I is the identity matrix.

The following two facts are useful in later derivations; their proofs are
given in the appendix.

222

3. Condition Based on the Log-norm of K(α)

Fact 1 Consider the matrix differential equation

Ż(t) = AZ(t) +B U(t), t ≥ 0, Z(0) = Z0, (12)

where Z : R+ → C
n×p continuously differentiable, U : R+ → C

m×p contin-
uous, A ∈ C

n×n, B ∈ C
n×m, and Z0 ∈ C

n×p. The unique solution of (12)
is, for t ≥ 0,

Z(t) = eAtZ0 +

∫ t

0

eA(t−τ) B U(τ) dτ. (13)

Fact 2 Let A : [a, b] → C
n×m be continuous. Then

∥
∥
∥

∫ b

a

A(t) dt
∥
∥
∥ ≤

∫ b

a

‖A(t)‖ dt. (14)

3. Condition Based on the Log-norm of K(α)

A sufficient condition for (2) is the log norm (8) of −K(α) becoming arbi-
trarily small.

Theorem 1 Let A =
[
A11 A12

A21 A22

]
∈ C

(n+m)×(n+m), and let K : R → C
n×n

be a matrix function of the real parameter α. If limα→∞ µ(−K(α)) = −∞,
then (2) holds for all t > 0; that is,

lim
α→∞

exp

([
A11 −K(α) A12

A21 A22

]

t

)

=

[
0 0

0 eA22t

]

.

The proof of this result is deferred to Sec. 3.2. It is based on the matrix
differential equation that is solved by the matrix exponential (1), and bound-
ing its solution using a Gronwall-type inequality. The required lemmas are
presented in Sec. 3.1. Numerical examples and remarks for Theorem 1 are
presented in Sec. 3.3.

3.1 Lemmas

The following Gronwall-type inequality is adapted from [8]:

223

Paper V. A Limiting Property of the Matrix Exponential

Lemma 1 Let v(t), a(t), b(t) be real-valued, nonnegative, continuous func-
tions on J = [t0, t1]. Let κ(t, s) be a real-valued, nonnegative, continuous
function for t0 ≤ s ≤ t ≤ t1, and suppose

v(t) ≤ a(t) + b(t)

∫ t

t0

κ(t, s)v(s) ds, t ∈ J.

Then

v(t) ≤ ā(t) exp

(

b̄(t)

∫ t

t0

κ̄(t, s) ds

)

, t ∈ J,

where ā(t) := supτ∈[t0,t] a(τ), b̄(t) := supτ∈[t0,t] b(τ), and κ̄(t, s) := supτ∈[s,t]

κ(τ, s).

Proof. The proof is given in [8] (Theorem 1.9).

Consider the matrix differential equation

Ẋ(t) = (A11−K(α))X(t) +A12Y (t), X(0) = X0 (15)

Ẏ (t) = A21X(t) +A22Y (t), Y (0) = Y0 (16)

with X : R+ → C
n×p and Y : R+ → C

m×p continuously differentiable,
and complex matrices A11, A12, A21, A22, K(α), X0, and Y0 of appropriate
dimensions. Note that by Fact 1, the unique solutions to (15) and (16) are,
for all t ≥ 0,

X(t) = e(A11−K(α))tX0 +

∫ t

0

e(A11−K(α))(t−τ)A12Y (τ) dτ (17)

Y (t) = eA22tY0 +

∫ t

0

eA22(t−τ)A21X(τ) dτ. (18)

The key in the proof of Theorem 1 is to consider the solutions (17) and (18),
and to compute their limit as α → ∞. This is made precise in the following
two lemmas:

Lemma 2 Consider the solutions (17) and (18) with the initial conditions
X0 = I and Y0 = 0. If limα→∞ µ(−K(α)) = −∞, then for t > 0,

lim
α→∞

X(t) = 0 and lim
α→∞

Y (t) = 0. (19)

224

3. Condition Based on the Log-norm of K(α)

Lemma 3 Consider the solutions (17) and (18) with the initial conditions
X0 = 0 and Y0 = I. If limα→∞ µ(−K(α)) = −∞, then for t > 0,

lim
α→∞

X(t) = 0 and lim
α→∞

Y (t) = eA22t. (20)

Proof of Lemma 2. Since limα→∞ µ(−K(α)) = −∞, there exists an α0 ∈ R

such that for all α ≥ α0

µ(A11 −K(α)) ≤ ‖A11‖+ µ(−K(α)) < 0, (21)

µ(A11 −K(α))− ‖A22‖ < −1. (22)

In the following, we consider sufficiently large α such that α ≥ α0.
Substituting (17) into (18) and using the initial conditions X0 = I and

Y0 = 0 yields

Y (t) =

∫ t

0

eA22(t−τ)A21e
(A11−K(α))τ dτ

+

∫ t

0

∫ τ

0

eA22(t−τ)A21e
(A11−K(α))(τ−s)A12Y (s) ds dτ

=

∫ t

0

eA22(t−τ)A21e
(A11−K(α))τ dτ

+

∫ t

0

∫ t

s

eA22(t−τ)A21e
(A11−K(α))(τ−s)A12Y (s) dτ ds, (23)

where the order of integration in the last term was interchanged. This is
valid by Fubini’s theorem, [9, Prop. 5.36], and the facts that the integrand
is continuous, and the integration region can be expressed in either of the
two ways: {(τ, s) : 0 ≤ τ ≤ t, 0 ≤ s ≤ τ} or {(τ, s) : 0 ≤ s ≤ t, s ≤ τ ≤ t}.

Using (9), (10), Fact 2, and submultiplicativity of the induced matrix
norm, we obtain the inequality

‖Y (t)‖ ≤ ‖A21‖
∫ t

0

‖eA22(t−τ)‖‖e(A11−K(α))τ‖ dτ

+ ‖A21‖‖A12‖
∫ t

0

∫ t

s

‖eA22(t−τ)‖‖e(A11−K(α))(τ−s)‖ dτ ‖Y (s)‖ ds

≤ ‖A21‖
∫ t

0

e‖A22‖(t−τ)eµ(A11−K(α))τ dτ

225

Paper V. A Limiting Property of the Matrix Exponential

+ ‖A21‖‖A12‖
∫ t

0

∫ t

s

e‖A22‖(t−τ)eµ(A11−K(α))(τ−s) dτ ‖Y (s)‖ ds (24)

= a(t) +

∫ t

0

κ(t, s)‖Y (s)‖ ds, (25)

where a(t) := ‖A21‖
∫ t

0
e‖A22‖(t−τ)eµ(A11−K(α))τ dτ and κ(t, s) := ‖A21‖

‖A12‖
∫ t

s
e‖A22‖(t−τ)eµ(A11−K(α))(τ−s) dτ . Applying Lemma 1 to (25) yields,

for all t ≥ 0,

‖Y (t)‖ ≤ ā(t) exp

(∫ t

0

κ̄(t, s) ds

)

, (26)

where ā(t) = supτ∈[0,t] a(τ) and κ̄(t, s) = supτ∈[s,t] κ(τ, s).
Next, we derive bounds for a(t), ā(t) and κ(t, s), κ̄(t, s) using the prop-

erties (21), (22). First,

a(t) = ‖A21‖e‖A22‖t

∫ t

0

e(µ(A11−K(α))−‖A22‖)τ dτ

=
‖A21‖
ξ(α)

(
e‖A22‖t − eµ(A11−K(α))t

︸ ︷︷ ︸

∈(0,1] by (21)

)

≤ ‖A21‖
ξ(α)

e‖A22‖t =
M1(t)

ξ(α)
,

where ξ(α) := ‖A22‖−µ(A11−K(α)) > 1 by (22), andM1(t) := ‖A21‖e‖A22‖t

≥ 0 is a continuous function in t. Therefore,

ā(t) = sup
τ∈[0,t]

a(τ) ≤ sup
τ∈[0,t]

‖A21‖
ξ(α)

e‖A22‖τ =
‖A21‖
ξ(α)

e‖A22‖t =
M1(t)

ξ(α)
. (27)

Similarly, we obtain a bound for κ(t, s). With s ≤ t,

κ(t, s) = ‖A21‖‖A12‖e‖A22‖te−µ(A11−K(α))s

∫ t

s

e(µ(A11−K(α))−‖A22‖)τ dτ

=
‖A21‖‖A12‖

ξ(α)

(
e‖A22‖(t−s) − eµ(A11−K(α))(t−s)

︸ ︷︷ ︸

∈(0,1] by (21)

)

≤ ‖A21‖‖A12‖
ξ(α)

e‖A22‖t =
M2(t)

ξ(α)
,

226

3. Condition Based on the Log-norm of K(α)

where M2(t) := ‖A21‖‖A12‖e‖A22‖t ≥ 0 is a continuous function in t. There-
fore,

κ̄(t, s) = sup
τ∈[s,t]

κ(τ, s) ≤ sup
τ∈[s,t]

‖A21‖‖A12‖
ξ(α)

e‖A22‖τ =
‖A21‖‖A12‖

ξ(α)
e‖A22‖t

=
M2(t)

ξ(α)
. (28)

With (27) and (28), we can now bound (26),

‖Y (t)‖ ≤ M1(t)

ξ(α)
exp

(∫ t

0

M2(t)

ξ(α)
ds

)

=
M1(t)

ξ(α)
exp

(
M2(t)

ξ(α)
t

)

≤ M1(t)

ξ(α)
etM2(t) =

M(t)

ξ(α)
, (29)

where M(t) := M1(t)e
tM2(t) ≥ 0 is continuous. Since limα→∞ ξ(α) = ∞,

limα→∞ Y (t) = 0 follows directly from (29). Furthermore, with (17) and
X0 = I,

‖X(t)‖ ≤ eµ(A11−K(α))t + ‖A12‖
∫ t

0

eµ(A11−K(α))(t−τ)
︸ ︷︷ ︸

∈(0,1]

‖Y (τ)‖ dτ

≤ eµ(A11−K(α))t +
‖A12‖
ξ(α)

∫ t

0

M(τ) dτ

Therefore, limα→∞ X(t) = 0 for t > 0.

Proof of Lemma 3. The proof is essentially analogous to the proof of Lemma
2.

Let α ≥ α0 such that (21) and (22) hold. Substituting (18) into (17) and
using the initial conditions X0 = 0 and Y0 = I yields, after interchange of
integration in the second term,

X(t) =

∫ t

0

e(A11−K(α))(t−τ)A12e
A22τ dτ

+

∫ t

0

∫ t

s

e(A11−K(α))(t−τ)A12e
A22(τ−s)A21X(s) dτ ds,

and, therefore,

‖X(t)‖ ≤ ‖A12‖
∫ t

0

eµ(A11−K(α))(t−τ)e‖A22‖τ dτ

227

Paper V. A Limiting Property of the Matrix Exponential

+ ‖A12‖‖A21‖
∫ t

0

∫ t

s

eµ(A11−K(α))(t−τ)e‖A22‖(τ−s) dτ ‖X(s)‖ ds.
(30)

Now, consider the substitutions τ → t − τ for the first term in (30) and
τ → t+ s− τ for the inner integral of the second term, which yields

‖X(t)‖ ≤ ‖A12‖
∫ t

0

e‖A22‖(t−τ)eµ(A11−K(α))τ dτ

+ ‖A12‖‖A21‖
∫ t

0

∫ t

s

e‖A22‖(t−τ)eµ(A11−K(α))(τ−s) dτ ‖X(s)‖ ds.
(31)

Comparing this inequality to (24), we find that (31) is obtained from (24) by
the substitutions ‖Y (·)‖ → ‖X(·)‖, ‖A12‖ → ‖A21‖, and ‖A21‖ → ‖A12‖.
Therefore, we can derive an upper bound on ‖X(t)‖ the same way as in the
proof of Lemma 2. Corresponding to (29) we get, for all t ≥ 0, ‖X(t)‖ ≤
L(t)
ξ(α) , where the continuous L(t) ≥ 0 is obtained from M(t) by substituting

‖A12‖ → ‖A21‖ and ‖A21‖ → ‖A12‖. Thus, limα→∞ X(t) = 0. Furthermore,
with (18) and Y0 = I,

‖Y (t)− eA22t‖ ≤ ‖A21‖
∫ t

0

e‖A22‖(t−τ)‖X(τ)‖ dτ

≤ ‖A21‖
ξ(α)

∫ t

0

e‖A22‖(t−τ)L(τ) dτ.

Therefore, limα→∞‖Y (t)− eA22t‖ = 0, and thus limα→∞ Y (t) = eA22t.

3.2 Proof of Theorem 1

Using the Lemmas 2 and 3, we now prove Theorem 1.

Proof of Theorem 1. By Fact 1, the matrix exponential X (t) :=

exp
([

A11−K(α) A12

A21 A22

]

t
)

is the unique solution to the matrix differential equa-

tion

Ẋ (t) =

[
A11 −K(α) A12

A21 A22

]

X (t), t ≥ 0, X (0) = I. (32)

Note that X : R+ → C
(n+m)×(n+m) is continuously differentiable. By subdi-

viding X (t) =
[
X11(t) X12(t)
X21(t) X22(t)

]

into block matrices of appropriate dimensions,

228

3. Condition Based on the Log-norm of K(α)

we can write (32) equivalently as

[Ẋ11(t)

Ẋ21(t)

]

=

[
A11−K(α) A12

A21 A22

] [X11(t)

X21(t)

]

,

[X11(0)

X21(0)

]

=

[
I

0

]

, (33)

[Ẋ12(t)

Ẋ22(t)

]

=

[
A11−K(α) A12

A21 A22

] [X12(t)

X22(t)

]

,

[X12(0)

X22(0)

]

=

[
0

I

]

. (34)

Note that (33) and (34) represent the matrix ODEs considered in Lemmas
2 and 3, respectively. Using these two lemmas, we therefore conclude, for
t > 0,

lim
α→∞

exp

([
A11 −K(α) A12

A21 A22

]

t

)

= lim
α→∞

[X11(t) X12(t)

X21(t) X22(t)

]

=

[
0 0

0 eA22t

]

.

3.3 Examples and Remarks

We apply Theorem 1 to the introductory example.

Example 1—Discretization and high-gain feedback Consider the
system (3), (4) with feedback (5) and K(α) diagonal with diagonal elements
ki(α). Assume we are interested in a discrete-time description of the closed-
loop system (3)–(5) at a rate T > 0. The discretized system reads

[
xf(t+T)

xs(t+T)

]

= exp

([
A11−K(α) A12

A21 A22

]

T

)[
xf(t)

xs(t)

]

. (35)

Now, assume ki(α) ≥ α, that is, the individual controller gains are at least
as large as α. Then,

lim
α→∞

µ(−K(α)) = lim
α→∞

max
i

(
− ki(α)

)
≤ lim

α→∞
−α = −∞, (36)

and, by Theorem 1, (35) becomes

xf(t+ T) = 0 (37)

xs(t+ T) = eA22Txs(t) (38)

in the limit as α → ∞; that is, the slow and fast dynamics are decoupled.

In [1], Theorem 1 is applied to a linear system more general than (3), (4),
with additional reference inputs changing at the rate T . A discrete-time
system at the rate T is obtained, which is then used to design an outer-loop
controller that commands the reference inputs.

229

Paper V. A Limiting Property of the Matrix Exponential

Remark 1 Note that the function K(α) is not given explicitly in Exam-
ple 1. The estimate ki(α) ≥ α with the diagonal structure of K(α) is enough
to check the condition of Theorem 1. In contrast, the convergence results in
Sec. 4 require an explicit description of K(α).

Example 2 Consider (1) with

A =

0 0 0

0 0 1

0 0 0

, K(α) =

[
α α2

0 α

]

, and t = 1.

Notice that −K(α) is stable for all α > 0 (both eigenvalues are −α), and that
both eigenvalues go to negative infinity as α → ∞. But limα→∞ µ(−K(α)) =
limα→∞ max{−α+ 1

2α
2,−α− 1

2α
2} = ∞, and the limit of (1) for α → ∞ is

(can be computed using [7, Fact 11.14.2])

0 0 −1

0 0 0

0 0 1

 ,

which is clearly different from (2) in the (1,2)-block.

Remark 2 The preceding example shows that it does not suffice for (2)
to hold that the eigenvalues of −K(α) tend to negative infinity.

4. K(α) with Special Functional Dependency

Theorem 1 gives a sufficient condition for (2), which is based on the log
norm (8). In this section, results are derived when K(α) has a particular
polynomial structure; namely

K(α) = K0 + αK1, or (39)

K(α) = K0 + αK1 + αrK2, r ≥ 2. (40)

For the affine case (39), a necessary and sufficient condition is derived; for
(40), we present a sufficient condition.

The results of this section are based on [4, 5], and, in particular on:

230

4. K(α) with Special Functional Dependency

Theorem 2—(Thm. 1 in [4]) Let A,B ∈ C
n×n. Then e(A+B/ε)t con-

verges pointwise as ε → 0+ for t > 0 if and only if B is semistable. If B is
semistable, then

lim
ε→0+

e(A+B/ε)t = e(I−BBD)At(I −BBD). (41)

Theorem 3—(Thm. 1 in [5]) Suppose IndexC = 1 and C is semistable.
Then

e(A+B/ε+C/εr)t, r > 1, (42)

converges as ε → 0+ for an r ≥ 2, for all t > 0, if and only if [B;C] is
semistable. Suppose [B;C] is semistable. If r > 2, then (42) converges to

e[[A;C];[B;C]]t(I − [B;C]D[B;C])(I − CDC); (43)

if r = 2, then the limit of (42) is the same as (43) except a term

−[[BCDB;C]; [B;C]]t (44)

is added into the exponential.

4.1 K(α) Affine

We study the limit of (1) with affine K(α) as in (39). The following result
provides a necessary and sufficient condition for (2). It is obtained using
Theorem 2.

Theorem 4 Let A =
[
A11 A12

A21 A22

]
∈ C

(m+n)×(m+n), and let K(α) = K0 +
αK1 with K0,K1 ∈ C

n×n and α ∈ R. Then, (2) holds for t > 0 if and only
if −K1 is stable.

Proof. We first prove sufficiency. Let

Ã :=

[
A11 −K0 A12

A21 A22

]

, B̃ :=

[−K1 0

0 0

]

. (45)

Since −K1 is stable, B̃ is semistable and, from Theorem 2 it follows (by
substituting 1/ε with α) that

lim
α→∞

e(Ã+αB̃)t = lim
ε→0+

e(Ã+B̃/ε)t = e(I−B̃B̃D)Ãt(I − B̃B̃D). (46)

231

Paper V. A Limiting Property of the Matrix Exponential

Since −K1 is stable, it is invertible, and B̃D =
[
−K−1

1 0
0 0

]

. Hence, we have

e(I−B̃B̃D)Ãt = exp

([
0 0

0 I

] [
A11 −K0 A12

A21 A22

]

t

)

= exp

([
0 0

A21 A22

]

t

)

=

[
I 0

∗ eA22t

]

,

where the last equality follows from [7, Fact 11.14.2], and ∗ is a placeholder
left unspecified. Therefore, we get from (46)

lim
α→∞

e(Ã+αB̃)t = e(I−B̃B̃D)Ãt(I − B̃B̃D)

=

[
I 0

∗ eA22t

] [
0 0

0 I

]

=

[
0 0

0 eA22t

]

, (47)

which completes the sufficiency part of the proof.
For the proof of necessity, assume (2) holds. First notice that, for the

limit limα→∞ e(Ã+αB̃)t = limε→0+ e(Ã+B̃/ε)t to exist, it follows from Theo-
rem 2 that B̃ is semistable. From the definition of B̃ in (45), it can be seen
that this implies that −K1 is semistable, which further implies that

spec(−K1) ⊂ OLHP∪{0}. (48)

From B̃ semistable and Theorem 2, it follows that (46) holds. Hence, the
limit in (46) is equal to the limit in (2), i.e.

e(I−B̃B̃D)Ãt(I − B̃B̃D) =

[
0 0

0 eA22t

]

. (49)

Now, let
[
E11 E12

E21 E22

]

:= e(I−B̃B̃D)Ãt. (50)

Using B̃D =
[
−KD

1 0
0 0

]

and (50), it follows from (49) (by considering the first

block column) that

[
E11

E21

]

(I −K1K
D
1) =

[
0

0

]

. (51)

Since the matrix exponential is nonsingular [7, Prop. 11.2.8], E in (50) is
nonsingular, and

[
E11

E21

]
has full column rank. Therefore, (51) implies (I −

232

4. K(α) with Special Functional Dependency

K1K
D
1) = 0 ⇔ K1K

D
1 = I. From this and the rank formula [7, Lemma 2.5.2]

n = rank(I) = rank(K1K
D
1) ≤ min{rank(K1), rank(K

D
1)} ≤ n, it follows

that K1 has full rank. Thus, also −K1 has full rank, which implies 0 /∈
spec(−K1), [7, Cor. 2.6.6, Prop. 5.5.20]. This and (48) imply spec(−K1) ∈
OLHP, i.e. −K1 is stable.

Example 3 Consider

K(α) = αK1 with K1 =

[
1 2

0 1

]

.

Then −K1 is stable, and, by Theorem 4, (2) holds.

Remark 3 For K(α) as in Example 3, we compute limα→∞ µ(−K(α)) =
limα→∞ max{0,−2α} = 0. Therefore, Example 3 shows that the condition
in Theorem 1 is not a necessary condition.

4.2 K(α) with Additional Power of α

We study the limit of (1) with K(α) as in (40); that is, compared to (39),
K(α) possesses an additional power αr with r ≥ 2. A sufficient condition
for convergence is derived using Theorem 3. The condition is different from
the sufficient condition in Theorem 1 (one does not imply the other) as shall
be pointed out later.

Theorem 5 Let A =
[
A11 A12

A21 A22

]
∈ C

(m+n)×(m+n), and let K(α) = K0 +
αK1 +αrK2 with K0,K1,K2 ∈ C

n×n and α, r ∈ R, r ≥ 2. If −K2 is stable,
then (2) holds for t > 0.

Proof. Let Ã, B̃ be as in (45), and let C̃ :=
[
−K2 0
0 0

]
. Since −K2 is stable,

C̃ is semistable. Furthermore, Index C̃ = 1 since rank(K2
2) = rank(−K2)

(−K2 has full rank). Thus, the assumptions of Theorem 3 are satisfied.

With C̃D =
[
−K−1

2 0
0 0

]

, we get (I − C̃DC̃) = [0 0
0 I] and [B̃; C̃] = (I −

C̃DC̃)B̃(I − C̃DC̃) = 0, which is semistable. Therefore, by Theorem 3,

limα→∞ e(Ã+αB̃+αrC̃)t = limε→0+ e(Ã+B̃/ε+C̃/εr)t converges to the limit
specified by (43) and (44) where A, B, C are replaced by Ã, B̃, C̃. We
next compute the expressions (43) and (44).

From [B̃; C̃] = 0, we get (I− [B̃; C̃]D[B̃; C̃]) = I−0D0 = I. Furthermore,

[Ã; C̃] =

[
0 0

0 I

] [
A11 −K0 A12

A21 A22

] [
0 0

0 I

]

=

[
0 0

0 A22

]

,

233

Paper V. A Limiting Property of the Matrix Exponential

and, hence,

[[Ã; C̃]; [B̃; C̃]] = [Ã; C̃] =

[
0 0

0 A22

]

. (52)

Using these results, expression (43) yields the desired limit in (2)

e[[Ã;C̃];[B̃;C̃]]t(I − [B̃; C̃]D[B̃; C̃])(I − C̃DC̃) =

[
0 0

0 eA22t

]

.

Since

[B̃C̃DB̃; C̃] =

[
0 0

0 I

] [−K1K
−1
2 K1 0

0 0

] [
0 0

0 I

]

= 0,

expression (44) is 0.

Example 4 Consider

K(α) = −αI + α2K2 with K2 =

[
0.1 1

0 0.1

]

.

Then −K2 is stable, and, by Theorem 5, (2) holds for any A. The instability
of matrix −K1 = I is irrelevant for the limit. Notice that limα→∞ µ(−K(α))

= limα→∞ max{α + 2α2

5 , α − 3α2

5 } = ∞. Hence, Theorem 1 is not helpful
here.

Example 5 Consider

K(α) = αK1 + αrK2 with 1 < r < 2 and K1 =

[−2 0

0 1

]

, K2 =

[
1 0

0 0

]

.

Theorem 5 is not helpful here, since r < 2 (neither is Theorem 3). But
µ(−K(α)) = max{−α, 2α − αr} → −∞ as α → ∞; hence, (2) follows from
Theorem 1.

Remark 4 Examples 4 and 5 show that there are problems with K(α) =
K0 + αK1 + αrK2 that are covered by Theorem 1, but not by Theorem 5;
and vice versa. In general, both theorems provide sufficient conditions for
different problem classes.

234

5. Concluding Remarks

5. Concluding Remarks

The three theorems obtained in this paper guarantee the convergence of
the matrix exponential (1) to the limit as given in (2); essentially, a “large
enough” K(α) in the (1,1)-block forces all but the (2,2)-block of the matrix
exponential to tend to zero in the limit. Theorem 1 states a sufficient condi-
tion for (2) based on the log norm of −K(α); and Theorems 4 and 5 provide
sufficient conditions for K(α) having a particular polynomial form. For the
affine case (Theorem 4), the condition is also necessary.

The Theorems 4 and 5 herein are obtained using the results by Campbell
et al. [4,5]. Theorem 1, however, is obtained independently of those results.
Its method of proof is based on the matrix differential equation that is solved
uniquely by the matrix exponential (1), and on bounding its solution using a
Gronwall-type inequality. In contrast, Campbell et al. make use of Cauchy’s
integral formula to prove their result in [4], for example.

Appendix

A. Proof of Fact 1

Let Z(t) = [z1(t) z2(t) · · · zp(t)], Z0 = [z0,1 z0,2 · · · z0,p], and U(t) =
[u1(t) u2(t) · · · up(t)]. Then, the i-th column of (12) is

żi(t) = Azi(t) +B ui(t), t ≥ 0, zi(0) = z0,i. (53)

Since ui(t) is continuous, the (vector-valued) ODE in (53) has the unique
solution (see e.g. [2])

zi(t) = eAtz0,i +

∫ t

0

eA(t−τ) B ui(τ) dτ, (54)

for t ≥ 0. The claim (13) then follows by stacking (54) as columns of Z(t)
for i = 1, . . . , p.

B. Proof of Fact 2

First notice that for a vector-valued, integrable function f : [a, b] → C
n,

∥
∥
∥

∫ b

a

f(t) dt
∥
∥
∥ ≤

∫ b

a

‖f(t)‖ dt (55)

235

Paper V. A Limiting Property of the Matrix Exponential

(see proof in [10, Thm. 6.25]; the argumentation given in [10] for a real-valued
function f applies analogously for complex-valued f). Then,

∥
∥
∥

∫ b

a

A(t) dt
∥
∥
∥ =

(7)
max
‖x‖=1

∥
∥
∥

∫ b

a

A(t) dt x
∥
∥
∥ = max

‖x‖=1

∥
∥
∥

∫ b

a

A(t)x dt
∥
∥
∥

≤
(55)

max
‖x‖=1

∫ b

a

‖A(t)x‖ dt. (56)

Since, for all t ∈ R
+ and x ∈ C

n with ‖x‖ = 1, ‖A(t)x‖ ≤ max‖x‖=1‖A(t)x‖
= ‖A(t)‖, and ‖A(t)‖ is integrable (A(·) and ‖·‖ are continuous), it follows
from monotonicity of the integral that

max
‖x‖=1

∫ b

a

‖A(t)x‖ dt ≤ max
‖x‖=1

∫ b

a

‖A(t)‖ dt =
∫ b

a

‖A(t)‖ dt. (57)

References

[1] S. Trimpe and R. D’Andrea, “A limiting property of the matrix
exponential with application to multi-loop control,” in Proc. of the
Joint 48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, Shanghai, P.R. China, Dec. 2009, pp. 6419–6425.

[2] P. Hartman, Ordinary Differential Equations, 2nd ed. Philadelphia:
Society for Industrial and Applied Mathematics, 2002.

[3] S. Trimpe and R. D’Andrea, “The Balancing Cube – a dynamic
scuplture as testbed for distributed estimation and control,” IEEE
Control Systems Magazine, Dec. 2012, in press.

[4] S. L. Campbell and N. J. Rose, “Singular perturbation of autonomous
linear systems,” SIAM Journal on Mathematical Analysis, vol. 10, no. 3,
pp. 542–551, 1979.

[5] S. L. Campbell, “Singular perturbation of autonomous linear systems
II,” Journal of Differential Equations, vol. 29, no. 3, pp. 362 – 373,
1978.

[6] C. Moler and C. van Loan, “Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later,” SIAM Review, vol. 45,
no. 1, pp. 3–49, 2003.

[7] D. S. Bernstein, Matrix mathematics: theory, facts, and formulas,
2nd ed. Princeton, New Jersey: Princeton University Press, 2009.

236

References

[8] D. Bainov and P. Simeonov, Integral inequalities and applications, ser.
Mathematics and its applications. East European Series. Dordrecht,
The Netherlands: Kluwer Academic Publishers, 1992, vol. 57.

[9] S. Ghorpade and B. Limaye, A course in multivariable calculus and
analysis, ser. Undergraduate texts in mathematics. Springer New York,
2010.

[10] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill,
1976.

237

238

Curriculum Vitae

Sebastian Trimpe

born July 20, 1981 in Georgsmarienhütte, Germany

2008 – 2013 ETH Zurich, Switzerland

Doctoral studies at the Institute for Dynamic Systems
and Control (advisor: Prof. Raffaello D’Andrea), Depart-
ment of Mechanical and Process Engineering; graduated
with Dr. sc. ETH Zürich.

2005 – 2007 Hamburg University of Technology, Germany

Graduate studies; graduated with Dipl.-Ing. in Electrical
Engineering.

2005 – 2007 Hamburg University of Technology / Northern Institute
of Technology, Germany

Graduate studies (part-time); graduated with MBA in
Technology Management.

2007 University of California at Berkeley, USA

Visiting student researcher (8 months) at the Department
of Mechanical Engineering (Prof. Tarek I. Zohdi).

2006 – 2007 Airbus Germany, Bremen

Internship (6 months) at the Department of Aeroelastics.

2002 – 2005 Hamburg University of Technology, Germany

Undergraduate studies; graduated with B.Sc. in General
Engineering Science.

2002 IBM Germany, Stuttgart

Internship (2 months) at the European Technical Center.

2001 – 2002 Johanniter Unfall-Hilfe, Osnabrück, Germany

Civilian service.

2001 Angelaschule Osnabrück, Germany

Abitur (high-school diploma).

239

	Title
	Acknowledgments
	Abstract
	Contents
	Preface
	Introduction
	Contributions
	Future Directions
	References
	PART A
	Paper I. Event-Based State Estimation with Variance-Based Triggering
	Paper II. An Experimental Demonstration of a Distributed and Event-Based State Estimation Algorithm
	Paper III. Event-Based State Estimation with Switching Static-Gain Observers
	PART B
	Paper IV. The Balancing Cube: A Dynamic Sculpture as Test Bed for Distributed Estimation and Control
	Paper V. A Limiting Property of the Matrix Exponential

