
ETH Library

The relationship detector
Uncovering hidden relationships in object-oriented
programs

Report

Author(s):
Burns, Alexandra; Balzer, Stephanie; Gross, Thomas

Publication date:
2006

Permanent link:
https://doi.org/10.3929/ethz-a-006785814

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 550

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-2038-2902
https://doi.org/10.3929/ethz-a-006785814
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

The Relationship Detector
Uncovering Hidden Relationships

in Object–oriented Programs

Alexandra Burns

Master Thesis

Supervised by
Stephanie Balzer

Prof. Dr. Thomas Gross

October 2006

Laboratory for Software Technology
Department of Computer Science

ETH Zurich

Laboratory for Software Technology

Abstract

While modelling languages, such as UML, support the notion of relationships between classes,
there is no conceptual equivalent in object–oriented programming languages. Instead, relation-
ships are implemented using the elements of a class–based approach, with the relationship code
entangled with the class code. We analyse how relationships are represented and propose a tool,
the relationship detector, to uncover the hidden relationships in object–oriented programs, and
suggest a transformation to a relationship–based implementation. Finally, we test the relation-
ship detector with a set of examples and show how object–oriented programming languages could
benefit from introducing relationships as first–class concepts.

Acknowledgments

First of all, special thanks go to my supervisor at the ETH, Stephanie Balzer. Without her
constant support, complete dedication, constructive criticism and great cups of coffee, this thesis
would not have been possible.
I am grateful to my supervising Professor Th. Gross, for the opportunity to write my thesis at
the Laboratory for Software Technology and for his guidance and contribution.
Many thanks go to Andreas Scherrer and Barbara Scheuner for giving me insightful comments
and reviewing my report. I would also like to thank H. Wegener at SwissRe for taking time to
discuss object relationships.
Last but not least, I thank my parents, for their unconditional love and support.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Scope . 1
1.3 Contributions . 1
1.4 Outline . 2

2 Object Relationships 3
2.1 Introduction . 3
2.2 ER Modeling . 4

2.2.1 Relationship Dimensions . 4
2.3 Relationship Framework . 5

2.3.1 Terminology . 5
2.3.2 Member Interposition . 5
2.3.3 Invariants . 5

3 From Classes to Relationships 9
3.1 Existing Work . 10

3.1.1 On Mapping ER and Relational Models into OO Schemas [25] 10
3.1.2 Basic Relationship Patterns [26] . 10
3.1.3 Other Papers . 11

3.2 Running Examples . 12
3.2.1 Relationship Categories . 12
3.2.2 Authors . 13
3.2.3 Yin and Yang . 15
3.2.4 Narcissists . 17
3.2.5 Employees and Managers . 18
3.2.6 Operas, Singers and Parts . 20
3.2.7 Students, Lecturers and Courses . 22

3.3 Identifying Collaborations . 26
3.3.1 Collaboration Elements . 26
3.3.2 Collaboration Implementation Options . 27

3.4 Transformation Rules . 33
3.4.1 Binary collaboration controlled by class A 33
3.4.2 Binary collaboration controlled by class B 34
3.4.3 Binary collaboration controlled by classes A and B 34
3.4.4 Binary collaboration controlled by direct collaboration object 35
3.4.5 Binary collaboration controlled by indirect collaboration object 35
3.4.6 Ternary collaboration controlled by indirect collaboration object 36
3.4.7 Supertyping . 37

i

4 The Relationship Detector 39
4.1 Overview . 39
4.2 Third-party Tools . 40

4.2.1 Overview of the Java Virtual Machine (JVM) Specification 40
4.2.2 Bytecode Analysis Tools . 41

4.3 Collaboration Detection Algorithm . 42
4.3.1 Invariant Detection . 47

4.4 Design . 53
4.4.1 Components . 53
4.4.2 Problems and Implementation Decisions . 55

4.5 Implementation . 65
4.5.1 Phase One: Configuration . 65
4.5.2 Phase Two: Preliminary Analysis . 65
4.5.3 Phase Three: Local Relationship Detection 67
4.5.4 Phase Four: Global Relationship Detection 67
4.5.5 Output . 68

5 Evaluation 69
5.1 Relationship Detector Results . 69

5.1.1 University Example . 71
5.1.2 Calendar Example . 74
5.1.3 Compiler Design Example . 77
5.1.4 JHotDraw Example . 78
5.1.5 Jasper Reports Example . 80

5.2 Concept Evaluation . 82

6 Conclusion 85
6.1 Summary . 85
6.2 Future Work . 85

A User’s Guide 91
A.1 Overview . 91
A.2 Setup instructions . 91

A.2.1 Eclipse project setup . 91
A.2.2 Setup without eclipse . 92

B Implementation Details 93
B.1 Configuration Settings . 93
B.2 Bytecode Instructions . 94

C Examples 97
C.1 University . 97
C.2 Calendar . 102

ii

Chapter 1

Introduction

1.1 Overview

Object–oriented programming languages are recognised to ease the development of software sys-
tems thanks to the abstraction of a class – real world notions can be directly mapped onto classes
– and thanks to the concept of inheritance, which together with polymorphism and dynamic bind-
ing make software adaptable and extendible. Recent endeavours in science have pointed out the
absence of conceptual support of object relationships in object–oriented programming languages.
Although the identification of the relationships that emerge from collaborating objects is consid-
ered to be a crucial step during system design, and therefore supported by various conceptual
modelling languages, such as the Unified modelling Language (UML) [9] and Entity–Relationship
(ER) diagrams [11], object–oriented programming languages do not provide a programming lan-
guage counterpart to accommodate these relationships. This results in losing the abstraction of
a relationship; the information about object relationships is instead distributed across several
classes.

1.2 Scope

The goal of this master thesis is to develop a method for uncovering hidden object relationships
in existing object–oriented programs. The method is based on a set of rules specifying both how
to identify hidden object relationships in object–oriented code and how to change the existing
code to accommodate these relationships using a first–class module. In addition, these rules are
implemented in a tool, the relationship detector, that given a Java program applies the rules and
identifies the buried relationships. The relationship detector furthermore makes suggestions on
how to adapt the existing code when providing first–class support for these relationships.

1.3 Contributions

This master thesis contributes the following results:

• Types of relationships in modelling object–oriented programs
We determine the types of relationships that occur in conceptual modelling. For this pur-
pose, we extract a set of dimensions according to which we can classify the relationships.
Furthermore, we analyse the research into relationships in the database community, and
match it to the object–oriented programming concepts.

• Relationships in class–based implementations
We identify how the different types of relationships are implemented in Java programs and
how prevalent they are. In chapter 5 we test the relationship detector with a set of examples.

1

2 1 Introduction

• Validation of relationships as first–class concepts
Based on the evaluation of the relationship detector results, we show what benefits can be
gained from introducing relationships as first–class concepts.

1.4 Outline

In chapter 2, we investigate the types of relationships in the design of software systems. These
results provide the basis to ensure that all types of relationships are found with the relationship
detector. Chapter 3 covers the transition from class– to relationship–based concepts. In chapter
4 we describe the design and implementation of the relationship detector tool. We then evaluate
our results in chapter 5. In particular, we show what benefits can be gained from introducing
relationships in object–oriented programs as first-class concept. Chapter 6 concludes this thesis
with an outlook of possible extensions.

Chapter 2

Object Relationships

2.1 Introduction

The object–oriented paradigm models the world as objects that interact by exchanging messages.
Most object–oriented programming languages use classes to describe these objects. As part of
the design process, the programmer identifies the classes of the objects to be modelled. While
mapping real–world entities to objects is a straightforward step in the design process, modelling
collaborations of these objects is much less so. Common class–based object–oriented program-
ming languages do not provide the necessary abstractions to define object collaborations. Instead,
the object collaborations have to be introduced at implementation level, often using unilateral
references. As a result of this approximation, a global view of the collaboration is not provided.
With unilateral references, access to a relationship can only be gained through one of the relation-
ship members. Additionally, information about a relationship may be distributed across multiple
classes. Consistency conditions of a relationship, such as its irreflexiveness or symmetry, can also
only be enforced at implementation level. Contracts [23] allow to establish the consistency con-
ditions between collaborating classes in terms of specifying the mutual obligations between client
and supplier classes. However, due to their focus on classes, the specification of collaborations re-
mains object–centered, providing only the view of one collaborator. Object–oriented design issues,
such as the dependent delegate dilemma [24] for example, provide evidence that such unilateral
descriptions are insufficient for capturing object collaborations appropriately.

In the following sections, we first approach the subject of object relationships from the angle
of the database research community. The background material on entity–relationship modeling
provides some insight into how relationships are analysed. Next, we approach the subject from
the angle of the object–oriented programming languages and concepts community. In particular,
we introduce a framework for relationships as first–class concepts [5]. This framework provides
the foundation of our thesis.

3

4 2 Object Relationships

2.2 ER Modeling

In this section, we present the background material of the entity relationship model [11] that is
relevant to our thesis. In particular, we are interested in the different types of relationships that are
analysed in the database research community. These relationships are a key aspect to identifying
hidden relationships: to be able to discover relationships in existing programs, we first need to
determine the types of relationships we are looking for.

2.2.1 Relationship Dimensions

Elmasri et al. [12] identify the following properties of relationships in ER modeling:

• Relationship Type
A relationship type R among n entity types E1, E2, ..., En defines a set of associations among
entities from these types. So it is a mathematical relation on E1, E2, ..., En.

• Relationship Instance
Relationship instances ri associate n individual entities (e1, e2, ..., en) and each entity ej in
ri is a member of entity type Ej .

• Degree
The degree of a relationship is the number of participating entity types. A relationship of
degree two is called binary, while one of degree three is called ternary. The term n–ary is
used for relationships with n > 3.

• Recursiveness
A recursive relationship relates entities of the same type to each other. A relationship can
be recursive (also known as loop relationship) or not. When not specified, a relationship is
always non–recursive.

• Role
Each entity type that participates in a relationship type plays a role in that relationship. The
role name signifies what role the participating entity is playing in a particular relationship
instance, and thus helps to explain what the relationship means.

• Constraints
Constraints limit the possible combinations of entities that may participate in a given rela-
tionship. The following constraints are defined:

– Participation
The participation constraint specifies whether an entity must participate in a certain
relationship or not. The differentiations are: partial and total. Total means that every
entity must participate in the relationship, while partial means that there are some
entities that do not participate.

– Cardinality ratio
The cardinality ratio specifies the number of relationship instances that an entity can
participate in. The relevant differentiations are: one–to–one, one–to–many and many–
to–many for binary relationships. For ternary relationships, the constraints are 1:1:1,
1:1:N, 1:N:N, and N:N:N.

Together, these constraints are also called structural constraints. However, we will use this
term to denote constraints that go beyond these two concepts (see section 2.3).

2.3 Relationship Framework 5

2.3 Relationship Framework

This section contains a short overview of the work by Balzer et al. [5]. The paper proposes
a framework for relationships as first–class concepts, and is the foundation of this thesis. In
particular, the framework provides the basis for the transformation rules introduced in the following
chapter.

2.3.1 Terminology

The framework uses the following terminology:

• Classes: Like other class–based, object–oriented approaches, classes act as foundries for
objects. They provide an abstract description of both the data and the behaviour of a
collection of similar objects. Classes portray that description by means of members, which
can be attributes (data) or methods (behaviour). Each object, created by instantiating a
class, exhibits specific values for its attributes, constituting the object’s state.

• Relationships: Relationships are the abstractions encapsulating object collaborations.
They are not meant to replace classes, but rather complement them. Like classes, rela-
tionships declare members, which can be attributes or methods. Relationships further can
declare invariants specifying the invariant behaviour of object collaborations. Analogously
to the differentiation between classes and instances of classes, the framework distinguishes
a relationship, denoting the type of a relationship, from a relationship instance, denoting an
instance of a relationship.

• Participants: Relationships describe the behaviour emerging from the collaboration of
objects. The participants of a relationship are the defining classes of the objects involved in
the collaboration. The participating objects are the actual objects being part of a particular
relationship instance.

• Roles: Roles can be attached to the participants of relationships. The role mechanism
allows to indicate the respective role of a participant in a relationship.

2.3.2 Member Interposition

Member interposition is concerned with how to couple the relationship–dependent members of
classes with the relationships where the classes are participants of. This coupling is achieved by
the concept that relationships can declare members, i.e. attributes and/or methods.

Members of relationships can be declared at relationship–level or participant–level. This mech-
anisms allows the programmer to declare attributes and methods describing objects, outside the
defining classes. Member interposition is restricted by only permitting it as part of a relationship
declaration, when the target of interposition is at the same time a participant of the relationship.

2.3.3 Invariants

Relationship invariants allow specifying the behaviour of a relationship. As the traditional invari-
ants that have been introduced for class–based programming languages [23], relationship invariants
are boolean conditions that should always hold. The difference between the two lies in the point
of reference: Class–based invariants refer to class instances, while relationship invariants are pred-
icates on relationship instances and their participating objects.

Two types of invariants are introduced:

• Value–based invariants are boolean predicates on the values of relationship instances and
their participants. They are imposed on the members that are declared as part of the
relationships or as part of the participating classes.

6 2 Object Relationships

• Structural invariants are independent of the values that relationship instances or par-
ticipating objects exhibit for their members. They restrict the participation of objects in
relationships based on the occurrence of objects. For example, a structural invariant could
enforce that a particular object participates with at most one other object in a given rela-
tionship. Structural invariants can be expressed in terms of mathematical relations:

– function
A binary relation over a set X and a set Y is functional if for all x in X there is no more
than one element y in Y related to it.

– surjective
A binary relation R over a set X and a set Y is surjective if for all x in X there is a y
in Y related to it. Figure 2.1 shows a surjective relation.

– injective
A binary relation R over a set X and a set Y is injective if, for every y in Y, there is at
most one x in X so that x is related to y. Figure 2.2 shows an injective relation.

– partial
A partial function is a relation that associates each element x of a set X with at most
one element y of set Y. In particular, this means that some elements of X may not be
associated with any element of Y.

– total
A binary relation R over a set X and a set Y is total if it holds for all a in X and b in
Y that a is related to b or b is related to a (or both) [28].

– symmetric
A binary relation R over a set X is symmetric if it holds for all a and b in X that if a
is related to b then b is related to a [28].

– not symmetric
A binary relation R over a set X is not symmetric if there exists an a and b in X where
a is related to b and b is not related to a.

– antisymmetric
A binary relation R on a set X is antisymmetric if, for all a and b in X, if a is related
to b and b is related to a, then a = b [28]

– reflexive
A reflexive relation R on set X is one where for all a in X, a is R–related to itself [28].

– not reflexive
A not reflexive relation R on set X is one where there exists an a in X, that is not
R–related to itself.

– irreflexive
An irreflexive relation R is one where for all a in X, a is never R–related to itself [28].

2.3 Relationship Framework 7

Figure 2.1: surjective relation

Figure 2.2: injective relation

8 2 Object Relationships

Chapter 3

From Classes to Relationships

In the previous chapter, we introduced the foundation of this thesis, namely the concept of rela-
tionships as first–class objects. Common object–oriented programming languages (such as Java,
C++) do not offer the abstraction of relationships. While real–world entities (such as persons,
buildings etc.) can be easily mapped to objects, modelling the collaborations between these entities
requires the user to employ approximations. This section explores these approximations and aims
to identify the elements that constitute building relationships in existing object–oriented program-
ming languages. That is, the programming elements that are used to model a relationship, without
having the concept of relationships as first–class objects at hand. We explore the possibilities of
transforming an implementation without relationships as first–class objects (the source code) into
an implementation with relationships (the target code). This transformation is then represented
as a set of transformation rules that can be applied to the source code, resulting in the target code.

In the first section, we give an overview of the existing work in the areas that are relevant to
this thesis. Then we introduce a set of running examples. Each example is modelled first with-
out first–class relationships (using class–based concepts), then with first–class relationships (using
relationship–based concepts). Relying on the running examples, we attempt to identify those pro-
gramming elements of a class–based approach that are candidates for hidden relationships and
consequently will disappear in a relationship–based implementation. We call these programming
elements in the class–based implementation collaboration elements, while the programming ele-
ments of a relationship–based implementation are named relationship elements. Next, we define
the collaboration elements that are to be identified in the source code. These collaboration ele-
ments constitute the program elements of the class–based implementation, that point to a hidden
relationship. They are used to identify the collaborations in a class–based implementation and
provide the basis for the transformation rules. Finally, we then propose a set of transformation
rules to take an implementation using class–based concepts to an implementation that incorporates
relationship–based concepts. The collaboration elements identified in the previous step are then
used to transform the implementation of a program from a class–based to a relationship based
one.

9

10 3 From Classes to Relationships

3.1 Existing Work

To our knowledge, there is currently no research that covers the transformation from class–based
to relationship–based implementations. However, there are a number of efforts in the area of re-
lationships, both in the database and object–oriented programming communities. We provide a
short overview of the aspects that are relevant to this thesis.

3.1.1 On Mapping ER and Relational Models into OO Schemas [25]

Badri Narasimhan et al describe a set of rules to map ER and relational models to object–oriented
schemas. The object–oriented schemas include the conventional class–based concepts. In particu-
lar, the rules 6–8 for mapping relationships in ER schemas to object–oriented schema are relevant
to our work:

• Rule 6
Map each relationship with bidirectional pointers between the two classes involved, making
sure that data in both the classes are consistent.

• Rule 7
Map each 1:N relationship in an association between a parent class and a multivalued at-
tribute.
A 1:N relationship corresponds to what is called a one–to–many relationship in this thesis,
while a multivalued attribute corresponds to a collection object.

• Rule 8
Map each M:N relationship as an association between classes involving two multi–valued
attributes.
A M:N relationship corresponds to what is called a many–to–many relationship in this thesis.

The paper also contains a set of rules on how to map constraints in the ER schema to a object–
oriented schema. The approach is based primarily on introducing a constraint class hierarchy with
root class Constraint, with a subclass for every class in the schema. These subclasses contain all
constraints of classes that have been instantiated. So, for each new class that is instantiated, a
subclass with its constraints is appended to the Constraints class.
In relation to our work, the paper refers to conventional class–based concepts in the object–oriented
schemas and does not include relationship–based concepts. However, the rules to map ER rela-
tionships help identify the elements in class–based implementations that point to collaborations
between the participating objects. In terms of the constraints, we will be following the more ex-
tensive definitions of structural and value–based invariants, as defined by Balzer et al. [5].

3.1.2 Basic Relationship Patterns [26]

James Noble et al. approach the topic of relationships from a different angle. They propose a
set of relationship patterns for object–oriented languages without first–class relationship support.
Relationships are modelled using class–based concepts and are classified according to complexity
and cardinality. For instance, a small, simple relationship is implemented by adding an attribute to
represent the relationship. A large one–to–many relationship is implemented by adding a collection
object (such as a list or array). Not all patterns are mutually exclusive, some patterns can be used
to refine each other. The following patterns are introduced:

• Relationship as Attribute
J. Noble et al. suggest using this first pattern for simple relationships. The idea is to create
an attribute to present the relationship between two classes. For example, a class A has an
attribute of type B to represent its relationship with class B.

3.1 Existing Work 11

• Relationship Object
For more common or complex relationships, the authors suggest creating a relationship object
containing all information related to the relationship. For instance, to associate classes A

and B, create a new class C to manage the relationship.

• Collection Object
The collection object pattern is used for one–to–many relationships, i.e. to associate one
element with many others. This is done by creating a collection object, such as a list or
array.

• Active Value
An active value object is an object that contains a single value, with get and set methods
accessing it. It is used to connect two other objects that are both dependent on this particular
value.

• Mutual Friends
Mutual friends is the name for a relationship that is managed on both sides. This means
that the relationship can be accessed through both participating classes. The key issue here
is maintaining consistency: the relationship has to be managed the same way on both sides.
The steps the authors suggest are: first, split the relationship into two one–way relationships.
Then keep the relationship consistent.

The paper provides valuable insight into the possibilities of modelling relationships without
first–class support and therefore points to some of the relationship elements mentioned in the
introduction of this chapter. J. Noble et al. provide suggestions on how collaborations should
be implemented in a consistent and extendible fashion. In comparison, our work focuses on how
programmers actually implement relationships, without the knowledge and application of these
patterns. As we aim to identify relationships in class–based implementations that were written
without regard to the relationship subject, we need to focus on how programmers implement re-
lationships in practice, and not on how it should ideally be done.

3.1.3 Other Papers

Tetsuro Katayama et al. [18] propose a set of transformation rules to generate UML diagrams
from existing UML diagrams, e.g. to generate an object diagram from a class, usecase, sequence,
and collaboration diagram. Although the transformation between UML diagrams is not directly
relevant to our approach, the methodology of deriving the transformation rules is considered in
this thesis.

Another two papers are concerned with transforming UML diagrams into Java code:
Mathupayas Thongmak et al. [37] suggest design rules to transform UML sequence diagrams
into Java code, while Gregor Engels et al. [13] propose the transformation of UML collaboration
diagrams into Java code. Both approaches are connected to the method of this thesis, with an
inverted mapping procedure. While our approach maps Java code to relationship information, the
approach of the teams above is to map UML information to Java code. The work is especially
relevant for the elements of UML that are concerned with object collaborations.

12 3 From Classes to Relationships

3.2 Running Examples

In this section, we aim to derive the key elements of a class–based program that point to a hid-
den relationship. To this end, we introduce a set of running examples. First, we implement
the modelling example in a class–based fashion using Java. Then we perform the same using
relationship–based concepts. The relationship–based implementation follows the terminology and
notation defined in [5].

In addition, we use the following terminology to describe the elements of the implementations:

• Collection classes: Collection classes are container and collection classes such as Arrays,
Lists and Trees. This also includes Java specific library classes such as LinkedList and Vector.

• Collection objects: Collection objects are the instances of the collection classes.

• Field: A field is a data member of a class (also known as property or attribute).

• Collaboration: The term collaboration refers to a hidden relationship in a class–based
implementation. It points to an implicit declaration of a relationship, such as a field in a
class. The term collaboration field refers to the field that contains the collaboration reference.
If the collaboration is one–to–one, its collaboration field is a single–valued field. If it is one–
to–many, the collaboration field is multi–valued, i.e. contains a collection object.

• Relationship: The term relationship refers to an explicit relationship in a relationship–
based implementation. It points to an explicit declaration of a relationship, as found in [5]
and [8].

3.2.1 Relationship Categories

To analyse the running examples, we will be looking at a set of relationship categories. Our ap-
proach combines the relationship dimensions described in section 2.2, with the structural invariants
described in the section 2.3. We classify a relationship based on

• Degree
As defined in 2.2

• Recursiveness
As defined in 2.2

• Invariants
The invariants include cardinality constraints as defined in 2.2 and value–based and struc-
tural invariants as proposed in 2.3.

As the debate over whether higher–order relationships are necessary is still ongoing, we will
consider binary and ternary relationships only. Further, we introduce the term composite relation-
ship for relationships composed of a number of binary or ternary relationships. The cardinality
constraints differ according to the number of participants on each side of the relation, i.e. one or
many.
The running examples cover all collaboration categories and invariants, as defined in the previous
section. Based on these examples we extract the collaboration elements and show how the different
constraints are enforced in the class–based implementation.

3.2 Running Examples 13

3.2.2 Authors

The entity–relationship (ER) diagram [11] model in figure 3.1 describes a simple relationship
between an entity PERSON and an entity BOOK. A PERSON has the attributes name and
age, while a BOOK has a title and a publisher. While not every PERSON takes part in the
relationship Author, every BOOK has at least one PERSON associated with it.

Figure 3.1: ER Diagram of Author collaboration

Collaboration category: Binary many–to–many
Surjective

import java.util.*;

public class Person {

private LinkedList books;

public void writeBook(Book book){

books.add(book);

book.setAuthor(this);

}

}

import java.util.*;

public class Book {

private LinkedList authors;

protected void setAuthor(Person person){

authors.add(person);

}

}

...

Person ernestHemingway = new Person();

Book theOldManAndTheSea = new Book();

Book theSunAlsoRises = new Book();

ernestHemingway.writeBook(theOldManAndTheSea);

ernestHemingway.writeBook(theSunAlsoRises);

Listing 3.1: Class-based implementation of Author collaboration

The cardinality constraints are specific to this example. However, they do not change the
collaboration elements of the class–based implementation in a substantial way. While the “one”
side of a relationship is modelled by a single–valued field of the class (e.g. a PERSON field), the
“many” side is represented by a multi–valued field, i.e. a collection object field. The cardinalities
that include a zero (e.g. (0,n)) are not handled differently to the cardinalities including one (e.g.

14 3 From Classes to Relationships

(1,n)). They just imply that the collaboration collection field or object does not have to be in-
stantiated.

In this model, an author can write several books and a book can have several authors. The
collaboration is therefore a many–to–many collaboration. The collaboration elements are:

• The collection object fields books and authors.
If a book could only have one author (i.e. the collaboration were one–to–many) then the
authors Collection object field would be replaced by a single Author field.

• The method calls on the collection objects:
books.add(book) and authors.add(person). These calls add an object instance to the col-
lection object, therefore adding the object instance to the one–to–many collaboration. In
general, adding an object instance to a one–to–one collaboration entails an assignment to
the single field. For example, author = ernestHemingway. Adding an object to a one–to–
many collaboration entails adding the object instance to the collection object. This is done
by calling the relevant methods of this collection object, such as add() for LinkedLists.
Implicitly, adding an element to a collection item translates to an assignment as well:
books = books plus the new element.

• Class Person has a field books. The objects contained in this collection object are of type
Book. This points to a one–to–many collaboration between classes Person and Book. Class
Book has a field authors. The objects contained are Person objects. This points to a one–to–
many collaboration between Book and Person. Together, these two collaborations add up to
a binary many–to–many collaboration.

• The invariants are enforced by the following code sequence. Surjectivity is maintained by
always adding the author to the corresponding book object: book.setAuthor(this)

relationship Author {

participants(Person person, Book book);

invariant

surjective(person, book);

}

Person ernestHemingway = new Person();

Book theOldManAndTheSea = new Book();

Book theSunAlsoRises = new Book();

Author.add(ernestHemingway, theOldManAndTheSea);

Author.add(ernestHemingway, theSunAlsoRises);

Listing 3.2: Relationship-based implementation of Author collaboration

The relationship–based implementation creates a relationship associating Person with Book.
Each Person or Book object can take part in multiple Author relationships. The surjectivtiy con-
straint is enforced by specifying an invariant in the relationship declaration.

3.2 Running Examples 15

3.2.3 Yin and Yang

The example in figure 3.2 is taken from [5]. It describes the relationship between entities PER-
SON. Not every person is married, but each person can be married to one person only, and not
to him–/herself. Additionally, both yin and yang must be at least 18 years of age.

Figure 3.2: ER Diagram of Yin Yang collaboration

Collaboration category: Binary recursive one–to–one
Irreflexive
Symmetric
Partial injective

public class Person {

private String name;

private int age;

private Person spouse;

...

void getEngaged(Person p){

if ((spouse != this) && (p.age >= 18) &&

(this.age >= 18)){

this.spouse = p;

}

}

void marry(Person p){

if((p != this) && (spouse == null) &&

(p != null) && (p.spouse == null)) &&

(p.age >= 18) && (this.age >= 18)){

getEngaged(p);

p.getEngaged(this);

}

}

}

Listing 3.3: Class-based implementation of Marriage collaboration

In the original paper, the class–based implementation includes contracts. Our class–based im-
plementation in Java has to explicitly ensure the invariants are enforced by including code in the
methods. The collaboration elements are:

• The Person field spouse

This points to a one–to–one collaboration between Person and Person. As the relationship
is a partial injection (as opposed to a total one), not every Person has a value assigned to
the spouse field.

• The invariants are enforced by the following code sequence:
Symmetry is enforced by calling both getEngaged(p) and p.getEngaged(this) in the method

16 3 From Classes to Relationships

marry(Person p) method. Partial injectivity is implicitly enforced by having a single–valued
collaboration field spouse, as opposed to a collection item field. This means that only one
person can be assigned as a spouse. It is further explicitly enforced by ensuring that no value
was assigned before, i.e. the value was null: (spouse == null) && (p.spouse == null).

relationship Marriage {

participants(Person yin, Person yang);

invariant

partialInjection(yin, yang) &&

symmetric(yin, yang) &&

irreflexive(yin, yang) &&

yin.age >= 18 &&

yang.age >= 18;

}

Listing 3.4: Relationship-based implementation of Marriage collaboration

3.2 Running Examples 17

3.2.4 Narcissists

The model in figure 3.3 describes the relationship between NARCISSIST entities. Every narcissist
loves him–/herself and him–/herself only.

Figure 3.3: ER Diagram of Narcissist collaboration

Collaboration category: Binary recursive one–to–one
Reflexive
Total bijection

public class Narcissist {

private Narcissist iLove;

public Narcissist(){

this.iLove = this;

}

}

Listing 3.5: Class-based implementation of Narcissist collaboration

The class–based implementation enforces reflexivity by ensuring in the constructor that the
collaboration field iLove is assigned the value of this.

relationship LoveMyself {

participants (Narcissist me, Narcissist myself);

invariant

reflexive(me, myself);

totalBijection(me, myself);

}

Listing 3.6: Relationship-based implementation of Narcissist collaboration

The relationship–based implementation allows the programmer to specify the constraints, with-
out having to explicitly enforce them.

18 3 From Classes to Relationships

3.2.5 Employees and Managers

The model in figure 3.4 describes a recursive relationship between entities EMPLOYEE. An
employee is managed by an employee and manages other employees (except for the top– and
low–level employees).

Figure 3.4: ER Diagram of Employee collaboration

Collaboration category: Binary recursive one–to–many
Antisymmetric
Surjective total function

import java.util.*;

public class Employee {

private String name;

private int number;

private int salary;

private LinkedList employees;

private Employee manager;

public Employee(Employee manager){

if (manager.manager != this) {

this.manager = manager;

}

}

public boolean addEmployee(Employee employee){

if (employee != this.manager){

employees.add(employee);

return true;

}

else

return false;

}

}

Listing 3.7: Class-based implementation of Employee collaboration

This implementation pattern associates Employee objects with other Employee objects. The
class–based implementation needs to include code in both the constructor and the method addEmployee

to enforce certain invariants. These invariants are: no employee can be his/her own manager and
no two employees can have each other as managers.
The collaboration elements are:

• The Employee field manager

This points to a one–to–one collaboration between Employee and Employee

• The LinkedList collection object employees

Again, the collection object points to the fact that the collaboration is one–to–many between

3.2 Running Examples 19

Employee and Employee. Together, this adds up to a binary one–to–many collaboration
between Employee and Employee.

• The constructor public Employee(Employee manager) with the assignment this.manager = manager

• The method call employees.add(employee)

• The code that ensures the invariants of the collaboration are satisfied: the if–statement in
the constructor and the if–statement in the addEmployee method. if(manager.manager<>this)

enforces antisymmetry, while surjectivity is enforced by the assignment this.manager=manager
in the constructor.

relationship Manages {

participants(Employee employee, Employee manager);

invariant

antisymmetric(employee, manager) &&

surjectiveTotalFunction(employee, manager) &&

...

}

Employee manager1 = new Employee();

Employee manager2 = new Employee();

Employee employee1 = new Employee();

Employee employee2 = new Employee();

Employee employee3 = new Employee();

Manages.add(employee1, manager1);

Manages.add(employee2, manager1);

Manages.add(employee3, manager1);

Manages.add(manager1, manager2);

Listing 3.8: Relationship-based implementation of Employee collaboration

The code that was necessary in the class–based implementation to enforce the invariants is not
present in the relationship–based implementation. It is replaced by a declaration of the invariants:
the relationship is antisymmetric and surjective.

20 3 From Classes to Relationships

3.2.6 Operas, Singers and Parts

The model in figure 3.5 describes a ternary relationship: the Singers of an opera ensemble perform
different parts in different operas. For instance, a soprano voice singer may perform the part of
“Floria Tosca” in “Tosca” and of “Angelica” in “Orlando” in the same season of the opera house.

Figure 3.5: ER Diagram of Opera collaboration

Collaboration category: Ternary many–to–many

public class Opera {

private String name;

private String composer;

}

public class Singer {

private String name;

private String voice;

}

public class Part {

private String name;

private String voice;

}

import java.util.*

public class OperaPerformance {

private Opera opera;

private HashMap roles;

...

}

Opera tosca = new Opera();

Opera laTraviata = new Opera();

Singer mariaCallas = new Singer();

Singer joseCarreras = new Singer();

Part floriaTosca = new Part();

Part alfredo = new Part();

3.2 Running Examples 21

OperaPerformance royalOperaHouse1974 = new OperaPerformance();

royalOperaHouse1974.setOpera(laTraviata);

royalOperaHouse1974.addRole(joseCarreras, alfredo);

OperaPerformance coventGarden1964 = new OperaPerformance();

coventGarden1964.setOpera(tosca);

coventGarden1964.addRole(mariaCallas, floriaTosca);

Listing 3.9: Class-based implementation of Opera collaboration

The class–based implementation of the Opera collaboration introduces a new class: OperaPerformance,
a so–called relationship object [26]. To remain consistent with our terminology, we will be refer-
ring to such an object as collaboration object. This means that it contains and maintains the
collaboration references. One of these references is a single–valued collaboration field opera, which
points to a one–to–one collaboration. The HashMap roles field associates the Singer with his or
her Part in the Opera. So the collaboration elements are:

• The collaboration object OperaPerformance

• The collaboration fields it contains: opera and roles.

relationship OperaPerformance {

participants(Singer singer, Opera opera);

participants(Part part, Opera opera);

participants(Singer singer, Part part);

}

OperaPerformance.add(mariaCallas, tosca);

OperaPerformance.add(floriaTosca, tosca);

OperaPerformance.add(mariaCallas, floriaTosca);

OperaPerformance.add(joseCarreras, laTraviata);

OperaPerformance.add(alfredo, laTraviata);

OperaPerformance.add(joseCarreras, alfredo);

Listing 3.10: Relationship-based implementation of Opera collaboration

The relationship–based implementation breaks down the ternary relationship into three binary
relationships: SingsIn, SingsAs, and HasPart.

22 3 From Classes to Relationships

3.2.7 Students, Lecturers and Courses

The model in figure 3.6 describes some example elements of a university. STUDENTS attend
COURSES, which are taught by LECTURERS and take place at LOCATIONS.

Figure 3.6: ER Diagram of Student collaboration

Collaboration category: Composite relationship com-
posed of two binary many–to–
many relationships and one
binary one–to–many relation-
ship.

Teaches Total surjective relation

Attends Value based invariants: each
Course has maximum number of
Students associated with it, each
Student has a maximum number
of Courses associated with it.
Total surjective relation

Takes Place Total relation

3.2 Running Examples 23

public class Person {

private String name;

private String address;

public Person(String name, String address){

this.name = name;

this.address = address;

}

}

import java.util.*;

public class Lecturer extends Person {

private Location office;

private LinkedList courses;

public Lecturer(Location office, String name, String address){

super(name, address);

this.office = office;

}

public void addCourse(Course course){

courses.add(course);

}

}

public class Person {

private String name;

private String address;

public Person(String name, String address){

this.name = name;

this.address = address;

}

}

public class Location {

private Building building;

private Room room;

public Location(Building building, Room room){

this.building = building;

this.room = room;

}

}

import java.util.*;

public class Course {

private Lecturer lecturer;

private Location location;

private LinkedList participants;

private int maxStudents;

private String name;

24 3 From Classes to Relationships

public Course(Lecturer lecturer, Location location){

this.lecturer = lecturer;

this.location = location;

}

public boolean enrolInCourse(Student student){

if (participants.size() + 1 <= maxStudents){

participants.add(student);

return true;

}

else

return false;

}

}

Listing 3.11: Class-based implementation of Student collaboration

The collaboration elements are:

• The LinkedList collection field courses in class Lecturer
This points to a one–to–many collaboration between Lecturer and Course

• The LinkedList collection field courses in class Student
Again, the collection object points to the fact that the collaboration is one–to–many between
Student and Course.

• The LinkedList collection field participants in class Course

• The three collaborations mentioned above add up to many–to–many binary collaborations
between Student – Course and Lecturer – Course.

• The method calls courses.add(course) and participants.add(course).

• The code that ensures the invariants of the collaboration are satisfied: the if–statements on
the collection fields (e.g. if (participants.size()+1 <= maxStudents)

relationship Teaches(){

participants(Person lecturer, Course course);

//member interposition

String {Person} office;

invariant

totalSurjectiveRelation(lecturer, course);

}

relationship Attends(){

participants(Person student, Course course);

//member interposition

String {Person} number;

int {Person} numberOfCourses;

int {Course} numberOfStudents;

invariant

((numberOfStudents <= course.maxStudents) &&

(numberOfCourses <= student.maxCourses));

totalSurjectiveRelation(student, course);

3.2 Running Examples 25

}

relationship TakesPlace(){

participants(Course course, Location location);

invariant

totalRelation(course, location);

}

Listing 3.12: Relationship-based implementation of Student collaboration

The implementation using relationship–based concepts has one major difference to the one
using class–based concepts: The inheritance relationships between Person – Student and Person

– Lecturer are missing. Instead, there is one class Person. Depending on whether a Person

in a relationship has the role of a Student or a Lecturer, the necessary fields are added using
member interposition. The principle of modelling a generalisation (inheritance) hierarchy by using
relationships is also advocated by [6]. When mapping an ER model to the relational model (e.g.
to create database tables), generalisation hierarchies have to be removed. Batini et al. suggest
three possibilities. The terms superentity and subentity refer to the entities participating in the
generalization hierarchy:

1. Collapse the generalization hierarchy into a single entity. This is done by adding all the
attributes of all subentities to the superentity.

2. Remove the superentity but keep the subentities. The inherited attributes must be propa-
gated into the subentities.

3. Retain all entities and establish explicit relationships among the super– and subentities.

The advantage of the third option is that it is always feasible. In our work, we will be following
this approach.

26 3 From Classes to Relationships

3.3 Identifying Collaborations

In this section, we derive some general concepts from the running examples described in the pre-
vious section. We show what elements constitute a collaboration in a class–based implementation
and break these elements down into different categories. The collaboration elements we identify
provide the basis for the transformation rules introduced in the next chapter. These elements
will be extracted and used to generate a new relationship–based implementation of the original
problem.

3.3.1 Collaboration Elements

Resulting from the study of various real–life class–based implementations, we now derive the fol-
lowing collaboration elements. We use a color schema to visualise the different elements. To
illustrate this section, we analyse an exercise example to identify the collaboration elements (Note
to Stephanie: the Calendar.java example). The following collaboration elements are ordered ac-
cording to how closely they are connected to the collaboration (starting with the strongest con-
nection). Collaboration fields are the collaboration elements that are most strongly connected to
the collaboration, as they constitute the link to the other participating objects.

1. Collaboration fields:
These fields are either single–valued fields of a reference type or collection item fields con-
taining reference types.

2. Collaboration field assignments:
In the case of the single–valued collaboration fields, the assignment is explicit:
coll_field = element. With the collection item fields, the assignment is implicit by using
certain method calls: linkedList.add(element). To this purpose, calls on the collection
items have to be analysed on a lower level to check whether an assignment to the field takes
place or not. For example, linkedList.add(element) contains such an assignment, while
linkedList.contains(element) does not.

3. Collaboration–related methods and constructors:
Methods and constructors containing assignments to collaboration fields. This property is
recursive, so any method (or constructor resp.) calling a method (or constructor) containing
a collaboration field assignment is added to the set of methods and constructors containing
collaboration field assignments.

4. Structural invariants:
Structural invariants can be implicitly enforced by the structure of the collaboration fields
(see section 3.3.2 or explicitly enforced by code elements. The structural invariant collabo-
ration elements are such code patterns.

5. Value–based invariants:
To identify value–based invariants (see section 3.3.2), we need to search for if–clauses that
contain a collaboration field assignment.

6. Collaboration–related control code:
This is the code that calls collaboration–related methods and/or constructors.

7. Code on collaboration field elements:
This type of code is not directly associated with the collaboration, but includes non–assigning
method calls on the collaboration field elements. As these collaboration fields will be removed
from the class in the class–based implementation and added to a new relationship in the
relationship–based implementation, the method calls have to be moved as well. For instance,
linkedList.size() cannot be called in the class, if it no longer contains the collaboration
field. The code may also be subject to optimisations in the relationship–based code, meaning
that parts of it may no longer be necessary.

3.3 Identifying Collaborations 27

8. Methods with code on collaboration field elements:
These methods contain code as described above.

9. Collaboration–participating classes:
These are the classes that contain one or more collaboration fields, appear as type of a
collaboration field of another class or are direct or indirect collaboration classes.

3.3.2 Collaboration Implementation Options

There are different options to model collaborations in class–based implementations. To identify
the different collaboration categories (e.g. binary collaborations), the following options need to be
taken into account.

• Binary collaboration between two classes A and B

1. Collaboration controlled by class A
Class A has a collaboration field of type B (single–valued or collection item, depending
on cardinality). The advantage of this solution is its simplicity. Figure 3.7 shows this
option.

Figure 3.7: Collaboration controlled by class A

2. Collaboration controlled by class B
Class B has a collaboration field of type A (single–valued or collection item, depending
on cardinality). Again, the advantage of this solution is its simplicity. Figure 3.8 shows
this option.

Figure 3.8: Collaboration controlled by class B

28 3 From Classes to Relationships

3. Collaboration controlled by both class A and B
Both classes each have a collaboration field of type B or A resp. That means the
collaboration is maintained on both sides. The advantage of this solution is that the
collaboration can be accessed through both participating objects. Figure 3.9 shows this
option.

Figure 3.9: Collaboration controlled by classes A and B

4. Direct collaboration object
This collaboration object ABCol contains a two–dimensional collection item that asso-
ciates instances of A and B. For instance, HashMap, EnumMap etc. The advantage of
this solution is that classes A and B are not affected by the collaboration, meaning that
they contain no collaboration–related code. This means in particular that neither of the
participating instances has control over the collaboration and the other participating
object. Figure 3.10 shows this option.

Figure 3.10: Collaboration controlled by direct collaboration object

3.3 Identifying Collaborations 29

5. Indirect collaboration object
ABCol is a class with two single–valued collaboration fields of type A and B. For each
collaboration between A and B, there exists an instance of ABCol. Additionally, a
class ABColCollection stores the references to the ABCol instances in a collection item.
Again, the advantage of this solution is that classes A and B have no knowledge of
the collaborations they participate in. The additional indirection with the ABCol and
ABColCollection classes provides more points of access to the collaboration elements. In
particular, it also allows browsing the collaboration instances by retrieving them from
the collection. However, the relationship retrieval property still has to be explicitly
declared and implemented using two collaboration classes. In the framework suggested
by Balzer et al. [5], object retrieval is provided by retrieval operators and no longer has
to be explicitly implemented by the user. Figure 3.11 shows this option.

Figure 3.11: Collaboration controlled by indirect collaboration object

• Ternary collaboration between three classes A, B and C

1. Indirect collaboration object
ABCCol is a class with three single–valued collaboration fields of type A, B and C.
For each collaboration between A, B and C there exists an instance of ABCCol. Ad-
ditionally, a class ABCColCollection stores the references to the ABCol instances in a
collection item. For ternary relationships, a direct collaboration object is not an imple-
mentation option: there are no three–dimensional collection items offered by Java. Of
course, programmers can introduce their own three–dimensional data structure. This
case, however, corresponds to the same indirect collaboration object pattern with the
data structure object acting as the ABCCol object. Figure 3.12 shows this option.

2. Decomposed ternary collaboration
The ternary collaboration is decomposed into three binary collaborations A–B, B–C
and A–C. For each of these three collaborations, the options mentioned for the binary
collaborations apply.

30 3 From Classes to Relationships

Figure 3.12: Collaboration controlled by indirect collaboration object

Collaboration Invariants

While there are various options to implement the collaboration categories, there are also options to
enforce invariants (structural and value–based) in class–based implementations. However, not all
structural invariants can be enforced and not all value–based invariants can be positively identified.
An implicit enforcement of an invariant means that the invariant is not explicitly implemented
by the programmer. It is rather implied by the structure of the implementation. An explicit
enforcement of an invariant means that the implementation includes explicit code to enforce it.

Structural Invariants
Table 3.1 shows how the structural invariants of a collaboration occur in a object–oriented

implementation.

total explicitly enforced by assigning the collaboration
field upon creation in the constructor, thus ensuring
that the field is not uninitialized.

partial not enforced. Collaboration fields can be unini-
tialised.

function implicitly enforced by representing the collaboration
field as a single–valued field. This ensures that only
one participant can be associated with it.

3.3 Identifying Collaborations 31

surjection enforced by setting the collaboration field upon cre-
ation of the participating object. For instance, when
creating a book, set the author at the same time.
1. possibility: include the second object participat-
ing in the collaboration in the constructor of the first
object participating in the collaboration. This en-
sures that the field is set and not null.
2. possibility: before each method call on the ob-
ject participating in the collaboration, check that the
collaboration field has been assigned a value. If not,
handle the error.

injection implicitly enforced by representing the collaboration
in a single–valued field (as opposed to a collection
object field) in both participants. This ensures that
only one value can be assigned. Injectivity is further
enforced explicitly by ensuring (upon assignment)
that no other value was assigned before

bijection enforces both surjection and injection, with the pos-
sibilities to do so described above.

symmetric 1. possibility: allow addition to the collaboration
through one of the participants only. In the running
example “Marriage”, when yin gets married to yang,
yang also gets married to yin.
2. possibility: explicitly check the collaboration
fields of the participants. For example, to ensure that
the collaboration Marriage is symmetric, check
that the spouse of the spouse points to the origi-
nal class. These checks become more complicated
the more participants are involved in a relationship:
for a many–to–many collaboration, each collection
object on both sides has to be checked.

antisymmetric explicitly enforced: for a one–to–one collaboration,
test that the single–valued collaboration field refers
to a class that itself does not refer back; for a one–
to–many collaboration, test that the collection object
field does not include a reference to the class which
refers back.

reflexive explicitly enforced by ensuring that the collaboration
field points to itself.

irreflexive explicitly enforced. For one–to–one and one–to–
many relationships: test before adding the reference
to the collaboration field that the collaboration field
does not include a reference to the class itself.

Table 3.1: Structural Invariants

32 3 From Classes to Relationships

Value–based Invariants

Value–based invariants define conditions on whether a participant is added to a collaboration
or not. These conditions check for values and may occur in many different patterns. We analyse
these patterns in more detail in the implementation section in 4.3.1.

3.4 Transformation Rules 33

3.4 Transformation Rules

After identifying the collaboration category and the constraints, we now have the basis to transform
the class–based implementation to a relationship–based one. For each of the collaboration options
described in section 3.3.2 we provide a transformation pattern.

This section defines the transformation patterns to convert a class–based implementation into
a relationship–based implementation. With the collaboration elements described in the previous
sections, the collaboration category is first identified. Based on this pattern, the transformation to
a relationship–based implementation is then described. Each pattern is illustrated with a running
example.

We use the following naming convention: a relationship is named after the two participating
classes plus the appendix Relationship. For instance, a relationship between class Client and
class Server is named ClientServerRelationship.

3.4.1 Binary collaboration controlled by class A

Situation: The class–based implementation has been identified as binary collaboration between
classes A and B, that is controlled by class A, meaning that only class A maintains the references
to class B. The following steps describe how the class–based implementation is transformed into
a relationship–based implementation.

1. Create a new relationship ABRelationship. Substitute A and B for the class names.
relationship ABRelationship { }

2. Add a participant clause
participants(A a, B b);

3. Remove the collaboration field from class A

4. Add the invariant clauses to the relationship, depending on the collaboration category and
constraints, for example:
surjective(a, b);

5. Move the collaboration–related methods of class A to the ABRelationship.

• Remove the collaboration field assignments in the relationship code.
• If the collaboration–related method is now empty, remove it from the relationship code.

6. Remove the collaboration–related methods from the class–based implementation of class A

7. Remove collaboration field assignments from the collaboration–related constructors of class
A, if applicable.

• If a collaboration field was previously assigned a value passed to the constructor, update
the constructor signature by removing the value from the signature.

8. Update the collaboration–related control code:

• For all calls of a collaboration–related method in class A: replace the object of type A
with the relationship instance and prefix the collaboration–related method with an a_.

• For all instantiations with a collaboration–related constructor: update the constructor
call with the new signature.

9. Move all methods of class A with code on collaboration field elements to the relationship, if
applicable.

• Update any calls on these methods by replacing the object of type A with the relation-
ship instance.

34 3 From Classes to Relationships

3.4.2 Binary collaboration controlled by class B

Situation: The class–based implementation has been identified as binary collaboration between
classes A and B, that is controlled by class B, meaning that only class B maintains the references
to class A. The pattern is the same as for a binary collaboration controlled by class A. Substitute
A for B in the pattern above and vice versa.

3.4.3 Binary collaboration controlled by classes A and B

Situation: The class–based implementation has been identified as binary collaboration between
classes A and B, that is controlled by both classes. The following steps describe how the class–
based implementation is transformed into a relationship–based implementation.

1. Create a new relationship ABRelationship. Substitute A and B for the class names.
relationship ABRelationship { }

2. Add a participant clause
participants(A a, B b);

3. Remove the collaboration fields from the classes A and B

4. Add the invariant clauses to the relationship, depending on the collaboration category and
constraints, for example:
surjective(a, b);

5. Copy the collaboration–related methods of classes A and B to the ABRelationship.

• To avoid naming conflicts, prefix an a_ to methods of class A and a b_ to methods of
class B.

• Remove the collaboration field assignments in the relationship code.

• If the collaboration–related method is now empty, remove it from the relationship code.

6. Remove the collaboration–related methods from the class–based implementation of classes
A and B

7. Remove collaboration field assignments from the collaboration–related constructors of classes
A and B, if applicable.

• If a collaboration field was previously assigned a value passed to the constructor, update
the constructor signature by removing the value from the signature.

8. Update the collaboration–related control code:

• For all calls of a collaboration–related method in class A: replace the object of type A
with the relationship instance and prefix the collaboration–related method with an a_.
Do the same for class B.

• For all instantiations with a collaboration–related constructor: update the constructor
call with the new signature.

9. Move all methods of class A and B with code on collaboration field elements to the relation-
ship, if applicable.

• To avoid naming conflicts, prefix an a_ to methods of class A and a b_ to methods of
class B.

• Update any calls on these methods by replacing the objects of type A or B respectively
with the relationship instance.

3.4 Transformation Rules 35

3.4.4 Binary collaboration controlled by direct collaboration object

Situation: The class–based implementation has been identified as binary collaboration between
classes A and B, that is controlled by a direct collaboration object. The following steps describe
how the class–based implementation is transformed into a relationship–based implementation. In
particular, the classes A and B are not affected by the changes.

1. Create a new relationship ABRelationship. Substitute A and B for the class names.
relationship ABRelationship { }

2. Add a participant clause
participants(A a, B b);

3. Add the invariant clauses to the relationship, depending on the collaboration category and
constraints, for example:
surjective(a, b);

4. Copy all methods of the direct collaboration class to the ABRelationship.

• Remove the collaboration field assignments in the relationship code.

• If the collaboration–related method is now empty, remove it from the relationship code.

5. Copy the constructor code from the direct collaboration class to the ABRelationship.

• Remove the collaboration field assignments in the relationship code.

6. Remove the direct collaboration class.

7. Update the collaboration–related control code:

• For all calls on the direct collaboration object: replace with the ABRelationship instance.

3.4.5 Binary collaboration controlled by indirect collaboration object

Situation: The class–based implementation has been identified as binary collaboration between
classes A and B, that is controlled by an indirect collaboration object. The following steps describe
how the class–based implementation is transformed into a relationship–based implementation. In
particular, the classes A and B are not affected by the changes.

1. Create a new relationship ABRelationship. Substitute A and B for the class names.
relationship ABRelationship { }

2. Add a participant clause
participants(A a, B b);

3. Add the invariant clauses to the relationship, depending on the collaboration category and
constraints, for example:
surjective(a, b);

4. Copy all methods of the collaboration class ABCol (as defined in 3.3.2 to the ABRelationship.

• To avoid naming conflicts, prefix an col_ to the methods

• Remove the collaboration field assignments in the relationship code.

• If the collaboration–related method is now empty, remove it from the relationship code.

5. Copy all methods of the collaboration class ABColCollection (as defined in 3.3.2 to the
ABRelationship.

• To avoid naming conflicts, prefix an coll_ to the methods

36 3 From Classes to Relationships

• Remove the collaboration field assignments in the relationship code.

• If the collaboration–related method is now empty, remove it from the relationship code.

6. Copy the constructor code from the collaboration class ABCol to the ABRelationship.

• Remove the collaboration field assignments in the relationship code.

7. Remove the ABCol collaboration class.

8. Remove the ABColCollection collaboration class

9. Update the collaboration–related control code:

• For all calls on the ABCol object: replace with the ABRelationship instance and prefix
the method calls with a col_

• For all calls on the ABColCollection object: replace with the ABRelationship instance
and prefix the method calls with a coll_.

3.4.6 Ternary collaboration controlled by indirect collaboration object

Situation: The class–based implementation has been identified as binary collaboration between
classes A, B and C that is controlled by an indirect collaboration object. The following steps
describe how the class–based implementation is transformed into a relationship–based implemen-
tation. In particular, the classes A, B and C are not affected by the changes.

1. Create a new relationship ABCRelationship. Substitute A, B and C for the class names.
relationship ABCRelationship { }

2. Add two participant clauses
participants(A a, B b);

participants(B b, C c);

3. Copy all methods of the collaboration class ABCCol (as defined in 3.3.2 to the ABCRelationship.

• To avoid naming conflicts, prefix an col_ to the methods

• Remove the collaboration field assignments in the relationship code.

• If the collaboration–related method is now empty, remove it from the relationship code.

4. Copy all methods of the collaboration class ABCColCollection (as defined in 3.3.2 to the
ABCRelationship.

• To avoid naming conflicts, prefix an coll_ to the methods

• Remove the collaboration field assignments in the relationship code.

• If the collaboration–related method is now empty, remove it from the relationship code.

5. Copy the constructor code from the collaboration class ABCCol to the ABCRelationship.

• Remove the collaboration field assignments in the relationship code.

6. Remove the ABCCol collaboration class.

7. Remove the ABCColCollection collaboration class

8. Update the collaboration–related control code:

• For all calls on the ABCCol object: replace with the ABCRelationship instance and prefix
the method calls with a col_

• For all calls on the ABCColCollection object: replace with the ABCRelationship instance
and prefix the method calls with a coll_.

3.4 Transformation Rules 37

3.4.7 Supertyping

The transformation of a class to a relationship–based implementations affects the inheritance
hierarchy as well. In current software engineering practices (source: Interview with H. Wegener),
inheritance hierarchies are kept as flat as possible. Instead, interfaces are used to model the
different roles that classes can play. The relationship framework [5] provides the mechanism of
member interposition. We believe that inheritance hierarchies are not longer necessary with this
approach: instead of inheriting fields and methods from a supertype and adding a subtype for
each role, we only need to keep the supertype class. In each relationship, the fields and methods
of a subtype are then added, using member interposition. For an example of this idea, please refer
to the running example “Students, Lecturers and Courses” in section 3.2.7.

1. Keep the supertype of each inheritance hierarchy only

2. For each collaboration, remember the subtype participating

3. In each new relationship, add the fields of the participating subtype and the methods using
member interposition

38 3 From Classes to Relationships

Chapter 4

The Relationship Detector

We now apply the results of how to identify and transform collaborations to build a tool, the
relationship detector. The relationship detector extracts the elements in a class–based implemen-
tation that constitute a collaboration. It also shows how the class–based implementation would
be affected if it is transformed into a relationship–based implementation.

4.1 Overview

The relationship detector performs a statical analysis, taking a java class file and extracting hidden
object collaborations, as shown in figure 4.1. In a first step, the relationship detector searches
for the collaboration elements that constitute a collaboration in a class–based implementation.
We then apply an algorithm, the collaboration decision algorithm, to identify the collaboration
implementation option. For each of these options, we introduce a collaboration class, that provides
access and storage for the relevant collaboration elements. Finally, we provide the user with
an output of the program analysed, showing which parts of the code are related to the hidden
collaboration.

Figure 4.1: The relationship detector

39

40 4 The Relationship Detector

4.2 Third-party Tools

The relationship detector uses the ASM Bytecode Framework [10] to parse the bytecode of the
java input files. We first give a brief introduction to the Java bytecode terminology that is relevant
for our work, as introduced by Lindholm et al. [22]. Then, we summarise the main concepts of
the ASM framework and show how we use the concepts in our approach.

4.2.1 Overview of the Java Virtual Machine (JVM) Specification

We use the following terminology and concepts as defined in [22]:

• Class file format
In Java, source code (.java files) is compiled into bytecode, which is stored in the form of
class files (.class). Each class file contains one Java type, either a class or an interface. The
class file format is important to the relationship detector, as we analyse the bytecode using
the ASM framework.

A class file contains a single ClassFile format, each consisting of a sequence of bytes.

ClassFile {

unsigned 4 byte magic;

unsigned 2 byte minor_version;

unsigned 2 byte major_version;

unsigned 2 byte constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

unsigned 2 byte access_flags;

unsigned 2 byte this_class;

unsigned 2 byte super_class;

unsigned 2 byte interfaces_count;

unsigned 2 byte interfaces[interfaces_count];

unsigned 2 byte fields_count;

field_info fields[fields_count];

unsigned 2 byte methods_count;

method_info methods[methods_count];

unsigned 2 byte attributes_count;

attribute_info attributes[attributes_count];

}

Listing 4.1: The java classfile format

– constant_pool[]

Is a table of variable-length structures that represent constants, such as string constants,
class names and field names. These are referred to within the classFile structure. The
number of entries in the constant_pool are stored in constant_pool_count.

– constant_pool_count

Gives the number of entries in the constant pool table of the class file.

– super_class

Defines the super class, that must be either a valid index into the constant pool table
or zero. If it is zero, then this class file must represent the class java.lang.Object (the
only class or interface without a superclass).

– interfaces[]

Each value must be a valid index into the constant pool table.

– interfaces_count

Gives the number of direct superinterfaces of the class or interface type.

4.2 Third-party Tools 41

– fields[]

The fields are the variables of a class type. The fields structure does not include
items representing fields that are inherited from superclasses or superinterfaces. A field
structure has an access modifier, a name, descriptor, signature and value.

– fields_count

Gives the number of all fields (class variables and instance variables) declared by this
class or interface type.

– methods[]

Includes all methods - both instance methods and static methods (for classes). It does
not include, however, methods inherited from superclasses or superinterfaces. A method
contains a name and descriptor (among other elements).

– methods_count

Gives the number of methods.

– attributes[]

Contains all attributes of the class. The source file attribute contains the source code
for a single Java method. The code attribute contains the instructions and auxiliary
information for a single Java method, instance initialisation method or class or interface
initialization method. The exceptions attribute indicates which checked exceptions a
method may throw. Attributes in this case do not include class fields.

– attributes count

Gives the number of attributes of the class.

4.2.2 Bytecode Analysis Tools

Among the other bytecode analysis tools, such as BCEL[30] and SOOT[31], we chose ASM for its
ease of use. ASM applies a visitor-based approach to generate bytecode and transform existing
classes. It also allows a user to pull out significant details about existing classes. The ASM frame-
work hides bytecode complexity by allowing users to avoid dealing directly with constants pools
and offsets. ASM can both read and transform Java bytecode. The ASM tutorial [29] gives the
following (4.2) schematic overview of the class file:

42 4 The Relationship Detector

[1]---+
| Header and Constant Stack |
+--+
| [*] Class Attributes |
[2]------------+------------------------------+
| [*] Fields | Field Name, Descriptor, etc |
| +------------------------------+
| | [*] Field Attributes |
[3]------------+------------------------------+
| [*] Methods | Method Name, Descriptor, etc |
| +------------------------------|
	Method max stack and locals

	[*] Method Code table

	[*] Method Exception table

	[*] Method Code Attributes
+------------------------------	
	[*] Method Attributes
+-------------+------------------------------+

Figure 4.2: High-level diagram of the class file format

4.3 Collaboration Detection Algorithm

In this section we devise the algorithm that the relationship detector employs to identify col-
laborations. The goal is to identify the collaboration elements and the collaboration options, as
introduced in section 3.3.

The elements in the bytecode that are most closely connected to the collaboration are reference
fields - the collaboration fields. They provide the link between the classes that is necessary to define
the collaboration and are therefore the key to identification. Not all reference types are relevant to
the collaboration detection. Certain reference that are not directly connected to the application
logic are excludedd, for instance graphical user interface classes such as buttons. The relevant and
non-relevant references are defined by the relationship detector configuration. In the following
sections we refer to the relevant ones as relevant references.

The algorithm assumes complete knowledge of the other collaboration implementation options.
The implementation however has to operate in various phases to acquire the knowledge that is
necessary. Some elements of the algorithm can be identified locally, i.e. from each class without
knowledge of the other collaboration implementation options. Other elements require a global
view and therefore are identified in a later phase of the algorithm.

Figure 4.3 shows how the collaboration detection algorithm can determine the different collab-
oration options, starting with the relevant references of a class.

The algorithm starts with a class containing relevant references. These references are the
collaboration fields, and can be either single or multi–valued. The goal of the algorithm is to
determine the collaboration implementation option. A class may participate in more than one col-
laboration - for instance, a class A may be involved in a single–valued collaboration with class B

and a multi–valued collaboration with class C.

The following paragraphs reference the labels that are defined in figure 4.3.

4.3 Collaboration Detection Algorithm 43

Figure 4.3: The collaboration detection algorithm

44 4 The Relationship Detector

B As a class may participate in more than one collaboration, we need a way to separate the
following two options:

1. class A participating in two (separate) collaborations with B and C, i.e. with collaboration
fields B and C. This collaboration implementation option is shown on the far left of the
diagram.

2. an indirect collaboration class for the collaboration between B and C, i.e. with collabora-
tion fields B and C. This collaboration implementation option is shown as binary indirect
collaboration: ABCol.

In case 1, the collaborations are separate. We therefore assume that participants are not added
to the collaboration at the same time, i.e. that collaboration fields are not assigned values at the
same time. For case 2, the opposite is true: the participants of a collaboration must be added
(i.e. assigned) at the same time. A direct or indirect collaboration class associates two (for
binary collaborations) or three (for ternary collaborations) participant classes. It would make
no sense to add these participant classes separately, e.g. to add all classes A in one method and
all classes B in another. It would not be clear which participants are associated with each other.
So, for our algorithm, we separate case 1 from case 2 by applying the following rule: if there
is a collaboration–related method or constructor that contains assignments to all collaboration
fields, then the class belongs to an indirect collaboration, i.e. is ABCol or ABCCol respectively.
If not, then the collaborations are assumed to be separate. We therefore need to keep track not
only of the references but also the collaboration–related methods and constructors.

A For each type and number of collaboration fields, there is a series of checks that identifies
the corresponding implementation option:

• one single–valued collaboration field
A class that contains a single–valued collaboration field is either participating in a binary
collaboration controlled by the class itself, or in a binary collaboration controlled by both
participants. Let class A denote the class containing the reference, and class B the class
that is referenced. To determine which collaboration implementation option is the case,
class B needs to be analysed. If it contains a reference to class A, then the collaboration
is controlled by both A and B. If not, then the collaboration is controlled by A only. Figure
4.3 shows the corresponding path in the collaboration detection algorithm.

Figure 4.4: Collaboration detection for a single–valued field

• more than one single–valued collaboration field
A class containing more than one single–valued collaboration fields could be participating
in more kinds of collaboration options. Specifically, the algorithm needs to differentiate

4.3 Collaboration Detection Algorithm 45

between a class participating in multiple collaborations and class that is a direct or indirect
collaboration class. Again, we follow the assumption that participants to direct or indirect
collaboration classes are added to the collaboration at the same time. In the following, we
separate the ternary from the binary collaboration options:
If the class has a method or constructor that assigns three collaboration fields, then the
class is the indirect collaboration object ABCCol of a ternary collaboration.
If the class has a method or constructor that assigns two of these collaboration fields, then
the class is the indirect collaboration object ABCol of a binary collaboration.
If none of the two above apply, then handle each single–valued collaboration field separately,
i.e. follow the path for the one single–valued collaboration field. The same is valid for
any single–valued collaboration fields that are not included in one of the cases above -
for instance, if there are four single–valued collaboration fields and a method/constructor
assigning three of them, then the fourth reference is handled separately. Figure 4.3 shows
the corresponding path in the collaboration detection algorithm.

Figure 4.5: Collaboration detection for multiple single–valued fields

• one multi–valued collaboration field
In this case, the algorithm checks whether the multi–valued collaboration field is assigned
relevant references. If not, then the reference is not collaboration related. If yes, then the
type of the reference is checked:
C If the type is ABCol, then the class is the corresponding ABColCollection for a binary

indirection collaboration.
If the type is ABCCol, then the class is the corresponding ABCColCollection for a ternary
indirect collaboration.
If none of the two above apply, then check the referenced class. Again, let class A denote
the class containing the reference, and class B the class that is referenced. If B contains
a reference to A, then the binary collaboration is controlled by both A and B. If not, then
the collaboration is controlled by A only. Figure 4.3 shows the corresponding path in the
collaboration detection algorithm.

46 4 The Relationship Detector

Figure 4.6: Collaboration detection for a one–dimensional multi–valued field

• more than one multi–valued collaboration field
Again, the algorithm checks whether the multi–valued collaboration fields are assigned
relevant references. If not, then the reference is not collaboration related. If yes, then
check the referenced class:
C Let class A denote the class containing the reference, and class B the class that is

referenced. If B contains a reference to A, then the binary collaboration is controlled by
both A and B. If not, then the collaboration is controlled by A only. Figure 4.3 shows the
corresponding path in the collaboration detection algorithm.

Figure 4.7: Collaboration detection for multiple multi–valued fields

• two–dimensional multi–valued collaboration field
Each two dimensional multi–valued field is handled separately. The algorithm checks if
the field is assigned two relevant references (for instance, a relevant key and value for a
java.util.HashMap).
If yes, then the class is a direct collaboration class participating in a binary direct collab-
oration.
If not, then the class is not collaboration–related.
Figure 4.3 shows the corresponding path in the collaboration detection algorithm.

4.3 Collaboration Detection Algorithm 47

Figure 4.8: Collaboration detection for two–dimensional multi–valued fields

For the collaboration detection algorithm the following collaboration elements are relevant:

• Collaboration fields

• Assignments to collaboration fields
In class–based implementations, a participant is added to a collaboration by assigning the
corresponding collaboration field.

• Collaboration-related methods and constructors
The methods and constructors are relevant to provide the differentiation between multiple
separate collaborations and the indirect/direct collaboration classes.

4.3.1 Invariant Detection

The invariant detection uses the concepts defined in section 3.3.2. The algorithm needs to recognise
the patterns that constitute a structural or value–based invariant.

Structural Invariants

Some structural invariants are defined by the following code elements in class–based implemen-
tations, others are implicitly defined by the type of the collaboration field. These patterns occur
before the collaboration field is assigned, i.e. in a collaboration–related method or constructor.
Figure 4.3.1 shows the structural invariants.

48 4 The Relationship Detector

total The collaboration field is assigned a value in a
collaboration–related constructor.

partial Not enforced, is the default value if totality is not
enforced.

surjection For single–valued collaboration fields:
check if(collaboration_field <> null){...}

For multi–valued collaboration fields:
check for each collaboration element:
if(element <> null){...}

injection Check the class that is referenced by the collabora-
tion field
For a class with a single–valued collaboration field:
check if(collaboration_field <> null{...})

For a class with a multi–valued collaboration field:
check for each collaboration element:
if(element <> null{...})

bijection If both injection and surjection apply

symmetric For single–valued collaboration fields:
check
if(collaboration_field.collaboration_field == this{...})

For multi–valued collaboration fields:
check for each collaboration element:
if(element.collaboration_field == this{...})

antisymmetric For single–valued collaboration fields:
check
if(collaboration_field.collaboration_field <> this{...})

For multi–valued collaboration fields:
check for each collaboration element:
if(element.collaboration_field <> this{...})

reflexive For single–valued collaboration fields:
check if(collaboration_field == this{...})

For multi–valued collaboration fields:
check for each collaboration element:
if(element == this{...})

irreflexive For single–valued collaboration fields:
check if(collaboration_field <> this{...})

For multi–valued collaboration fields:
check for each collaboration element:
if(element <> this{...})

Table 4.1: Structural invariants

4.3 Collaboration Detection Algorithm 49

Value-based Invariants

Value-based invariants may occur in many different patterns. The common characteristic they
share is that they occur as as if statements in a method that assigns a collaboration field. Value-
based invariants are usually checked in class–based implementations before a participant is added.
Depending on the collaboration implementation option, the value–based condition is checked at a
different location in the code - wherever participants are added to a collaboration. The following
code patterns point to a value–based invariant:

• Binary collaboration controlled by class A
The controlling class A contains the following code pattern. The value–based condition
contained in the if clause is an example, as are the method name and the argument type.
The pattern shows the assignment for a single–valued collaboration field. For a multi–
valued collaboration field, the assignment is replaced by the corresponding method call, e.g.
list.add(b) for a List collection item.

class A{

public void addToCollaboration(B b) {

if(observedValue == targetValue) {

...

collaboration field = b

...

}

}

}

Listing 4.2: Invariant pattern: binary controlled by A

• Binary collaboration controlled by class B
The controlling class B contains the following code pattern. The value–based condition
contained in the if clause is an example, as are the method name and the argument type.
The pattern shows the assignment for a single–valued collaboration field. For a multi–
valued collaboration field, the assignment is replaced by the corresponding method call, e.g.
list.add(a) for a List collection item.

class B{

public void addToCollaboration(A a) {

if(lowerTargetRange <= observedValue <= upperTargetRange) {

...

collaboration field = a

...

}

}

}

Listing 4.3: Invariant pattern: binary controlled by B

• Binary collaboration controlled by both class A and B
Both classes A and B contain the following code pattern. Depending on the class–based im-
plementation, some of the invariants may be redundant, once the invariants of both classes
are combined (for instance, both classes A and B may check the same conditions). Again,
the value–based conditions are examples, as are the method names and the parameter types
and the assignment applies to single–valued collection fields.

50 4 The Relationship Detector

class A{

void addToCollaboration(B b) {

if(observedValue == targetValue) {

...

collaboration field = b

...

}

}

}

class B{

public void addToCollaboration(A a) {!

if (observedValue <= targetValue)) {

...

collaboration field = a

...

}

}

}

Listing 4.4: Invariant pattern: binary controlled by A and B

• Binary collaboration controlled by direct collaboration object
The direct collaboration object (named ABCol in the previous section) contains the following
code pattern. Classes A and B do not contain collaboration–related code. 2dimCollection

refers to a two-dimensional collection item that associates instances of A and B.

class ABCol{

public void addToCollaboration(A a, B b) {

if(observedValue >= minimumValue) {

...

2dimCollection.add(a,b)

...

}

}

}

Listing 4.5: Invariant pattern: binary direct collaboration

• Binary collaboration controlled by indirect collaboration object
In the case where the collaboration is controlled by an indirect collaboration object, there
are two options where value–based invariants may be checked:

– In the ABCol object
In this case, the value–based invariant is checked after creating the ABCol instance for
the collaboration and before adding the two participants to the two collaboration fields:

class ABCol{

public void addToCollaboration(A a, B b) {

if(lowerTargetRange <= observedValue <= upperTargetRange) {

...

collaboration field A = a

collaboration field B = b

...

4.3 Collaboration Detection Algorithm 51

}

}

}

Listing 4.6: Invariant pattern: binary indirect collaboration

– In the ABColCollection object
The other possibility is to check the value–based invariants after creating the ABCol

instance and adding the two collaboration fields a and b. The following code pattern
points to this version:

class ABColCollection{

public void addToCollaboration(ABCol abCol) {

if((lowerTargetRange <= abCol.getObservedValueA() <= upperTargetRange)

&& (lowerTargetRange <= abCol.getObservedValueB() <= upperTargetRange)){

...

abColCollectionItem.add(abCol)

...

}

}

}

Listing 4.7: Invariant pattern: binary indirect collaboration

• Ternary collaboration controlled by indirect collaboration object
As with the binary collaboration controlled by an indirect collaboration object, there are
two possibilities where to check value–based invariants:

– In the ABCCol object
In this case, the value–based invariant is checked after creating the ABCCol instance for
the collaboration and before adding the three participants to the three collaboration
fields:

class ABCCol{

public void addToCollaboration(A a, B b, C c) {

if(observedValue == targetValue) {

...

collaboration field A = a

collaboration field B = b

collaboration field C = c

...

}

}

}

Listing 4.8: Invariant pattern: ternary indirect collaboration

– In the ABCColCollection object
The other possibility is to check the value–based invariants after creating the ABCCol

instance and adding the three collaboration fields A, B and C. The following code pat-
tern points to this version:

class ABColCollection{

public void addToCollaboration(ABCol abcCol) {

if((lowerTargetRange <= abCol.getObservedValueA() <= upperTargetRange)

52 4 The Relationship Detector

&& (lowerTargetRange <= abCol.getObservedValueB() <= upperTargetRange)

&& (lowerTargetRange <= abCol.getObservedValueC() <= upperTargetRange)){

...

abcColCollectionItem.add(abcCol)!}}

...

}

}

}

Listing 4.9: Invariant pattern: ternary indirect collaboration

Depending on the structure of the if-clauses that contain the patterns above, the constraints
may be connected in a logical AND operator or in a logical OR operator.

AND If the if-clauses containing a certain collaboration
field assignment are nested (i.e. one is contained
within the other), then the value–based invariant re-
sults from the AND relation of both if-conditions. This
property is recursive.

OR If the if-clauses containing a certain collabora-
tion field assignment are on the same level (i.e.
if(..){...} else if(...) {...} else {}), then the
value–based invariant results from the OR relation of
their if-conditions.

4.4 Design 53

4.4 Design

In the following section, we provide an overview of the design of the relationship detector. First,
we show the components and their contribution to the relationship detector. Then we describe
the problems and implementation decisions we faced upon designing the tool.

4.4.1 Components

Figure 4.4.1 shows the different packages that constitute the relationship detector. Each package
groups the classes and interfaces that provide a particular service, such as the statistics service in
the statistics package. In the following we will therefore refer to these packages also as modules.
The implementation section 4.5 describes the relationship detector in more detail.

Figure 4.9: Package level view of the relationship detector

main

The main package contains the classes that form the core elements of the relationship detector.
This module performs the relationship detection and controls the other modules. Figure 4.4.1
shows the main package.

Figure 4.10: main package

containers

The containers package includes the data structure classes for the relationship detector. The
algorithms in the main module use these containers to store intermediate and final results. The
module provides storage for classes, field, methods and inheritance structures. Figure 4.4.1 shows
the container package.

54 4 The Relationship Detector

Figure 4.11: containers package

collaboration classes

This module contains the the collaboration classes: for each collaboration implementation option,
there is a corresponding collaboration class - for instance, BinaryIndirectCollaboration. Whenever
the collaboration algorithm detects a collaboration, it instantiates a new collaboration class and
stores the relevant information in it. The collaboration classes share a common interface, to
provide uniform access to the collaboration classes - without having to know the implementation
option. Figure 4.4.1 shows the collaboration classes package.

Figure 4.12: collaboration classes package

statistics

The classes in this module gather and store statistical information about the Relationship Detec-
tion. For instance, information such as the number of methods that are collaboration related. The
statistics also show how a program would be affected by transforming it into a relationship–based
implementation - for instance, how many instructions would become obsolete. Figure 4.4.1 shows
the statistics package.

Figure 4.13: statistics package

4.4 Design 55

invariants

This package contains the data structures for the different types of invariants - structural and
value–based. Whenever an invariant is detected, the algorithm adds the information to the invari-
ant data structures. The collaboration classes have a reference to their invariants. Figure 4.4.1
shows the invariants package.

Figure 4.14: invariants package

4.4.2 Problems and Implementation Decisions

In the following sections we describe the problems we encountered in the relationship detector
implementation. Some of these problems are inherent to static bytecode analysis, others are due
to limitations within the bytecode analysis framework. We then present our solutions to the
problems, grouped into strategies and heuristics. Strategies work correctly for the cases where
they apply, but are not able to cover the whole problem domain (i.e. they only offer a solution in
some cases). Heuristics are approximations that are used whenever a straightforward solution or
strategy is not available. We explain why our strategies and heuristics apply and show where the
limitations lie.

Problem: Missing Instance Name Information

The relationship detector performs a static analysis of the java bytecode. This means that no
dynamic information is available, such as the actual values that are passed. For instance, we can
derive that an integer i is increased by one: i++, but not the actual value of i before and after the
instruction. In certain cases, the collaboration detection algorithm needs the names (and with them
the possibility to derive the type) of elements such as fields, methods, variables and arguments.
Some bytecode instructions provide such information, as for example a GETFIELD instruction: the
owner type and the field name are available. Others, as for example an INVOKEVIRTUAL instruction
provide neither the name of the target reference nor the name of the arguments that are passed
to it. For this purpose, we need to derive the missing names from the context of the previous
instructions.

Solution

For this purpose, we introduce an additional data structure: the operand expression stack. When
a bytecode instruction is executed at runtime, it removes a certain number of operands from the
stack, and pushes the results back to the stack. These changes to the stack happen in a predefined
way for each bytecode instruction - as defined in the virtual machine specification [22]. For instance,
an INVOKEVIRTUAL bytecode instruction (a method instruction) pops the target reference and the
arguments from the stack and pushes nothing back. The appendix gives a list of the bytecode
instructions covered and shows the operand stack rules. For each of the bytecode instructions,
the stack follows the same rules as for the regular operand stack: elements are popped from the
stack and new elements are pushed to the stack, according to these rules. The difference is that
while the operand stack is a runtime concept and contains values, the operand expression stack is

56 4 The Relationship Detector

static and contains expressions. As an example, lets have a look at an int instruction: IADD. The
operand stack is an element of the JVM specification, while the expression stack is part of our
implementation. The rules for the operand stack are the following:

1. pop integer values value1 and value2 from the operand stack

2. compute the addition result = value1 + value2

3. push the result to the operand stack.

Figure 4.4.2 shows the operand stack before and after an example of a IADD operation.

Figure 4.15: operand stack before (left) and after (right) the IADD instruction

For the operand expression stack, the following rules apply:

1. pop integer expressions exp1 and exp2 from the expression stack

2. generate the addition expression exp1 + exp2.

3. push the addition expression to the expression stack.

Figure 4.4.2 shows the operand expression stack before and after an example of a IADD operation.

Figure 4.16: expression stack before (left) and after (right) the IADD instruction

The operand expression stack provides the additional information that is necessary for the
relationship detector. Due to compiler optimisations, there are cases where the operand expression
stack does not provide the correct information. Where there is a definite solution that does not
rely on the operand expression stack, we prefer that solution. The operand expression is used,
whenever other approaches fail to provide a solution.

4.4 Design 57

Problem: Collection Element Type Inference

As shown in the previous sections, collaboration fields can be either single or multi–valued.
Whereas single–valued collaboration fields can contain references to at most one object at run-time,
multi–valued collaboration fields can reference several objects simultaneously.

For single–valued collaboration fields, determining their type in bytecode is straightforward: it
can be derived directly from the declaration of the field. However, for multi–valued collaboration
fields, the situation is more complex. While the type of the field (i.e. a collection item type) is easily
determined, it is the type of the elements stored in the collection item that is needed to deduce the
collaboration partner. The element type is the type of the parameter that is added to the collection
item. This is done by calling specific methods of the collection item, for example, to add an element
to a java.util.LinkedList the method java.util.LinkedList.add() is called. This is where the
key problem emerges: The library collection items (such as java.util.List, java.util.TreeMap,
etc.) provide storage for all kinds of classes and therefore have an interface that is compatible to
all by taking java.lang.Object arguments for their methods. In Java bytecode, adding an element
to a collection item is represented by a method instruction.

Java 1.5 SDK [2] introduces several extensions to the Java programming language, one of which
is the notion of generics. Generics allow abstractions over types in a similar (but not equivalent)
fashion to C++ templates. For instance, generics can be used to specify the type of elements that
a container, such as a list, may store. The following code snippet (taken from the Java generics
tutorial [38]) shows the application of generics for a list type:

myIntList.add(new Integer(0));

Integer x = myIntList.iterator().next();

In principle, generics would provide a solution to the problem stated above - namely inferring
the element types of a collection item. However, this information is not directly visible in the Java
bytecode. This is due to the way generics are handled by the compiler. Generics are implemented
in the Java compiler as a concept called erasure. Erasure is a front-end conversion of the source,
i.e. the Java source code containing generics is translated into Java source code without generics.
In principle, the following steps are executed:

• All parametrised type information is discarded, e.g. List<Integer> is translated to List.

• Any remaining type variables that are used are replaced by the upper bound of the type
variable - usually java.lang.Object

• Type correctness is ensured by introducing casts.

Accordingly, the List example is translated to the following source code:

myIntList.add(new Integer(0));

Integer x = (Integer) myIntList.iterator().next();

To determine the element types of collection items, we implement the strategies in tables 4.2
and 4.3 and the heuristics in tables 4.4 and 4.5.

58 4 The Relationship Detector

Solutions

Strategy

Applies when A collection element is retrieved from the collection
item

Goal Determine the element type of a collection item
Case A The collection item is one-dimensional

When a collection element is retrieved from a col-
lection item, it needs to be cast to the actual ele-
ment type. If not, then the collection element would
be of type java.lang.Object. We therefore monitor
all casts to elements that are retrieved from a one-
dimensional collection item. The element type of the
collection item is then set to the type of the cast
instruction. For instance, if there is an instruction
(ElementTypeA)list.get(i)), then the element type
of list is set to ElementTypeA.
If there are multiple cast instructions to the same
collection item: then the element type is set to the
most general. For example, if class Super is a super
class of class Sub and collection item retrievals from
list are cast to Super and to Sub, then the element
type of list is set to Super. This is due to the concept
of polymorphism, where a sub class may be passed
where a super class is expected, but not vice versa.
For this purpose, a tree data structure is generated
for the class inheritance hierarchy. Each class has
its superclass as parent and its inheriting classes as
children.

Succeeds If there is a retrieval of a collection element, then the
strategy correctly identifies the element type.

Fails If there is no retrieval, the collection element type
cannot be determined.

Table 4.2: Strategy: one dimensional collection item element types

4.4 Design 59

Strategy

Applies when A collection element is retrieved from the collection
item

Goal Determine the element type of a collection item
Case B The collection item is two-dimensional

The same strategy applies as for the one-dimensional
collection items. Additionally, there needs to be
a differentiation between casts to the two element
types: the key and the value. We use the notation
from the notion of HashMaps: the key is the primary
element in the two-dimensional collection item, while
the value is the secondary element that is associated
with the primary one. For this purpose, we sepa-
rate the retrieval methods that retrieve the key from
those that retrieve the value. For each of these, we
separately look at the cast instructions.
If there are multiple cast instructions to the same
collection item: then the element type is set to the
most general of the two. For example, if class Super

is a super class of class Sub and collection item re-
trievals from list are cast to Super and to Sub, then
the element type of list is set to Super. This is due
to the concept of polymorphism, where a sub class
may be passed where a super class is expected, but
not vice versa.

Succeeds If there is a retrieval to both key and value collec-
tion element, then the strategy correctly identifies
both element types. If there is a retrieval to only
key or only value, then only that element type can
be determined.

Fails If there is no retrieval, the collection element type
cannot be determined.

Table 4.3: Strategy: two dimensional collection item element types

60 4 The Relationship Detector

Heuristics

Givens The correct operand expressions are on the stack for
the method instruction. This may not apply in the
case of compiler optimisations.

Goal Determine the element type of a collection item
Case A The collection item is one-dimensional

For each method instruction that is declared by a
one-dimensional collection item, we first determine
the relevant argument, i.e. the one that contains the
element to be added. For example, for the method in-
struction insertElementAt(Object obj, int index)

declared by Vector, the first argument contains the
element to be added to the vector. Then we remove
the operands from the expression stack, according to
the rules for the method instructions:
For an INVOKEVIRTUAL, INVOKEINTERFACE or
INVOKESPECIAL instruction: remove the arg . For
an INVOKESTATIC instruction: remove the arguments
from the expression stack (last argument is at the
top). If the relevant argument is a field or a local
variable, then determine its type. If the type is a
relevant reference type, set the element type of the
collection item to it. If the relevant argument is any
other expression (i.e. another method call), then do
nothing.

Succeeds If the relevant argument is a field or a local variable
and the condition stated in Givens applies.

Fails If the compiler performs code optimisations, then the
operand expression stack may not have the correct
expressions for the method instruction. For instance,
compiler optimisations may prevent a certain field
from being loaded twice, i.e. the second load in-
struction will be absent from the bytecode. This
means that the relevant field or variable is also not
pushed to the operand expression stack (because the
instruction is absent) and that the following opera-
tion does not have the correct operand expressions
on the stack.

Table 4.4: Heuristics: one dimensional collection item element types

4.4 Design 61

Heuristics

Givens The method instruction has the correct operand ex-
pressions on the expression stack.

Goal Determine the element type of a collection item
Case A The collection item is two-dimensional

For each method instruction that is owned by a
two-dimensional collection item, we first determine
the relevant arguments, i.e. the ones that con-
tain the two elements to be added. Following the
terminology for Map data structures, the first el-
ement is denoted by key, while the second is de-
noted by value. For example, for the method in-
struction put(Object key, Object value) owned by
HashMap, the first argument is the key, the second the
value. Then we remove the operands from the ex-
pression stack, according to the rules for the method
instructions:
For an INVOKEVIRTUAL, INVOKEINTERFACE or
INVOKESPECIAL instruction: remove the argu-
ments from the expression stack (last argument
is at the top), then the target reference. For an
INVOKESTATIC instruction: remove the arguments
from the expression stack (last argument is at the
top). If the relevant arguments are fields or local
variables, then determine their types. If the types
are relevant reference types, set the element types
of the collection item to them. If the relevant
arguments are any other expressions (i.e. method
calls), then do nothing.

Succeeds If the relevant arguments are fields or local variables
and the condition stated in Givens applies.

Fails In any other case.

Table 4.5: Heuristics: two dimensional collection item element types

62 4 The Relationship Detector

Problem: Determining Target Name of Method Call

This problem refers to determining on which instance a certain method instruction is called. Again,
this is relevant for the collection items, where collaboration participants are implicitly assigned
by calling a method that adds an element to the collection item. As an example, the method call
list.add(element) is compiled to the following bytecode statement:
INVOKEVIRTUAL java/util/LinkedList.add (java/lang/Object;) From the method instruction above,
we can infer the type of the field on which the method is invoked (i.e. the owner), in this case
java/util/LinkedList. The name of the field cannot be determined from the method instruction in
the bytecode.
We address this problem by applying the heuristics defined in table 4.6

Solution

Heuristics

Givens The method instruction has the correct operand ex-
pressions on the expression stack. In particular, the
target reference expression is correct.

Goal Determine name of the field on which a method in-
struction is called

Case
For each method instruction that is owned by rel-
evant reference type, we remove the operands from
the operand expression stack, according to the rules
for the method instructions:
For an INVOKEVIRTUAL, INVOKEINTERFACE or
INVOKESPECIAL instruction: remove the argu-
ments from the expression stack (last argument
is at the top), then the target reference. For an
INVOKESTATIC instruction: the target reference is the
owner type.

Succeeds If the conditions in Givens apply.
Fails If the conditions in Givens do not apply.

Table 4.6: Heuristics: determine name of target reference

4.4 Design 63

Problem: Invariant Detection

Both structural and value based invariants occur as if statements in a method that assigns a col-
laboration field. The corresponding bytecode instructions are a set of tests for certain conditions,
for example a IF_ACMEQ tests whether two references are equal, while IFNONNULL tests whether a
reference is equal null. The invariant detection needs to be able to distinguish positive invariants
from negative invariants. Positive invariants are invariants that add an element to a collaboration
if the condition evaluates to true, while negative invariants are the opposite. A compiler does not
necessary translate a positive invariant into a positive invariant in bytecode. Instead, it may invert
the condition and switch the corresponding code. For instance, an instruction

... code part 1

}

else {

... code part 2

}

may be optimised to

... code part 2

}

else {

... code part 1

}

The jump instruction bytecode instructions that the if statements are translated to refer to
labels. These labels are positions to code blocks in the bytecode, to which the program execution
jumps if a certain condition is fulfilled. For instance, an instruction IF_ACMEQ L2 jumps to label L2
if the two references are equal. Otherwise execution continues in the next code block.
We solve this problem by applying the strategy defined in 4.7

64 4 The Relationship Detector

Solution

Strategy

Givens The algorithm has detected an invariant expression
in a collaboration–related method. The strategy uses
the operand expression strategy to determine the
operand names of the jump instructions.

Goal Determine the positive invariant, i.e. the one that
leads to adding an element to a collaboration

Case
In the preliminary visitor, store the sequence of
labels for each method. For each collaboration–
related method, store the label in which the collab-
oration field is assigned. When an invariant pattern
invariant_pattern is encountered in a collaboration–
related method, extract two labels: the label LTrue

to which execution jumps if the condition evaluates
to true and the label LFalse which follows (i.e. the
one execution continues to if the condition evalu-
ates to false). If the LTrue label contains the assign-
ment to the collaboration field, then the invariant
was not inverted by the compiler and is the original
invariant_pattern. If the LFalse label contains the
assignment, the compiler has inverted the pattern.
In this case, the invariant_pattern is reverted. For
example, in a pattern the operand <= is translated to
>.

Succeeds The strategy finds all invariant patterns, as defined
in the section 3.3.2.

Fails If the operand expression strategy fails to find the
correct operand names, for example due to compiler
optimisations.

Table 4.7: Strategy: determine positive invariant

4.5 Implementation 65

4.5 Implementation

The relationship detector carries out its analysis in four different phases, with each performing a
specific task, as shown in figure 4.5. Each phase builds upon the results of the previous phases and
provides the foundation for the following ones. The relationship detector uses the ASM framework
to traverse the different bytecode elements. It relies on the visitor pattern: there are visiting
methods for the bytecode elements, from the most top-level (i.e. class level) to the most low-level
(i.e. instructions). The framework provides the local information for each of these elements, but
not the global context information. For instance, the ASM framework gives the following infor-
mation for a method instruction: the type of instruction, owner, name, and number and types of
arguments. However, it does not provide the global context information, such as the method and
class containing the particular method instruction. One of the key elements of the relationship
detector is therefore to build data structures that store the context information.

The configuration phase loads the configuration settings for the relationship detector to work
with. The second phase performs a preliminary analysis, preparing data structures for the main
relationship detection phases. The local relationship detection phase follows the detection
algorithm and extracts all elements that can be determined locally. The global relationship
detection then completes the relationship detection from a global point of view. The results of
these stages are then combined into statistical information and other output files.

4.5.1 Phase One: Configuration

In the first phase of the relationship detector, the configuration settings are included. These
settings are stored in a configuration file and are loaded when the relationship detector is started.
The advantage of this solution is that adaptations to the configuration can be executed without
changing and recompiling the source code. The configuration file indicates the collection item
classes that we consider relevant for uncovering hidden relationships, classified as one-dimensional
and two-dimensional. These library classes, such as java.util.LinkedList, are used to store multi–
valued collaboration references. These library classes are subject to changes with each new Java
SDK version and need to be kept up to date accordingly. The configuration file also stores the
addition and retrieval methods for each of the collection items and defines the classes that are
excluded from the relevant references. For example, javax.swing.* classes are excluded, as they
define the user interface and are therefore not application specific. However, this configuration
can be adapted if preferred. For a complete list of the collection item configuration, please refer
to the appendix C.

4.5.2 Phase Two: Preliminary Analysis

The next phase prepares some of the data structures for the relationship detection phases. A
preliminary visitor visits each input class file, using the ASM framework. For each class file, it
instantiates a class container data structure. It also generates and stores the data structures for
each method in the class, and adds an index of the local variables. Each of the class containers
is then inserted into a global data structure, the global class container. In addition, the prelim-
inary analysis phase generates the inheritance hierarchy structure for the class containers. The
inheritance data structure consists of a tree, with the java.lang.Object class as a root. Each class
container node has its super class as parent node, and any inheriting class container nodes as
child nodes. The tree structure allows different types of queries that are required in further steps.
For instance, the path from a class container node to the root node defines the class inheritance
hierarchy for the given class. It is also possible to determine the lowest common superclass of two
classes, by finding the lowest common ancestor in the tree. The inheritance hierarchy is important
for various reasons: It is necessary to determine the most common superclass, if elements of col-
lection items are cast to different types. This problem is described in more detail in section 4.4.2.
On the other hand, the inheritance hierarchy is essential for the transformation of class–based

66 4 The Relationship Detector

Figure 4.17: relationship detector phases

4.5 Implementation 67

to relationship–based implementations. As part of the transformation, inheritance hierarchies are
replaced by the its super class, with member interposition providing the concept of roles. For more
details, please refer to section 3.4.7.

4.5.3 Phase Three: Local Relationship Detection

This phase constitutes the main part of the relationship detector. In a first part, a local visitor
performs the analysis necessary for the second part. The ASM framework provides the interface
to visit a class, field, method and other declarations and the corresponding bytecode instructions.
The visitor performs the following steps:

• Classify the global references: relevant or not
The key to the relationship detection algorithm, and also its starting point, are the relevant
references. The local visitor has to determine, which references are relevant. Single-valued
references are relevant if there type is not on the list of classes to exclude, as defined in
the configuration. Multi-valued references are relevant if their element types are relevant
references.

• Determine the methods that assign relevant references
This is essential to later determine the collaboration implementation option. For instance,
a binary indirect collaboration class ABCol must have at least one method that assigns both
relevant references A and B.

• Identify possible invariants
The visitor also collects code patterns that point to possible invariants. There are specific
patterns for structural invariants, as for the value–based invariants. The concept behind
these ideas is defined in section 3.3.2.

The second part consists of applying the relationship detection algorithm, as defined in figure
4.3 at the beginning of this chapter. Essentially, the local relationship detector performs the
detection that can be done locally, i.e. from within a given class. Almost the whole algorithm
can be covered, with the exception of the matching collaboration classes. For instance, the local
relationship detection can determine that there are two binary collaborations Binary collaboration
controlled by A with reference to B and Binary collaboration controlled by B with reference to A.
However, it cannot infer that together they constitute a Binary collaboration controlled by A and
B, i.e. that the two binary collaboration are matching collaboration classes. This is done in the
next phase. The local relationship detection determines the collaboration option and instantiates
a collaboration class instance. For each collaboration implementation option, there is aseparatee
collaboration class. This collaboration class contains all necessary information to identify the
collaboration and provides the basis for the transformation to relationship–based code.

4.5.4 Phase Four: Global Relationship Detection

As mentioned above, the global relationship detection performs the steps of the collaboration
detection algorithm that cannot be performed by the local relationship detection. This restriction is
due to the fact that the local detection does not know the other collaboration classes. For example,
if it is the first class to be analysed, then it is not possible to determine if there is a matching
collaboration class. The global relationship detection however has access to all collaboration
classes. It iterates over them and finds the matching collaboration classes. The following items
show the collaboration classes and the matching collaboration classes that constitute them:

• Binary collaboration controlled by A and B
Binary collaboration controlled by A with reference to B and Binary collaboration controlled
by B with reference to A.

68 4 The Relationship Detector

• Binary indirect collaboration
Binary collaboration controlled by A with a multi–valued reference to an ABCol class and a
ABCol class with references to A and B.

• Ternary indirect collaboration
Binary collaboration controlled by A with a multi–valued reference to an ABCCol class and a
ABCCol class with references to A, B and C.

4.5.5 Output

The relationship detector provides a set of output files:

• Statistics
The statistics gather information about the input and the corresponding collaboration classes.
They are the basis for further analysis, as described in the evaluation chapter of this thesis.
The statistics compare the total occurrence of a certain concept, with the occurrence of the
collaboration–related concept - for instance, it computes the percentage of collaboration–
related methods to the method total. It also shows the number of new classes that would
be generated upon transformationn from class to relationship based implementations.

• Collaborations
The collaborations output shows the different types of collaborations, the participating types
and information such a collaboration–related methods, structural and value–based invariants.

• Relationships
The relationship output gives the structure of the relationships that would be generated
for the transformation from class- to relationship–based implementation. Each relationship
contains the participant classes, the methods moved from the classes, and the value–based
and structural invariants.

• Inheritance structure
This output file shows the class inheritance structure of the input class files.

Chapter 5

Evaluation

In this chapter, we evaluate the results of the relationship detector tool. For this purpose we
analyse a set of programs and compare the output of the tool with our analysis of the code. The
examples are taken from different areas: starting with a set of small Java programs, we then
progress onto more complex applications, such as a graphical framework. The results provide
a basis to discuss the occurrence of collaborations in object–oriented programs. Then we put
our results into a broader perspective. Based on the collaborations that the relationship detector
extracts, we show what benefits can be gained from introducing relationships as first-class concepts.

5.1 Relationship Detector Results

We compare the results of the relationship detector with our manual extraction of the collabora-
tions in the code. Our qualitative analysis is based on the application of the following quantitative
metrics:

Classes

• Number of classes
The total number of java class files that the relationship detector receives as input.

• Number of collaboration classes
The number of collaborations that the relationship detector identifies. We also specify the
number of collaborations for each of the collaboration implementation options. The to-
tal number of collaboration classes may exceed the number of classes. This is due to the
circumstance that a class can participate in multiple collaborations.

• Number of collaboration control classes
This is the number of classes that contain code where collaboration classes are instantiated
or where method calls to such objects are made.

Methods

• Number of methods
The total number of methods in all classes.

• Number of collaboration–related methods
This is the number of collaboration–related methods for all classes. This provides a hint as
to how many methods are moved to the relationship in the transformation to a relationship–
based implementation - or become obsolete.

69

70 5 Evaluation

• Percentage of collaboration–related methods
This metric relates the collaboration–related methods to the total number of methods. Again,
this provides an insight into how many methods are connected to the collaborations.

Lines

• Lines of bytecode
As the relationship detector analyses bytecode, we use the number of bytecode instructions
as our metric, instead of lines of sourcecode. Usually, the lines of bytecode exceed the number
of lines of sourcecode and would not allow a comparison of the two. However, the ratio of
collaboration related lines vs. total lines should yield approximately the same values for
bytecode and sourcecode comparisons.

• Lines of collaboration–related bytecode
The number of lines of collaboration–related bytecode is computed as follows:

– declarations of collaboration fields;

– assignments to single–valued collaboration fields
the corresponding PUTFIELD instruction takes the target reference (owning the field) and
the value from the stack, then executes the instruction. Therefore, such an assignments
amounts to three collaboration–related bytecode instructions.

– assignments to multi–valued collaboration fields
following the same argument as above, the number of instructions depends on the
number of arguments. The INVOKEVIRTUAL, INVOKESPECIAL and INVOKEINTERFACE amount
to numArguments + 2 (= arguments + target reference + the instruction itself), the
INVOKESTATIC to numArguments + 1 (no target reference).

– method calls with a collaboration field as target reference.

– field instructions on a collaboration field.

– collaboration control code instructions
such as calls to collaboration–related methods

• Lines of collaboration control bytecode
Instantiations of collaboration classes and method calls to collaboration–related methods.

• Lines of bytecode not necessary after transformation
The number of lines that become obsolete after a transformation to a relationship–based im-
plementation is computed in a conservative manner. These lines consist of the instructions
that can be positively identified as not necessary after transformation, i.e. the definite can-
didates. This is the case for collaboration field declarations, collaboration field assignments
and retrievals and structural invariant code.

5.1 Relationship Detector Results 71

5.1.1 University Example

The university example is a slightly modified version of the example given in section 3.2.7. In
particular, we added some structural and value–based invariants to the code and some extra
classes. For the complete code, please refer to the appendix C. Figure 5.1.1 shows the UML model
for the university example.

Figure 5.1: University example

Overall Program Metrics

Total
Classes 8
Methods 19
Lines of bytecode 343

Collaborations

The relationship detector identifies the following four collaborations. Each collaboration corre-
sponds to one of the collaboration implementation options.

72 5 Evaluation

• Binary indirect collaboration

Coll. option element Class
Class A Lecturer single valued

Class B Location single valued

Class ABCol Course

Class ABColCollection University

Structural invariants Partial function(A, B)

Partial function (B, A)

Value based invariants none

• Binary indirect collaboration

Coll. option element Class
Class A Building single valued

Class B Room single valued

Class ABCol Location

Class ABColCollection Lecturer

Structural invariants Partial function (A, B)

Partial function (B, A)

Value based invariants none

• Binary collaboration controlled by Course and Student

Coll. option element Class
Class A Course multi valued

Class B Student multi valued

Structural invariants Partial relation (A, B)

Partial relation (B, A)

Value based invariants participants.size()+1

<= maxStudents

courses.size()+1

<= maxCourses

5.1 Relationship Detector Results 73

• Binary collaboration controlled by Lecturer and Lecturer

Coll. option element Class
Class A Lecturer single valued

Class B Lecturer multi valued

Structural invariants Partial irreflexive relation (A, B)

Partial irreflexive relation (B, A)

Value based invariants none

• Collaboration-related control code
There is collaboration–related control code in the following classes:

Student

University

Relationships

The relationship detector generates the basic structure for the four relationships:
relationship LecturerLocationRelationship(){

participants(Lecturer lec, Location loc)

...

}

relationship BuildingRoomRelationship(){

participants(Building b, Room r)

...

}

relationship CourseStudentRelationship(){

participants(Course c, Student s)

...

}

relationship LecturerLecturerRelationship(){

participants(Lecturer lec1, Lecturer lec2)

...

}

These are the classes that are associated in the class–based implementation by using the various
collaboration implementation options. After transformation to the relationship–based implemen-
tation however, the implementation option that was present in the class–based implementation,
is no longer visible. So, for example, formerly binary indirect collaborations and collaborations
controlled by A are no longer distinguishable. The relationships are named according the the
naming convention, with the two participating classes and a suffix.
Seven of the total 19 methods are moved from classes to the relationships, 36% of the original
number of methods. The transformation renders 49 lines of bytecode obsolete, which corresponds
to 23% of the total lines of bytecode.

Assessment

Table 5.1 summarises the relationship detector results for the university example.
The relationship detector recognises all collaborations, structural invariants and value–based

invariants.

In comparison to the relationships, the collaborations in the class–based implementation affect
more classes: seven classes together create four collaborations. For instance, to associate the classes

74 5 Evaluation

Total %
Classes 8
Collaborations 4
Methods moved 7 36%
Collaboration lines 120 35%
Obsolete lines 49 23%

Table 5.1: Relationship detector results for the university example

Lecturer and Location, the indirect collaboration also needs the classes Course and University.
The two participants could also be associated directly in a binary collaboration controlled by one
of them (or both). However, the advantage of the indirect collaboration is that it also provides
an easy access to all participants in a collaboration, through the ABCColCollection class, in this
case University. The relationship–based implementation achieves the same effect with much less
code and complexity. The relationship Course associates the participants Lecturer and Location

and provides a retrieval mechanism to access all elements that does not have to be implemented
by the programmer.
The complexity mentioned above is also apparent in the number of methods that are collaboration–
related. Almost half at least partly serve the purpose of adding or retrieving participants from a
collaboration. Approximately a fourth of the lines of bytecode become obsolete in the classes, by
introducing the notion of relationships.

5.1.2 Calendar Example

Figure 5.1.2 shows the structure of the calendar example. The example is taken from the course
“Introduction to programming in the large” at the ETH in Zurich. The calendar application
contains appointments, days and months, and provides a view for each of these. For the complete
code, please refer to the appendix C.

Figure 5.2: Calendar example

Overall Program Metrics

Total
Classes 7
Methods 35
Lines of bytecode 1510

5.1 Relationship Detector Results 75

Collaborations

The relationship detector identifies the following 5 collaborations:

• Binary collaboration controlled by AppointmentView

Coll. option element Class
Class A AppointmentView single valued

Class B Appointment single valued

Structural invariants Partial function (A, B)

Value based invariants none

• Binary collaboration controlled by DayView

Coll. option element Class
Class A DayView single valued

Class B Day single valued

Structural invariants Partial function (A, B)

Value based invariants none

• Binary collaboration controlled by MonthView

Coll. option element Class
Class A MonthView single valued

Class B Month single valued

Structural invariants Partial function (A, B)

Value based invariants none

• Binary collaboration controlled by Appointment

Coll. option element Class
Class A Day single valued

Class B Appointment multi valued

Structural invariants Partial relation (A, B)

Value based invariants if(i==

appointments.size()){

76 5 Evaluation

• Binary collaboration controlled by Month

Coll. option element Class
Class A Month single valued

Class B Day multi valued

Structural invariants Partial relation (A, B)

Value based invariants none

• Collaboration-related control code
The following classes contain collaboration related control code:

AppointmentView

Calendar

Day

DayView

MonthView

Relationships

The relationship detector generates the basic structure of five relationships:

relationship AppointmentViewAppointmentRelationship()(){

participants(AppointmentView view, Appointment app)

...

}

relationship DayAppointmentRelationship(){

participants(Day day, Appointment app)

...

}

relationship DayViewDayRelationship(){

participants(DayView view, Day day)

...

}

relationship MonthDayRelationship(){

participants(Month mon, Day day)

...

}

relationship MonthViewMonthRelationship(){

participants(MonthView view, Month mon)

...

}

These are the classes that are associated in the class–based implementation by using the binary
controlled by A collaboration option.
Six of the total 35 methods are moved from classes to the relationships, 17% of the original number
of methods. The transformation renders 38 lines of bytecode obsolete, which corresponds to 9%
of the total lines of bytecode.

Assessment

Table 5.1.2 summarises the relationship detector results for the calendar example.
The relationship detector recognises all collaborations, structural invariants and value–based

invariants.

5.1 Relationship Detector Results 77

Total %
Classes 7
Collaborations 5
Methods moved 6 17%
Collaboration lines 302 20%
Obsolete lines 28 9%

Table 5.2: Relationship detector results for the calendar example

The calendar example contains a series of binary collaborations controlled by one class only. All
collaborations either have the structural invariant partial relation or partial function. This means
that totality and other properties (such as injection) are not enforced – the function property is
implicitly enforced by a single–valued collaboration field. All collaborations implement the most
basic collaboration option, with binary collaborations controlled by A only. This means that
collaboration–related code is not as prevalent as in other examples. Out of the total number of
lines, 302 are collaboration–related, a ratio of 20%.

5.1.3 Compiler Design Example

This example is the result of the semester project for the class “Compiler Design I” at the ETH
in Zurich. The compiler works for a subset of Java and uses the Yylex and CUP frameworks for
the lexical analysis and parser generation. For the complete code and further information, please
refer to [16].

Overall Program Metrics

Total
Classes 24
Methods 284
Lines of bytecode 12104

Collaborations

The relationship detector identifies 11 collaborations in the compiler design example. In the fol-
lowing, we will provide a summary, instead of a complete coverage of the implementation options.

Total collaborations 11
Binary collaborations 10

Controlled by A 7
Controlled by AB 1
Direct 1
Indirect 1

Ternary collaborations 1
Indirect 1

In addition, there are 6 classes that contain collaboration–related control code. This includes,
for example, instantiations of collaboration classes and calls to collaboration–related methods.

Relationships

The relationship detector defines the structure of the relationships that would be generated when
transforming the compiler example from a class–based to a relationship–based implementation.
The structure includes the participants, the invariants and the methods that would be moved

78 5 Evaluation

from the classes. 32 of the total 284 methods are moved from classes to the relationships, which
is equivalent to 11% of the total number of methods. The transformation renders 293 lines of
bytecode obsolete, which corresponds to 6.0% of the total lines of bytecode.

Assessment

Table 5.3 summarises the relationship detector results for the compiler design example.

Total %
Classes 24
Collaborations 11
Methods moved 31 11%
Collaboration lines 1142 10%
Obsolete lines 293 6%

Table 5.3: Relationship detector results for the compiler example

In this example, the relationship detector fails to identify two elements:

• Collection element type
In class SemanticAnalyzer there is a java.util.LinkedList instance called methods_. How-
ever, no elements are added or retrieved from this list, nor is there any other code containing
this reference. The relationship detector fails in this case due to missing information.

• Collection class for ternary collaboration
The class MethodEnv is the ABCCol class for a ternary collaboration. There is no ABCCol-
Collection class in this example, so the relationship detector cannot recognise it.

The compiler design example does not contain many collaborations, as compared to the other
examples. However, the collaborations have 31 methods that at least partly serve the purpose
of adding and retrieving from the collaboration. In addition, 10% of the lines of bytecode are
collaboration–related. Both the methods and the collaboration-lines point to the fact that, al-
though the collaborations are not as numerous as in other examples, they are more involved, with
more code necessary to implement them. Among the 11 collaborations, the relationship detector
extracts a ternary indirect collaboration. It associates the classes Symbol Node and Table.

5.1.4 JHotDraw Example

JHotDraw [14] is a graphics framework written entirely in Java. It provides a graphics library to
be used by graphics editors for technical and structured graphics. JHotDraw is available under
the GNU library or lesser general public license (LGPL). The framework is unrelated to the topic
of object collaborations and therefore provides some insight into what kinds of collaborations are
found in such a collaboration–unrelated example.

Overall Program Metrics

Total
Classes 600
Methods 5475
Lines of bytecode 130218

Collaborations

Due to the amount of classes, we will provide some core results, instead of covering all collabora-
tion classes.

5.1 Relationship Detector Results 79

Total collaborations 442
Binary collaborations 441

Controlled by A 417
Controlled by AB 0
Direct 9
Indirect 15

Ternary collaborations 1
Indirect 1

In addition, there are 221 classes that contain collaboration–related control code. This includes,
for example, instantiations of collaboration classes and calls to collaboration–related methods.

Relationships

For each of the collaborations, the relationship detector gives the structure of the relationship,
with the participants, the invariants and the methods that would be moved from the classes. 709
of the total 5475 methods are moved from classes to the relationships, 11% of the total number of
methods. The transformation renders 2925 lines of bytecode obsolete, which corresponds to 4.0%
of the total lines of bytecode.

Assessment

Table 5.4 summarises the results of the JHotDraw example.

Total %
Classes 600
Collaborations 442
Methods moved 709 12%
Collaboration lines 8831 7%
Obsolete lines 2925 4%

Table 5.4: Relationship detector results for the JHotDraw example

In this example, the relationship detector fails to identify some elements. We therefore first
assess these issues, then analyse the results as in the previous examples.

• Collection item type inference
One of the main challenges for the relationship detector is inferring the element types of bi-
nary direct collaborations. This collaboration implementation option uses a two dimensional
collection item (such as java.util.HashMap) to associate one collaboration participant with
the other. In one of the direct collaborations, the relationship detector fails to recognise the
type of the second participating class:

Class A org.jhotdraw.framework.Figure

Class B unknown element type

Class ABCol org.jhotdraw.standard.AlignCommandUndoActivity

Structural invariants Partial relation(Figure, unknown)

Value based invariants none

80 5 Evaluation

The relationship detector cannot infer the value type information from the following instruc-
tion:

protected void addOriginalPoint(Figure f) {

myOriginalPoints.put(f, f.displayBox().getLocation());

}

This is due to the restriction that the relationship detector cannot recognise the return type
of nested method invocations.

Collection item inference is also relevant to the other collaboration implementation options,
where a collaboration field is multi valued. Of the 22 multi–valued references, the relation-
ship fails to determine the collection item type in four cases:

org/jhotdraw/util/ReverseListEnumerator

org/jhotdraw/standard/CreationTool

org/jhotdraw/standard/ReverseFigureEnumerator

org/jhotdraw/contrib/CustomToolBar

In all four cases, the classes act as a wrapper class. They are passed a list, to which the
own lists are assigned. The relationship detector fails to infer the type of the collection
item, because there are no additions of elements to the list nor retrievals from the list. The
collection items are handled in their entirety (i.e. as lists).

• Indirect collaboration classes The 15 binary and one ternary indirect collaboration
classes have no ABColCollection (ABCColCollection respectively) classes assigned. Again,
this is due to the fact that the JHotDraw example is a framework. While it provides the
indirect collaboration data structures, it does not instantiate them and store the instances
as ABColCollection elements.

While there are many collaborations in this example, the collaboration–related code is not as
prevalent. This may be due to the fact that the JHotDraw is an example of a framework. It
provides a set of classes to a user to implement an application, using the framework. This also
means that much of the instantiation and therefore collaboration code happens within the user
application, where the framework classes are instantiated, associated and called. Interestingly, the
indirect and direct collaboration options are used where there are many collaboration elements.
For the direct collaboration, the two-dimensional data structure provides fast access to the par-
ticipants: by iterating over the key participants (according to the naming of Maps) and retrieving
the corresponding value elements. The indirect collaborations allow fast access to the participants
through the collection classes ABColCollection (binary) or ABCColCollection (ternary).

5.1.5 Jasper Reports Example

Jasper Reports [32] is an open source reporting engine, used for business intelligence (reporting,
OLAP) in Web and desktop applications. It can produce its output in various formats, such as
PDF, XML or HTML.

Overall Program Metrics

Total
Classes 1850
Methods 18930
Lines of bytecode 659006

5.1 Relationship Detector Results 81

Collaborations

As in the previous example, we will provide some core results only, instead of covering all collab-
oration classes.

Total collaborations 1242
Binary collaborations 1198

Controlled by A 792
Controlled by AB 0
Direct 284
Indirect 122

Ternary collaborations 44
Indirect 44

In addition, there are 628 classes that contain collaboration–related control code. This includes,
for example, instantiations of collaboration classes and calls to collaboration–related methods.

Relationships

1897 of the total 18930 methods are moved from classes to the relationships, which is equivalent to
10% of the total number of methods. The transformation renders 17374 lines of bytecode obsolete,
which corresponds to 6.0% of the total lines of bytecode.

Assessment

Table 5.1.5 summarises the results for the Jasper Reports example.

Total %
Classes 1850
Collaborations 1242
Methods moved 1897 10%
Collaboration lines 75205 12%
Obsolete lines 17374 6%

Table 5.5: Relationship detector results for the Jasper Reports example

The Jasper Report is another example of a framework. 12% of the bytecode lines are collaboration–
related, with 6% becoming obsolete after transformation. With the dimensions of the example,
these two properties amount to multiples of ten thousands of lines. Interestingly, there are no
binary collaborations controlled by both classes in over a thousand collaborations. All structural
invariants are either partial relations or partial functions, both of which are not explicitly enforced
by the programmer. The partial relation is the default structural invariant, while the partial func-
tion is implicitly enforced by a single–valued collaboration field. Value-based invariants however
occur frequently.

82 5 Evaluation

5.2 Concept Evaluation

We now put our results into a broader perspective and show how they can be generalised. In
particular, we are interested in how introducing relationships as first-class concepts would change
the structure and size of programs.

A first conclusion from our results is that collaborations are a substantial part of the appli-
cations. Collaboration-related methods and lines of code can take up to a fourth of the total
methods and lines. In our examples, the collaboration implementations options occur with vary-
ing frequency. Table 5.6 shows the percentage of the options, compared to the total number of
collaborations.

Coll. Implementation option %
Binary collaboration controlled by A 72%
Binary direct collaboration 17%
Binary indirect collaboration 8%
Ternary indirect collaboration 3%
Binary collaboration controlled by AB 0.2%

Table 5.6: Occurrence of collaboration implementation options

By far the most prevalent option is the binary collaboration controlled by A, the most simple
of all options. In our example, it constitutes almost 3/4 of the total amount of collaborations.
The second most frequent is the binary direct collaboration, with 17% of the total number in our
examples. It is then followed by the binary indirect collaboration option, with 8%. Interestingly,
the ternary collaboration implementation option occurs more frequently than expected – 3% for
our examples. It even appears more often than the binary collaboration controlled by AB imple-
mentation option, which was practically non-existent outside the university example. From these
results we can gather that programmers mostly choose the simplest collaboration option for their
implementation. The option associates the collaboration participants through references, with no
additional indirection supplied. This means that the collaboration can be accessed through one of
the participants only. For instance, if class A is associated with a class B in a binary collaboration
controlled by A, then for a participant A the associated participant B can be determined. However,
as the B does not have a reference to A, a participant B cannot determine its associated participant
A. Furthermore, accessing all participants of a collaboration when instantiated is another issue.
Users need to write their own code to achieve an iteration over the set of participants.

Another key element are the invariants. Value-based invariants occur frequently in the pro-
grams we analysed, with the same patterns repeating themselves, often in various methods through-
out a class. For example, the Jasper Report example frequently checks if values are greater than
zero, such as srcCategorySeries >= 0. We believe that offering the mechanism of value–based
invariants in the concept of relationship provides more security and consistency for a implementa-
tion. Classes in class–based implementations often have multiple methods adding participants to
the collaboration. The value–based checks need to be the same in each of these methods. Not only
is this code redundant, but there is also the problem of possibly lacking consistency. The program-
mers themselves are responsible to ensure that the value–based checks happen consistently. The
relationship–based approach allows the programmer to define the value–based invariants in one
location. Structural invariants are almost never enforced. Even in examples as large as the Jasper
Report with approximately 2000 classes, the structural invariants are either partial relation or par-
tial function. As previously mentioned, partial relation is the default for the structural invariants
of a collaboration. The partial function is implicitly enforced by representing the collaboration
field as a single–valued reference. The invariant detection recognises the patterns that point to

5.2 Concept Evaluation 83

structural invariants, as in the university example. However, it seems that programmers avoid the
additional code required to enforce an invariant. Again, we believe that the relationship–based
approach provides valuable support in this case: Through a simple invariant clause, programmers
can specify the structure of their relationships. There is no code necessary on the programmer’s
side to enforce it. The structural invariant checks improve the security of an application: “wrong”
user input, such as trying to add two participants to the relationship Marriage that are already
married to other participants, can be handled correctly (by not adding the participants to the
relationship in this example).

A further key aspect is the distribution of collaboration–related code among the classes. Vari-
ous program elements are connected to the collaborations, from the classes themselves, to fields,
methods and invariant code patterns. Often, these elements are also distributed and duplicated
within the classes. As the amount of collaboration–related elements is fairly substantial, it makes
sense to separate the classes from the collaborations. With the relationship–based approach,
classes contain the elements that are relevant to themselves. The relationships then provide a cen-
tral location for the elements that are concerned with the relationship. Arguably, this separation
of relationships from classes makes the design and maintenance of applications more consistent.

A final argument is the lines of bytecode that become obsolete in a relationship–based approach.
The numbers are conservative, which means that the actual number of lines no longer needed may
exceed that amount. This is due to the collaboration–related methods. For our metrics, we include
only additions to a collaboration, retrieval from a collaboration and structural invariant code.
Many collaboration–related methods however may become completely obsolete, if they contain
such elements only. From a bytecode point of view we cannot determine this with certainty.
Our approach therefore is to move the collaboration–related methods in their entirety to the
relationship and remove the obsolete lines. A user can then remove the methods that no longer
contain relevant instructions.

84 5 Evaluation

Chapter 6

Conclusion

6.1 Summary

In this thesis we investigated how relationships occur in the modelling of software systems and their
object-oriented implementation. We first offered a short overview of the research into relation-
ships, from the database and object-oriented programming communities. With this background
information, we then analysed how relationships are modelled and implemented in class–based im-
plementations. For this purpose, we introduced a set of simple examples that covered all types of
relationships and implemented them first with classes, then with relationships. As a next step, we
generalised the results from the examples and defined the collaboration implementation options, the
patterns of how classes form relationships in class–based programs. Special focus was also put on
structural and value–based invariants and their relevance to relationships. We then designed and
implemented the relationship detector, a tool that uncovers hidden relationships in Java bytecode
programs. The analysis was centered around the collaboration detection algorithm that determines
the collaboration implementation options from the bytecode input. Finally, we tested the rela-
tionship detector with a set of increasingly complex examples and provided the results with our
predefined metrics. These results were then put into a broader perspective and we discussed the
benefits of adding relationships as first-class concepts to object-oriented programming languages.

6.2 Future Work

The relationship detector could be improved and extended in the following areas

• Improvements to implementation strategies and heuristics
The relationship detector operates with a series of strategies and heuristics, as defined in
section 4.4.2. These strategies and heuristics could be refined and extended.

• Transformation to a relationship–based implementation
Our tool extracts all necessary information to transform the class–based Java implementation
to a relationship–based implementation: the participants, invariants and methods to be
moved are all known and available. However, currently the relationship detector does not
actually generate the relationship–based (byte-) code.

• Collaboration visualisation
The relationship detector has text-based outputs for the statistics, collaborations, inheritance
structures, and relationships. A graphical user interface and graphical output (e.g. in terms
of charts) could be added.

• Eclipse plugin
Another nice feature would be to create an eclipse plugin for the relationship detector.

85

86 6 Conclusion

Bibliography

[1] Understanding tradeoffs among different architectural modeling approaches. In WICSA
’04: Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture
(WICSA’04), page 47, Washington, DC, USA, 2004. IEEE Computer Society.

[2] Java SDK 1.5. http://java.sun.com/j2se/1.5.0/, 2006.

[3] Antonio Albano, Giorgio Ghelli, and Renzo Orsini. A relationship mechanism for a strongly
typed object-oriented database programming language. In Guy M. Lohman, Amı́lcar Ser-
nadas, and Rafael Camps, editors, 17th International Conference on Very Large Data Bases,
September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings, pages 565–575. Morgan Kauf-
mann, 1991.

[4] Paolo Atzeni, Wesley W. Chu, Hongjun Lu, Shuigeng Zhou, and Tok Wang Ling, editors.
Conceptual Modeling - ER 2004, 23rd International Conference on Conceptual Modeling,
Shanghai, China, November 2004, Proceedings, volume 3288 of Lecture Notes in Computer
Science. Springer, 2004.

[5] Stephanie Balzer, Patrick Eugster, and Thomas R. Gross. Internal report: Value-based and
structural invariants for object relationships, 2006.

[6] Carlo Batini, Stefano Ceri, and Shamkant B. Navathe. Conceptual database design: an Entity-
relationship approach. Benjamin-Cummings Publishing Co., Inc., 1992.

[7] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented thinking. In
OOPSLA, pages 1–6, 1989.

[8] Gavin M. Bierman and Alisdair Wren. First-class relationships in an object-oriented language.
In ECOOP, pages 262–286, 2005.

[9] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. The unified modeling language user
guide. J. Database Manag., 10(4):51–52, 1999.

[10] Éric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code manipulation tool to
implement adaptable systems. In Proceedings of the ASF (ACM SIGOPS France) Journées
Composants 2002 : Systèmes à composants adaptables et extensibles (Adaptable and extensible
component systems), November 2002.

[11] Peter Pin-Shan Chen. The entity-relationship modeltoward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976.

[12] Ramez A. Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[13] Gregor Engels, Roland Huecking, Stefan Sauer, and Annika Wagner. Uml collaboration
diagrams and their transformation to java. In UML, pages 473–488, 1999.

[14] The JHotDraw Graphics Framework. http://www.jhotdraw.org/, 2006.

87

88 BIBLIOGRAPHY

[15] William Harrison, Charles Barton, and Mukund Raghavachari. Mapping uml designs to java.
In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 178–187, New York, NY, USA,
2000. ACM Press.

[16] Compiler Design I. http://www.lst.inf.ethz.ch/teaching/lectures/ss06/222/index.html, 2006.

[17] Ivar Jacobson, Grady Booch, and James E. Rumbaugh. Excerpt from “the unified software
development process”: The unified process. IEEE Software, 16(3):82–90, 1999.

[18] Tetsuro Katayama. Proposal of a supporting method for diagrams generation with the trans-
formation rules in uml. In APSEC, pages 475–484, 2002.

[19] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355, 2001.

[20] Bent Bruun Kristensen. Complex associations: abstractions in object-oriented modeling. In
OOPSLA ’94: Proceedings of the ninth annual conference on Object-oriented programming
systems, language, and applications, pages 272–286, New York, NY, USA, 1994. ACM Press.

[21] Gary T. Leavens. Introduction to the literature on object-oriented design, programming, and
languages. OOPS Messenger, 2(4):40–53, 1991.

[22] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
1997.

[23] Bertrand Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1997.

[24] Bertrand Meyer. The Dependent Delegate Dilemma, in Engineering Theories of Software In-
tensive Systems, Proceedings of the NATO Advanced Study Institute on Engineering Theories
of Software Intensive Systems, Marktoberdorf, Germany, from 3 to 15 August 2004, eds. Man-
fred Broy, J Gruenbauer, David Harel, C.A.R. Hoare, NATO Science Series II: Mathematics,
Physics and Chemistry, vol. 195. Springer-Verlag, 2005.

[25] Badri Narasimhan, Shamkant B. Navathe, and Sundaresan Jayaraman. On mapping er models
into oo schemas. In ER, pages 402–413, 1993.

[26] J. Noble. Basic relationship patterns, 1997.

[27] J. Noble and J. Grundy. Explicit relationships in object-oriented development, 1995.

[28] Wikipedia: Relations over a set. http://en.wikipedia.org/wiki/binary relation, 2006.

[29] ASM Home Page. http://asm.objectweb.org/index.html, 2006.

[30] BCEL Home Page. http://jakarta.apache.org/bcel/index.html, 2006.

[31] SOOT Home Page. http://www.sable.mcgill.ca/soot/, 2006.

[32] Jasper Reports Project. http://jasperforge.org/sf/projects/jasperreports, 2006.

[33] The JBoss Application Server Project. http://labs.jboss.com/portal/jbossas, 2006.

[34] The Jetty Project. http://jetty.mortbay.org/jetty/index.html, 2006.

[35] The JFox Project. http://labs.huihoo.com/jfox/index.html, 2006.

[36] James E. Rumbaugh. Relations as semantic constructs in an object-oriented language. In
OOPSLA, pages 466–481, 1987.

BIBLIOGRAPHY 89

[37] Mathupayas Thongmak and Pornsiri Muenchaisri. Design of rules for transforming uml se-
quence diagrams into java code. In APSEC, pages 485–, 2002.

[38] Java Generics Tutorial. http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf, 2006.

[39] R. J. Wieringa. Requirements engineering: frameworks for understanding. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[40] Rebecca Wirfs-Brock and Alan McKean. Object Design: Roles, Responsibilities, and Col-
laborations. Pearson Education, 2002. Foreword By-Ivar Jacobson and Foreword By-John
Vlissides.

90 BIBLIOGRAPHY

Appendix A

User’s Guide

A.1 Overview

The relationship detector is shipped in the file relationDetector.tar.gz, and has the following
structure.

• collaboration classes
Contains the data structures for the collaboration classes.

• Config
Contains the configuration file for the relationship detector.

• containers
Provides the various data structures for the relationship detection.

• doc
Contains the javadoc documentation for the relationship detector project.

• invariants
Provides the data structures for the invariants.

• main
Contains the main control class and the relationship detection classes.

• statistics
Provides the structures to gather statistical information.

• Test
Contains some test classes.

A.2 Setup instructions

A.2.1 Eclipse project setup

1. Extract the contents
tar xzf relationshipDetector.tar.gz

2. Start eclipse

3. Create a new project
Choose File --> New --> Project

Create project from the relationship detector source

91

92 A User’s Guide

4. Download ASM
Get the current asm_jar file from
http://forge.objectweb.org/projects/asm/

5. Add the asm_jar to the java build path
Choose Project --> Properties --> Java build path

Choose Add external jars and specify the asm_jar location.

A.2.2 Setup without eclipse

1. Extract the contents
tar xzf relationshipDetector.tar.gz

2. Download ASM
Get the current asm_jar file from
http://forge.objectweb.org/projects/asm/

3. Add the asm_jar file to the java build path
export PATH=\$PATH:\<path to the jar file\>

http://forge.objectweb.org/projects/asm/
http://forge.objectweb.org/projects/asm/

Appendix B

Implementation Details

B.1 Configuration Settings

• Collection item classes

– java/awt/list

– java/util/AbstractCollection

– java/util/AbstractList

– java/util/AbstractMap

– java/util/AbstractSequentialList

– java/util/AbstractSet

– java/util/ArrayList

– java/util/HashMap

– java/util/Hashtable

– java/util/HashSet

– java/util/LinkedHashMap

– java/util/LinkedHashSet

– java/util/LinkedList

– java/util/TreeMap

– java/util/TreeSet

– java/util/Vector

– java/util/WeakHashMap

• One-dimensional collection item clases

– java/awt/list

– java/util/AbstractCollection

– java/util/AbstractList

– java/util/AbstractSequentialList

– java/util/AbstractSet

– java/util/ArrayList

– java/util/HashSet

– java/util/LinkedHashSet

93

94 B Implementation Details

– java/util/LinkedList

– java/util/TreeSet

– java/util/Vector

• Two-dimensional collection item classes

– java/util/AbstractMap

– java/util/HashMap

– java/util/Hashtable

– java/util/LinkedHashMap

– java/util/TreeMap

– java/util/WeakHashMap

B.2 Bytecode Instructions

This section gives the list of bytecode instructions that are analysed and the rules that apply for
each instruction for the operand stack. The following notation is used for the operand stack rules:

x, y, ... --> v, w, ...

The left side of the arrow shows the state of the operand stack before the bytecode instruction is
executed. The right side shows the state after execution. The stack grows from left to right, i.e.
the rightmost element is the top element.

• Field instructions

– GETFIELD
objectref --> value

– PUTFIELD
objectref, value --> ..

– GETSTATIC
.. --> value

– PUTSTATIC
value --> ..

• Method instructions

– INVOKEVIRTUAL
objectref, [arg1, [arg2 ...]] --> ..

– INVOKEINTERFACE
objectref, [arg1, [arg2 ...]] --> ..

– INVOKESPECIAL
objectref, [arg1, [arg2 ...]] --> ..

– INVOKESTATIC
arg1, [arg2 ...] --> ..

• Variable instructions

– LLOAD
.. --> value

– FLOAD
.. --> value

B.2 Bytecode Instructions 95

– DLOAD
.. --> value

– ALOAD
.. --> value

– ILOAD
.. --> value

– LSTORE
value --> ..

– FSTORE
value --> ..

– DSTORE
value --> ..

– ASTORE
value --> ..

– ISTORE
value --> ..

– RET
.. --> ..

• Type instructions

– CHECKCAST
objectref --> objectref

– NEW
.. --> objectref

– ANEWARRAY
count --> arrayref

– INSTANCEOF

• IInc instruction

– IINC
.. --> ..

• Int instructions

– BIPUSH
.. --> value

– SIPUSH
.. --> value

– NEWARRAY
count --> arrayref

• Jump instructions

– IFEQ
value(int) --> ..

– IFNE
value(int) --> ..

96 B Implementation Details

– IFLT
value(int) --> ..

– IFGE
value(int) --> ..

– IFLE
value(int) --> ..

– IF ICMPEQ
value2, value1 --> ..

– IF ICMPNE
value2, value1 --> ..

– IF ICMPLT
value2, value1 --> ..

– IF ICMPGE
value2, value1 --> ..

– IF ICMPGT
value2, value1 --> ..

– IF ICMPLE
value2, value1 --> ..

– IF ACMPEQ
ref2, ref1 --> ..

– IF ACMPNE
ref2, ref1 --> ..

– GOTO
.. --> ..

– JSR
.. --> address

– IFNULL
value --> ..

– IFNONNULL
value --> ..

• Other instructions
For further bytecode instructions, please refer to [22].

Appendix C

Examples

C.1 University

The university example is an extended version of the example given in section 3.2.

97

98 C Examples

C.1 University 99

100 C Examples

C.1 University 101

102 C Examples

C.2 Calendar

The calendar example is taken from the course material of “Introduction to programming in the
large” at the ETH in Zurich.

C.2 Calendar 103

104 C Examples

C.2 Calendar 105

106 C Examples

C.2 Calendar 107

108 C Examples

C.2 Calendar 109

110 C Examples

C.2 Calendar 111

112 C Examples

C.2 Calendar 113

114 C Examples

List of Tables

3.1 Structural Invariants . 31

4.1 Structural invariants . 48
4.2 Strategy: one dimensional collection item element types 58
4.3 Strategy: two dimensional collection item element types 59
4.4 Heuristics: one dimensional collection item element types 60
4.5 Heuristics: two dimensional collection item element types 61
4.6 Heuristics: determine name of target reference . 62
4.7 Strategy: determine positive invariant . 64

5.1 Relationship detector results for the university example 74
5.2 Relationship detector results for the calendar example 77
5.3 Relationship detector results for the compiler example 78
5.4 Relationship detector results for the JHotDraw example 79
5.5 Relationship detector results for the Jasper Reports example 81
5.6 Occurrence of collaboration implementation options 82

115

116 LIST OF TABLES

List of Figures

2.1 surjective relation . 7
2.2 injective relation . 7

3.1 ER Diagram of Author collaboration . 13
3.2 ER Diagram of Yin Yang collaboration . 15
3.3 ER Diagram of Narcissist collaboration . 17
3.4 ER Diagram of Employee collaboration . 18
3.5 ER Diagram of Opera collaboration . 20
3.6 ER Diagram of Student collaboration . 22
3.7 Collaboration controlled by class A . 27
3.8 Collaboration controlled by class B . 27
3.9 Collaboration controlled by classes A and B . 28
3.10 Collaboration controlled by direct collaboration object 28
3.11 Collaboration controlled by indirect collaboration object 29
3.12 Collaboration controlled by indirect collaboration object 30

4.1 The relationship detector . 39
4.2 High-level diagram of the class file format . 42
4.3 The collaboration detection algorithm . 43
4.4 Collaboration detection for a single–valued field . 44
4.5 Collaboration detection for multiple single–valued fields 45
4.6 Collaboration detection for a one–dimensional multi–valued field 46
4.7 Collaboration detection for multiple multi–valued fields 46
4.8 Collaboration detection for two–dimensional multi–valued fields 47
4.9 Package level view of the relationship detector . 53
4.10 main package . 53
4.11 containers package . 54
4.12 collaboration classes package . 54
4.13 statistics package . 54
4.14 invariants package . 55
4.15 operand stack before (left) and after (right) the IADD instruction 56
4.16 expression stack before (left) and after (right) the IADD instruction 56
4.17 relationship detector phases . 66

5.1 University example . 71
5.2 Calendar example . 74

117

