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Symbolic model checking
for asynchronous Boolean programs

Byron Cook Daniel Kroening Natasha Sharygina
Microsoft Research ETH Zurich Carnegie Mellon University

Abstract. Software model checking problems generally contain two differ-
ent types of non-determinism: 1) non-deterministically chosen values; 2) the
choice of interleaving among threads. Most modern software model check-
ers can handle only one source of non-determinism efficiently, but not both.
This paper describes a SAT-based model checker for asynchronous Boolean
programs that handles both sources effectively. We address the first type of
non-determinism with a form of symbolic execution and fix-point detection.
We address the second source of non-determinism using a symbolic and dy-
namic partial-order reduction, which is implemented inside the SAT-solver’s
case-splitting algorithm. The preliminary experimental results show that the
new algorithm outperforms the existing software model checkers on large
benchmarks.

1 Introduction

Model checking [1] is a formal verification technique for detecting behavioral anoma-
lies in system descriptions. In recent years, a number of model checkers have been
built specifically for the analysis of software. These tools have uncovered defects
that would have otherwise gone undetected. However, they do not scale gracefully
when applied to software of substantial size. Thus, much of the research on model
checking has focused on improving scalability.

The size of the state space of a system is directly related to the amount of non-de-
terminism present in the model. Concurrent software with asynchronous interleaving
semantics has two sources of non-determinism: 1) Non-deterministic choice of data
values, given explicitly in the program, and 2) the non-deterministic choice of the
interleavings between the threads.

Powerful techniques have been developed to address both of these forms of non-
determinism. Partial-order reduction is specifically designed to mitigate the concur-
rency between threads. Symbolic data structures concisely represent large sets of
states. Unfortunately, these two techniques are difficult to combine. For this reason,
with few exceptions, model checkers for software systems tend to come in one of
two flavors: Symbolic software model checkers are strong when proving properties of
programs with symbolic data but are not good at reasoning about concurrent pro-
grams with many threads; Explicit-state model checkers have powerful methods for
the verification of programs with multiple threads, but are not useful when applied
to systems with significant amounts of symbolic data.

In this paper, we propose a model checking algorithm that efficiently analyzes
programs with both non-deterministic data values and multiple threads of execution.



The algorithm is limited to Boolean programs [2, 3] extended with asynchronous
threads [4, 5]. Boolean programs—which are like C programs, but are limited to
variables with type bool—have become a common model for tools that implement
counterexample-guided abstraction refinement for software verification. Boolean pro-
grams allow the programmer to choose values non-deterministically. We restrict
ourselves to non-recursive programs, which we have found to be acceptable when
performing analysis on system-level code. We also restrict the set of properties that
can be verified to those that can be expressed in terms of reachability.

The algorithm described in this paper can be used immediately from within
software model checkers such as Slam [6] or Blast [7]. These model checkers imple-
ment software predicate abstraction, i.e., they abstract a C program into a Boolean
program. Using Slam, we can now verify properties of device drivers with an ac-
curate representation of the threads together with abstract representations of their
environments.

The contribution of this paper is a method for combining SAT-based symbolic
model checking and the partial-order reduction. We represent the states states sym-
bolically using a parametric representation [8, 9]. The data structure grows linearly
in the number of execution steps, even in the presence of non-deterministically cho-
sen data values. As the parametric representation is not canonical, the fix-point
detection becomes harder. We use solvers for Quantified Boolean Formulae (QBF)
for this task. We leverage the recent remarkable improvements in this technology [10,
11].

We use a propositional logic SAT-solver as part of the symbolic simulation algo-
rithm. This allows us to implement a form of partial-order reduction as a modifica-
tion of the SAT-solver. The key idea behind this method is that the case-splitting
algorithm used within backtracking-based SAT-solvers can be modified to eliminate
undesired interleavings. This turns out to be much faster than alternative combi-
nation methods, such as adding constraints to the the query that is passed to the
SAT-solver. The resulting reduction is dynamic, as the choice of interleaving depends
on the particular set of states found during the reachability analysis.

The remainder of this paper is organized as follows. We provide some background
on Boolean programs in Section 2. We then describe our algorithm in the Sections 3
and 4. We describe the results for our experimental evaluations in Section 5. In
Section 6, we conclude and discuss some ideas for future work.

Related Work Several model checkers support sequential Boolean programs. Be-
bop [2] and Moped [3] are BDD-based symbolic model checkers, and both handle
recursive procedures. In principle, because BoPPo supports only a fixed number
of threads and non-recursive procedures, the threaded programs could be converted
into sequential programs that Bebop and Moped could process. This is not prac-
tical, however, because only a lightweight and static form of partial-order reduction
could be applied during the translation, rather then the dynamic one that BoPPo
employs.

Dizzy [12] uses SAT-based symbolic simulation. The fix-point detection is done
by computing BDDs representing the set of reachable states. Our work uses a similar



algorithm, but uses QBF for the fix-point detection and also implements support for
multiple threads using partial-order reduction.

Several previous efforts have also applied model checking to Boolean programs
with asynchronous threads. For example, Jain, Clarke and Kroening [5] use the BDD-
based model checker NuSMV [13] to verify concurrent Boolean programs with only
very limited success.

Forms of partial-order reduction for explicit-state model checking (examples in-
clude [14, 15]) has been a particularly effective technique for verifying programs and
protocals with many threads. Fore example, Ball, Chaki and Rajamani [4] describe
a partial-order reduction based explicit state model checker, called Beacon, for
asynchronous Boolean programs. Beacon, however, was overly sensitive to the oc-
currence of symbolic data generated by Slam.

The idea of combining symbolic reasoning with partial-order reduction is not
new. Our proposal shares a great deal of motivation with Alur et al. [16], who
describe a method of combining partial-order reduction together with a BDD-based
symbolic model checker. Their algorithm first computes a constrained transition
relation, called an ample transition relation. This is then given to a BDD-based
model checker. Our experiments indicate that this technique does not provide much
benefit in the context of SAT-solvers. The overhead of adding static constraints to the
SAT-solver’s data structure seems to abate the potential benefit of less state-space
exploration. As it turns out, many of the constraints that are added are actually
never used, resulting in wasted effort. Our implementation, which simply limits the
assignments from which the SAT-solver can choose when case-splitting, requires less
overhead when computing representative paths. In [17], the reduction is applied
before passing the model to a Bounded Model Checker (BMC).

In [18], Lerda, Sinha and Theobald integrate partial-order reduction into a BDD-
based model checker, as opposed to a pre-processing step. This approach is similar
to our proposal. The difference between this previous work and our proposal is in
the representations of data, the class of solvers used, and methods of implementing
the dynamic partial-order reduction. Whereas they use BDDs, we use SAT and
QBF solvers and must therefore implement the partial-order reduction within the
SAT-solver in a different manner.

Several methods address the problem of scalability in the presence of threads
and non-deterministically chosen data via forms of decomposition [19, 20]. These
techniques usually either sacrifice some amount of completeness or require small
amounts of intervention from the user. The advantage of these approaches is that
the analysis is much more scalable. In the future, researchers interested in thread
modular approaches may be able to use our method of combining partial-order
reduction and symbolic reachability in a way that allows them to improve on the
completeness and user-interaction required.

Unsound approaches have also proved successful in finding bugs in concurrent
programs. For example, Qadeer & Rehof [21] note that many bugs can be found
when the analysis is limited to execution traces with only a small set of context-
switches. This analysis supports recursive programs. Our approach complements



these techniques because, while they are unsound, they are able to analyize a larger
set of programs.

2 Boolean Programs

2.1 Boolean Programs and Predicate Abstraction

Predicate abstraction [22, 23] is a commonly used method for systematically con-
structing conservative abstractions of software. When combined with reachability
analysis and an automatic abstraction refinement mechanism, it forms an effective
model checking strategy. Predicate abstraction constructs the abstraction by track-
ing only certain predicates on the data. Each predicate is represented by a Boolean
variable in the abstract program, while the original data variables are eliminated.
Extra non-determinism is added into the abstraction in order to maintain sound-
ness of the sequential control-flow constructs in the abstraction. When predicate
abstraction is performed on software systems with threads, the result is an abstrac-
tion that makes fundamental use of both non-deterministically chosen values and
non-deterministically scheduled threads. Therefore, we need an efficient reachability
analysis for these abstract models.

The following example shows code that is typical of a Windows device driver:

void DecrementIo(DEVICE_OBJECT * DeviceObject) {

EXT * ext = (EXT*)DeviceObject->DeviceExtension;

int IoIsPending = InterlockedDecrement (&ext->IoIsPending);

if (!IoIsPending) { KeSetEvent (&ext->event, IO_NO_INCREMENT, FALSE); }

}

An abstraction of this function is obtained by passing it to Slam [6]. In the first
iteration of the abstraction refinement loop, Slam computes the following Boolean
program fragment:

void DecrementIo_abstraction() {

InterlockedDecrement_abstraction();

goto L1,L2;

L1: KeSetEvent_abstraction();

L2: return;

}

This example demonstrates how predicate abstraction generates Boolean pro-
grams that make non-trivial use of both forms of non-determinism. This abstraction
is using a non-deterministic goto instruction to model the conditional operator in the
original function. This code fragment is also calling an abstraction of the Windows
kernel synchronization primitive KeSetEvent.

In further refinement iterations, Slam usually adds variables to the abstraction.
Suppose the following predicates are used to refine the abstraction above:

{ b1 , ext == &envext, b2 , envext.IoIsPending == 1

, b3 , envext.IoIsPending == 2, b4 , IoIsPending == 2

, b5 , IoIsPending == 1, b6 , (∗ext).IoIsPending == 1

, b7 , (∗ext).IoIsPending == 2}

This results in the following new abstract model:



bool b1,b2,b3;

void DecrementIo_abstraction() {

bool b4,b5,b6,b7;

b1,b6,b7 = *,*,*

constrain((!(b1’ && b2) || b6’) && (!(b1’ && b3) || b7’));

b4,b5 = InterlockedDecrement_abstraction(b6,b7);

goto L1,L2;

L1: assume(!b4 && !b5);

KeSetEvent_abstraction();

L2: return;

}

Due to the imprecision of the abstraction, we cannot prove that ext==&envext,
nor can we prove that ext!=&envext. Therefore, a non-deterministically chosen value
has to be assigned to the variable b1, which represents this predicate. This is neces-
sary to preserve the soundness of the analysis.

Furthermore, using the constrain operator, this assignment statement restricts
the choice such that b6 must be true after the assignment if b1 is true after the
assignment and b2 is true before the assignment. Analogously, b7 must be true after
the assignment if b1 is true after the assignment and b7 is true before the assignment.
This abstraction also refines the non-deterministic goto using an assume statement:
the program declares that any transition passing through the L1 location must ensure
that b4 and b5 are false.

2.2 Formal Semantics of Boolean programs

In this section, we provide a simple operational semantics for asynchronous, concur-
rent Boolean programs. Later, in Section 3.2, we use the semantics to construct an
algorithm that transforms Boolean program reachability into a propositional logic
formula. The formalization is based on the description of sequential Boolean pro-
grams in [2].

Definition 1. An explicit state η of a Boolean program is a tuple (i, Ω), with PCs :
T 7→ L and Ω : V 7→ B.

The first component of an explicit state η, called i, is a mapping from the set of
threads T into the set of program locations L. i(t) denotes the instruction that is to
be executed next by thread t ∈ T . The second component, called Ω, is a mapping
from the set of variables V into the set of the two Boolean values, i.e., it assigns an
explicit value to each state variable.

Notation Given a valuation Ω and an expression e over the variables V , we use Ω(e)
in order to denote the evaluation of e. This is defined in the usual way. In addition
to that, we also allow expressions that refer to the values of variables in two different
states η1 and η2. Syntactically, the values of the two states are distinguished by using
primed versions of the variables. We use (η1, η2)(e) in order to denote the evaluation
of e in the states η1 and η2. The unprimed variables in e are substituted by the values
given in η1, while the primed variables in e are substituted by the values given in η2.
As an example, consider the valuation Ω1 = {(x, 1), (y, 0)} and Ω2 = {(x, 0), (y, 0)}.
For these valuations, and an expression e = x ∨ x′, we have (η1, η2)(e) = 1 ∨ 0.



We also allow additional choice variables ι1, . . . , ιk inside the expressions. We use
ι to denote the vector of these variables. Given a particular non-deterministic choice
ι and a state η, we denote the evaluation of the expression e in η with the choice ι
as (η, ι)(e).

Given an explicit state η, we denote the first component by η.i, and the second
component by η.Ω. For any function f : D → T , we define f [d/r] : D → R as
f [d/r](x) = r if d = x, and f [d/r](x) = f(d) otherwise.

Execution Semantics Assume the scheduler picks thread t ∈ T to execute in state
η. We use η1 →t η2 to denote the fact that a transition from state η1 is made to η2 by
executing one statement of thread t. The statement that is executed is P (i(t)). The
relation η1 →t η2 is defined by a case-split on this instruction. The conditions for
each statement are shown in Table 1. We explain the formalization of each statement
as follows:

– The skip statement increments the program counter of thread t. The values of
the variables and the program counters of the other threads do not change.

– The goto θ1, . . . , θk statement changes the program counter of thread t to one
of the program locations θ1, . . . , θk given as argument. The choice is arbitrary,
i.e., non-deterministic. The values of the variables and the program counters of
the other threads do not change.

– The assume e statement behaves like skip, but with the additional constraint
that the expression e must evaluate to true in state η1. If the expression evaluates
to false, η1 has no successor states.

– The constrained assignment statement x1, . . . , xk := e1, . . . , ek constrain e
changes the program counter like skip. It also updates the values of the variables
using the expressions e1, . . . , ek. The expressions are evaluated in state η1. The
expressions may contain choice variables ι1, . . . , ιk. These variables allow a non-
deterministic choice on data, and are quantified existentially.
The transition also has an additional constraint e. The constraint e is a predicate
in terms of the current state η1 and the next state η2. It is evaluated in both
states accordingly, where the next state variables are primed. If there is no choice
for ι, which satisfies the constraint, state η1 has no successor states.

We do not define semantics for syntactic sugar such as if or while, as these
statements can easily transformed using goto and assume, as illustrated in sec-
tion 2.1. Also, function calls can be inlined; we do not support unbounded recursion,
as the reachability problem for concurrent programs with unbounded recursion is
undecidable.

Finally, we write η1 → η2 if there exists a thread t ∈ T such that η1 →t η2. We
say that there is a transition from η1 to η2 in this case, or that η1 is reachable from
η2 with one transition.

A state η2 is reachable from a state η1 in k transitions if there exists a state
η′, η′ is reachable from η1 in k − 1 transitions, and η2 is reachable from η′ in one
transition. Given an initial state ηI , the set of reachable states is the set of states
that is reachable from ηI in any number of transitions. We property we check is
reachability of states with particular program locations.



P (i1) i2 Ω2

skip i2(x) = i1[t/i1(t) + 1] Ω2 = Ω1

goto θ1, . . . , θk
i2(x) = i1[t/θ1] ∨ . . .∨
i2(x) = i1[t/θk]

Ω2 = Ω1

assume e i2(x) = i1[t/i1(t) + 1]
Ω2 = Ω1 ∧

Ω1(e) = true

x1, . . . , xk := e1, . . . , ek

constrain e
i2(x) = i1[t/i1(t) + 1]

∃ι. Ω2 = (Ω1[x1/(Ω1, ι)(e1)]
. . . [xk/(Ω1, ι)(ek)] ∧

(η1, η2, ι)(e)

Table 1. Conditions on the explicit state transition 〈i1, Ω1〉 →t 〈i2, Ω2〉, for each type of
statement P (i1).

3 SAT-based Symbolic Simulation

In this section we describe how we represent a set of states symbolically using for-
mulae, and then how to transform Boolean programs into such formulae.

3.1 Representation of States

Definition 2. A symbolic formula is defined using the following syntax rules:

1. The Boolean constants true and false are formulae.
2. The non-deterministic choice variables ι1, . . . are formulae.
3. If f1 and f2 are formulae, then f1 ∧ f2, f1 ∨ f2, and ¬f1 are formulae.

The set of such formulae is denoted by F .

A symbolic formula may evaluate to multiple values due to the choice variables.
As an example, the pair of formulae 〈ι1, ι2∧¬ι1〉 may evaluate to 〈0, 0〉, 〈1, 0〉, 〈0, 1〉,
but not to 〈1, 1〉. We use these symbolic formulae in order to represent a sets of
states:

Definition 3. A symbolic state σ is a triple 〈i, ω, γ〉, with i : T 7→ L, ω : V 7→ F ,
and γ : F .

Given a particular valuation for the choice variables ι, we denote the value of a
symbolic formula f as ι(f).

The first component of a symbolic state σ, called i, is identical to the first compo-
nent of an explicit state (definition 1). The second component, called ω, is a mapping
from the set of variables V into the set of formulae. It denotes the symbolic valuation
of the state variables. The third component, called γ, is a formula that represents
the guard of the state symbolically.

Thus, we represent the program counters explicitly, while the program variables
are represented symbolically. The set of explicit states represented by σ are those
states η that satisfy the following conditions:

– They have the same PC values given by i.

η.i = σ.i (1)



– There exists a non-deterministic choice ι, which satisfies the guard γ, and assigns
values to the variables that match the values given by Ω.

∃ι.ι(γ) ∧ ∀v ∈ V.Ω(v) = ι(ω(v)) (2)

Thus, the set of explicit states corresponding to a symbolic state is defined using a
predicate in the parameter ι. Thus, we have a parametric representation. Parametric
representations of sets of states have been used in formal verification before [8, 9],
but mostly in the context of hardware verification.

Note that the problem of whether there exists an explicit state represented by
a given symbolic state is equivalent to the problem of propositional satisfiability. A
satisfying assignment contains concrete valuations for the state variables and for the
choice variables, and thus, a SAT-solver provides a witness.

3.2 Symbolic Execution

Assume that the scheduler picks thread t ∈ T to execute in the symbolic state σ.
In analogy to the explicit state model, we use σ1 →t σ2 to denote the fact that a
transition from state σ1 is made to σ2 by executing one statement of thread t. Again,
the statement that is executed is P (i(t)). The definition of the relation σ1 →t σ2 is
done using a case-split on this instruction. The conditions for each statements are
shown in table 2. The column describing the constraints on the program counters
i1 and i2 is identical to the column in table 1, and therefore not repeated here. We
explain the formalization of each statement as follows:

– The definitions of the skip and goto statement follow the definitions for the
explicit state case. The formulae for the guards are not changed by these state-
ments.

– In the symbolic case, the assume e statement does not have the precondition that
e is true. Instead, the condition e is instantiated in the state σ1. This results in a
symbolic formula. The symbolic formula is conjoined with the guard γ1, forming
the formula γ2.

– In the symbolic case, a constrained assignment statement x1, . . . , xk := e1, . . . , ek

constrain e updates the values of the variables using the expressions e1, . . . , ek.
The expressions are evaluated in state η1. It is no longer necessary to instantiate
the values of the non-deterministic choice variables ι, as ω(v) is now a formula,
and not a Boolean value. Thus, the choice variables become part of the formula.
Also, the additional constraint e is added to the guard, in analogy to an assume
statement.

3.3 Reachability Algorithm

In order to check reachability of a particular program location b ∈ L using the
symbolic model, we implement an exhaustive search of the state space. This is done
by most explicit state model checkers as well, e.g., by Spin [24]. The basic algorithm
is shown in Figure 1. The main differences between our implementation and an
explicit state model checker are as follows:

1) We maintain a queue of symbolic states for the search. A search heuristic picks
the next state to explore from the queue.



P (i1) ω2 γ2

skip ω2 = ω1 γ2 = γ1

goto θ1, . . . , θk ω2 = ω1 γ2 = γ1

assume e ω2 = ω1 γ2 = (γ1 ∧ ω1(e))

x1, . . . , xk := e1, . . . , ek

constrain e
ω2 = (ω1[x1/ω1(e1)] . . . [xk/ω1(ek)] γ2 = (γ1 ∧ (ω1, ω2)(e))

Table 2. Conditions on the symbolic transition 〈i1, ω1, γ1〉 →t 〈i2, ω2, γ2〉, for each type of
statement P (i1). For the constraints on i1 and i2, see table 1.

2) Before reachability of a bad state σ can be concluded, we must run a SAT solver
(denoted by the function IsSatisfiable) in order to check that σ.γ is satisfiable,
and thus, the set of concrete states represented by σ is non-empty. Note that the
guards of the states on one path only get stronger, and never weaker, and thus, it is
sufficient to check the guards of the bad states only.

3) In order to conclude that no bad states are reachable, explicit state model
checkers maintain a history of the states that have been explored. This set of states
is typically organized using a hash table. Because of the symbolic representation, we
cannot use this approach. Instead, we use a symbolic solver in order to compare the
symbolic state that is chosen next to explore with the states that have been explored
so far. This is implemented in the procedure IsHistory. The details of this function
are described in section 4.

3.4 Partial-Order Reduction

When computing the successors of a given symbolic state σ, we usually have to
consider the possibility that any of the treads t ∈ T can make a transition. The
choice is non-deterministic. Formally, we have to compute all states σ′ for which
a thread t ∈ T exists which can make a transition from σ to state′. A sequence
of choices for a particular thread t is called an interleaving. The problem is that
the number of states explored can grow dramatically with the number of threads.
Even with just two threads, the number of interleavings blows up in the number
of execution steps. In contrast to that, a sequential program only requires as many
symbolic states as there are execution steps.

The purpose of Partial-Order Reduction [15] is to reduce the number of states
that have to be explored. This is done in a way that preserves the property, i.e.,
the property holds on the reduced model if and only if it holds on the full, original
model.

Symbolic Partial-Order Reduction using SAT The approach we take is related
to what many explicit state model checkers implement. We aim at finding a thread
t that makes an invisible transition, i.e., a transition which is independent from a
transition made by any other thread t′ 6= t. We compute the sets of variables written
and read by each of the threads. Let Rt denote the set of variables that are read, and
Wt the set of variables that are written by thread t in the current state. If thread t is
not enabled, these sets are empty. If a thread t is found with Wt∩(

⋃
i 6=t Ri∪Wi) = ∅



// Input: Boolean Program P with locations L, bad location b ∈ L

// Output: true iff b is reachable in P

// Variables: Queue Q of symbolic states

SymbolicReachability(P, b)

1 Compute initial state σI

2 Q := {σI};
3 while (¬Q 6= ∅)
4 σ := Element from Q;

5 if IsHistory(σ) then

6 Q := Q \ σ;

7 elseif ∃t ∈ T. σ.i(t) = b ∧ IsSatisfiable(σ.γ) then

8 return true;

9 else

10 Q := (Q \ σ)∪ GetSuccessors(P, σ);

11 endif

12 end

13 return false;

Fig. 1. High Level Description of the Symbolic Reachability Algorithm

and Rt ∩
⋃

i 6=t Wi = ∅, we only explore the successors generated by executing t. All
other transitions are discarded.

This reduction preserves the property we are checking, i.e., reachability of pro-
gram locations. The computation of reduction requires knowledge of the enabled
transitions and of the dependencies between the transitions. This is computation-
ally inexpensive in case of an explicit state model checker, as all the values of the
variables are known. In contrast, we use a symbolic representation. The question of
whether a particular transition is enabled or not corresponds to a SAT instance. A
syntactic over-approximation of the set of enabled transitions and the dependencies
is feasible, but often does not result in a significant reduction. We therefore use a
modified SAT solver in order to compute the set of interleavings we explore.

SAT has been used in the context of asynchronous transition systems before. As
in most existing approaches, we build a SAT instance that has non-deterministically
chosen variables for the thread selector and an encoding of the transitions out of the
given state. Typically, constraints on the thread selector variables are added upfront
in order to limit the possible choice of interleavings. However, our initial experiments
showed that most of these constraints are unnecessary, as they eliminate transitions
out of states that are unreachable, and often make the instance much harder.

We therefore use the following, alternative approach: the SAT instance we form
uses a one-hot encoding for a thread about to make an invisible transition. We
implement the constraints on the variables that are read and written as part of
the case-splitting heuristic of ZChaff, and not by adding appropriate clauses, as



this information is known statically. The SAT-solver only needs to determine which
threads are enabled, i.e., have a satisfiable guard.

Once a local interleaving is found, it is explored. If no local interleaving is found,
the thread to be executed is chosen by the SAT-solver’s decision heuristic. Once its
successors are computed, we add a blocking clause to prevent the same transition
from being explored again and backtrack.

Cycle Detection The method of removing interleavings that we described above
could lead to unsound results. In fact, there is a possibility that some transitions
will be delayed forever because of a cycle in the reduced model.

To prevent the loss of transitions, partial-order reduction techniques require sat-
isfaction of a cycle condition [25]. The cycle condition prohibits cycles that contains
a state in which some transition is enabled, but is never taken for any state on
the cycle. The intuitive reason for this condition is to avoid postponing a transition
indefinitely while generating the reduced model.

Algorithmically, we solve this issue in the same way as most explicit state model
checkers: when postponing a transition, we note this fact on the search stack. If the
History procedure detects that a state has been explored before, we resume the
evaluation of the postponed transitions.

4 Fix-point Detection

In order to detect fix-points, we need to compare the new set of states to the set
of states that we have already explored. When using BDDs, two sets of states can
be compared by simply comparing the graphs of the BDDs. The drawback of using
BDDs is that already only very few steps of symbolic simulation may result in
prohibitively large BDDs.

As described in the previous section, we store the states using a non-canonical
symbolic representation. While this representation allows us to execute a statement
symbolically in linear time, we pay a price in form of a harder fix-point detection
problem.

The fix-point detection is implemented in the History procedure. It takes a new
symbolic state σn as input and returns true if it is subsumed by an old symbolic
state σo in a set H. The program counter part of the state is stored explicitly. Thus,
the first step of the algorithm is to obtain the set of old states H ′ ⊆ H with program
counter values that match those of state σn. This is implemented using a hash table,
as is done in most explicit state model checkers. The number of entries in this table
is limited by the partial-order reduction. We therefore do not expect a blowup in
this data structure.

The set H ′ corresponds to a disjunctive partitioning of the set of states. Disjunc-
tive partitionings are commonly used in symbolic model checkers for asynchronous
concurrent programs, e.g., in [13, 26].

The second step is to check whether a symbolic state in σo ∈ H ′ subsumes the
symbolic state σn, i.e., if all explicit states represented by σn are also contained
in σo. Note that we will not detect the case that σn is not covered by any single
σo ∈ H ′, but rather by a combination of states in H ′. Comparing the new state with



the union of the symbolic states in H ′ would be too expensive. This may delay the
detection of the fix-point, but will neither affect soundness nor termination.

A state σn is subsumed by a state σo if for all explicit states represented by σn

there exists an identical state represented by σo. As the program counter components
already match, we only need to compare the values of the state variables. As given by
Equation 2, the set of explicit states represented by a symbolic states is defined using
an existential quantification over the choice variables ι. Formally, for each choice of
inputs ιn for the new state σn, there must exist a (possibly different) choice of inputs
ιo for the old state σo that results in the same state:

∀ιn|ιn(γn). ∃ιo|ιo(γo). ιn(ωn) = ιo(ωo) (3)

Equation 3 can be transformed into a Quantified Boolean Formula (QBF) and
passed to a QBF solver such as Quantor [10] or Quaffle [11]. We have found that
modern QBF solvers, and especially Quantor, can handle surprisingly large instances
that we generate. If the QBF solver determines the formula to be true, we can
discard the state σn. Otherwise, we insert σn into H, and proceed with the state
space exploration using the successors of state σn.

Optimization In Equation 3, the outermost quantification is done over the non-
deterministic choice variables used as parameter for the states represented by σn.
Given a deep symbolic simulation, this may be a large number of variables.

Note that we only care about the values of the state variables in a state repre-
sented by σn. Thus, we can re-write Equation 3 such that the outer quantification
is done over the state bits, and not over the non-deterministic choices.

∀xn. ∃ιn, ιo.xn = ιn(ωn) ∧ (ιn(γn) =⇒ (ιo(γo) ∧ ιn(ωn) = ιo(ωo)) (4)

The number of state-bits maybe much smaller than the number of non-determi-
nistic choices, and thus, the complexity of the formula is reduced.

Another simple optimization is to restrict the set of variables we consider to
V ′ ⊆ V . V ′ is the set of variables that are active in any of the program locations
L′ ⊆ L given by any of the program counters.

A variable is active in a program location if its value is of relevance to any
instruction reachable from the location. E.g., local variables that are not yet in
scope can be disregarded when comparing the values of the state variables.

A third optimization is to partition the set of variables into groups C1, . . . , Ck

that share choice variables. Indirect sharing, through other variables, has to be con-
sidered.

5 Experimental Results

We have implemented the algorithm described above in a tool called BoPPo. We
use Limmat as the SAT solver, and Quantor as the QBF solver.

In this section, we compare BoPPo with other model checkers. We use the
explicit state model checkers SPIN [24] and Zing [27]. We also compare our BoPPo
with Moped [3] and Bebop [2], which are BDD-based symbolic model checkers.
Neither Bebop nor Moped supports multiple threads, however. The experimental
results are summarized in Table 3.



Benchmark Moped SPIN Bebop Zing BoPPo

1 0.1s * 0.1s n/a 0.6s

2 * 3.8s 120s n/a 27.0s

3 n/a n/a 0.17s n/a 0.43s

4 n/a * 2058s n/a 75.6s

5 n/a * n/a * 55.8s

Table 3. Experimental results: n/a denotes that the model checker does not handle the
benchmark due to lacking features, * denotes that the time limit (1 hour) or memory limit
(2 GB) was exceeded

Benchmarks 1-4 are sequential; the first two benchmarks are artificial and con-
tain about 30 Boolean variables. In the first benchmark, most states are reachable.
The symbolic model checkers Bebop, BoPPo, and Moped handle this benchmark
easily, while the explicit state model checkers run out of memory even with such a
small number of state bits. The second benchmark encodes a multiplication over the
Boolean variables. SPIN handles this benchmark easily, while Moped exceeds the
2GB memory limit.

The benchmarks 3-5 are generated by Slam. The Slam model checker imple-
ments counterexample guided abstraction refinement for C programs. Benchmark
3 is a summary of 572 individual, small sequential benchmarks; the times given
for the benchmark denote the average runtime. On the small benchmarks, Bebop
outperforms BoPPo. Benchmark 4 is a large sequential device driver.

An experimental version of Slam provides support for the verification of concur-
rent programs1. In this mode, Zing is used as a replacement for Slam’s sequential
reachability engine, Bebop. Benchmark 5 is generated from a 4500 LOC Windows
device driver with three threads in this manner.

As Zing is an explicit state model checker, it is not well-adapted to handle the
larger Boolean programs that are produced by predicate abstraction. As discussed in
Section 2, Slam generates abstractions that make frequent use of non-deterministic
choice. When Slam is used to verify the correctness of Windows device drivers,
we must also provide abstract representations of the kernel, other device drivers,
and user-level applications. This environment adds a large amount of additional
non-determinism. For this reason, Slam in combination with Zing can process only
relatively small model checking examples.

With BoPPo, Slam is now able to solve much larger problems. Zing is unable
to solve benchmark 6 after more than an hour of execution. BoPPo is able to solve
the benchmark within a minute. We attempted to run this same benchmark using
SPIN and NuSMV without any positive result.

Surprisingly, BoPPo appears to make a contribution for sequential programs
as well. As we try to apply Slam to more difficult properties and larger programs,
Bebop is sometimes the performance bottleneck. This problem is exacerbated by
experiments where we have used a theorem prover that is accurate with respect

1 Thanks to Georg Weissenbacher and Jakob Lichtenberg



to pointer arithmetic, bit-vectors, structures and unions [28] — this causes many
additional Boolean variables to be added to the abstraction and also causes the logic
used in the transition relation of the Boolean program to become more complicated.
This puts additional strain on Bebop.

In the worst case, the predicates can begin to resemble the arithmetic from the
original C program. BoPPo, because its symbolic representation is based on SAT
and QBF and not BDDs, is better able to scale to larger and more complicated
sequential Boolean programs.

6 Conclusion and Future Work

Symbolic model checking and partial-order reduction are hard to combine. For this
reason model checkers for software systems typically treat non-trivial amounts of
symbolic data, or non-trivial numbers of threads, but not both. We have presented
a SAT-based model checking approach that can be used to efficiently reason about
the safety of Boolean programs with both symbolic data and multiple threads. This
allows model checkers which abstract software into Boolean programs to verify multi-
threaded programs.

The algorithm presented in this paper implements partial-order reduction using
SAT. The reduction is based on a change to the case-splitting algorithm used within
the SAT-solver. This implementation strategy turns out to be better than an ap-
proach in which constraints on the interleavings are encoded as part of the input to
the SAT-solver.

As future work, we want to experiment with other techniques for checking state
subsumption for parametric representations. In [29], the authors use a SAT solver
to compute a new parametric representation from a set of constraints. The new
parametric representation is canonical for a given variable ordering, and thus allows
an efficient fix-point detection. We would also like to try our techniques for checking
liveness properties and for checking equivalence of two programs.

Note to reviewers: We intend to make BoPPo publically available. A prelim-
inary release with examples (for reviewers) can be found at

http://www.inf.ethz.ch/personal/daniekro/boppo/
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