
ETH Library

A Modular Design for the Common
Language Runtime (CLR)
Architecture

Report

Author(s):
Fruja, Nicu Georgian

Publication date:
2005

Permanent link:
https://doi.org/10.3929/ethz-a-006787872

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 492

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006787872
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A Modular Design for the
Common Language Runtime (CLR)

Architecture

Nicu G. Fruja

Computer Science Department, ETH Zürich, CH-8092 Zürich, Switzerland
fruja@inf.ethz.ch

Abstract. This paper provides a modular high-level design of the Com-
mon Language Runtime (CLR) architecture. Our design is given in terms
of Abstract State Machines (ASMs) and takes the form of an interpreter.
We describe the CLR as a hierarchy of eight submachines, which corre-
spond to eight submodules into which the Common Intermediate Lan-
guage (CIL) instruction set can be decomposed.

1 Introduction

This paper is one outcome of a larger project [11] which aims to establish some
outstanding properties of C] and CLR by mathematical proofs. Examples are
the correctness of the CLR bytecode verifier and the type safety of C] (along the
lines of the correctness proof [10] for the definite assignment rules). As part of
this effort, an ASM1 model has been developed in [7] to formalize the semantics
of C]. To validate this model, we have refined it and made executable (see [12])
in AsmL [14].

The CLR is the runtime environment for executing .NET applications. A
single .NET application may consist of several different languages. Accordingly,
the CLR has to support any language compiler intended for the .NET platform.
We assume the reader to be knowledgeable about or at least to have a rough
understanding of the CLR virtual machine.

We define an abstract interpreter in terms of an ASM model for the CIL
language executed by the CLR virtual machine which includes most of the con-
structs which deal with the interpretation of the procedural, object-oriented and
non-verifiable constructs of the .NET CLR. The inputs of the interpreter are
CIL programs whose code consists of bytecode instructions. Our interpreter is
a trustful machine, i.e. it does not check the instructions before the execution
to satisfy constraints about types, resource bounds, etc. In order to check the
faithfulness with respect to the CLR of the modeling decisions we had to take
here, we made a series of experiments with the CLR. Another way to test the
internal correctness of the model presented in this paper and its conformance

1 A detailed definition of ASMs is available in the AsmBook [8, §2].

to the experiments with the CLR is provided through an executable version im-
plemented in AsmL [14]. Upon completion of the AsmL implementation of the
entire CLR model, the full details will be made available in [13].

In [6], a similar ASM model is developed for the Java Virtual Machine (JVM).
However, the bytecode run in CLR results not only from the compilation of
C] but of all .NET compatible languages such as Visual Basic, C++, VBScript,
JScript, COBOL, Component Pascal, Modula 2, Eiffel etc. Thus, the CIL in-
struction set is designed with the objective of supporting multiple languages,
and thus needs to support all of the constructs of what Microsoft calls the Vir-
tual Object System. [5] describes briefly the differences between the JVM and
CLR virtual machines. An interested reader can find many other differences
in [2]. Accordingly, the development of the CLR model becomes more complex
than in case of JVM [6].

A type system for a fragment of CIL is developed in [4]. The main theorem
proved in [4], asserts type safety. Many key aspects are however omitted in
the object model they consider: null objects, global fields and methods, static
fields and methods (and implicitly the type initialization process). Moreover,
their instruction set omits: local variables instructions, arithmetic instructions,
arbitrary branching instructions, jumping instructions, tail calls prefix.

The main technical contributions of this paper are the formalizations of the
following critical (different wrt JVM [6]) features: typed evaluation stack, mem-
ory allocation and de-allocation, tail method calls, call-by-reference mechanism,
pointer handling, value class instance handling. Similarly as in [6], CIL is de-
scribed as a hierarchy of eight sublanguages, which correspond to eight submod-
ules into which the CLR can be decomposed: CLRI⊂ CLRC⊂ CLRO⊂ CLRE⊂
CLRP⊂ CLRVC⊂ CLRT R⊂ CLRMP . For each such submodule CLRL we build
a submachine CLRL which is a conservative extension of its predecessor. The
model for the whole CLR is given by the last submachine, i.e. CLRMP . Due
to the space limit, we omit here bytecode instructions for arrays, monitors, ex-
ceptions, typed references and method pointers but we include them (as well as
skipped details in this paper) in the full CLR model defined in [2]. This means,
the submodules CLRE , CLRT R and CLRMP are skipped in the model defined
in this paper2.

The exceptions submodule CLRE including the CLR exception handling
mechanism and its analysis is also postponed to a separate paper [3] where the
use of ASMs clarified the numerous issues concerning the exception handling
which are left open in the ECMA standard [1]. Also, the model in the present
paper helps us to discover a mistake in the CLR implementation concerning the
value class initialization (see Section 2.6).

The remainder of the paper proceeds as follows. Section 2 defines the se-
quence of the five successively extended machines. A global view of the CLR
virtual machine is given in Section 2.1 together with a short description of the
considered bytecode instructions. Section 2.2 introduces a typed stack machine

2 The submodules CLRT R and CLRMP introduce typed references and method point-
ers, respectively.

Fig. 1 The considered CLR instructions
CLRI instructions CLRP instructions

Instr = Execute(Op)
| LoadLoc(Local)
| StoreLoc(Local)
| Branch(Pc)
| Cond(Op,Pc)
| Dup
| Pop

Instr = . . .
| LoadArgA(Arg)
| LoadLocA(Local)
| LoadStaticA(Type,FRef)
| LoadFieldA(Type,FRef)
| LoadInd(LoadIndType)
| StoreInd(StoreIndType)
| InitBlock
| CopyBlock
| LocAlloc

CLRC instructions CLRVC instructions
Instr = . . .

| LoadStatic(Type,FRef)
| StoreStatic(Type,FRef)
| LoadArg(Arg)
| StoreArg(Arg)
| Call(TailCall ,Type,MRef)
| Return

Instr = . . .
| InitObj (ValueType)
| CopyObj (ValueType)
| Box (ValueType)
| Unbox (ValueType)

CLRO instructions
Instr = . . .

| NewObj (MRef)
| LoadField(Type,FRef)
| StoreField(Type,FRef)
| CallVirt(TailCall ,Type,MRef)
| CastClass(Class)
| IsInstance(Class)
| Jmp(MRef)

CLRI with instructions required for the compilation of imperative programs of
a while language. CLRI is extended to CLRC in Section 2.3 by including in-
structions used for compilation of static features of classes. Section 2.4 defines
an object-based machine CLRO which supports instructions for object oriented
features. The machine CLRP defined in Section 2.5 extends CLRO by adding
instructions for dealing with pointers. The topmost machine CLRVC defined in
Section 2.6 provides instructions for dealing with value class instances. Section 3
concludes.

2 The CLR virtual machine

2.1 The overall picture

The real CLR has approximately 200 instructions. Most of them are specified in
Fig. 1 as elements of the successively extended universe Instr . One can obtain
the real CLR instructions if one extends the parameter universes we describe be-
low. The universe Op contains operators, Local local variables and Pc program

counters. The last two universes are synonyms for the universe N of natural num-
bers. Type denotes types, Arg method arguments and TailCall special boolean
flags used for method calls. The universes FRef and MRef uniquely describe field
and method references. Class stands for the universe of classes, while ValueClass
denotes only the value classes. LoadIndType and StoreIndType denote the type
of a value indirectly loaded and stored, respectively from and into the memory.
ValueType represents the universe of value types which includes the value classes
described by ValueClass and the built-in value types, i.e. the numeric types.

Some instructions are never verifiable, i.e. a program containing such instruc-
tions will always fail the bytecode verification. The other instructions are either
always verifiable or verifiable under certain conditions which we do not detail
here (this is part of future work – see Section 3). However, we specify all the
instructions independent on their verifiability status.

Naming conventions We summarize the major naming conventions used in
the paper. Thus, t will represent a type, val a value, r an object reference and
adr a memory address, c a class name, vc a value class name, vt a value type, f
a field name (or sometimes a field reference) and m a method name.

2.2 The CLRI submodule

The CLRI machine is a typed stack machine which supports the instructions
necessary to implement a so-called imperative while language.
Environment and State The list of bytecode instructions of the current
method is maintained in code : List(Instr). CLRI is dealing only with a sin-
gle method whose local variable types are given by the list locTypes. The uni-
verse DivOp consists of the division operators div, div.un, rem, rem.un. Some
operators perform overflow checks; examples are add.ovf.un and sub.ovf.un.
We denote by OvfOp the universe of these operators. Upon these definitions,
the following set relations hold: DivOp ⊂ Op and OvfOp ⊂ Op. The dynamic
state of the CLRI consists of a frame containing a program counter pc, local
variable addresses locAdr and an evaluation stack evalStack . The pc runs over
the universe Pc. The locAdr carries the addresses of the local variables and not
their values. Although the addresses are not needed for CLRI , they are later ad-
dressable with the instructions added in CLRP . The universe of addresses Adr
is the interval Adr = 0 ..maxAdr − 1 where the non-negative integer maxAdr
depends on the target architecture. The mem is used to store values into the
memory locations. The second column of the following declaration defines the
initial values of the dynamic functions in the first column:
pc : Pc pc = 0
locAdr : Map(Local ,Adr) locAdr(n) ∈ Adr , ∀n ∈ Local
evalStack : List(Val × CLRStackType) evalStack = []
mem : Map(Adr ,Val ∪ {undef }) mem(adr) = undef , ∀adr ∈ Adr

Typed evaluation stack The evalStack is specified as a list of typed values.
This is a crucial difference wrt the untyped JVM operand stack. The latter is
made of uniform 32-bits wide locations modulo some issues with the atomicity of

pushes of 64-bit quantities. The values are described as elements of Val . The CLR
requires values on the evalStack to be of types described by CLRStackType3. The
CLR supports generic instructions such as add, div because, in contrast to JVM,
the CIL code has been designed for JIT compilation and not to be interpreted.
Our interpreter needs to track the types of the values on the evalStack , in par-
ticular, for executing generic operators. The types referred by CLRStackType
are the types as tracked by the CLR rather than the more detailed types used
by the CLR bytecode verifier.
CLRStackType = int32 | int64 | native int | F

The CLRStackTypes serve for the following purposes:

– to define the semantic function CLRResVal – it computes the result of all
the operators (see the Execute rule below);

– to specify the cases when an operator can throw an exception;
– to determine if a bytecode program is valid – the validity condition is a

necessary condition for a program to be verifiable (see [1, Partition III];

The bytecode verifier tests requirements for valid CIL and also specific verifica-
tion conditions (the formalization of the bytecode verifier is future work).

The valuesOf selects the value component of a list of evalStack slots, i.e.
valuesOf applied to [(val1, t1), . . . , (valn, tn)] returns [val1, . . . , valn]. Similarly,
typesOf selects the type component of a list of evalStack slots. The CLRTypeOf
extends “upwards” a type to a CLRStackType (see [2] for details). Beside the
usual list operations (e.g. push, pop, take, length, “·”)4, we use different opera-
tions for dealing with the evalStack : split(evalStack ,n) splits off the last n slots
of the evalStack . More exactly, split(evalStack ,n) is the pair (evalStack ′,ns)
of two lists where evalStack ′ · ns = evalStack and length(ns) = n. Similarly,
getVals(evalStack ,n) splits off the last n slots of the evalStack by retrieving only
their values.
Rules The ASM rules in Fig. 2 describe the dynamic semantics of CLRI . The
machine CLRI fires the execCLRI rules for the current instruction code(pc).
Execute(op) takes the topmost opNo(op) values of the evalStack where opNo(op)
returns the number of operands of the operator op. If there is no exception
case, the result of the semantic function CLRResVal(op,slots) is loaded on
the evalStack . The result type CLRResType of all the operators is defined by the
ECMA standard [1, Partition III,§1.5] and is a function of the operator and of the
operands’ types. The cases when an exception is thrown are: (a) division by zero
for operators of integral types; (b) operations that perform an overflow check and
whose results cannot be represented in the result type; (c) values that are not
“normal” numbers are checked for finiteness or div ision/rem ainder operations
are executed for a minimal value of an integral type and −1. In the following
formalizations, vals stands for valuesOf (slots) and types for typesOf (slots).
3 Concerning the definition of CLRStackType: native int stands for int32 or int64

whichever is more convenient for the target architecture; floating-point numbers are
represented using an internal floating-point type F.

4 The “·” denotes the append operation for lists.

Fig. 2 The execution of CLRI instructions
CLRI ≡ execCLRI(code(pc))

execCLRI(instr) ≡ match instr
Execute(op) →

let (evalStack ′, slots) = split(evalStack , opNo(op)) in
if ¬ExceptionCase(op, slots) then

let (val , t) = (CLRResVal(op, slots),CLRResType(op, typesOf (slots))) in
evalStack := evalStack ′ · [(val , t)]
pc := pc + 1

LoadLoc(n) → let t = locTypes(n) in
evalStack := evalStack · [(memVal(locAdr(n), t),CLRTypeOf (t))]
pc := pc + 1

StoreLoc(n) → let (evalStack ′, [val]) = getVals(evalStack , 1) in
WriteMem(locAdr(n), locTypes(n), val)
evalStack := evalStack ′

pc := pc + 1
Branch(t) → pc := t
Cond(op, t) → let (evalStack ′, slots) = split(evalStack , opNo(op)) in

evalStack := evalStack ′

pc := if CLRResVal(op, slots) then t else pc + 1

Dup → let (evalStack ′ · [(val , t)]) = split(evalStack , 1) in
evalStack := evalStack ′ · [(val , t), (val , t)]
pc := pc + 1

Pop → pop(evalStack)
pc := pc + 1

ExceptionCase(op, slots) ⇔ DivByZeroCase(op, slots) ∨OverflowCase(op, slots)
∨ InvNrCase(op, slots)

DivByZeroCase(op, slots) ⇔ op ∈ DivOp ∧ vals(1) = 0
∧ types(i) ∈ {int32, int64, native int}, i = 0, 1

OverflowCase(op, slots) ⇔ op ∈ OvfOp
∧ Overflow(CLRResVal(op, slots),CLRResType(op, types))

InvNrCase(op, slots) ⇔ (op = ckfinite ∧ vals(0) ∈ {NaN, +infinity, -infinity})
∨ (op ∈ {div, rem} ∧ vals(0) = min(types(0)) ∧ vals(1) = −1

∧ types(i) ∈ {int32, int64, native int}, i = 0, 1)

LoadLoc loads the value of a local variable. The value of the local variable n of the
declared type t is determined using the derived function memVal : Map(Adr ,Val)
applied to the address of n and t . The memVal builds up the value of a given type
stored in memory at a certain address. In CLRI , memVal(adr , t) := mem(adr).
The type t becomes relevant when we refine the universe Val in CLRC . StoreLoc
writes the value of the topmost slot into the memory at the local variable’s
address. The “write in memory” is defined through the WriteMem that also
considers the type of the stored value although this is not needed in CLRI .
WriteMem(adr , t , val) ≡ mem(adr) := val

The jump instruction Branch(t) simply sets the pc to t . A conditioned jump
can be executed with Cond . If the operator op returns True, then the pc is set

to t , otherwise the pc is incremented. The topmost slot of the evalStack can be
duplicated and popped off with the instructions Dup and Pop, respectively.

2.3 The CLRC submodule

CLRC extends CLRI by instructions which deal with “read”/“write” static
fields, “read”/“write” method arguments and “call of”/“return from” static
methods.
Environment and State FRef and MRef consist of field and method refer-
ences, respectively. The field references are pairs of class and field names, while
the method references are triples of class names, method names and signatures.
Class consists in CLRC only of the object classes defined by the universe ObjClass
(in CLRVC we add also value classes). Field and Method are universes that stand
for field and method identifiers, respectively. Sig specifies the universe of “stand
alone signatures”. A signature includes not only a return type, number, order
and types of the parameters but also information about the calling convention to
be used when invoking the corresponding method. Method arguments are spec-
ified as natural numbers and are elements of the universe Arg . The real CLR
instructions for calling methods (see also CLRO) may be prefixed by tail whose
presence is indicated by a boolean flag – element of TailCall – in the abstract
Call instruction.
FRef = Class × Field Class = ObjClass TailCall = Bool
MRef = Class ×Method × Sig Arg = N

The set of static and instance fields of a class is obtained by applying to the
class name the functions statFields and instFields, respectively. With these def-
initions, it becomes obvious how the predicates static and instance decide if
a field reference is to a static or an instance field (see CLRO). The function
type applied to a field reference returns the declared type of the field. The func-
tions paramTypes and retType select the list of parameter types and the return
type of a (method) signature, respectively. The function paramNo is derived from
paramTypes and assigns to a signature the length of the parameter types list. We
actually use paramTypes, paramNo and retType applied to method references to
get the parameter types, parameters number and return type embedded into the
corresponding signature. The locTypes assigns to every method reference the list
of its local variable types (“locals signature”). The locNo is defined as the length
of the locTypes. The predicates static and instance defined for (method) signa-
tures decide whether the calling convention embedded in the signature refers to
a static or instance signature. We use these predicates many times also applied
directly to method references, but they are actually computed as being applied
to the signatures. The zeroInit is a flag in the method headers which indicates
if the local variables should be automatically initialized to zero by the CLR.

type : Map(FRef ,Type)
statFields : Map(Class,P(FRef))
instFields : Map(Class,P(FRef))

retType : Map(Sig ,Type)
paramTypes : Map(Sig ,List(Type))
locTypes : Map(MRef ,List(Type))
zeroInit : Map(MRef ,Bool)

In CLRC , the procedural abstraction is added in the form of static methods.
Unlike in CLRI where we had a single method frame, in CLRC we have a
stack frameStack of call frames described by Frame.
Frame = Pc ×Map(Local ,Adr)×Map(Arg ,Adr)× P(Adr)

×List(Val × CLRStackType)×MRef
frameStack : List(Frame)

A frame in CLRC is enriched with more information than in CLRI . The
frame components are, in order, the following: a program counter pc, local vari-
ables addresses locAdr , arguments addresses argAdr : Map(Arg ,Adr), the set
of stack-allocated addresses StackAdr (including also the addresses allocated for
the frames on the frameStack), an evaluation stack evalStack and a method
reference meth : MRef . As in case of locAdr , the argAdr holds the arguments’
addresses and not their values. Although these addresses are not useful in CLRC ,
they become addressable in CLRP . Unlike CLR, JVM does not have separate in-
structions for method arguments. We model in a simple manner also the memory
allocation (see the end of this section where we provide an abstract specification
of the memory management). Upon exiting a method, the addresses allocated
for the method’s evalStack have to be deallocated. Therefore, it is crucial to “re-
member” the set of stack-allocated addresses for the invoker frame. We extend
the stipulations for the initial state as follows:
locAdr = ∅ argAdr = ∅ StackAdr = ∅ meth = Object::.entrypoint
frameStack = []

We assume that the program “entrypoint” is a method declared by Object
which calls the method marked with entrypoint in the bytecode (see [6, §10.1]
and [2] for justifications of this assumption). We denote by frame the cur-
rently executed frame: frame = (pc,locAdr ,argAdr ,StackAdr ,evalStack ,meth).
Note that we separate the current frame from the stack of frames, i.e. we do not
include frame in the frameStack .

We consider the approach from [6] to separate the methods transfer and the
execution of method bodies. We introduce a switch machine switchCLR that
is responsible for the methods transfer. For more details, we refer the interested
reader to [2,6]. The universe Switch defines the states of this machine:
Switch = Noswitch | Invoke(TailCall ,MRef ,List(Val)) | InitClass(Class)

| Result(List(Val × CLRStackType))

The current state of the submachine switchCLR is specified by the dynamic
function switch : Switch whose initial value is Noswitch.

Unlike in JVM, in CLR, beside static fields and methods, there are also global
fields and methods (declared outside of any type). The CLR defines a class,
named <Module>, that has as members all the global fields and methods, which
does not have a base type and does not implement any interfaces [1, Partition
II,§9.8]. Accordingly, we treat the global members exactly in the same way as
we treat the static members. globals : Map(FRef ,Adr) holds the addresses of all
static fields (including the global fields).
Class initialization The ECMA standard imposes several rules in [1, Partition
I,§8.9.5] concerning the class initialization (for both object classes and value

classes as we will see in CLRVC). The class initialization implies the execution of
its initializer. A class may have or may not have an initializer. In the latter case,
the CLR creates one which usually contains assignments to the static fields (it
might be also “empty”, i.e. with a body consisting of a Return instruction only)
and marks the class with the attribute beforefieldinit. If a class is not marked
with beforefieldinit, then the initializer is executed at the first access to any
static or instance field (see CLRO) of that class, or the first invocation of any
static, instance or virtual method (see CLRO) of that class. If the class is marked
with beforefieldinit, the invocation of a static method (declared by the class)
does not trigger the initialization. In such a case, the initialization is triggered
only by a static field access. Let us denote by beforefieldinit : Map(Class,Bool)
the predicate that specifies what classes are marked with beforefieldinit.
The universe ClassState specifies the initialization state of a class: before being
initialized, a class is in state Linked , while, following the initialization, a class
is Initialized . classState keeps track of the initialization state of classes. In the
initial state, all the classes are Linked except Object and <Module> which are
Initialized :
ClassState = Linked | Initialized
classState : Map(Class,ClassState)
classState(c) = Linked ,∀c ∈ Class \ {Object, <Module>}
classState(Object) = classState(<Module>) = Initialized

The predicate initialized is derived from classState: initialized(c) holds for a
class c if classState(c) = Initialized . It is useful to define also the predicate
reqinit that is checked every time a method is invoked; a c’s method invoca-
tion requires the initialization of c if c is neither initialized nor marked with
beforefieldinit:

reqinit(c) ⇔ ¬initialized(c) ∧ ¬beforefieldinit(c)

Rules The ASM rules for CLRC are defined in Fig. 3. The machine CLRC exe-
cutes the macro execScheme which is parameterized by the machines execCLRC

and switchCLR. The macro execScheme is defined as follows5. If switch is set,
i.e. it has a value other than Noswitch, then the control is passed to the ma-
chine switchCLR. Otherwise, as a consequence of the beforefieldinit seman-
tics, either a beforefieldinit class is initialized through InitializeClass or
execCLR fires a rule for the current instruction. We use the abbreviation “or”
as defined in [8, §2.2.5] for the special case of non-deterministic choice among
two rules. InitializeClass arbitrarily chooses a beforefieldinit class that is
not yet initialized. It then passes the control to the switchCLR to initialize the
class.

InitializeClass ≡ choose c ∈ Class with ¬initialized(c) ∧ beforefieldinit(c) do
switch := InitClass(c)

5 The execScheme is redefined in CLRE in [2] while introducing exceptions. If an ex-
ception is thrown, the execScheme passes the control to the exception handling mech-
anism. Thus, it prevents the execution of the execCLR machines. Consequently, we
do not have to modify the execCLR machines introduced in this paper.

The following explanations are for the execCLR rules assuming in cases of
field accesses and method calls, that no class initialization is required (if one
needs to initialize a class, the switch is updated to InitClass). The type t in
LoadStatic(t , c::f) is the declared type of the field reference c::f . The same ex-
planation applies for StoreStatic(t , c::f). In case of Call(, t , c::m), t denotes the
return type of the considered method reference. LoadStatic(t ,c::f) pushes on the
evalStack the value of the field f stored at the address globals(c::f). The value
of the topmost evalStack slot is stored by StoreStatic into the address of c::f . To
formalize LoadArg and StoreArg , we need to determine the types of the current
method arguments: argTypes : Map(MRef ,List(Type)) yields for a method ref-
erence the list of argument types. We denote by argNo the length of argTypes.
For every static method reference c::m, argTypes is defined6 as follows:

argTypes(c::m) = paramTypes(c::m)

Note We assume that for each of the functions locTypes, locNo, argTypes, argNo
and code there is a derived function having the same name, that suppresses the
method reference and abbreviates the data path to select the corresponding
component.

The value of the argument n is loaded on the evalStack through LoadArg(n). The
instruction StoreArg(n) writes the value of the topmost evalStack slot into the
address of argument n. For calling a method, a Call takes the necessary number
of arguments from the evalStack and transfers the control to switchCLR. It for-
wards the boolean information concerning a possible tail call through the switch
value Invoke passed to switchCLR. The Return takes from the evalStack zero
or one value depending on the return type of the current method and transfers
the control to switchCLR together with the returned value (if any).
The switch machine The rules of switchCLR are presented in Fig. 4. The
rule Invoke(tail , c::m, args) handles the context transfer from the current method
to the method c::m. The CLR supports tail calls (this is a crucial difference
wrt JVM) since there are .NET languages where the recursion is the only
way to express repetition. If the prefix tail is attached to a call instruction,
then the caller’s stack frame is discarded prior making the call. So, when tail
is True, the current frame is not pushed on frameStack and the stack ad-
dresses allocated for the current frame are deallocated. Otherwise, the current
frame is saved on frameStack . The frame for invoking c::m with the list of
arguments args becomes the current frame. When setting up this frame with
SetFrame memory is allocated on the stack for arguments and local variables
through MakeArgLoc (see the paragraph on the abstract memory manage-
ment at the end of this section). The macro MakeArgLoc writes the values
of the incoming arguments in the addresses allocated for arguments and val-
ues of “zero” or undef in the addresses allocated for local variables. Note that
defVal : Map(Type,Val) assigns to every type its “zero”, i.e. its default value.
The function zero : Map(Type × MRef ,Val ∪ {undef }) computes the value a

6 This definition is refined in CLRO and CLRVC.

Fig. 3 The execution of CLRC instructions
CLRC ≡ execScheme(execCLRC , switchCLR)

execScheme(execCLR, switchCLR) ≡
if switch 6= Noswitch then switchCLR
else InitializeClass or execCLR(code(pc))

execCLRC(instr) ≡
execCLRI(instr)
match instr

LoadStatic(t , c::f) →
if initialized(c) then

evalStack := evalStack · [(memVal(globals(c::f), t),CLRTypeOf (t))]
pc := pc + 1

else switch := InitClass(c)
StoreStatic(t , c::f) → let (evalStack ′, [val]) = getVals(evalStack , 1) in

if initialized(c) then
WriteMem(globals(c::f), t , val)
evalStack := evalStack ′

pc := pc + 1
else switch := InitClass(c)

LoadArg(n) →
let t = argTypes(n) in

evalStack := evalStack · [(memVal(argAdr(n), t),CLRTypeOf (t))]
pc := pc + 1

StoreArg(n) → let (evalStack ′, [val]) = getVals(evalStack , 1) in
WriteMem(argAdr(n), argTypes(n), val)
evalStack := evalStack ′

pc := pc + 1
Call(tail , , c::m) →

if static(c::m) then
if ¬reqinit(c) then

let (evalStack ′, vals) = getVals(evalStack , argNo(c::m)) in
evalStack := evalStack ′

switch := Invoke(tail , c::m, vals)
else switch := InitClass(c)

Return → let slots = take(evalStack ,n) in switch := Result(slots)
where n = if retType(meth) = void then 0 else 1

local variable has upon entering the corresponding method. We use this function
for both a type and a list of types.

SetFrame(c::m, args) ≡
pc := 0
evalStack := []
meth := c::m
MakeArgLoc(argTypes(c::m), locTypes(c::m), args · zero(locTypes(c::m), c::m))

zero(t , c::m) = if zeroInit(c::m) then defVal(t) else undef

Fig. 4 The switchCLR machine
switchCLR ≡ match switch

Invoke(tail , c::m, args) → if tail then DeAllocMem(StackAdr ′)
else push(frameStack , frame)
SetFrame(c::m, args)
switch := Noswitch
where (, , ,StackAdr ′, ,) = top(frameStack)

InitClass(c) → if classState(c) = Linked then
classState(c) := Initialized
InitStatFields(c)
SetFrame(c::.cctor, [])
push(frameStack , frame)
switch := Noswitch

Result(slots) → if methNm(meth) = .cctor then PopFrame(0, [])
else PopFrame(1, slots)
switch := Noswitch

The rule InitClass for initializing a class, sets to “zero” the static fields through
InitStatFields, saves the current frame on frameStack and prepares the frame
for invoking the type initializer .cctor.

InitStatFields(c) ≡ forall f ∈ statFields(c) do
WriteMem(globals(f), type(f), defVal(type(f)))

Unlike in JVM, the execution of any CLR type initializer does not trig-
ger automatic execution of any initializer methods defined by its base type.
Result(slots) terminates the execution of the current method and returns the
result vals to the caller method through PopFrame. If the method is a .cctor,
i.e. it has been implicitly called and vals is [], then the current frame is discarded
and the invoker frame becomes the current frame. If the method is not a .cctor,
then the current frame is given by the invoker frame with vals pushed on the
evalStack and the pc incremented by 1. The memory allocated on the stack for
the current method is reclaimed through DeAllocMem7.

PopFrame(k , slots) ≡
let (frameStack ′, [(pc′, locAdr ′, argAdr ′,StackAdr ′, evalStack ′,meth ′)])

= split(frameStack , 1) in
pc := pc′ + k
locAdr := locAdr ′

argAdr := argAdr ′

evalStack := evalStack ′ · slots
meth := meth ′

frameStack := frameStack ′

DeAllocMem(StackAdr ′)

Since the first method on frameStack is always our Object::entrypoint, which
does not have a Return, the frameStack is non-empty whenever PopFrame

7 The macro DeAllocMem is defined in the paragraph on memory management.

is invoked and consequently the split in the definition of PopFrame always
succeeds.
Abstract memory management We explain the details on how the addresses
– elements of Adr – are allocated. We stick our formalization to the two kinds of
allocations – stack and heap allocation – without considering a garbage collector.
However, we provide a simple notion of stack de-allocation. We consider two
dynamic functions that keep track of the addresses allocated on the stack and
on the heap: StackAdr : P(Adr) and HeapAdr : P(Adr). Accordingly to their
definitions, in the initial state of CLRC , the StackAdr and the HeapAdr are ∅.

The number of addresses allocated for a value depends on the value’s type.
We use an external function sizeOf : Map(Type, N) to determine the size of the
block of addresses allocated for a value of a given type.

From now on, we will consider the values described by Val as encoded
by sequences of the bytes described by Byte. Accordingly, the mem is rede-
fined as mem : Map(Adr ,Byte ∪ {undef }) and the definitions of memVal and
WriteMem are refined as follows:

memVal(adr , t) = [mem(adr + i) | i ∈ [0..sizeOf (t)− 1]]

WriteMem(adr , t , val) ≡ forall i ∈ [0..sizeOf (t)− 1] do mem(adr + i) := val(i)

We use the partial functions encode and decode to determine the sequence of
bytes associated to a value of a simple value type8 or of a pointer type and to
obtain the value associated to a sequence of bytes. For a value val of a type t ,
the functions encode and decode satisfy the following equations:

length(encode(val)) = sizeOf (t) and decode(t , encode(val)) = val

We are now able to determine when there is enough space in Adr to be
allocated for a list of values9. Given a finite list sizes, the set SpaceFor(sizes)
contains the un-allocated memory blocks (if any) where can be stored values
whose types have the sizes given by sizes. We consider the memory blocks that
start at a valid address. Since, the notion of “validity” depends in general on the
target architecture, we assume the external function validAdr : Map(Adr ,Bool)
decides whether an address is valid. One can find more details on this function
in Section 2.5. In the definition below, n stands for length(sizes):

SpaceFor(sizes) =
�
(adr i)

n−1
i=0 ∈ Adrn | validAdr(adr i) ∀i = 0,n − 1 and

n−1]

i=0

[adr i, adr i + sizes(i)) ⊆ Adr \ (StackAdr ∪HeapAdr)}

If an attempt to allocate on the stack fails, a StackOverflowException is
thrown (see CLRE in [2]). Similarly, if one needs to allocate on the heap, then
an OutOfMemoryException is raised.
8 By simple value type we mean a value type which is not a value class.
9 Due to the definition of MakeArgLoc, we have a generalized definition, i.e. for a

list of values and not for a single value.

The following explanations are for the macro MakeArgLoc defined in [2],
which we used when setting the frame for a method call. MakeArgLoc is
applied to three lists: two lists of types types1 and types2 and a list of values
vals. It assumes that the sum of the first two lists’ lengths is equal with the
length of vals. The macro allocates addresses on the stack that would be needed
for arguments and local variables of types types1 and types2 and writes the values
vals in these addresses. It first checks if there is enough space to be allocated.
It does not assume anything concerning the order of the arguments and local
variables on the stack. At the same time, the allocated addresses are pushed on
the StackAdr .

The macro DeAllocMem has been used when exiting a method. It re-
claims the memory space allocated on the stack for arguments and local variables
but also the memory allocated in the local memory pool defined in Section 2.5
(see CLRP).

DeAllocMem(A) ≡
StackAdr := A
forall adr in StackAdr \A do mem(adr) := undef

2.4 The CLRO submodule

CLRO extends CLRC by object-oriented features like objects creation and ini-
tialization, instance fields and methods (including instance constructors) and
type casts. CLRO includes also an optimization of the tail calls described in
CLRC .
Environment and State The universe ObjType describes object types. An
object type is a reference type of a self-describing value. The object types are
the object classes (not the value classes) ObjType = ObjClass. In [2] we consider
in ObjType also the array types. The universe CLRStackType is extended with
the special type O corresponding to ObjType. The function CLRTypeOf maps
every object type to the special type O .
CLRStackType = . . . | O

Beside static fields, in CLRO we have also instance fields. The external func-
tion fieldOffSet computes for every instance field of a class the field offset within
an instance of the given class. We denote by ObjRef the universe of object ref-
erences (note that the evalStack does not work directly with objects but with
references to objects). The fieldAdr assigns to every instance field of an object
reference its allocated address.
fieldOffSet : Map(Class × FRef , N) fieldAdr : Map(ObjRef × FRef ,Adr)

The CLR provides support for a special kind of instance methods, namely
virtual methods. They are usually used with the CallVirt instruction when the
method to be invoked is looked up dynamically (with the function lookup) using
the virtual method embedded in CallVirt . lookup : Map(Type×MRef ,MRef) is
defined as follows: lookup(t , c::m) yields d ::m, if d ::m is the first implementation
of the method c::m provided by a supertype of t , starting with t itself.

The objects, i.e. instances of object classes10, are allocated on the heap. All
objects on the heap are known as “boxed objects” in contrast with the value
type instances introduced in CLRVC and known as “unboxed objects”. A class
object is represented by its type and the addresses (and not the values as in
JVM [6]) of its instance fields. The function actualTypeOf : Map(ObjRef ,Type)
records the actual type of an object on the heap.

The function mem is redefined as mem : Map(Adr ,Byte∪ObjRef ∪{undef }).
Also memVal and WriteMem are refined as follows:

memVal(adr , t) = if t ∈ ObjType then mem(adr)
else [mem(adr + i) | i ∈ [0..sizeOf (t)− 1]]

WriteMem(adr , t , val) ≡ if t ∈ ObjType then mem(adr) := val
else forall i ∈ [0..sizeOf (t)− 1] do

mem(adr + i) := val(i)

Rules Fig. 5, 6 and 7 define the rules for CLRO. NewObj allocates an instance
of an object class provided that the allocation does not require the class initial-
ization, otherwise it proceeds with the initialization. The allocation succeeds if
there is sufficient memory to be allocated (on the heap). The object reference
and the object on the heap are created through the following macro:

let r = new(ObjRef , t) in P ≡
import r do

ObjRef (r) := True
choose (adr) ∈ SpaceFor([n]) do

HeapAdr := HeapAdr ∪ [adr , adr + n)
forall f ∈ instFields(t) do

let a = adr + fieldOffSet(t , f) in
fieldAdr(r , f) := a
AllocFields(a, type(f))

seq P
where n = sizeOf (t)

AllocFields(adr , t) ≡
skip

The object is allocated in the HeapAdr . The addresses of the instance fields are
computed using the object starting address and the field offsets. In CLRVC , the
fields might be of a value class type. In that case, one has to compute also the
addresses of the instance fields of the corresponding value class instance. At this
point, the macro AllocFields does nothing but it will be refined in Section 2.6.
Beside the allocation, NewObj initializes all the instance fields of the newly
created reference and invokes (“non-tail”) the instance constructor embedded in
NewObj with the necessary number of values present on the evalStack . In [2],
we explain the differences between the JVM new and CLR newobj.

The field values can be read with LoadField and be written with StoreField .
LoadField takes the value of the topmost evalStack slot which is an object refer-
ence or a pointer to a value type instance (see CLRVC). The loaded value is the
value stored at the field address which is given by the globals if the field is static
or by the fieldAdr otherwise. StoreField takes from the evalStack the values of
10 In [2] we have also arrays.

Fig. 5 The execution of CLRO instructions
CLRO ≡ execScheme(execCLRO, switchCLR)

execCLRO(instr) ≡
execCLRC(instr)
match instr

NewObj (c::.ctor) →
if c ∈ ObjClass then

if ¬reqinit(c) then
if SpaceFor([sizeOf (c)]) 6= ∅ then

let (evalStack ′, vals) = getVals(evalStack , paramNo(c::.ctor)) in
let r = new(ObjRef , c) in

evalStack := evalStack ′ · [(r ,O)]
actualTypeOf (r) := c
forall f ∈ instFields(c) do

WriteMem(fieldAdr(r , f), type(f), defVal(type(f)))
switch := Invoke(False, c::.ctor, [r] · vals)

else switch := InitClass(c)
LoadField(t , c::f) →

if initialized(c) then
let (evalStack ′, [x]) = getVals(evalStack , 1) in

if static(c::f) then
evalStack := evalStack ′ · [(memVal(globals(c::f), t),CLRTypeOf (t))]
pc := pc + 1

elseif x 6= null then
evalStack := evalStack ′ · [(memVal(fieldAdr(x , c::f), t),CLRTypeOf (t))]
pc := pc + 1

else switch := InitClass(c)
StoreField(t , c::f) → if initialized(c) then

let (evalStack ′, [x , val]) = getVals(evalStack , 2) in
if static(c::f) then

WriteMem(globals(c::f), t , val)
pc := pc + 1

elseif x 6= null then
WriteMem(fieldAdr(x , c::f), t , val)
pc := pc + 1

evalStack := evalStack ′

else switch := InitClass(c)
Call(tail , , c::m) →

if instance(c::m) then
if ¬reqinit(c) then

let (evalStack ′, vals) = getVals(evalStack , argNo(c::m)) in
if vals(0) 6= null then

evalStack := evalStack ′

switch := Invoke(tail , c::m, vals)

else switch := InitClass(c)

Fig. 6 The execution of CLRO instructions (continued)
CallVirt(tail , , c::m) →

let (evalStack ′, [r] · vals) = getVals(evalStack , argNo(c::m)) in
let d ::m = lookup(actualTypeOf (r), c::m) in

if ¬reqinit(d) then
if r 6= null then

evalStack := evalStack ′

switch := Invoke(tail , d ::m, [r] · vals)
else switch := InitClass(d)

CastClass(c) → let (r ,) = top(evalStack) in
if r = null ∨ actualTypeOf (r) � c then pc := pc + 1

IsInstance(c) → let (evalStack ′, [r]) = getVals(evalStack , 1) in
pc := pc + 1
if r = null ∨ actualTypeOf (r) 6� c then

evalStack := evalStack ′ · [(null,O)]
NonVerifiableO

the two topmost slots: the first is an object reference or a pointer and the second
is the value to be stored at the field address. For both LoadField and StoreField ,
if the field is declared by an uninitialized class, the class is first initialized.
Remark LoadField , StoreField and CallVirt (but also LoadFieldA in CLRP)
can be applied also to static members but they require anyway on evalStack also
an object reference or a pointer to a value type instance (see CLRVC). This is
another difference wrt JVM [6].
The Call rule that we define in CLRO can be fired only for instance methods (for
statics the Call rule from CLRC can be fired). If there is no need to initialize the
class declaring the called method, the method is invoked through switchCLR
which considers also information about a possible “tail call”. Call pops from
the evalStack the target reference (assumed non-null) representing the instance
whose method is invoked and the arguments. The number and types of the
arguments are given by the derived function argTypes whose definition is refined
in CLRO as follows: for every instance method reference c::m where c is an
object class:

argTypes(c::m) = [c] · paramTypes(c::m)

In case of CallVirt , the only difference wrt Call is that the method is late
bound. The method to be invoked is looked up dynamically by means of lookup.
CastClass checks whether the reference on top of the evalStack is of the required
class. If the attempted cast does not succeed, CastClass throws an exception (see
CLRE in [2]). IsInstance pops from evalStack a reference to a boxed object. If the
reference is null or the actual type of the reference is not compatible with the
given class, then a null reference is pushed on evalStack . Otherwise, it lets the
evalStack unchanged. The interested reader can find in [2] a detailed comparison
of the instructions IsInstance and CastClass with their correspondents in JVM.
Although Jmp is not verifiable, we still model its semantics (see Fig. 7). If the
method is declared by a class which requires initialization, Jmp initializes the
class first. Jmp is an optimization of a tail call. Consequently, the current frame

Fig. 7 The execution of non-verifiable CLRO instructions
NonVerifiableO ≡

Jmp(c::m) →
if ¬reqinit(c) then

let args = [memVal(argAdr(i), argTypes(i)) | i = 0, argNo(meth)− 1] in
switch := Invoke(True, c::m, args)

else switch := InitClass(c)

is discarded while invoking the given method. Note that, the given method is
also the method to be invoked - there is no lookup. The invocation arguments
are exactly the arguments of the current frame at the time when Jmp is fired.

2.5 The CLRP submodule

CLRP extends CLRO with pointer types, i.e. types whose values are memory
addresses. CLRP provides type-safe operations on pointers (e.g. “read”/“write”
a value from/into the address referenced by a pointer) and non-verifiable opera-
tions (e.g. initialize a block of memory to a given value, copy data from memory
to memory). The main purpose of having pointer types is to permit methods to
receive arguments and return values “by reference”.
Environment and State The universe CLRStackType includes now also the
special type & corresponding to managed pointers. LoadIndType describes the
type of a value indirectly loaded from the memory on evalStack with LoadInd ,
while StoreIndType describes the type of a value indirectly stored into the mem-
ory with StoreInd .
CLRStackType = . . . | & SignedInt = int8 | int16 | int32 | int64
Float = float32 | float64 UnsignedInt = uint8 | uint16 | uint32 | uint64
LoadIndType = SignedInt | UnsignedInt | Float | native int | object
StoreIndType = SignedInt | Float | native int | object

In Section 2.3 we have introduced the external function validAdr to check
addresses for validity. An address is invalid if it is null or is not in the range of
Adr or is not “naturally aligned” for the target architecture or is “not mapped”
into the process. An address is “naturally aligned” if it is aligned wrt the machine
dependent native int type. Note that, as a consequence of the definition of
SpaceFor , the results of all CIL instructions that return addresses (e.g. LoadLocA
and LoadArgA) are valid.
Rules The rules for CLRP are defined in Fig. 8 and 9. Assuming that the
zeroInit flag of the current method is set, LoadLocA(n) pushes the address of
the local variable indexed with n on the evalStack . If the zeroInit is not set, then
a VerificationException is thrown (see CLRE in [2]). Similarly, LoadArgA(n)
pushes on the evalStack the address of the current method argument indexed
with n . In JVM [6], one cannot take the address of local variables and argu-
ments. The address of a static field is loaded using LoadStaticA. If the class
which declares the static field is not yet initialized, the execution proceeds first
with the class initialization. LoadFieldA is similar with LoadStaticA and can be

Fig. 8 The execution of CLRP instructions
CLRP ≡ execScheme(execCLRP , switchCLR)

execCLRP (instr) ≡
execCLRO(instr)
match instr

LoadLocA(n) → if zeroInit(meth) then
evalStack := evalStack · [(locAdr(n), &)]
pc := pc + 1

LoadArgA(n) → evalStack := evalStack · [(argAdr(n), &)]
pc := pc + 1

LoadStaticA(, c::f) → if initialized(c) then
evalStack := evalStack · [(globals(c::f), &)]
pc := pc + 1

else switch := InitClass(c)
LoadFieldA(, c::f) →

if initialized(c) then
let (evalStack ′, [x]) = getVals(evalStack , 1) in

if static(c::f) then evalStack := evalStack ′ · [(globals(c::f), &)]
pc := pc + 1

elseif x 6= null then evalStack := evalStack ′ · [(fieldAdr(x , c::f), &)]
pc := pc + 1

else switch := InitClass(c)
LoadInd(t) → let (evalStack ′, [adr]) = getVals(evalStack , 1) in

if validAdr(adr) then
evalStack := evalStack ′ · [(memVal(adr , t),CLRTypeOf (t))]
pc := pc + 1

StoreInd(t) → let (evalStack ′, [adr , val]) = getVals(evalStack , 2) in
if validAdr(adr) then

WriteMem(adr , t , val)
evalStack := evalStack ′

pc := pc + 1
NonVerifiableP

used for both static and instance fields. LoadInd takes the value of the top-
most evalStack slot, which is supposed to be a pointer (address) and loads
the value stored at this address. StoreInd takes the values of the two topmost
evalStack slots, which are supposed to be a pointer (address) and a value. It
then stores the value at the address. In both cases, of LoadInd and StoreInd ,
the address must be a valid address, otherwise a NullReferenceException is
thrown (see CLRE in [2]).

Call by-reference mechanism Unlike JVM, the CLR allows to pass to a
method arguments by-reference (the equivalent of the C# ref or Pascal var pa-
rameters). This is realized by passing (by-value) the address of the by-reference
argument. Consequently, any assignment to the corresponding parameter actu-
ally modifies the corresponding caller’s variable. The instructions in Fig. 8 offer
support for computing addresses of variables.

Fig. 9 The execution of non-verifiable CLRP instructions
NonVerifiableP ≡

InitBlock → let (evalStack ′, [adr , val , size]) = getVals(evalStack , 3) in
if validAdr(adr) then

forall i = 0, size − 1 do mem(adr + i) := val
evalStack := evalStack ′

pc := pc + 1
CopyBlock →

let (evalStack ′, [dest adr , src adr , size]) = getVals(evalStack , 3) in
if validAdr(dest adr) ∧ validAdr(src adr) then

if ¬overlap(dest adr , src adr , size) then
forall i = 0, size − 1 do mem(dest adr + i) := mem(src adr + i)
evalStack := evalStack ′

pc := pc + 1
else Report(UndefinedBehavior)

LocAlloc → let (evalStack ′, [size]) = getVals(evalStack , 1) in
if SpaceFor([size]) 6= ∅ then

choose (adr) ∈ SpaceFor([size]) do
evalStack := evalStack ′ · [(adr , &)]
if zeroInit(meth) then

forall i = 0, size − 1 do mem(adr + i) := 0
StackAdr := StackAdr ∪ [adr , adr + size)

pc := pc + 1

The following explanations apply to the non-verifiable CLRP instructions in
Fig. 9. InitBlock writes a given value of type unsigned int8 in all the addresses
of a block of memory. It takes the values of the three topmost evalStack slots,
which are supposed to be, in order, a “pointer” (the block’s first address), a
value and the “size” of the block. It writes the value into a number of addresses
given by the block’s “size” starting with the address given by the “pointer”.
CopyBlock copies data from memory to memory. It takes the values of the three
topmost evalStack slots, which are supposed to be, in order, a “destination”
address, a “source” address and a “size” of a block of addresses. It then copies
a number of bytes given by the block’s “size” from the “source” address to the
“destination” address. The “destination” and “source” addresses must be valid
addresses and the “destination” and “source” areas shall not overlap. If they
overlap, the behavior is undefined. The predicate overlap decides whether two
blocks of addresses overlap:

overlap(adr1, adr2, size) ⇔ (adr2 + size − 1 ≥ adr1) ∧ (adr1 + size − 1 ≥ adr2)

The LocAlloc instruction is used for the compilation of a C] stackalloc
statement (see [7] for details). It allocates space on the stack, in the so-called
local memory pool (see [1, Partition I,§12.3.2.4] for details). It takes the value
of the topmost evalStack slot, which represents the “size” of the block to be
allocated. If there is sufficient space for a block of the given “size”, the starting
address of the arbitrary choosen block is loaded on the evalStack . The value 0

is stored in all the addresses of the block, only if the zeroInit flag of the current
method is set.

2.6 The CLRVC submodule

CLRVC extends CLRP by value classes. Value classes are value types (in con-
trast to reference types) whose values (also known as “unboxed objects”) are
represented as mappings assigning values to the fields of the value class. A value
class instance is usually allocated on the stack in contrast with the object class
instances which are always allocated on the heap. However, one can allocate a
value type instance also on the heap but only within (e.g. as a field of) a boxed
object. The value classes support the compilation of the C] structs. CLRVC comes
with a refinement of the NewObj instruction and also with new operations such
as “boxing” and “unboxing”.
Environment and State ValueClass is the universe of value class names. The
universes CLRStackType, Class, LoadIndType and StoreIndType are refined to
include also value classes.
CLRStackType = . . . | ValueClass LoadIndType = . . . | ValueClass
Class = . . . | ValueClass StoreIndType = . . . | ValueClass

The fieldAdr is refined to be applicable also to pointers referring to value class
instances: fieldAdr : Map((ObjRef ∪Adr)×FRef ,Adr). Thus, fieldAdr(adr ,vc::f)
is the address of the instance field vc::f of a value class instance stored at the
address adr . Since the objects of a value type can be viewed as mappings which
associate values to each instance field, we need to refine the definitions of memVal
and WriteMem given in Section 2.2.

memVal(adr , t) = if t ∈ ObjType then mem(adr)
elseif t ∈ ValueClass then
{f 7→ memVal(fieldAdr(adr , f), type(f)) | f ∈ instFields(t)}

else [mem(adr + i) | i ∈ [0..sizeOf (t)− 1]]

WriteMem(adr , t , val) ≡ if t ∈ ObjType then mem(adr) := val
elseif t ∈ ValueClass then

forall f ∈ instFields(t) do
WriteMem(fieldAdr(adr , f), type(f), val(f))

else forall i ∈ [0..sizeOf (t)− 1] do mem(adr + i) := val(i)

The instances of value classes can be “boxed” in the heap and addressed then by
heap references. A boxed object on the heap embeds the actual type as well as
a list of instance field addresses. When “unboxing” a “boxed” object, one needs
its address on the heap. This is determined with addressOf : Map(ObjRef ,Adr)
applied to the corresponding boxed object reference.
Rules Fig. 10 describes instructions for value types (including the value classes)
and how is applied the instruction NewObj to create a value class instance.
Such an instance is usually allocated as an argument or local variable and then
initialized with InitObj . Unlike instances of object classes, they are allocated on
the stack (by means of the stackalloc macro). The stackalloc chooses a block of

Fig. 10 The execution of CLRVC instructions
CLRV C ≡ execScheme(execCLRV C , switchCLR)

execCLRV C(instr) ≡
execCLRP (instr)
match instr

NewObj (vc::.ctor) →
if vc ∈ ValueClass

if ¬reqinit(vc) then
if SpaceFor([sizeOf (vc)]) 6= ∅ then

let (evalStack ′, vals) = getVals(evalStack , paramNo(vc::.ctor)) in
let adr = stackalloc(vc) in

evalStack := evalStack ′ · [(memVal(adr , vc), vc)]
forall f ∈ instFields(vc) do

WriteMem(fieldAdr(adr , f), type(f), defVal(type(f)))
switch := Invoke(False, vc::.ctor, [adr] · vals)

else switch := InitClass(vc)

InitObj (vt) → let (evalStack ′, [adr]) = getVals(evalStack , 1) in
WriteMem(adr , vt , defVal(vt))
evalStack := evalStack ′

pc := pc + 1

CopyObj (vt) → let (evalStack ′, [dest adr , src adr]) = getVals(evalStack , 2) in
if validAdr(dest adr) ∧ validAdr(src adr) then

WriteMem(src adr , vt ,memVal(dest adr , vt))
evalStack := evalStack ′

pc := pc + 1

Box (vt) → if SpaceFor([sizeOf (vt)]) 6= ∅ then
let (evalStack ′, [val]) = getVals(evalStack , 1) in

let r = new(ObjRef) and adr = heapalloc(vt) in
actualTypeOf (r) := vt
addressOf (r) := adr
WriteMem(adr , vt , val)
evalStack := evalStack ′ · [(r ,O)]
pc := pc + 1

Unbox (vt) → let (evalStack ′, [r]) = getVals(evalStack , 1) in
if actualTypeOf (r) = vt then

evalStack := evalStack ′ · [(addressOf (r), &)]
pc := pc + 1

unallocated memory addresses whose length is given by the value type’s size.
The field addresses are computed using the field offsets. Since the fields can
be of value class types, one needs to compute also the addresses of the their
corresponding instance fields. This is performed by the recursively defined macro
AllocFields.

let adr = stackalloc(vc) in P ≡
choose (adr) ∈ SpaceFor([n]) do

StackAdr := StackAdr ∪ [adr , adr + n)
AllocFields(adr , vc)

seq P
where n = sizeOf (vc)

AllocFields(adr , t) ≡
if t ∈ ValueClass then

forall f ∈ instFields(t) do
let a = adr + fieldOffSet(t , f) in

fieldAdr(adr , f) := a
AllocFields(a, type(f))

One aspect that differentiates the value classes from the object classes is con-
cerning the instance methods invocation, in particular constructors invocation.
The argument 0 of instance methods defined by a value class vc is of the pointer
type vc&. Therefore the definition of argTypes is refined as follows: for every
instance method reference vc::m defined by the value class vc

argTypes(vc::m) = [vc&] · paramTypes(vc::m)

CLR implementation mistake The ECMA standard states in [1, Partition
I,§8.9.5], that if a type is not marked with beforefieldinit, then its type
initializer is executed if, in particular, an access to an instance field of that type
occurs. However, this is not performed in the following case. Suppose that v is a
local variable of a method m and its type is a value type P that is not marked
with beforefieldinit. If our method has the “zero init” flag set, then v is
automatically zero initialized upon m’s entry. If we access an instance field of v
either by LoadField or StoreField , then P ’s initializer is surprisingly not executed
(contradicting the above ECMA statement). The reason might be that, upon m’s
entry, v is zero initialized and consequently also all its instance fields.

The InitObj instruction initializes an instance of a value type. It takes the
value of the topmost evalStack slot, which is supposed to be a pointer to a
value type instance. Then, it initializes all the instance fields of the instance to
the default value of the proper type by means of the recursively defined macro
WriteMem. The CopyObj instruction copies an instance of a value type. It
takes two pointers from the evalStack and copies the value type object stored
at the address given by the pointer to the address given by the second pointer.
However, if one pointer refers to an invalid address, a NullReferenceException
is thrown (see CLRE in [2]).

The Box instruction turns a value type instance into a heap-allocated object
“by copying”, while Unbox performs the inverse coercion. Box checks first if
there sufficient memory to make the conversion. Then, it takes a value type
instance from the evalStack , it creates an object reference and allocates on the
heap through the heapalloc, a block of memory of length given by the value
type’s size.

let r = new(ObjRef) in P ≡
import r do

ObjRef (r) := True
seq P

let adr = heapalloc(vt) in P ≡
choose (adr) ∈ SpaceFor([n]) in

HeapAdr := HeapAdr ∪ [adr , adr + n)
AllocFields(adr , vt)

seq P
where n = sizeOf (vt)

Note that Box copies the data from the value type instance into the newly
allocated object. The Unbox instruction takes an object reference to a boxed
object from the evalStack and extracts the value type instance from it. However,

the value pushed on the evalStack is a pointer representing the address (given by
addressOf) of the value type instance that is present inside of the boxed object.

3 Conclusion and Future Work

We have provided a modular definition of the CLR virtual machine in terms
of ASM model. The abstract model takes the form of an abstract interpreter
for a hierarchy of eight stepwise refined CLR program layers. We assume that
the inputs of the interpreter are CIL bytecode programs successfully loaded and
linked (i.e. prepared and verified to satisfy the required link-time constraints).
As a next step of our project, we propose ourselves to relax the assumption that
the CIL code is verified by accompanying the execution machine with a run-
time checking machine. This defensive machine is going to serve for proving the
soundness and completeness of the CLR bytecode verifier.

References

1. Common Language Infrastructure (CLI), Standard ECMA–335. Web pages at
http://www.ecma-international.org/publications/.

2. Nicu G. Fruja. A Modular Design for the Common Language Runtime (CLR)
Architecture. Technical Report, ETH Zürich, 2005.

3. Nicu G. Fruja and Egon Börger. Analysis of the .NET CLR Exception Handling
Mechanism. To be submitted to .NET Technologies’05, 2005.

4. Andrew D. Gordon and Don Syme. Typing a Multi-Language Intermediate Code.
Microsoft Technical Report MSR-TR-2000-106, 2000.

5. K. J. Gough. Stacking them up: a Comparison of Virtual Machines. ACM In-
ternational Conference Proceeding Series. pag. 55–61. IEEE Computer Society,
Washington, DC, USA, 2001.

6. R. F. Stärk, J. Schmid, E. Börger. Java and the Java Virtual Machine–Definition,
Verification, Validation. Springer–Verlag, 2001.

7. E. Börger, N. G. Fruja, V. Gervasi, R. F. Stärk. A High–Level Modular Definition
of the Semantics of C]. To appear in Journal Theoretical Computer Science, 2005.

8. E. Börger and R. F. Stärk. Abstract State Machines–A Method for High-Level
System Design and Analysis. Springer-Verlag, 2003.

9. Nicu G. Fruja. Specification and Implementation Problems for C]. Proceedings of
the Workshop on Abstract State Machines (ASM’04), Germany, 2004.

10. Nicu G. Fruja. The Correctness of the Definite Assignment Analysis in C]. Journal
of Object Technology, vol. 3, no. 9, 2004.

11. Nicu G. Fruja. Type Safety in C] and .NET CLR. PhD Thesis in preparation.
12. Horatiu V. Jula and Nicu G. Fruja. An Executable Specification of C]. Proceedings

of the Workshop on Abstract State Machines (ASM’05), France, 2005.
13. C. Marrocco. An Executable Specification of the .NET CLR. Diploma Thesis

guided by Nicu G. Fruja, ETH Zürich, in preparation.
14. AsmL, Foundations of Software Engineering Group, Microsoft Research, Web

pages at http://research.microsoft.com/foundations/AsmL/.

http://www.ecma-international.org/publications/
http://research.microsoft.com/foundations/AsmL/

