
ETH Library

A Modular Design for the Common
Language Runtime (CLR)
Architecture

Report

Author(s):
Fruja, Nicu Georgian

Publication date:
2005

Permanent link:
https://doi.org/10.3929/ethz-a-006787891

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 493

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006787891
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A Modular Design for the

Common Language Runtime (CLR) Architecture

Nicu G. Fruja
Computer Science Department, ETH Zürich, CH–8092 Zürich, Switzerland

fruja@inf.ethz.ch

Abstract

This paper provides a modular high-level design of the Common Language Runtime
(CLR) architecture. Our design is given in terms of Abstract State Machines (ASMs) and
takes the form of an interpreter. We describe the CLR as a hierarchy of nine submachines,
which correspond to nine submodules into which the Common Intermediate Language (CIL)
instruction set can be decomposed.

1 Introduction

This paper is one outcome of a larger project [12] which aims to establish some outstanding
properties of C] and CLR by mathematical proofs. Examples are the correctness of the CLR
bytecode verifier and the type safety of C] (along the lines of the correctness proof [11] for the
definite assignment rules). As part of this effort, an ASM model has been developed in [7] to
formalize the semantics of C]. To validate this model, we have refined it and made executable
(see [13]) in AsmL [15].

The CLR is the runtime environment for executing .NET applications. A single .NET
application may consist of several different languages. Accordingly, the CLR has to support any
language compiler intended for the .NET platform. We assume the reader to be knowledgeable
about or at least to have a rough understanding of the CLR virtual machine.

We define an abstract interpreter in terms of an ASM model for the CIL language executed by
the CLR virtual machine which includes most of the constructs which deal with the interpretation
of the procedural, object-oriented and non-verifiable constructs of the .NET CLR. The inputs of
the interpreter are CIL programs whose code consists of bytecode instructions. Our interpreter
is a trustful machine, i.e. it does not check the instructions before the execution to satisfy
constraints about types, resource bounds, etc. In order to check the faithfulness with respect to
the CLR of the modeling decisions we had to take here, we made a series of experiments with
the CLR. Another way to test the internal correctness of the model presented in this paper and
its conformance to the experiments with the CLR is provided through an executable version
implemented in AsmL [15]. Upon completion of the AsmL implementation of the entire CLR
model, the full details will be made available in [14].

In [6], a similar ASM model is developed for the Java Virtual Machine (JVM). However, the
bytecode run in CLR results not only from the compilation of C] but of all .NET compatible
languages such as Visual Basic, C++, VBScript, JScript, COBOL, Component Pascal, Modula
2, Eiffel etc. Thus, the CIL instruction set is designed with the objective of supporting multiple
languages, and thus needs to support all of the constructs of what Microsoft calls the Virtual
Object System. [5] describes briefly the differences between the JVM and CLR virtual machines.

1

An interested reader can find in this paper many other differences. Accordingly, the development
of the CLR model becomes more complex than in case of JVM [6].

A type system for a fragment of CIL is developed in [4]. The main theorem proved in [4],
asserts type safety. Many key aspects are however omitted in the object model they consider:
null objects, global fields and methods, static fields and methods (and implicitly the type initial-
ization process). Moreover, their instruction set omits: local variables instructions, arithmetic
instructions, arbitrary branching instructions, jumping instructions, tail calls prefix.

The main technical contributions of this paper are the formalizations of the following critical
(different wrt JVM [6]) features: typed evaluation stack, memory allocation and de-allocation,
tail method calls, call-by-reference mechanism, exception handling mechanism, pointer handling,
value class instance handling, typed reference handling, method pointer handling. Similarly as
in [6], CIL is described as a hierarchy of nine sublanguages, which correspond to nine submodules
into which the CLR can be decomposed: CLRI⊂ CLRC⊂ CLRO⊂ CLRE⊂ CLRP⊂ CLRVC⊂
CLRT R⊂ CLRMP⊂ CLRRM. For each such submodule CLRL we build a submachine CLRL

which is a conservative extension of its predecessor. The model for the whole CLR is given by
the last submachine, i.e. CLRRM . We omit here bytecode instructions for monitors.

The exceptions submodule CLRE including the CLR exception handling mechanism and its
analysis is also postponed to a separate paper [2] where the use of ASMs clarified the numerous
issues concerning the exception handling which are left open in the ECMA standard [1]. Also,
the model in the present paper helps us to discover a mistake in the CLR implementation
concerning the value class initialization (see Section 2.7).

Since the intuitive understanding of the ASMs machines as pseudo-code over abstract data
structures is sufficient for the comprehension of the ASM formalism used throughout this paper,
we abstain here from repeating the formal definition of ASMs which can be found in the AsmBook
[8]. However, for the readers convenience we summarize here the most important concepts and
notations that are used in the ASMs throughout this paper. An abstract state of an ASM is
given by a set of dynamic functions. Nullary dynamic functions correspond to ordinary state
variables. Formally all functions are total. They may, however, return the special element undef
if they are not defined at an argument. In each step, the machine updates in parallel some of
the functions at certain arguments. The updates are programmed using transition rules P , Q
with the following meaning:

f (s) := t update f at s to t
if ϕ then P else Q if ϕ is true, then execute P , else Q
P Q execute P and Q in parallel
let x = t in P assign t to x and then execute P
P seq Q execute P and then Q
forall x in A do P execute in parallel P for every x ∈ A
choose x with ϕ do P choose an x satisfying ϕ, and execute P
P or Q execute P or Q

The remainder of the paper proceeds as follows. Section 2 defines the sequence of the five
successively extended machines. A global view of the CLR virtual machine is given in Section 2.1
together with a short description of the considered bytecode instructions. Section 2.2 introduces
a typed stack machine CLRI with instructions required for the compilation of imperative pro-
grams of a while language. CLRI is extended to CLRC in Section 2.3 by including instructions
used for compilation of static features of classes. Section 2.4 defines an object-based machine
CLRO which supports instructions for object oriented features. The exceptions are introduced
in the machine CLRE defined in Section 2.5. This section introduces also the complex CLR
exception handling mechanism. The machine CLRP defined in Section 2.6 extends CLRE by
adding instructions for dealing with pointers. The machine CLRVC defined in Section 2.7 pro-

2

Fig. 1 The CIL instructions
CLRI instructions CLRP instructions

Instr = Execute(Op)
| Const(ConstType,Literal)
| LoadLoc(Local)
| StoreLoc(Local)
| Branch(Pc)
| Cond(Op,Pc)
| Dup
| Pop
| Halt

Instr = . . .
| LoadArgA(Arg)
| LoadLocA(Local)
| LoadStaticA(Type,FRef)
| LoadFieldA(Type,FRef)
| LoadInd(LoadIndType)
| StoreInd(StoreIndType)
| InitBlock
| CopyBlock
| LocAlloc
| LoadElemA(Class)

CLRC instructions CLRVC instructions
Instr = . . .

| LoadStatic(Type,FRef)
| StoreStatic(Type,FRef)
| LoadArg(Arg)
| StoreArg(Arg)
| Call(TailCall ,Type,MRef)
| Return

Instr = . . .
| InitObj (ValueType)
| CopyObj (ValueType)
| Box (ValueType)
| Unbox (ValueType)
| SizeOf (ValueType)

CLRO instructions CLRT R instructions
Instr = . . .

| NewObj (MRef)
| LoadField(Type,FRef)
| StoreField(Type,FRef)
| CallVirt(TailCall ,Type,MRef)
| CastClass(Class)
| IsInstance(Class)
| Jmp(MRef)
| NewArray(Type)
| LoadLength
| LoadElem(ArrayElemType)
| StoreElem(ArrayElemType)

Instr = . . .
| MkRefAny(Type)
| RefAnyType
| RefAnyVal(Type)

CLRE instructions CLRMP instructions
Instr = . . .

| Throw
| Rethrow
| EndFilter
| EndFinally
| Leave(Pc)

Instr = . . .
| LoadFtn(MRef)
| LoadVirtFtn(MRef)
| CallI (TailCall ,Sig)

vides instructions for dealing with value class instances. The typed references represent the
novelty introduced by the machine CLRT R in Section 2.8. The method pointers are handled
by the instructions specific to CLRMP which is defined in Section 2.9. Section 3 provides the
topmost machine, i.e. CLRRM and describe how one can handle runtime managed methods.
Section 4 concludes.

2 The CLR virtual machine

2.1 The overall picture

The real CLR has approximately 200 instructions. Most of them are specified in Fig. 1 as
elements of the successively extended universe Instr . The real CLR has also the instructions
break and nop which we do not model.

3

In order to simplify the presentation we assume as [6, §9.1] does that we have also1 a
Halt instruction whose occurrence stops the machine execution. One can obtain the real CLR
instructions if one extends the parameter universes we describe below. The universe Op contains
operators, Local local variables and Pc program counters, i.e. code offsets. The last two universes
are synonyms for the universe N of natural numbers. The types of the constants are declared
by the universe ConstType – these types are incorporated in the CLR ldc instructions. The
constants are depicted as literals, i.e. elements of the universe Literal . Type denotes types,
Arg method arguments and TailCall special boolean flags used for method calls. The universes
FRef and MRef uniquely describe field and method references. Class stands for the universe of
classes, while ValueClass denotes only the value classes. The possible types for an array element
are described by the universe ArrayElemType. LoadIndType and StoreIndType denote the type
of a value indirectly loaded and stored, respectively from and into the memory. ValueType
represents the universe of value types which includes the value classes described by ValueClass
and the built-in value types, i.e. the numeric types.

Some instructions are never verifiable, i.e. a program containing such instructions will always
fail the bytecode verification. The other instructions are either always verifiable or verifiable
under certain conditions which we do not detail here (this is part of future work – see Section 4).
However, we specify all the instructions independent on their verifiability status.
Naming conventions We summarize here the major naming conventions used in the rest of
the paper. Thus, t will represent a type, val a value, r an object reference and adr a memory
address, c a class name, vc a value class name, vt a value type, tr a typed reference, fp a function
pointer, sig a method signature, f a field name and m a method name.

2.2 The CLRI submachine

The CLRI machine is a typed stack machine which supports the instructions necessary to
implement a so-called imperative while language.
Environment and State The list of bytecode instructions of the current method is maintained
in code : List(Instr). CLRI is dealing only with a single method whose local variable types
are given by the list locTypes. The universe DivOp consists of the division operators div,
div.un, rem, rem.un. Some operators perform overflow checks; examples are add.ovf.un and
sub.ovf.un. We denote by OvfOp the universe of these operators. Upon these definitions, the
following set relations hold: DivOp ⊂ Op and OvfOp ⊂ Op. The universe ConstType describes
the types of the constants CLR can deal with.

ConstType = int32 | int64 | float32 | float64
The dynamic state of the CLRI consists of a frame containing a program counter pc, local

variable addresses locAdr and an evaluation stack evalStack . The pc runs over the set of natural
numbers Pc = N. The locAdr carries the addresses of the local variables and not their values.
Although the addresses are not needed for CLRI , they are later addressable with the instructions
added in CLRP . The universe of addresses Adr is the interval Adr = 0 ..maxAdr bounded by
a non-negative integer maxAdr which depends on the target architecture. The mem is used to
store values into the memory locations. The second column of the following declaration defines
the initial values of the dynamic functions in the first column:

pc : Pc pc = 0
locAdr : Map(Local ,Adr) locAdr(n) ∈ Adr , ∀n ∈ Local
evalStack : List(Val × CLRStackType) evalStack = []
mem : Map(Adr ,Val ∪ {undef }) mem(adr) = undef , ∀adr ∈ Adr

Typed evaluation stack The evalStack is specified as a list of typed values. This is a crucial
difference wrt the untyped JVM operand stack. The latter is made of uniform 32-bits wide

1Halt is not a real CIL instruction

4

locations modulo some issues with the atomicity of pushes of 64-bit quantities. The values
are described as elements of Val . The CLR requires values on the evalStack to be of types
described by CLRStackType. The type native int describes both signed and unsigned integers
and becomes efficient when the target machine architecture is not known until run-time when
CLR maps native int to the natural size of the specific architecture: int32 on a 32-bits
architecture and int64 on a 64-bits architecture. The floating point numbers are represented on
the evalStack using an internal floating-point type F. The CLR supports generic instructions such
as add, div because, in contrast to JVM, the CIL code has been designed for JIT compilation and
not to be interpreted. Our interpreter needs to track the types of the values on the evalStack , in
particular, for executing generic operators. The types referred by CLRStackType are the types
as tracked by the CLR rather than the more detailed types used by the CLR bytecode verifier.
The CLRStackTypes are used for the following purposes:

• to define the semantic function CLRResVal ;

• to specify the cases when an operator can throw an exception;

• to determine if a bytecode program is valid - the validity condition is a necessary condition
for a program to be verifiable (see [1, Partition III];

The bytecode verifier tests requirements for correct generated CIL bytecode and also specific
verification conditions (the formalization of the bytecode verifier is future work).

CLRStackType = int32 | int64 | native int | F
The valuesOf selects the value component of a list of evalStack slots, i.e. valuesOf applied to
[(val1, t1), . . . , (valn, tn)] returns [val1, . . . , valn]. Similarly, typesOf selects the type component
of a list of evalStack slots. The CLRTypeOf extends “upwards” a type to a CLRStackType.
Thus, every integral subtype of int32 is mapped to int32, native int is mapped to itself,
every other integral type is mapped to int64, and the floating types are mapped to F.

Beside the usual list operations (e.g. push, pop, take, “·”)2, we use different operations for
dealing with the evalStack : split(evalStack ,n) splits off the last n slots of the evalStack . More
exactly, split(evalStack ,n) is the pair (evalStack ′,ns) of two lists where evalStack ′·ns = evalStack
and length(ns) = n. Similarly, getVals(evalStack ,n) splits off the last n slots of the evalStack by
retrieving only their values.
Rules The ASM rules in Fig. 2 describe the dynamic semantics of CLRI . The machine CLRI

fires the execCLRI rules for the current instruction code(pc).
Remark We assume that all the submachines are guarded by halt = undef . If halt gets

assigned a value, the machines will stop executing.
Execute(op) takes the topmost opNo(op) values of the evalStack where opNo(op) returns the
number of operands of the operator op. If there is no exception case, the result of the semantic
function CLRResVal(op,slots) is loaded on the evalStack . The result type CLRResType of all
the operators is defined by the ECMA standard [1, Partition III,§1.5] and is a function of the
operator and of the operands’ types. The cases when an exception is thrown are: (a) division
by zero for operators of integral types; (b) operations that perform an overflow check and whose
results cannot be represented in the result type; (c) values that are not “normal” numbers are
checked for finiteness or division/remainder operations are executed for a minimal value of an
integral type and −1. In the following formalizations, vals stands for valuesOf (slots) and types
for typesOf (slots).
ExceptionCase(op, slots) ⇔ DivByZeroCase(op, slots) ∨OverflowCase(op, slots)

∨ InvNrCase(op, slots)

2The “·” denotes the append operation for lists.

5

Fig. 2 The execution of CLRI instructions
CLRI ≡ execCLRI(code(pc))

execCLRI(instr) ≡ match instr
Execute(op) →

let (evalStack ′, slots) = split(evalStack , opNo(op)) in
if ¬ExceptionCase(op, slots) then

let (val , t) = (CLRResVal(op, slots),CLRResType(op, typesOf (slots))) in
evalStack := evalStack ′ · [(val , t)]
pc := pc + 1

Const(t , lit) → evalStack := evalStack · [(lit ,CLRTypeOf (t))]
pc := pc + 1

LoadLoc(n) → if zeroInit(meth) then
let t = locTypes(n) in

evalStack := evalStack · [(memVal(locAdr(n), t),CLRTypeOf (t))]
pc := pc + 1

StoreLoc(n) → let (evalStack ′, [val]) = getVals(evalStack , 1) in
WriteMem(locAdr(n), locTypes(n), val)
evalStack := evalStack ′

pc := pc + 1
Branch(t) → pc := t
Cond(op, t) → let (evalStack ′, slots) = split(evalStack , opNo(op)) in

evalStack := evalStack ′

pc := if CLRResVal(op, slots) then t else pc + 1

Dup → let (evalStack ′, [(val , t)]) = split(evalStack , 1) in
evalStack := evalStack ′ · [(val , t), (val , t)]
pc := pc + 1

Pop → pop(evalStack)
pc := pc + 1

DivByZeroCase(op, slots) ⇔ op ∈ DivOp ∧ vals(1) = 0
∧ types(i) ∈ {int32, int64, native int}, i = 0, 1

OverflowCase(op, slots) ⇔ op ∈ OvfOp
∧ Overflow(CLRResVal(op, slots),CLRResType(op, types))

InvNrCase(op, slots) ⇔ (op = ckfinite ∧ vals(0) ∈ {NaN, +infinity, -infinity})
∨ (op ∈ {div, rem} ∧ vals(0) = min(types(0)) ∧ vals(1) = −1

∧ types(i) ∈ {int32, int64, native int}, i = 0, 1)

The Const(t ,lit) instruction pushes the constant lit of type t on top of the evalStack . However,
the type of the stack location is determined with CLRTypeOf . If the zeroInit flag of current
method is set, the LoadLoc instruction loads the value of a local variable. The value of the
local variable n of the declared type t is determined using the derived function memVal :
Map(Adr ,Val) applied to the address of n and t . The memVal builds up the value of a given
type stored in memory at a certain address. In CLRI , memVal(adr , t) := mem(adr). The type
t becomes relevant when we refine the universe Val in CLRC . StoreLoc writes the value of the
topmost slot into the memory at the local variable’s address. The “write in memory” is defined
through the WriteMem that also considers the type of the stored value although this is not
needed in CLRI .
WriteMem(adr , t , val) ≡ mem(adr) := val

The jump instruction Branch(t) simply sets the pc to t . A conditioned jump can be exe-
cuted with Cond . If the operator op returns True, then the pc is set to t , otherwise the pc is
incremented. The topmost slot of the evalStack can be duplicated and popped off with the
instructions Dup and Pop, respectively.

6

2.3 The CLRC submodule

CLRC extends CLRI by instructions which deal with “read”/“write” static fields, “read”/“write”
method arguments and “call of”/“return from” static methods.
Environment and State FRef and MRef consist of field and method references, respectively.
The field references are pairs of class and field names, while the method references are triples of
class names, method names and signatures. Class consists in CLRC only of the object classes
defined by the universe ObjClass (in CLRVC we add also value classes). Field and Method are
universes that stand for field and method identifiers, respectively. Sig specifies the universe of
“stand alone signatures”. A signature includes not only a return type, number, order and types
of the parameters but also information about the calling convention to be used when invoking
the corresponding method. Method arguments are specified as natural numbers and are elements
of the universe Arg . The real CLR instructions for calling methods (see also CLRO) may be
prefixed by tail whose presence is indicated by a boolean flag – element of TailCall – in the
abstract Call instruction.

FRef = Class × Field Class = ObjClass TailCall = Bool
MRef = Class ×Method × Sig Arg = N

The static function code : Map(MRef ,List(Instr)) associates to every method reference
the list of bytecode instruction contained in its body. The set of static and instance fields
of a class is obtained by applying to the class name the functions statFields and instFields,
respectively3. With these definitions, it becomes obvious how the predicates static and instance
decide if a field reference is to a static or an instance field (see CLRO). The function type
applied to a field reference returns the declared type of the field. The functions paramTypes and
retType selects the list of parameter types and the return type of a method signature. We often
use these two functions as applied to method references to determine the corresponding data.
The functions classNm and methNm select the class name and the method name of a method
reference, respectively. The function paramNo is derived from paramTypes and assigns to a
signature the length of the parameter types list. The locTypes assigns to every method reference
the list of its local variable types (“locals signature”). The predicates static and instance defined
for (method) signatures decide whether the calling convention embedded in the signature refers
to a static or instance signature. We use these predicates many times also applied directly to
method references, but they are actually computed as being applied to the signatures. The
zeroInit is a flag in the method headers which indicates whether the local variables should be
automatically initialized to zero by the CLR.

type : Map(FRef ,Type)
statFields : Map(Class,P(FRef))
instFields : Map(Class,P(FRef))

retType : Map(Sig ,Type)
paramTypes : Map(Sig ,List(Type))
classNm : Map(MRef ,Class)
methNm : Map(MRef ,Meth)
locTypes : Map(MRef ,List(Type))
zeroInit : Map(MRef ,Bool)

In CLRC , the procedural abstraction is added in the form of static methods. Unlike in CLRI
where we had a single method frame, in CLRC we have a stack frameStack of call frames
described by Frame.

Frame = Pc ×Map(Local ,Adr)×Map(Arg ,Adr)× P(Adr)× List(Val × CLRStackType)×MRef
frameStack : List(Frame)

A frame in CLRC is enriched with more information than in CLRI . The frame components
are, in order, the following: a program counter pc, local variables addresses locAdr , arguments
addresses argAdr : Map(Arg ,Adr), the set of stack-allocated addresses StackAdr (including also
the addresses allocated for the frames on the frameStack), an evaluation stack evalStack and a
method reference meth : MRef . As in case of locAdr , the argAdr holds the arguments’ addresses
and not their values. Although these addresses are not useful in CLRC , they become addressable

3We denote by P(A) the power set of A.

7

in CLRP . Unlike CLR, JVM does not have separate instructions for method arguments. We
model in a simple manner also the memory allocation (see the end of this section where we
provide an abstract specification of the memory management). Upon exiting a method, the
addresses allocated for the method’s evalStack have to be deallocated. Therefore, it is cru-
cial to “remember” the set of stack-allocated addresses for the invoker frame. We extend the
stipulations for the initial state as follows:

locAdr = ∅ argAdr = ∅ StackAdr = ∅ meth = Object::.entrypoint
frameStack = []

Assumption As specified by the standard, the entrypoint has to be a static method. If this
method is declared by a class that is not marked beforefieldinit, then the type initializer
of this class has to be executed before the entrypoint method, i.e. the entrypoint is not the
first method to execute. In order to solve this inconvenience, we assume as suggested in [6,
§10.1] that the entrypoint is not the method marked with in the IL code with entrypoint but
a method declared by Object that has the code:

Call(False, void,CIL entrypoint)
Halt

We denote by frame the currently executed frame:

frame = (pc, locAdr , argAdr ,StackAdr , evalStack ,meth)

Note that we separate the current frame from the stack of frames, i.e. we do not include frame in
the frameStack .
We consider the approach from [6] to separate the methods transfer and the execution of method
bodies. We introduce a switch machine switchCLR that is responsible for the methods transfer.
The universe Switch defines the states of this machine:

Switch = Noswitch | Invoke(TailCall ,MRef ,List(Val)) | InitClass(Class)
| Result(List(Val × CLRStackType))

The current state of the submachine switchCLR is specified by the dynamic function switch :
Switch whose initial value is Noswitch.
Unlike in JVM, in CLR, beside static fields and methods, there are also global fields and methods
(declared outside of any type). The CLR defines a class, named <Module>, that has as members
all the global fields and methods, which does not have a base type and does not implement any
interfaces [1, Partition II,§9.8]. Accordingly, we treat the global members exactly in the same
way as we treat the static members. globals : Map(FRef ,Adr) holds the addresses of all static
fields (including the global fields).

The locations for the static fields declared by a class c are created when c is loaded but they
are initialized when the c is initialized [1, Partition I,§8.11.2]. To simplify the presentation, we
do not model the types loading. Therefore we assume that these locations are already allocated
upon the start of the machine CLRC . To simplify the presentation, we do not model this
allocation – it is however obvious that there is always sufficient space to be allocated at the
beginning of the execution.
Class initialization The ECMA standard imposes several rules in [1, Partition I,§8.9.5] con-
cerning the class initialization (for both object classes and value classes as we will see in CLRVC).
The class initialization implies the execution of its initializer. A class may have or may not have
an initializer. In the latter case, the CLR creates one which usually contains assignments to the
static fields. In this case, the CLR marks the class with the attribute beforefieldinit. If a class
is not marked with beforefieldinit, then the initializer is executed at the first access to any
static or instance field (see CLRO) of that class, or the first invocation of any static, instance
or virtual method (see CLRO) of that class. If the class is marked with beforefieldinit,
the invocation of a static method (declared by the class) does not trigger the initialization.

8

In such a case, the initialization is triggered only by a static field access. Let us denote by
beforefieldinit : Map(Class,Bool) the predicate that specifies what classes are marked with
beforefieldinit. The universe ClassState specifies the initialization state of a class: before
being initialized, a class is in state Linked , while, following the initialization, a class is Initialized .
classState keeps track of the initialization state of classes. In the initial state, all the classes are
Linked except Object and <Module> which are Initialized :

ClassState = Linked | Initialized
classState : Map(Class,ClassState)
classState(c) = Linked ,∀c ∈ Class \ {Object, <Module>}
classState(Object) = classState(<Module>) = Initialized

CLR vs. JVM Unlike in JVM, execution of any type’s initializer in CLR does not trigger
automatic execution of any initializer methods defined by its base type.
The predicate initialized is derived from classState. Thus initialized(c) holds for a class c if
classState(c) = Initialized . It is useful to define also the predicate reqinit that is checked every
time a method is invoked; a c’s method invocation requires the initialization of c if c is neither
initialized nor marked with beforefieldinit:
reqinit(c) ⇔ ¬initialized(c) ∧ ¬beforefieldinit(c)

Rules The ASM rules for CLRC are defined in Fig. 3. The machine CLRC executes the
macro execSchemeC which is parameterized by the machines execCLRC and switchCLR.
The macro execSchemeC is defined as follows4. If switch is set, i.e. it has a value other than
Noswitch, then the control is passed to the machine switchCLR. Otherwise, as a conse-
quence of the beforefieldinit semantics, either a beforefieldinit class is initialized through
InitializeClass or execCLR fires a rule for the current instruction. We use the abbreviation
“or” as defined in [8, §2.2.5] for the special case of non-deterministic choice among two rules.
InitializeClass arbitrarily chooses a beforefieldinit class that is not yet initialized. It then
passes the control to the switchCLR to initialize the class.

InitializeClass ≡ choose c ∈ Class with ¬initialized(c) ∧ beforefieldinit(c) do
switch := InitClass(c)

The following explanations are for the execCLR rules assuming in cases of field accesses
and method calls, that no class initialization is required (if one needs to initialize a class, the
switch is updated to InitClass). The type t in LoadStatic(t , c::f) is the declared type of the field
reference c::f . The same explanation applies for StoreStatic(t , c::f). In case of Call(, t , c::m),
t denotes the return type of the considered method reference. LoadStatic(t ,c::f) pushes on
the evalStack the value of the field f stored at the address globals(c::f). The value of the
topmost evalStack slot is stored by StoreStatic into the address of c::f . To formalize LoadArg
and StoreArg , we need to determine the types of the current method arguments: argTypes :
Map(MRef ,List(Type)) yields for a method reference the list of argument types. We denote by
argNo the length of argTypes. For every static method reference c::m, argTypes is defined5 as
follows:
argTypes(c::m) = paramTypes(c::m)

Note We assume that for each of the functions code, locTypes, argTypes, there is a derived
function having the same name, that suppresses the method reference and abbreviates the data
path to select the corresponding component.

The value of the argument n is loaded on the evalStack through LoadArg(n). The instruction
StoreArg(n) writes the value of the topmost evalStack slot into the address of argument n.

4The execSchemeC is redefined to execSchemeE in CLRE while introducing exceptions. If an exception is
thrown, the execSchemeE passes the control to the exception handling mechanism. Thus, it prevents the execution
of the execCLR machines.

5This definition is refined in CLRO and CLRVC.

9

Fig. 3 The execution of CLRC instructions
CLRC ≡ execSchemeC(execCLRC , switchCLR)

execSchemeC(execCLR, switchCLR) ≡
if switch 6= Noswitch then switchCLR
else InitializeClass or execCLR(code(pc))

execCLRC(instr) ≡
execCLRI(instr)
match instr

LoadStatic(t , c::f) →
if initialized(c) then

evalStack := evalStack · [(memVal(globals(c::f), t),CLRTypeOf (t))]
pc := pc + 1

else switch := InitClass(c)
StoreStatic(t , c::f) → let (evalStack ′, [val]) = getVals(evalStack , 1) in

if initialized(c) then
WriteMem(globals(c::f), t , val)
evalStack := evalStack ′

pc := pc + 1
else switch := InitClass(c)

LoadArg(n) →
let t = argTypes(n) in

evalStack := evalStack · [(memVal(argAdr(n), t),CLRTypeOf (t))]
pc := pc + 1

StoreArg(n) → let (evalStack ′, [val]) = getVals(evalStack , 1) in
WriteMem(argAdr(n), argTypes(n), val)
evalStack := evalStack ′

pc := pc + 1
Call(tail , , c::m) →

if static(c::m) then
if ¬reqinit(c) then

let (evalStack ′, vals) = getVals(evalStack , argNo(c::m)) in
evalStack := evalStack ′

switch := Invoke(tail , c::m, vals)
else switch := InitClass(c)

Return → let slots = take(evalStack ,n) in switch := Result(slots)
where n = if retType(meth) = void then 0 else 1

CLR vs. JVM Unlike CLR, the JVM does not have separate instructions for dealing with
method arguments. The reason is that the arguments’ values appear as the first values in the
local variables array of a method.

For calling a method, a Call takes the necessary number of arguments from the evalStack and
transfers the control to switchCLR. It forwards the boolean information concerning a possible
tail call through the switch value Invoke passed to switchCLR. The Return takes from the
evalStack zero or one value depending on the return type of the current method and transfers
the control to switchCLR together with the returned value (if any).
CLR vs. JVM In JVM, there are many Return instructions for terminating the execution of
a method. The JVM offers specialized instructions for the possible return types.

The switch machine The rules of the submachine switchCLR are presented in Fig. 4. The
rule Invoke(tail , c::m, args) handles the context transfer from the current method to the method
c::m. The CLR supports tail calls (this is a crucial difference wrt JVM) since there are .NET
languages like Haskell, Scheme, Mercury and SMLNET, where the recursion is the only way to
express repetition. If the prefix tail is attached to a call instruction, i.e. tail is True, then the
caller’s stack frame is discarded through PopFrame prior making the call.

10

Fig. 4 The switchCLR machine
switchCLR ≡ match switch

Invoke(tail , c::m, args) → if tail then PopFrame(0, [])
seq

if SpaceFor([sizes]) 6= ∅ then
push(frameStack , frame)
SetFrame(c::m, args)
switch := Noswitch

where sizes = sizeOf ∗(argTypes(c::m) · locTypes(c::m))
InitClass(c) → if classState(c) = Linked then

if SpaceFor([sizes]) 6= ∅ then
classState(c) := Initialized
InitStatFields(c)
push(frameStack , frame)
SetFrame(c::.cctor, [])
switch := Noswitch

where sizes = sizeOf ∗(locTypes(c::.cctor))
Result(slots) → if methNm(meth) = .cctor then PopFrame(0, [])

else PopFrame(1, slots)
switch := Noswitch

The following explanations are for the macro PopFrame. If the current method is a .cctor,
i.e. it has been implicitly called and vals is [], then the current frame is discarded and the invoker
frame becomes the current frame. If the current method is not a .cctor, then the current frame
is given by the invoker frame with vals pushed on the evalStack and the pc incremented by 1. The
memory allocated on the stack for the current method is reclaimed through DeAllocMem6.

PopFrame(k , slots) ≡
let (frameStack ′, [(pc′, locAdr ′, argAdr ′,StackAdr ′, evalStack ′,meth ′)])

= split(frameStack , 1) in
pc := pc′ + k
locAdr := locAdr ′

argAdr := argAdr ′

evalStack := evalStack ′ · slots
meth := meth ′

frameStack := frameStack ′

DeAllocMem(StackAdr ′)

Since the first method on frameStack is always our Object::entrypoint, which does not have
a Return, the frameStack is non-empty whenever PopFrame is invoked and consequently the
split in the definition of PopFrame always succeeds.

In the second step of the Invoke rule, assuming there is enough memory space to be allo-
cated for the runtime stack of c::m (see the paragraph on the abstract memory management
at the end of this section for the definitions of SpaceFor and sizeOf ∗), the frame for invok-
ing c::m with the list of arguments args becomes the current frame. When setting up this
frame through SetFrame, memory is allocated on the stack for arguments and local variables
through MakeArgLoc (see the paragraph on the abstract memory management). The macro
MakeArgLoc writes the values of the incoming arguments in the addresses allocated for ar-
guments and values of “zero” or undef in the addresses allocated for local variables. Note that
defVal : Map(Type,Val) assigns to every type its “zero”, i.e. its default value. The function
zero : Map(Type×MRef ,Val ∪ {undef }) computes the value a local variable has upon entering
the corresponding method. We use this function for both a type and a list of types.

6The macro DeAllocMem is defined in the paragraph on memory management.

11

SetFrame(c::m, args) ≡
pc := 0
evalStack := []
meth := c::m
MakeArgLoc(argTypes(c::m), locTypes(c::m), args · zero(locTypes(c::m), c::m))

zero(t , c::m) = if zeroInit(c::m) then defVal(t) else undef

Remark The tail calls (in particular Jmp in CLRO) cannot occur in try blocks. This is the
reason there is no worry concerning the following scenario: a tail call requires first a call to a
type initializer which in turn returns an exception. The exception is going to exit the method
which did the tail call as if the current frame has been discarded.
The rule InitClass for initializing a class, sets to “zero” the static fields through InitStatFields,
saves the current frame on frameStack and prepares the frame for invoking the type initial-
izer .cctor. It does all these only if there is enough memory space to allocate for the runtime
stack of the constructor.

InitStatFields(c) ≡ forall f ∈ statFields(c) do
WriteMem(globals(f), type(f), defVal(type(f)))

Unlike in JVM, the execution of any CLR type initializer does not trigger automatic execution
of any initializer methods defined by its base type. Result(slots) terminates the execution of the
current method and returns the result vals to the caller method through PopFrame.
Abstract memory management We explain here the details on how the addresses – elements
of Adr – are allocated. We stick our formalization to the two kinds of allocations – stack and
heap allocation – without considering a garbage collector. However, we provide a simple notion
of stack de-allocation. We consider two dynamic functions that keep track of the addresses
allocated on the stack and on the heap: StackAdr : P(Adr) and HeapAdr : P(Adr). Accordingly
to their definitions, in the initial state of CLRC , the StackAdr and the HeapAdr are ∅.

The number of addresses allocated for a value depends on the value’s type. We use an external
function sizeOf : Map(Type, N) to determine the size of the block of addresses allocated for a
value of a given type.

From now on, we will consider the values described by Val as encoded by sequences of the
bytes described by Byte. Accordingly, the mem is redefined as mem : Map(Adr ,Byte∪{undef })
and the definitions of memVal and WriteMem are refined as follows:

memVal(adr , t) = [mem(adr + i) | i ∈ [0..sizeOf (t)− 1]]

WriteMem(adr , t , val) ≡ forall i ∈ [0..sizeOf (t)− 1] do mem(adr + i) := val(i)

We use the partial functions encode and decode to determine the sequence of bytes associated
to a value of a simple value type7 or of a pointer type and to obtain the value associated to
a sequence of bytes. For a value val of a type t , the functions encode and decode satisfy the
following equations:

length(encode(val)) = sizeOf (t) and decode(t , encode(val)) = val

We are now able to determine when there is enough space in Adr to be allocated for a list of
values8. Given a finite list sizes, the set SpaceFor(sizes) contains the un-allocated memory blocks
(if any) where can be stored values whose types have the sizes given by sizes. We consider the
memory blocks that start at a valid address. Since, the notion of “validity” depends in general

7By simple value type we mean a value type which is not a value class.
8Due to the definition of MakeArgLoc, we have a generalized definition, i.e. for a list of values and not for

a single value.

12

on the target architecture, we assume the external function validAdr : Map(Adr ,Bool) decides
whether an address is valid. One can find more details on this function in Section 2.6. In the
definition below, n stands for length(sizes):

SpaceFor(sizes) =
�
(adr i)

n−1
i=0 ∈ Adrn | validAdr(adr i) ∀i = 0,n − 1 and

n−1]

i=0

[adr i, adr i + sizes(i)) ⊆ Adr \ (StackAdr ∪HeapAdr)}

If an attempt to allocate on the stack fails, a StackOverflowException is thrown (see CLRE).
Similarly, if one needs to allocate on the heap, then an OutOfMemoryException is raised.

The following explanations are for the macro MakeArgLoc, which we used when setting
up the frame for a method call. MakeArgLoc is applied to three lists: two lists of types types1

and types2 and a list of values vals. It assumes that the sum of the first two lists’ lengths is
equal with the length of vals. The macro resets first the maps locAdr and argAdr since they
have to overwrite the same maps of the previous current method. Then, it allocates addresses
on the stack that would be needed for arguments and local variables of types types1 and types2

and writes the values vals in these addresses. It does not assume anything concerning the order
of the arguments and local variables on the stack. At the same time, the allocated addresses
are pushed on the StackAdr . The switch is set to Noswitch only if there is sufficient place to
be allocated on the stack9. The function sizeOf ∗ which is applied to the list types has in CLRC
the same definition as the function sizeOf 10.

MakeArgLoc(types1, types2, vals) ≡
locAdr := ∅
argAdr := ∅
seq

choose (adr)m+n−1
i=0 ∈ SpaceFor(sizes) do

forall i = 0,m + n − 1 do
if i < m then argAdr(i) := adr i

else locAdr(i −m) := adr i

WriteMem(adr i, types(i), vals(i))
StackAdr := StackAdr ∪

Sm+n−1
i=0 [adr i, adr i + sizes(i))

where types = types1 · types2 and sizes = sizeOf ∗(types)
and m = length(types1) and n = length(types2)

The macro DeAllocMem has been used when exiting a method. It reclaims the memory
space allocated on the stack for arguments and local variables but also the memory allocated in
the local memory pool defined in Section 2.6 (see CLRP).

DeAllocMem(A) ≡
StackAdr := A
forall adr in StackAdr \A do mem(adr) := undef

2.4 The CLRO submodule

CLRO extends CLRC by object-oriented features like objects creation and initialization, instance
fields and methods (including instance constructors) and type casts. CLRO includes also an
optimization of the tail calls described in CLRC .

9To avoid a conflict in the update of switch, we set it in the MakeArgLoc. Note that, in case there is
not sufficient space for the allocation, then the switch will point to the exception handling mechanism – see the
refinement of MakeArgLoc in CLRE .

10The function sizeOf ∗ is refined in CLRO while introducing object references.

13

Environment and State The universe ObjType describes object types. An object type is a
reference type of a self-describing value. Some object types (e.g. abstract classes) are only a
partial description of a value. The object types are the object classes (not the value classes) and
the array types defined by the universe Array : ObjType = ObjClass ∪Array .

The universe CLRStackType is extended with the special type O corresponding to ObjType.
The function CLRTypeOf maps every object type to the special type O .
CLRStackType = . . . | O

The possible array element types are described by the universe ArrayElemType:
SignedInt = int8 | int16 | int32 | int64

UnsignedInt = uint8 | uint16 | uint32 | uint64
FloatType = float32 | float64
ArrayElemType = SignedInt | UnsignedInt | FloatType | native int | ref
Beside static fields, in CLRO we have also instance fields which in contrast to the static fields
belong to the class objects and not to the classes.

CLR vs. JVM There is a subtle difference between CLR and JVM concerning the instance
field/method references. In the case of CLR, the class specified with the field is the class
from which the object on the stack inherits the field/method, i.e. the class that defines the
field/method. In JVM, the class represents the class of the object on the stack.

The external function fieldOffSet computes for every instance field declared by a class the
field offset within an instance of the given class. We denote by ObjRef the universe of object
references (note that the evalStack does not work directly with objects but with references to
objects). The fieldAdr assigns to every instance field of an object reference its allocated address.
fieldOffSet : Map(Class × FRef , N) fieldAdr : Map(ObjRef × FRef ,Adr)

For the arrays handling, we define a dynamic function elemAdr that records the addresses of
the array elements. In the initial state, these addresses are undefined for every array reference.
The function arraySize assigns to every array reference the length of the array object on the heap.
The element type of an array reference can be computed with the derived function elemType.

elemAdr : Map(ObjRef × N,Adr)
elemAdr(r , i) = undef , ∀r ∈ ObjRef and i ∈ N

arraySize : Map(ObjRef , N)

elemType : Map(ObjRef ,Type)

elemType(r) = t , where actualTypeOf (r) = Array(t)

The CLR provides support for a special kind of instance methods, namely virtual methods.
They are usually used with the CallVirt instruction when the method to be invoked is looked
up dynamically (with the function lookup) using the virtual method embedded in CallVirt .
lookup : Map(Type ×MRef ,MRef) is defined as follows: lookup(t , c::m) yields d ::m, if d ::m is
the first implementation of the method c::m provided by a supertype of t , starting with t itself.

The objects, i.e. the instances of object classes and the arrays, are allocated on the heap.
All objects on the heap are known as “boxed objects” in contrast with the value type instances
introduced in CLRVC and known as “unboxed objects”. A class object is represented by its
type and the addresses (and not the values as in JVM [6]) of its instance fields. The function
actualTypeOf : Map(ObjRef ,Type) records the actual type of an object on the heap.
Due to the object references, mem is refined as mem : Map(Adr ,Byte ∪ObjRef ∪ {undef }) and
the memVal and WriteMem are refined as follows:

memVal(adr , t) = if t ∈ ObjType then mem(adr)
else [mem(adr + i) | i ∈ [0..sizeOf (t)− 1]]

WriteMem(adr , t , val) ≡ if t ∈ ObjType then mem(adr) := val
else forall i ∈ [0..sizeOf (t)− 1] do

mem(adr + i) := val(i)

14

Fig. 5 The execution of CLRO instructions
CLRO ≡ execSchemeC(execCLRO, switchCLR)

execCLRO(instr) ≡
execCLRC(instr)
match instr

NewObj (c::.ctor) →
if c ∈ ObjClass then CreateAndInitObj(c::.ctor)

LoadField(t , c::f) →
if initialized(c) then

let (evalStack ′, [x]) = getVals(evalStack , 1) in
if static(c::f) then

evalStack := evalStack ′ · [(memVal(globals(c::f), t),CLRTypeOf (t))]
pc := pc + 1

elseif x 6= null then
evalStack := evalStack ′ · [(memVal(fieldAdr(x , c::f), t),CLRTypeOf (t))]
pc := pc + 1

else switch := InitClass(c)
StoreField(t , c::f) → if initialized(c) then

let (evalStack ′, [x , val]) = getVals(evalStack , 2) in
if static(c::f) then

WriteMem(globals(c::f), t , val)
pc := pc + 1

elseif x 6= null then
WriteMem(fieldAdr(x , c::f), t , val)
pc := pc + 1

evalStack := evalStack ′

else switch := InitClass(c)
Call(tail , , c::m) →

if instance(c::m) then
if ¬reqinit(c) then

let (evalStack ′, vals) = getVals(evalStack , argNo(c::m)) in
if vals(0) 6= null then

evalStack := evalStack ′

switch := Invoke(tail , c::m, vals)

else switch := InitClass(c)

The function sizeOf ∗ which was used in the definition of MakeArgLoc in Section 2.3 is refined
to take into account object references. Thus, sizeOf ∗(t) = sizeOf (native int) if t ∈ ObjType,
and sizeOf ∗(t) = sizeOf (t) otherwise.
Rules Fig. 5, 6 and 8 define the rules for CLRO. The rule NewObj is applicable only for object
classes11 and is defined through the macro CreateAndInitObj.

CreateAndInitObj(c::.ctor) ≡
if ¬reqinit(c) then

if SpaceFor([sizeOf (c)]) 6= ∅ then
let (evalStack ′, vals) = getVals(evalStack , paramNo(c::.ctor)) in

let r = new(ObjRef , c) in
evalStack := evalStack ′ · [(r ,O)]
actualTypeOf (r) := c
forall f ∈ instFields(c) do

WriteMem(fieldAdr(r , f), type(c::f), defVal(type(f)))
switch := Invoke(False, c::.ctor, [r] · vals)

else switch := InitClass(c)
11In Section 2.7 it is defined a NewObj rule for value classes.

15

Fig. 6 The execution of CLRO instructions (continued)
CallVirt(tail , , c::m) →

let (evalStack ′, [r] · vals) = getVals(evalStack , argNo(c::m)) in
let d ::m = lookup(actualTypeOf (r), c::m) in

if ¬reqinit(d) then
if r 6= null then

evalStack := evalStack ′

switch := Invoke(tail , d ::m, [r] · vals)
else switch := InitClass(d)

CastClass(c) → let (r ,) = top(evalStack) in
if r = null ∨ actualTypeOf (r) � c then pc := pc + 1

IsInstance(c) → let (evalStack ′, [r]) = getVals(evalStack , 1) in
pc := pc + 1
if r = null ∨ actualTypeOf (r) 6� c then

evalStack := evalStack ′ · [(null,O)]
ArrayInstrO

NonVerifiableO

An instance of the given object class is allocated provided that the allocation does not require
the class initialization, otherwise it proceeds with the initialization. The allocation succeeds if
there is sufficient memory to be allocated (on the heap). The object reference and the object
on the heap are created through the following macro:

let r = new(ObjRef , t) in P ≡
import r do

ObjRef (r) := True
choose (adr) ∈ SpaceFor([n]) do

HeapAdr := HeapAdr ∪ [adr , adr + n)
forall f ∈ instFields(t) do

let a = adr + fieldOffSet(t , f) in
fieldAdr(r , f) := a
AllocFields(a, type(f))

seq P
where n = sizeOf (t)

AllocFields(adr , t) ≡
skip

The object is allocated in the HeapAdr . The addresses of the instance fields are computed
using the object starting address and the field offsets. In CLRVC , the fields might be of a value
class type. In that case, one has to compute also the addresses of the instance fields of the
corresponding value class instance. At this point, the macro AllocFields does nothing but it
will be refined in Section 2.7.
Beside the allocation, CreateAndInitObj initializes all the instance fields of the newly cre-
ated reference and invokes (“non-tail”) the instance constructor embedded in NewObj with the
necessary number of values present on the evalStack .
CLR vs. JVM The JVM instruction new is used to create and load on the stack a class
instance. The newobj instruction from CIL does the same with a single difference: it calls then
an instance constructor (specified in the CIL instruction) of the class to set the instance. In
JVM, this has to be done explicitly through an invokespecial instruction.

The field values can be read with LoadField and be written with StoreField . LoadField
takes the value of the topmost evalStack slot which is an object reference or a pointer to a value
type instance (see CLRVC). The loaded value is the value stored at the field address which is
given by the globals if the field is static or by the fieldAdr otherwise. StoreField takes from the
evalStack the values of the two topmost slots: the first is an object reference or a pointer and
the second is the value to be stored at the field address. For both LoadField and StoreField , if
the field is declared by an uninitialized class, the class is first initialized.

16

Fig. 7 The execution of CLRO instructions (continued)
ArrayInstrO ≡

NewArray(t) → let (evalStack ′, [n]) = getVals(evalStack , 1) in
if n ≥ 0 then

if SpaceFor([n ∗ sizeOf (t)]) 6= ∅ then
let r = new(ObjRef , t ,n) in

actualTypeOf (r) := Array(t)
arraySize(r) := n
evalStack := evalStack ′ · [(r ,O)]
pc := pc + 1

LoadLength → let (evalStack ′, [r]) = getVals(evalStack , 1) in
if r 6= null then

evalStack := evalStack ′ · [(arraySize(r), native int)]
pc := pc + 1

LoadElem(t) → let (evalStack ′, [r , i]) = getVals(evalStack , 2) in
if r 6= null ∧ (i ≥ 0 ∧ i < arraySize(r)) then

evalStack := evalStack ′ · [(memVal(elemAdr(r , i), elemType(r)),CLRTypeOf (t))]
pc := pc + 1

StoreElem(t) → let (evalStack ′, [r , i , val]) = getVals(evalStack , 3) in
if r 6= null ∧ (i ≥ 0 ∧ n < arraySize(r))
∧(t 6= ref ∨ val = null ∨ actualTypeOf (val) � elemType(r)) then

WriteMem(elemAdr(r , i), elemType(r), val)
evalStack := evalStack ′

pc := pc + 1

Remark LoadField , StoreField and CallVirt (but also LoadFieldA in CLRP) can be applied
also to static members but they require anyway on evalStack also an object reference or a pointer
to a value type instance (see CLRVC). This is another difference wrt JVM [6].

The Call rule that we define in CLRO can be fired only for instance methods (for statics the
Call rule from CLRC can be fired). If there is no need to initialize the class declaring the called
method, the method is invoked through switchCLR which considers also information about
a possible “tail call”. Call pops from the evalStack the target reference (assumed non-null)
representing the instance whose method is invoked and the arguments. The number and types
of the arguments are given by the derived function argTypes whose definition is refined in CLRO
as follows: for every instance method reference c::m where c is an object class:
argTypes(c::m) = [c] · paramTypes(c::m)

In case of CallVirt , the only difference wrt Call is that the method is late bound. The method to
be invoked is looked up dynamically by means of lookup. CastClass checks whether the reference
on top of the evalStack is of the required class. If the attempted cast does not succeed, CastClass
throws an exception (see CLRE). IsInstance pops from evalStack a reference to a boxed object.
If the reference is null or the actual type of the reference is not compatible with the given class,
then a null reference is pushed on evalStack . Otherwise, it lets the evalStack unchanged.
CLR vs. JVM The CLR instruction IsInstance is different than the JVM InstanceOf . De-
pending on whether the cast succeeds or not, the former loads a null on the stack or lets the
stack unchanged while the later loads on the stack either 1 or 0.

Fig. 7 contains the instructions for the array handling. One can create an array object with
the NewArray instruction. The number of array elements is popped from the stack – the array
creation succeeds only if the given number is non-negative and there is sufficient memory to
allocate the array on the heap. The array is allocated through the following macro:

17

Fig. 8 The execution of non-verifiable CLRO instructions
NonVerifiableO ≡

Jmp(c::m) →
if ¬reqinit(c) then

let args = [memVal(argAdr(i), argTypes(i)) | i = 0, argNo(meth)− 1] in
switch := Invoke(True, c::m, args)

else switch := InitClass(c)

let r = new(ObjRef , t ,n) in P ≡
import r do

ObjRef (r) := True
choose (adr) ∈ SpaceFor([n ∗ sizeOf (t)]) do

HeapAdr := HeapAdr ∪ [adr , adr + n ∗m)
forall i = 0,n − 1 do elemAdr(r , i) := adr + (i − 1) ∗m

seq P
where m = sizeOf (t)

The elements addresses are recorded by elemAdr . The memory space occupied by the array
is simply a contiguous block of bytes allocated from the arbitrarily chosen address. The size of
the block depends on the element type and length of the array.

CLR vs. JVM In comparison with JVM, the CLR provides less instructions that deal
with arrays. For example, JVM has a specialized instruction anewarray that constructs only
arrays of object references. Additionally, JVM has an instruction newarray that creates arrays
of primitive type values. In JVM, there is also the instruction multianewarray which creates
a multidimensional array. In CLR, the multidimensional arrays are created using newobj and
therefore they are treated in our abstraction as the classes objects.

The length of an array can be obtained using the LoadLength instruction. The LoadElem
loads on the stack an array element given by the index and array reference on the evalStack . If
one needs to write the value of an array element, then we use the StoreElem instruction. The
store operation succeeds if the array reference is not null, the given index is in the array range
and, in case of reference types, the type of the value to be stored is compatible with the array
element type.

Although Jmp is not verifiable, we still model its semantics (see Fig. 8). If the method
is declared by a class which requires initialization, Jmp initializes the class first. Jmp is an
optimization of a tail call. Consequently, the current frame is discarded while invoking the given
method. Note that, the given method is also the method to be invoked - there is no lookup.
The invocation arguments are exactly the arguments of the current frame at the time when
Jmp is fired. The memory allocated on the stack for the current frame is reclaimed through
DeAllocMem.

2.5 The CLRE submachine

CLRE extends CLRO by instructions dealing with exception handling. CLRE also extends in
the expected way the rules defined so far in the submachines where run-time exceptions might
occur.

This section is organized as follows. Section 2.5.1 gives an overview of the CLR exception
handling mechanism. The elements of the formalization are introduced in Section 2.5.2. Sec-
tion 2.5.3 defines the so-called StackWalk pass of the exception mechanism. The other two
passes, Unwind and Leave are defined in Section 2.5.4 and Section 2.5.5, respectively. The
execution rules of CLRE are introduced in Section 2.5.6.

18

2.5.1 The Overall Picture

Every time an exception occurs, the control is transfered from “normal” execution to a so-called
“exception handling mechanism” which we model as a submachine excCLR. In order to support
the excCLR, the universe Switch is extended with a new value which indicates the handling
of an exception: when switch gets ExcMech, the control is passed to the exception handling
mechanism.

Switch = . . . | ExcMech

The exception handling mechanism proceeds in two passes. In the first pass, the run-time
system runs a “stack walk” searching, in the exception handling array associated by excHA :
Map(MRef ,List(Exc)) to current method for the first handler that might want to handle the
exception:

• a catch handler whose type is a supertype of the type of the exception, or

• a filter handler – to see whether a filter wants to handle an exception, one has first
to execute (in the first pass) the code in the filter region: if it returns 1, then it is chosen
to handle the exception; if it returns 0, this handler is not good to handle the exception.

Visual Basic and Managed C++ have special catch blocks which can “filter” the exceptions
based on the exception type and / or any conditional expression. These are compiled into filter
handlers in the Common Intermediate Language (CIL) bytecode. As we will see, the filter
handlers bring a lot of complexity to the exceptions mechanism.

The ECMA standard does not clarify what happens if the execution of the filter or of
a method called by it throws an exception. The currently handled exception is known as an
outer exception while the newly occured exception is called an inner exception. As we will see
below, the outer exception is not discarded but its context is saved by excCLR while the inner
exception becomes the outer exception.

If a match is not found in the faulting frame, i.e. the frame where the exception has been
raised, the calling method is searched, and so on. This search eventually terminates since the
excHA of the entrypoint method has as last entry a so-called backstop entry placed there by
the operating system. When a match is found, the first pass terminates and in the second pass,
called “unwinding of the stack”, CLR walks once more through the stack of call frames to the
handler determined in the first pass, but this time executing the finally and fault12 handlers
and popping their frames. It then starts the corresponding exception handler.

2.5.2 The Global View of excCLR

In this section, we provide some detail on the elements, functions and predicates needed to turn
the overall picture into a rigorous model.

The elements of an exception handling array excHA : Map(MRef ,List(Exc)) are known as
handlers and can be of four kinds. They are elements of a set Exc:

12Currently, no language (other than CIL) exposes fault handlers directly. A fault handler is simply a finally

handler that only executes in the exceptional case. It is never executed if the associated try block terminates
normally.

19

Fig. 9 The predicates isInTry , isInHandler and isInFilter
isInTry(pos, h) ⇔ tryStart(h) ≤ pos < tryStart(h) + tryLength(h)
isInHandler(pos, h) ⇔ handlerStart(h) ≤ pos < handlerStart(h) + handlerLength(h)
isInFilter(pos, h) ⇔ filterStart(h) ≤ pos < handlerStart(h)

ClauseKind = catch | filter
| finally | fault

Exc = Exc (clauseKind : ClauseKind
tryStart : Pc
tryLength : N
handlerStart : Pc
handlerLength : N
type : ObjClass
filterStart : Pc)

Any 7-tuple of the above form describes a handler of kind clauseKind which “protects” the
region13 that starts at tryStart and has the length tryLength, handles the exception in an area
of instructions that starts at handlerStart and has the length handlerLength – we refer to this
area as the handler region; if the handler is of kind catch, then the type of exceptions it handles
is provided while if the handler is of kind filter, then the first instruction of the filter
region is at filterStart . In case of a filter handler, the handler region starting at handlerStart
immediately follows the filter region – consequently we have filterStart < handlerStart . We
often refer to the sequence of instructions between filterStart and handlerStart−1 as the filter
region. We assume that a filterStart is defined for a handler if and only if the handler is of kind
filter, otherwise filterStart is undefined.
To simplify the further presentation, we define the predicates in Fig. 9 for an instruction located
at program counter position pos ∈ Pc and a handler h ∈ Exc. Note that if the predicate
isInFilter is true, then filterStart is defined and therefore h is of kind filter. Based on the
lexical nesting constraints of protected blocks specified in [1, Partition I,§12.4.2.7], one can prove
the following property:

Disjointness 1 The predicates isInTry, isInHandler and isInFilter are pairwise disjoint.

We assume all the constraints concerning the lexical nesting of handlers specified in the
standard [1, Partition I,§12.4.2.7]. The ECMA standard [1, Partition I,§12.4.2.5] ordering as-
sumption on handlers is:

Ordering assumption If handlers are nested, the most deeply nested
try blocks shall come in the exception handling array before the try
blocks that enclose them.

Only one handler region per try block? The ECMA standard specifies in [1, Partition
I,§12.4.2] that a single try block shall have exactly one handler region associated with it. But
the IL assembler ilasm does accept also try blocks with more than one catch handler block.
This discrepancy is solved if we assume that every try block with more than one catch block
which is accepted by the ilasm is translated in a semantics preserving way as follows:

13We will refer to this region as protected region or try block.

20

.try {
block

} catch block1

catch block2

=⇒

.try {
.try {

block
} catch block1

} catch block2

To handle an exception, the excCLR needs to record:

• the exception reference exc,
• the handling pass,
• a stackCursor – i.e. the position currently reached in the stack of call frames (a frame)

and in the exception handling array (an index in excHA),
• the suitable handler determined at the end of the StackWalk pass (if any) is the handler

that is going to handle the exception in the pass Unwind – until the end of the StackWalk
pass, handler is undefined;

According to the ECMA standard, every normal execution of a try block or a catch/filter
handler region must end with a Leave(pos) instruction. When doing this, excCLR has to record
the current pass and stackCursor together with the target up to which every included finally
code has to be executed.

ExcRec =

ExcRec (exc : ObjRef
pass : {StackWalk ,Unwind}
stackCursor : Frame × N
handler : Frame × N)

LeaveRec =

LeaveRec (pass : {Leave}
stackCursor : Frame × N
target : Pc)

We list some constraints which will be needed below to understand the treatment of these Leave
instructions.

Syntactic constraints:

1. It is not legal to exit with a Leave instruction a filter region, a
finally/fault handler region.

2. It is not legal to branch with a Leave instruction into a handler
region from outside the region.

3. It is legal to exit with a Leave a catch handler region and branch
to any instruction within the associated try block, so long as that
branch target is not protected by yet another try block.

The nesting of passes determines excCLR to maintain an initially empty stack of exception
or leave records for the passes that are still to be performed.

21

excRecStack : List(ExcRec ∪ LeaveRec)
excRecStack = []

In the initial state of excCLR, there is no pass to be executed, i.e. pass = undef .
We can now summarize the overall behavior of excCLR, which is defined in Fig. 10 and

analyzed in detail in the following sections, by saying that if there is a handler in the frame
defined by stackCursor , then excCLR will try to find (when StackWalk ing) or to execute
(when Unwind ing) or to leave (when Leaveing) the corresponding handler; otherwise it will
continue its work in the invoker frame or end its Leave pass at the target .

2.5.3 StackWalk pass

During a StackWalk pass, excCLR starts in the current frame to search for a suitable handler of
the current exception in this frame. Such a handler exists if the search position n in the current
frame has not yet reached the last element of the handlers array excHA of the corresponding
method m.

existsHanWithinFrame((, , , , ,m),n) ⇔ n < length(excHA(m))

If there are no (more) handlers in the frame pointed to by stackCursor , then the search
has to be continued at the invoker frame. This means to reset the stackCursor to point to the
invoker frame.

SearchInvFrame(f) ≡
let · [f ′, f] · = frameStack · [frame] in

Reset(stackCursor , f ′)

There are three groups of possible handlers h excCLR is looking for in a given frame during
its StackWalk :

• a catch handler whose try block protects the program counter pc of the frame pointed at
by stackCursor and whose type is a supertype of the exception type;

matchCatch(pos, t , h) ⇔ isInTry(pos, h) ∧ clauseKind(h) = catch ∧ t � type(h)

• a filter handler whose try block protects the pc of the frame pointed at by stackCursor ;

matchFilter(pos, h) ⇔ isInTry(pos, h) ∧ clauseKind(h) = filter

• a filter handler whose filter region contains pc of the frame pointed at by stackCursor .
This corresponds to an outer exception and will be described in more detail below.

The order of the if clauses in the let statement from the rule StackWalk is not important. This
is justified by the following property:

Disjointness 2 For every type t, the predicates matchCatcht, matchFilter and isInFilter are
pairwise disjoint14.

14By matchCatcht we understand the predicate defined by the set {(pos, h) | matchCatch(pos,t,h)}.

22

The above property can be easily proved using the definitions of the three predicates and the
property Disjointness 1.

If the handler pointed to by the stackCursor , namely
hanWithinFrame((, , , , ,m),n) = excHA(m)(n),
is not of any of the above types, the stackCursor is incremented to point to the next handler in
the excHA:

GoToNxtHan ≡ stackCursor := (f ,n + 1)
where stackCursor = (f ,n)

The Ordering assumption stated in Section 2.5.2 and the lexical nesting constraints stated
in [1, Partition I,§12.4.2.7] ensure that, if the stackCursor points to a handler of one of the
above types, then this handler is the first handler in the exception handling array (starting at
the position indicated in the stackCursor) of any of the above types.

If the handler pointed to by the stackCursor is a matching catch, then this handler becomes
the handler to handle the exception in the pass Unwind . The stackCursor is reset to be reused
for the Unwind pass: it shall point to the faulting frame, i.e. the current frame. Note that during
StackWalk , frame always points to the faulting frame except in case a filter region is executed.
However, the frame built to execute a filter is never searched for a handler corresponding to
the current exception.

FoundHandler ≡
pass := Unwind
handler := stackCursor

Reset(s, f) ≡ s := (f , 0)

If the handler is a filter, then by means of ExecFilter its filter region is executed.
The execution is performed in a separate frame constructed especially for this purpose. However
this important detail is omitted by the ECMA standard [1]. The currently to be executed frame
becomes the frame for executing the filter region. The faulting exception frame is pushed on
the frameStack . The current frame points now to the method, local variables and arguments
of the frame in which stackCursor is, it has the exception reference on the evaluation stack
evalStack and the program counter pc set to the beginning filterStart of the filter region. The
switch is set to Noswitch in order to pass the control to the normal machine execCLRE .

ExecFilter(h) ≡
pc := filterStart(h)
evalStack := [exc]
locAdr := locAdr ′

argAdr := argAdr ′

meth := meth ′

push(frameStack , frame)
switch := Noswitch
where stackCursor = ((, locAdr ′, argAdr ′, , ,meth ′),)

Exceptions in filter region? It is not documented in the ECMA standard what happens if
an (inner) exception is thrown while executing the filter region during the StackWalk pass of
an outer exception. The following cases are to be considered:

23

Fig. 10 The exception handling machine excCLR

excCLR ≡
match pass

StackWalk → if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if matchCatch(pos, actualTypeOf (exc), h) then
FoundHandler
Reset(stackCursor , frame)

elseif matchFilter(pos, h) then ExecFilter(h)
elseif isInFilter(pos, h) then ExitInnerExc
else GoToNxtHan

else SearchInvFrame(f)
where stackCursor = (f ,) and f = (pos, , , , ,)

Unwind → if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if matchTargetHan(handler , stackCursor) then
ExecHan(h)

elseif matchFinFault(pc, h) then
ExecHan(h)
GoToNxtHan

elseif isInHandler(pc, h) then
AbortPrevPassRec
GoToNxtHan

elseif isInFilter(pc, h) then
ContinueOuterExc

else GoToNxtHan
else

if meth = c::.cctor then classState(c) := Exc(exc)
PopFrame(0, [])
SearchInvFrame(frame)

Leave → if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if isFinFromTo(h, pc, target) then ExecHan(h)
if isRealHanFromTo(h, pc, target) then AbortPrevPassRec
GoToNxtHan

else
pc := target
PopRec
switch := Noswitch

• if the exception is taken care of in the filter region, i.e. it is successfully handled by a
catch/filter handler or it is aborted because it occured in yet another filter region
of a nested handler (see the isInFilter clause), then the given filter region continues
executing normally (after the exception has been taken care of);

• if the exception is not taken care of in the filter region, then the exception is not
propagated further, but its StackWalk is exited (see Fig. 10). The exception will be

24

discarded but only after the excCLR runs its Unwind pass to execute all the finally
and fault handlers (see Tests 6, 8 and 9 in [3]).

ExitInnerExc ≡
pass := Unwind
Reset(stackCursor , frame)

2.5.4 Unwind pass

As soon as the pass StackWalk terminates, the excCLR starts the Unwind pass with the
stackCursor pointing to the faulting exception frame. Starting there one has to walk down to
the handler determined in the StackWalk , executing on the way every finally/fault handler
region. This happens also in case handler is undef . When Unwind ing, the excCLR searches
for

• the matching target handler, i.e. the handler determined at the end of the StackWalk pass
(if any) – handler can be undef if the search in the StackWalk has been exited because the
exception was thrown in a filter region. Also the two handler and stackCursor frames
in question have to coincide. We say that two frames are the same if the address arrays of
their local variables and arguments as well their method names coincide.

matchTargetHan((f 1,n1), (f 2,n2)) ⇔ sameFrame(f 1, f 2) ∧ n1 = n2

sameFrame(f 1, f 2) ⇔ pr i(f 1) = pr i(f 2),∀i ∈ {2, 3, 6}

• a matching finally/fault handler whose associated try block protects the pc;

matchFinFault(pos, h) ⇔ isInTry(pos, h) ∧ clauseKind(h) ∈ {finally, fault}

• a handler whose handler region contains pc;

• a filter handler whose filter region contains pc;

The order of the last three if clauses in the let statement from the rule Unwind is not important.
It matters only that the first clause is guarded by matchTargetHan.

Disjointness 3 The following predicates are pairwise disjoint: matchFinFault, isInHandler and
isInFilter.

The property can be proved using the definitions of the predicates and the property Disjoint-
ness 1.

The Ordering assumption in Section 2.5.2 the lexical nesting constraints given in [1, Partition
I,§12.4.2.7] ensure that, if the stackCursor points to a handler of one of the above types, then this
handler is the first handler in the exception handling array (starting at the position indicated
in the stackCursor) of any of the above types.

If the handler pointed to by the stackCursor is the handler found in the StackWalk , its
handler region is executed through ExecHan: the pc is set to the beginning of the handler
region, the exception reference is loaded on the evaluation stack (when ExecHan is applied
for executing finally/fault handler regions the current exception is not pushed on evalStack)
and the control switches to execCLRE .

25

ExecHan(h) ≡
pc := handlerStart(h)
evalStack :=

if clauseKind(h) ∈ {catch, filter} then
[exc]

else
[]

switch := Noswitch

If the handler pointed to by the stackCursor is a matching finally/fault handler, its han-
dler region is executed with initially empty evaluation stack. At the same time, the stackCursor
is incremented through GoToNxtHan.

Let us assume that the handler pointed to by stackCursor is an arbitrary handler whose
handler region contains pc.
Exceptions in handler region? The ECMA standard does not specify what should happen
if an exception is raised in a handler region. The experimentation in [3] can be resumed by the
following rules of thumb for exceptions thrown in a handler region similarly to the case of nested
exceptions in filter code:

• if the exception is taken care of in the handler region, i.e. it is successfully handled
by a catch/filter handler or it is discarded (because it occured in a filter region of a
nested handler), then the handler region continues executing normally (after the exception
is taken care of);

• if the exception is not taken care of in the handler region, i.e, escapes the handler region,
then

– the previous pass of excCLR is aborted through AbortPrevPassRec;

AbortPrevPassRec ≡ pop(excRecStack)

– the exception is propagated further, i.e. the Unwind pass continues via GoToNxtHan
(see Fig. 10) which sets the stackCursor to the next handler in excHA.

The execution of a handler region can occur only when excCLR runs in the Unwind and
Leave passes: in Unwind handler regions of any kind are executed while in Leave only finally
handler regions are executed. If the raised exception occured while excCLR runs an Unwind
pass for handling an outer exception, the Unwind pass of the outer exception is stopped and
the corresponding pass record is popped from excRecStack (see Tests 1, 3 and 4 in [3]). If the
exception has been thrown while excCLR runs a Leave pass for executing finally handlers on
the way from a Leave instruction to its target, then this pass is stopped and its associated pass
record is popped off excRecStack (see Test 2 in [3]).
In this way an exception can go “unhandled” without taking down the process, namely if an
outer exception goes unhandled, but an inner exception is successfully handled (see the second
case of the preceding case distinction).

If the handler pointed to by the stackCursor is a filter handler whose filter region
contains pc, then the current (inner) exception is aborted and the filter considered as not
providing a handler for the outer exception. So there is no way to exit a filter region with

26

an exception. This ensures that the frame built by ExecFilter for executing a filter re-
gion is used only for this purpose. The handling of the outer exception is continued through
ContinueOuterExc (see Fig. 10) which pops the frame built for executing the filter region,
pops from the excRecStack the pass record corresponding to the inner exception and reestab-
lishes the pass context of the outer exception, but with the stackCursor pointing to the handler
following the just inspected filter handler. The updates of the stackCursor in PopRec and
GotoNxtHan are done sequentially such that the update in GotoNxtHan overwrites the
update in PopRec.

ContinueOuterExc ≡
PopFrame(0, [])
PopRec seq GoToNxtHan

PopRec ≡
if excRecStack = [] then

SetRecUndef
switch := Noswitch

else let (excRecStack ′, [r]) =
split(excRecStack , 1) in

if r ∈ ExcRec then
let (exc′, pass ′, stackCursor ′, handler ′) = r in
exc := exc′

pass := pass ′

stackCursor := stackCursor ′

handler := handler ′

if r ∈ LeaveRec then
let (pass ′, stackCursor ′, target ′) = r in
pass := pass ′

stackCursor := stackCursor ′

target := target ′

excRecStack := excRecStack ′

SetRecUndef ≡
exc := undef
pass := undef
stackCursor := undef
target := undef
handler := undef

If the handler pointed to by the stackCursor is not of any of the above types, the stackCursor
is incremented to point to the next handler in the excHA.

If the Unwind pass exhausted all the handlers in the frame indicated in stackCursor , then
the current frame is popped from frameStack and the Unwind pass continues in the invoker
frame of the current frame.
Exceptions in class initializers? If an exception occurs in a type initializer .cctor, then
the type shall be marked as being in an erroneous state and a TypeInitializationException
is thrown. This means that an exception can and will escape the body of an initializer only
by the specific exception TypeInitializationException. This is not specified by the ECMA

27

Fig. 11 The switchCLR machine (continued)
switchCLR ≡ match switch

. . .
InitClass(c) → if classState(c) = Exc(r) then

LoadRec((r ,StackWalk , (frame, 0), undef))

standard but it seems to correspond to the actual CLR implementation and it complies with
the related specification for C] in the ECMA standard (see Test 7 in [3]). Therefore we assume
that the code sequence of every .cctor is embedded into a catch handler. This catch handler
catches exceptions of type Object, i.e. any exception, occured in .cctor, discards it, creates an
object of type TypeInitializationException15 and throws the new exception.

To support the types in an erroneous state, a new value is injected into the universe of class
states:

ClassState = . . . | Exc(ObjRef)

The meaning is that, if a class is in a state Exc(r), then the class initializer has been exited
with a TypeInitializationException reference r .

The InitClass rule of the switchCLR submachine is refined in Fig. 11 to take into account
attempts to initialize a class that is in an erroneous state. The macro LoadRec is defined in
Section 2.5.6 and basically loads into the exception mechanism the same exception reference
that is embedded in the class state value.
Since every attempt to use a class in an Exc() state shall throw the same initially thrown
exception reference, we need to refine the predicate reqinit as follows:

reqinit(c) ⇔ (¬initialized(c) ∨ ¬beforefieldinit(c)) ∨ classState(c) = Exc()

When a field is accessed, the predicate initialized is checked. If the corresponding class is in an
Exc() state, then the predicate initialized is False. Consequently, the switch is set to InitClass
which will throw the same initially thrown exception reference.

2.5.5 Leave pass

The excCLR machine gets into the Leave pass when execCLRE executes a Leave instruction
upon the normal termination of a try block or of a catch/filter handler region. One has to
execute the handler regions of all finally handlers on the way from the Leave instruction to the
instruction whose program counter is given by the Leave target parameter. The stackCursor used
in the Leave pass is initialized by the Leave instruction. In the Leave pass, the excCLR machine
searches for

• finally handlers that are “on the way” from the pc to the target ,

• real handlers, i.e. catch/filter handlers that are “on the way” from the pc to the target –
more details are given below.

If the handler pointed to by stackCursor is a finally handler on the way from pc to
the target position of the current Leave pass record, then the handler region of this handler
is executed (see Fig. 10). If the stackCursor points to a catch/filter handler on the way
from pc to target , then the previous pass record on excRecStack is discarded (see Fig. 10).

15In the real CLR implementation, the exception thrown in .cctor is embedded as an inner exception in the
TypeInitializationException. We do not model this aspect here.

28

The discarded record can only be referring to an Unwind pass for handling an exception. By
discarding this record, the mechanism terminates the handling of the corresponding exception.

isFinFromTo(h, pos1, pos2) ⇔
isInTry(pos1, h) ∧ clauseKind(h) = finally ∧ ¬isInTry(pos2, h) ∧ ¬isInHandler(pos2, h)

isRealHanFromTo(h, pos1, pos2) ⇔
clauseKind(h) ∈ {catch, filter} ∧ isInHandler(pos1, h) ∧ ¬isInHandler(pos2, h)

For each handler excCLR inspects also the next handler in excHA. When the handlers in
the current method are exhausted, pc is set to target , the context of the previous pass record
on excRecStack is reestablished and the control is passed to normal execCLRE execution (see
Fig. 10).

2.5.6 The rules of CLRE

Fig. 12 defines the rules of CLRE . This submachine is defined through the execSchemeE which
extends the previous scheme execSchemeC . The new scheme takes into account also the excep-
tion handling mechanism excCLR.

The rules of execCLRE in Fig. 12 specify the effect of the CIL instructions related to
exceptions. Each of these rules transfers the control to excCLR. The Throw instruction is
defined through the macro Throw:

Throw(r) ≡
if r 6= null then

LoadRec((r ,StackWalk , (frame, 0), undef))
else Raise(NullReferenceException)

The topmost element of the evalStack , which is supposed to be an exception reference, is popped
off (see Remark below). The pass record associated to the given exception is loaded on the
excCLR: the stackCursor is initialized by the current frame and 0. If the exception mechanism
is already working in a pass, i.e. pass 6= undef , then the current pass record is pushed on the
excRecStack .

LoadRec(r) ≡
if r ∈ ExcPass then

let (exc′, pass ′, stackCursor ′, handler ′) = r in
exc := exc′

pass := pass ′

stackCursor := stackCursor ′

handler := handler ′

else let (pass ′, stackCursor ′, target ′) = r in
pass := pass ′

stackCursor := stackCursor ′

target := target ′
if pass 6= undef then PushRec
switch := ExcMech

29

PushRec ≡
if pass = Leave then

push(excRecStack , (pass, stackCursor , target))
else push(excRecStack ,

(exc, pass, stackCursor , handler))

If the exception reference popped off the evalStack is null, a NullReferenceException is
thrown. For a given class c, the macro Raise(c) is defined as follows.

Raise(c) ≡
CreateAndInitObj(c::.ctor)

seq
let (r ,) = top(evalStack) in

Throw(r)

First, an exception reference of type c is created and loaded on the evalStack . In the next step
of our interpreter, the exception reference is thrown by the macro Throw.
To simplify the technical exposition, we make the following assumptions on the exception classes
referred to in our model :

1. the exception classes are initialized16;

2. the exception class objects occupy memory blocks of the same size, i.e. the function sizeOf
has the same value for all the exception classes17;

The first assumption ensures that the CreateAndInitObj does not proceed with initializa-
tion of the exception class. One needs this guarantee for the successful subsequent execution
of the Throw macro. The second assumption guarantees that the following never happens:
CreateAndInitObj invokes a Raise(OutOfMemoryException) (see below the refinement of
CreateAndInitObj). If this happens, then CreateAndInitObj would proceed with the
“raising” of OutOfMemoryException instead of preparing the evalStack for the subsequent exe-
cution of Throw.

The ECMA standard states in [1, Partition III,§4.23] that the Rethrow instruction is only
permitted within the body of a catch handler. However, the same instruction is allowed also
within a handler region of a filter (see Test 5 in [3]) even if this does not match the previous
statement. It throws the same exception reference that was caught by this handler. Due to
the syntactical constraint that Rethrow should be used only in a catch handler (not of any
exception handlers embedded within that catch handler), excis always set, i.e. it is not undef .

In a filter region, there should be exactly one EndFilter instruction. This has to be the last
instruction in the filter region. EndFilter takes an integer val from the stack that is supposed
to be either 0 or 1. In the ECMA standard, 0 and 1 are assimilated with “continue search” and
“execute handler”, respectively. There is a discrepancy between [1, Partition I,§12.4.2.5] which
states Execution cannot be resumed at the location of the exception, except with a user-filtered
handler and [1, Partition III,§3.34] which states that the only possible return values from the

16The initialized assumption is justified by the following finding. The exception classes referred to in our model
are marked with beforefieldinit and have no static fields. Accordingly, their .cctor initializers are empty
modulo a Return instruction.

17The same size assumption seems reasonable since the exception classes have the same instance fields inherited
from the SystemException class.

30

Fig. 12 The execution of CLRE instructions
CLRE ≡ execSchemeE(execCLRE , switchCLR, excCLR)

execSchemeE(execCLR, switchCLR, excCLR) ≡
if switch = ExcMech then excCLR
else execSchemeC(execCLR, switchCLR)

execCLRE(instr) ≡
execCLRO(instr)
match instr

Throw → let (r ,) = top(evalStack)) in Throw(r)
Rethrow → Throw(exc)
EndFilter → let (val ,) = top(evalStack) in

if val = 1 then
FoundHandler
Reset(stackCursor , top(frameStack))

else GoToNxtHan
PopFrame(0, [])
switch := ExcMech

EndFinally → evalStack := []
switch := ExcMech

Leave(pos) → evalStack := []
LoadRec((Leave, (frame, 0), pos))
switch := ExcMech

ExcSensitiveInstrE

filter are “exception continue search”(0) and “exception execute handler”(1). In other words,
resumable exceptions are not (yet) supported contradicting Partition I.

If val is 1, then the filter handler to which EndFilter corresponds becomes the handler to
handle the current exception in the pass Unwind . Remember that the filter handler is the
handler pointed to by the stackCursor . The stackCursor is reset to be used for the pass Unwind :
it will point into the topmost frame on frameStack which is actually the faulting frame. If val
is 0, the stackCursor is incremented to point to the handler following our filter handler.
Independent of val , the current frame is discarded to reestablish the context of the faulting
frame. Note that we do not explicitly pop the val from the evalStack since anyway the global
dynamic function evalStack is updated anyway in the next step through PopFrame to the
evalStack ’ of the faulting frame.

EndFinally terminates the execution of the handler region of a finally/fault handler. It
empties the evalStack and transfers the control to excCLR. A Leave instruction empties the
evalStack and loads on excCLR a pass record corresponding to a Leave pass.
Remark The reader might ask why the instructions Throw , Rethrow and EndFilter do not set
the evalStack . The reason is that this set up, i.e. the emptying of the evalStack , is supposed to
be either a side-effect (the case of the Throw and Rethrow instructions) or ensured for a correct
CIL (the case of the EndFilter instruction). Thus, the Throw and Rethrow instructions pass
the control to excCLR which, in a next step, will execute18 a catch/finally/fault handler
region or a filter code or propagates the exception in another frame. All these “events” will
“clear” the evalStack . In case of EndFilter , the evalStack must contain exactly one item (an
int32 which is popped off by EndFilter). Note that this has to be checked by the bytecode
verifier and not ensured by the exception handling mechanism.

In addition, CLRE extends in the obvious way rules that raise run-time exceptions – see the
group of rules ExcSensitiveInstrE in Figure 13. A typical representative of the extension

18One can formally prove that there is such a “step” in the further run of the excCLR.

31

Fig. 13 The execution of CLRE instructions (continued)
ExcSensitiveInstrE ≡

Execute(op) → let slots = take(evalStack , opNo(op)) in
if DivByZeroCase(op, slots) then

Raise(DivideByZeroException)
elseif OverflowCase(op, slots) then

Raise(OverflowException)
elseif InvalidNrCase(op, slots)

Raise(ArithmeticException)
CastClass(c) → let (r ,) = top(evalStack) in

if r 6= null ∧ actualTypeOf (r) 6� c then
Raise(InvalidCastException)

LoadLoc() → if ¬zeroInit(meth) then
halt := “Verification Exception”

Call(, , c::m) → if instance(c::m) ∧ ¬reqinit(c) then
let (, [r] ·) = getVals(evalStack , argNo(c::m)) in

if r = null then Raise(NullReferenceException)
LoadField(, c::f) → if instance(c::f) ∧ ¬reqinit(c) then

let (r ,) = top(evalStack) in
if r = null then Raise(NullReferenceException)

StoreField(, c::f) → if instance(c::f) ∧ ¬reqinit(c) then
let (, [r] ·) = getVals(evalStack , 2) in

if r = null then Raise(NullReferenceException)
CallVirt(, , c::m) → let (, [r] ·) = getVals(evalStack , argNo(c::m)) in

let d ::m = lookup(actualTypeOf (r), c::m) in
if ¬reqinit(d) then

if r = null then Raise(NullReferenceException)
ArrayInstrE

ArrayInstrE ≡
NewArray(t) → let (n,) = top(evalStack) in

if n < 0 then Raise(OverflowException)
elseif SpaceFor([n ∗ sizeOf (t)]) = ∅ then

if SpaceFor([sizeOf (OutOfMemoryException)]) 6= ∅ then
Raise(OutOfMemoryException)

else halt := “not enough space to be allocated′′

LoadLength → let (r ,) = top(evalStack) in
if r = null then Raise(NullReferenceException)

LoadElem() → let (, [r , i]) = getVals(evalStack , 2) in
if r = null then Raise(NullReferenceException)
elseif i < 0 ∨ i ≥ arraySize(r) then

Raise(IndexOutOfRangeException)
StoreElem(t) → let (, [r , i , val]) = getVals(evalStack , 3) in

if r = null then Raise(NullReferenceException)
elseif (i < 0 ∨ i ≥ arraySize(r)) then

Raise(IndexOutOfRangeException)
elseif (t = ref ∧ val 6= null ∧ actualTypeOf (val) 6� elemType(r)) then

Raise(ArrayTypeMismatchException)

is the definition of Execute. The extension of this rule raises a DivideByZeroException, if
op is a division operator and the second topmost value on the stack is 0 (see the definition of
the predicate DivByZeroCase in Section 2.2). An OverflowException is thrown if op is an
operator that performs an overflow check (e.g. add.ovf) and the result of the operation cannot
be represented in the result type.
CLR vs. JVM The JVM never indicates overflow when executing operations on integral types.

According to the definition of the predicate InvalidNrCase in Section 2.2, if op is the
ckfinite operator and the topmost value on the stack is one of NaN, +infinity or -infinity,

32

then an InvalidCastException is thrown. Such an exception is raised also if a division op-
erator is applied to the smallest integer value and 0. The instruction CastClass throws an
InvalidCastException if the actual (run-time) type of r is neither null nor compatible with
the required type r . The attempt to load on the stack the value of a local variable, halts the ma-
chine19 if the current method is not marked with the flag zeroInit . A NullReferenceException
is thrown if the instructions Call , LoadField , StoreField , CallVirt applied to an instance member
are called with a null reference.
Macro refinement We refine here the macro CreateAndInitObj used for the NewObj in-
struction in CLRO:

CreateAndInitObj(c::.ctor) ≡
if ¬reqinit(c) then

. . .
if SpaceFor([sizeOf (c)]) = ∅ then

if SpaceFor([sizeOf (OutOfMemoryException)]) 6= ∅ then
Raise(OutOfMemoryException)

else halt := “not enough space to be allocated”

If the creation of a class instance cannot succeed because there is no sufficient memory to be al-
located on the heap, then the system throws an OutOfMemoryException. Note that the machine
halts if there is not enough space to be allocated on the heap for an OutOfMemoryException
object. In the real CLR this case corresponds to the case when the OutOfMemoryException is
reported by the operating system.
Gap ECMA The Call instruction can throw a NullReferenceException even if this is not
stated in the specification of call (see [1, Partition III,§3.19]). This is because the Call can
invoke also instance methods and not only static methods.

The rules specific to the array instructions can also throw exceptions. The attempt to
create a zero-based, one dimensional array with a negative number of elements produces an
OverflowException. If there is insufficient memory to be allocated on the stack for the n array
elements of type t , then an OutOfMemoryException is thrown. The same check as in the case of
NewObj is performed to ensure that there is enough space for an OutOfMemoryException object.
The instructions LoadLength, LoadElem and StoreElem throw a NullReferenceException if
the target reference is null. If the instructions LoadElem and StoreElem attempt to access an
array element whose index is negative or is greater than the array size, then the system raises an
IndexOutOfRangeException. In addition, the StoreElem used for object references can throw
an ArrayTypeMismatchException if the actual type of the value to be stored into the array
element is not compatible with the element type of the array.
Mistake ECMA The standard states in [1, Partition III,§4.7] that LoadElem can also throw
an ArrayTypeMismatchException. This is probably a mistake since anyway there is no value
whose type shall be compared for compatibility with the type embedded in the instruction.

Beside the above rule extensions, we need to refine also the rules Invoke and InitClass of
the switchCLR submachine defined in Section 2.3. Thus, when a method is invoked (including
here also a .cctor), a StackOverflowException is thrown by the system if there is not enough
memory to be allocated for arguments and local variables (see Fig. 14).

2.6 The CLRP submodule

CLRP extends CLRO with pointer types, i.e. types whose values are memory addresses. CLRP
provides type-safe operations on pointers (e.g. “read”/“write” a value from/into the address

19In this case, the real CLR throws a VerificationException which will stop the execution of the program.

33

Fig. 14 The switchCLR machine (continued)
switchCLR ≡ match switch

Invoke(tail , c::m, args) → . . .
seq

if SpaceFor([sizes]) 6= ∅ then
. . .

else Raise(StackOverflowException)
. . .

InitClass(c) → if classState(c) = Linked then
if SpaceFor([sizes]) 6= ∅ then

. . .
else Raise(StackOverflowException)

referenced by a pointer) and non-verifiable operations (e.g. initialize a block of memory to a
given value, copy data from memory to memory). The main purpose of having pointer types is
to permit methods to receive arguments and return values “by reference”.
Environment and State The universe CLRStackType includes now also the special type &
corresponding to managed pointers. LoadIndType describes the type of a value indirectly loaded
from the memory on evalStack with LoadInd , while StoreIndType describes the type of a value
indirectly stored into the memory with StoreInd .

CLRStackType = . . . | & SignedInt = int8 | int16 | int32 | int64
Float = float32 | float64 UnsignedInt = uint8 | uint16 | uint32 | uint64

LoadIndType = SignedInt | UnsignedInt | Float | native int | ref
StoreIndType = SignedInt | Float | native int | ref
In Section 2.3 we have introduced the external function validAdr to check addresses for

validity. An address is invalid if it is null or is not in the range of Adr or is not “naturally
aligned” for the target architecture or is “not mapped” into the process. An address is “naturally
aligned” if it is aligned wrt the machine dependent native int type. Note that, as a consequence
of the definition of SpaceFor , the results of all CIL instructions that return addresses (e.g.
LoadLocA and LoadArgA) are valid.
Rules The rules for CLRP are defined in Fig. 15 and 17. Assuming that the zeroInit flag of the
current method is set, LoadLocA(n) pushes the address of the local variable indexed with n on
the evalStack . If the zeroInit is not set, then the machine halts. Similarly, LoadArgA(n) pushes
on the evalStack the address of the current method argument indexed with n. In JVM [6], one
cannot take the address of local variables and arguments. The address of a static field is loaded
using LoadStaticA. If the class which declares the static field is not yet initialized, the execution
proceeds first with the class initialization. LoadFieldA is similar with LoadStaticA and can be
used for both static and instance fields. If the field is an instance field and the object reference on
evalStack is null, then a NullReferenceException is thrown. The LoadInd instruction takes
the value of the topmost evalStack slot, which is supposed to be a pointer (address) and loads
the value stored at this address. StoreInd takes the values of the two topmost evalStack slots,
which are supposed to be a pointer (address) and a value. It then stores the value at the
address. In both cases, of LoadInd and StoreInd , the address must be a valid address, otherwise
a NullReferenceException is thrown.

The address of an array element can be loaded with the LoadElemA instruction described in
Fig. 16. If the array reference on top of the evalStack is null, a NullReferenceException is
thrown. Also if the index is not in the array range, a IndexOutOfRangeException is raised. An
ArrayTypeMismatchException is thrown if the type embedded given in the LoadElemA does
not match the element type of the array.
Call by-reference mechanism Unlike JVM, the CLR allows to pass to a method arguments

34

Fig. 15 The execution of CLRP instructions
CLRP ≡ execSchemeE(execCLRP , switchCLR, excCLR)

execCLRP (instr) ≡
execCLRE(instr)
match instr

LoadLocA(n) → if zeroInit(meth) then
evalStack := evalStack · [(locAdr(n), &)]
pc := pc + 1

else halt := “Verification Exception′′

LoadArgA(n) → evalStack := evalStack · [(argAdr(n), &)]
pc := pc + 1

LoadStaticA(, c::f) → if initialized(c) then
evalStack := evalStack · [(globals(c::f), &)]
pc := pc + 1

else switch := InitClass(c)
LoadFieldA(, c::f) → if initialized(c) then

let (evalStack ′, [x]) = getVals(evalStack , 1) in
if static(c::f) then evalStack := evalStack ′ · [(globals(c::f), &)]

pc := pc + 1
elseif x 6= null then evalStack := evalStack ′ · [(fieldAdr(x , c::f), &)]

pc := pc + 1
else Raise(NullReferenceException)

else switch := InitClass(c)
LoadInd(t) → let (evalStack ′, [adr]) = getVals(evalStack , 1) in

if validAdr(adr) then
evalStack := evalStack ′ · [(memVal(adr , t),CLRTypeOf (t))]
pc := pc + 1

else Raise(NullReferenceException)
StoreInd(t) → let (evalStack ′, [adr , val]) = getVals(evalStack , 2) in

if validAdr(adr) then
WriteMem(adr , t , val)
evalStack := evalStack ′

pc := pc + 1
else Raise(NullReferenceException)

ArrayInstrP

NonVerifiableP

Fig. 16 The execution of CLRP instructions (continued)
ArrayInstrP ≡

LoadElemA(c) → let (evalStack ′, [r , i]) = getVals(evalStack , 2) in
if r = null then Raise(NullReferenceException)
elseif (i < 0 ∨ i ≥ arraySize(r)) then Raise(IndexOutOfRangeException)
elseif c 6= elemType(r) then Raise(ArrayTypeMismatchException)
else

evalStack := evalStack ′ · [(elemAdr(r , i), &)]
pc := pc + 1

by-reference (the equivalent of the C# ref or Pascal var parameters). This is realized by pass-
ing (by-value) the address of the by-reference argument. Consequently, any assignment to the
corresponding parameter actually modifies the corresponding caller’s variable. The instructions
in Fig. 15 offer support for computing variable addresses.

The following explanations apply to the non-verifiable CLRP instructions in Fig. 17. The
InitBlock instruction writes a given value of type unsigned int8 in all the addresses of a block
of memory. It takes the values of the three topmost evalStack slots, which are supposed to be,

35

Fig. 17 The execution of non-verifiable CLRP instructions
NonVerifiableP ≡

InitBlock → let (evalStack ′, [adr , val , size]) = getVals(evalStack , 3) in
if validAdr(adr) then

forall i = 0, size − 1 do mem(adr + i) := val
evalStack := evalStack ′

pc := pc + 1
else Raise(NullReferenceException)

CopyBlock → let (evalStack ′, [dest adr , src adr , size]) = getVals(evalStack , 3) in
if validAdr(dest adr) ∧ validAdr(src adr) then

if ¬overlap(dest adr , src adr , size) then
forall i = 0, size − 1 do mem(dest adr + i) := mem(src adr + i)
evalStack := evalStack ′

pc := pc + 1
else Report(UndefinedBehavior)

else Raise(NullReferenceException)
LocAlloc → let (evalStack ′, [size]) = getVals(evalStack , 1) in

if SpaceFor([size]) 6= ∅ then
choose (adr) ∈ SpaceFor([size]) do

evalStack := evalStack ′ · [(adr , &)]
if zeroInit(meth) then

forall i = 0, size − 1 do mem(adr + i) := 0
StackAdr := StackAdr ∪ [adr , adr + size)

pc := pc + 1
else Raise(StackOverflowException)

in order, a “pointer” (the block’s first address), a value and the “size” of the block. It writes the
value into a number of addresses given by the block’s “size” starting with the address given by the
“pointer”. If the address is not valid, then a NullReferenceException is thrown. CopyBlock
copies data from memory to memory. It takes the values of the three topmost evalStack slots,
which are supposed to be, in order, a “destination” address, a “source” address and a “size”
of a block of addresses. It then copies a number of bytes given by the block’s “size” from the
“source” address to the “destination” address. The “destination” and “source” addresses must
be valid addresses and the “destination” and “source” areas shall not overlap. If they overlap,
the behavior is undefined. If one of the addresses is not valid, then a NullReferenceException
is thrown. The predicate overlap decides whether two blocks of addresses overlap:
overlap(adr1, adr2, size) ⇔ (adr2 + size − 1 ≥ adr1) ∧ (adr1 + size − 1 ≥ adr2)

The LocAlloc instruction is used for the compilation of a C] stackalloc statement (see [7]
for details). It allocates space on the stack, in the so-called local memory pool (see [1, Partition
I,§12.3.2.4] for details). It takes the value of the topmost evalStack slot, which represents the
“size” of the block to be allocated. If there is sufficient space for a block of the given “size”, the
starting address of the arbitrary chosen block is loaded on the evalStack . The value 0 is stored
in all the addresses of the block, only if the zeroInit flag of the current method is set. If there
is not sufficient space to be allocated, then a StackOverflowException is thrown.

2.7 The CLRVC submodule

CLRVC extends CLRP by value classes. Value classes are value types (in contrast to reference
types) whose values (also known as “unboxed objects”) are represented as mappings assigning
values to the fields of the value class. A value class instance is usually allocated on the stack
in contrast with the object class instances which are allocated on the heap. However, one can
allocate a value type instance also on the heap but only within (e.g. as a field of) a boxed object.
The value classes support the compilation of the C] structs. CLRVC comes with a refinement of

36

the NewObj instruction and also with new operations such as “boxing” and “unboxing”.
Environment and State ValueClass is the universe of value class names. The universes
CLRStackType, Class, LoadIndType and StoreIndType are refined to include also value classes.

CLRStackType = . . . | ValueClass LoadIndType = . . . | ValueClass
Class = . . . | ValueClass StoreIndType = . . . | ValueClass

The fieldAdr is refined to be applicable also to pointers referring to value class instances:
fieldAdr : Map((ObjRef ∪ Adr) × FRef ,Adr). Thus, fieldAdr(adr ,vc::f) is the address of the
instance field vc::f of a value class instance stored at the address adr . Since the objects of a
value type can be viewed as mappings which associate values to each instance field, we need to
refine the definitions of memVal and WriteMem given in Section 2.2.

memVal(adr , t) = if t ∈ ObjType then mem(adr)
elseif t ∈ ValueClass then
{f 7→ memVal(fieldAdr(adr , f), type(f)) | f ∈ instFields(t)}

else [mem(adr + i) | i ∈ [0..sizeOf (t)− 1]]

WriteMem(adr , t , val) ≡ if t ∈ ObjType then mem(adr) := val
elseif t ∈ ValueClass then

forall f ∈ instFields(t) do
WriteMem(fieldAdr(adr , f), type(f), val(f))

else forall i ∈ [0..sizeOf (t)− 1] do mem(adr + i) := val(i)

The instances of value classes can be “boxed” in the heap and addressed then by heap
references. A boxed object on the heap embeds the actual type as well as a list of instance
field addresses. When “unboxing” a “boxed” object, one needs its address on the heap. This
is determined with addressOf : Map(ObjRef ,Adr) applied to the corresponding boxed object
reference.

The instructions LoadToken and ArgList load handles on the evalStack . The handles are
nothing else than instances of specific value types. However, they can be viewed as constants
with respect to a given token (in case of LoadToken) or a given method (in case of ArgList).
Because of this aspect, we do not model here these instructions.
Rules Fig. 18 describes instructions for value types (including the value classes) and how is
applied the instruction NewObj to create a value class instance. Such an instance is usually
allocated as an argument or local variable and then initialized with InitObj . Unlike instances of
object classes, they are allocated on the stack (by means of the stackalloc macro). The stackalloc
chooses a block of unallocated memory addresses whose length is given by the value type’s size.
The field addresses are computed using the field offsets. Since the fields can be of value class
types, one needs to compute also the addresses of the their corresponding instance fields. This
is performed by the recursively defined macro AllocFields.

let adr = stackalloc(vc) in P ≡
choose (adr) ∈ SpaceFor([n]) do

StackAdr := StackAdr ∪ [adr , adr + n)
AllocFields(adr , vc)

seq P
where n = sizeOf (vc)

AllocFields(adr , t) ≡
if t ∈ ValueClass then

forall f ∈ instFields(t) do
let a = adr + fieldOffSet(t , f) in

fieldAdr(adr , f) := a
AllocFields(a, type(f))

One aspect that differentiates the value classes from the object classes is concerning the
instance methods invocation, in particular constructors invocation. The argument 0 of instance
methods defined by a value class vc is of the pointer type vc&. Therefore the definition of
argTypes is refined as follows: for every instance method reference vc::m defined by the value
class vc

argTypes(vc::m) = [vc&] · paramTypes(vc::m)

CLR implementation mistake The ECMA standard states in [1, Partition I,§8.9.5], that if a
type is not marked with beforefieldinit, then its type initializer is executed if, in particular,

37

Fig. 18 The execution of CLRVC instructions
CLRV C ≡ execSchemeE(execCLRV C , switchCLR, excCLR)

execCLRV C(instr) ≡
execCLRP (instr)
match instr

NewObj (vc::.ctor) → if vc ∈ ValueClass
if ¬reqinit(vc) then

if SpaceFor([sizeOf (vc)]) 6= ∅ then
let (evalStack ′, vals) = getVals(evalStack , paramNo(vc::.ctor)) in

let adr = stackalloc(vc) in
evalStack := evalStack ′ · [(memVal(adr , vc), vc)]
forall f ∈ instFields(vc) do

WriteMem(fieldAdr(adr , f), type(f), defVal(type(f)))
switch := Invoke(False, vc::.ctor, [adr] · vals)

else Raise(OutOfMemoryException)
else switch := InitClass(vc)

InitObj (vt) → let (evalStack ′, [adr]) = getVals(evalStack , 1) in
WriteMem(adr , vt , defVal(vt))
evalStack := evalStack ′

pc := pc + 1
CopyObj (vt) → let (evalStack ′, [dest adr , src adr]) = getVals(evalStack , 2) in

if validAdr(dest adr) ∧ validAdr(src adr) then
WriteMem(src adr , vt ,memVal(dest adr , vt))
evalStack := evalStack ′

pc := pc + 1
else Raise(NullReferenceException)

Box (vt) → if SpaceFor([sizeOf (vt)]) 6= ∅ then
let (evalStack ′, [val]) = getVals(evalStack , 1) in

let r = new(ObjRef) and adr = heapalloc(vt) in
actualTypeOf (r) := vt
addressOf (r) := adr
WriteMem(adr , vt , val)
evalStack := evalStack ′ · [(r ,O)]
pc := pc + 1

else Raise(OutOfMemoryException)
Unbox (vt) → let (evalStack ′, [r]) = getVals(evalStack , 1) in

if actualTypeOf (r) = vt then
evalStack := evalStack ′ · [(addressOf (r), &)]
pc := pc + 1

else Raise(InvalidCastException)
SizeOf (vt) → evalStack := evalStack · [(sizeOf (vt), int32)]

pc := pc + 1

an access to an instance field of that type occurs. However, this is not performed in the following
case. Suppose that v is a local variable of a method m and its type is a value type P that
is not marked with beforefieldinit. If our method has the “zero init” flag set, then v is
automatically zero initialized upon m’s entry. If we access an instance field of v either by
LoadField or StoreField , then P ’s initializer is surprisingly not executed (contradicting the
above ECMA statement). The reason might be that, upon m’s entry, v is zero initialized and
consequently also all its instance fields.

The instruction InitObj initializes an instance of a value type. It takes the value of the
topmost evalStack slot, which is supposed to be a pointer to a value type instance. Then, it
initializes all the instance fields of the instance to the default value of the proper type by means
of the recursively defined macro WriteMem. The CopyObj instruction copies an instance of
a value type. It takes two pointers from the evalStack and copies the value type object stored

38

at the address given by the pointer to the address given by the second pointer. However, if one
pointer refers to an invalid address, a NullReferenceException is thrown.

The Box instruction turns a value type instance into a heap-allocated object “by copying”,
while Unbox performs the inverse coercion. Box checks first if there sufficient memory to make
the conversion. Then, it takes a value type instance from the evalStack , it creates an object
reference and allocates on the heap through the heapalloc, a block of memory of length given by
the value type’s size.

let r = new(ObjRef) in P ≡
import r do

ObjRef (r) := True
seq P

let adr = heapalloc(vt) in P ≡
choose (adr) ∈ SpaceFor([n]) in

HeapAdr := HeapAdr ∪ [adr , adr + n)
AllocFields(adr , vt)

seq P
where n = sizeOf (vt)

Note that Box copies the data from the value type instance into the newly allocated object. The
Unbox instruction takes an object reference to a boxed object from the evalStack and extracts the
value type instance from it. However, the value pushed on the evalStack is a pointer representing
the address (given by addressOf) of the value type instance that is present inside of the boxed
object.

The SizeOf instruction loads on the evalStack the size of a given value type.

2.8 The CLRT R submachine

CLRT R extends CLRVC with typed references. There is a special kind of method parameters
called “typed reference parameters”. The typed references support languages like Visual Basic
that require by-reference passing of unboxed data to methods that are not statically restricted
as to the type of data they accept. Therefore, these languages require a way of passing both the
address of the argument together with its the static type.
Environment and State The typed references can be seen as opaque descriptors described by
the universe TypedRef .

The function typedRefAdr : Map(TypedRef ,Adr) returns the address embedded in a typed
reference. The type transmitted with a typed reference is recorded by the function typedRefType :
Map(TypedRef ,Type). Since the instruction RefAnyType needs handles associated to types, we
assume that the function handleOf : Map(Type,Val) returns the RuntimeTypeHandle object
associated to a given type.

The universe Val should contain also the universe typedref which is the mapping of the
library System.TypedReference. The later is derived from ValueType, which is derived in turn
from Object. However, the runtime disallows any conversion of the type to Object or any
ValueType. Otherwise, this would have circumvented the restriction that managed pointers
cannot be members within value classes and classes — an ability that would greatly hurt the
performance of garbage collection.
Rules Fig. 19 defines the instructions that support the typed reference handling. A typed
reference is created using the MkRefAny instruction. The new typed reference embeds the
pointer on top of the evalStack and also the type given in the instruction. We use the following
macro to yield a fresh typed reference:

let tr = new(TypedRef) in P ≡
import tr do TypedRef (tr) := True
seq P

The RefAnyType instruction expects on top of the evalStack a typed reference.
Mistake ECMA. RefAnyType instruction pushes on the evalStack not the metadata token of
the type of a typedref as the ECMA standard states in [1, Partition III,§4.21], but an instance

39

Fig. 19 The execution of CLRT R instructions
CLRTR ≡ execSchemeE(execCLRTR, switchCLR, excCLR)

execCLRTR(instr) ≡
execCLRV C(instr)
match instr

MkRefAny(t) → let tr = new(TypedRef) in
let (evalStack ′, [adr]) = getVals(evalStack , 1) in

typedRefAdr(tr) := adr
typedRefType(tr) := t

evalStack := evalStack ′ · [(tr , TypedReference)]
pc := pc + 1

RefAnyType → let (evalStack ′, [tr]) = getVals(evalStack , 1) in
let t = typedRefType(tr) in

evalStack := evalStack ′ · [(handleOf (t), RuntimeTypeHandle)]
pc := pc + 1

RefAnyVal(t) → let (evalStack ′, [tr]) = getVals(evalStack , 1) in
if t 6= typedRefType(tr) then Raise(InvalidCastException)
else

evalStack := evalStack ′ · [(typedRefAdr(tr), &)]
pc := pc + 1

of the RuntimeTypeHandle value type corresponding to the type described by the token. A
token on the evaluation stack would be useless: no instruction pops a token off the evalStack .

The RefAnyVal instruction retrieves the address embedded in the typed reference on top of
the evalStack . However, an InvalidCastException is thrown if the type given in the RefAnyVal
instruction is not identical to the type stored in the typed reference.

2.9 The CLRMP submodule

CLRMP extends CLRT R by method pointers. The CLR instructions handling method pointers
support the compilation of the C++ method pointers and C] delegates.
Environment and State method pointers are a special type of pointers but they are treated
fundamentally different than the rest of the pointers. A method pointer is a pointer to a function
entry point. It reliably identifies the function assigned to the pointer. Thus, if one knows the
method entry point, one can determine the function signature, the calling convention, local
signature.

Therefore, one can see a method pointer as a function identifier. This identifier can be
regarded as pointing to a real address or directly to the corresponding fully qualified function
name. Since the use of an address representing a method pointer is anyway limited, we represent
the method pointers as elements of the universe FunctionPtr that point to the corresponding
function references. For a method pointer, the function methodOf : Map(FunctionPtr ,MRef)
returns the corresponding function reference.

The delegates are the object-oriented type-safe equivalent of function pointers. Delegates
are created by defining a subclass of the class MulticastDelegate which in turn is derived
from Delegate. A delegate instance is then simply an instance of this object class and is
created with the NewObj instruction introduced in CLRO. However, there are some constraints
on the definition of such a “delegate class”: it should have a method Invoke with appropriate
parameters, and each instance of a delegate forwards calls to its Invoke method to a compatible
static or instance method (represented as a method pointer) on a particular object. The object
and method to which it delegates are known as the target object and the target method and are

40

Fig. 20 The execution of CLRMP instructions
CLRMP ≡ execSchemeE(execCLRMP , switchCLR, excCLR)

execCLRMP (instr) ≡
execCLRTR(instr)
match instr

LoadFtn(c::m) → let fp = new(FunctionPtr , c::m) in
evalStack := evalStack · [(fp, native int)]
pc := pc + 1

LoadVirtFtn(c::m) → let (evalStack ′, [r]) = getVals(evalStack , 1) in
if r 6= null then

let fp = new(FunctionPtr , lookup(actualTypeOf (r), c::m)) in
evalStack := evalStack ′ · [(fp, native int)]
pc := pc + 1

else Raise(NullReferenceException)
NonVerifiableMP

chosen when the delegate object is created.
Mistake ECMA. In [1, Partition II,§13.6], it is stated that the Invoke method a delegate type
is supposed to define shall be virtual and have the same signature (return type, parameter types,
calling convention, and modifiers) as the target method. On the other hand, since the Invoke
is virtual, its calling convention necessarily contains the instance attribute (see [1, Partition
II,§14.3]). Therefore, if the calling conventions of the Invoke and target method match, then
would be hopeless to create delegate instances that refer to a static method. This is obviously
not true. Therefore, one should not be stated that the calling conventions have to match.
Rules Fig. 20 shows the rules for the CLRMP submachine. The LoadFtn instruction pushes
on the evalStack a pointer to the given method as an unmanaged pointer (type native int).
The method embedded in the LoadFtn can be a static or an instance method. Note that the
instruction LoadFtn used with a static method, does not trigger the initialization of the class
that defines the method. A method pointer is created through the following macro:

let fp = new(FunctionPtr , c::m) in P ≡
import fp do

FunctionPtr(fp) := True
methodOf (fp) := c::m

seq P

A method pointer for a virtual method can be obtained with the instruction LoadVirtFtn.
This instruction pops from the evalStack an object reference. It then loads on the evalStack a
pointer to the virtual method determined by the actual type of the object reference and the
given method.
Gap ECMA The ECMA standard specifies in [1, Partition III,§4.17] that the instruction
LoadVirtFtn cannot throw an exception. When the function pointer is determined, LoadVirtFtn
has to know the actual type of the object reference on the evalStack . If this is null, one
cannot determine the virtual method whose pointer is needed. This aspect justifies why a
NullReferenceException is thrown. This behavior is however not specified in the ECMA
standard.

The method pointers on the evalStack can be used with the non-verifiable instruction CallI
described in Fig. 21 or to construct delegates with NewObj . A CallI instruction calls a method
pointer with a corresponding number of arguments. The method pointer as well as the arguments
whose number is determined by the signature present in the CallI instruction, shall be present
on the evalStack . Note that, in case of an instance method, the list of arguments includes also

41

Fig. 21 The execution of non-verifiable CLRMP instructions
NonVerifiableMP ≡

CallI (tail , sig) → let (evalStack ′, args · [fp]) = getVals(evalStack , 1 + argNo(sig)) in
let c::m = methodOf (fp) in

if ¬reqinit(c) then
switch := Invoke(tail , c::m, args)

else switch := InitClass(c)

the this argument. The CallI instruction can have a tail prefix. If the method pointer corre-
sponds to a method declared by a class that needs to be initialized, then the class is initialized.
Surprisingly, no NullReferenceException is thrown if CallI is invoked with a null object and
a pointer to an instance method. Our experiments showed that the NullReferenceException
is eventually thrown, when the object reference is accessed. This behavior is also not specified
in the ECMA documentation. As a side remark, one can observe that, when invoking methods
in the verifiable code, it is ensured that the this pointer is non-null while in the valid code,
the this pointer can also be null (see the CallI instruction).
Remark In the ASM model for C] defined in [7], the destination method is determined at
time the delegate object is invoked. This does not conform with the semantics of the CIL code
corresponding to a C] delegate object invocation. Correct is that the destination method is
determined when the delegate object is created (with the NewObj instruction). However, the
two semantics are equivalent for the purposes of the model in [7].

3 The CLRRM submodule

The submodule CLRRM extends CLRMP with specifications for runtime managed functions.
Such methods are “managed by the runtime”, i.e. their implementation is provided by the
runtime and not by the user code (the method body has no bytecode instructions). Examples are
the Invoke method and the constructor .ctor that every delegate class is supposed to declare.
In our model, the runtime managed methods are specified using ASM rules. As examples,
we describe in Fig. 22 the two mentioned examples. There are no instructions introduced by
CLRRM.
Rules To extend the submachine CLRMP with runtime managed methods, we refine the
execSchemeE defined in CLRE as showed in Fig. 22. The instance constructor .ctor of a
delegate class shall take exactly two parameters. The first parameter is supposed to be of type
Object and the second parameters of type IntPtr20. The first argument shall be the instance of
the class that defined the target method while the second argument shall be a method pointer
to the called method. However, the constructor expects as the “argument 0” also a delegate
instance whose fields target and methodPtr are set to the target object and target method
pointer, respectively. If the target object is null, then the exception NullReferenceException
is thrown.

The method Invoke defined by a delegate class shall have the same return type and parameter
types as the target method. The target object can be null only in case the target method is
static. The reason is that, before the creation of the delegate instance, the .ctor constructor
checks the target object against null. Therefore, the list of arguments which is passed to the
target method contains the target object only if there exists one, i.e. the field target is not
null. If the class which declares the target method requires initialization, then it is initialized.

20The library type System.IntPtr corresponds to the CLR native int type.

42

Fig. 22 The implementation via ASM rules of runtime managed functions
CLRRM ≡ execSchemeRM (execCLRRM , switchCLR, excCLR)

execSchemeRM (execRunMan, switchCLR, excCLR) ≡
if switch = ExcMech then excCLR
elseif switch 6= Noswitch then switchCLR
else InitializeClass or if isRunMan(meth) then execRunMan

else execCLRMP (code(pc))

execSchemeE(execCLR, switchCLR, excCLR) ≡
if switch = ExcMech then excCLR
else execSchemeC(execCLR, switchCLR)

execCLRRM ≡
if methNm(meth) = .ctor then

let del = memVal(argAdr(0), classNm(meth)) in
let r = memVal(argAdr(1), object) in

let fp = memVal(argAdr(2), native int) in
if ¬static(methodOf (fp)) ∧ r = null then

Raise(NullReferenceException)
else WriteMem(fieldAdr(del , Delegate:: target), object, r)

WriteMem(fieldAdr(del , Delegate:: methodPtr), native int, fp)
elseif methNm(meth) = Invoke then

let del = memVal(argAdr(0), classNm(meth)) in
let r = memVal(fieldAdr(del , Delegate:: target), object) in

let fp = memVal(fieldAdr(del , Delegate:: methodPtr), native int) in
let slots = [memVal(argAdr(i , argTypes(i))) | i = 1, argNo(meth)] in

let args = if r 6= null then [r] · slots else slots in
let c = classNm(methodOf (fp)) in

if ¬reqinit(c) then
switch := Invoke(False,methodOf (fp), args)

else switch := InitClass(c)

4 Conclusion and Future Work

We have provided a modular definition of the CLR virtual machine in terms of ASM model.
The abstract model takes the form of an abstract interpreter for a hierarchy of nine stepwise
refined CLR program layers. We assume that the inputs of the interpreter are CIL bytecode
programs successfully loaded and linked (i.e. prepared and verified to satisfy the required link-
time constraints). As a next step of our project, we propose ourselves to relax the assumption
that the CIL code is verified by accompanying the execution machine with a run-time checking
machine. This defensive machine is going to serve for proving the soundness and completeness
of the CLR bytecode verifier.

References

[1] Common Language Infrastructure (CLI), Standard ECMA–335, Second Edition. Web pages
at http://www.ecma-international.org/publications/.

[2] Nicu G. Fruja and Egon Börger. Analysis of the .NET CLR Exception Handling Mechanism.
3rd .NET Technologies Conference, 2005.

43

[3] Nicu G. Fruja. Experiments with CLR. Example programs to determine the meaning of
CLR features not specified by the ECMA standard. Available at http://www.inf.ethz.
ch/personal/fruja/publications/clrexctests.pdf

[4] Andrew D. Gordon and Don Syme. Typing a Multi-Language Intermediate Code. Microsoft
Technical Report MSR-TR-2000-106, 2000.

[5] K. J. Gough. Stacking them up: a Comparison of Virtual Machines. ACM International
Conference Proceeding Series. pag. 55–61. IEEE Computer Society, Washington, DC, USA,
2001.

[6] R. F. Stärk, J. Schmid, E. Börger. Java and the Java Virtual Machine–Definition, Verifica-
tion, Validation. Springer–Verlag, 2001.

[7] E. Börger, N. G. Fruja, V. Gervasi, R. F. Stärk. A High–Level Modular Definition of the
Semantics of C]. To appear in Journal Theoretical Computer Science, 2005.

[8] E. Börger and R. F. Stärk. Abstract State Machines–A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

[9] J. Gough. Compiling for the .NET. Common Language Runtime (CLR). Prentice Hall,
2002.

[10] Nicu G. Fruja. Specification and Implementation Problems for C]. Proceedings of the
Workshop on Abstract State Machines (ASM’04), Germany, 2004.

[11] Nicu G. Fruja. The Correctness of the Definite Assignment Analysis in C]. Journal of
Object Technology, vol. 3, no. 9, 2004.

[12] Nicu G. Fruja. Type Safety in C] and .NET CLR. PhD Thesis in preparation.

[13] Horatiu V. Jula and Nicu G. Fruja. An Executable Specification of C]. Submitted to
ASM’05, 2005.

[14] C. Marrocco. An Executable Specification of the .NET CLR. Diploma Thesis guided by
Nicu G. Fruja, ETH Zürich, in preparation.

[15] AsmL, Foundations of Software Engineering Group, Microsoft Research, Web pages at
http://research.microsoft.com/foundations/AsmL/.

44

5 Appendix

5.1 The Basic Instructions

IL Bytecode instruction Abstract instruction
add Execute(add)
add.ovf Execute(add.ovf)
add.ovf.un Execute(add.ovf.un)
and Execute(and)
arglist ArgList
beq t Cond(eq,t)
beq.s t Cond(eq,t)
bge t Cond(ge,t)
bge.s t Cond(ge,t)
bge.un t Cond(ge.un,t)
bge.un.s t Cond(ge.un,t)
bgt t Cond(gt,t)
bgt.s t Cond(gt,t)
bgt.un t Cond(gt.un,t)
bgt.un.s t Cond(gt.un,t)
ble t Cond(le,t)
ble.s t Cond(le,t)
ble.un t Cond(le.un,t)
ble.un.s t Cond(le.un,t)
blt t Cond(lt,t)
blt.s t Cond(lt,t)
blt.un t Cond(lt.un,t)
blt.un.s t Cond(lt.un,t)
bne.un t Cond(ne.un,t)
bne.un.s t Cond(ne.un,t)
br t Branch(t)

45

IL Bytecode instruction Abstract instruction
br.s t Branch(t)
break not described
brfalse t Cond(ifzero,t)
brfalse.s t Cond(ifzero,t)
brnull t Cond(ifnull,t)
brnull.s t Cond(ifnull,t)
brzero t Cond(ifzero,t)
brzero.s t Cond(ifzero,t)
brtrue t Cond(ifnonzero,t)
brtrue.s t Cond(ifnonzero,t)
brinst t Cond(ifnonnull,t)
brinst.s t Cond(ifnonnull,t)
call mref /rt Call(false,rt ,mref)
tail.call mref /rt Call(true,rt ,mref)
calli sig CallI (false,sig)
tail.calli sig CallI (true,sig)
ceq Execute(ceq)
cgt Execute(cgt)
ckfinite Execute(ckfinite)
cgt.un Execute(cgt.un)
clt Execute(clt)
clt.un Execute(clt.un)
conv.i1 Execute(conv.i1)
conv.i2 Execute(conv.i2)
conv.i4 Execute(conv.i4)
conv.i8 Execute(conv.i8)
conv.r4 Execute(conv.r4)
conv.r8 Execute(conv.r8)
conv.u1 Execute(conv.u1)
conv.u2 Execute(conv.u2)

46

IL Bytecode instruction Abstract instruction
conv.u4 Execute(conv.u4)
conv.u8 Execute(conv.u8)
conv.i Execute(conv.i)
conv.u Execute(conv.u)
conv.r.un Execute(conv.r.un)
conv.ovf.i1 Execute(conv.ovf.i1)
conv.ovf.i2 Execute(conv.ovf.i2)
conv.ovf.i4 Execute(conv.ovf.i4)
conv.ovf.i8 Execute(conv.ovf.i8)
conv.ovf.u1 Execute(conv.ovf.u1)
conv.ovf.u2 Execute(conv.ovf.u2)
conv.ovf.u4 Execute(conv.ovf.u4)
conv.ovf.u8 Execute(conv.ovf.u8)
conv.ovf.i Execute(conv.ovf.i)
conv.ovf.u Execute(conv.ovf.u)
conv.ovf.i1.un Execute(conv.ovf.i1.un)
conv.ovf.i2.un Execute(conv.ovf.i2.un)
conv.ovf.i4.un Execute(conv.ovf.i4.un)
conv.ovf.i8.un Execute(conv.ovf.i8.un)
conv.ovf.u1.un Execute(conv.ovf.u1.un)
conv.ovf.u2.un Execute(conv.ovf.u2.un)
conv.ovf.u4.un Execute(conv.ovf.u4.un)
conv.ovf.u8.un Execute(conv.ovf.u8.un)
conv.ovf.i.un Execute(conv.ovf.i.un)
conv.ovf.u.un Execute(conv.ovf.u.un)
cpblk CopyBlock
div Execute(div)
div.un Execute(div.un)
dup Dup
endfilter EndFilter

47

IL Bytecode instruction Abstract instruction
endfault EndFinallt
endfinally EndFinally
initblk InitBlock
jmp meth Jmp(meth)
ldarg num LoadArg(num)
ldarg.s num LoadArg(num)
ldarg.0 LoadArg(0)
ldarg.1 LoadArg(1)
ldarg.2 LoadArg(2)
ldarg.3 LoadArg(3)
ldarga argNum LoadArgA(argNum)
ldarga.s argNum LoadArgA(argNum)
ldc.i4 num Const(int32,num)
ldc.i8 num Const(int64,num)
ldc.r4 num Const(float32,num)
ldc.r8 num Const(float64,num)
ldc.i4.0 Const(int32,0)
ldc.i4.1 Const(int32,1)
ldc.i4.2 Const(int32,2)
ldc.i4.3 Const(int32,3)
ldc.i4.4 Const(int32,4)
ldc.i4.5 Const(int32,5)
ldc.i4.6 Const(int32,6)
ldc.i4.7 Const(int32,7)
ldc.i4.8 Const(int32,8)
ldc.i4.m1 Const(int32,-1)
ldc.i4.M1 Const(int32,-1)
ldc.i4.s num Const(int32,num)
ldftn mref LoadFtn(mref)
ldind.i1 LoadInd(int8)

48

IL Bytecode instruction Abstract instruction
ldind.i2 LoadInd(int16)
ldind.i4 LoadInd(int32)
ldind.i8 LoadInd(int64)
ldind.u1 LoadInd(uint8)
ldind.u2 LoadInd(uint16)
ldind.u4 LoadInd(uint32)
ldind.r4 LoadInd(float32)
ldind.u8 LoadInd(uint64)
ldind.r8 LoadInd(float64)
ldind.i LoadInd(native int)
ldind.ref LoadInd(object ref)
ldloc indx LoadLoc(indx)
ldloc.s indx LoadLoc(indx)
ldloc.0 LoadLoc(0)
ldloc.1 LoadLoc(1)
ldloc.2 LoadLoc(2)
ldloc.3 LoadLoc(3)
ldloca indx LoadLocA(indx)
ldloca.s indx LoadLocA(indx)
ldnull Const(Null ,null)
leave t Leave(t)
leave.s t Leave(t)
localloc LocAlloc
mul Execute(mul)
mul.ovf Execute(mul.ovf)
mul.ovf.un Execute(mul.ovf.un)
neg Execute(neg)
nop not described
not Execute(not)
or Execute(or)

49

IL Bytecode instruction Abstract instruction
pop Pop
rem Execute(rem)
rem.un Execute(rem.un)
ret Return
shl Execute(shl)
shr Execute(shr)
shr.un Execute(shr.un)
starg num StoreArg(num)
starg.s num StoreArg(num)
stind.i1 StoreInd(int8)
stind.i2 StoreInd(int16)
stind.i4 StoreInd(int32)
stind.i8 StoreInd(int64)
stind.r4 StoreInd(float32)
stind.r8 StoreInd(float64)
stind.i StoreInd(native int)
stind.ref StoreInd(object ref)
stloc indx StoreLoc(indx)
stloc.s indx StoreLoc(indx)
stloc.0 StoreLoc(0)
stloc.1 StoreLoc(1)
stloc.2 StoreLoc(2)
stloc.3 StoreLoc(3)
sub Execute(sub)
sub.ovf Execute(sub.ovf)
sub.ovf.un Execute(sub.ovf.un)
switch not supported
xor Execute(xor)

50

5.2 Object Model Instructions

IL Bytecode instruction Abstract instruction
box valTypeTok Box (valTypeTok)
callvirt mref /rt CallVirt(false,rt ,mref)
tail.callvirt mref /rt CallVirt(true,rt ,mref)
castclass class CastClass(class)
cpobj classTok CopyObj (classTok)
initobj classTok InitObj (classTok)
isinst class IsInstance(class)
ldelem.i1 LoadElem(int8)
ldelem.i2 LoadElem(int16)
ldelem.i4 LoadElem(int32)
ldelem.i8 LoadElem(int64)
ldelem.u1 LoadElem(uint8)
ldelem.u2 LoadElem(uint16)
ldelem.u4 LoadElem(uint32)
ldelem.u8 LoadElem(uint64)
ldelem.r4 LoadElem(float32)
ldelem.r8 LoadElem(float64)
ldelem.i LoadElem(native int)
ldelem.ref LoadElem(object ref)
ldelema class LoadElemA(class)
ldfld fref /t LoadField(t ,fref)
ldflda fref /t LoadFieldA(t ,fref)
ldlen LoadLength
ldobj classTok LoadInd(classTok)
ldsfld fref /t LoadStatic(t ,fref)
ldsflda fref LoadStaticA(t ,fref)
ldstr string Const(string,string)
ldtoken token LoadToken(token)

51

IL Bytecode instruction Abstract instruction
ldvirtftn meth LoadVirtFtn(meth)
mkrefany class MkRefAny(class)
newarr etype NewArray(etype)
newobj ctor NewObj (ctor)
refanytype RefAnyType
refanyval type RefAnyVal(type)
rethrow Rethrow
sizeof valueType SizeOf (valueType)
stelem.i1 StoreElem(int8)
stelem.i2 StoreElem(int16)
stelem.i4 StoreElem(int32)
stelem.i8 StoreElem(int64)
stelem.r4 StoreElem(float32)
stelem.r8 StoreElem(float64)
stelem.i StoreElem(native int)
stelem.ref StoreElem(object ref)
stfld fref /t StoreField(t ,fref)
stobj classTok StoreInd(classTok)
stsfld fref /t StoreField(t ,fref)
throw Throw
unbox valuetype Unbox (valuetype)

52

