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Abstract— Capacity is an important property for QoS sup-
port in Mobile Ad Hoc Networks (MANETs) and has recently
attracted considerable attention in research. However, most
approaches rely on simplified models (infinite network, isotropic
radio propagation, unidirectional links, perfect scheduling, etc.)
and provide only asymptotic bounds or integer linear program-
ming equations. In this paper we take a probabilistic approach
and model capacity as a random variable that depends on
node distribution, communication pattern, radio propagation and
channel assignment. Expected values for the random variable at a
given point within the parameter space are then computed using
Monte-Carlo simulation. The modularity of the approach allows
for capacity analysis under more realistic network models. We
demonstrate the potential of such a model by showing that for
acknowledgement-based networks throughput capacity increases
in the presence of shadowing, even above the critical node density.

I. I NTRODUCTION

Capacity is typically studied by choosing a network model
that facilitates analytical treatment. Most existing workas-
sumes a network to haven nodes distributed within a certain
area and defines a transmission between two nodes to be
successful if its signal-to-noise ratio is bigger than a given
threshold. In [8], capacity is then studied asymptoticallyfor
an increasing node density. It is shown that the throughput
capacityλ(n) for a network ofn nodes within an area of[0, 1]2

is in the order ofΘ(W/
√
nlogn). This result was extended for

models including variable transmission power [7] and bound
attenuation functions [6]. While asymptotic bounds certainly
indicate the generic behavior of ad hoc networks for large
n, they do not give any information on concrete throughput
capacity in small networks. Recently, there has been some
effort to tackle this problem [3], [5], [16] using integer linear
programming (ILP). However,ILP makes it very difficult to
model physical network properties such as realistic signal
propagation, link asymmetry or interference. As a consequence
most of these studies are based on a simplified network model.
For instance it is common to predict the received power as
a deterministic function of distance, thereby representing the
communication range as an ideal circle. In reality, the received
power at a certain distance is a random variable due to fading
effects. Effects of shadowed radio propagation on capacity
have also been analyzed [18] but without considering multihop

networks. In such networks any variation in the signal pattern
impacts the perceived interference at a given node. Non-
deterministic variation of signal power may further lead to
link asymmetry. This behavior was measured experimentally
in [1]. IEEE 802.11, the MAC protocol often mentioned in
combination with ad hoc networks, allows for data transmis-
sion only if there exists a bi-directional connection between
the two communicating nodes since data packets need to be
acknowledged by the receiving node. Effects of asymmetric
links on higher network layers were investigated in [17].

In this paper we explore capacity in multihop wireless
networks by relaxing some of these assumptions. We do so by
developing a probabilistic model of throughput capacity asa
random variable depending on node topology, communication
pattern, interference model, signal propagation and channel
assignment. Expected values of the random variable are then
computed using a Monte-Carlo estimator. The advantage of
our approach lies in its decoupling from specific network char-
acteristics, a feature that allows us to investigate throughput
capacity under specific network topologies and communication
patterns, including random ones. In particular, the model may
serve as a basis for testing and verifying channel assignment
and routing strategies with respect to throughput capacity. This
is of special interest since the interaction between routing
and channel assignment is rather complex and difficult to
treat analytically. Furthermore, given a specific topologyand
a channel assignment strategy, the model predicts throughput
capacity for the various communication flows. For instance
in a sensor network one might be interested in an estimate
of the throughput capacity when all the sensors transmit data
towards a common sink. Moreover, effects of different models
for signal propagation and interference can also be analyzed
using the proposed model.

The rest of the paper is structured as follows: Sections II
and III describe the model. In section IV we validate the
model with respect to small static networks. Coloring networks
with different radio thresholds is discussed in section V. The
following section aims at verifying the model under more
realistic network configurations – including random networks
– by comparing the prediction to results obtained through ns-2
simulations. Section VII shows the flexibility of the proposed



probabilistic approach by means of two use cases: randomized
radio propagation and variable interference range. The paper
concludes finally with section VIII.

II. N ETWORK MODEL

In a first step, we want to turn physical properties of wireless
multihop networks, like node locations or perceived signal
strengths, into a so calledschedule graphG(N , E), where
N is the set of nodes andE corresponds to the set of links
between these nodes (a link between two nodes indicating
the two nodes can communicate with each other). The idea
is to – later on – let the throughput capacity computation be
exclusively based on the graph. In this section, we first define
some common properties in order to then gradually develop the
graph representation by assigning four setsIi ⊇ Di ⊇ Ui ⊇ Vi
of nodes to each nodeni, with Ii ⊇ N . Nodes within the
particular sets correspond to the different forms of interaction
nodes can have, such as interfering, decoding, unidirectional
communication and bidirectional communication:

• Ii: Set of nodes that interfere with nodeni
• Di: Set of nodes that can be correctly decoded at node
ni if there is no interference

• Ui: Set of nodes that can be decoded at nodeni even if
there is interference

• Vi : Set of nodes that can be considered as neighbors of
ni

In principle, the network – as we are going to present it –
is parameterized by the following four properties: A node
distribution δA, a signal propagationϕ, a channel assign-
ment ψ and an interference modelκ. We consider a set
N = {n0, n1..., nN−1} of N nodes, distributed according
to some probability density functionδA : (x, y) −→ [0..1],
defined over an areaA. Further assume a channel assignment
ψ : N −→ Γ for a common channelΓ, such that every
nodeni has one subchannelnΓ

i ∈ Γ assigned. We therefore
say the common channelΓ is divided into T subchannels,
Γ = {Γ0,Γ1...,ΓT }, where typicallyT < N . The nodes are
not allowed to transmit data in any other than their subchannel.
Receiving is possible from all the subchannels. For the sake
of simplicity we use the word subchannel interchangeably
for the set of all nodes transmitting data within that specific
subchannel, orΓα = {ni|nΓ

i = Γα}.

A. InterferersIi
A node ni is assumed to transmit with powerpti. For a

certain signal propagationϑ : R −→ R, the received signal
strengthpr(d) at distanced is computed aspti ·ϑ(d). Therefore,
the signal powerprj,i perceived at nodeni due to a transmission
of nodenj is determined bypti ·ϑ(|xj−xi|), wherex∗ are the
coordinates of nodei. In the simplest caseϑ is a direct function
of the distance. The path loss radio propagation model, for
example, definesϑpl(d) = d−ρ for some path loss exponent
ρ. A more sophisticated model is the log normal shadowing
radio propagation [12]:

ϑsh(d) ∼
1

10ρ log
10

(d)−X/10
(1)

whereX is a gaussian random variable with zero mean and
standard deviationσ and ρ is the aforementioned path loss
exponent. In case ofσ equal 0, there is no random effect and
ϑsh ∼ ϑpl.

A nodenj 6= ni belongs to the set of interferersIi of node
ni in case the signal powerprj,i perceived at nodeni due
to a transmission of nodenj exceeds a certain interference
thresholdβI :

Ii = {nj | nj 6= ni and p
r
j,i > βI}. (2)

B. DecodablesDi
Similar toIi, the set of decodablesDi of nodeni is defined

as

Di = {nj | nj 6= ni and p
r
j,i > βD}, (3)

with βD > βI . We call βD the decoding threshold. Dis-
tinguishing betweenDi and Ii takes into account that radio
receivers are typically much more sensitive to interference than
to signal decoding.

C. SendersSi
Whethernj ∈ Ui, meaningni can decode the signal of node

in spite of interference is decided by an interference model
κ : R × R −→ {0, 1} with

κ(prj,i,Λ
α
i ) =

{

1 prj,i can be decoded under noiseΛαi
0 prj,i cannot be decoded

(4)
.

HereΛαi denotes the noise perceived atni while listening to
the subchannelnΓ

j = Γα assigned to nodenj . More formally

Λαi =

{
∑

k∈Γα

k 6=i
prk,i if nΓ

i 6= Γα

∞ otherwise
(5)

.
A nodenj ∈ Di is part ofUi if and only if κ(prj,i,Λ

a
i ) = 1,

i.e:

Ui = {nj |j 6= i ∧ e(pj,i,Λ
α
i ) = 1} (6)

The most common interference model is based on the so
called signal-to-noise ratio:

SNRj,i =
prj,i

W0 + Λαi
(7)

.
This leads to an interference model as follows

κsnr(p
r
j,i,Λ

a
i ) = 1 ⇐⇒ SNRj,i > βsnr (8)

,
for a thresholdβsnr. Of course it must be given that



prj,i
N0

≥ βsnr ⇐⇒ prj,i ≥ βI , (9)

whereN0 denotes the ground noise.

D. NeighborsNi

In our model we particularly want to account for acknowl-
edgement based medium access protocols. We therefore define
Vi, the set of all neighbors ofni as follows:

Vi = {nj |j 6= i ∧ nj ∈ Ui ∧ ni ∈ Dj } (10)

This set includes all nodesnj that are senders forni (i.e.,
can transmit and their transmission is properly received by
ni) and can receive the acknowledgement sent back byni.
Note that equation 11 models the acknowledgment itself as
an infinite small packet not occupying the medium. Based on
the definition of neighbors, we finally introduce the notion
of a schedule graph. A schedule graphis a directed graph
GT (N , E), whereT denotes the number of subchannels inΓ,
N corresponds to the set of nodes andE is the set of edges
defined as

E = {(nj , ni)| ni ∈ N ∧ nj ∈ Vi}. (11)

From the definition of aschedule graphGT (N , E) it
directly follows that a path between two nodesnu, nv states
that there is a sequence of nodes{nu, nu+1, ...nv} as well
as schedule of time slots{nΓ

u, n
Γ
u+1, ...} such that nodenu is

able to consecutively transmit data at a rateξ > 0.

III. T HROUGHPUTCAPACITY

Throughout this section an ad hoc network is represented
by its correspondingschedule graphGT (N , E). Throughput
capacity is defined over a setΥm of measured communication
pairs which is a subset of all existing communicationΥ pairs
in an ad hoc network:

Υm ⊆ Υ ⊆ {(ni, nj)|∀i,∀j, i 6= j∧ni ∈ N∧nj ∈ N}. (12)

More precisely, we say that aschedule graphGT (N , E)
with a communication patternΥ has a throughput capacity
with respect toΥm of λm if on average a communication pair
υ ∈ Υm can expect an end-to-end throughput ofλm bits per
second. In most cases we haveΥm = Υ.

Important to the computation of throughput capacity is the
routing η : (nj , ni) −→ {nu, nv, ..nw}. We define

Πj,i = η((nj , ni)), with(nj , ni) ∈ Υm (13)

to be the sequence of nodes included in the path fromnj
to ni, excludingni.

We now want to provide an estimatorλ∗m for λm, so that
λ∗m ≈ λm. The approach we follow is of a probabilistic nature.
Basically, we model throughput capacity as a random variable
ζ and compute its expected value, withE[ζ] = λ∗. In order
to show howζ is defined we need some helper variables. We

assumeSchedj,i to be a random variable indicating whether a
schedule between nodenj andni exists. This is equal to the
question of whether there is a path betweenj andi within the
schedule graphGT (N , E):

Schedj,i =

{

1 if there is a path betweennj andni
0 otherwise.

(14)
Based on the notion ofΠj,i we defineΠΥ as follows:

ΠΥ = {Πj,i|(j, i) ∈ Υ}. (15)

The random variableBj,i is then defined as

Bj,i = max
n∈Πj,i

{
∑

Pu,v∈ (Π\Πj,i)

F (n,Πu,v)}, (16)

whereF is the membership function,

F (n,Πu,v) =

{

1 if n ∈ Πu,v

0 otherwise.
(17)

Bj,i takes into account to what extent the path betweennj
andni is shared with other ongoing communication pairs.

Based on the definition ofSchedj,i andBj,i we now claim
the achievable throughputζj,i in a schedule graphGT (N , E)
to be modelled by the random variable

ζj,i =
W × Schedj,i
Bj,i × T

, (18)

whereW is the maximum transmission rate equal to all
nodes. With respect to a measurement setΥm and for a
uniformly chosen communication pair(j, i) ∈ Υm we can
further state that

ζm =
1

|Υm|
∑

(u,v)∈Υm

ζu,v, =
W

|Υm| × T

∑

(u,v)∈Υm

Schedj,i
Bj,i

,

(19)
and therefore

λm ≈ E[ζm] =
W

|Υm|
∑

(u,v)∈Υm

E[
Schedj,i
T ×Bj,i

] = W × E[Ω]

(20)
whereΩ = Schedj,i\T\Bj,i for any (j, i) ∈ Υm.

IV. A PPROXIMATING CAPACITY IN STATIC NETWORKS

As an example of how the model operates and as an intuitive
validation, in this section we computeλ∗ for two simple, static
scenarios. Static in the sense that the network topology as well
as the communication pattern is fixed. We will consecutively
deriveλ∗ by going through the basic steps of section II and
III. For reasons of simplicity assumeβI = βD. Therefore, the
set of interferersIi equals the set of decodablesDi for all
nodesi.

The simplest network topology we want to discuss consists
of three nodes being equally far apart from each other, as
shown in Figure 1. A dashed line between two nodesj and i



T nΓ

i U Υ Schedj,i Bj,i λ∗

1 - ∅ - 0 - 0
2 A: 0 UA = {B} (A,B) SchedA,B = 0 0 1/6

B: 1 UB = ∅ (B,C) SchedB,C = 1 1
C: 0 UC = {B} (C,A) SchedC,A = 0 0

(A,C) SchedA,C = 0 0 1/6
(B,A) SchedB,A = 1 2
(B,C) SchedB,C = 1 2

3 A: 0 UA = {B, C} (A,B) SchedA,B = 1 1 1/3
B: 1 UB = {A, C} (B,C) SchedB,C = 1 1
C: 2 UC = {A, B} (C,A) SchedC,A = 1 1

TABLE I

STATES FOR THE TRIANGLE SCENARIO

T nΓ

i U Υ Schedj,i Bj,i λ∗

1 - ∅ - 0 - 0
2 A: 0 UA = {B} (A,B) SchedA,B = 1 1 1/6

B: 1 UB = {A} (B,C) SchedB,C = 0 0
C: 1 UC = ∅ (C,A) SchedC,A = 0 0
A: 0 UA = {B} (A,B) SchedA,B = 1 1 1/3
B: 1 UB = ∅ (B,A) SchedB,A = 1 1
C: 0 UC = {A} (C,A) SchedC,A = 0 -

3 A: 0 UA = {B, C} (A,B) SchedA,B = 1 1 5/18
B: 1 UB = {A, C} (B,A) SchedB,C = 1 1
C: 2 UC = {A, B} (C,A) SchedB,A = 1 2

(A,B) SchedA,B = 1 1 1/3
(B,A) SchedB,A = 1 1
(C,B) SchedC,B = 1 1

TABLE II

STATES FOR THE CHAIN SCENARIO

A

B

C

Fig. 1. A simple triangle scenario

indicatesnj ∈ Ii, nj ∈ Di,ni ∈ Ij , ni ∈ Dj . Let us further
assume a very simple interference model:

κns2(p
r
j,i,Λ

a
i ) =

{

1 if prj,i > Λai
0 otherwise

(21)

We will use κns2 later on in section VI when comparing
the model’s estimate with results taken from ns-2 simulations.

In order to transform the topology information into a graph
GT we need to assign channels to the nodes. Searching for the
optimal channel assignment refers to the class of vertex color-
ing problems, which is in most cases NP-hard [9]. However,
for the topology in Figure 1 there are only three possible ways
to assign the channels to the nodes. We keep track of all states
and sets of the network model for each of the three channel

assignments in Table I. Assigning the same channel (T = 1)
to all nodes leads toUi = ∅ for all nodes and therefore to
E = ∅, Schedj,i = 0, ζj,i = 0, λ∗ = 0. If we assign two
channels (T = 2) to the three nodes, only two directed links
can be established (among the potential 6). In the case of
Υ = Υm = {(A,B), (B,C), (C,A)} as the communication
pattern (see Table I),λ∗ is 0 + 1/6 + 0 = 1/6, according to
equation 19 . If we haveΥm = {(A,B), (B,A), (B,C)}, λ∗

equals0+1/12+1/12 = 1/6. Using 3 channels (T = 3) leads
to a fully connected graph.λ∗ is then1/9+1/9+1/9 = 1/3.

A

B

C

Fig. 2. A simple chain scenario

The situation is slightly different in Figure 2 since nodeB
acts as a router and some of its bandwidth is consumed by
traffic sent fromA to C. As shown in Table II, there are two
ways to assign two colors to the three nodes. Depending on
the channel assignment and the communication pattern, a 2-
channel-solution might even perform better on average than
using 3 channels.



B CA D E F

0 1` 2 3 0 1
Perfect Slot
Assignment

Fig. 3. Channel assignment with variable interference

V. COLORING MULTI -LAYER-GRAPHS

As previously mentioned, channel assignment refers to the
problem of graph coloring and is known to be NP-hard in
most cases. Given a graphG(V,E), classical graph coloring
aims at coloringV with the minimum number of colors such
that for each edge(i, j) ∈ E, vertexesi and j have differ-
ent colors. The more specific problem of coloring multihop
wireless networks in order to achieve an entirely collision-
free schedule is also known as distance-2-coloring, [9], [11].
Such a coloring assigns different colors to any pair of nodes
between which there is a path of length at most 2. This
distance-2-coloring problem on a graphG is equivalent to
the standard minimum vertex coloring [11] problem onG2,
whereG2 has the same vertex set asG and there is an edge
between two vertices ofG2 if and only if there is a path of
length at most 2 between the vertices inG. Unfortunately,
solving the distance-2-coloring problem does not provide a
collision-free schedule in multihop wireless networks if the
transmission range and the interference range differ. In fact
today’s radio receivers are much more sensitive to interference
than to signal decoding. In our model these two thresholds are
given byβI andβD. Figure 3 illustrates the effect of different
thresholds on the channel assignment by means of a chain
topology. It is assumed thatβI > 2 × βD, an assumption
that can be found, e.g., in the network simulator ns-2 [15]
for example. As a consequence, nodeD’s packet transmission
in Figure 3 will interfere with packets sent fromA to B. A
perfect channel assignment for such a graph would require 4
channels. A pure distance-2-coloring would produce either5
or 3 channels instead, depending on whether the algorithm
operates on the interference graph or on the transmission
graph. Figure 4 illustrates this point. Edges of the transmission
graph are shown by dashed lines, referring to the setU in
our model. The interference graph extends the transmission
graph by additionally including edges drawn with solid lines
(I in our model). Given a simple interference model like the
one described in equation 25, applying distance-2-coloring to
the transmission graph results in broken links and therefore
potentially prohibits a schedule (Equation 14). On the other
hand, using distance-2-coloring on the interference graphdoes
not produce the minimum number of channels since it assigns
different channels to nodesA andE. Indeed, the transmission

B CA D E F

0 1` 2 3 4 0
Interference

Graph

0 1` 2 0 1 2Transmission
Graph

Fig. 4. Coloring the transmission and interference graph

of both nodesA andE are interfering at nodeC and one may
wish all the nodesA − E to transmit in different channels.
However, far more important is that transmissions betweenC
and its direct neighbors do not interfere withA andE. This
can easily be achieved by assigning a minimum of 4 channels
as shown in Figure 3.

Finding generic algorithms or good approximations for a
minimum channel assignment in the described manner is
not within the scope of this paper. Rather, we use two
simplified channel assignment algorithms for the rest of the
paper:GreedyMandRandomNode. TheGreedyMassignment
basically extends the classical greedy algorithm to take the
multi-layer aspect into account. It takes each vertex in turn
and tries to color the vertex with one of the colors used so far,
prohibiting neighboring nodes to transmit in the same channel
as interfering nodes. In other words, it tries to add the vertex
to one of the existing color classes. If this is not possible due
to some interferers already having the same channel assigned,
then a new color class is created and the vertex is assigned the
color of that class. See Algorithm 1 for a detailed description.
The RandomNode(Algorithm 2) channel assignment on the
other hand just assigns a set of of channels in a round robin
manner to the nodes. At each round a node is picked on
a random basis. In the following sections we will see how
channel assignments affect capacity.

VI. PREDICTING CAPACITY OF 802.11 AD HOC

NETWORKS

After having introduced the model by means of small static
examples, we now proceed to see whether we can use the
model to predict throughput capacity in 802.11 ad hoc net-
works, including random topologies. Remember that the model
predicts throughput capacity asW ·E[Ω] whereΩ denotes the
random variable compositionSchedj,i/T/Bj,i for any(j, i) ∈
Υm. One could computeE[Ω] given the common probability
densityfsched,T,B(s, t, b) for the random variablesSched, T
and B. However, finding the density functionfsched,T,B is
not trivial. In fact the problem can be viewed as an extension
to the traditional connectivity problem where one tries to
find the probability of whether a given node distribution and
transmission range results in a connected network. In this
paper we do not pursue an analytical treatment ofE[Ω] but



Algorithm 1 GreedyM
1: INPUT N := {n0...nN−1};
2: for all ni ∈ N do
3: Q := {Γi..ΓN−1};
4: if nΓ

i ∈ Γ then
5: Q := Q \ nΓ

i ;
6: end if
7: for all nj ∈ Ii do
8: if nΓ

j ∈ Γ then
9: Q := Q \ nΓ

j ;
10: end if
11: end for
12: if nΓ

i /∈ Γ then
13: nΓ

i := min {Γα ∈ Γ};
14: Q := Q \ nΓ

i ;
15: end if
16: for all nj ∈ Di do
17: if nΓ

j /∈ Γ then
18: nΓ

j := min {Γα ∈ Γ};

19: Q := Q \ nΓ

j ;
20: end if
21: end for
22: end for

Algorithm 2 RandomNodeX
1: INPUT N := {n0...nN−1};
2: MAXCHANNEL := X;
3: O := N ;
4: i := 0;
5: α := 0;
6: Γ := ∅;
7: while i ≤ |O| do
8: n := ANY {n ∈ O};
9: O := O \ n;

10: nΓ = Γα;
11: Γ := Γ ∪ Γα;
12: α := (α + 1) MOD MAXCHANNEL;
13: end while

rather use a Monte-Carlo estimator:

E[Ω] ≈ 1

K

K
∑

i=1

Ωi. (22)

Or in other words, we approximately compute the expected
value ofΩ for a given set of parameters by averaging overK
realizations of the underlying random network.

In order to verify the quality of our predictions we compare
the computed estimate to ns-2 simulation results. Throughout
section VI we use the interference model as described in
equation 25. The model serves as a very basic approximation
of the ns-2 interference model. To avoid mixing up capac-
ity measurements with routing issues, packets within ns-2
simulations are forwarded using pre-computed shortest path
routes. In all setups, the thresholdsβI and βD are set such
that βi = 5/11 × βD. This corresponds to the default ns-2
setting. FurthermoreβD is configured such that it produces
a transmission range of 250 meters. We have set the MAC
data rate in ns-2 to 1Mbit since operating 802.11 at higher
rates results in drastically reduced efficiency and makes the
measurements difficult to compare as the relative time spenton
the per-packet overhead dominates. This is due to the 802.11

preamble which must be of a fixed length because it is used
by the hardware for bit synchronization.

A. Chain

In a first comparison we look at the the simplest possible
case of a chain ofn nodes. Each node is 200 meters away from
its neighbor. The first node acts as a source of data traffic, the
last node is the traffic sink. Data is sent as fast as the MAC
allows. Regarding the model, we useGreedyM as the channel
assignment algorithm. It can easily be verified thatGreedyM
finds a minimal channel assignment for a chain of any size.
Since there are no random components involved,λ∗ is a direct
function of the channels needed, and computes to1/4 as
the chain grows. From Figure 5a we see that the prediction
overestimates the real measured throughput, especially when
the chain becomes large. This is due to the overhead of
headers, RTS, CTS and ACK packets but also because in
reality nodes fail to achieve an optimal schedule. The results
obtained with our model match those presented in [10], where
the authors discuss throughput capacity measurements taken
from ns-2 simulations with respect to theoretical upper bounds.

As a first step towards more realistic scenarios, we now in-
vestigate random communication patterns in chain topologies.
For this purpose, we assign a random destinationd(ni) ∈
N\ni to every nodeni ∈ N . Figure 5b shows a quite
good match betweenλ∗ based on perfect channel assignment
(using GreedyM ) and the measurements obtained with ns-
2. This is not too surprising since we know from Figure 5a
that λ∗ matches quite well the simulation results if the path
length is short. And the average path length under random
communication is expected to be far below the maximum value
of n − 1, for a chain of lengthn. Furthermore overlapping
communication paths reduce capacity due to the forwarding
load induced to the nodes, especially if the chain becomes
large. By taking the effect of forwarding load into account,
our model is able to quite accurately estimate the available
capacity under random communication.

B. Grid

While the GreedyM algorithm leads to a conflict-free
channel assignment in a chain topology, it does not in a
grid topology. This is illustrated in Figure 6a. The grey zone
represents the interference area of the node located at the upper
left hand corner. Similarly, the non-shadowed region denotes
the interference area of the second node. The lines startingat
the first two nodes refer to the stepwise channel assignment
performed byGreedyM . The algorithm finally produces a
conflict when the two neighbors indicated by a surrounding
circle are assigned the same channel. In order to achieve a
conflict-free schedule in a grid, one would have to assign
at least 16 channels to the nodes1, as shown in Figure 6b.
However, rather than asking for a conflict-free schedule, the
more important question would be how to achieve a maximum
throughput capacityλ∗. Interestingly, a conflict-free schedule

1Derives directly from the optimal 4-channel assignment in thechain
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Fig. 6. Channel assignment in the grid

does not necessarily lead to a maximum throughput capacity.
This can easily be verified in Figure 6c, a scenario in which
data traffic is only routed horizontally. Since there is, e.g., no
communication going on between nodes in the first chain and
their direct neighbors in the second chain, it is no problem to
assign the same channels to both the first and the last chain in
the grid. Such an assignment strategy only uses12 channels,
rather than the maximum of16 for a conflict-free schedule
and therefore achieves a higher throughput capacity given the
communication pattern of Figure 6c. Or in a more generic
way, knowledge of the communication and routing pattern that
takes place in the network is crucial to achieve a minimum
channel assignment. Our model may serve as a basis for further
research on the complex interaction between routing and
channel assignment with regard to throughput maximization.
The trade-off between routing and channel assignment has also
been taken into account by [2], [13] where the authors propose
a hybrid routing/scheduling algorithm to gradually improve
throughput capacity.

After having described the routing-scheduling trade-off and
the non-optimality ofGreedyM in the grid topology, we
now compare the throughput estimateλ∗ with ns-2 simulation
results in such a topology. The topology setup is such that each

node is 200 meters away from its closest neighbor. Figure 7a
shows the plot for a cross communication pattern (similar to
the one in Figure 6b). From the Figure we see that the model
based computation predicts a higher throughput capacity than
the one measured using ns-2. The reason is that the interfer-
ence model in equation 25 is very tolerant to colliding channel
assignments since it allows an accumulated interference ofup
to the signal strength of the sending node. In fact,GreedyM
as well asRandomNode make the setU equal toD. Despite
the gap between measurements and prediction it is important
to note the similar behavior of the estimate and the simulation
results. And as we can see from Figure 7b, this also holds in
the case of random communication. Here theGreedyM and
the Randomnode12 estimate are closer together, a potential
result of the randomness in communication. However, the
estimates as well as the802.11 measurements are still some
gap away from the throughput capacity based on a conflict-free
schedule (using 16 channels as mentioned earlier), as indicated
by the dashed line in Figure 7b.

C. Random Topology

Contrary to chain and grid topologies, random topologies
do not allow us to easily compute estimates based on conflict-
free schedules. We consider random topologies ofn nodes
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Fig. 7. Grid Topology

distributed uniformly within an area of1000 × 1000 meters.
As in the previous topologies, all nodes haveβD configured
such that the their transmission range equals 200m. Each node
ni acts as a traffic generator and has a random destination
assigned, chosen uniformly out ofN\ni. Figure 8 shows
the comparison between the estimate and the ns-2 simulation
results. Obviously, both the estimate and the ns-2 measure-
ments have a very similar behavior with regard on how the
curves decay. However, despite this similarity, the estimate
predicts a lower throughput capacity than the one measured by
the 802.11 simulations. The reason might be thatGreedyM
channel assignment with respect to random node topology and
random communication is even less optimal than the schedule
produced by the random access scheme802.11. Compared to
the grid, interfering nodes in a random topology typically are
not located at the edge of the interference range, but spread
around a certain mean. Or in other words, while in the grid the
interference of a nodenB – located at half way between two
nodesnA andnC – might be tolerated at both ends, the same
node in a random topology is likely to be either closer to the
one or the other side, disturbing at least one of the ongoing
communications taking place in channelnΓ

B . However, finding
a good slot assignment algorithm which works for both the
grid and the random topology, is not within the scope of this
work, rather we provide a model that serves as a base for
testing and verifying channel assignment strategies.

D. Discussion

The previous sections have illustrated the qualitative behav-
ior of the model. In all the cases the throughput capacityλ∗

showed a similar behavior – compared to the ns-2 simulation
results – in terms of how the curves decay when the network
becomes large. However, while for the chain and the grid the
prediction was higher than the measured results, the opposite
was observed in the case of random topologies. In fact, finding
an optimal channel assignmentψ in random topologies is
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a difficult problem. On the basis of the grid topology it
was shown that a minimum channel assignment does not
necessarily lead to a maximum throughput capacity. Rather,
an optimal channel assignment goes hand in hand with the
routing. From equation 19 we see that both the routing as
well as the channel assignment directly affect the throughput
capacity. Different routesΠj,i for communication pairs(j, i) ∈
Υ may result in different values of the random variableBj,i.
On the other hand, optimizing forBj,i may need too many
channels. Clearly, there is a trade-off between routing and
channel assignment and we can state that

λ∗max = max
η∈Θ
ψ∈Ψ

λ∗ (23)

for Θ being the class of all path assignments andΨ the
class of all possible channel assignments. Within this paper



we have looked at the channel assignment part only, assuming
a shortest path routingηs. One issue that might be of interest
is whether maximizing throughput capacity involves shortest
path routing or not, or formally:

λ∗max ≈ max
ψ∈Ψ

λ∗ηs
. (24)

VII. A PPLYING THE MODEL

Besides the model serving as a basis for studying the
maximum throughput capacity, it also facilitates the analysis of
various network specific aspects with respect to throughputca-
pacity. In this section we want to demonstrate this by means of
two examples. The first example tackles the problem of finding
the optimal transmission range in fixed-traffic networks. The
second shows the effect of randomized signal propagation on
throughput capacity under different interference models.

A. Optimal transmission range in fixed-traffic networks

Finding an optimal transmission range is commonly known
as the connectivity problem, where we are interested in the
minimum transmission range that leads to a connected net-
work. Capacity can be studied in a similar way. Assume a fixed
traffic densityξ, i.e., that every node transmits data withξ =
W/K for some valueK, whereW is the maximum transmis-
sion rate. Such a traffic density can be modelled by dividing
the common channelΓ into K subchannelsΓ0,Γ1, ...ΓK−1.
Recall that nodes transmit data only within their assigned
channel. And transmission is meant to be a node’s own
transmission as well as the forwarding load. The question
now is at what transmission power (range) the nodes should
transmit on average in order to maximize the throughput
capacity. Figure 9 shows the throughput capacity as a function
of transmission range for three different traffic densities. The
network consists of 150 nodes uniformly distributed in an
area of 1000× 1000 square meters. From Figure 9 we see
that the optimal transmission range changes with the traffic
density. This is interesting since it stresses that, e.g., topology
control should take into account the traffic density as well
when looking for optimal transmission power selection. While
it has been shown analytically that the maximum throughput
capacity of a wireless multihop network is bound by the lowest
transmission range R that makes the network connected [7],
there is up to our knowledge no work on optimal transmission
ranges for networks with a fixed traffic load. The model we
propose in this paper supports such analysis, opening up the
possibility of exploring in greater detail the relation between
transmission range and traffic load within realistic network
conditions.

B. Effect of randomized radio propagation

It is well known that representing the transmission range as
a direct function of the distance does not reflect the reality
of radio transmitters. In fact, the received transmission power
can be seen as a random variable due to fading effects. The
impact of randomized transmission power – also known as
the effect of shadowing – has been analyzed with regard

20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Radius [m]

λ*

30 Channels
10 Channels
20 Channels

Fig. 9. Optimal transmission range vs. network load

to network connectivity. It was shown that fading effects
increase connectivity if the randomization itself is assumed to
be symmetric for both ends of a potential link [4]. On the other
hand if the fading effect is modelled as an independent random
variable and communication is bi-directional, connectivity is
observed to be degraded with increasing randomness [14].
Analyzing these effects with regard to throughput capacityis
much more complex since it also influences the interference
perceived while receiving data. As a benefit of our model,
effects of signal propagation properties can be analyzed by
just using an appropriate signal propagation function while
computing the graph topology, as explained in section II. We
have studied randomized radio propagation in two different
interference models: the signal-to-noise interference model
κsnr as described in equation 8 and the so called protocol
modelκprotocol defined as

κprotocol(p
r
j,i,Λ

a
i ) =

{

1 if Λai < βD
0 otherwise.

(25)

The nameprotocol model refers to the notation used in [8]
where the authors define a similar model. Obviously, the two
modelskappasnr and κprotocol are quite different in terms
of interference-sensitivity. Whileκsnr allows for interference
up to a certain extent,κprotocol fails to receive correctly as
soon as the perceived noise reaches the decoding threshold
βD. Figure 10 shows the effect of shadowing on throughput
capacity under the two different interference models. The
corresponding signal propagation modelϑsh is described in
equation 1. For a given propagation distanced, the higher the
standard deviationσ, the more the signal is spread around its
mean. The nodes are supposed to be distributed within an area
of 1000×1000 square meters. As we can see from Figure 10,
in the case of aκprotocol, the throughput capacity is highly
affected by the randomized signal propagation while there is
no big difference in theκsnr model. One explanation might
be that since the shadowing effect spreads the signals around a
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Fig. 11. The schedule graph

mean, the amplified parts significantly contribute to the noise
while the other parts become negligible. And sinceκprotocol
is much more sensitive to interference it also experiences a
higher degradation in term of throughput capacity. The effect
of shadowing is also illustrated in Figure 11 by means of the
schedule graphfor N = 100. As a result of randomized radio
propagation the number of edges in theschedule graphis
reduced. Therefore, links are shared by many communication
pairs which leads to capacity degradation. However, as the
network density becomes large, randomized radio propagation
is observed to affect throughput capacity positively, especially
in the case ofκsnr (Figure 10b) where effects of shadowing
lead to an increase in throughput capacity. This again can
be explained with the spreading effect caused by the ran-
domization. If the network is very dense and the amount of

nodes within the average transmission range of a node is high,
spreading the signal strength reduces the noise perceived at
that node.

Interestingly, the node density at which the curves in Figure
10b cross, corresponds to the critical density needed to make
two randomly chosen nodes connected with very high prob-
ability, as shown in Figure 12. Below the critical density of
100 nodes, two nodes may still be disconnected (in the case
of randomized radio propagation); beyond the critical density,
the probabilityPconn of a path between two random nodes
becomes almost1. Therefore, we can subdivide the effect
of randomized radio propagation as illustrated in Figure 10
into two parts, one that is caused by the lack of network
connectivity (below100 nodes), and one that results from
an actual change in interference (beyond100 nodes). In the
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case of theprotocolmodelκprotocol, e.g., throughput capacity
is degraded far beyond the critical node density. In the case
of the signal-to-noisemodel, throughput capacity is increased
beyond the critical node density. While effects of shadowing
on throughput capacity have been analyzed for unidirectional
links [16], there has up to our knowledge not been any
work done so far under bidirectional, acknowledgement-based
communication. As shown, the model we propose in this paper
is a useful tool to explore this problem in greater detail.

VIII. C ONCLUSIONS

Analyzing throughput capacity in Mobile Ad Hoc Networks
(MANETs) is a challenging task that is of great practical
importance. However, most approaches rely on simplified
network models and either come up with asymptotic bounds
or integer linear programming equations. In this paper we have
developed a probabilistic model of throughput capacity as a
random variable depending on node distribution, communica-
tion pattern, radio propagation and channel assignment. The
model as proposed enables the study of throughput capacity
under the effects of various network properties, but also
serves as a basis for further research on the complex inter-
action between routing and channel assignment with regard
to throughput maximization. In the paper we compare model
estimations with ns-2 simulation results and show how the
model can be used to qualitatively predict throughput capacity
of 802.11 ad hoc networks. One advantage of our approach
lies in its decoupling from specific network characteristics,
a feature that allows us to investigate throughput capacity
under specific network topologies, communication patternsor
signal propagation models. The paper illustrates this by means
of two examples: optimal transmission ranges in fixed-traffic
networks and effects of randomized radio propagation. In
general it is shown that throughput capacity under the effect of
shadowing is highly dependant on the interference model. For
the particular case of asignal-to-noiseinterference model and

bi-directional communication, throughput capacity was shown
to increase with increasing randomization of the signals.
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