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Abstract— Capacity is an important property for QoS sup- networks. In such networks any variation in the signal patte
port in Mobile Ad Hoc Networks (MANETSs) and has recently impacts the perceived interference at a given node. Non-
attracted considerable attention in research. However, most geterministic variation of signal power may further lead to
approaches rely on S|mpllf|§d models (infinite network,.lsotroplc link asvmmetrv. This behavior was measured experimentall
radio propagation, unidirectional links, perfect scheduling, etc.) Yy Y- P i ) y
and provide only asymptotic bounds or integer linear program- in [1]. IEEE 802.11, the MAC protocol often mentioned in
ming equations. In this paper we take a probabilistic approach combination with ad hoc networks, allows for data transmis-
and model capacity as a random variable that depends on sjon only if there exists a bi-directional connection begwe
node distribution, communication pattern, radio propagation and the two communicating nodes since data packets need to be

channel assignment. Expected values for the random variable at a K ledaed by th - de. Effects of tri
given point within the parameter space are then computed using acknowledged by the receiving node. €cts of asymmetric

Monte-Carlo simulation. The modularity of the approach allows links on higher network layers were investigated in [17].
for capacity analysis under more realistic network models. We  In this paper we explore capacity in multihop wireless

demonstrate the potential of such a model by showing that for networks by relaxing some of these assumptions. We do so by
acknowledgement-based networks throughput capacity incre@ yeye|oping a probabilistic model of throughput capacityaas
in the presence of shadowing, even above the critical node density . . .
random variable depending on node topology, communication
pattern, interference model, signal propagation and akann
|. INTRODUCTION assignment. Expected values of the random variable are then
Capacity is typically studied by choosing a network modelomputed using a Monte-Carlo estimator. The advantage of
that facilitates analytical treatment. Most existing wak- our approach lies in its decoupling from specific networkreha
sumes a network to have nodes distributed within a certainacteristics, a feature that allows us to investigate thinpugy
area and defines a transmission between two nodes tocheacity under specific network topologies and commurdnati
successful if its signal-to-noise ratio is bigger than aegiv patterns, including random ones. In particular, the moday m
threshold. In [8], capacity is then studied asymptoticddly serve as a basis for testing and verifying channel assignmen
an increasing node density. It is shown that the throughpand routing strategies with respect to throughput capatitis
capacity\(n) for a network ofn nodes within an area df, 1]> is of special interest since the interaction between rgutin
is in the order o (1W//nlogn). This result was extended forand channel assignment is rather complex and difficult to
models including variable transmission power [7] and boundeat analytically. Furthermore, given a specific topol@m
attenuation functions [6]. While asymptotic bounds ceffaina channel assignment strategy, the model predicts thraiighp
indicate the generic behavior of ad hoc networks for largmpacity for the various communication flows. For instance
n, they do not give any information on concrete throughpih a sensor network one might be interested in an estimate
capacity in small networks. Recently, there has been sowfethe throughput capacity when all the sensors transmé dat
effort to tackle this problem [3], [5], [16] using integenéar towards a common sink. Moreover, effects of different medel
programming ILP). However, ILP makes it very difficult to for signal propagation and interference can also be andlyze
model physical network properties such as realistic signasing the proposed model.
propagation, link asymmetry or interference. As a consegee  The rest of the paper is structured as follows: Sections I
most of these studies are based on a simplified network modeid Il describe the model. In section IV we validate the
For instance it is common to predict the received power asodel with respect to small static networks. Coloring nekso
a deterministic function of distance, thereby represgntive with different radio thresholds is discussed in section WeT
communication range as an ideal circle. In reality, theiveck following section aims at verifying the model under more
power at a certain distance is a random variable due to fadirgglistic network configurations — including random netigor
effects. Effects of shadowed radio propagation on capaciyby comparing the prediction to results obtained througB ns
have also been analyzed [18] but without considering myftih simulations. Section VIl shows the flexibility of the propgaos



probabilistic approach by means of two use cases: randdmize
radio propagation and variable interference range. Thempap Do (d)
concludes finally with section VIII.

1
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where X is a gaussian random variable with zero mean and
II. NETWORK MODEL standard deviationr and p is the aforementioned path loss

In a first step, we want to turn physical properties of wirgle$xPonent. In case of equal 0, there is no random effect and

multihop networks, like node locations or perceived sign?:?ls” ~ V. .

strengths, into a so calleschedule graphG(N, E), where A noden; # n; belongs to trhe set of interferefs of node
N is the set of nodes anfl' corresponds to the set of links: !N case Fhe_ signal powey;; perceived at_no_dezl- due
between these nodes (a link between two nodes indicatitfy@ transmission of node; exceeds a certain interference
the two nodes can communicate with each other). The id esholdgy:

is to — later on — let the throughput capacity computation be -

exclusively based on the graph. In this section, we first defin Zi = {nj | nj # ni and pj; > Pr}. @)
some common properties in order to then gradually develep t8, pecodableD;

graph representation by assigning four €t D; D U; O V;
of nodes to each node;, with Z; O AN. Nodes within the
particular sets correspond to the different forms of irtgoa
nodes can have, such as interfering, decoding, unidiretio
communication and bidirectional communication:

Similar toZ;, the set of decodableB; of noden; is defined

D; = {n; | nj #n; and p}, > Bp}, 3)

with 8p > B;. We call 5p the decoding threshold. Dis-
tinguishing betweerD; and Z; takes into account that radio
Sceivers are typically much more sensitive to interfeegihén
to signal decoding.

e 7,. Set of nodes that interfere with nodg

o D;: Set of nodes that can be correctly decoded at no
n; if there is no interference

o U;: Set of nodes that can be decoded at nagdeven if
there is interference C. SendersS;

« V; : Set of nodes that can be considered as neighbors OWhethernj € U;, meaningn; can decode the signal of node
i in spite of interference is decided by an interference model

In principle, the network — as we are going to present it & R xR — {0,1} with

is parameterized by the following four properties: A node

distribution 6 4, a signal propagationp, a channel assign- (07, A%) _{ 1 pj},; can be decoded under noid¢
ment ¢» and an interference modei. We consider a set Jet /0 ph,; cannot be decoded

N = {ng,ni...,ny_1} of N nodes, distributed according 4)
to some probability density functiody : (x,y) — [0..1], -

defined over an ared. Further assume a channel assignment Here A" denotes the noise perceivedatwhile listening to
¥ : N — T for a common channel’, such that every the subchannehg = I'* assigned to node,;. More formally
noden; has one subchannel < T' assigned. We therefore . T N

say the common channél is divided into 7" subchannels, AY — { Z’fg Pii 1 ng #T° (5)
I = {T°% 1., T}, where typicallyT < N. The nodes are ¢ 00 otherwise

not allowed to transmit data in any other than their subchlnn,

Receiving is possible from all the subchannels. For the sakeA noden; € D; is part ofl/; if and only if x(p] ,, A?) = 1
of simplicity we use the word subchannel interchangeabi: '

for the set of all nodes transmitting data within that specifi

subchannel, of® = {n;|n} =T“}. U ={n;lj #i A elpji,AY) =1} (6)

A. InterferersZ; The most common interference model is based on the so

A node n; is assumed to transmit with powef. For a called signal-to-noise ratio:

certain signal propagatiofi : R — R, the received signal i

strengthy” (d) at distancel is computed ag!-1(d). Therefore, SNRj; = m )
the signal powep?’ ; perceived at node; due to a transmission ‘
of noden; is determined by} -9(|z; — x;|), wherez, are the

coordinates of node In the simplest casé is a direct function

of the distance. The path loss radio propagation model, for rooray B

example, defines),;(d) = d~* for some path loss exponent Fonr (P M) = 1 <= SNFji > fony ®
p. A more sophisticated model is the log normal shadowing

radio propagation [12]: for a thresholds,,,,.. Of course it must be given that

This leads to an interference model as follows



assumeSched; ; to be a random variable indicating whether a

% > Bapr = p;,i > 6y, 9) sched_ule between nods; gnd n,; exists. This is .eq.uall to the
No guestion of whether there is a path betwgeand: within the
where Ny denotes the ground noise. schedule graplGr (N, E):

D. Neighbors\;

) 1 if there is a path between; andn;
In our model we particularly want to account for acknowl- Sched;,; =

X . 0 otherwise.

edgement based medium access protocols. We therefore define (14)
Vi, the set of all neighbors of; as follows: Based on the notion dfl; ; we definell as follows:

VZ‘ = {nj|] 7é A n; S Z/{z N n; € D] } (10) HT = {Hj71|(]’1) c T} (15)

This set includes all nodes; that are senders fot; (i.e., The random variable3; ; is then defined as

can transmit and their transmission is properly received by
n;) and can receive the acknowledgement sent bacl by B, ; = max { Z F(n,IL,.)}, (16)
Note that equation 11 models the acknowledgment itself as nels.s Pyn€ (I, ;)

an infinite small packet not occupying the medium. Based on

where F' is the membership function,
the definition of neighbors, we finally introduce the notion P

of a schedule graphA schedule graphs a directed graph 1 ifnell,,
Gr(N, E), whereT denotes the number of subchanneld’jn Fn, ) = 0 otherwise. (17)
é\gf?:er(rjezgonds to the set of nodes afids the set of edges B; ; takes into account to what extent the path betwegn

andn; is shared with other ongoing communication pairs.
- Based on the definition ofched;; and B; ; we now claim
E = {(nj,m)l ni € N A nj € Vil (11 the achievable throughpy} ; in a schedule graplGr (N, E)
From the definition of aschedule graphGr(N,E) it to be modelled by the random variable
directly follows that a path between two nodeg, n., states

) W x Sched; ;
that there is a sequence of nod@s,, n,41,...n,} as well Ci= #7 (18)
as schedule of time slot&:},, nl,,,...} such that node, is gii X
able to consecutively transmit data at a rate 0. where W is the maximum transmission rate equal to all

nodes. With respect to a measurement ¥gt and for a

uniformly chosen communication pafj,i) € Y,, we can
Throughout this section an ad hoc network is representidther state that

by its correspondingchedule graphGr (N, E). Throughput

Ill. THROUGHPUTCAPACITY

capacity is defined over a s&t,, of measured communication 1 %% Sched,; ;
pairs which is a subset of all existing communicatibrpairs "= o] Z Cuw, = 1Tl x T Z T B..
in an ad hoc network: " () e " (@) 7
(19)
and therefore
Y, CTC {(ni,nj)Wi,Vj,i # jAn; € N/\’I’Lj € N} (12)
More precisely, we say that schedule graptGr (N, E) A\, = E[("] = W Z E[SChed]”] =W x E[Q]

with a communication patter” has a throughput capacity ] (u,0) €T T'x Bji
with respect tor,,, of \,, if on average a communication pair (20)
v € Y,, can expect an end-to-end throughput\gf bits per ~ whereQ = Sched; ;\T'\B;; for any (j,i) € Tp,.
second. In most cases we ha¥e, = Y.

Important to the computation of throughput capacity is the
routing n : (n;,n;) — {Nu, Ny, ..Nyw }. We define

IV. APPROXIMATING CAPACITY IN STATIC NETWORKS

As an example of how the model operates and as an intuitive
validation, in this section we compubé for two simple, static
I = 5((nj,n:)), with(ng,n;) € T (13) scenarios. Stati(; in _the sense that _the network_ topologyeﬁ_s w
as the communication pattern is fixed. We will consecutively
to be the sequence of nodes included in the path frgm derive A* by going through the basic steps of section Il and
to n;, excludingn;. lll. For reasons of simplicity assume& = (p. Therefore, the
We now want to provide an estimatof, for \,,, so that set of interferersZ; equals the set of decodabl@y for all
A, &~ A, The approach we follow is of a probabilistic naturenodesi.
Basically, we model throughput capacity as a random vagiabl The simplest network topology we want to discuss consists
¢ and compute its expected value, wilfj¢] = A*. In order of three nodes being equally far apart from each other, as
to show how( is defined we need some helper variables. Wghown in Figure 1. A dashed line between two noglesdi



[T al ] u [ T [ Schedj; | Bji | 2]
1 [ - 0 - 0
2 A0]| Us=1{B} | (AB) | Schedag=0] 0 | 1/6
B:1 Ug =0 (B,C) | Schedpc=1| 1
C:0| Uc={B} | (CA) | Schedca=0| 0
(AC) | Schedac=0] 0 | 1/6
(B,A) | Schedp.a =1 2
(B,C) | Schedpc =1 2
3[ A0 | Us={B,C} | (AB) | Schedapg=1] 1 | 13
B:1 | Up = {A, C} (B,C) SChedB7c =1 1
C:2| Uz ={A,B} | (CA) | Schedoa=1| 1
TABLE |
STATES FOR THE TRIANGLE SCENARIO
[T] ] u [ Y [ Schedji | Bji [ X ]
1] - [ - 0 - 0
2| A0 | Us=1{B} | AB) | Schedag=1] 1 176
B:1| Up={A} | (BC) | Schedgc=0| 0O
C:1 Uc =10 (C,A) | Schedc,a=0| 0
A0 | Us={B} | (AB) | Schedap=1] 1 173
B: 1 Ug =10 (B,A) | Schedp,a = 1
C:0 I/{C = {A} (C,A) SChedcyA =0 -
3| A0 | Us={B,C} | (AB) | Schedap=1| 1 | 518
B:1 | Ug ={A,C} | BA) | Schedgc=1| 1
C:2 | Uc={A,B} | (CA) | Schedga=1| 2
(AB) [ Schedap=1] 1 13
(B,A) | Schedp,a =1 1
(CB) | Schedocp=1]| 1
TABLE I
STATES FOR THE CHAIN SCENARIO
B assignments in Table I. Assigning the same chaniie:(1)
A e to all nodes leads té/; = 0 for all nodes and therefore to
o R E =0, Sched;; = 0, (j; = 0, A* = 0. If we assign two
channels T = 2) to the three nodes, only two directed links
can be established (among the potential 6). In the case of
T=71, ={4,B),(B,C),(C,A)} as the communication
® pattern (see Table IN* is 0+ 1/6 + 0 = 1/6, according to
C equation 19 . If we hav&,,, = {(A, B), (B, A),(B,C)}, \*

equalsD+1/12+1/12 = 1/6. Using 3 channelsI{ = 3) leads

to a fully connected graph\* is then1/9+1/9+1/9 = 1/3.
Fig. 1. A simple triangle scenario y grap / + / + / /

C

indicatesn; € 7;, n; € D;n; € I;, n; € D;. Let us further e
assume a very simple interference model: B

i A A

{ 1 Pji > 1 (21) (

Fns2(P1i AT) =\ 0 otherwise

We will use k,,52 later on in section VI when comparing Fig. 2. A simple chain scenario
the model's estimate with results taken from ns-2 simutegio
In order to transform the topology information into a graph The situation is slightly different in Figure 2 since noffe

G we need to assign channels to the nodes. Searching for loes as a router and some of its bandwidth is consumed by
optimal channel assignment refers to the class of vertesrcoltraffic sent fromA to C. As shown in Table I, there are two
ing problems, which is in most cases NP-hard [9]. Howeverays to assign two colors to the three nodes. Depending on
for the topology in Figure 1 there are only three possiblesvathe channel assignment and the communication pattern, a 2-
to assign the channels to the nodes. We keep track of alkstathannel-solution might even perform better on average than
and sets of the network model for each of the three channmsling 3 channels.
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Fig. 4. Coloring the transmission and interference graph

V. COLORING MULTI-LAYER-GRAPHS of both nodesA and E' are interfering at nodé€’ and one may

As previously mentioned, channel assignment refers to twésh all the nodesA — E to transmit in different channels.
problem of graph coloring and is known to be NP-hard iflowever, far more important is that transmissions betw@en
most cases. Given a gramh(‘/’ E), classical graph C0|Oring and its direct neighbors do not interfere withand E. This
aims at coloringy” with the minimum number of colors suchcan easily be achieved by assigning a minimum of 4 channels
that for each edgéi, j) € E, vertexesi and j have differ- @s shown in Figure 3.
ent colors. The more specific problem of coloring multihop Finding generic algorithms or good approximations for a
wireless networks in order to achieve an entirely collisiodninimum channel assignment in the described manner is
free schedule is also known as distance-2-coloring, [9]].[1 ot within the scope of this paper. Rather, we use two
Such a coloring assigns different colors to any pair of nodéinplified channel assignment algorithms for the rest of the
between which there is a path of length at most 2. ThRaper:GreedyMandRandomNodeThe GreedyMassignment
distance_z_co|oring prob|em on a graph is equivajent to basically extends the classical ngEdy algorithm to take th
the standard minimum vertex coloring [11] problem 68, Multi-layer aspect into account. It takes each vertex im tur
where G2 has the same vertex set &and there is an edge and tries to color the vertex with one of the colors used so far
between two vertices (IGQ if and On|y if there is a path of prohlbltlng n9ighb0ring nodes to transmit in the same ckann
length at most 2 between the vertices Gh Unfortunately, as interfering nodes. In other words, it tries to add theevert
So|ving the distance_z_cobring pr0b|em does not providetg one of the existing color classes. If this is not possib]e d
collision-free schedule in multihop wireless networks higt to some interferers already having the same channel assigne
transmission range and the interference range differ. ¢h fghen a new color class is created and the vertex is assigeed th
today’s radio receivers are much more sensitive to interfee color of that class. See Algorithm 1 for a detailed desaipti
than to signal decoding. In our model these two thresholes drhe RandomNodéAlgorithm 2) channel assignment on the
given by 3; and3p. Figure 3 illustrates the effect of differentother hand just assigns a set of of channels in a round robin
thresholds on the channel assignment by means of a ch@anner to the nodes. At each round a node is picked on
topology. It is assumed that; > 2 x 8p, an assumption @ random basis. In the following sections we will see how
that can be found, e.g., in the network simulator ns-2 [15annel assignments affect capacity.
for example. As a consequence, ndds packet transmission
in Figure 3 will interfere with packets sent from to B. A
perfect channel assignment for such a graph would require 4
channels. A pure distance-2-coloring would produce eifher After having introduced the model by means of small static
or 3 channels instead, depending on whether the algoritexamples, we now proceed to see whether we can use the
operates on the interference graph or on the transmissimodel to predict throughput capacity in 802.11 ad hoc net-
graph. Figure 4 illustrates this point. Edges of the tragsion works, including random topologies. Remember that the thode
graph are shown by dashed lines, referring to thelsen predicts throughput capacity & - £[Q2] where{) denotes the
our model. The interference graph extends the transmissiamdom variable compositiafiched; ; /T/B;,; for any(j,i) €
graph by additionally including edges drawn with solid BneY,,. One could computd’[Q2] given the common probability
(Z in our model). Given a simple interference model like thdensity fscreq 7, 5(s,t,b) for the random variable$ched, T’
one described in equation 25, applying distance-2-cajorin and B. However, finding the density functioffischcq, .5 1S
the transmission graph results in broken links and theeefamot trivial. In fact the problem can be viewed as an extension
potentially prohibits a schedule (Equation 14). On the iothéo the traditional connectivity problem where one tries to
hand, using distance-2-coloring on the interference goq@s find the probability of whether a given node distribution and
not produce the minimum number of channels since it assigmansmission range results in a connected network. In this
different channels to node$ and E. Indeed, the transmissionpaper we do not pursue an analytical treatmenE@®] but

V1. PREDICTING CAPACITY OF 802.11 A> HoC
NETWORKS



Algorithm 1 GreedyM

1: INPUT N := {ng..ny—-1};
2: for all n; € N do

preamble which must be of a fixed length because it is used
by the hardware for bit synchronization.

—{F‘ FN 1};

3: :
4: ifnler then A. Chain
gf dQ_f Q\ nj; In a first comparison we look at the the simplest possible
7 ?0': a'” n: €T do case of a chain af nodes. Each node is 200 meters away from
8: if 7l T2 T then its neighbor. The first node acts as a source of data traffic, th
9: Q Q\ nl; last node is the traffic sink. Data is sent as fast as the MAC
10:  end if allows. Regarding the model, we uSeeedyM as the channel
11: end for . . . -
12: if n! ¢T then e.135|gnmept. algorithm. It can .easny be verified t_ﬁb:teedyM .
13: nl = min {T'® € T} finds a minimal channel assignment for a chain of any size.
14511 ?;f= 9\ nj; Since there are no random components involvgds a direct

. ena i .
16. forall n; € D; do funct|on. of the channels. needed, and computesl 6 as
17: if nl ¢ T then the chain grows. From Figure 5a we see that the prediction
18: n; :=min {T* €T} overestimates the real measured throughput, especiaynwh
10: Q:=0Q\nl; the chain becomes large. This is due to the overhead of
gcl)f enfj”%r'f headers, RTS, CTS and ACK packets but also because in
22 end for reality nodes fail to achieve an optimal schedule. The tesul

Algorithm 2 RandomNodg

obtained with our model match those presented in [10], where
the authors discuss throughput capacity measurements take
from ns-2 simulations with respect to theoretical uppemuatsu

;; I,\I}X)L(JgH%\NE{Ln 0=;L(N -1 As a first step towards more realistic scenarios, we now in-
3. 0:=N; vestigate random communication patterns in chain topekogi

‘515 ;-%_Od_ For this purpose, we assign a random destination;) <

6: T =0 M\n; to every noden; € AN. Figure 5b shows a quite

7: while i < |O| do good match between* based on perfect channel assignment
gf gﬁjlg\’\yy‘fﬁ €0} (using GreedyM) and the measurements obtained with ns-

10: o =ro; 2. This is not too surprising since we know from Figure 5a

11: T:=Ture that \* matches quite well the simulation results if the path

g o $0‘+1) MOD MAXCHANNEL; length is short. And the average path length under random

rather use a Monte-Carlo estimator:

communication is expected to be far below the maximum value
of n — 1, for a chain of lengthn. Furthermore overlapping
communication paths reduce capacity due to the forwarding
load induced to the nodes, especially if the chain becomes
large. By taking the effect of forwarding load into account,
our model is able to quite accurately estimate the available

KZ ‘ (22) capacity under random communication.

Or in other words, we approximately compute the expect& Grid
value of(} for a given set of parameters by averaging oer  \whjle the GreedyM algorithm leads to a conflict-free
realizations of the underlying random network. channel assignment in a chain topology, it does not in a

In order to verify the quality of our predictions we compargyid topology. This is illustrated in Figure 6a. The grey @on
the computed estimate to ns-2 simulation results. Throughepresents the interference area of the node located apfies u
section VI we use the interference model as described |8% hand corner. Similarly, the non-shadowed region desiot
equation 25. The model serves as a very basic approximatifia interference area of the second node. The lines stating
of the ns-2 interference model. To avoid mixing up capaghe first two nodes refer to the stepwise channel assignment
ity measurements with routing issues, packets within NSpérformed byGreedyM. The algorithm finally produces a
simulations are forwarded using pre-computed shortest pabnflict when the two neighbors indicated by a surrounding
routes. In all setups, the thresholds and 5, are set such cjrcle are assigned the same channel. In order to achieve a
that 3; = 5/11 x Bp. This corresponds to the default ns-Zonflict-free schedule in a grid, one would have to assign
setting. Furthermoredp, is configured such that it producesat |east 16 channels to the nodleas shown in Figure 6b.
a transmission range of 250 meters. We have set the MAfawever, rather than asking for a conflict-free schedule, th
data rate in ns-2 to 1Mbit since operating 802.11 at highgiore important question would be how to achieve a maximum

rates results in drastically reduced efficiency and makes #hroughput capacity\*. Interestingly, a conflict-free schedule
measurements difficult to compare as the relative time spent

the per-packet overhead dominates. This is due to the 802.1MDerives directly from the optimal 4-channel assignment indhain
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Fig. 6. Channel assignment in the grid

does not necessarily lead to a maximum throughput capacitgde is 200 meters away from its closest neighbor. Figure 7a
This can easily be verified in Figure 6¢, a scenario in whicthows the plot for a cross communication pattern (similar to
data traffic is only routed horizontally. Since there is,..emp the one in Figure 6b). From the Figure we see that the model
communication going on between nodes in the first chain ahdsed computation predicts a higher throughput capadity th
their direct neighbors in the second chain, it is no problem the one measured using ns-2. The reason is that the interfer-
assign the same channels to both the first and the last chaiefmte model in equation 25 is very tolerant to colliding clednn
the grid. Such an assignment strategy only useshannels, assignments since it allows an accumulated interferencg of
rather than the maximum of6 for a conflict-free schedule to the signal strength of the sending node. In fa&éteedy M

and therefore achieves a higher throughput capacity given tais well asRandom N ode make the sel/ equal toD. Despite
communication pattern of Figure 6c. Or in a more genertbe gap between measurements and prediction it is important
way, knowledge of the communication and routing patteri thio note the similar behavior of the estimate and the simarati
takes place in the network is crucial to achieve a minimunesults. And as we can see from Figure 7b, this also holds in
channel assignment. Our model may serve as a basis forffurtthee case of random communication. Here thecedyM and
research on the complex interaction between routing atite Randomnodeio estimate are closer together, a potential
channel assignment with regard to throughput maximizatioresult of the randomness in communication. However, the
The trade-off between routing and channel assignment bas astimates as well as th#2.11 measurements are still some
been taken into account by [2], [13] where the authors prepogap away from the throughput capacity based on a confliet-fre
a hybrid routing/scheduling algorithm to gradually impeovschedule (using 16 channels as mentioned earlier), asiledic
throughput capacity. by the dashed line in Figure 7b.

After having described the routing-scheduling trade-offi a C- Random Topology
the non-optimality of GreedyM in the grid topology, we  Contrary to chain and grid topologies, random topologies
now compare the throughput estimatewith ns-2 simulation do not allow us to easily compute estimates based on conflict-
results in such a topology. The topology setup is such that edree schedules. We consider random topologies: afodes
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distributed uniformly within an area of000 x 1000 meters. 0025 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
As in the previous topologies, all nodes ha¥g configured NS2
such that the their transmission range equals 200m. Eaah nc
n; acts as a traffic generator and has a random destinati 0.021 1
assigned, chosen uniformly out d¥"\n,. Figure 8 shows
the comparison between the estimate and the ns-2 simulati
results. Obviously, both the estimate and the ns-2 measu
ments have a very similar behavior with regard on how th =
curves decay. However, despite this similarity, the egtma 0.01f
predicts a lower throughput capacity than the one measwyred
the 802.11 simulations. The reason might be th@teedyM
channel assignment with respect to random node topology a
random communication is even less optimal than the schedt
produced by the random access sch&@11. Compared to e o 1 1o Lo 1o 1w %
the grid, interfering nodes in a random topology typicalfg a Nodes

not located at the edge of the interference range, but spread
around a certain mean. Or in other words, while in the grid the
interference of a nodeg — located at half way between two
nodesn 4 andngc — might be tolerated at both ends, the same

node in a random topology is likely to be either closer to thg jifficult problem. On the basis of the grid topology it
one or the other side, disturbing at least one of the ongoifgs shown that a minimum channel assignment does not
communications taking place in channgl. However, finding necessarily lead to a maximum throughput capacity. Rather,
a good slot assignment algorithm which works for both the, optimal channel assignment goes hand in hand with the
grid and the random topology, is not within the scope of thig,ting. From equation 19 we see that both the routing as
work, rather we provide a model that serves as a base {§g|| as the channel assignment directly affect the throughp
testing and verifying channel assignment strategies. capacity. Different routeH ; ; for communication pairgj, i)

D. Discussion T may result in different values of the random varialite;.

h On the other hand, optimizing faB;; may need too many
channels. Clearly, there is a trade-off between routing and
nannel assignment and we can state that

0.015

0.005

Fig. 8. Random topology

The previous sections have illustrated the qualitativealse
ior of the model. In all the cases the throughput capagity
showed a similar behavior — compared to the ns-2 simulati§
results — in terms of how the curves decay when the network

becomes large. However, while for the chain and the grid the Amaz = I,?ea@f A (23)
prediction was higher than the measured results, the deposi vew

was observed in the case of random topologies. In fact, findin for © being the class of all path assignments ahdhe
an optimal channel assignmeiit in random topologies is class of all possible channel assignments. Within this pape



we have looked at the channel assignment part only, assumi 02

a shortest path routing,. One issue that might be of interest 30 Channels|.
is whether maximizing throughput capacity involves shairte  °*°[| —_— 30 gramnels
path routing or not, or formally: 0.16F
0.14|
Amaz % HAX Ay, (24) ol
VII. APPLYING THE MODEL < 0dp
Besides the model serving as a basis for studying tt %08
maximum throughput capacity, it also facilitates the asislpf 0.06[
various network specific aspects with respect to througbgut 0.0al ;
pacity. In this section we want to demonstrate this by meéns |
two examples. The first example tackles the problem of findin 002 e
the optimal transmission range in fixed-traffic networkse Th O 40 60 80 100 120 140 160 180 200
second shows the effect of randomized signal propagation ! Radius [m]

throughput capacity under different interference models.

A. Optimal transmission range in fixed-traffic networks Fig. 9. Optimal transmission range vs. network load

Finding an optimal transmission range is commonly known

as the connectivity problem, where we are interested in e henyork connectivity. It was shown that fading effects
minimum transmission range that leads to a connected Nglsrease connectivity if the randomization itself is asedro
work. Capacity can be studied in a similar way. Assume a fixgfl, symmetric for both ends of a potential link [4]. On the othe
traffic density¢, i.e., that every node transmits data With= )54 it the fading effect is modelled as an independent nrando
W/K for some valuel(, wherelV’ is the maximum transmis- yariaple and communication is bi-directional, connetgiis

sion rate. Such a traffl_c density can be modelled by dividing,corned to be degraded with increasing randomness [14].
the common channdl into K subchanneld™, I'', . T* = Anai7ing these effects with regard to throughput capaisity
Recall that nodes transmit (;lata only within their as,s'gn‘:rﬂuch more complex since it also influences the interference
channel. And transmission is meant to be a node’s oW ceived while receiving data. As a benefit of our model,
trans_mlssmn as well as 'the forwarding load. The questikacts of signal propagation properties can be analyzed by
now is at what transmission power (range) the nodes showgt using an appropriate signal propagation function evhil

transmit on average in order to maximize the throughpyhmnyting the graph topology, as explained in section II. We
capacity. Figure 9 shows the throughput capacity as a fumcti, ;e stydied randomized radio propagation in two different

of transmission range for three different traffic densitielse ;.o terence models: the signal-to-noise interferencedeho

network consists of 150 nodes uniformly di;tributed in a) as described in equation 8 and the so called protocol
area of 1OOQx 1000 square meters. From Flgure 9 we S&fodel Kprotoco! defined as

that the optimal transmission range changes with the traffic

density. This is interesting since it stresses that, eogglogy e 1 if A% < Bp
control should take into account the traffic density as well ’fprotocol(Pj,i»Ai) = { 0 othérwise (25)
when looking for optimal transmission power selection. Whil

it has been shown analytically that the maximum throughput The nameprotocol model refers to the notation used in [8]
capacity of a wireless multihop network is bound by the lawewhere the authors define a similar model. Obviously, the two
transmission range R that makes the network connected [Tiodels kappas,, and k,.o0cor @re quite different in terms
there is up to our knowledge no work on optimal transmissidg interference-sensitivity. While,,, allows for interference
ranges for networks with a fixed traffic load. The model wgp to a certain extents,,.:.co: fails to receive correctly as
propose in this paper supports such analysis, opening up 8@®n as the perceived noise reaches the decoding threshold
possibility of exploring in greater detail the relation ween (p. Figure 10 shows the effect of shadowing on throughput
transmission range and traffic load within realistic networcapacity under the two different interference models. The

conditions. corresponding signal propagation modgl, is described in
) ) ) equation 1. For a given propagation distax¢cehe higher the
B. Effect of randomized radio propagation standard deviatiom, the more the signal is spread around its

It is well known that representing the transmission range asan. The nodes are supposed to be distributed within an area
a direct function of the distance does not reflect the realibf 1000 x 1000 square meters. As we can see from Figure 10,
of radio transmitters. In fact, the received transmissiowgr in the case of &, ot0cor, the throughput capacity is highly
can be seen as a random variable due to fading effects. Hiiected by the randomized signal propagation while there i
impact of randomized transmission power — also known ag big difference in thes,,,. model. One explanation might
the effect of shadowing — has been analyzed with regaboeé that since the shadowing effect spreads the signals@&eun
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mean, the amplified parts significantly contribute to thesaoi nodes within the average transmission range of a node is high
while the other parts become negligible. And sinGg...coc  Spreading the signal strength reduces the noise percetved a

is much

more sensitive to interference it also experienceghat node.

higher degradation in term of throughput capacity. Theatffe

of shadowing is also illustrated in Figure 11 by means of the Interestingly, the node density at which the curves in Fégur
schedule graptior N = 100. As a result of randomized radio 10b cross, corresponds to the critical density needed temak
propagation the number of edges in teehedule graphs two randomly chosen nodes connected with very high prob-

reduced.

Therefore, links are shared by many communicati@bility, as shown in Figure 12. Below the critical density of

pairs which leads to capacity degradation. However, as the0 nodes, two nodes may still be disconnected (in the case

network

density becomes large, randomized radio propamatof randomized radio propagation); beyond the critical dgns

is observed to affect throughput capacity positively, eily the probability P.,,, of a path between two random nodes
in the case of,,, (Figure 10b) where effects of shadowingoecomes almost. Therefore, we can subdivide the effect

lead to

an increase in throughput capacity. This again cahrandomized radio propagation as illustrated in Figure 10

be explained with the spreading effect caused by the rdnto two parts, one that is caused by the lack of network
domization. If the network is very dense and the amount ebnnectivity (below100 nodes), and one that results from

an actual change in interference (beyortd nodes). In the
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(4]
case of theprotocol model kprotoco, €.9., throughput capacity
is degraded far beyond the critical node density. In the case
of the signal-to-noisemodel, throughput capacity is increased[5]
beyond the critical node density. While effects of shadowing
on throughput capacity have been analyzed for unidireation
links [16], there has up to our knowledge not been an)VS]
work done so far under bidirectional, acknowledgemenetas [7]
communication. As shown, the model we propose in this paper
is a useful tool to explore this problem in greater detail. (8]

El

Analyzing throughput capacity in Mobile Ad Hoc Networkd10]
(MANETS) is a challenging task that is of great practical
importance. However, most approaches rely on simplified
network models and either come up with asymptotic bounds]
or integer linear programming equations. In this paper vw.«&ha[12
developed a probabilistic model of throughput capacity as a
random variable depending on node distribution, communidas3]
tion pattern, radio propagation and channel assignmerg. Th
model as proposed enables the study of throughput capagity
under the effects of various network properties, but also
serves as a basis for further research on the complex intﬁg—
action between routing and channel assignment with regqfé
to throughput maximization. In the paper we compare model
estimations with ns-2 simulation results and show how th&’]
model can be used to qualitatively predict throughput cépacyig
of 802.11 ad hoc networks. One advantage of our approach
lies in its decoupling from specific network characteristic
a feature that allows us to investigate throughput capacity
under specific network topologies, communication pattems
signal propagation models. The paper illustrates this bgmae
of two examples: optimal transmission ranges in fixed-taffi
networks and effects of randomized radio propagation. In
general it is shown that throughput capacity under the effec
shadowing is highly dependant on the interference model. Fo
the particular case of signal-to-noisdnterference model and

VIII. CONCLUSIONS

bi-directional communication, throughput capacity wasvat
to increase with increasing randomization of the signals.
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