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Abstract

Sparse approximate inverses are considered as smoothers for multi-
grid. They are based on the SPAI-Algorithm (Grote and Huckle,
1997), which constructs a sparse approximate inverse M of a matrix
A by minimizing I — M A in the Frobenius norm. This yields a new hi-
erarchy of smoothers: SPAI-0, SPAI-1, SPAI(e). Advantages of SPAI
smoothers over classical smoothers are inherent parallelism, possible
local adaptivity and improved robustness. The simplest smoother,
SPAI-0, is based on a diagonal matrix M. It is shown to satisfy the
smoothing property for symmetric positive definite problems. Numer-
ical experiments show that SPAI-0 smoothing is usually preferable
to damped Jacobi smoothing. In more difficult situations, where the
simpler SPAI-0 and SPAI-1 smoothers are not adequate, the SPAI(e)
smoother provides a natural procedure for improvement where needed.
Numerical examples illustrate the usefulness of SPAI smoothing.
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1 Introduction

Multigrid methods are efficient iterative solvers for large linear systems of
equations, which result from the discretization of partial differential equa-
tions — see Brandt [8], Hackbusch [14, 15], Wesseling [25], and the references
therein. They also yield efficient preconditioners when combined with Krylov
subspace methods [7]. Any multigrid algorithm relies on the complementary
interplay of smoothing and coarse grid correction. While the smoothing pro-
cess aims at reducing the high-frequency error component, namely that which
cannot be represented on coarser grids, the coarse grid correction solves for
the low frequency error component, precisely that which is well represented
on the coarser grid. The careful combination of both smoothing and coarse
grid correction yields a multigrid iteration, which has a high convergence rate
independent of the mesh size.

Standard smoothing techniques typically result from the application of a
few steps of a basic iterative method. Here we shall consider smoothers that
are based on sparse approximate inverses. Starting from the linear system

(1) Ax =,

we denote by M a sparse approximation of A=!. Then, the corresponding
basic iterative method is

(2) 2 * D = 2B _ Ar(Ax®) — ).

As the approximate inverse M is known explicitly, each iteration step requires
only one additional M xv matrix-vector multiply; thus, it is easy to parallelize
and cheap to evaluate, because M is sparse.

Recently, various algorithms have been proposed, all of which attempt to
compute directly a sparse approximate inverse of A. Examples are the FSAI
approach by Kolotilina and Yeremin [17], the MR, algorithm by Chow and
Saad [10], and the AINV approach by Benzi, Meyer, and Tuma [5]. Once
computed, the approximate inverse M is applied as a preconditioner to the
linear system (1) for use with a Krylov subspace iterative method. For a
comparative study of various sparse approximate inverse preconditioners we
refer to Benzi and Tuma [6]. By choosing an a priori sparsity pattern for M,
the cost of computing M can be greatly reduced. Possible choices include
powers of A or AT A, as suggested by Huckle [16] and Chow [11].

Approximate inverse techniques are also gaining in importance as smoothers
for multigrid methods. First introduced by Benson and Frederickson [3, 4],



they were shown to be effective on various difficult elliptic problems on un-
structured grids by Tang and Wan [23]. Advantages of sparse approximate
inverse smoothers over classical smoothers, such as damped Jacobi, Gauss-
Seidel or ILU, are inherent parallelism, possible local adaptivity and improved
robustness.

Here we shall consider sparse approximate inverse (SPAI) smoothers based
on the SPAI-Algorithm by Grote and Huckle [13]. The SPAI-Algorithm
computes an approximate inverse M explicitly by minimizing I — M A in
the Frobenius norm. Both the computation of M and its application as a
smoother are inherently parallel. Since an effective sparsity pattern of M
is in general unknown a priori, the SPAI-Algorithm attempts to determine
the most promising entries dynamically. This strategy has proved effective
in generating preconditioners for many difficult and ill-conditioned problems
(see Barnard, Bernardo, and Simon [1], Tang [22], and [13]). Moreover, it
provides the means for adjusting the smoother locally and automatically, if
necessary.

We shall consider the following hierarchy of sparse approximate inverse
smoothers: SPAI-0, SPAI-1, and SPAI(e). For SPAI-0 and SPAI-1 the spar-
sity pattern of M is fixed: M is diagonal for SPAI-0, whereas for SPAI-1 the
sparsity pattern of M is that of A. For SPAI(e) the sparsity pattern of M
is determined automatically by the SPAI-Algorithm ([13]); the parameter &
controls the accuracy and the amount of fill-in of M.

Besides the SPAI smoothing operators, all other multigrid components,
such as the prolongation, the restriction, and the coarse grid operators, result
from standard choices. It is well-known that for certain classes of problems,
such as convection-diffusion equations, a significant improvement in the ef-
ficiency of the multigrid solver can be obtained by using matrix-dependent
prolongation and restriction operators (see [12, 19, 25, 27]). An interesting
topic for future research is the combination of this new hierarchy of local
and inherently parallel smoothers with algebraic multigrid techniques (see
for instance [18, 20, 21, 24]).

In Section 2 we briefly review the SPAI-Algorithm and show how sparse
approximate inverses are used as smoothers in multigrid. In Section 3 we
prove that for SPAI-0 the smoothing property ([15]) holds under reasonable
assumptions on the matrix A. More precisely, for A symmetric and positive
definite, we prove that SPAI-0 satisfies the smoothing property, either if A is
weakly diagonally dominant, or if A has at most seven nonzero off-diagonal
entries per row. To our knowledge this is the first fairly general theoreti-



cal result on the smoothing property of iterative methods that are based on
sparse approximate inverses. Previously Tang and Wan [23] analyzed the
smoothing property of sparse approximate inverse smoothers for boundary
value problems with constant coefficients on a two-dimensional regular grid.
From a comparison of the SPAI-0 and damped Jacobi smoothers via numer-
ical experiments, we conclude that the parameter-free SPAI-0 smoother is
usually preferable to the damped Jacobi method. Finally, in Section 4, we
present an extensive set of numerical experiments, which demonstrate the
usefulness of SPAI smoothing.

2 Sparse approximate inverse smoothing

Starting from a standard multigrid setting, such as found in [14], ([15], Ch.
10), or [25], we recall some basic notions and briefly introduce relevant no-
tation. We assume the following hierarchy of spaces,

X, = R™, =0,1,2,..., ng<ni<mng<...,
together with the prolongation and restriction operators
p: Xp1— Xy, r: Xp—=>Xoq, (=1,2,....
To each space X, we associate a nonsingular operator,
Ay Xy — X,
We now wish to solve iteratively the linear system

ApyoiZlne = be

max max max

by using a multigrid method. A multigrid iteration results from the recursive
application of a two-grid method. A two-grid method on level ¢ consists of
pre-smoothing steps on level £, a coarse grid correction on level £/ — 1, and v,
post-smoothing steps again on level /. The corresponding error propagation
is

" =[S (1 — pA; P Ag) Sy el

where S, denotes the iteration matrix of the smoother.



2.1 Classical smoothers

We shall limit the present discussion to the choice of the smoother. All other
multigrid components, such as p, r, and A,_;, follow from standard choices.
If the smoother results from a consistent linear iterative method, the iteration
matrix of the smoother, Sy, can be written as

(3) S, =1 — N,A,.

For instance, let A = D + L + U, with D the diagonal, L the lower
triangular part, and U the upper triangular part of A. Then damped Jacobi
smoothing corresponds to

(4) S,=1—-wD'A,
whereas Gauss-Seidel smoothing corresponds to
(5) Sgs=1—(D+ L) A,

In (4) the choice of w must ensure good smoothing properties of the resulting
damped Jacobi method. Yet the “optimal” value of w is known only for
certain model problems (see Sect. 3.2). In contrast, the Gauss-Seidel method
is parameter-free and typically leads to improved smoothing over the damped
Jacobi method. Unfortunately, the Gauss-Seidel method (5) is inherently
sequential and therefore difficult to implement on a parallel architecture. Yet
with an appropriate coloring of the unknowns (e.g., red-black ordering on a
regular grid) it is sometimes possible to attain reasonable parallel efficiency
with the Gauss-Seidel approach.

If neither damped Jacobi nor Gauss-Seidel leads to satisfactory smooth-
ing, one can resort to more robust smoothers, such as the popular ILU
smoothers based on the incomplete LU decomposition (ILU) of A, — see
for instance [26]. Because each ILU smoothing step requires the solution
of upper and lower triangular systems, it remains inherently sequential and
difficult to implement in parallel. It is also difficult to improve the ILU
smoother locally, say near the boundary or a singularity, without seriously
affecting the sparsity of the LU factors.



2.2 SPAI smoothers

Most smoothers commonly used in multigrid methods, such as damped Ja-
cobi, Gauss-Seidel, or ILU, have the form

(6) o = 2w (Al — by),

with T, a (sparse) approximation of A,; moreover, the computational cost
of solving a linear system with matrix W, must be reasonable. In contrast,
the SPAT smoothers lead to the iteration

(7) o =2 — My (A — by),

where M, is sparse and explicitly known. Hence the iteration in (7) re-
quires only matrix-vector multiplications and vector-vector additions, and
no solution of a linear system; it is therefore easy to implement in a parallel
environment.

To construct the sparse approximate inverse M of A, we shall minimize
I — M A in the Frobenius norm for a prescribed sparsity pattern of M — here
we have dropped the index ¢ to simplify the notation. The Frobenius norm,
denoted by || - ||, naturally leads to inherent parallelism because the rows
my, of M can be computed independently of one another. Indeed since

(8) 1= MAIG = llef —maAlf
k=1

the solution of (8) separates into the n independent least-squares problems
for the sparse (row) vectors my,

S

(9) minHe;_mkA“Za k= 17"'7
my,

Here e, denotes the k-th unit vector. Because A and M are sparse these
least-squares problems have small dimensions.

Since an effective sparsity pattern of M is usually unknown a priori, the
original SPAI-Algorithm ([13]) begins with a diagonal pattern. Then the
algorithm proceeds with augmenting the sparsity pattern of M to further
reduce each residual r, = ekT — myA. The progressive reduction of the 2-
norm of 7 involves two steps. First, the algorithm identifies a set of potential
new candidates, based on the sparsity pattern of A and the current (sparse)



residual 7. Second, the algorithm selects the most profitable entries, usually
less than five entries, by computing for each candidate a cheap upper bound
for the reduction in ||rg|l2. Once the new entries have been selected and
added to my, the (small) least-squares problem (9) is solved again with the
augmented set of indices. The algorithm proceeds until each row m; of M
satisfies

(10) lep — miAll2 < e.

Here ¢ is a tolerance set by the user, which controls the fill-in and the quality
of the preconditioner M. A lower value of ¢ usually yields a more effective
preconditioner, but the cost of computing M = SPAI (¢) may become pro-
hibitive; moreover, a denser M results in a higher cost per iteration in (7).
The optimal value of ¢ minimizes the total time; it depends on the prob-
lem, the discretization, the desired accuracy, and the computer architecture.
Further details about the original SPAI-Algorithm can be found in [13].

In addition to SPAI(g), we shall also consider the following two greatly
simplified SPAI smoothers with fixed sparsity patterns: SPAI-0, where M is
diagonal, and SPAI-1, where the sparsity pattern of M is that of A. Both
solve the least-squares problem (9), and thus minimize || — M A||p for the
sparsity pattern chosen a priori. This eliminates the search for the sparsity
pattern of M, and thus greatly reduces the cost of computing the approximate
inverse. The SPAI-1 smoother coincides with the SAI(0,1) smoother of Tang
and Wan [23].

For SPAI-0, M = diag(myy) is diagonal and can be calculated directly:

(11) Mg = 1<k<n,
llal5

with aj the k-th row of A. We note that M is always well-defined if A is
non-singular. Unlike damped Jacobi, the SPAI-0 smoother is parameter-free.

To summarize, we shall consider the following hierarchy of SPAT smoothers,
which all minimize ||I — M A||p for a certain sparsity pattern of M.

SPAT-0: M = diag(myy,) is diagonal, with my; given by (11).
SPAI-1: The sparsity pattern of M is that of A.

SPAI(e): The sparsity pattern of M is determined automatically by the SPAI-
Algorithm [13]. Then each row my, satisfies (10) for a given ¢.
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We have found that in many situations, SPAI-0 and SPAI-1 yield ample
smoothing. However, the added flexibility in providing an automatic criterion
for improving the smoother via the SPAI-Algorithm remains very useful.
Indeed, either SPAI-0 or SPAI-1 can be used as initial guess for SPAI(¢),
and thus be locally improved upon where needed by reducing ¢ (see Section
4.2). For matrices with inherent (small) block structure, typical from the
discretization of systems of partial differential equations, the Block-SPAI-
Algorithm [2] greatly reduces the cost of computing M.

3 SPAI-0 smoothing

In this section we consider the simplest sparse approximate inverse smoother,
SPAI-0. First, we shall show that SPAI-0 satisfies the smoothing property
in two quite general situations. Second, we shall compare the two diagonal
smoothers, SPAI-0 and damped Jacobi, via numerical experiments.

3.1 The smoothing property

From [14] and [15] we recall the following two conditions, which play a fun-
damental role in multigrid convergence theory:

1. The smoothing property ([15], Definition 10.6.3):

(12) | AeSY |2 < n(w)||Adlz, forall 0<v<oo, (>1,

n(v) any function with  lim n(v) = 0.

V=00

2. The approximation property ([15], Section 10.6.3):

C

13 Ay — pAyyr|ls < —2—
( ) || L — PAg—1 ||2—||A£||2

forall ¢>1.

Although we have stated these properties with respect to the Euclidean norm,
other choices are possible. In general, the smoothing and approximation
properties together imply convergence of the two-grid method and of the
multigrid W-cycle, with a contraction number independent of the level num-
ber ¢. Moreover, for symmetric positive definite problems, both conditions



also imply multigrid V-cycle convergence independent of ¢ — see Hackbusch
([15], Sect. 10.6) for details.

The approximation property is independent of the smoother, Sy; it de-
pends only on the discretization (Ay, Ay,_1), the prolongation operator p,
and the restriction operator r. In [15] the approximation property is shown
to hold for a large class of discrete elliptic boundary value problems. For
symmetric positive definite problems the smoothing property usually holds
for classical smoothers like damped Jacobi, (symmetric) Gauss-Seidel, and
incomplete Cholesky. We shall now prove that the smoothing property (12)
holds for SPAI-0 under reasonable assumptions on A,. To do so, we first
recall (in a slightly simpler form) the following result for later reference.

Lemma 1 (Lemma 10.7.4, [15]) Let Ay and W, be symmetric and positive
definite, and Sy = I — W[lAg. Assume that

(14) 0< Ay <TW, forall ¢>0 with 0<TI <2,
and that
(15) Well2 < CwllAdll2, V€= 0.

Then Sy satisfies the smoothing property (12), with
1
(16) n(v) = Cw max{m(v), T =T}, m(v) = —+O0@ ) (v = o)

In (14) and (15) both I and C} must be independent of /.
We shall now apply Lemma 1 to prove that SPAI-0 satisfies the smoothing
property (12). To do so, we must show that W, satisfies (14) and (15), with

I' < 2. Here W, is the inverse of the diagonal approximate inverse defined in
(11). Hence

12
(17) W = diag (—”“’.“2> :

a/ZZ

where a; denotes the i-th row of A — we have dropped the level index ¢
to simplify the notation. Since A is symmetric and positive definite, a; >
0, 1 <i<n, and thus W is positive definite.

Lemma 2 Let W be given by (17). Furthermore, let p; denote the number
of nonzero off-diagonal entries in the i-th row of A, and assume that

(18) p=maxp; <T.

Then A satisfies A <TW, withT = (1++/IT+p)/2 < 2.

9



Proof:
We seek I' < 2 such that A < T'W. First, we let A = D — R, with D =
diag(A). Then

W —-—A>0

a?.
— P(D+diag(zﬂ>)—D+Rzo

— Q5

J#
az;

1 '—1)D+TI'di —L > (.
(19) —= )D +I' diag ;aii +R>0

We note that the first two terms in (19) are diagonal matrices, while all
off-diagonal entries are located in R. We now assume that I' > 1, so that
all entries on the main diagonal in (19) are non-negative. According to
Gershgorin’s theorem, for (19) to hold it is sufficient to have

2
az.
(20) S ayl < (0 - Dag +TY 2, 1<i<n.
J#i JFi i
Next, we divide (20) by a;;, which yields the equivalent condition
(21) S B <—1+4TY 8%, 1<i<n
JFi j#i

Here we have defined

|a;]
Bij = ——.
Y Qg

Since p; is the number of nonzero off-diagonal elements in row ¢ of A, we
conclude by Cauchy-Schwarz that

ST Bi< e D BE<VB Y B 1<i<n
J#i J#i i
Thus, for (21) to hold it is sufficient to have
WY <r—14TY 82, 1<i<n
JFi j#i

10



Therefore, since v = 3., A7,

it is sufficient to require that

is real, non-negative, but otherwise arbitrary,

VPVr <T —1+Tuz, Vz € [0,00),
— T2+ Q20 -1)-pz+ (T -1*>0, Vze0,0),
(22) < (@2I([—1)—-p)>—4I*(T —1)*<0.

The last inequality (22) is equivalent to
—AD( = 1)p+p* <0,

which holds for I' = (1 + /1 + p)/2. The assumption p < 7 yields I' < 2.

Lemma 3 Let W be given by (17), and assume that

2

(23) max Z %

Z

Then W satisfies |[W ||y < C'||A]|2.

Proof:
The proof is immediate, since

Wl = fding(as)ding (1212)

(1)

a;
| ding(as) ]| ding (” ”2) o

1,1,

IN

< Al

O

From lemmas 1, 2, and 3 we now immediately conclude the following
result.

Theorem 1 Let A be symmetric positive definite, and let S = I — MA,
with M the SPAI-0 preconditioner given by (11). Assume that the mazimal
number of nonzero off-diagonal entries in each row (= p) is less than or equal
to 7 (condition (18)), and that (23) holds. Then S satisfies the smoothing
property (12), with n(v) as in (16), Cw = C, and T = (1 4+ /1 +p)/2 < 2.

11



We remark that neither M-matrix properties nor diagonal dominance of
Ay are needed to show that the smoothing property holds for SPAI-0. In
the context of a multigrid convergence analysis the constant C' in (23) must
be independent of the level number ¢. Still, condition (23) is very mild
and satisfied by most reasonable discretization schemes. Condition (18) is
satisfied by standard second-order finite difference approximations of scalar
elliptic boundary value problems in two or three space dimensions. It is also
satisfied by linear finite element discretizations on a triangular mesh, if each
node on the coarsest mesh has at most seven neighbors. This property is
then transfered to all finer levels, if regular mesh refinement is used.

Next, we show that if A is weakly diagonally dominant, that is

Z |aij| S |a“| fOI' all i,

J#L
we may drop condition (18) and thus obtain another criterion for the smooth-
ing property.
Theorem 2 Let A be symmetric, positive definite, and weakly diagonally

dominant. Furthermore, let S = 1 — M A, with M the SPAI-0 preconditioner
given by (11), and assume that

2

(24) S 4o

az.
j#i 0

Then S satisfies the smoothing property (12) with n(v) as in (16), Cy = 2,
andT'=2/(1+C) < 2.

Proof:

Again we seek I' < 2 such that A < T'W. To do so, we first follow the proof
of lemma 2 until equation (21). Now, since A is weakly diagonally dominant,
we have

|as]
25 = S 1%l g
(25) ZB] Z Qi
Jj#i Jj#i
Hence for (21) to hold, it is sufficient to require

L<T—1+T) B 1<i<n,

IR
J#1

12



which is equivalent to

2
r>-— = 1<i<n.
L4252 5

Because of assumption (24) we can choose I' =2/(1 4 C) < 2.
To show that inequality (15) is indeed satisfied with Cy = 2, we first

note that
(il
1M ||2—mgx(

Wl

22

1 2
= IIIZaX <aii + a— Z az’j)

B
1 2
S mzax (057} + a—” <Z |az~j|>
J#L

The weak diagonal dominance of A then implies
[Wll2 < 2maxa; < 2[[All,.

O

Condition (24) is very mild and satisfied by most discretization schemes. It
is not satisfied if a particular row ¢ of A has the single entry a;. In that
case, however, equation i is trivial and can be solved independently of the
remaining equations.

In summary, we have shown for A symmetric positive definite that SPAI-
0 satisfies the smoothing property, either if A is weakly diagonally dominant,
or if the maximal number of nonzero off-diagonal entries per row is less than
or equal to seven.

3.2 SPAI-0 versus Jacobi

Before we proceed with a comparison of the performance of these two diag-
onal smoothers via numerical experiments, we first point out a very special
situation where SPAI-0 and damped Jacobi, with optimal relaxation param-
eter w*, lead to identical smoothers.

13



For the discrete Laplacian on a regular grid with periodic boundary condi-
tions, the damping parameter w*, which is “optimal” with respect to smooth-
ing, is known. Following the standard Fourier analysis in ([25], Section 7.3),
we consider a regular d-dimensional equispaced mesh with n grid points in
each dimension — for simplicity we assume n to be even. Then the eigenvalues
of the discrete Laplacian with periodic boundary conditions are

d
4 WAL
w(l) = 72 E sin? <5j> , 0 = (61,04,...,04),
j=1

with h = 1/n and 0; € {—nm + 27h, —7 + 4xh,... ,x}. Note that § €
H?Zl[—ﬂ', 7]. The iteration matrix of the damped Jacobi method has eigen-
values

We now concentrate on the high frequencies, which correspond to the subset

6. =I-=N\[1(-5.3)

The amount of damping on the high-frequency components is measured by
the smoothing factor,

(@) — NOI
Jot lgggfl (0)]

It is independent of the mesh size but depends on w. The optimal damping
parameter, w*, is that for which the smoothing factor is minimal,

) = min ).

To determine w* we first calculate pgi}'l) For # € ©,, the extreme values of

Z;lzl sin?(f;/2) are 1/2 and d. Thus, we find that
ple) = max{|1 - =, [1 - 20]}.
The minimization of pgi}'l) then yields the optimal damping parameter,

2d
2d +1°

(26) w* =

14



Proposition 1 Consider the discrete Laplacian with periodic boundary con-
ditions in d space dimensions, which results from a standard second-order fi-
nite difference discretization on an equispaced grid. Then SPAI-0 and Jacobi
smoothing, with optimal damping parameter w* given by (26), are identical.

Proof:

Since for the discrete d-dimensional Laplacian we have a; = (2d)h~2 and
\|laill3 = 2d(2d+1)h™*, for all 1 < i < n, the approximate inverse M defined in
(11) for SPAI-0 has the constant diagonal entry m;; = h?/(2d+1). Therefore
M = w*D ! and the SPAI-0 and the damped Jacobi smoothers, with optimal
damping parameter w* given in (26), coincide.

O

In this special situation, the parameter-free SPAI-0 smoother automatically
yields a scaling of diag(A) which minimizes the smoothing factor; in that
sense it is optimal.

Although both SPAI-0 and damped Jacobi yield diagonal smoothers, they
typically differ, even with constant coefficients on an equispaced mesh. In-
deed, the presence of boundary conditions modifies the rows of A,, which
correspond to nodes on the boundary, and thus modifies SPAI-0 locally. We
now compare quantitatively the performance of these two diagonal smoothers
on the following class of model problems:

in €2

—div(a(x, y)VU(.’L’, y)) =1,
0, on 0f2.

27 u(w,y)

First, we choose Q = (0,1)x (0, 1), set a(x,y) = 1, and discretize the prob-
lem with continuous, piecewise linear finite elements on a triangular mesh.
The various meshes are obtained successively by uniform refinement, starting
from the coarsest mesh with a single unknown in the center of €2. Here we
use a multigrid V-cycle iteration with one pre- and one post-smoothing step
(v1 = vy = 1). We recall that SPAI-0 is parameter-free, whereas damped
Jacobi contains the single relaxation parameter w. In general the optimal
damping parameter w* is unknown in advance and must be determined nu-
merically in any given situation.

Is it possible for damped Jacobi to beat SPAI-0 by varying w and thus
determining the optimal value w* 7 In Figure 1 we compare the convergence
rate of SPAI-0 with that of Jacobi smoothing. The minimal convergence rate

15



0.4

0.38 —  : Jacobi B

—————— : SPAI (0)
0.36[- g

T 0.32 B

0.3 B

0.28 i

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9

Figure 1: Comparison of the convergence rates ¢ obtained with SPAI-0 and
damped Jacobi for varying relaxation parameter w — see (29) for the definition
of q.

with damped Jacobi is attained with w* ~ 0.81, but the convergence rate
obtained with SPAI-0 still lies slightly below it.

Next, we repeat the above numerical experiment, first for €2 the L-shaped
domain, and second for discontinuous a(x,y) with contrasts as high as 10°. Tn
all cases the overall picture remains the same: the convergence rate obtained
with SPAI-0 smoothing consistently lies below that obtained with damped
Jacobi smoothing for all values of w. Although the improvement is usually
small, and thus not really significant, it is remarkable because SPAI-0 is
parameter-free.

In summary our numerical experiments with multigrid for 2D elliptic
boundary value problems suggest that SPAI-0 is an attractive alternative
to damped Jacobi. Indeed SPAI-0 is parameter-free and typically leads to
slightly better convergence rates than damped Jacobi.

16



4 Numerical results

To illustrate the usefulness and versatility of SPAI smoothing, we shall now
consider various standard test problems. In all cases we use a regularly
refined sequence of equispaced grids. The differential equation considered is
discretized on the finest level with standard finite differences. The coarse
grid operators are obtained via the Galerkin product formula, A,_; = r A, p,
with r = p” and p standard linear interpolation. We use a multigrid V-cycle
iteration, with two pre- and two post-smoothing steps (v = v, = 2) and
3320) = 0 as initial guess. On the coarsest level (¢ = 0), we solve exactly for
the single unknown remaining at the center of the domain. The iteration

proceeds until the relative residual drops below the prescribed tolerance,

1o~ Aea™|| _
o1

Then we calculate the average rate of convergence,

1/m
b — Apal™ |
(29) o= —r= 1 .
[ol]

We recall that the ordering of the unknowns does not affect the SPAI-
smoothing iteration (7), but that it does affect the Gauss-Seidel iteration. In
all numerical examples we shall use lexicographic ordering of the unknowns.

Clearly, when comparing the performance of various smoothers, we cannot,
limit ourselves to comparing the number of multigrid iterations, but must also
take into account the amount of arithmetic work due to the smoother. To do
so, we calculate the total density ratio, p, of nonzero entries in M to those
in A on all grid levels, 1 < i < ¢, where smoothing is applied:

(30) . Zzi:l nnz(M;) .
> iz 1nz(4;)

Hence the additional amount of work due to the smoother is proportional to p.
For a standard five-point stencil on a regular two-dimensional grid, psparo =~
1/5, like damped Jacobi. Since pspar1 = 1, the SPAI-1 smoother is about
67% times more expensive here than the SPAI-0 smoother. For SPAI(¢), the
total density ratio, pspar(), depends on e: it increases monotonically with
decreasing . We remark that pspare) < 1, whenever SPAI(e) leads to a
sparser approximate inverse than SPAI-1.

(28) 1078
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4.1 Poisson problem

We first consider the Poisson problem on the unit square with Dirichlet
boundary conditions (27). In Table 1 we compare the convergence rates
obtained with various smoothers. All SPAI smoothers lead to h-independent
convergence rates. We observe a steady decrease of the convergence rate,
q, for smaller values of ¢, paralleled, of course, by an increase in p given in
parenthesis. Note that SPAI-1 leads to a more effective but denser smoother
than SPAI(e) with £ = 0.35, yet the situation is reversed as £ decreases below
0.25.

| Grid size || G-S | SPAI-0 | SPAI-1 | SPAI(0.35) | SPAI(0.25) |
3232 [0.04] 0.09 | 0.04 | 0.06(0.7) | 0.03 (1.5)
64x 64 | 0.05| 0.09 | 0.04 | 0.07(0.7) | 0.03 (1.5)
128 x 128 || 0.05 | 0.09 | 0.04 | 0.08(0.7) | 0.04 (L5)

Table 1: Convergence rates ¢ obtained with SPAI-0, SPAI-1, SPAI(¢), and
Gauss-Seidel smoothing. The relative total density, p, defined in (30), is
given in parenthesis. For SPAI-0, p = 0.17 and for SPAI-1, p = 1.

4.2 Locally anisotropic diffusion

We now consider the locally anisotropic diffusion problem

0%y 0*u .
(31) — (V(x,y)@ + 8—312> =1 in (0,1)x (0,1),

with u(z,y) = 0 on the boundary. We set v(z,y) = 1 everywhere except
inside the square [1/4,3/4] x [1/4,3/4], where v(x,y) = v is constant.

In Table 2 we compare the performance of Gauss-Seidel with SPAI smooth-
ing for varying v. For v < 0.1, the convergence rates for SPAI(0.4) lie con-
sistently below those for Gauss-Seidel, while SPAI(0.25) leads to an even
greater improvement. In particular, for v = 0.01 Gauss-Seidel smoothing
barely converges, whereas SPAI(e) with & < 0.4 still yields acceptable con-
vergence. Figure 2 shows that Gauss-Seidel is unable to smooth the error
throughout €2, mainly in the z-direction. In contrast, SPAI(¢) smoothing
with &€ = 0.25 results in a smooth error across the entire computational do-
main for » = 0.01. In Figure 3 we compare rows ejTA_1 and ejTM, where M
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Figure 2: The error after five smoothing steps for the locally anisotropic
diffusion problem with v = 0.01. Left: Gauss-Seidel; right: SPAI(0.25).

is computed with SPAI(0.25), for two unit basis vectors e;. We consider e;
corresponding to the grid points (1/2,1/2) in the center of 2, where v = 0.01,
and (1/8,1/8) inside the surrounding region where v = 1. We observe how
the approximate inverse, computed by the SPAI-Algorithm, captures the dis-
tinct local features of the true inverse. We recall that the sparsity pattern of
M is not fixed a priori, but adapted automatically by the SPAI-Algorithm.
For v < 0.1, the SPAI(0.4) smoother is not only more effective but also
sparser than the SPAI-1 smoother. Hence the sophisticated search of the
SPAI-Algorithm for an effective sparsity pattern of M clearly benefits the
smoother.

Smoother v

1 [ 1w0' | 10* | 107 | 10°
Gauss—Seidel 0.05 0.42 0.89 0.97 0.98
SPAI-0 0.09 0.72 0.95 0.98 0.98
SPAI-1 0.04 0.37 0.89 0.97 0.98
SPATI(0.4) 0.12 (0.7) | 0.16 (0.7) | 0.81 (0.7) | 0.95 (0.8) | 0.97 (0.8)
SPAT(0.25) 0.04 (1.5) | 0.07 (1.6) | 0.37 (1.7) | 0.75 (1.9) | 0.87 (1.9)

Table 2: Locally anisotropic diffusion: convergence rates ¢ for varying v on
a 128 x 128 grid. The relative density, p, is given in parenthesis.
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Figure 3: Comparison of a row of the true inverse, ejTA_l (left), and of the
approximate inverse, ejTM (right), for » = 0.01, where M is computed with
SPAI(0.25). Top: e; corresponds to the grid point (1/8,1/8); bottom: e,
corresponds to the grid point (1/2,1/2).

These results demonstrate the usefulness of SPAI smoothing; they cor-
roborate previous results obtained in [23], with v = 0.01 everywhere in .
Nevertheless, as the contrast in the anisotropy increases further, the con-
vergence rates obtained with SPAI smoothing deteriorate as well. If the
anisotropy occupies a small area of the domain of interest, say only within
a boundary layer, further reducing € enables to locally adjust the smoother
and still reach acceptable convergence rates. But if the anisotropy is strong
and present throughout the domain, the SPAI smoothers will become too
dense, and thus too expensive.

Of course, various standard approaches combined with Gauss-Seidel smooth-
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ing, such as line relaxation or semi-coarsening, allow to circumvent some of
these problems. However, these techniques are specifically designed for reg-
ular Cartesian grids in two space dimensions, when the anisotropy is usually
constant and aligned with the grid. They are difficult to use on unstruc-
tured grids and become expensive in three dimensions. In contrast, the
SPAT smoothers are not tied to a regular mesh or any special discretization;
moreover, they do not encounter any particular hurdle in three dimensions.

4.3 Convection-diffusion problems

We now consider

(32) —vAu(z,y) + v(z,y) - Vu(z,y) =1, v >0,

in the unit square, where u vanishes on the boundary. Here u represents any
scalar quantity advected by the flow field #. For convection dominated flow,
v << h, the linear systems cease to be symmetric and positive definite, so
that these problems lie outside of classical multigrid theory. We use centered
second-order finite differences for the diffusion, but discretize the convection
with first-order upwinding to ensure numerical stability.

Table 3: Constant flow direction with angle a from the z-axis: the conver-
gence rates, ¢, obtained with different smoothers on a 128 x 128 grid, for
the diffusion and the convection dominated cases, ¥ = 0.1 and v = 0.001,
respectively. The relative density, p, is given in parenthesis.

| Problem | G-S¢ | SPAI-0 | SPAI-1 | SPAI(0.35) | SPAI(0.25) |
v=01a=45 0.05 | 0.11 | 0.05 | 0.08 (0.8) | 0.04 (1.6)
v=01,a=225 [ 005 011 | 0.05 | 0.08(0.8) | 0.04 (1.6)
v =0.001, o = 45° t 0.98 [ 0.98 [ 0.06 (L.7) [ 0.02 (2.2)
v =0.001,0=225° | 1§ 0.98 | 0.98 | 0.06 (1.7) | 0.02 (2.2)

First, we consider a situation of unidirectional flow, with angle o from
the z-axis, that is with constant flow direction #(z,y) = [cos(«),sin(«)]. In
Table 3 we compare the performance of Gauss-Seidel with SPAI smoothing
on a regular 128 x 128 grid. For diffusion dominated flow, v = 0.1, the
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Figure 4: Rotating flow, v = 1073, 32 x 32 grid: flow field @#(z,y) (upper
left); the effect of three smoothing steps applied to an initially random error:
Gauss-Seidel smoothing (upper right), ILU(0) smoothing (lower left), SPAI-
1 smoothing (lower right). Note that Gauss-Seidel is unable to smooth the
error throughout the domain.

convergence rates obtained either with Gauss-Seidel or with SPAI smoothing
are essentially independent on the flow direction.

For convection dominated flow, the multigrid iteration with Gauss-Seidel
smoothing does not converge, when the coarse grid operators are computed
via Galerkin projection. To obtain a convergent scheme, one needs to com-
pute the coarse grid operators via discrete coarse grid approximation, that
is by discretizing (32) explicitly on all grid levels ([25], pp. 79). In that
situation it is well-known that the convergence with Gauss-Seidel smooth-
ing strongly depends on the ordering of the unknowns: the mere reversal
of the flow direction (or equivalently the ordering of the unknowns) results
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in a large increase in the convergence rate, from ¢ = 0.17 to ¢ = 0.55; the
contrast becomes even more striking for smaller values of v. Indeed, when
the flow direction is aligned with the ordering of the unknowns, the problem
degenerates into a quasi-lower triangular system as v — 0. In that situation,
the Gauss-Seidel inverse, (L + D)~! essentially yields A~! and thus results
in rapid convergence. In contrast, the SPAI smoothers are not affected by
the ordering of the unknowns, and thus yield identical results in Table 3 for
both o = 45° and a = 225°. For v = 0.001 the performance of SPAI-1 is
poor, while SPAI(e) with ¢ < 0.35 yields excellent convergence rates at little
extra cost.

Next, we consider a situation of rotating flow, where u solves (32) with
U(x,y) = [y —1/2,1/2 — z]. In this special situation, shown in Figure 4, it is
generally impossible to reorder the unknowns so that the entire system be-
comes lower triangular for vanishing v. As a consequence, the multigrid iter-
ation with Gauss-Seidel smoothing usually diverges for small . Convergence
can be attained with symmetric Gauss-Seidel smoothing, that is by repeated
application of the Gauss-Seidel iterations in natural and reverse ordering of
the unknowns [25]; this approach does not generalize easily to unstructured
grids. In contrast, SPAI-1 and SPAI(s) lead to convergent multigrid iter-
ations regardless of the flow pattern or the ordering of the unknowns, and
without modifying additional components of the multigrid iteration.

Table 4: Diffusion dominated case, v = 0.1: the convergence rates ¢ obtained
with various smoothers. For SPAI(0.35) the relative density is p = 0.7.

| | Gauss-Seidel | SPAI-0 | SPAI-1 | SPAI(0.35) |

64 x 64 0.04 0.10 0.04 0.07
128 x 128 0.05 0.10 0.04 0.08
256 x 256 0.05 0.10 0.04 0.08

In Table 4 we observe that all SPAI smoothers yield h-independent con-
vergence rates in the diffusion dominated case, with ¥ = 0.1. Although the
convergence rate essentially doubles from SPAI-1 to SPAI-0 smoothing, the
density ratio p drops from 1 to 0.17, which reduces the amount of work in
applying the smoother. For SPAI(0.35) the convergence rate lies between
those obtained with SPAI-0 and SPAI-1, and so does the relative density
p=0.7.
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Finally, we set v = 1073 and thus consider a convection dominated ro-
tating flow, that is ¥ << h. Both the convergence rates and the relative
densities p are shown in Table 5 for different smoothers. Neither Gauss-
Seidel nor SPAI-0 smoothing lead to a convergent multigrid iteration. Indeed
Gauss-Seidel is unable to smooth the error throughout the domain due to the
absence of a dominant “unidirectional” flow direction, as shown in Figure 4.
Again we note that convergence may be achieved by using symmetric Gauss-
Seidel smoothing [25]. Our attempt to use ILU(0) on the 128 x 128 grid
eventually failed because of numerical instability encountered in the com-
putation of the incomplete LU-decomposition — alternative variants of ILU
would probably work [26].

Table 5: Convection dominated case, ¥ = 1073: the convergence rates ¢
obtained with various smoothers. The relative density, p, is given in paren-
thesis.

| [ SPAT-1 [ SPAT(0.5) | SPAI(0.4) [ SPAT(0.3) [ SPAT(0.2) |

128 x 128 | 0.61 | 0.67 (0.4) 0.42 (0.6) 0.22 (1.4) 0.09 (3.6)
256 x 256 | 0.68 | 0.75 (0.2) | 0.45 (0.6) | 0.31 (1.3) | 0.12 (3.2)

Table 5 illustrates the typical behavior of SPAI smoothing versus . It
shows that reducing € in the SPAI Algorithm produces a steady reduction
in the convergence rate. Hence a greater reduction of || — M A||r typically
yields an improved smoother. Of course, as £ decreases, both the work in
computing and in applying the smoother M rapidly increase, so that the
optimal value of £ with the smallest total time probably lies between 0.2 and
0.5 for this problem. For SPAI(0.4) both ¢ and p remain essentially constant
as the mesh is refined. As we compare the performance of SPAI-1 with that
of SPAI(0.4), we remark that both the convergence rate ¢ and the total den-
sity ratio p are reduced. Therefore the sophisticated search of the original
SPATI-Algorithm ([13]) benefits the smoother by selecting an effective sparsity
pattern for M clearly, the increase in the cost of computing M is worthwhile
when memory resources are critical. It may even pay off in reducing total
time, since fewer nonzero entries in M results in a cheaper smoother. Again
these considerations are problem and architecture dependent; hence the im-
portance of providing the user with a simple but effective way to tune the
algorithm, here by adjusting the value of ¢.
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Table 6: Robust convergence with SPAI (0.3) smoothing with respect to v
on a 128 x 128 grid: both the convergence rate ¢ and the relative density p
are shown.

v=1|lv=01|v=001|v=102|v=10*|v=10°|v=10"°

0.07 0.07 0.05 0.22 0.73 0.74 0.75

9

p| 0.86 0.85 0.92 1.41 211 2.29 2.31

What if we decrease v while keeping the grid spacing fixed 7 Do we obtain
a robust multigrid algorithm (in the sense of [26]) ? In Table 6 we show the
convergence rate and density obtained with SPAI (0.3) on the 128 x 128 grid
for varying v. Although both ¢ and p vary throughout the range of values
for v, they remain bounded as v — 0.

5 Conclusion

Our numerical results show that sparse approximate inverses based on mini-
mizing the Frobenius norm are an attractive alternative to classical Jacobi or
Gauss-Seidel smoothing. For symmetric positive definite problems, SPAI-1
typically behaves like Gauss-Seidel, whereas SPAI-0, which is parameter-free,
usually has a slight edge over damped Jacobi with optimal relaxation parame-
ter. Moreover, our proof of the smoothing property for SPAI-0 applies also in
situations, where that of Jacobi smoothing cannot be shown. For convection
dominated flow problems, such as rotating flow, the ordering independence
of SPAI-1 leads to a more robust smoother than Gauss-Seidel. In situations,
where neither SPAI-0 nor SPAI-1 suffice, SPAI(¢) automatically improves the
smoother locally where needed. Both the computation and the application
of the SPAI smoothers are inherently parallel.

Nevertheless, our results also show the limitations of SPAI smoothing
in difficult situations, such as strong anisotropy, where the lack of isotropic
smoothing needs to be compensated by appropriate prolongation and restric-
tion operators. It is very interesting to combine this new hierarchy of local
and inherently parallel smoothers with matrix-dependent coarsening strate-
gies, such as found in algebraic multigrid [21]. The first two authors are
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currently pursuing these issues and will report on them elsewhere [9] in the
near future.

The C/MPI version of the SPAI-Algorithm ([1, 2]) with Matlab and
PETSc interfaces can be downloaded from the following address:
http://www.sam.math.ethz.ch/ grote/spai/.
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