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Abstract

Proteomics is a branch in biology that aims to comprehensively characterize a proteome.

Mass spectrometry based proteomics has proven to be the most powerful approach to

achieve this goal. This thesis introduces statistical concepts to optimally design and val-

idate shotgun proteomics experiments and thereby enables to efficiently achieve reliable

and extensive proteome coverage.

The first part reports methods to estimate false discovery rates for peptide and pro-

tein identifications. These approaches enabled to reliably and comprehensively identify

unusually modified protein variants. It turned out that these variants contribute to a sig-

nificant fraction of the spectral evidence. This work presents a generalized target-decoy

approach to estimate false discovery rates for protein identifications. This work shows

evidence that the reliability of protein identifications in large studies has so far been

largely overestimated and provides guidelines to compile identifications at well defined

confidence. This part concludes with formulating a generic framework to compare pro-

tein inference engines based on protein identification false discovery rates. A systematic

comparison of thousands of protein inference variants revealed that simple approaches

yield optimal inference performance.

The second part develops a nonparametric Bayesian approach to optimally design shot-

gun proteomics studies. Therefore the proteome coverage prediction task is introduced.

An extended infinite Markov model is presented to perform proteome coverage prediction

for simple shotgun proteomics experiments is presented. To capture the intricate similar-

ities among peptide distributions arising in integrated shotgun proteomics studies, this

work developed the general concept of the fractal Dirichlet process that augments the

hierarchical Dirichlet process by introducing self-referential base measures. The fractal

process is successfully applied to predict proteome coverage for integrated shotgun pro-

teomics datasets. Rational stop criteria for these studies are discussed and evaluated by

means of the proteome coverage prediction approaches. Finally the proteome coverage
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approaches are integrated into a study design framework that enables to determine an

experimental sequence that achieves maximal expected increase in proteome coverage.
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Zusammenfassung

Die Proteomik ist ein Teilbereich der Biologie, der die vollständige Charakterisierung

eines Proteoms zum Ziel hat. Massenspektrometrie basierte Proteomik hat sich als

erfolgreichste Strategie zum Erreichen dieses Ziels herausgebildet. Diese Arbeit stellt

statistische Methoden zur optimalen Planung und Validierung von Shotgun-Proteomik-

Experimenten vor. Diese Methoden ermöglichen eine effiziente, zuverlässige und zugleich

umfassende Proteomcharakterisierung.

Der erste Teil der Arbeit stellt Methoden zur Schätzung von False Discovery Raten für

Peptid- und Proteinidentifikationen vor. Diese Methoden ermöglichen die zuverlässige

und umfassende Identifikation von ungewöhnlichen chemischen Proteinmodifikationen.

Die Anwendung dieser Methoden hat gezeigt, dass diese Varianten zu einem beträcht-

lichen Anteil der massenspektrometrischen Daten beitragen. Diese Arbeit stellt einen

generalisierten Target-Decoy Ansatz zur Schätzung von False Discovery Raten für Pro-

teinidentifikationen vor. Unsere Resultate zeigen, dass die Zuverlässigkeit von Pro-

teinidentifikationen in grossen Studien bis dato bei weitem überschätzt wurde. An-

gesichts dieser Resultate schlagen wir Richtlinien für die Zusammenstellung von Pro-

teinidentifikationen vor, die eine definierte Konfidenz gewährleisten. Dieser Teil schliesst

mit der Formulierung eines generischen Systems zum Vergleich von Proteinidentifika-

tionsmethoden, das die Zuverlässigkeit der Identifikationen berücksichtigt. Ein system-

atischer Vergleich von tausenden von Proteinidentifikationsvarianten hat gezeigt, dass

einfache Methoden bereits optimale Performanz erzielen.

Der zweite Teil der Arbeit entwickelt einen nichtparametrischen Bayesschen Ansatz

zur optimalen Planung von Shotgun-Proteomik-Studien. Hierfür wird die Aufgabe der

Proteomabdeckungsvorhersage eingeführt. Ein erweitertes infinites Markovmodell wird

zur Durchführung der Proteomabdeckungsvorhersage für einfache Shotgun-Proteomik-

Experimente vorgestellt. Diese Arbeit stellt das neue Konzept eines fraktalen Dirichlet

Prozesses vor, um die Ähnlichkeit der Peptidverteilungen in integrierten Proteomikstu-
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dien zu erfassen. Der fraktale Dirichlet Prozess erweitert den hierarchischen Dirichlet

Prozess um selbstbezügliche Basismasse. Der fraktale Dirichlet Prozess wird erfolgreich

zur Proteomabdeckungsvorhersage für integrierte Proteomikstudien verwendet. Diese

Arbeit diskutiert rationale Stopkriterien für derartige Studien und evaluiert diese mit

Hilfe der vorgestellten Methoden zur Proteomabdeckungsvorhersage. Schliesslich wer-

den die Methoden zur Proteomabdeckungsvorhersage in einem System zur Planung von

Proteomikstudien eingesetzt, dass eine Sequenz von Experimenten bestimmt, die den

maximalen erwarteten Zuwachs der Proteomabdeckung erzielt.
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1 Introduction

The field of proteomics is a branch of biology that aims to comprehensively characterize

the protein complement of a genome, i.e. the respective proteome. Recent technological

advances have enabled biologists to comprehensively monitor a proteome under system-

atic and specific perturbations and thereby to contribute to systems level models of

biological processes at molecular resolution. Mass spectrometry based proteomics has

emerged as the most powerful approach to substantially cover a proteome. Projects

aiming at extensive proteome coverage typically involve extensive experimentation and

thereby accumulate large amounts of noisy mass spectrometrical data [2]. The neces-

sary statistical methods to design such studies and assess the reliability of their reported

protein identifications have been poorly understood until recently.

This thesis develops novel statistical concepts to optimally design and val-

idate shotgun proteomics experiments and demonstrates how these are ap-

plied to efficiently achieve reliable and extensive proteome coverage.

The most extensive proteome coverage has been achieved by a strategy referred to as

shotgun proteomics. Briefly, proteins are extracted from their biological source, enzy-

matically digested and optionally fractionated. The resulting peptide mixtures are then

analyzed by tandem mass spectrometry. A range of search engines is available to sub-

sequently infer peptide and protein identities from the acquired peptide fragment ion

spectra.

The stochastic relationship between the object of interest, the peptide and its indirect

observation, the fragment ion spectrum, endow peptide and protein identifications with

uncertainty. The ability to quantify this uncertainty constitutes an indispensable prereq-

uisite to evaluate these identifications. The first part of this thesis presents approaches to

quantify this uncertainty in terms of false discovery rates. These approaches generalize

the target-decoy strategy for peptide-spectrum matches from simple database searches.
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1 Introduction

I first adapted the target-decoy strategy for iterated database searches that enables to

comprehensively account for modified variants of peptides and proteins that are not

reported in protein databases and found that these variants contribute to a significant

proportion of the spectral evidence.

Protein identifications are defined by assemblies of peptide-spectrum matches and con-

stitute the biologically relevant outcome of a shotgun proteomics experiments. Since

the uncertainty afflicted to protein identifications has been only poorly understood until

recently, there have been many debates how to properly evaluate shotgun proteomics

studies aiming at large proteome coverage. This work reports a target-decoy strategy

to generically estimate false discovery rates for protein identifications. This approach

allowed for the first time to assess the reliability of protein identifications across data

sets of arbitrary size. We particularly found that the fraction of false positive iden-

tifications has been severely underestimated in large shotgun proteomics studies. We

consequently provide rational guidelines to compile reliable protein identification sets

from these studies.

The lacking ability to assess the reliability of protein identifications had so far precluded

a fair comparison of the many available protein inference engines. We proposed a per-

formance measure for protein inference based on protein identification false discovery

rates that enabled us to perform such a comparison. The benchmark of thousands of

inference variants on the largest publicly available shotgun proteomics dataset for C. el-

egans indicated that already the most simple protein inference approaches yield optimal

performance.

The second part of this thesis develops a nonparametric Bayesian framework to opti-

mally design a shotgun proteomics study. Complementary to the efforts to optimally

exploit the given data as addressed in the first part, this approach aims at deciding

which experiments to carry out in order to generate the most informative data.

In a first step, I have introduced the task of proteome coverage prediction that refers

to estimating the expected number of proteins to be discovered upon carrying out a

specified sequence of further experiments. Proteome coverage prediction constitutes a

central task in optimal design of a shotgun proteomics study. Besides its role in study

2



1 Introduction

design, proteome coverage prediction enables to formulate rational stop criteria for al-

ready advanced studies that already have achieved close to maximal proteome coverage.

The liquid chromatography tandem mass spectrometry marks the elementary experiment

of a shotgun proteomics study. I have developed an extended infinite Markov model that

enabled me to predict proteome coverage for repetitions of such an experiment. Pro-

teome coverage prediction for a D. melanogaster data set revealed that maximal coverage

might be constrained by the accumulation false positive peptide identifications and pre-

maturely achieved before reaching saturation coverage.

Most large shotgun proteomics build on multidimensional fractionation experiments that

study an ensemble of different and yet similar peptide or respectively protein distribu-

tions. A model for a multidimensional fractionation experiment requires to account for

this similarity.

This requirement inspired the novel general concept of the fractal Dirichlet process. The

fractal Dirichlet process generalizes the hierarchical Dirichlet process by introducing self

referential base measures and thereby enables to explicitly capture similarities among

a subset of members of a set of discrete distributions. The description of the fractal

Dirichlet process is completed by providing a Gibbs sampler for fully Bayesian inference.

I present a variant of the fractal Dirichlet process to perform proteome coverage pre-

diction for multidimensional fractionation experiments. Application of this method to

a dataset acquired for the bacterium L. interrogans revealed that saturation coverage

had already been achieved and that further experimentation is not expected to yield a

significant number of protein discoveries.

In conclusion, this thesis describes the optimal design of a shotgun proteomics study.

Optimal design is formulated as the experiment sequence that maximizes the expected

proteome coverage. We show that this optimization task reduces to the maximum k-

cover problem. We explore different routes to solve and to practically apply this optimal

design task.
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1 Introduction

1.1 Contributions

(1) Target-decoy strategy for iterated database searches

(2) Comprehensive identification of modified peptide/protein variants

(3) False discovery rates for protein identifications

(4) Local false discovery rates for protein identification subsets

(5) Guidelines for statistically sound evaluation of shotgun proteomics studies

(6) Protein inference engine benchmark framework

(7) Proteome coverage prediction task

(8) Extended infinite Markov Model formulation of LC-MS/MS experiments

(9) Fractal Dirichlet processes

(10) Fractal Dirichlet process model of multidimensional fractionation experiments

(11) Rational stop criteria for shotgun proteomics studies

(12) Optimal design of shotgun proteomics studies

1.2 Authorship

Unless otherwise noted, the authorship of the following work is as follows. I developed

and implemented the main ideas of each project under the supervision of Ruedi Aebersold

and Joachim Buhmann. At this point I want to acknowledge Alexander Schmidt for

sharing the D. melanogaster and L. interrogans dataset for several projects presented

in this thesis.
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2 Proteomics

The dramatic technological advances in biology have enabled researchers to monitor

biological systems at ever increasing throughput, integrity and resolution. These de-

velopments gave rise to the so called omics fields, among them the field of proteomics.

Proteomics focuses on the characterization of the protein complement of a genome, i.e.

the respective proteome [3]. Proteomics contributes essentially to the development of

systems level models for cellular dynamics since most of the processes in cellular systems

are mediated by proteins [76]. The following sections will give an overview of the field of

proteomics and will particularly focus on aspects of mass spectrometry based proteomics

that this work elaborates on.

2.1 Protein primer

Proteins are highly structured amino acid chains that are involved in almost every pro-

cess of a biological system. Twenty different basic amino acids serve as building blocks

of these chains. Each of these amino acids features particular physico-chemical proper-

ties, such as e.g. volume, hydrophobicity, charge, isoelectric point, polarity (Fig. 2.1a).

Considering this diversity and the large amount of possible amino acid sequences, it

becomes clear that proteins constitute a very heterogeneous class of molecules in terms

of physico-chemical properties and are thus suited to implement the versatile molecular

machinery in biological systems.

The amino acids in a protein are coupled by means of peptide bonds (Fig. 2.1b). Pep-

tide bonds will play an important role as “pull linkage” of mass spectrometry based

proteomics approaches. A typical protein counts about 200 linearly coupled amino acids

(primary structure). Short amino acid subsequences turn out to form characteristic

structural patterns (secondary structure), such as alpha helices or beta sheets. The

substructures of a protein fold into a defined three dimensional structure and allow the

protein to exert its function in a cell (Fig. 2.1c). Some proteins further undergo a for-
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Figure 2.1: (a) Chemical structure of alanine, an example amino acid. Important functional
groups are depicted. Amino acids other than alanine feature a different side chain. (b) Dimer
of alanines coupled by a peptide bond. (c) Three dimensional structure of a myoglobin,
the first protein for which a structure has been determined [73]. Secondary structures are
highlighted by “cartoon” view.

mation of multimolecular complexes to be fully functional (quaternary structure).

Proteins are synthesized in the cell according to the central dogma of molecular biol-

ogy. The genome constitutes the blueprint for all protein sequences of an organism. The

genome is essentially a very long sequence of nucleotides, the human genome for instance

counts about three billion nucleotides. Those parts of the genome that contain protein

coding sequences are referred to as genes. Any cellular system implements the same

steps to synthesize a protein according to the template encoded by a gene. This process

is referred to as gene expression and it can be dissected into two steps, transcription and

translation. Transcription refers to the process of synthesizing an mRNA transcript that

corresponds to a (complementary) copy of the gene sequence. In the following trans-

lation step the transcript is processed by a complex protein machinery which catalyzes

the synthesis of the amino acid chain encoded by the transcript. Optionally, proteins

might be post-translationally modified by conjugation with some chemical agent, such

as e.g. a phosphoryl group.

Proteins carry out a variety of functions. Enzymes are a class of proteins that serve as

6



2 Proteomics

catalysts of chemical reactions in a cellular system. Our metabolism would not work

efficiently without these protein catalysts. Another important role of proteins is to con-

tribute to structures stabilizing a cell, such as e.g. actin filaments. Proteins play a

crucial role in a cell’s response to changes of its environment, by acting as molecular

sensors and mediators of signal transduction. Specific chemical protein modifications,

such as e.g. phosphorylations, play an important role of proteins as information carriers.

These general examples are only a very small selection among the many proteins and

their even more numerous functions.

A systems level understanding of biological systems requires to comprehensively monitor

the entirety of proteins, i.e. the proteome. The field of proteomics aims at achieving

this facet of systems biology. Due to the dramatic developments of mass spectrometry

based proteomics approaches this goal is within reach now.

2.2 Shotgun proteomics

Proteins have been a long standing focus of biology research due to their important

and ubiquitous role in biological systems. Until recently the intricate protein chemistry,

complexity and dynamic range precluded to systematically explore a proteome.

Identification of a single protein constituted a major undertaking some decades ago. The

protein of interest had to be first isolated by biochemical purification [121] and second

sequenced by Edman degradation [39]. Gel based protein separation techniques allevi-

ated the isolation step to some extent [98, 143]. Protein sequencing though remained

cumbersome.

Several technological advances revolutionized the study of proteins. (1) The genomic

revolution gave rise (and still does) to numerous genome sequences, with the human

genome being the most prominent one [137]. This wealth of genomic information helped

to compile comprehensive protein databases. It turns out that protein identification is a

much easier task if expectations about possibly present proteins can be narrowed down

by means of a protein database. (2) Mass spectrometry was developed up to a level

to routinely measure biomolecules such as polypeptides [45, 69]. Mass spectrometrical

methods turned out to be a generic high throughput alternative to conventional protein

sequencing approaches [11].
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These advances laid the ground for the shotgun proteomics approach, enabling biologists

to identify thousands of proteins at once. This approach borrows from its namesake, the

genome shotgun sequencing approach which reconstructs whole genomes from sequenc-

ing random DNA fragments [50]. The shotgun proteomics approach operates on the

level of protein fragments, i.e. peptides to reconstruct the ensemble of proteins present

in a biological sample [65]. Both approaches implement a divide-and-conquer strategy

commonly encountered in computer science, i.e. to solve a difficult task by breaking it

down to many related easy tasks [28]. The reconstruction of the difficult task’s solution

is typically non-trivial.

Shotgun proteomics workflows comprise three steps (Fig. 2.2). First, proteins are bio-

chemically extracted from a biological sample and then, they are enzymatically digested

to yield a complex ensemble of peptides. Protein and/or peptide ensembles are option-

ally further fractionated according to physical/chemical/biological properties. Second,

tandem mass spectrometry is used to sample and identify individual peptide species

present in the resulting ensembles and to finally recover the set of proteins initially

present in the biological sample.

2.2.1 Fractionation techniques

The complexity of a proteome poses sizable challenges for its systematic exploration.

The protein or respective peptide mixture resulting from a whole proteome extraction

is by far too complex to be characterized directly by mass spectrometry. A variety of

physico-chemical approaches have been proposed to disperse these mixtures into more

tractable mixtures of lower complexity.

Two-dimensional polyacrylamide gel electrophoresis has long been the separation tech-

nique of choice. This approach operates on the level of intact proteins. Proteins are

consecutively separated according to two properties. The first step typically involves

isoelectric focusing according to isoelectric point. In a second electrophoresis step pro-

teins are separated according to molecular weight. In principle, this technique is able to

resolve thousands of proteins. However, several important protein classes are difficult to

detect by gel based separation, such as e.g. the class of hydrophobic proteins [114]. This

phenomenon particularly complicates the study of membrane proteins. In addition, low

abundant proteins have shown to be underrepresented after gel separation [60]. These
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Figure 2.2: Shotgun proteomics workflow. Starting from a protein mixture, proteins are first
enzymatically digested. The resulting peptide mixture is optionally fractionated according to
a physical property other than hydrophobicity. The final peptide mixtures are analyzed by
liquid chromatography tandem mass spectrometry (LC-MS/MS). The resulting fragment ion
spectra constitute the data output of such a shotgun proteomics experiment. Peptide and
protein identities are inferred in a two step procedure. Fragment ion spectra are first matched
to peptide in a protein database, yielding a set of peptide-spectrum matches (PSM). Protein
identifications are inferred by appropriately assembling the peptide-spectrum matches.

deficiencies disqualify gel based approaches as a separation techniques for global analy-

sis of a proteome. Consequently, there has been a transition towards gel free separation

approaches that operate on the level of peptides rather than proteins [104].

Reversed phase liquid chromatography (LC) constitutes the central fractionation tech-

nique of mass spectrometry based proteomics approaches [38]. Reversed phase liquid

chromatography is typically performed on peptide mixtures. The separation device of

the chromatography system consists of a column that holds a hydrophobic matrix of

alkyl chains (stationary phase). A peptide mixture is injected into the column under

constant buffer flow (mobile phase). The time difference between injection and elu-

tion of a peptide is referred to as retention time. The retention time of peptides of a

particular peptide species is determined by the strength of their interaction with the

matrix. As a rule of thumb, reversed phase liquid chromatography separates according

to hydrophobicity. In the context of mass spectrometry based proteomics workflows, the

chromatography system directly interfaces a mass spectrometer [142]. This setup allows

to automatically analyze the eluting peptide mixtures by tandem mass spectrometry
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without any further intervention.

Multidimensional fractionation approaches comprise multiple different fractionation steps

[55]. In order to achieve good separation performance these fractionation steps are ideally

chosen to be orthogonal. Besides typically including reversed phase liquid chromatog-

raphy, these approaches consider fractionation steps separating according to physico-

chemical properties other than hydrophobicity. Popular properties are isoelectric point,

charge state, size and molecular weight. These respective fractionation steps are fre-

quently implemented in a liquid chromatography system with an appropriate stationary

phase [93, 102, 135] or an electrophoresis system [92].

Other approaches deal with the complexity of a proteome by focusing on an information

rich fraction of a proteome. Previous work covers approaches enriching for e.g. cysteine-

containing peptides [61], phosphorylated peptides [152, 47], or glycosylated peptides

[149].

The complexity of a proteome by far exceeds the capacity of contemporary mass spec-

trometers in the context of shotgun proteomics workflows. Fractionation strategies ef-

fectively reduce the complexity of the peptide mixtures that are subjected to mass spec-

trometrical analysis and, therefore, they constitute a prerequisite for a comprehensive

analysis of a proteome.

2.2.2 Mass spectrometry

Mass spectrometry has emerged as the central analytical technology to identify proteins.

Compared to chemical sequencing or antibody based approaches, mass spectrometry is

unsurpassed in its combination of throughput, sensitivity and information rich readout

[110].

A mass spectrometer consists of three main components, an ion source, a mass analyzer

that measures the mass-to-charge ratio (m/z) of the ionized analytes, and a detector

that counts the number of ions at each m/z value. Soft ion sources like electrospray

[45] or matrix assisted laser desorption ionization [69] intactly ionize large biomolecules.

This development rendered mass spectrometry amenable to proteomics. Typical mass

analyzers comprise the time-of-flight, ion trap, Fourier transform ion cyclotron or orbi
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trap analyzer. These analyzers differ in their characteristics, having their weaknesses

and strengths. [38] provides a brief comparison in terms of mass accuracy, resolving

power, sensitivity, dynamic range and throughput.

Mass spectrometry supported to easily identify substantially purified proteins by pep-

tide mass fingerprinting [62]. This task typically arises after performing two-dimensional

polyacrylamide gel electrophoresis. Each spot on the resulting gel is highly enriched for

a single protein. Peptide mass fingerprinting consists of first enzymatically digesting the

purified protein, measuring the masses of the resulting peptides and to reconstruct the

protein’s identity by matching the peptide masses to a protein database.

Mass spectrometrical analysis of complex protein or respectively peptide mixtures is

more involved. Peptide mass fingerprints are not useful here since in general, they do

not unambiguously identify a protein in this context. Mass spectrometers that are suited

to analyze a complex mixture allow to sequence its peptide species. These instruments

therefore implement a two step scanning procedure that first registers the m/z ratios of

all species of a mixture (MS1 level), then selects, isolates and fragments one of these

species and records the resulting fragment ion spectrum (MS2 level) [91].

Peptide species designated for fragmentation are typically selected in a data dependent

fashion, i.e. randomly selected from the strongest signals at MS1 level. This selection

strategy has been successfully applied in numerous studies though it tends to system-

atically identify highly abundant proteins and less so low abundant ones. Directed pro-

teomics approaches circumvent this drawback by systematically registering all signals

at MS1 level in preparatory experiments and to exhaustively target these in subsequent

experiments [118].

Most mass spectrometers implement a peptide fragmentation mechanism referred to as

collision induced dissociation, where peptide fragmentation is invoked by allowing for

collision with surrounding molecules [91]. This mechanism has turned out to make pep-

tides preferably break across the peptide bond boundaries of peptides (Fig. 2.3). This

convenient phenomenon supports to read out the amino acid sequence directly from the

fragment ion spectrum as long as all of the peptide bonds break. Other complemen-

tary fragmentation mechanisms have been proposed to deal with missing fragments in

collision induced dissociation. Such mechanisms comprise for instance electron capture
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Figure 2.3: Fragmentation patterns for collision induced dissociation (adopted from [89]).
(a) Peptides predominantly break around the peptide bond. Three different bonds can break.
The respective N-terminal ions are referred to as a-, b- or c ions. The C-terminal ions are
denoted x-, y- or z ions. The ions are indexed according to the position index of the next
amino acid towards the N-terminus. (b) The predominant ions are the b- and y-ions. The
respective peptide fragment ions are depicted for the exemplary peptide NQWSFFK. (c)
Fragment ion spectrum recorded for the peptide NQWSFFK. b- and y-ions contribute most
of the signal. A notable amount of signals can be attributed to b- and y-ions with neutral
loss of water or ammonia. (d) Database search engines represent peptides with theoretical
spectra with signals that are to be expected. The depicted theoretical spectrum considers
a-, b- and y-ions including their neutral losses with unit signal intensity. Peptide-spectrum
matches are generated by finding the peptide whose theoretical spectrum is most similar to
the fragment ion spectrum.

dissociation [153] and electron transfer dissociation [130]. Nevertheless, the ideal situ-

ation where the fragment ion spectrum is complete is typically not met and calls for

sophisticated approaches to infer the peptide sequence. This issue will be discussed in

detail in the following section.
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2.2.3 Peptide-spectrum matching

In the previous sections we have seen which experimental steps are performed to achieve

the basic readout of a shotgun proteomics experiment, i.e. the peptide fragment ion

spectra. This readout defines the data to infer the proteins initially present in the bi-

ological sample. Inference typically involves two steps, peptide-spectrum matching and

protein inference [95]. Peptide-spectrum matching refers to assigning each fragment ion

spectrum a peptide sequence that best explains its signals. Protein inference recon-

structs the protein composition from the peptide-spectrum matches obtained in the first

step. This section summarizes approaches to peptide-spectrum matching.

Peptide-spectrum matching is a task that admits a fragment ion spectrum as input and

that consists of finding the peptide sequence best matching to the input according to

a suitable objective function (score) [42]. The objective function encodes our under-

standing of the relation between a peptide and its fragment ion spectrum. The objective

function is supposed to discriminate the peptide that gave rise to the input spectrum

from all other peptides. It is non-trivial to find a good objective function since the

fragmentation of peptides is only partially understood [146] and, furthermore, fragment

ion spectra generated from complex peptide mixtures are exceedingly noisy [131].

Peptide-spectrum matching is usually implemented as a formalized, deterministic and

fully automated process. This implementation makes peptide-spectrum matching ob-

jective and reproducible. Manual implementation of this task lacks this objectivity and

is already impossible due to the large number of fragment ion spectra generated in a

shotgun proteomics experiment.

Most of the peptide-spectrum matching approaches independently process each fragment

ion spectrum. In a first step, a set of candidate peptides is selected according to some

appropriate criteria. Each candidate is scored against the fragment ion spectrum. The

top scoring candidate peptide in conjunction with the fragment ion spectrum is reported

as peptide-spectrum match.

A variety of criteria are consulted to select peptide candidates for a fragment ion spec-

trum. These criteria can be divided into data independent and data dependent criteria.

Data independent criteria comprise prior expectations regarding peptides and chemical

modifications possibly present in the biological sample. Two different routes are pursued
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at this point. While de novo sequencing approaches do not restrict the set of a priori

considered peptides [132, 84, 52, 49], database search approaches confine themselves to

candidates from a static protein database [88, 42]. Data dependent criteria comprise

constraints on the total mass of the intact peptide derived from the respective MS1

signal and possibly short sequence tags directly read from the fragment ion spectrum

[88, 53].

Various scores have been proposed to match peptides against fragment ion spectra. Most

of the following scores assume a theoretical spectrum of the peptide which contains unit

signals for each expected fragment, e.g. all b- and y-ions. Recent scoring variants resort

to spectral libraries to use consensus spectra as theoretical spectra [147, 31, 54, 80]. The

fragment ion spectrum and the theoretical spectrum have been compared by means of

cross correlation [42], dot product [48], hypergeometric score [113], probabilistic scores

[105, 6, 27, 49] or physically motivated scores [151]. De novo sequencing approaches by

definition consider an intractable amount of peptide candidates. It is infeasible to ex-

plicitly score each of the candidates against the respective fragment ion spectrum. The

score, or more precisely the model underlying a de novo sequencing approach therefore

has to feature an independence structure that render tricks like dynamic programming

applicable to efficiently consider all candidates [34, 17].

There are other peptide-spectrum matching approaches that do not fit into the described

candidate selection/scoring scheme. Some approaches do not restrict themselves to single

peptide candidates and instead allow for multiple source peptides for a single fragment

ion spectrum [150]. The distinction between selection and scoring is blurred in spectral

alignment approaches that compute spectral networks by relating spectra that are likely

to belong to overlapping peptide sequences [7].

Peptide-spectrum matches are not perfect. False positive peptide-spectrum matches

arise when the top scoring candidate is not the source of the respective fragment ion

spectrum. These events can mostly be attributed to flaws in the score related to the

approximate encoding for the peptide fragmentation process and the lack of information

in the fragment ion spectrum, e.g. in terms of lacking fragment ions. In fact, it is likely

that the best fitting peptides among all imaginable peptides will not be the true pep-

tide. This phenomenon strongly motivates the use of small protein databases to avoid

the consideration of confounding peptides and demonstrates why de novo sequencing
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approaches have a hard time to be competitive with database search approaches (as

long as a the genome of the studied organism is known). We note that the effect of large

databases is alleviated by the trend towards mass spectrometers with increasing mass

accuracies.

It is of crucial importance to control the quality of peptide-spectrum matches. Vari-

ous statistical approaches have been devised to control different measures of peptide-

spectrum match uncertainty, the false discovery rate being the most useful one [9]. In

the context of peptide-spectrum matching, the false discovery rate corresponds to the

expected fraction of false positive matches. Three routes can be pursued to estimate the

false discovery rate for a set of peptide-spectrum matches.

The false discovery rate can be derived from p-values associated to each peptide-spectrum

match that is considered significant [9, 129]. This approach is valid as long as p-values

can be accurately computed. This requirement is though rarely met [74].

The false discovery rate can be estimated from the score distributions of true and false

positive peptide-spectrum matches [72]. This mixture distribution has to be learned in

an unsupervised scenario since the information whether a match is true or false positive

is not known for any match. This task has been successfully implemented in e.g. Pep-

tideProphet [72] by resorting to Expectation Maximization [36].

Recently, the target-decoy strategy became very popular to estimate the peptide-spectrum

match false discovery rate [94]. A decoy database with nonsense protein sequences is

searched in addition to the (target) protein database of the studied organism. The num-

ber of peptide-spectrum matches mapping to the decoy database serves as an estimate

of the number of false positive matches. If the decoy database is designed similar to the

target database, then we expect the false positive matches uniformly distribute across

the target and decoy database. [41] have shown that reversed, pseudo-reversed as well

as scrambled databases serve equally well as decoy databases, particularly ensuring uni-

form distribution of false positive matches. Its simplicity and generic applicability make

the target-decoy strategy an appealing alternative to estimate false discovery rate of

peptide-spectrum matches.

Peptide-spectrum matching has been studied now for more than fifteen years and several
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mature solutions to this task are available. Technological improvements of the mass

spectrometers have largely contributed the increase in matching performance. Nowadays

it is possible to confidently assign up to 80 % of the acquired fragment ion spectra on

a high mass accuracy instrument (personal communication A. Schmidt). Statistical

validation of peptide-spectrum matches obtained from standard database searches has

also been successfully investigated from different angles. This work expands the target-

decoy strategy to more intricate iterated database searches that support to efficiently

consider a vast amount of possible amino acid modifications.

2.2.4 Protein inference

The previous section described the peptide-spectrum matching task, the first step of

reconstructing the protein set in a biological sample from the fragment ion spectra ac-

quired from a series of shotgun proteomics experiments. Protein inference constitutes

the second step and, in simple terms, takes the peptide-spectrum matches as input and

compiles a set of protein identifications.

The protein inference task is specific to the shotgun proteomics setup [110, 95]. Enzy-

matic digestion of the proteins into peptides facilitate sample handling and dramatically

enhance throughput. These benefits come at the cost of loosing the information which

proteins gave rise to which of the identified peptides. The more complex a proteome

the more frequently peptide-spectrum matches turn out to ambiguously map to several

protein entries, e.g. protein splice variants. Protein inference approaches aim to disam-

biguate these matches.

The protein inference task has been approached in various ways. Frequently, ambiguous

peptide-spectrum matches are deterministically assigned to gene loci instead of resolving

particular splice variants [90, 15, 5, 119]. Probabilistic approaches attempt to estimate

the posterior probability of protein identifications based on confidence measures for

peptide-spectrum matches [96, 112, 44]. Parsimony approaches compute the minimal

set of protein identifications that are consistent with a set of peptide-spectrum matches

that are considered significant [148]. After having applied some protein inference ap-

proach, it is common practice to exclude possibly unreliable protein identifications, such

as e.g. single hit protein identifications. There has been considerable debate about

whether such post-processing enhances protein inference [59, 58].
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After having performed protein inference, it is mandatory to quantitatively assess the

reliability of the resulting protein identifications. Statistical validation of protein iden-

tifications has long falsely been equated with statistical validation of peptide-spectrum

matches. Therefore, this important issue is still a topic of ongoing research. This work

contributes a generalized target-decoy strategy to estimate false discovery rates for pro-

tein identifications. Related work will be reviewed and discussed in this context.

2.3 Characterization of a proteome

Throughput and sensitivity of mass spectrometry based proteomics approaches allow to

comprehensively characterize a proteome. In the following we will discuss approaches

that have been reported to qualitatively and quantitatively describe a proteome.

Determination of a genome sequence is a fundamental goal of genomics. Shotgun se-

quencing technologies have evolved to a level where a genome can be routinely sequenced

[10]. Due to the static, linear structure of a genome, it is in particular straightforward

to tell, when the genome has been comprehensively characterized. For proteomics this

task translates to identifying all proteins possibly present in a biological system. It is

though not trivial to tell when a proteome can be considered to be mapped out since

a proteome is not as clearly defined as a genome. This uncertainty is caused by the

many variations of a gene expression product that might be introduced by alternative

splicing and post translational modifications that, in addition, might only be present

under particular conditions.

Shotgun proteomics has been the most successful approach to identify a large amount of

proteins, i.e. to achieve substantial proteome coverage [138, 103, 100, 51, 75, 15, 5, 35,

58, 119]. All these approaches build on extensive repetition of multidimensional fraction-

ation experiments. The respective sequencing studies seem to have reached saturation

coverage with respect to the applied experimental strategy.

Various experimental strategies have been proposed to further enhance these approaches.

Most contemporary shotgun proteomics studies rely on stochastic precursor selection in

the mass spectrometer. This type of precursor selection results in redundantly iden-

tifying the same proteins over and over again, thereby considerably slowing down the
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process of discovering new proteins which would contribute to proteome coverage in-

crease. Directed shotgun proteomics approaches circumvent this issue by systematically

targeting all MS1 features for fragmentation [118]. Further improvements in sequenc-

ing speed and mass accuracy of tandem mass spectrometers will further accelerate this

process [99]. Although contemporary proteome exploration studies achieve substantial

coverage, it is likely that other experimental approaches will reveal that proteomes are

much richer than current studies suggest. New fractionation techniques are likely to en-

rich for protein variants that feature particular modifications [14] or locations [144]. New

modification preserving fragmentation techniques have the potential to further enhance

these approaches [130]. Targeted proteomics approaches restrict themselves to measure

a confined set of proteins of interest and might constitute a complementary technology

to detect proteins that remain undetected with shotgun proteomics approaches [106].

Quantitative proteomics aims at augmenting the proteome characterization by quanti-

tative information. As noted before, a proteome is not a static entity like a genome.

In contrast, its members, i.e. the proteins are subject to dynamic abundancy changes.

This dynamic behavior reflects responses of a biological system to its environment. It

turns out that mass spectrometry based approaches lend themselves to quantify pro-

teins. Isotope labeling [61, 101] strategies as well label free approaches [83, 16, 87] have

been proposed to estimate relative or absolute protein abundancies from mass spectro-

metrical data. In this context targeted proteomics approaches [106] have demonstrated

to be a potent alternative to shotgun proteomics approaches. Quantitative proteomics

contributes to elucidate various biological processes in a local [57, 81, 141, 106, 115], as

well as a proteome wide scale [35, 87].

Sizable experimental efforts have been made to achieve satisfactory proteome coverage.

A variety of different biological samples or fractions arising in multidimensional frac-

tionation strategy are typically repeatedly analyzed. It turns out that some samples

contribute a lot to proteome coverage while others only redundantly cover parts of the

already observed proteome [118]. This phenomenon suggests that appropriate design of

a shotgun proteomics study has the potential to achieve saturation coverage at signifi-

cantly reduced cost. This thesis contributes a generic nonparametric Bayesian model of

shotgun proteomics experiments that estimates the coverage potential of samples and

applies it to optimally design a shotgun proteomics study at an early stage to efficiently

achieve saturation coverage.
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The data analysis of large shotgun proteomics projects is challenging. This particularly

applies to statistical validation of the database search results. While the first step from

the raw fragment ion spectra to the peptide-spectrum matches is well established, there

has been considerable debate how to compile a list of proteins that is as large as possible

and yet reliable [138, 127, 58]. The question whether to consider single hit wonders

or not, is a long-running issue in this context [59]. This thesis contributes a generic

target-decoy strategy to estimate protein false discovery rates and suggests guidelines

to achieve a list meeting size and quality requirements.

19



Part I

Validation of Proteome Measurements

20



3 Iterated Target-Decoy Database

Search Strategy

3.1 Summary

Mass spectrometry based proteomics is suited to study post-translationally modified

proteins by means of peptide fragment ion spectra. Matching the spectra to their respec-

tive peptide sequences is typically implemented as a database search, i.e. by exclusively

matching candidates defined by a suitable protein database, optionally enumerating

peptide variants to account for amino acid modifications. Increasing the number of

considered modifications though severely affects computation and identification perfor-

mance. This phenomenon limits the scope to comprehensively study the occurrence of

modified peptide variants.

Here, we propose a generically applicable iterative target-decoy database search ap-

proach that enables to efficiently and reliably account for hundreds of different peptide

modifications at once. This approach circumvents the combinatorial explosion coming

along with exhaustively enumerating variants for all peptides in the database by con-

sidering modifications only for proteins confidently evidenced by tryptic peptides. We

adapt the well established target-decoy search strategy to this iterative search approach

in order to control the false discovery rates for peptide-spectrum matches. We applied

our strategy to a D. melanogaster dataset comprising 84 LC-MS/MS runs considering

more than 500 different modifications at once. We found 9.5% of all peptide-spectrum

matches to map to a modified peptide variant. Due to its simplicity and generic nature,

we expect that the iterated target-decoy strategy will enable us to reliably discover a

diverse set of modified peptides in any other shotgun proteomic dataset.
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3.2 Introduction

Comprehensively accounting for peptide modifications in mass spectrometry based pro-

teomics poses considerable challenges to peptide identification algorithms. We present

an iterated target-decoy strategy that circumvents the combinatorial explosion coming

along with exhaustively enumerating all possible peptide variants and furthermore allows

to control the reliability of peptide identifications in terms of false discovery rates (FDR).

Peptide identification is a task that arises in the context of shotgun proteomics exper-

iments [3]. Briefly, protein samples are first extracted from their biological source and

subjected to enzymatic digestion. These steps yield a complex peptide mixture that is

analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Fragment

ion spectra are acquired after stochastic or directed precursor ion selection [118]. More

elaborate strategies adopt additional fractionation steps at the level of proteins/peptides

before LC-MS/MS analysis. These steps give rise to a set of peptide fragment ion spec-

tra that constitute the raw data to infer the peptides present in the biological source.

Interpretation of the spectral data involves peptide identification, i.e. matching the frag-

ment ion spectra to their corresponding peptide sequences. Peptide-spectrum matches

are typically generated using one of the many available search engines, e.g. [42, 105, 30].

Search engines map fragment ion spectra to the best matching peptide sequence in the

protein database of the studied organism [97]. Various statistical measures, such as e.g.

false discovery rates [9], have been derived to account for possibly incorrect peptide-

spectrum matches [18]. In this context, the target-decoy strategy has recently gained

large popularity since it is simple to implement and compatible with all currently used

search engines [94, 41].

Protein databases report sequences of standard amino acids and do not capture the

diversity of chemically modified peptides that happen to be present in the mass spec-

trometer. These modifications are either introduced by biological processes (e.g. phos-

phorylations) or sample preparation (e.g. carboxymethylations). Hundreds of different

amino acid modifications have been reported and comprehensively documented [33]. In

order to identify some of the corresponding peptide variants from fragment ion spectra,

search engines typically consider a very small number of frequently observed amino acid

modifications (e.g. oxidations) to exhaustively enumerate additional peptide variants
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from the standard sequences given in the protein database [42]. Increasing the number

of considered modifications though dramatically increases the search space for peptide

identification. This increase leads to a well known accumulation of false positive peptide

identifications or simply becomes too demanding computationally.

Several approaches have been proposed to address the challenges involved in comprehen-

sively accounting for modified peptides. Spectral alignment methods implicitly explore

the vast number of possible modifications by dynamic programming [136]. Being com-

patible with any currently available search engine, iterative search strategies constitute

a potent generic alternative to the specialized spectral alignment methods. Iterative

search strategies explicitly constrain the search space by just enumerating peptide vari-

ants for the subset of proteins likely to be present in the biological source [29, 123].

These approaches rely on the hypothesis that present proteins are likely to give rise to

at least one detectable tryptic peptide. Iterative search strategies therefore first exclu-

sively search for tryptic peptides, giving rise to identifications pointing to a small subset

entries of the complete protein database. Spectra not having been assigned to peptides

in the first round are subsequently searched against a subdatabase solely comprising

those protein entries that were identified by tryptic peptides before. The second search

additionally enumerates peptide variants for a (possibly large) number of different mod-

ifications. Due to the small size of the subdatabase, exhaustive consideration of several

hundreds of different modifications becomes feasible.

The ability to estimate sensible reliability measures, such as e.g false discovery rates

[9], is essential to compile sets of peptide-spectrum matches of well defined quality [72].

Available iterative search strategies do only provide scores that are suited to enrich for

correct identifications and therefore correlate with their reliability [29, 123]. These scores

though do not directly lend themselves as sensible reliability measures. Therefore it re-

mains to provide means to quantitatively assess the reliability of the peptide-spectrum

matches to make iterative search approaches applicable in practice.

To close this gap, we extend the target-decoy strategy to estimate false discovery rates in

the context of iterative database searches. We applied this strategy to a D. melanogaster

dataset comprising 84 LC-MS/MS runs to study the occurrence of modified peptides.

Considering hundreds of modifications at once we compiled a set of peptide identifi-

cations of well defined quality (1% FDR). We observed that peptide modifications are
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common. Specifically, we found almost every tenth peptide-spectrum match mapping

to a modified peptide variant and 14% of all unique peptide sequences to be exclusively

represented by a non-standard variant.

Methods

This section describes the spectral data that has been used in this study and the iterative

target-decoy database search strategy. The presented procedures are implemented in

C++ on the basis of the OpenMS [78] framework.

3.3 Spectral data

We studied the fragment ion spectrum dataset reported in [118]. Briefly, this dataset was

acquired for a whole cell lysate of the D. melanogaster KC 167 cell line. Proteins were

extracted and digested with trypsin as described in [118]. The resulting peptide mixture

was repeatedly analyzed by LC-MS/MS on a high mass accuracy FT-LTQ instrument

as described in [118]. This procedure gave rise to the fragment ion spectra that were

further analyzed with the iterated target-decoy strategy reported in this paper.

3.4 Peptide-spectrum matching

This section summarizes how peptide-spectrum matches were generated from fragment

ion spectra. We exemplarily describe the protocol starting from a single fragment ion

spectrum.

In a first step the fragment ion spectrum is denoised by a common heuristic. This heuris-

tic considers the characteristic intensity distribution of ion trap fragment ion spectra

[131] and assumes that the most intense peaks correspond to the informative signals.

Specifically, peak intensities are first rescaled according to their relative position to the

precursor ion and second all peaks but those featuring more than 5.5% maximal intensity

are removed. The remaining spectrum is binarized and discretized using a bin spacing

of 1.00048 Da [105], finally constituting the denoised fragment ion spectrum.

Possible peptide explanations to the fragment ion spectrum are selected from the protein

database according to the following criteria: (1) sequence length 5-40, (2) ≤ 1 tryptic
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miscleavages. Precursor mass tolerance is set dynamically for each LC-MS/MS run to

two standard deviations of the mass deviation distribution. A preliminary search with

15 ppm precursor mass tolerance serves to estimate the mass deviation distribution.

Precursor mass was typically set below 5 ppm. Mass tolerance for the fragment ion

spectra was set to 0.5 Da. Each of the considered peptides is represented by its theo-

retical fragment ion spectrum. Theoretical spectra consider b and y ion series. Possible

amino acid modifications are considered by their respective mass shifts. Each fragment

is represented by a peak of intensity one.

Each of the theoretical spectra is matched to the denoised fragment ion spectrum. We

use a variant of the hypergeometric score as similarity measure [113]. Specifically, the

hypergeometric score is computed for each peptide. Each peptide is finally evaluated by

means of the difference score that is computed as the difference of the hypergeometric

score to the second rank peptide. The peptide-spectrum match corresponding to the

initially supplied fragment ion spectrum is chosen as the top ranking peptide with respect

to the difference score.

3.5 Iterated target-decoy database searching

Fig. 3.1 illustrates the iterated target-decoy database search strategy. As input, we as-

sume a set of fragment ion spectra and protein database that captures our expectations

regarding proteins possibly present in the biological sample. For the presented analysis

of the D. melanogaster dataset [118] we used the Drosophila Flybase protein database

(D. melanogaster, release 4.3; Mar 2006; 19645 entries) complemented with the protein

sequences of bovine trypsin and human keratins.

A priori expectations about protein presence are updated by a first pass search against a

concatenation of the forward and pseudo-reversed (following [41]) protein database with-

out considering any amino acid modifications. Peptide-spectrum matches are generated

as described in section 3.4. The top scoring peptide-spectrum matches (1% FDR) re-

sulting from the first pass search are considered to be assigned. These assigned matches

map to a set of proteins covering a fraction of the (target) protein database. This set

of proteins is highly enriched for proteins present in the biological sample and itself

constitutes a protein subdatabase.
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A second pass search aims at matching so far unassigned fragment ion spectra to peptide

variants mapping to entries in the subdatabase. Therefore we search the unassigned

spectra against a concatenation of the forward and pseudo-reversed subdatabase also

enumerating peptide variants defined by a set of amino acid modifications. For the pre-

sented analysis we considered all modifications from the Unimod database (Mar 2007)

[33] excluding modifications containing elements other than H, C, N, O, P, S, Se and

complemented by all possible amino acid mutations.

First and second pass searches give rise to a peptide-spectrum match for each of the

initially supplied fragment ion spectra. A final subset of peptide spectrum matches is

compiled according to a score threshold that achieves a user defined false discovery rate.

For details see the following section 3.6.

3.6 Peptide-spectrum match false discovery rates

We want to apply the target-decoy strategy to estimate peptide-spectrum match false

discovery rates. Therefore we have to ensure for each database search that target and

decoy database are of equal size. In this context, database size is sensibly measured as

the amount of peptides considered by the search engine, i.e. typically the number of

tryptic peptides, possibly also including miscleavages. This point is important to con-

sider in order to properly estimate false discovery rates from decoy matches acquired by

the iterated database search strategy.

We ensure this requirement by choosing a concatenation of the forward and pseudo-

reversed variant of database underlying the first as well as second pass search. The decoy

database for the second pass search is generated dynamically after having performed

and evaluated the first pass search. This database design specifically entails that every

peptide in the forward database mirrors to exactly one counterpart in the decoy database

and that false discovery rates for a set of peptide-spectrum matches can be estimated

straightforwardly as the (normalized) amount of matches to the decoy database [41].

3.7 Results

We applied the iterative target-decoy strategy to a D. melanogaster whole cell lysate

dataset comprising fragment ion spectra acquired over 84 LC-MS/MS runs. We screened
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Figure 3.1: Iterated target-decoy database search pipeline. Fragment ion spectra are gener-
ated in the course of a shotgun proteomics experiment. The iterative target-decoy database
search strategy comprises two steps. In the first pass search, the fragment ion spectra are
matched against tryptic peptides derived from a suitable forward-reverse protein database de-
fined by the underlying organism. The resulting high confidence peptide-spectrum matches
(1% FDR) map to a subset of proteins that are likely to be present in the biological source.
This subset serves to dynamically compile a forward-reverse subdatabase that subsequently is
searched in the second pass search. The second pass search typically extends the subdatabse
by also enumerating peptide variants derived from a set of user defined amino acid modifi-
cations. The peptide-spectrum matches from the first and second pass search constitute the
results of the iterated target-decoy search. Due to the design of the decoy database in both
first and second pass search, false discovery rates can be directly estimated by counting the
decoy identifications.

for hundreds of different modifications at once, mapped a significant number of fragment

ion spectra to modified peptide variants and furthermore found a considerable number

of peptide sequences represented exclusively in a modified form.

3.7.1 Efficient screening of hundreds of modifications

The iterated database search approach enables to comprehensively consider known amino

acid modifications. Specifically we considered 508 different amino acid modifications at

once for the second pass search. Significantly reducing the number of entries in the

protein database enables to consider such a large number of modifications. The original

D. melanogaster protein database contains 19465 entries. The first pass search typically
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Figure 3.2: Summary of iterated target-decoy search results at 1% peptide-spectrum match
false discovery rate for the D. melanogaster dataset. Frequency of non-modified (blue)
and modified (red) instances of identification types, i.e. peptide-spectrum matches (PSM),
peptides, amino acid sequences (ignoring possible modifications). Summary for amino acid
sequences also covers counts of instances that are represented in both non-modified and
modified variants (green).

reduced the number of considered entries in average by 40 fold. Although considering

more than 500 modifications, the iterated search was computed in average in 16 minutes

for a single LC-MS/MS run comprising in the order of 5000-10000 fragment ion spectra.

The iterated database search approach constitutes an effective strategy to constrain the

protein database to its relevant entries and therefore enables to efficiently consider a

vast set of modifications.

The more modifications a database search considers the more frequent the case occurs

where different peptide variants equally well match to a single fragment ion spectrum.

We experienced better identification performance by consequently discarding such am-

biguous peptide-spectrum matches, i.e. by scoring peptide-spectrum matches with the

difference score (see section 3.4). We though note that there remains a considerable

amount informative fragment ion spectra with very well matching though ambiguous

peptide explanations.

3.7.2 Spectral contribution of peptide variants

We adapted the target-decoy strategy to the iterated database search scenario, enabling

us to compile a set of peptide-spectrum matches at well defined false discovery rate

(Fig. 3.2). For the D. melanogaster dataset, we assigned 69178 fragment ion spec-
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rank modification type # observations
1 Isotope mass shift 2842
2 Iodoacetamide derivative 765
3 Acetylation 684
4 Pyro-glu from Q 529
5 Gln→Lys 446
6 Carbamylation 116
7 Propionaldehyde +40 115
8 Deamidation 113
9 Phosphorylation w loss 109
10 Oxidation 108

Table 3.1: Top 10 most frequent amino acid modifications discovered for the D. melanogaster
dataset. Number of observations at 1% FDR of each modification type is reported for the
complete dataset.

tra (1% FDR) to 5380 non-modified tryptic peptides (≤ 1 miscleavages). The second

pass search yielded 7261 additional assignments to modified peptide variants. Compre-

hensively accounting for amino acid modifications in the second pass search turned out

to significantly boost identification performance by contributing 9.5% of all peptide-

spectrum matches.

3.7.3 Discovery of novel peptide sequences

We studied which modifications were detected by the second pass search. Table 3.1

displays the most frequent modification types found in the D. melanogaster dataset. The

majority of identified peptide variants were due to isotope mass shifts related to wrongly

picked monoisotopic peaks. Besides other frequent modifications related to the sample

preparation process, we found considerable evidence for phosphorylations. Interestingly,

we frequently found the amino acid substitution from Gln to Lys. It turns out that mu-

tating a single nucleotide at the first position of the respective codons suffices to issue

this mutation. The iterative database strategy thus confirmed the occurrence of known

modifications and contributed to the discovery of so far unconsidered modifications.

We investigated to what extent the iterative search strategy allowed to discover novel

peptide sequences, only represented in a modified form (Fig. 3.2). It turns out that the

second pass search contributes not less than 14% of all unique amino acid sequences. We
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conclude that comprehensive consideration of modifications does also significantly con-

tribute to the discovery of novel peptide sequences predominantly present in a modified

form.

3.8 Discussion

We propose a target-decoy strategy to estimate false discovery rates for iterated database

searches. The iterated search strategy enables to efficiently perform database searches

considering several hundred modifications at once. Our adapted target-decoy strategy

makes iterative search strategies amenable to practice by providing means to control

false discovery rates of peptide-spectrum matches achieved. Besides enabling to dis-

cover unexpected peptide variants per se, this approach has the potential to enhance

quantitative and particularly targeted proteomics approaches by unraveling the diversity

of peptide/protein variants present in the biological source [22].

The iterated target-decoy strategy is appealing due to its generic applicability. Database

searching and generation are decoupled processes. Therefore, any kind of search engine

flexibly allowing for modifications can be used in conjunction with this strategy.

Specification of the first pass search depends on the underlying dataset. The first pass

search is designed to be computationally efficient and to give evidence for most of the

proteins present in the biological source. A simple search for tryptic non-modified pep-

tides is expected to fulfill these requirements for most shotgun proteomics datasets,

including the dataset studied here. However, more care has to be taken to design the

first pass search for workflows for which a considerable amount of proteins is evidenced

exclusively by non-tryptic peptides [144].

Database search strategies are able to recover only peptide variants complying with the

protein database and the explicitly considered modifications. Peptides including modifi-

cations not considered a priori cannot be identified. Suitable spectral alignment methods

do not suffer from this limitation since they are able to discover amino acid mass shifts

corresponding to novel modification discoveries [136]. As fully de novo sequencing ap-

proaches, these approaches though have to carefully deal with this additional degree of

freedom in order to avoid an increased number of false positive identifications. Consid-

ering that we comprehensively accounted for all reasonable modifications in the Unimod
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database, we though assume that we do not suffer from the database restriction and

will rarely miss to identify a peptide variant evidenced by an informative fragment ion

spectrum.

We applied our approach to a dataset acquired for repeated LC-MS/MS analysis of a

whole cell lysate. We found about ten percent of the peptide-spectrum matches mapping

to a modified peptide variant and discovered several unexpected modifications. We

expect that deep sequencing approaches involving multidimensional fractionation will

reveal an even larger diversity of modifications compared to the studied dataset. It will

be interesting to apply the iterated target-decoy strategy to analyze this kind of datasets

and characterize their modification repertoire.
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Discovery Rates

4.1 Summary

Comprehensive characterization of a proteome is a fundamental goal in proteomics. In

order to achieve saturation coverage of a proteome or specific sub-proteome via tandem

mass spectrometric identification of tryptic protein sample digests, proteomic data sets

are growing dramatically in size and heterogeneity. The trend towards very large inte-

grated data sets poses so far unsolved challenges to control the uncertainty of protein

identifications going beyond well established confidence measures for peptide-spectrum

matches. We present MAYU, a novel strategy that reliably estimates false discovery rates

for protein identifications in large scale data sets. We validated and applied MAYU us-

ing various large proteomics data sets. The data show that the size of the data set has

an important and previously underestimated impact on the reliability of protein identifi-

cations. We particularly find that protein false discovery rates are significantly elevated

compared to those of peptide-spectrum matches. The function provided by MAYU is

critical to control the quality of proteome data repositories and thereby to enhance any

study relying on these data sources. 1

1Lukas Reiter and I share the first authorship on this work. Both Lukas Reiter and me have equally
contributed to the main ideas and their implementation. Sabine P. Schrimpf has generated the C.
elegans dataset that constitutes the main data source for our study. Marko Jovanovic performed
most of the validation experiments with the dirty peptides. Alexander Schmidt helped with the
mass spectrometrical analysis of the dirty peptides and has contributed the L. interrogans and
S. pombe dataset. The project was performed under the supervision of Joachim M. Buhmann,
Michael O. Hengartner and Ruedi Aebersold. We thank Vinzenz Lange, Christian Müller, Lukas
Müller, Thomas Fuchs and Bernd Bodenmiller for careful reading of the manuscript. Further we
thank James Eddes, Christian Panse, the Center for Model Organism Proteomes (C-MOP) and the
Functional Genomics Center Zurich (FGCZ) for support.
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4.2 Introduction

An explicit goal of proteomics is the complete description of a proteome and the mea-

surement of its response to perturbations [3]. Over the last few years advances in mass

spectrometry based proteomics have achieved a significant increase in proteome coverage

[138, 103, 100, 51, 75, 15, 5, 35, 58, 119]. The volume and heterogeneity of proteomic

data required to substantially map out a proteome pose considerable challenges to assess

the confidence of peptides and proteins that are inferred from the collected fragment ion

spectra [95]. While a number of statistical tools and strategies have been developed

to assess the error rate of peptide-spectrum matches (PSM), estimation of the false

discovery rate (FDR) of protein identifications in large datasets remains an unresolved

problem. This study presents a probabilistic framework and software that addresses this

issue.

The most extensive proteome coverage has generally been realized by a strategy typically

referred to as shotgun proteomics. Briefly, proteins are extracted from their biological

source, enzymatically digested and optionally fractionated. The resulting peptide mix-

tures are then analyzed by tandem mass spectrometry (MS/MS). Peptide and protein

identities are inferred by computational analyzes of the acquired tandem mass spectra.

The data generated by shotgun proteomics experiments are highly redundant, i.e. a sub-

set of the peptides present is repeatedly and preferentially selected for fragmentation and

identified. In contrast, other subsets of peptides, e.g. those derived from low abundance

proteins are more difficult to detect and a large number of fragment ion spectra have

to be acquired to increase the likelihood of their detection [15, 43, 86]. Consequently,

proteomic studies aiming at extensive proteome coverage generate very large data sets

consisting of up to millions of fragment ion spectra.

Shotgun proteomics experiments essentially aim at the compilation of a set of reliable

protein identifications covering the proteome as extensively as possible. This goal is

achieved by firstly inferring a set of protein identifications (inference) and secondly as-

sessing the reliability of these identifications (FDR estimation) (Fig. 4.1). Briefly,

fragment ion spectra are assigned to peptide sequences by generating peptide-spectrum

matches (PSMs) using one of a range of database search engines (e.g. Mascot, Sequest,

X!Tandem) [97]. Second, protein identifications are inferred from the PSMs by assem-

bling the identified peptide sequences into proteins [110, 95]. Protein identifications are
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thus defined as assemblies of PSMs whose peptide sequences map to the same protein

(Fig. 4.1).

Neither PSMs nor protein identifications are perfect. Therefore it is essential to control

the reliability of PSMs and protein identifications. Various approaches have been de-

veloped to estimate the reliability of PSMs [72, 94, 41, 67]. FDR [9], i.e. the expected

fraction of false positive assignments, have become a widely used measure for reliability

of PSMs. FDR for PSMs can be confidently estimated by means of decoy database search

strategies in which the acquired fragment ion spectra are searched against a chimeric

protein database containing all (target) protein sequences possibly present in the sample

analyzed and an equal number of nonsense (decoy) sequences. Target-decoy strategies

are particularly appealing since they constitute a generic and independent approach to

validate PSMs generated by any type of identification strategy.

Protein identifications, i.e. assemblies of PSMs, are the biologically relevant outcome

of a shotgun experiment. Therefore it is highly desirable to directly control the qual-

ity of protein identifications, for example in terms of FDR. Deriving FDR for protein

identifications though is not as obvious as determining FDR for PSMs. Because protein

identifications are defined by assemblies of PSMs, errors determined at the PSM level

propagate to the protein identification level in a non trivial manner. Therefore control-

ling quality on the level of PSMs does not ensure quality at the (biologically relevant)

level of protein identifications. This issue has so far not been appropriately appreciated,

since the distinction between PSMs and protein identifications is frequently blurred in

the literature. An estimate of protein identification FDR, i.e. the expected proportion

of false positive protein identifications, has to account for false positive and true positive

PSMs distributing differently across the protein database. While false positive PSMs

comparably distribute over all entries in the database [41], true positive PSMs map ex-

clusively to the smaller subset of proteins being present in the biological sample. As a

result, protein identification FDR in practice is larger than the PSM FDR [1].

Number, frequency and size and heterogeneity of proteomic data sets steadily increase

[138, 103, 100, 51, 75, 15, 5, 35, 119]. Available approaches for protein identification

focus on the protein inference task and provide reasonable to good error estimates

for individual experiments (typically 10-100 LC-MS/MS runs), the complexity level at

which most proteomics studies operate [85, 96, 1, 139, 108]. However, none of these
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approaches reliably quantifies the confidence in protein identifications in very large, in-

tegrated data sets (typically 100 or more LC-MS/MS runs), e.g. in terms of quantifying

FDR for protein identifications (Fig. 4.1). To date, protein identifications in large

proteomics data sets are compiled according to heuristic criteria for which so far no

quantitative confidence measures like FDR have been derived at the protein identifica-

tion level [138, 145, 19, 51, 15].

To close this gap, we developed a generic strategy enabling for the first time to quantify

the confidence in protein identifications obtained from a wide range of inference methods

(Fig. 4.1) in data sets of all sizes, especially in large to very large data sets. We refer

to this approach as MAYU (no acronym). Our approach extends the well established

target-decoy strategy designed to estimate FDR at PSM level [41, 67] to the level of pro-

tein identifications, i.e. defined assemblies of PSMs (Fig. 4.1). We applied MAYU to

three different data sets varying in instrumentation and species. We found that data set

size has a previously underestimated impact on protein identification FDR. The strat-

egy developed and the tool that implements it could therefore be of critical importance

for the generation and quality control of large proteome datasets and data bases. The

MAYU software and a manual are publicly available for download.

4.3 Methods

4.3.1 Spectral data and database searching

We analyzed three different data sets, from studies varying in MS instrumentation and

underlying organism. All studies were based on multi-dimensional fractionation tech-

niques and comprised samples from C. elegans [119], L. interrogans and S. pombe.

While the first data set was acquired on a low resolution LTQ instrument, the lat-

ter two were acquired on a high mass accuracy LTQ-FT instrument. The C. ele-

gans project is part of the Center for Model Organism Proteomes (C-MOP) initia-

tive (http://www.mop.unizh.ch/); the C. elegans proteome data are available on Pep-

tideAtlas (http://www.peptideatlas.org/) [37]. We searched each data set against a

composite target-decoy database using Turbo Sequest [42] and Sequest on a Sorcerer

machine (Sorcerer-SEQUEST, 3.10.4 release). The search results were transformed to

the pepXML format and further processed using the Trans Proteomic Pipeline [71] to
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Figure 4.1: Protein inference and false discovery rate estimation. Tandem mass spectra are
searched against a sequence database, where each spectrum is assigned to the best matching,
i.e. highest scoring peptide sequence. These assignments are referred to as peptide-spectrum
matches (PSMs). The PSM can then be filtered according to their score. The quality of
the filtered PSM is usually specified in terms of PSM false discovery rates (PSM FDR).
Score cutoffs for PSM are usually selected according to a user-defined maximal PSM FDR.
Alternatively the filtered PSM can firstly be assembled to protein identifications. The quality
of the assignments is then assessed on the level of protein identifications. MAYU provides a
strategy to quantify this quality in terms of protein identification FDR. Compared to PSM
FDR, the protein identification FDR is a more informative quality measure since it operates
on biological entities of interest, i.e. proteins.

36



4 Protein Identification False Discovery Rates

the level of PeptideProphet [72] in units of experiments. The pepXML files were then

further analyzed with the MAYU software. If a peptide existed in more than one protein

sequence the hit was associated with one protein representing the gene locus [119], see

also [15, 5].

4.3.2 Target-decoy database generation

We performed all the database searches using a concatenated target-decoy database [41].

As target database for the C. elegans data set we chose wormpep170 . For the L. inter-

rogans data set we used NC 005824 and for the S. pombe data set we respectively used

78.S pombe . As decoy databases we used the reversed sequences of the target database.

For the decoy database type comparison, we further generated ten different decoy

databases by sampling from a zeroth order Markov model with amino acid frequencies

and protein length distribution gathered from the target database. Since randomizing of

redundant sequences leads to a decoy database being effectively larger, i.e. featuring a

larger amount of non-redundant sequences, than the target database [41], we corrected

the target database prior to sampling of amino acids. This was done for the splice vari-

ants by removing random amino acids from the non main splice variants accordingly

(with the main splice variant being the alphabetically first). If there were groups of

identical protein sequences all but one of these were deleted.

4.3.3 Estimate of protein identification FDR

The set of PSMs produced in the course of a proteomics experiment give rise to protein

identifications. A set of PSMs mapping to the same protein sequence defines a protein

identification. A protein identification is considered to be true positive, if it contains at

least one true positive PSM, and false positive if all of its PSMs are false positive. This

particularly implies that a protein identification that contains false positive PSMs is not

necessarily false positive. In order to estimate protein identification FDR we estimate

the expected number of false positive identifications within a set of protein identifica-

tions that has been assembled from a user-defined set of PSMs, e.g. from the set of

PSMs at FDR=0.01.

Based on the well established assumption that false positive PSMs equally likely map

to either target or decoy database, we used the number of PSMs mapping to the decoy
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Figure 4.2: MAYU protein identification false discovery rate estimation. Estimation of
peptide-spectrum match (PSM) false discovery rate (FDR) using a target-decoy strategy
(a) and protein identification (PID) FDR by MAYU (b). PSM in the target database can
be false positive (FP) / true positive (TP). The PSM FDR (the expected fraction of false
positive target PSM) can be estimated with the number of decoy PSM being false positive
by definition. The PSM FDR is currently the major measure used for quality control of mass
spectrometric data sets (a). The derivation of protein identification FDR has to account for
protein identifications containing false positive PSMs (CF) though not being false positive
protein identifications (b, two proteins). In order to estimate the expected number of true
positive (htp) and false positive (hfp) protein identifications, MAYU implements a hypergeo-
metric model that takes the number of target (ht) and decoy (hcf) protein identifications and
the total number of protein entries in the database (N) as input.The hypothetical example
illustrates that PSM FDR (25%) and protein identification FDR (45%) can differ largely.
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database as an estimate for the number of false positive PSMs mapping to the target

database. The PSM FDR is then estimated as the ratio of the number of PSMs pointing

to decoy- and target database, respectively. Considering that target and decoy database

share the same protein length distribution, the expected number of protein identifica-

tions containing false positive PSMs can be estimated analogously using the number of

protein identifications mapping to the decoy database (Fig. 4.2b).

We then estimate the expected number of false positive protein identifications given the

inferred number of protein identifications containing false positive PSMs. If we assume

that protein identifications containing false positive PSMs uniformly distribute over the

target database, then the number of false positive protein identifications is hypergeo-

metrically distributed (Fig. 4.2b, middle panel). See also section 4.3.4 for details.

This relation can be seen by regarding the protein database as an urn containing balls,

each representing a protein entry. Those balls that correspond to the true positive pro-

tein identifications are green while the remaining ones are white. In the urn analogy,

observing k false positive protein identifications then corresponds to hitting k white

balls after drawing (without replacement) as many times from the urn as we have pro-

tein identifications containing false positive PSMs.

Having specified the probability distribution of the number of false positive protein

identifications as the hypergeometric distribution, the expected number of false posi-

tive protein identifications then follows as the probability weighted average (expectation

value). The estimate of protein identification FDR is computed as the ratio of expected

number of false positive protein identifications and the total amount of protein identifi-

cations mapping to the target database.

We also estimated single hit FDR based on the FDR estimate for the complete set of

protein identifications by applying Bayes Law. Single hit FDR is thus obtained by mul-

tiplying the FDR of the complete set of protein identifications with the fraction of single

hits among the decoy protein identifications divided by the fraction of single hits among

the target protein identifications.

In section 4.3.4 we also provide a formal statement of the underlying assumptions and

a formal derivation of the individual estimates.
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4.3.4 Derivation of the protein identification FDR estimate

The set of PSMs produced in the course of a proteomics experiment give rise to protein

identifications. A set of PSMs mapping to the same protein sequence defines a protein

identification. In the following we refer to the set of all protein identifications as H,

the subset mapping to the target database Pt as Ht and its complement as Hd. We

distinguish three types of protein identifications, i.e. (1) TP identifications, which all

together we denote Htp. A protein identification is considered to be TP, if it contains at

least one TP PSM. While the second type (2) covers the set Hfp of FP protein identifi-

cations mapping to Pt, the complementing set with its identifications projecting to the

decoy database Pd equals Hd. A protein identification is considered to be FP, if all of

its PSM are FP. As the third type (3) we introduce the set Hcf that is composed of all

protein identifications in Pt each containing FP PSM. Note that elements of Hcf can be

TP as well as FP. The size of the defined sets shall be denoted by lowercase letters, as

for instance |H| = h.

Making the reasonable assumption that FP PSM equally likely map to either target or

decoy database, it is straightforward to estimate the expected value of FP PSM map-

ping to Pt with the number of PSM pointing to Pd . According to the definition of

false discovery rates [9], we can estimate the PSM FDR as the ratio of the number of

PSM pointing to Pd and Pt respectively. Considering that target and decoy database

share the same protein length distribution, the expected value for hcf can be estimated

analogously with hd. Note that hcf does not necessarily equal hfp.

In order to determine the FDR for protein identifications, we firstly calculate the condi-

tional expectation value for E [hfp | ht, hd, θexp] for the number of FP protein identifica-

tions given the proteomics experiment characterized by parameters θexp and its outcome

ht, hcf . Amongst others, θexp particularly includes parameters related to the target pro-

tein database, such as the number of protein entries N . By application of Bayes formula

and by assuming P (htp | hcf , θexp) and P (ht | hcf , θexp) to be uniform and hd = hcf ,

E [hfp | ht, hd, θexp] evaluates as follows.

40



4 Protein Identification False Discovery Rates

E [hfp | ht, hcf , θexp] =
∑
hfp

hfp · P (hfp | ht, hcf , θexp) (4.1)

htp=ht−hfp
=

∑
hfp

hfp · P (htp | ht, hcf , θexp) (4.2)

=
∑
hfp

hfp ·
P (ht | htp, hcf , θexp)P (htp | hcf , θexp)

P (ht | hcf , θexp)
(4.3)

htp=ht−hfp
=

∑
hfp

hfp ·
P (hfp | htp, hcf , θexp)P (htp | hcf , θexp)

P (ht | hcf , θexp)
(4.4)

=
∑
hfp

hfp · P (hfp | htp, hcf , θexp) · N − hcf − 1

N + 1
(4.5)

Let us assume for a moment that all protein sequences in the target and decoy database

have the same size. As the probability of a FP PSM mapping to a certain protein se-

quence scales linearly with its size, each entry in Pt would be equally likely to be part of

Hcf . Thus, protein identifications containing FP PSM would be uniformly distributed

across Pt. Accordingly, P (hfp | htp, hcf , θexp) would follow the hypergeometric distribu-

tion, where hfp is modeled as a random variable representing the number of successful

hits of a non-TP-identified protein in a sequence of hcf draws without replacement from

the N entries in Pt.

Clearly, the initial assumption about the singular size distribution does not hold for

biological protein databases. So as to compile an estimate for E [hfp | ht, hd, θexp] from

subgroups closely meeting this assumption, we have partitioned P = Pt∪Pd into subsets

Pi of protein sequences of similar size. In this context, protein sequence size is defined as

number of tryptic peptides from in silico digestion (400-6000 Da, ≤ 2 missed cleavages).

Variables ht,i, hcf,i, htp,i, hfp,i, Ni are defined for each Pi in analogy to those for P . By

applying the foregoing argument we approximate E [hfp | ht, hd, θexp] as follows

Ê [hfp | ht, hcf , θexp] =
∑
i

Ê [hfp,i | ht,i, hcf,i, θexp] (4.6)

=
∑
i

∑
hfp,i

hfp,i · P (hfp,i | htp,i, hcf,i, θexp) · Ni − hcf,i − 1

Ni + 1
(4.7)
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where

P (hfp,i | htp,i, hcf,i, θexp) =

(
Ni−htp,i

hfp,i

)(
hfp,i

hcf,i − hfp,i

)
(

Ni

hcf,i

) (4.8)

We have assessed this approximation for E [hfp | ht, hd, θexp] by confirming quick con-

vergence in experiments with various partitions featuring increasing size homogeneity

within the subsets (Fig. 4.3a).

We obtain the final estimate for FDR by appropriately inserting Ê [hfp | ht, hcf , θexp].

pFDR =
Ê [hfp | ht, hcf , θexp]

ht
(4.9)

4.3.5 Simulation of non-uniformly distributed false positive PSM

We performed simulation studies to assess the robustness of MAYUs FDR estimates.

The outcome of proteomic experiments was simulated with varying types of distribu-

tions for false positive PSM. For each simulation we first distributed a fixed number of

true positive protein identifications across the protein database (comprising N entries).

We distributed false positive PSM according to a truncated exponential distribution

(∼ λe−λx). The rate parameter λ = 1/(u · N) was chosen for different degrees of uni-

formity u. For each simulation we determined the true protein identification FDR and

its MAYU estimate. For each seed of distributed true positive protein identifications 50

simulations were performed and the average relative FDR deviation reported.

4.3.6 Validation of single hit FDR using isoelectric point

information

To validate our model we independently derived an FDR estimate for single hits and

compared this value to the estimation of MAYU. We used 67 LC-MS/MS runs of ex-

periment 15 of the C. elegans data set where peptides were fractionated by isoelectric

focusing according to their isoelectric point (pI) [119]. We used the standard deviation

σ ∆pI of isoelectric point deviations ∆pI as a quality measure for a set H of PSMs,
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∆pI(i) = pIpr(i)− pIex(i) (4.10)

σ∆pI(H) =

√
1

|H|
∑
i∈H

(∆pI(i)−m∆pI(H)) (4.11)

where pI pr(i) is the isoelectric point of a PSM i predicted by Bioperl [125]. pI ex(i)

corresponds to the experimentally measured isoelectric point of a PSM i, determined as

the mean isoelectric point of the high confident peptides of the respective LC-MS/MS

run (PSM FDR 0.01). m∆pI(H) denotes the mean of pI pr(i) for PSM i in H.

In order to specify the correspondence of PSM FDR and σ∆pI, we generated a calibration

curve with sets H c,x of PSMs of defined PSM FDR x. These sets were compiled from

high confident target hits with zero FDR complemented with an appropriate amount

of decoy hits to yield the designated PSM FDR. The corresponding decoy hits were

sampled from a set of target-decoy PSMs featuring the designated PSM FDR. Standard

deviations were computed using 20 bootstrap samples.

We estimated FDR for the set H s,x of single PSM protein identifications (single hits)

with PSM FDR x by computing σ∆pI(H s,x) and reading out the corresponding FDR by

linear interpolation of the calibration curve.

For very small PSM FDR x we observed a significant shift of σ∆pI(H s,x) compared to

the calibration curve. Arguing that TP single hit peptides focus better (see Fig. 4a) in

the isoelectric focusing step, we adjust σ∆pI(H s,x) to read out the FDR. The unadjusted

initial FDR estimate FDRini is used to weight the adjustment according to the initially

estimated TP single hits.

σadj∆PI = σ∆PI(Hs,x) + (σ∆PI(Hc,0)− σ∆PI(Hs,0)) · (1− FDR(Hs,x)) (4.12)

4.3.7 Validation of single hit FDR using synthetic peptides

We ordered three different sets of synthetic peptides synthesized on a microscale using

the SPOT-synthesis technology [140, 63]. These sets were compiled as follows:
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• As positive control we randomly selected 50 peptide sequences that were identified

with at least 100 PSM with a PSM FDR of zero in the search results of the complete

C. elegans data set.

• As negative control we randomly selected 50 peptide sequences from decoy proteins

with a PSM FDR of 0.01 in the search results of the complete C. elegans data set.

• As peptides of interest we randomly selected 150 peptide sequences whose PSM in

the search results of the complete C. elegans data set were single hits.

The search results of the complete C. elegans data set were processed as follows. The

PSM of the complete C. elegans data set were extracted. Ambiguous peptides, peptides

longer than 18 amino acids and cysteine containing peptides were removed. MAYU was

run on the remaining PSM and all PSM corresponding to PSM FDR of 0.01 were ex-

tracted. From these PSM the three sets were selected as described above.

For all the 250 synthetic peptides an inclusion list was generated [118] and measured on

an LTQ-FT instrument such that the precursors corresponding to the selected PSM were

targeted. The spectra were searched using SEQUEST on a Sorcerer machine (Sorcerer-

SEQUEST, 3.10.4 release) and filtered for an FDR of 0.01 (protein identification FDR

of 0.01 estimated by MAYU ). The resulting tandem mass spectra were then normalized

to total ion current and compared to the analogously processed tandem mass spectra

of the C. elegans data set. Each peptide was attributed to a score comparing the cor-

responding C. elegans and inclusion list fragment ion spectrum, i.e. summed difference

of normalized intensities. We trained a Gaussian mixture model for TP/FP score dis-

tributions by fitting each component to the positive and respectively negative controls

and then used the mixture model to estimate the expected number of FP single hits for

the peptides of interest.

4.3.8 MAYU analysis on ProteinProphet protein identifications.

ProteinProphet was run on the pepXML files using runprophet from the trans proteomic

pipeline [71] and target/decoy protein identifications of ProteinProphet were used as

input for MAYUs protein identification FDR calculation.
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4.4 Results

4.4.1 MAYU - FDR for protein identifications.

MAYU implements a target-decoy strategy to estimate FDR for a set of protein identi-

fications compiled from a selection of PSMs. Target-decoy strategies to estimate FDR

of PSMs rely on the well established assumption that false positive PSMs uniformly

distribute between target and decoy database. Consequently, PSM FDR is estimated as

the ratio of PSMs mapping to the decoy and target database, respectively (Fig. 4.2a)

[41]. MAYU extends this approach to estimate FDR for protein identifications, i.e. as-

semblies of PSMs (Fig. 4.2b).

Prior to MAYU analysis, PSMs are gathered by a target-decoy database search and

processed by a protein inference engine, finally yielding a set of target and decoy protein

identifications (Fig. 4.1). Note that MAYU analysis solely aims to estimate the false

discovery rate of a set of already inferred protein identifications. MAYU analysis is

applicable to the results of any search and protein inference engine (Fig.4.8, 4.7). The

following describes the MAYU workflow.

MAYU processes the supplied list of protein identifications to estimate their FDR. We

define a false positive protein identification as being exclusively supported by false pos-

itive PSMs and no true positive PSMs. Assuming that false positive PSMs distribute

uniformly over the chimeric database, the number of the decoy protein identifications

provides an estimate of target protein identifications containing false positive PSMs

(seven in the example shown in Fig. 4.2b). However, the actual number of false pos-

itive protein identifications (five in Fig. 4.2b) is lower than this (näıve target-decoy)

estimate, as some proteins (two in Fig. 4.2b) in the target database will contain both

true and false positive PSMs.

MAYU uses the number of protein identifications in the target and decoy database and

the total number of protein entries in the database (11, 7 and 19 respectively in Fig.

4.2b) to estimate the expected number of false positive protein identifications in the

target database (see sections 4.3.3, 4.3.4).

In summary, starting from a shotgun proteomic data set searched against a target-decoy

database, the MAYU workflow provides comprehensive and quantitative error analysis
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a b

Figure 4.3: Robustness of the false discovery rate estimates of MAYU. MAYU imposes the
assumption that protein identifications containing false positive PSM uniformly distribute over
the protein database. To closely meet this assumption MAYU operates on a partition of the
protein database into subsets comprising proteins of similar size. The figure depicts how the
size of the partition affects the protein identification FDR estimates for different sets of PSM
defined over the complete C. elegans data set (a). Partitions with more than ten size bins
yield stable FDR estimates and therefore seem to yield the desired protein size homogeneity.
(b) Simulation studies for the complete C. elegans set where we explicitly distributed false
positive PSM according to distributions increasingly deviating from uniformity (see 4.3.5).
We assessed the accuracy of the MAYU estimate in terms of relative deviation from the
true FDR depending on the degree of uniformity of the false positive PSM distribution. The
inserted plot exemplarily depicts four distributions of varying uniformity. We observe that
the MAYU estimates do not deviate more than 1% from the true FDR (e.g. 0.2 ± 0.002%),
even for considerable deviations from the uniformity assumption.

for protein identifications.

4.4.2 Validation of protein identification FDR estimate

We validated the MAYU approach in various ways. First we assessed the robustness

of the FDR estimates under violations of the underlying assumptions. Second, we val-

idated the MAYU FDR estimates by comparing them with an independent approach

that estimates single PSM protein identifications (single hits) FDR based on isoelectric

point (pI) information from an isoelectric focusing experiment (67 LC-MS/MS runs,

C. elegans data set). Third, we validated MAYUs FDR estimates by confirming single

hit FDR using synthesized peptides corresponding to single hits in the complete C. ele-

gans data set (1,305 LC-MS/MS runs).
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We studied the robustness of our FDR estimates under deviations from the assumptions

underlying the hypergeometric model. MAYUs protein identification FDR relies on

statistics gathered from a target-decoy search, most importantly the number of protein

identifications mapping to the decoy database. Following [41], we assume this number

to equal the number of target protein identifications containing false positive PSM. In

order to estimate protein identification FDR with the hypergeometric model, we further

assume that protein identifications containing false positive PSM uniformly distribute

over the protein database. To closely meet this assumption MAYU partitions the pro-

tein database into subsets whose entries feature similar size. The protein identification

FDR estimate is obtained by applying the hypergeometric model to each of these subsets

(see 4.3.4). The granularity of the partition does not affect the FDR estimate as long as

more than ten size bins are considered (Fig. 4.3a). We further conducted simulation

studies to assess how deviations from the uniformity assumption influence the MAYU

FDR estimate. For each simulation we assumed a fixed number of true positive protein

identifications and distributed false positive PSM according to a truncated geometric

distribution. For each simulation we determined the true protein identification FDR

and compared with the MAYU estimate (Fig. 4.3b). We observe that the MAYU

estimates are not compromised, even for considerable deviations from the uniformity

assumption.

We further validated the MAYU FDR estimates for (non-simulated) experimental data.

MAYUs protein identification FDR estimates are ideally validated on a test data set

derived from a well-defined mix of proteins. In order to capture the relevant phenomena

complicating protein identification FDR estimates, a protein reference sample of defined

composition covering a significant proportion of the entire protein database (e.g. 10%)

would be required. Unfortunately, such a test data set is not available and would be

exceedingly difficult to construct.

We therefore validated MAYU on a large data set providing additional information that

allows us to independently derive single hit FDR gathered from an experiment of the

C. elegans data set where peptides were separated by isoelectric point (pI) using iso-

electric focusing (experiment 15, 67 LC-MS/MS runs).

We used the standard deviation of PSM pI deviations as a quality measure for a set

of PSMs. This measure grows with the fraction of false positive PSM, since their pI
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Figure 4.4: Validation of the false discovery rate estimates of MAYU. We validated the
MAYU false discovery rate (FDR) using two data sets of different size and with two distinct
methods. We used experiment 15 (67 LC-MS/MS runs) of the C. elegans data set where
experimental isoelectric point (pI) information of peptides were available (a, b). Using
experiment 15 we derived a measure of the discrepancy between the measured and the
computationally predicted pIs of peptides σ∆pI (see 4.3.6). Sets of peptide-spectrum matches
(PSMs) filtered with increasing PSM FDR up to 0.2 show an increase in σ∆pI (a, blue curve).
σ∆pI for only the single hits is significantly higher than for all PSM over the complete range
indicating that the single hit FDR is much higher compared to the PSM FDR (a, green
and blue curve). The error bars specify standard deviations from 20 bootstraps. Using
σ∆pI of all PSMs as a calibration curve we could estimate the single hit FDR assuming that
true positive (TP) single hits are not generally different from the rest of PSMs in terms of
pI (b). We also calculated a corrected single hit FDR (a, b brown curve) by making the
reasonable assumption that TP single hit peptides focused better in the isoelectric focusing
experiment (a, see offset of σ∆pI at zero PSM FDR between the single hits and all PSMs).
We found strong consistency between the MAYU and independent method based on peptide
pI information (b).

values distribute over the complete pI range, in contrast to those of true positive PSM

clustering closely around the measured pI. By exploiting this phenomenon, we related pI

information associated to PSM evidencing single hits to their quality in terms of FDR

(4.3.6, Fig. 4.4 a,b). Since for single hits, PSM FDR is equivalent to the single hit

FDR, we obtain a protein identification FDR estimate for the set of single hits.

MAYU analysis yielded a single hit FDR about ten fold higher than the corresponding

PSM FDR of the complete set of protein identifications. We find the surprisingly high
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Figure 4.5: Validation of MAYU estimates with synthetic peptides. We ordered three sets of
synthetic peptides corresponding to randomly picked PSMs of three different classes from the
complete C. elegans data set (see 4.3.7). We recorded tandem mass spectra of the synthetic
peptides in a targeted way using inclusion lists and compared them to the corresponding
spectra of the C. elegans data set (c). 35 peptides of the negative control (c, red), 42
peptides of the positive control (c, blue) and 114 peptides of our peptides of interest (c,
gray) were identified with a stringent cutoff. We could nicely separate the distributions of
positive and negative controls using the summed intensity difference (see 4.3.7). Based on
a Gaussian mixture model of the positive and negative controls we estimated the fraction of
false positives of our peptides of interest as 0.49 which is very consistent with the estimated
0.47 of MAYU.

single hit FDRs obtained by MAYU analysis to be independently confirmed by the pI

deviation method (Fig. 4.4b). We argue that the protein identification FDR estimates

produced by MAYU are accurate in the context of typical proteomic studies in the range

of 50 LC-MS/MS runs.

We also wanted to validate MAYUs FDR applied to the complete C. elegans data set,

where the error propagation effects from PSM FDR to protein identification FDR are

most pronounced. Since there was no pI information available for all 20 experiments we
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employed a different strategy. We used synthetic peptides and compared their tandem

mass spectra to the tandem mass spectra from the C. elegans data set (see 4.3.7). We

generated three sets of peptides: positive controls, negative controls and peptides of

interest. The analysis was performed on the complete data set filtered with a PSM FDR

of 0.01.

We recorded tandem mass spectra of the synthetic peptides in a targeted way using

inclusion lists and compared them to the corresponding spectra of the C. elegans data

set. 35 peptides of the negative control (Fig. 4.5, red), 42 peptides of the positive

control (blue) and 114 peptides of our peptides of interest (gray) were identified.

We report the summed intensity differences distributions and observe that the peptides

of interest show a bimodal distribution with the two apexes very close to the apexes of

the positive and negative controls. Based on a Gaussian mixture model of for positive

and negative controls we estimated the fraction of false positives of our peptides of in-

terest as 0.49 which is very consistent with the estimated 0.47 of MAYU.

Other recent studies confirm this considerable error accumulation among single hits [58].

We conclude that MAYUs estimates are accurate in the context of a very large data

set (1,305 LC-MS/MS runs). Considering the results obtained from the pI deviation

method, we conclude that MAYU achieves accurate protein FDR estimates that scale

well with data set size.

4.4.3 Comparison of decoy database types

There is an ongoing debate which type of decoy database to ideally choose to accurately

estimate false discovery rates. [41] have convincingly shown that all types of typically

used decoy database types achieve the same for PSM FDR estimates. We present results

for a comparison of protein identification FDR estimates using either a reversed or zeroth

order Markov model decoy database. These results confirm the situation encountered at

the level of PSM (Fig. 4.6). Estimates based on both types of decoy database coincide

across the whole range of protein identification FDR.

We also tested whether peptides present in both target- and decoy database compromise

our protein identification false discovery estimates. [41] have shown that such peptides
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Figure 4.6: MAYU protein identification false discovery rates are little influenced by the
choice of decoy database. Protein identification false discovery rate (FDR) estimates are
stable with respect to the underlying decoy database. We show this by repeated database
searches of the C. elegans data set, each based on a different decoy database (see sec-
tion4.3.2). Relative standard deviation of the resulting FDR estimates in any case fell below
10% (a,c). We observe a slight trend towards larger variability of the corresponding sin-
gle hit FDR estimates, revealing the limitations of the non-parametric estimates of protein
identification property distributions (c, d).

occur exceedingly rare and therefore are not expected to have a major impact on our

estimates. We analyzed the C. elegans dataset while explicitly excluding these few pep-

tides. Our results are summarized in Fig. 4.7 and confirm the expectation of these

peptides not influencing the false discovery estimates.

We conclude that the choice of the decoy database does not have a significant impact
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cumulative experiments

a b

Figure 4.7: Protein identification false discovery rate for protein inference excluding am-
biguous peptides. From the total data set of 20 experiments all peptide-spectrum matches
(PSMs) referring to peptides pointing to more than one (target or decoy) protein, were re-
moved. For the remaining PSMs the protein identification false discovery rate (FDR) was
estimated. This protein inference method has no influence on the general behaviour of the
protein identification FDR estimates as expected from the underlying model.

on estimating protein false discovery rates. In particular we note that simple reversing

of the target database achieves accurate estimates while more sophisticated approaches

to decoy database generation do not improve the estimates.

4.4.4 Comparison of protein identification FDR estimates

We compared protein identification FDR estimates of MAYU, ProteinProphet and the

näıve target decoy approach. We studied four different subsets of the C. elegans data

set varying in size (1, 5, 10 and 20 cumulative experiments). Protein identifications were

inferred with ProteinProphet. Protein identification FDR for these identifications were

then determined with MAYU, with the built-in functionality of ProteinProphet and the

näıve target-decoy strategy.

The näıve target-decoy strategy estimates protein identification FDR analogously to

PSM FDR, i.e. by approximating the expected number of false positive (FP) protein
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Figure 4.8: Comparison of different protein identification false discovery rate estimation
strategies. We compared protein identification false discovery rate (FDR) estimates of
MAYU, ProteinProphet and the näıve target-decoy strategy for four different data set sizes
(1, 5, 10 and 20 experiments of the C. elegans data set, a-d). The discrepancy of the
alternative FDR estimates and the MAYU estimates grow with data set size.

identification by the number of decoy protein identification (Table 4.4.4). We observe

that the näıve target-decoy strategy estimate is overly pessimistic (Fig. 4.8). This is

due to true positive (TP) protein identification containing FP PSMs and thus not con-

tributing to the pool of FP protein identifications. In contrast, ProteinProphets FDR

estimates are too optimistic. For typically sized data sets (Fig. 4.8a) ProteinProphet

and näıve target-decoy still yield reasonable protein identification FDR estimates. How-

ever, the larger the data set size the more pronounced we find its discrepancy to the
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MAYU estimates. Note the difference between FDR estimate and protein inference.

The foregoing comparison only aims to compare different protein identification FDR es-

timates, it is not suitable to assess the protein inference functionality of ProteinProphet

that provides an effective prioritization of protein identifications.

4.4.5 Protein identification FDR for various data sets

Proteomic studies typically report lists of protein identifications and specify confidence

in terms of FDR at PSM level. We used various data sets to study how well PSM FDR

reflects the relevant confidence measure for these lists, i.e. protein identification FDR.

To this end, we applied MAYU to several shotgun proteomics data sets, varying in MS

instrumentation and studied organism (Fig. 4.9, a-c). We analyzed isoelectric focusing

experiments of a C. elegans [119], L. interrogans and S. pombe sample. While the first

data set was acquired on a low resolution LTQ instrument, the latter two were acquired

on a high mass accuracy LTQ-FT instrument. Protein identifications were compiled by

lexicographical protein inference including all PSM above a score threshold (see 4.3.1).

We observe that protein identification FDR behaves similarly for any of the data sets.

Most importantly, we note that protein identification FDR is significantly elevated com-

pared to the PSM FDR. We conclude that the PSM FDR is not generally an appropriate

confidence measure for lists of protein identifications.

PSMs peptide identifications protein identifications
PSM FDR target decoy ratio target decoy ratio target decoy ratio
0.05 954,661 47,725 0.05 117,293 36,419 0.310 16,459 14,354 0.872
0.01 795,502 7,947 0.01 82,628 6,394 0.077 11,089 4,974 0.449
0.001 614,486 614 0.001 65,779 519 0.008 8,477 506 0.060

Table 4.1: Results of a target-decoy database search of the complete C. elegans data set.
Number of target and decoy peptide-spectrum matches, peptide identifications and protein
identifications for three different PSM FDRs are shown. For peptides mapping to several
protein sequences only the alphabetically first protein id was considered. For any PSM FDR,
the ratio of decoy to target hits is higher for peptides and again higher for proteins. Unlike
for the PSMs, this ratio is not to be mistaken for FDR for peptide or protein identifications.
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C. elegans – 20 cumulative experiments
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Figure 4.9: Protein identification false discovery rates behave similarly for data sets of
different species and instruments and largely depend on the size of the data set. We applied
MAYU to three different data sets of similar size but from different organisms and instruments
(59,918 a, 40,008 b, 65,553 c target PSMs for a PSM FDR of 0.01). In all three data
sets the protein identification false discovery rate (FDR) is roughly 5 times higher than the
peptide-spectrum match (PSM) FDR. The number of estimated true positive (TP) protein
identifications saturates for very low PSM FDR (a-c, f). We investigated the influence of data
set size using 20 compilations from the C. elegans data set representing 1 to 20 cumulative
experiments. The ratio of protein identification FDR to PSM FDR (protein identification
FDR / PSM FDR) shows clear dependence on data set size (d). In the complete data set
(1,305 LC-MS/MS runs) the protein identification FDR is more than 20 fold higher than the
PSM FDR. For all data set sizes the protein identification FDR is elevated compared to the
PSM FDR over the whole range of PSM FDR (e) and the apparent maximal number of TP
protein identifications is reached for very stringent PSM FDR of roughly 0.005 (f). This data
suggests that increasing the PSM FDR beyond 0.005 mainly entails an accumulation of FP
protein identifications.
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4.4.6 Data set size dependent accumulation of false positives

Using MAYU we assessed the impact of data set size on protein identification FDR. For

this purpose, we analyzed the currently largest shotgun proteomic data set for C. ele-

gans [119] generated at the Center for Model Organism Proteomes (C-MOP). We sub

sampled this data set (5,897,279 tandem mass spectra, 1,305 LC-MS/MS runs) into 20

data units of increasing size (Fig. 4.9, d-f). For each of these units we estimated the

FDR of the protein identifications defined for varying PSM FDR cutoffs.

Our analysis revealed that protein identification FDR is strongly influenced by the cho-

sen FDR of PSMs and the size of the respective data set (Fig. 4.9, d,e). For the 20

data units, protein identification FDR increases dramatically with growing PSM FDR

(Fig. 4.9d). In the largest data unit, protein identification FDR is more than 20 times

the corresponding PSM FDR (Fig. 4.9e).

For all data sets shown, the apparent maximal number of true positive protein identifi-

cations achievable by the respective data unit is approached already at very low PSM

FDR, in the range of 0.005 (Fig. 4.9, a-c,f). This quick convergence of the expected

number of TP protein identifications suggests that including less reliable PSMs mainly

entails accumulation of FP protein identifications without gaining new TP protein iden-

tifications. We conclude that in order to achieve acceptable protein identification FDR,

PSMs have to be selected exceedingly stringently with increasing data set size.

4.5 Discussion

MAYU is a generic strategy to estimate false discovery rates for protein identifications

inferred from shotgun proteomics data sets. An implementation of MAYU is publicly

available.

Unlike other well established strategies, which quantify the uncertainty of PSMs (fre-

quently also referred to as peptide identifications), MAYU evaluates quality at the level

of protein identifications. MAYU implements a novel and generic strategy that general-

izes the established target-decoy database search approach for PSMs in order to estimate

FDR for protein identifications. This approach constitutes a shift from assessing con-

fidence of proteomic data sets at PSM level by providing instead a confidence measure
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at protein level. It should be noted that MAYU is not designed for protein inference,

i.e. for the assembly of protein identifications. Instead MAYU generically assesses the

reliability of protein identifications already inferred by any sequence database driven

identification strategy (e.g. search engines such as Sequest, Mascot or protein inference

strategies such as ProteinProphet). Besides exemplarily showing MAYU s compatibility

to applications such as lexicographical and ProteinProphet protein inference, we also

applied MAYU to non-ambiguous protein inference (Fig. 4.7). With regards to con-

ceptual as well as computational issues, MAYU scales well with data set size and is

particularly suited for the analysis of very large integrated data sets comprising millions

of tandem mass spectra. This concept is also expected to be applicable to other high

throughput experiments in biology and medicine which are characterized by indirect

observations.

In this study, we assessed MAYU on three heterogeneous data sets including the largest

shotgun proteomics data set for C. elegans available to date [119]. FDR estimation for

protein identifications on data sets of this size has not been solved satisfactorily prior

to MAYU. Widely used protein inference tools like ProteinProphet [96] have proven to

yield reliable error estimates on data sets at the experiment level (typically 10-50 LC-

MS/MS runs) but fail to estimate accurate protein identification FDR for large data

sets (Fig. 4.8). Current approaches to assemble protein identification from such large

data sets rely on common sense criteria for which no quantitative confidence measure at

protein identification level has been reported yet. MAYU overcomes this limitation by

providing FDR for protein identifications in arbitrarily large data sets.

We found that data set size critically influences protein identification FDR. For the in-

tegrated data set (1,305 LC-MS/MS runs), the discrepancy in FDR rises to a more than

20-fold difference, even when stringent PSM FDR thresholds are used. Besides these

results obtained for protein inference as described in 4.3.1, we found the same trend

towards larger protein identification FDR for various other protein inference strategies.

This study aims to quantify the uncertainty of protein identifications in the context of

a large-scale data set. To the best of our knowledge, this is the first study that indepen-

dently confirms the scale of FDR estimates. More precisely, we showed that the scale of

FDR estimates for a subset of single hit are in very good agreement with an independent

method relying on experimentally acquired isoelectric points of peptides (Fig. 4.4a).
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We also showed that MAYU s protein identification FDRs are reproducible regardless of

the underlying decoy database (Fig. 4.6).

Other approaches like the protein inference engine ProteinProphet have been success-

fully applied to estimate confidence measures for protein identifications in the context

of smaller data sets. ProteinProphet relies on probability estimates of given PSMs to

be false, to compute the probability of the respective protein identification to be false.

Our results show that in large data sets, certain classes of PSMs are enriched in false

positive PSMs. This particularly applies to PSMs defining single hits: Their actual pro-

portion of false positive instances was nearly two orders of magnitude larger than the

average FDR for the complete set of PSMs (data not shown). This discrepancy is not

a contradiction: Because false positive PSM randomly map to a very large target-decoy

database, they are prone to map to previously unoccupied protein entry and therefore

give rise to a single hit. Phenomena like these complicate a reasonable estimate for false

positive probabilities for single PSM and thus challenge approaches like ProteinProphet

to estimate FDRs at protein level in the context of large-scale data sets (Fig. 4.8). In

contrast, MAYU estimates protein identification FDR without relying on false positive

probabilities for single hit PSM, since FDR estimates are derived solely from statistics

gathered at the protein identification level.

In a similar spirit, a Poisson model has been proposed to estimate the proportion of false

positive protein identifications given the number of supporting PSMs [1]. The paramet-

ric model requires the Poisson distribution parameter to be estimated. This estimate

is obtained in a heuristic way by assuming different scenarios for the validity of single

hits. This model implicitly assumes statistical independence of all PSMs. Our results

indicate that this assumption does not hold in general (data not shown), which confirms

the coarse approximate nature of the Poisson model.

MAYU circumvents the shortcomings of such parametric assumptions. MAYU exploits

the underlying target-decoy database search strategy and particularly addresses the phe-

nomenon of true positive protein identifications containing false positive PSMs. This

component clearly distinguishes MAYU from näıve target-decoy strategies that approx-

imate the number of false positive protein identifications with the number of decoy pro-

tein identifications [139]. These strategies overestimate protein identification FDR since

they implicitly assume that all protein identifications containing false positive PSMs are
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false positive (Table 4.4.4). In particular, the degree of protein identification FDR

overestimation grows with data set size (Fig. 4.8) [139].

Consider the following example where all proteins of a proteome (e.g. E. coli) have been

truly identified. The correct protein identification FDR would thus be zero. Due to the

accumulation of false positive, i.e. decoy PSM (not invalidating the true evidence for

the protein identifications) the näıve target-decoy strategy will falsely estimate an FDR

differing significantly from zero. Furthermore, the näıve target-decoy estimate has the

undesired property of diverging stronger the more experiments will be carried out.

MAYU s FDR builds on an estimate of the number of protein identifications containing

false positive PSMs. In this study we estimate this quantity by the number of decoy

protein identifications. While in principle there are other means to estimate the num-

ber of protein identifications containing false positive PSMs, MAYU uses target-decoy

database searched data sets to estimate protein identification FDRs since this represents

a well understood and well accepted strategy.

In addition, we find the assumptions underlying the target-decoy search strategy to be

well met. The central assumption comprises that false positive PSMs uniformly dis-

tribute between target and decoy database. Foregoing studies have discussed and shown

the general validity of the target-decoy search strategy [41]. Recurrently occurring chem-

ical entities (e.g. unusually modified peptides), which are not represented by the protein

database, could potentially challenge the validity of target-decoy strategies since each

of these give rise to false positive PSM preferably mapping to the same false peptide

sequence. However, the overall balanced distribution of all false positive PSMs as well

as protein identifications containing false positive PSMs is not compromised, due to the

large number of such entities.

We have seen that protein length has a small and controllable effect on MAYU ’s FDR

estimates (Fig. 4.3a). We observed that deviations from the uniformity assumption

regarding the distribution of protein identifications containing false positive PSM do not

compromise the FDR estimates (Fig. 4.3b). We furthermore observed that MAYU ’s

FDR estimates are not dependent on the underlying type of decoy database, i.e. reversed

or Markov model type (Fig. 4.6). Most importantly, we were able to independently

reproduce single hit FDR (Fig. 4.4 & 4.5), altogether providing a strong indication
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that the assumptions underlying MAYU analysis are reasonable and provide reliable

estimates of protein identification FDR.

Throughput and sensitivity of mass spectrometers applied to proteomics are steadily

increasing. Data repositories have been created to store the vast amount of mass spec-

trometric data [32, 37, 90, 75]. These repositories constitute a cornerstone for proteomics

contributing to a wide range of genome-wide studies. Well curated data repositories are

a prerequisite of the success of applications like spectrum library searching [128, 32, 80],

protein expression estimates by spectral counting [112] and targeted proteomics ap-

proaches based on the selection of proteotypic peptides [79]. MAYU enables to more

efficiently utilize existing and upcoming data sets in this context by allowing a quanti-

tative quality control of the of protein identifications. MAYU is the first approach to

quantify the uncertainty of protein identifications in the context of large scale data sets,

thereby allowing to automatically curate proteomics repositories of steadily increasing

size. We conclude that approaches like MAYU will significantly enhance genome-wide

studies based on shotgun proteomics strategies.
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Inference Engine Families

5.1 Summary

Protein inference defines a key step in mass spectrometry based proteomics and refers

to the reconstruction of protein identities from the fragment ion spectra generated by

shotgun proteomics experiments. There has been an ongoing debate about how to op-

timally infer protein identities. The inability to estimate false discovery rates of protein

identifications for large integrated datasets has so far hindered to generally assess protein

inference approaches in the context of contemporary datasets featuring ever increasing

size and heterogeneity.

We present a simple generic strategy to benchmark a wide range of protein inference

engine. This strategy essentially builds on a performance measure for protein inference

that evaluates the number of correct protein identifications while accounting for false

discovery rates at the level of protein identifications. Specifically, a family of several

thousand protein inference approaches is benchmarked to systematically explore the

benefit of excluding possibly unreliable protein identifications, such as e.g. single hit

wonders. In a preliminary study we identified particularly unreliable protein identifi-

cation subsets, in terms of local false discovery rates. On the basis of this study, a

family of protein inference engines is defined by extending a simple inference engine by

thousands of pruning variants, each excluding a different set of unreliable identifications.

None of the pruning strategies improves protein inference performance when applied to

the currently largest reported shotgun proteomics dataset for C. elegans. We conclude

that the maximal number of reliable protein identifications can be effectively inferred

by considering all spectral evidence of high quality, including single hit wonders. 1

1Lukas Reiter and I share the first authorship on this work. Both Lukas Reiter and me have equally
contributed to the main ideas and their implementation. The project was performed under the
supervision of Joachim M.Buhmann, Michael O. Hengartner and Ruedi Aebersold. We thank Sabine
Schrimpf for providing the C. elegans dataset.
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5.2 Introduction

A fundamental goal of mass spectrometry based proteomics is to determine the true pro-

tein composition of biological samples. Protein inference denotes the task of recovering

the protein identities from the fragment ion spectra acquired in the course of shotgun

proteomics experiments. Assessment of protein inference methods so far suffered from

the lack of a generally applicable performance criterion that takes protein identification

reliability into account. We extend the statistical validation framework Mayu [26] to

define such a criterion and apply it to benchmark a family of prototypical protein infer-

ence approaches.

Protein inference is a task that arises in the context of shotgun proteomics experi-

ments [3]. In their simplest implementation, protein samples are first extracted from

their biological source, subjected to enzymatic digestion, yielding a complex peptide

mixture that is analyzed by liquid chromatography tandem mass spectrometry (LC-

MS/MS). Fragment ion spectra are acquired after stochastic or directed precursor ion

selection [118]. More elaborate strategies augment this workflow by additional fraction-

ation steps at the level of proteins/peptides before LC-MS/MS analysis. These steps

give rise to a set of peptide fragment ion spectra that constitute the raw data to infer

the proteins present in the biological source.

Interpretation of the spectral data consists of first matching the fragment ion spectra

to their corresponding peptide sequences (peptide spectrum matching) and second to

integrate these results to infer the set of proteins initially present in the biological sam-

ple (protein inference) [95]. See also 5.1. These steps are typically automated due to

the vast amount of spectra generated in the course of contemporary shotgun proteomics

approaches.

Peptide-spectrum matches are typically generated using one of the many available search

engines, e.g. [42, 105, 30]. Search engines map fragment ion spectra to the best matching

peptide sequence in the protein database of the studied organism [97]. Various statistical

measures, such as e.g. false discovery rates [9], have been derived to account for possibly

incorrect peptide-spectrum matches [18]. In this context the target-decoy strategy has

recently grown very popular since it is simple to implement and compatible with all

currently used search engines [94, 41].
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Protein inference uses peptide-spectrum matches to infer the identities of proteins ini-

tially present in the biological source [95]. A protein identification comprises an assembly

of supporting peptide-spectrum matches. Protein inference engines integrate possibly

redundant spectral evidence to compile a set of protein identifications that are expected

to be correct, i.e. contain at least one correct peptide-spectrum match. The more

complex a proteome the more frequently peptide-spectrum matches turn out to ambigu-

ously map to several protein entries, e.g. protein splice variants. It is common practice

to circumvent this issue by effectively reducing a protein identification to a gene locus

identification in case of ambiguity (“gene locus inference”)[90, 15, 5, 119]. More sophis-

ticated protein inference engines though implement statistical or algorithmic approaches

to disambiguate peptide-spectrum matches where required [96, 112, 44, 108, 148]. After

having applied an inference engine, it is common practice to exclude possibly unreliable

protein identifications, such as e.g. single hit protein identifications. There has been

considerable debate about whether this kind of post-processing enhances protein infer-

ence [59, 58].

Protein identifications are not perfect since peptide-spectrum matches can be spurious.

Errors at the level of peptide-spectrum matches though propagate non-trivially to the

level of protein identifications. While error rate estimation for peptide-spectrum matches

is well established [18], several attempts have been made to control protein identifica-

tion error rates throughout. Besides their inference functionality, most protein inferences

engines also estimate error rates based on probabilities of individual peptide-spectrum

matches being wrong [96, 112, 44, 108]. It turns out, however, that this kind of approach

does not scale well with dataset size [26]. Another approach estimates the number of

incorrect protein identifications assuming that false positive peptide-spectrum matches

distribute according to a Poisson distribution across the protein database. [90, 126]. The

estimates from such models though give ambiguous estimates depending on assumptions

regarding single hit protein identifications. Simple target-decoy approaches, estimating

the number of false positive protein identifications by the number of decoy identifications

[97, 108, 148, 59], have shown to give too pessimistic estimates [26]. Considering the

limitations of the latter approaches, none of these qualifies as a general purpose method

to control protein identification error rates for datasets of different quality and size. To

close this gap, we recently proposed the Mayu approach that appropriately adapted the

target-decoy strategy to the protein inference task and achieved accurate, independently

63



5 Generic Comparison of Protein Inference Engine Families

validated protein identification false discovery rates (i.e. the expected proportion of in-

correct among all accepted identifications) for a range of diverse datasets differing in

size, underlying proteome and experimental setting [26].

The literature does not provide a starting point to decide which protein inference engine

to choose for a particular application scenario (in contrast to the rich literature about

search engine comparisons, see e.g. [68]). Specifically, none of the studies presenting a

novel protein inference engine [96, 112, 44, 108] reports identification performance by

means of a thorough benchmark against at least one baseline method. Instead each

study shows that its approach is to some extent able to recover protein identities from

different kinds of datasets, i.e. artificial, well characterized protein mixtures comprising

at most dozens of sufficiently abundant proteins and real world complex whole proteome

mixtures. A single study ([108]) shows results of a competing approach ([96]). This

study lacks, however, a systematic benchmark with a sensible performance measure.

Typically (though not always), performance of a protein inference engine is positively

correlated with the number of protein identifications attributed to the respective engine.

In this context, protein inference performance is sensibly measured by specifying the

number of correct and incorrect protein identifications, i.e. by not only counting the

total number of protein identifications but by also considering identification specificity.

In the case of an artificial protein mixture, identification performance is easily measured

since the protein composition is known and identifications are therefore trivially recog-

nized as true or false positive. In the real world case, identification performance is not

straightforward to measure since the true protein composition of the test sample is not

known. As delineated before, it is has been only partially understood how to count the

number of correct and incorrect protein identifications in this case until recently [26] and

therefore protein inference engine performance has only been reasonably approximated

and reported for scenarios that do not reflect the heterogeneity and size of contemporary

shotgun proteomics datasets [96, 112, 44, 108].

The present study contributes a sensible and generic performance measure that enables

to easily benchmark protein inference engines (5.1). This measure evaluates the number

of true and the proportion of false positives in a particular set of protein identifications.

We show that these numbers can be easily and generically estimated on the basis of

protein false discovery rates [26]. We apply this performance measure to compare a
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family of a widely used protein inference engines. This family is based on the popular

“gene locus inference” approach [90, 15, 5, 119] . For these base protein inference engines

we additionally study the impact of post-processing schemes related to the exclusion of

protein identifications subsets featuring low spectral counts. We report a target-decoy

strategy for local false discovery rates [40] to quantify the reliability of various protein

identification subsets. In order to systematically study the exclusion of protein identi-

fications after applying one of the base inference engines, we introduce the concept of

a selection scheme that formally characterizes properties of a subset of protein identi-

fications (5.2). By systematically varying selection schemes we effectively benchmark

thousands of different variants of the base protein inference engine (5.1). Finally, we

apply the benchmark strategy to compare “gene locus inference” with ProteinProphet.

For the largest reported shotgun proteomics dataset for C. elegans [119] we find that

“gene locus inference” without any further pruning achieves the highest performance.

Material and Methods

5.3 Dataset and data processing

This work builds on a heterogeneous dataset acquired for Caenorhabditis elegans in a

study in which varying sample preparation and MS instrumentation were applied [119].

The spectral data was searched against a composite target-decoy database using Turbo

Sequest [42] and Sequest on a Sorcerer machine (SorcererTM-SEQUEST R©, 3.10.4 release).

The search results were transformed to the pepXML format and further processed using

the Trans-Proteomic Pipeline [71] to the level of PeptideProphet [72] in units of experi-

ments. The pepXML files were then further analyzed with the Mayu software [26]. If a

peptide existed in more than one protein sequence the hit was associated with one pro-

tein representing the gene locus (“gene locus identification”) [119]. All database searches

were performed using a concatenated target-decoy database [41]. As target database we

chose wormpep170 (WormBase). ProteinProphet was run on the pepXML files using

runprophet from the Trans-Proteomic Pipeline, and target/decoy protein identifications

of ProteinProphet were used as input for the Mayu protein identification false discovery

rate calculation.
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Figure 5.1: Schema to benchmark protein inference engines. Tandem mass spectra are
generated in the course of a shotgun proteomics experiment. Protein identities are recovered
in two distinct steps, i.e. (1) peptide identification yielding peptide-spectrum matches and (2)
protein inference assembling peptide-spectrum matches to protein identifications. Optionally,
protein inference is followed by additionally pruning particular protein identifications sets, e.g.
single hit identifications. We formally characterize these sets by means of selection schemes to
systematically study different pruning strategies. Protein identification reliability is assessed
in terms of (possibly local) protein identification false discovery rates. Protein inference
performance is measured by estimating the number of correct identifications over a range of
different protein identification false discovery rates, thereby giving rise to inference engine
characteristic response curves. Comparison and ranking of protein inference engines is usually
performed for a user defined protein identification false discovery rate. Processes studied in
this work are highlighted in red. Specifically, these are (1) selection scheme variants of
available protein inference engines and (2) assessment and comparison of protein inference
performance.

5.4 Local false discovery rates for protein identification

subsets

Local false discovery rates can be used to quantify the reliability of protein identification

subsets. We use simple properties, such as e.g. number of supporting peptide-spectrum

matches, to characterize protein identification subsets. More generally, an individual
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Figure 5.2: Selection scheme illustration. Selection schemes aim to formalize the notion
of selecting the spectra more stringently for protein identifications evidenced by few spectra
than for those featuring more redundant evidence. Selection schemes characterize protein
identification subsets according to the reliability of peptide spectrum matches (PSM FDR)
and some property of a protein identification, e.g. the number of supporting peptide spectrum
matches (# PSM). Formally, a selection scheme specifies a series of peptide-spectrum match
false discoveries m1,m2, ... and accordingly considers protein identifications that for some
i = 1, 2, 3, ... are supported by at least i peptide-spectrum matches afflicted with false
discovery rate of less than mi. (a) depicts the selection scheme for excluding all single hit
protein identifications and considering all other protein identifications supported by at least
two peptide-spectrum matches at false discovery rate lower than some threshold. (b) depicts
a more intricate selection scheme that allows to consider single hit protein identifications as
long as the respective peptide-spectrum matches feature a low false discovery rate. With
increasing support the spectral quality requirements decrease.

property Y is used to split the complete set of protein identifications into subsets, each

featuring the same property value (e.g. single hits) and to measure their quality by local

false discovery rates FDR(y) [40]. By definition of local false discovery rates we can

write

FDR(y) := P (fp | y) =
P (y | fp) · P (fp)

P (y)
(5.1)

While y corresponds to the property value of a single identification, fp denotes the iden-

tification to be false positive. FDR(y) thus corresponds to P (fp) scaled by the ratio of

P (y | fp) to P (y). Calculation of FDR(y) requires to specify the distributions P (y | fp),

P (fp) and P (y). P (y) can be estimated with its empirical distribution defined by all

protein identifications mapping to the target database. Recalling that protein identifi-
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cations mapping to the decoy database are false positive by definition, P (y | fp) can be

approximated analogously by its empirical distribution defined by all decoy protein iden-

tifications. The protein identification false-discovery rate for the complete identification

set is straightforwardly estimated with Mayu (for details please see [26]) and provides

an estimate for the prior P (fp), finally allowing to estimate the local false discovery rate

by plugging in the latter estimates.

5.5 Protein identification selection schemes

We use selection schemes to characterize (presumably high quality) protein identification

subsets that we wish to report in the final identification list. A very simple selection

scheme could for instance characterize the subset of all non-single hit protein identifi-

cations and the single-hit identifications whose peptide-spectrum matches score higher

than any decoy match.

Generally, protein identification sets were generated by various selection schemes con-

sidering the “number of supporting peptide-spectrum matches” property. Selection

schemes are characterized by a sequence of peptide-spectrum match false discovery rates

m1,m2, .... The selection scheme considers those protein identifications which are sup-

ported by at least i peptide-spectrum matches that map to the peptide-spectrum match

set with false discovery rate less than mi. Selection schemes thus allow us to define

protein identification sets where protein identifications evidenced by very few high confi-

dence peptide-spectrum matches and protein identifications supported by a large number

of lower confidence peptide-spectrum matches. For an illustration see also 5.2.

5.6 Screening and false discovery rate evaluation of

selection schemes

We exhaustively enumerated all selection schemes (m = 0, 0.0001, 0.0002, 0.0003, 0.0004,

0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035 for m1, ..., m6, m>6) to identify

optimal protein identification sets for some desired false discovery rate. We considered

a protein identification set to be optimal if it maximized the expected number of true

positive protein identifications for a chosen protein identification false discovery rate.

The protein identification false discovery rate of each selection scheme was determined
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as the local false discovery rate estimate for the protein identification property “selection

scheme predicate”. This predicate is true for a protein identification being considered

by the underlying selection scheme and false otherwise.

5.7 Protein inference engine benchmark

For the protein inference engine benchmark we assume that for each competitor the

(target-decoy) identification results are available in terms of an identification list. We

measure performance of each competing approach by evaluating the absolute number of

true positive identifications and the respective proportion of false positives, i.e. the false

discovery rate. Since the total number of identifications is trivially given by length of

protein identification list it is sufficient to estimate the false discovery rate in order to

complete the performance measure. We estimate the false discovery rate directly with

Mayu [26]. In case the competitors inference strategy involves a pruning step according

to a selection scheme, the proportion of false positives is estimated as local false discov-

ery rate as described in the preceding section.

Most inference engines assign a score to each protein identification and therefore pro-

duce a series of protein identifications with increasing size and false discovery rate.

Assessing this series of identification sets yields a response curve that characterizes the

performance of the inference engine across the whole spectrum of false discovery rates.

In summary, competitors can now be sensibly ranked according to the amount of true

positive identifications at a user defined false discovery rate. See also 5.1.

5.8 Results

The following sections report the quantitative impact of certain properties on protein

identifications reliability, such as sequence length and spectral support of protein iden-

tificationsm, a systematic benchmark of “gene locus inference” in conjunction with a

multitude of selection schemes based on spectral support and the more sophisticated

protein inference engine ProteinProphet.

5.8.1 Local false discovery rates for protein identification subsets

To date, deciding on the final set of protein identifications in a given proteomics dataset

is frequently based on heuristic criteria supposed to enrich for valid identifications. A
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Figure 5.3: Local protein identification false discovery rate (FDR) for protein identification
groups characterized by either protein sequence length in amino acids (specified by lower bin
boundaries) (a-c) or number of peptide-spectrum matches defining the identification (d-f)
Each heat map depicts results for dataset partitions of varying size (amount of cumulative
experiments). Magnitude of local protein identification false discovery rate is color coded
as indicated. Certain protein identification subsets feature more than 60 fold higher protein
identification false discovery rate than the underlying peptide-spectrum match false discovery
rate.

widely used strategy filters for protein identifications whose peptide-spectrum matches

score above a certain threshold. More stringent strategies furthermore require a valid

protein identification to be composed of a minimal number of supporting peptide-

spectrum matches (e.g., neglect all single hits) . There have been substantial de-

bates about the validity of such criteria to compile protein identification sets from large

datasets.

To determine whether removal of particular subsets of protein identifications improves
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the quality of the remaining identifications, we estimated local false discovery rates for

identification subsets. These subsets were characterized by a certain property (e.g. sup-

ported by single hits) expected to have an impact on the quality of protein identifications

(5.3). We studied the effect of two properties that were expected to have an impact on

the quality of protein identifications. Specifically, the effects of protein sequence length

in amino acids and number of peptide-spectrum matches supporting the protein identi-

fication (number of supporting peptide-spectrum matches) were explored.

In a first step we generated local false discovery rate estimates for protein identifica-

tion sets characterized by protein sequence length (5.3a-c). Increasing protein sequence

length is expected to amplify false discovery rate since false positive peptide-spectrum

matches map to the database by chance and therefore are more likely to map to larger

proteins. Our local false discovery rate estimates clearly confirm this expectation. The

local false discovery rate for proteins of for instance sequence length 400 is two fold

higher than for proteins with sequence length 100 using a peptide-spectrum matches

false discovery rate cutoff of 0.01. We find a similar though not so pronounced trend for

smaller datasets, i.e. subsets of the complete C. elegans dataset.

We went on to study protein identification sets characterized by a varying number of

supporting peptide-spectrum matches (5.3d-f). Note that a protein identification with

one supporting peptide can be supported by several peptide-spectrum matches. As

expected, the confidence in a protein identification scales with the number of peptide-

spectrum matches supporting it. Surprisingly high false discovery rate were observed for

protein identifications only supported by a single peptide-spectrum match (single hits)

in the complete dataset, exceeding 0.65 for a presumably stringent peptide-spectrum

match false discovery rate of 0.01. Even protein identifications being apparently ap-

proved by two peptide-spectrum matches complying with a cutoff of 0.01 featured false

discovery rate of 0.4. While not being so pronounced, we encounter a similar situation

for smaller subsets of the C. elegans datasets. The discrepancy between false discovery

rate of peptide-spectrum matches and corresponding protein identifications was most

pronounced for the subset of single hits. These results confirm a similar discrepancy

estimated by other (not so generically applicable) methods, such as validation with syn-

thetic peptides [26], considering deviations in measured and predicted isoelectric point

[26] or manual curation [58].
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Figure 5.4: Optimal pruning strategies with respect to expected number of true posi-
tive protein identifications. (a) Comparison of protein identification selection schemes. All
optimal selection schemes (see text) consider all peptide-spectrum matches (PSMs) of suf-
ficiently low peptide-spectrum match false discovery rate (FDR) (red). Two alternative
selection schemes are shown exemplarily. Selection schemes consequently neglecting single
hits (green) or solely neglecting single hits with nonzero uncertainty (brown). The response
curve of ProteinProphet is shown in blue.(b) Histogram of expected number of correct protein
identifications for all selection schemes at protein identification false discovery rate < 0.05.
The performance of the exemplary schemes and ProteinProphet are plotted according to
their color code in (a). While three groups can be discerned, the clearly detached top group
only considers selection schemes retaining single hit identifications.

In summary, the investigated protein identification properties are powerful indicators

of protein identification quality and therefore represent a promising starting point to

selectively prune protein identification sets in large to very large datasets to enrich for

valid protein identifications.

5.8.2 Pruning protein identifications does not enhance inference

The foregoing analysis suggests that a selection scheme that consequently excludes single

hits might enrich for correct protein identifications (5.4a, w/o single hits). However,

it might be more beneficial to opt for a selection scheme that selectively retains high

quality (very low false discovery rate) single hits (5.4a, w/o uncertain single hits). A

variety of similar and more complex selection schemes that include or exclude protein

identifications according to the “number of supporting peptide-spectrum matches” prop-
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erty can be considered to optimally explore the underlying dataset.

We systematically searched for optimal selection schemes, i.e. selection schemes that

maximized the number of expected true positive protein identifications for a desired

false discovery rate. Regardless of the desired protein identification false discovery rate,

optimal selection schemes turned out to be the ones that consider all high quality peptide-

spectrum matches, irrespective of the “number of supporting peptide-spectrum matches”

property (5.4a, optimal). For instance, the optimal protein identification set featuring

false discovery rate of 0.015 is compiled from the complete set of peptide-spectrum

matches with false discovery rate of 0.0005. All other selection schemes turned out to be

inferior. In particular our results clearly ruled out selection schemes that consequently

neglected single hits, as well as selection schemes that selectively included protein iden-

tifications supported by a large number of low confidence peptide-spectrum matches

(5.4b).

In summary, selection schemes considering all peptide-spectrum matches, including those

giving rise to the less reliable single hits, turned out to be optimal for this dataset.

However, peptide-spectrum matches have to be selected much more carefully than ap-

preciated so far, in order to achieve reasonable protein identification false discovery rate

for datasets of large size.

5.8.3 Simple protein inference engines are competitive

We compared “gene locus inference” and its selection scheme variants to ProteinProphet

on the complete C. elegans dataset (5.4a). “Gene locus inference” without any prun-

ing performs clearly better over the complete range of reasonable protein identification

false discovery rates. ProteinProphet is also inferior to the single hit exclusion schemes

for small false discovery rates, though outperforms these for less stringent identifcation

quality requirements.

At a first glance it might be surprising that a simple protein inference strategy like

“gene locus inference” outperforms a sophisticated inference engine like ProteinProphet.

Considering that ProteinProphet effectively implements a probabilistically motivated

selection scheme this result is though consistent with the forgoing analysis. To see this,

consider ProteinProphet’s probabilistic model that is supposed to also recover proteins
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that are redundantly evidenced by less reliable fragment ion spectra. In the previous

analysis, we systematically assessed all reasonable selection schemes for the complete

C. elegans dataset and demonstrated them all to be inferior to the simple “gene locus

inference” without any further pruning. These results suggest that, at least for large

datasets like the C. elegans dataset, low quality spectra do not contribute novel protein

identifications and they potentially mislead approaches that aim to exploit them as an

additional information source.

5.9 Discussion

This work systematically assesses how pruning unreliable protein identification subsets

affects protein inference performance [25]. An exploratory study investigated possibly

unreliable protein identifications subsets by means of local false discovery rates. We

further studied whether pruning such unreliable protein identifications is beneficial for

protein inference performance. Therefore the concept the concept of selection schemes

is introduced to enable a systematic enumeration of thousands of conceivable prun-

ing strategies. In a second step a performance measure is introduced that allowed to

generically compare the protein inference results obtained by each of the many pruning

strategies. This measure evaluates the number of correct identifications and the involv-

ing false discovery rate. This measure is applied to benchmark pruning strategies defined

by selection schemes computed for protein identifications obtained by the “gene locus

inference” approach on the largest reported shotgun proteomics dataset for C. elegans.

This work reports the influence of various protein identification properties on identi-

fication false discovery rates. The number of peptide-spectrum matches supporting a

protein identification has a severe impact on the identifications reliability. The following

benchmark of protein inference engines therefore focuses on pruning strategies based on

this property. The generic concept of selection schemes though also lends itself to define

pruning strategies based on other protein identification properties. Future studies might

benefit from incorporating these, too.

Our results confirm a recently published study that advocates to retain single hit wonders

instead of discarding them [59] since these typically comprise many correct identifica-

tions. Here we studied these two pruning strategies among thousands of other strategies

defined by the selection schemes. We could consistently rule out all conceivable pruning
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strategies to improve protein inference performance. While our heterogeneous dataset

is presumably representative of most large scale shotgun proteomics datasets, it is still

conceivable that for other datasets these conclusions do not hold. Consider for instance

repetitive measurements of a large number of very similar samples. Such a scenario

might result in a situation where true single hits become exceedingly rare, redeeming

selection schemes that exclude single hits.

In this study we benchmark ProteinProphet and “gene locus inference” including its

selection scheme variants. The approach is, however, equally applicable to a wide range

of inference engines since the evaluation of the performance criterion is performed on

the list of (target-decoy) protein identifications. This criterion can be easily evaluated

since it simply involves the estimation of protein identification false discovery rates [26].

The result of a benchmark involving a larger number of competitors might vary across

different application scenarios. Our approach enables the experimentalist to perform a

benchmark and choice that is tailored to his application.

In order to ensure a fair comparison, competing protein inference engines should be com-

parable with respect to our performance measure. Since our performance measure re-

wards large numbers of correct protein identifications, the competitors should base their

inference on a similar sized repertoire of possible protein identities. This requirement is

mainly ensured by providing the same protein database to all competitors. However, it

is conceivable that cases arise, where a protein inference engine would be intrinsically

disadvantaged if it were to infer less resolved entities, such as e.g. exclusively gene loci,

compared to competitors that could possibly report a larger number of higher resolved

entities, such as e.g. splice variants2.

For the protein inference engine benchmark, we optimize a trade-off between identifica-

tion sensitivity and specificity. Despite being appealing, this objective is not necessarily

always suitable. This is particularly the case where shotgun proteomics studies focus on

a small set of proteins and aim to make explicit or even resolve possible ambiguities, such

as e.g. gene products of a single gene locus. These cases necessitate protein inference

engines like e.g. ProteinProphet [96] or IDPicker [148] that provide a protein grouping

functionality.

2Note that this example does not apply to “gene locus inference” as introduced here. Given unam-
biguous peptide-spectrum matches, “gene locus inference” is well able to identify splice variants.
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In the context of large shotgun proteomics projects aiming at extensive proteome cov-

erage it is desirable to (1) decide upon the experiments that are expected to produce

the most informative data, i.e. to most effectively explore a proteome [43, 15, 23, 24]

and (2) to optimally evaluate the finally acquired data, i.e. to optimally perform pro-

tein inference. The presented benchmark approach contributes to the second step by

generically enabling to choose the best protein inference engine. In our case we observe

that processing the data with simple protein inference approaches and keeping all the

spectral evidence achieves competitive proteome coverage.
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6 Proteome Coverage Prediction with

Infinite Markov Models

6.1 Summary

Liquid chromatography tandem mass spectrometry (LC-MS/MS) is the predominant

method to comprehensively characterize complex protein mixtures such as samples from

pre-fractionated or complete proteomes. In order to maximize proteome coverage for

the studied sample, i.e. identify as many traceable proteins as possible, LC-MS/MS

experiments are typically repeated extensively and the results combined. Proteome cov-

erage prediction is the task of estimating the number of peptide discoveries of future

LC-MS/MS experiments. Proteome coverage prediction is important to enhance the de-

sign of efficient proteomics studies. To date, there does not exist any method to reliably

estimate the increase of proteome coverage at an early stage.

We propose an extended infinite Markov model DiriSim to extrapolate the progression

of proteome coverage based on a small number of already performed LC-MS/MS exper-

iments. The method explicitly accounts for the uncertainty of peptide identifications.

We tested DiriSim on a set of 37 LC-MS/MS experiments of a complete proteome sam-

ple and demonstrated that DiriSim correctly predicts the coverage progression already

from a small subset of experiments. The predicted progression enabled us to specify

maximal coverage for the test sample. We demonstrated that quality requirements on

the final proteome map impose an upper bound on the number of useful experiment

repetitions and limit the achievable proteome coverage.

6.2 Introduction

Over the last few years mass spectrometry based proteomics has emerged as the most

powerful approach to comprehensively characterize a proteome. The experimental work-

flows for mass spectrometry based proteomics have sufficiently advanced to enable ex-
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Figure 6.1: Illustration of an LC-MS/MS experiment. (a) Liquid chromatography fractiona-
tion generates a sequence of local peptide ensembles from the initial ensemble. Each of these
ensembles is derived from the initial ensemble by pooling peptides of similar polarity. The
sequence of ensembles features descending overall polarity in the course of the experiment.
During the experiment peptides πt are drawn from the sequence of ensembles and analyzed
by the mass spectrometer coupled to the liquid chromatography system. (b) Graphical rep-
resentation of the infinite Markov model. The initial ensemble is represented by its peptide
distribution G0. G0 is assumed to have a Dirichlet process prior with concentration parame-
ter γ and uniform distribution H over the protein database D as base probability measure.
Local ensembles for which representative peptides have been detected are represented ex-
plicitly. Each of these ensembles is indexed by its representative peptide i and characterized
by its peptide distribution Gi. Gi is assumed to be sampled from a biased Dirichlet process
with G0 as base probability measure. The peptide πt following the series π1, ..., πt−1 = i of
detected peptides is sampled from Gi. Each peptide πt gives rise to an observable fragment
ion spectrum st, defining the peptide-spectrum match (st, πt).

tensive exploration of complex biological samples ([38]). While conceptional studies

provided rough a priori insights about the scope of these workflows ([43]), there are still

no means to dynamically infer the a posteriori potential, i.e. to predict the increase

in proteome coverage for their real-world implementations. This work contributes the
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extended infinite Markov model DiriSim to predict proteome coverage (in terms of pep-

tide discoveries) upon repetition of liquid chromatography tandem mass spectrometry

(LC-MS/MS) experiments. By explicitly modeling false and true positive peptide iden-

tifications, DiriSim enables us to specify the maximally achievable proteome coverage

for a specified quality constraint on the final set of peptide discoveries.

The most successful strategy to achieve extensive proteome coverage is referred to as

shotgun proteomics. In its simplest implementation, protein samples are extracted from

their biological source, subjected to enzymatic digestion and the resulting peptide mix-

tures are finally analyzed by LC-MS/MS. More elaborate strategies essentially adopt

the same workflow, additionally augmented by fractionation steps for proteins/peptides

before LC-MS/MS analysis. Finally, peptide identities are inferred from the acquired

fragment ion spectra and they are used to recover the protein composition of the initial

biological sample.

The complexity of the protein, and hence peptide mixtures, poses a formidable chal-

lenge to mass spectrometrical analysis. The reversed phase liquid chromatography step

effectively reduces the complexity of the peptide mixture by selecting peptides for tan-

dem mass spectrometry analysis according to their polarity. For the duration of the

LC-MS/MS experiment the mass spectrometer coupled to the liquid chromatography

system constantly acquires tandem mass spectra from eluting peptides. The elution

time of a particular peptide is defined by its polarity. Any time during the LC-MS/MS

experiment, the mass spectrometer is thus exposed to a local peptide mixture that is less

complex than the initial mixture (Fig. 6.1a). Nevertheless, these mixtures are typically

still far too complex to allow the mass spectrometer to acquire tandem mass spectra for

all peptides in a single LC-MS/MS experiment. Consequently, LC-MS/MS experiments

are usually repeated extensively, in order to increase the number of peptides for which

tandem mass spectra are acquired.

Using one of a range of database search engines, tandem mass spectra are then assigned

to peptide giving rise to a series of peptide-spectrum matches ([97]). Note that peptide-

spectrum matches are typically highly redundant, i.e. the number of peptide discoveries

covered by the peptide-spectrum matches is typically much smaller than the total number

of peptide-spectrum matches. Not all peptide-spectrum matches are correct. Various ap-

proaches are available to estimate the reliability of peptide-spectrum matches ([72, 41]).

Target-decoy strategies have shown to be a generic and reliable strategy to estimate

false discovery rates for peptide-spectrum matches, i.e. the expected fraction of false

positive peptide assignments ([41]). At this point, the preliminary result of a series of
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LC-MS/MS experiments reduces to a series of peptide-spectrum matches that is addi-

tionally characterized by some false discovery rate.

Shotgun proteomics studies should ideally be designed such that proteome coverage, i.e.

discovered peptides increases efficiently with consecutive measurements. For a given

series of already performed LC-MS/MS experiments this requirement translates into the

task of estimating the required number of additional experiments that have to be per-

formed to achieve a reasonable increase in proteome coverage. If the estimated effort

turns out to be too large, it might be more convenient to consider other experimental

setups to analyze the underlying sample. Besides simply giving existing workflows a try,

there have been approaches to rationally design promising setups according to statis-

tical analysis of the already acquired peptide-spectrum matches ([15]). To the best of

our knowledge, no method specifies the remaining potential of the currently performed

experiments by predicting their proteome coverage progression.

To close this gap, we present DiriSim, an extended infinite Markov model for LC-

MS/MS experiments that yields a posterior prediction of the proteome coverage pro-

gression. DiriSim explicitly accounts for true and false positive peptide-spectrum

matches by modeling a set of LC-MS/MS experiments as a mixture of an infinite Markov

model ([8]) and an error model distribution. The expected proteome coverage progres-

sion for additional experiments is estimated by sampling from the posterior predictive

distribution. We have assessed this approach by cross validation on a set of 37 LC-

MS/MS measurements of a complete proteome sample. We show that the extended

infinite Markov model outperforms simple extrapolation methods and correctly predicts

proteome coverage progression. Extrapolation of the proteome coverage progression

further enabled us to specify the maximal coverage of the test set.

Methods

The data utilized by DiriSim consists of a list of LC-MS/MS experiments where peptide-

spectrum matches have been generated by searching against a protein database D. Each

peptide-spectrum match (s, π) corresponds to a tandem mass spectrum s and its pep-

tide assignment π ∈ D. Each LC-MS/MS experiment Rl defines a series of nl peptide

assignments π(l) = π
(l)
1 , ..., π

(l)
nl . A fraction q of all peptide-spectrum matches is assumed

to be erroneously assigned.

The following sections describe how to predict the progression of proteome coverage con-

ditioned on the given data. In summary, this estimate is achieved by sampling from the
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posterior predictive distribution given a series of LC-MS/MS experiments and counting

the amount of newly discovered peptides.

Section 6.3 briefly introduces Dirichlet processes and how these can be used to formally

characterize peptide distributions arising in shotgun proteomics experiments. Section

6.4 characterizes the distribution from which peptides are sampled during an ideal LC-

MS/MS experiment without false positive peptide-spectrum matches. Section 6.5 de-

scribes how to sample a series of peptides from such a distribution. Section 6.6 first

describes how to sample from this distribution conditioned on the given data and sec-

ond how to predict the progression of proteome coverage from the a posteriori sampled

trajectories. Section 6.7 completes the framework description by introducing a compo-

nent accounting for false positive peptide-spectrum matches.

Unless otherwise noted, π will in the following denote a series of sampled peptides πt.

Capital italic Latin letters like G,H will denote distributions.

6.3 Dirichlet processes priors for peptide distributions

In the course of a shotgun proteomics experiment peptides are sampled from an unknown

distribution and then identified by mass spectrometrical analysis. This distribution is

defined by the biological sample contributing a characteristic set of proteins/peptides

and by the experimental setup enriching/depleting particular types of proteins/peptides.

The more samples we draw from this distribution, i.e. the more experiments we perform,

the better we are able to characterize the distribution and thereby predict the future

progression of peptide discoveries.

The incremental estimation procedure is captured by a non-parametric Bayesian tech-

nique, denoted as Chinese restaurant processes ([12]). The Chinese restaurant process

can be envisioned as a schematic task where n customers are to be seated in a restau-

rant with an infinite number of tables. At each table a particular dish is served that is

denoted by its number in the menu. The first customer is seated at the first table and

offered the corresponding dish π1. The t-th subsequent customer is offered his dish πt

after having been seated either at an already populated table or at a new unpopulated

table according to the following probabilities:

P (πt = i | π1, ..., πt−1, γ) =

{
ni

t−1+γ
populated table

γ
t−1+γ

next unpopulated table
(6.1)
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where ni corresponds to the number of customers already sitting at the table serving

dish i. In case a customer happens to be seated at a new table, the dish served at this

table is drawn from the base probability measure H. γ is referred to as the concentration

parameter of the process. The larger γ, the higher the chances that a new customer is

seated at a new table. The more customers have already been seated, the less likely it

will open up a new table.

Let us now assume that we do not know γ and have seated n customers. We want to es-

timate how many tables will be occupied, or equivalently how many different dishes will

be served after m additional customers have been seated. In a first step we characterize

the seating distribution by fitting γ according to the observed seating arrangement, i.e.

the more tables we find populated the larger we choose γ. We can now simulate m ad-

ditional seating events using the γ estimate and thereby estimate the number of tables

occupied afterwards.

By identifying dishes with peptides and respectively customers with mass spectra, we

obtain a simple model to sample peptide assignments, i.e. simulate experiments and

in particular estimate the expected number of new peptide discoveries. Although being

overly simple, this model captures an essential property of shotgun proteomics experi-

ments. While always allowing to discover a novel peptide with non-zero probability, the

overall progression of new discoveries slows down for a growing number of experiments.

It turns out that a Chinese restaurant process with concentration parameter γ imple-

ments draws πt from a discrete distribution G that itself is drawn from a prior distri-

bution referred to as Dirichlet process DP with concentration parameter γ and base

probability measure H ([46, 4]).

G | γ,H ∼ DP(γ,H)

πt | G ∼ G
(6.2)

Dirichlet processes have proven to be useful to formally express and deal with the uncer-

tainty of an unknown discrete distribution, e.g. mixing distributions of mixture models.

In this work we assume Dirichlet process priors for distributions over peptides and sample

from them by using the Chinese restaurant process construction.

6.4 Infinite Markov model for LC-MS/MS experiments

During an LC-MS/MS experiment, peptides designated for tandem mass spectrometry

are sampled from a multitude of unknown distributions (Fig. 6.1). This section de-
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scribes how to model these distributions with an infinite Markov model.

The peptides in the initial ensemble are distributed according to an unknown discrete

distribution G0. We assume a Dirichlet process prior DP(γ,H) for G0 with base prob-

ability measure H and concentration parameter γ. H is assumed to be the uniform

distribution over the peptides defined by the protein database D. Note that the prior

DP(γ,H) does not necessarily identify G0 with H, i.e. the uniform distribution over the

protein database D.

Peptides are not directly sampled from G0 in an LC-MS/MS experiment (Fig. 6.1).

In the course of liquid chromatography, the mass spectrometer is exposed to a subpop-

ulation of the initial ensemble, confined to members within a time dependent polarity

range. Depending on the time point t, peptides are thus sampled from a characteristic

peptide distribution Gt that is “related” to G0. The prior for Gt has to capture the

dependency on G0. We particularly require the support of Gt to be contained in the

support of G0. While retaining flexibility, this requirement is met by choosing the prior

for Gt to be a Dirichlet process with base probability measure G0 and concentration

parameter β ([134]).

Due to technical difficulties to reproduce absolute time courses for a series of LC-MS/MS

experiments, we abstain from explicitly modeling polarity and, thereby, Gt. Instead we

represent time or respectively ensemble polarity by peptide identities. We denote Gi

as the local peptide distribution at the time points where peptide i has been identified.

Assume that we have sampled πt−1 = i in the course of an experiment. Since πt−1 = i is

indicative for the current polarity, we assume the subsequent peptide πt to be sampled

from the local distribution Gi (Fig. 6.1).

This representation induces a Markov chain whose states correspond to the identified

peptides. We assume each state sequence π to begin at a distinguished start state π∗,

i.e. we assume π0 ∼ δπ∗ . Following ([8]), we define the prior of Gi to be a biased

Dirichlet Process DPi with base probability measure G0, concentration parameter β and

additional prior weight α on state i. Thereby, α explicitly controls the rate of sampling

self-transitions πt = πt−1 = i. Having a Dirichlet process prior on G0, the number of

sampled states is not fixed a priori and steadily grows with the number of sampled tran-

sitions. Due to the Dirichlet process prior on the local probability distributions Gi, the

occurrence of transitions evolves in a similar fashion. We obtain the full characterization
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a b c

Figure 6.2: θML estimate on simulated data. Performance is evaluated for different training
set sizes, i.e. series of peptide assignments (psm) of length ranging from 1000 to 15000.
Performance is reported as log odds of predicted and true parameter value. Results are
shown for parameters α, β, γ respectively governing the events of self-transitions (a), new
transitions (b) and globally new discoveries (c). It can be seen that the parameters can be
confidently estimated considering a training series of 10000 peptide assignments.

of the distribution that is sampled in the course of an LC-MS/MS experiment:

G0 | γ,H ∼ DP(γ,H)

Gi | G0 ∼ DPi(α, β,G0)

πt | πt−1 = i ∼ Gi

π0 ∼ δπ∗

(6.3)

6.5 Sampling sequences of peptide identifications

In the following we describe how to sample series of peptides from the distribution

defined in the preceding section. Assume that α, β, γ,H, q are given and m series

π = π(1), ...,π(m) are to be sampled sequentially.

We assume each series π(k) to begin at a distinguished start state π∗. π can be sam-

pled in ascending order. To see this, assume that we already sampled the trajectory

π0, π1, ..., πt−1. In order to sample the subsequent peptide we have to specify the dis-

tribution for πt | π0, π1, ..., πt−1, α, β, γ,H. Starting from the hierarchy of Dirichlet

processes (6.3) and after integrating out Gπt−1 and G0 we obtain a nested variant of the
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Chinese restaurant process construction (6.1) for the infinite Markov model:

P (πt = j | π0, π1, ..., πt−1 = i, α, β, γ,H) =

=


[ nii(t) + α ] · Ti(t) self

[ nij(t) ] · Ti(t) non-self

[ β · [ noj(t) ] · T o(t) ] · Ti(t) new target

[ β · [ γ ] · T o(t) ] · Ti(t) new state

(6.4)

nij(t) corresponds to the number of occurrences of observing the transition from peptide

i to peptide j in the series π0, ..., πt−2. noj(t) denotes how many times peptide j has been

observed as a new transition target in the series π0, ..., πt−1. Ti(t) is shorthand for

(
∑

j nij(t) + α + β)−1 and T o(t) for (
∑

j n
o
j + γ)−1.

The outcome “self” denotes to a self-transitions πt = πt−1. Accordingly, “non-self”

corresponds to already observed transitions πt 6= πt−1. Note the distinguished role

of self-transitions by the prior weight α. While the event “new target” refers to the

discovery of a new transition to a peptide already observed in another context, “new

state” denotes the discovery of a yet unobserved peptide. It is straight forward to sample

the random variable πt | π0, π1, ..., πt−1 = i, α, β, γ,H since its distribution has a closed

form and only depends on the given parameters and quantities defined by the series of

preceding peptide assignments.

6.6 Posterior prediction of proteome coverage

progression

This section describes how to sample peptide series conditioned on already observed

series. This task translates to sampling the posterior predictive distribution for πnew

given the observed peptides π. Proteome coverage progression for future experiments is

estimated by approximating the expected number E [|U(πnew)| | π, H] of new peptide

discoveries U(πnew) upon posterior predictive sampling.

The posterior predictive distribution for πnew | π, H has no closed form. For sufficiently

large series π, the posterior predictive distribution can be reasonably approximated

by πnew | π,θML, H where θML corresponds to the maximum likelihood estimate for
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Figure 6.3: Prediction of proteome coverage progression for a data set comprising 37 LC-
MS/MS experiments each giving rise to a series of peptide assignments (psm). We generated
120 training series of varying size (train psm) by subsampling complete LC-MS/MS exper-
iments. We predicted the progression of proteome coverage (peptide discoveries) for each
training series and compared to the progression observed for the series of the complete data
set. (a) Prediction accuracy for the 120 training series. Prediction accuracy is given as
root mean square deviation (rmsd) from the observed progression of peptide discoveries. (b)
Concatenated training and respective predicted progressions (black) from the largest three
training series (corresponding items in (a) are encircled) compared to observed progression
(red). Vertical lines denote the size of the training series. Vertical lines overlap due to sim-
ilar sizes around 20000. (c) Comparison of DiriSim with linear extrapolation of proteome
coverage progression of last LC-MS/MS experiment in training series (linear) or respectively
extrapolation of logarithmic regression of training series (log). Box plot of log odds of rmsd
(log(rmsdDiriSim/rmsdcompare)) for DiriSim and compared method (linear, log) on the 120
training series. Median log odds for comparison with the extrapolation methods linear and
log are lower than zero, indicating weaker performance than DiriSim.

θ := (α, β, γ) based on the seating event probabilities in equation (6.4).

θML = arg max
θ

n∏
t=1

P (πt | π0, ..., πt−1 = i,θ, H) (6.5)

We predict the proteome coverage progression by approximating E [|U(πnew)| | π, H] by

averaging over a set of trajectories π1,π2, ... sampled from πnew | π,θML, H as described

in section 6.5.
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6.7 Proteome coverage progression with false

identifications

Sequences π of peptide assignments were assumed to be perfect in the preceding sections.

Obviously this assumption does not hold in practice. This section describes an extension

of the infinite Markov model by an error model that is able to deal with series of peptide

assignments that are afflicted with a nonzero false discovery rate q.

We observe that false positive peptide assignments map to the decoy database in a

non-redundant fashion, i.e. 83% of all decoy peptide discoveries of the test data set (see

Results) are supported only by a single peptide assignment. Assuming that false positive

peptide assignments distribute like decoy peptide assignments ([41]), we approximate the

distribution of false positive peptide assignments with H, i.e. the uniform distribution

over the protein database. In order to model the fraction q of false positive peptide

assignments, we assume that peptide assignments are sampled from a mixture model

with two components. The first component accounting for the true positive peptide

assignments is given by the infinite Markov model as described in section 6.4. The

second component is given by the distribution of false positive peptide assignments, i.e.

H. Component weights are chosen according to the false discovery rate q. Consequently,

the first and second component are weighted 1−q or q respectively.

Series of peptide assignments are generated by sampling each peptide assignment πt

either from the infinite Markov model as described in section 6.5 or directly from H,

according to the components weights. Posterior sampling requires the estimate θML from

an already observed series π. Exact computation of θML though involves an intractable

sum over configurations of false positive peptide assignments. We approximate θML

by assuming that the number of false positive peptide assignments equals the expected

value n(1− q) and that these distribute uniformly over π. This assumption allows us to

approximate P (π | θ, H, q) with adjusted transition counts, e.g. n̂ij := (1− q)nij.

θML ≈ arg max
θ

n∏
t=1

P (πt | n̂ij(t), n̂i(t), n̂oj(t), n̂o(t),θ, H) (6.6)

Proteome coverage progression is then predicted as described in section 6.6.
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a b

Figure 6.4: Five fold extrapolation beyond the range of the test data set (61582 peptide-
spectrum matches). (a) Observed progression of the test data set in red, predicted progres-
sion with standard deviations of all (black) and only true positive (green) peptide discoveries.
The progression of true positive discoveries stagnates considerably. (b) relates the absolute
number of true positive (tp) peptide discoveries to the fraction of false positive discover-
ies (fdr peptide discoveries). The fraction of false positive peptide discoveries grows steadily
with the total amount of peptide discoveries. Quality requirements on the final set of peptide
discoveries limit the maximally achievable proteome coverage as well as the sensible number
of LC-MS/MS experiments.

6.8 Results

In the following we show results that first, demonstrate that prediction of proteome cov-

erage progression is a non-trivial task that is not solved satisfactory by simple extrap-

olation methods and second, that the extended infinite Markov model can confidently

predict proteome coverage progression from a small number of already performed exper-

iments and third, that we can identify the putative number of LC-MS/MS experiments

to be carried out until reaching maximal coverage.

6.8.1 Simulation study for parameter estimation assessment

We conducted simulation studies to ensure that we can confidently estimate α, β, γ.

Therefore we generated a data set by simulating peptide series with false discovery rate

of 1% as described in section 6.7. Parameters α, β, γ were chosen in a range also observed

in the real-world test data set that is introduced later. We assessed the estimates on 20

simulated series, each corresponding to multiple LC-MS/MS experiments. Each set of 20
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series was chosen to be of length ranging from 1000 to 15000 peptide assignments. For

each of these series we estimated α, β, γ as described in 6.6 and 6.7 (Fig. 6.2). It can

be seen that α, β, γ can be reasonably recovered even from the smallest training series.

The larger the series grows the more precise the estimates become. The approximations

introduced in section 6.7 to account for false positive peptide assignments do not com-

promise the parameter estimates. Considering the equivalent of six or more LC-MS/MS

experiments already yielded satisfactory estimates.

6.8.2 Cross validation prediction accuracy

We assessed DiriSim’s ability to predict proteome coverage progression for real LC-

MS/MS experiments. We consider proteome coverage to be the number of peptide

discoveries, i.e. the number of different peptides represented in the series of peptide as-

signments. We were particularly interested to see how many LC-MS/MS experiments are

needed to confidently extrapolate the progression of peptide discoveries. We expected

that confident extrapolation is feasible after training DiriSim on a small training series

of peptide assignments corresponding to a small number of LC-MS/MS experiments.

To this end, we applied DiriSim to a test data set covering 37 LC-MS/MS experiments of

the complete D. melanogaster proteome ([118]). Peptide-spectrum matches were gener-

ated by searching against a target-decoy protein database (tryptic, ≤ 1 missed cleavage),

for details see ([118]). For our study, we selected top-scoring peptide-spectrum matches

mapping to the target database at a false discovery rate of 1% as described in [41].

By this means, we finally considered 61582 peptide-spectrum matches. We generated

training series of varying size by subsampling the data set, extrapolated the progression

of peptide discoveries for each training series and compared to the observed progression

of the complete data set.

In total, we subsampled 120 training series of peptide assignments. Note that the sub-

sampling procedure has to preserve the peptide assignments order within the individual

LC-MS/MS experiments. Therefore we generated the training series by subsampling

complete LC-MS/MS experiments. We subsampled 1, 2, 3, 4, 5 and 10 LC-MS/MS ex-

periments, giving rise to 6 training series of peptide assignments. By repeating this step

20 times we generated a total of 120 training series. For instance, one of the training

series comprised the series of 1139 peptide assignments defined by the 2 LC-MS/MS

experiments with index 14 and 18 (out of all 37 experiments). The 120 training se-

ries varied in size, ranging from 596 to 20277 peptide assignments, i.e. covering up to
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one third of the complete data set’s peptide assignments. Note that two training series

that were generated by subsampling the same number of LC-MS/MS experiments do

not necessarily comprise the same number of peptide assignments. This is due to the

heterogeneous number of peptide assignments contributed by the individual LC-MS/MS

experiments.

We extrapolated the progression of peptide discoveries for each training sequence and

compared to the observed progression of the complete data set. Therefore, we estimated

α, β, γ and estimated the expected proteome coverage progression by averaging over 50

series sampled from the posterior predictive distribution of the extended infinite Markov

model (see sections 6.6 and 6.7). Goodness of the prediction was evaluated as root mean

square deviation from the observed progression of the complete data set. Training se-

ries in corresponding to six or more average LC-MS/MS experiments (∼ 1600 peptide

assignments) yield good matches (Fig. 6.3 a,b). These results demonstrate that first,

the principles governing the yield of LC-MS/MS experiments seem to be well captured

by the extended infinite Markov model and second, proteome coverage progression can

be confidently predicted from a considerably small set of experiments.

6.8.3 Proteome coverage prediction benchmark

We compared DiriSim with other extrapolation methods. We chose two simple general

purpose extrapolation methods since there do not exist specific methods for proteome

coverage prediction. We first considered an extrapolation scheme that linearly extrapo-

lated proteome coverage progression of the last LC-MS/MS experiment of a training se-

ries. Second, we considered the extrapolation of a logarithmic regression (y = a log x+b).

We assessed prediction performance on the 120 training series as described above and

observed that DiriSim clearly outperforms both extrapolation methods (Fig. 6.3c).

These results indicate that proteome coverage prediction is a non-trivial task that is not

solved satisfactory by ad hoc extrapolation methods.

6.8.4 Prediction of maximal proteome coverage

We further extrapolated the coverage progression five fold beyond the range covered by

the test data set (Fig. 6.4a). The progression of peptide discoveries for all peptide

assignments shows a linear increase. Since DiriSim explicitly models true and false
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positive samples, we could exclusively monitor the series of true positive peptide as-

signments. We observe a pronounced divergence of the progression for all assignments

and the exclusively true positive ones. We particularly see, that the progression of true

positive discoveries stagnates considerably. While the fraction of false positive peptide

assignments is constantly held at 1%, the fraction of false positive peptide discoveries

at the end of the predicted progression amounts to more than 30%. The fraction of

false positives among the novel discoveries beyond the range of the test set even sur-

mounts 60%. Tolerating a limited amount of false positive peptide discoveries, bounds

the maximal number of possible peptide discoveries as well as the number of experiments

having to be performed (Fig. 6.4b). For instance, assume that we require that at most

15% of all peptide discoveries are false positive. This constraint restricts the maximally

achievable coverage since we can discover at most 5000 distinct true positive peptides.

According to Fig. 6.4a we will have reached this point after having acquired 90000

peptide assignments.

6.9 Discussion

To date, it is not clear beforehand how often to repeat an LC-MS/MS experiment on

a single biological sample in order to efficiently achieve satisfactory proteome coverage.

Furthermore, the maximally achievable proteome coverage with a particular method is

not known. We address these issues by presenting DiriSim, a framework to predict the

progression of proteome coverage for LC-MS/MS experiments.

DiriSim models a series of LC-MS/MS experiments as an infinite Markov model, whose

states correspond to peptides. We apply DiriSim to extrapolate the proteome coverage

progression of a small number of already performed LC-MS/MS experiments. Note that

this task is different to the a posteriori inference of the state sequence of these experi-

ments. In contrast to previous applications ([8, 124]), a posteriori inference of the state

sequence is furthermore not necessary, since the states (peptides) are already assigned to

the observable variables (tandem mass spectra) by means of the corresponding peptide-

spectrum matches. Besides its application in proteome coverage prediction, the infinite

Markov model could though serve as a prior in a Bayesian peptide identification setting

and, in particular, prevent the accumulation of false positive peptide discoveries coming

along with increasing data set size.

LC-MS/MS experiments are typically analyzed by database searching. The underlying

protein databases are large but still of finite size and therefore define a finitely large set
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of possibly identified peptides. De novo sequencing approaches infer peptide identities

without relying on protein databases and thereby implicitly support an infinite number

of possible peptide identities. Using an appropriate base probability measure H, the

proposed infinite Markov model for LC-MS/MS experiments naturally lends itself to

predict the proteome coverage in this context.

We have shown that DiriSim correctly extrapolates proteome coverage progression from

at most 10 LC-MS/MS experiments and outperforms ad hoc extrapolation methods.

Proteome coverage prediction appears to be a non-trivial task due to the intricate de-

pendency structure of an LC-MS/MS experiment. DiriSim provides a comprehensive

non-parametric Bayesian characterization of an LC-MS/MS experiment that enabled

us to confidently predict proteome coverage. Although capturing the dependencies of

LC-MS/MS experiments, DiriSim remains a robust, non-complex model since it only

needs three parameters that are to be learned from data.

By explicitly modeling false and true positive peptide assignments, DiriSim enables

us to specify the maximally achievable proteome coverage with regards to true posi-

tive peptide discoveries. We have seen in the simulations that new peptide discoveries

from extensive repetition of LC-MS/MS experiments mostly accumulate false positive

discoveries. This observation reflects the difference between the distributions for true

and false positive peptide assignments. While true positive peptide assignments con-

centrate over a small subset of the protein database, false positive peptide assignments

distribute broadly over the protein database and therefore mostly contribute false posi-

tive peptide discoveries. Due to the exceedingly broad distribution of decoy matches, we

do not expect that errors possibly introduced by the uniformity approximation compro-

mise the observed accumulation of false positive peptide discoveries. We conclude that

performing more and more experiments seeking for maximal coverage mainly deterio-

rates the overall quality of the complete peptide discovery set. Depending on the false

discovery rate of the peptide assignments, a quality requirement on the set of peptide

discoveries imposes an upper bound to the total number of experiments which therefore,

potentially limits the maximally achievable proteome coverage before the progression

of true positive peptide discoveries is fully saturated. This limitation accrues from the

occurrence of erroneous peptide-spectrum matches and their broad distribution over the

protein database. As long as peptide-spectrum matches are afflicted with uncertainty,

this reasoning holds for any proteome being studied. It will though be interesting to

apply DiriSim to other data sets in order to study the quantitative impact of factors

like proteome size and experimental setup on the maximally achievable proteome cover-
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age. In summary, our results suggest that the design of large shotgun proteomics studies

should focus on efficiency not only to save resources but most importantly to yield reli-

able peptide discoveries.
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7 The Fractal Dirichlet Process

7.1 Summary

Hierarchical Dirichlet processes are rich priors for ensembles of discrete distributions.

These processes though do not explicitly account for the similarities among subsets of

such ensembles. To this end, we propose a novel concept, the fractal Dirichlet process.

Fractal Dirichlet processes generalize hierarchical Dirichlet processes by introducing self-

referential base measures. We present an efficient Gibbs sampler for Bayesian parameter

and hidden variable inference. We expect that explicitly accounting for similarity among

distributions by means of fractal Dirichlet processes will add to various statistical learn-

ing tasks that benefit from hierarchical Dirichlet processes.

7.2 Introduction

Characterization of a set of related mixture distributions defines an essential task in

diverse statistical learning scenarios, such as e.g. image segmentation, language model-

ing or proteome coverage prediction. Hierarchical Dirichlet processes address this task

by providing a non-parametric Bayesian formalism that supports to globally share mix-

ture components across the set of mixtures [134]. Here we present the fractal Dirichlet

process that generalizes this formalism to explicitly capture similarity among subsets of

mixture distributions.

Consider a situation where the data is partitioned into a set of J groups. Each group

constitutes an exchangeable sequence of observations. Each observation within a group

can thus be considered a conditionally independent draw from a latent variable mix-

ture model. We optionally assume that latent variable assignments for each observation

have already been inferred. We want to characterize the posterior distribution of the

mixture model parameters and thereby make shared structure across the groups explicit.
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Dirichlet processes are non-parametric Bayesian priors to characterize discrete distribu-

tions [46]. A Dirichlet process DP(γ,G) defines a probability measure on probability

measures and it is characterized by two parameters, a concentration parameter γ and a

base probability measure G. Briefly, draws from DP(γ,G) give rise to distributions that

are similar to the base measure G to an extent defined by the concentration parameter

γ. Since measures drawn from a Dirichlet process are discrete (with probability one),

these processes serve as priors for mixing distributions of mixture models by associating

mixture components to atoms of a Dirichlet process draw [122, 4].

Hierarchical Dirichlet processes in the sense of [134] have been proposed as versatile

priors over a set of related discrete distributions. A Dirichlet process prior is assumed

for each distribution. By making these processes share the same discrete base measure

(also drawn from a Dirichlet process) the set of distributions may share atoms or, in the

context of a mixture model, mixture components. Hierarchical Dirichlet processes have

been widely used to characterize sets of related mixing distributions in applications like

e.g. language modeling [133], topic modeling [13] and proteome coverage prediction [23].

Hierarchical Dirichlet processes are able to reveal nested relationships among subsets of

distributions though they are not able to make non-nested relationships explicit. We

propose the fractal Dirichlet process, a generalization of the hierarchical Dirichlet pro-

cess that explicitly captures non-nested relationships among the random distributions

by choosing self-referential base measures for the respective Dirichlet process priors. For

inference we provide a Gibbs sampler based on the Chinese Restaurant construction.

The remaining manuscript is organized as follows. Section 7.3 briefly reviews Dirich-

let processes and section 7.4 summarizes hierarchical Dirichlet processes in the sense

of [134]. While section 7.5 introduces the fractal Dirichlet process, section 7.6 describes

the Gibbs sampler based on the Chinese Restaurant construction. Section 7.7 presents

the experimental results on synthetic data before we summarize and conclude this study.

7.3 Dirichlet processes

To render the chapter self-contained we will define Dirichlet processes in this section and

discuss one of the constructive views on the Dirichlet process, i.e. the Chinese Restau-
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rant construction.

A Dirichlet process DP(γ,H) is defined to be the distribution of a random probability

measure G over a measurable space (Θ,Σ) with probability measure H such that, for any

finite measurable partition (B1,B2,...,Br) of Θ, the random vector (G(B1),...,G(Br)) is

distributed as a finite-dimensional Dirichlet distribution with parameters (γH(B1),...,γ

H(Br)). We write G | γ,H ∼ DP(γ,H) if G is a random probability measure with

distribution given by the Dirichlet process [46].

The explicit construction of a measure drawn from a Dirichlet process provides another

view on the Dirichlet process. Two popular construction schemes have been reported,

the stick breaking construction [122] and the Pólya urn scheme, also known as the Chi-

nese Restaurant construction [12]. Since we will not make use of the stick breaking

construction, we focus on Chinese Restaurant construction here.

We want to construct a particular draw G from a Dirichlet process DP(γ,H). We achieve

this goal incrementally by realizing an (infinite) sequence of i.i.d. random variables

π1, π2, ... that each follow G. Blackwell has shown that, given the parameters of the

Dirichlet process and the realizations of the variables π1, ..., πt, marginalizing out G

yields the following measure according to which π := πt+1 is distributed [12].

π | π1, ..., πt, γ,H ∼ (t+ γ)−1

(
t∑
l=1

δπl
+ γH

)
(7.1)

π is though distributed according to a mixture. The larger the concentration parameter

γ the more likely π is sampled from the component comprising the base measure H.

Thus, the larger γ the more the finally constructed measure G will resemble the base

measure H. This construction scheme exhibits a clustering property, i.e. allows for a

newly sampled instance π to assume an already observed value with positive probabil-

ity. Furthermore note the “rich-get-richer” type of behavior where the probability of

sampling an already seen value ω scales linearly with the number of events of realiz-

ing ω. These observations can be made explicit by reformulating equation (7.1). Let

ω := ω1, ..., ωK be the set of values and n := n1, ..., nK denote the respective frequencies

realized by the sequence π := π1, ..., πt. We can now summarize equation (7.1) by the
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following mixture

π | n,ω, γ,H ∼ T (n, γ)

(
K∑
k=1

nkδωk
+ γH

)
(7.2)

with T (n, γ) being an abbreviation for
(∑K

k=1 nk + γ
)−1

.

This construction scheme is also known as the Chinese restaurant construction. This

naming convention becomes apparent when casting this scheme into a scenario where

customers are seated according to (7.2) into a restaurant with an infinite number of

tables. The sequence n := n1, ..., nK translates into the number of customers seated at

tables t := t1, ..., tK . Each table tk ∈ t serves a single dish ωk ∈ ω to its respective cus-

tomers. A new customer entering the restaurant is assigned a table and dish according

to (7.2). If this assignment involves sampling the dish from the component comprising

the base measure H then a new table tK+1 with dish ωK+1 is opened and populated with

the new customer. Note that for a discrete base measure it is possible to have several

tables serving the same dish.

A finite number of seating events partially constructs a Dirichlet process sample, i.e. G.

We represent a partial construction by its (Chinese) restaurant process C := (n,ω, γ,H).

In the following we concisely refer to iterating the restaurant process if we sample an

additional instance π according to (7.2) and thereby change the restaurant process ac-

cordingly.

Besides the Chinese restaurant construction, we furthermore studied construction scheme

variants whose mixture weights do not depend linearly on the number of customers seated

at the respective table.

π | n,ω, γ,H ∼ Tf (n, γ)

(
K∑
k=1

f(nk)δωk
+ γH

)
(7.3)

f can now be an arbitrary function for which we only require homogeneity, i.e. f(0) =

0. f can for instance be chosen as f(n) =
√
n or f(n) = n2. The normalization

constant is adapted accordingly: Tf (n, γ) :=
(∑K

k=1 f(nk) + γ
)−1

. It turns out that

construction schemes with non-linear f generate sequences π := π1, ..., πt that are not

exchangeable, i.e. for such schemes it does not hold for any permutation π′ that the

probabilities according to (7.3) coincide [77]. Since the exchangeability property is a
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necessary condition to generate a sequence of i.i.d. samples from an implicit multinomial,

no construction scheme of the form (7.3) and non-linear f is suited as a suitable variant

to construct a process.

7.4 Hierarchical Dirichlet processes

Hierarchical Dirichlet processes are sets of random measures. The measures in such a

set are related in the sense that they share atoms with positive probability.

Specifically, a hierarchical Dirichlet process constitutes a distribution over a set of dis-

crete measures Gc = (Gc
j)1≤j≤M . Each Gj is distributed according to a Dirichlet process

with concentration parameter γc and base measure Gr, which itself is distributed ac-

cording to a Dirichlet process with concentration parameter γr and base measure H.

Gr | γr, H ∼ DP(γr, H)

Gc
j | γc, Gr ∼ DP(γc, Gr) (7.4)

Gr is discrete since it is drawn from a Dirichlet process. Consequently, the Gc
j share

atoms with positive probability since their respective Dirichlet process is endowed with

a discrete base measure, i.e. Gr.

In the following we refer to the members of Gc as the child distributions and to Gr as

the root distribution. Accordingly, we indicate parameters and variables related to the

child/root distributions with the superscript naming convention. For instance, γc refers

to the concentration parameter of the Dirichlet process that defines the probability mea-

sure for the child distributions Gc
j.

The Chinese restaurant franchise constitutes an explicit scheme to construct a set of

measures G that is drawn from a hierarchical Dirichlet process with given concentration

parameters γc, γr and base measure H. The Chinese restaurant franchise straightfor-

wardly implements the Chinese Restaurant construction for the Dirichlet processes in-

volved in (7.4). Each Gc
j is a draw from a Dirichlet process and can thus be constructed

by iterating its restaurant process Cc
j . Following (7.2) and considering the conditional

independence statement in (7.4) we obtain the distribution of π given the selected child

j, its corresponding child process Cc
j := (ncj,ω

c
j , γ

c, Gr), the other child processes Cc
i 6=j
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and the root process Cr. To keep the notation uncluttered, we write nc := nc1,n
c
2, ...

and n := (nc,nr) and ω := (ωc,ωr) accordingly.

π | j,n,ω,γc, Gr, (γr, H) ∼ T (ncj, γ
c)

 Kc
j∑

k=1

ncjkδωc
jk

+ γcGr

 (7.5)

It is not possible to directly sample from the mixture component comprising Gr. If

π turns out to be sampled from this component (event flagged by b) we can though

proceed by integrating out Gr and iterating the restaurant process Cr := (nr,ωr, γr, H)

corresponding to Gr on the basis of the following distribution.

π | b,n,ω,γr, H ∼ T (nr, γr)

(
Kr∑
k=1

nrkδωr
k

+ γrH

)
(7.6)

In this case we subsequently update both restaurant processes Cr and Cc
j .

Samples from hierarchical Dirichlet processes produce sets of similar (child) distribu-

tions by providing a mechanism that allows for sharing of atoms. Specifically, the child

distributions Gc can share atoms globally defined by the root distribution Gr. The

Chinese restaurant franchise construction makes this mechanism apparent by explicitly

representing and relating the child and root restaurant processes.

7.5 Fractal Dirichlet processes

In this section we introduce the concept of the fractal Dirichlet process. It generalizes

the hierarchical Dirichlet process to explicitly capture the similarity among subgroups of

a set of distributions. As for the hierarchical Dirichlet process, we put Dirichlet priors on

the distributions and extend this process by appropriately choosing their base measures.

Consider a set of (child) distributions Gc for which we assume Dirichlet process priors.

In the previous section we have seen for the hierarchical Dirichlet process that the

choice of the base measure establishes correspondences between members of these sets.

Specifically, choosing the base measure discrete permits the child distribution to share

atoms from the base measure with nonzero probability. For each Gj we now want to

choose a base measure Aj that explicitly captures possible similarity to distribution
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subsets G′ ⊆ G.

Gc
j | γc, Aj ∼ DP(γc, Aj) (7.7)

To this end, we choose Aj as a self-referential mixture of all child distributions Gc
i with

i 6= j and the discrete root distribution Gr. This base measure enables Gc
j to share

atoms with any other child distribution and the root distribution. The mixture weights

aj explicitly express to what extent Gc
j inherits atoms from the respective component.

Aj = ajjG
r +

∑
i 6=j

ajiG
c
i (7.8)

The mixture weights aj constitute a discrete measure Ga
j . We treat Ga

j as a random

measure with a (biased) Dirichlet process prior DP(γa, αa, F ) that additionally puts prior

weight αa on the distinguished atom j [8]. The base measure F is defined over possible

indices i of child distributions. Identifying F with Gr renders the fractal Dirichlet process

amenable to define an non-parametric Markov chain [8, 134]. Furthermore, we assume

a Dirichlet process prior for the root distribution Gr. This completes the specification

of the fractal Dirichlet process. Note that the hierarchical Dirichlet process is a special

case of the fractal Dirichlet process with αa > 0 and γa = 0. See also Fig. 7.1 for a

graphical model representation of the fractal Dirichlet process.

Gr | γr, H ∼ DP(γr, H)

Ga
j | γa, αa, Gr ∼ DP(γa, αa, F )

Gc
j | γc, Aj ∼ DP(γc, Aj) (7.9)

Besides adopting the naming and notation introduced for hierarchical Dirichlet processes

in section 7.4, we refer to the members of Ga := Ga
1, G

a
2, ... as the adapter distributions.

Accordingly, we indicate parameters and variables related to the adapter distributions

with the superscript a. Furthermore, we denote A := A1, A2, ....

We provide a Chinese restaurant franchise scheme to construct a sample from a fractal

Dirichlet process given the parameters γ := γr, γa, αa, γc and the base measures H, F .

As for the hierarchical Dirichlet process, each Gc
j is a draw from a Dirichlet process

and can thus be constructed by iterating a restaurant process Cc
j . Considering that we

introduced the mixture Aj as base measure of the respective Dirichlet process prior, we

iterate Cc
j analogously to (7.2). After augmenting the variable for the process frequencies
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Figure 7.1: Graphical model representation of the fractal Dirichlet Process. For clarity,
dependencies are depicted only for a single child distribution Gc

j and those for Gc
i 6=j are

omitted. Removing the components in the box and establishing the dependency of Gc
j from

Gr yields the well established hierarchical Dirichlet process. Identifying the measure F with
Gr results in an infinite fractal Markov chain (dotted arrow).

and labels by writing n := (nc,na,nr) and ω := (ωc,ωa,ωr) we obtain.

π | j,n,ω,γ,A,Ga, Gr, H, F ∼ T (ncj, γ
c)

 Kc
j∑

k=1

ncjkδωc
jk

+ γcAj

 (7.10)

If π turns out to be sampled from this mixture component comprising Aj (event denoted

by b) we first have to determine which of Aj’s mixture components i is to be sampled.

Therefore we have to sample i from adapter distribution Ga
j by iterating the respective

restaurant process Ca
j := (naj ,ω

a
j , γ

a, αa, F ).

i | j,n,ω,γ, F ∼ T (naj , γ
a)

 Ka
j∑

k=1

najkδωa
jk

+ γaF

 (7.11)

If i 6= j then π is recursively sampled as described in (7.10) with updated j := i.

Otherwise, π | b, (i = j)n,ω,γ, H is sampled directly from Gr by iterating the respective

restaurant process Cr, analogously to (7.6). For each of the latter sampling events the
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r=50, a=0 r=100, a=0 r=100, a=1 r=100, a=3

a b c d

Figure 7.2: Pairwise similarity among the empirical child distributions obtained after running
the Chinese Restaurant Franchise construction for various parameter settings. Similarity is
reported in terms of Pearson correlation. (a,b) Parameter settings corresponding to the
special case of the hierarchical Dirichlet process, i.e. γa = 0. (c,d) representative param-
eter settings for the fractal Dirichlet process. Pairwise similarity is more dispersed for the
hierarchical Dirichlet process as for the fractal Dirichlet process sample.

respective restaurant processes are updated accordingly.

A single step of Chinese restaurant franchise construction for the fractal Dirichlet process

is concisely summarized by the FractalFranchise procedure. This representation is

particularly suited to make the fractal structure of the process apparent. We write C

for the set of all restaurant processes Cc
1, Cc

2, ..., Ca
1 , Ca

2 , ..., Cr.

FractalFranchise(j,C)

1 π ← iterate
(
Cc
j

)
# π 6= null⇒ return

2 if π = null

3 then i← iterate
(
Ca
j

)
4 if i = j then π ← iterate (Cr) # return

5 else π ← FractalFranchise(i,C) # recursion

6 openTable
(
Cc
j , π
)

7 return π

Samples from fractal Dirichlet processes produce sets of similar (child) distributions by

generalizing the sharing mechanism implemented by hierarchical Dirichlet processes. By

means of self-referential base measures of the Dirichlet process priors, the child distribu-

tions Gc can share atoms globally defined by the root distribution Gr, as well as directly

among themselves. The structure of the fractal Chinese restaurant franchise construc-

tion makes this mechanism apparent by explicitly specifying the recursive relationship
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7 The Fractal Dirichlet Process

of the self-referential base measures.

7.6 Bayesian inference

We present a Gibbs sampler for posterior inference of the parameters of the fractal

Dirichlet process and the hidden variables governing the Chinese restaurant franchise

construction.

We start off with a sequence s := (st)1..n whose elements st := (jt, πt) correspond to

variables πt realized from the child distribution Gjt . We want to sample from the poste-

rior distribution n,ω,γ | s, H by first, specifying and second, cyclically sampling from

conditional posterior distributions for the individual parameters or hidden variables.

The conditional posteriors for the parameters γ follow easily from the posterior of the

parameters γ, α of a single (biased) Dirichlet process given a partial construction in

terms of the respective restaurant process frequencies n. Additionally placing Gamma

priors on γ, α we obtain:

P (γ,α | n) ∝ G(aγ, bγ)G(aα, bα) · Γ (α+γ) · γK · Γ(n0+α) ·
∏K−1

k=1 Γ(nk)

Γ (n+α+γ)
(7.12)

The respective posterior for a standard Dirichlet process follows by assuming α := 0.

This setting applies to the priors for the child and the root distributions. The posterior

P (γ, α | n1, ..,nM) for the parameters given M > 1 independent restaurant processes

realizations simply evaluates as
∏M

i=1 P (γ, α | ni). This situation particularly applies to

the parameter posterior given the adapter and child processes. Given the frequencies

n in the restaurant processes, we can independently sample the parameters for each

the child, adapter and root Dirichlet process. We apply adaptive rejection metropolis

sampling [56] to sample from the respective conditional posterior distributions [111].

The conditional posteriors for the hidden variables n,ω are more involved to specify. For

clarity we from now on consider the label vectors ω to be absorbed into the frequency

vectors n and omit explicit conditioning on H,F . We thus want to sample from n | s,γ.

To this end we construct nt := n iteratively by sampling n1,n2, ... from nt′ | st′ ,nt′−1,γ

where n0 = ∅.
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7 The Fractal Dirichlet Process

In the following we will specify the events covered by the distribution of type n′ | π, j,n,γ.

Sampling an event from this conditional distribution translates in sampling a sequence

of restaurant process iterations that finally yields π. This sequence starts with iterating

the restaurant process Cc
j . The configurations of all restaurant processes are determined

by n. Note that to realize n′ we cannot simply run the Chinese restaurant franchise

(effectively sampling n′, π | j,n,γ) since we are conditioning on the outcome π.

P (n′ | π, j,n,γ) =
P (n′π | j,n,γ)

P (π | j,n,γ)
(7.13)

To sample the conditional posterior for the hidden variables, the marginal P (π | j,n,γ)

has to be evaluated by integrate over all possible sampling events yielding π after it-

erating the child restaurant process j. We distinguish two classes of events, recursion

and return events. A recursion event happens when iterating the child process results

in further iterating its adapter restaurant process, in turn resulting into recursing to it-

erate a child restaurant process i 6= j. We denote the probability of each of these events

by P rec
j,n,γ(i). Return events are the complementary events that do not lead to further

recursion. We denote their probability by P emi
j,n,γ(π). For further illustration of the event

classes see also the FractalFranchise procedure. Having defined these quantities the

marginal adopts the following form.

P (π | j,n,γ) =
∑
n′

P (π,n′ | j,n,γ) (7.14)

= P emi
j,n,γ(π) +

∑
i 6=j

P rec
j,n,γ(i)P (π | i,ni+,γ)

where ni+ corresponds to the updated restaurant counts induced by iterating the adapter

process j. Note that the summation over recursion targets also comprises a child process

inew that represents so far undiscovered children, though might be sampled by iterating

the root restaurant process. Given j,n,γ, various configurations can be enumerated to

achieve a return event. The same is true for the recursion events. These configurations

and their probabilities are evident from the Chinese restaurant franchise construction and

are not reported explicitly here. It turns out to be useful to investigate the stationary

approximation P̂ (π | j,n,γ) that assumes the restaurant counts constant along the
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7 The Fractal Dirichlet Process

marginalization.

P̂ (π | j,n,γ) = P emi
j,n,γ(π) +

∑
i 6=j

P rec
j,n,γ(i)P (π | i,n,γ) (7.15)

The marginal approximation P̂ (π | j,n,γ) can be efficiently computed. The recursion

(7.14) gives rise to a linear equation system that can be solved for the marginal. Let

M be the number of indexed child distributions (including inew). Introducing P :=

(P (π | i,n,γ))1≤i≤M , P emi :=
(
P emi
j,n,γ(π)

)
1≤i≤M and P rec := (pji)1≤j,i≤M , where pji :=

P rec
j,n,γ(i), we can rewrite (7.14).

P emi = (1− P rec)P (7.16)

We can easily solve for P and obtain the marginals for all indexed children, including j.

The structure of the conditional posterior n′ | π, j,n,γ allows to straightforwardly

sample a sequence of recursion and return events yielding πt′ . Given π, j,n,γ, we can

specify P emi and P rec and compute the marginals P . Starting from the child restaurant

process j we can specify the posterior probability whether to directly emit π or to recurse

into another child restaurant process.

7.7 Experiments

We qualitatively studied the properties of fractal Dirichlet process samples and particu-

larly compared them to hierarchical Dirichlet process samples (Fig. 7.2). We sampled

four trajectories s (|s| = 2000) in the infinite fractal Markov chain model where we

identify the adapter base measure F with Gr (see also section 7.5). The process param-

eters γc = 10, αa = 1 were the same for all simulations. We varied the concentration

parameter γa of the adapter process to investigate the transition from the well known

hierarchical Dirichlet process (γa = 0) to the (truly) fractal Dirichlet process (γa > 0).

We determined the Pearson correlation among the empirical child distributions as pair-

wise similarity measure. We observed that pairwise similarity is more dispersed for the

hierarchical Dirichlet process than for its fractal extension. The larger the ratio γa/αa,

the more the fractal Dirichlet process gives rise to clusters of strongly related child dis-

tributions.
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7 The Fractal Dirichlet Process

We report the posterior inference with the Gibbs sampler (Fig. 7.3). We sampled

two trajectories each comprising 200 data points (infinite fractal Markov chain mode).

Parameters were set to γr = 100, γc = 1, αa = 1. For the first trajectory γa = 0 and

for the second γa = 3. We assumed vague Gamma priors G(1, 10) for all parameters.

We estimated the posterior distributions by considering every 100th realization from in

total 106 Gibbs sampler iterations. We generally observed that the posterior parameter

distributions deviated considerably from the initially supplied prior distributions and

accumulated their probability mass predominantly closely around the true value. The

first case assessed to what extent the special case of the hierarchical Dirichlet process

could be recovered while allowing for freedom in the adapter concentration parameter.

We observed that this is actually the case since the posterior distribution puts most of

its weight close to zero. Regarding the detailed Gibbs sampler trajectories, we assume

that convergence is not an issue.

7.8 Discussion

We present the fractal Dirichlet process, a generalization of the hierarchical Dirichlet pro-

cess. The fractal Dirichlet process incorporates self-referential base measures, thereby

providing a mechanism to explicitly capture pairwise similarity in a set of discrete mea-

sures [20].

This chapter presents the fractal process framework on the basis of Dirichlet processes.

It is though straightforward to formulate this concept on the basis of the more general

Pitman-Yor processes [107].

We propose an efficient Gibbs sampler for Bayesian parameter inference. The Gibbs

sampler involves a marginalization step with respect to all possible sampling events to

yield some specified outcome. We show how to reduce the marginalization to a tractable

solution of a linear equation system. We note that this solution assumes that the transi-

tion probabilities are stationary in the course of further recursion. This is not exactly the

case. However, diagnostic experiments have shown that our stationary approximation ef-

fectively holds in all encountered situations. For all experiments carried out, the average

recursion depth for each fractal franchise iteration was only around three. For some cases

we explicitly computed marginal probabilities by accounting for expected count changes
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7 The Fractal Dirichlet Process

up to a recursion depth of ten and compared to the stationary approximation. We did

not observe significant deviations for both estimates of the marginal probabilities. This

result is not surprising since the contribution of count changes decrease exponentially

with recursion depth. We conclude that the Gibbs sampler efficiently achieves accurate

posterior parameter inference.

It will be interesting to investigate how fractal Dirichlet processes behave in statistical

learning scenarios, such as e.g. language or topic modeling. Those application scenarios

where prototypes have to be inferred from indirect observations will necessitate to extend

the inference scheme to this end. Constituting a rich and practical prior for ensembles

of intricately related distributions, we expect the fractal Dirichlet process to enhance

various machine learning applications. The following chapter of this thesis will investi-

gate the application of the fractal Dirichlet process to characterize peptide distributions

arising in heterogeneous shotgun proteomics studies and to thereby allow for proteome

coverage prediction in this context.
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Figure 7.3: Posterior inference of the parameters of the fractal Dirichlet process. We consider
a setting corresponding to the special case of the hierarchical Dirichlet process where γatrue = 0
(HDP, first row) or where γatrue 6= 0 (FDP, second row). The Gamma prior (brown) and the
estimated posterior distribution (histogram) of the parameters for simulated data (|s| =
200). The red triangles indicate the true parameter values. Posterior expectations deviate
considerably from prior beliefs and well match the true parameter value. The bottom row
exemplarily illustrates the sampling trajectories (106 iterations) for the individual parameters
for the γatrue 6= 0 setting. The trajectories demonstrate good convergence behavior of the
Gibbs sampler.

109



8 Proteome Coverage Prediction for

Integrated Proteomics Datasets

8.1 Summary

In order to maximize proteome coverage for a complex protein mixture, i.e. to identify as

many proteins as possible, various different fractionation experiments are typically per-

formed and the individual fractions are subjected to mass spectrometric analysis. The

resulting data are integrated into large and heterogeneous datasets. Proteome coverage

prediction refers to the task of extrapolating the number of protein discoveries by future

measurements conditioned on a sequence of already performed measurements. Proteome

coverage prediction at an early stage enables experimentalists to design and plan max-

imally informative proteomics studies. To date, there does not exist any method that

reliably predicts proteome coverage from integrated datasets. We present a generalized

hierarchical Pitman-Yor process model that explicitly captures the redundancy within

integrated datasets by means of self-referential base measures. Proteome coverage pre-

diction accuracy of our approach is assessed by applying it to an integrated proteomics

dataset for the bacterium L. interrogans and by demonstrating that it outperforms ad

hoc extrapolation methods and prediction methods designed for non-integrated datasets.

Furthermore, we estimate the maximally achievable proteome coverage for the experi-

mental setup underlying the L. interrogans dataset. We discuss the implications of our

results to determine rational stop criteria and their influence on the design of efficient

and reliable proteomics studies.

8.2 Introduction

Recent developments in mass spectrometry based proteomics have enabled biologists

to comprehensively characterize proteomes, the protein inventories of biological samples

[38]. To achieve extensive proteome coverage, a range of different experiments have to be
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carefully planned and extensively repeated. Proteome coverage prediction denotes the

task of estimating the expected yield of protein discoveries upon experiment repetitions.

This task is essential to guide experimental planning and to infer maximal coverage for a

particular series of experiments. Here we present a generalized hierarchical Pitman-Yor

process to reliably predict proteome coverage for multidimensional fractionation exper-

iments.

The most successful strategy to achieve extensive proteome coverage is referred to as

shotgun proteomics. Briefly, proteins are biochemically extracted from a biological

sample and are enzymatically digested to yield a complex ensemble of peptides. Pro-

tein and/or peptide ensembles are optionally further fractionated according to physi-

cal/chemical/biological properties (multidimensional fractionation). Tandem mass spec-

trometry is then used to sample and identify individual peptide species present in the

resulting ensembles and to finally recover the set of proteins initially present in the bio-

logical sample [97] (Fig. 8.1).

The capacity of mass spectrometers limits the number of peptides possibly identified at a

time. Due to this constraint it is by far too difficult to identify the entirety of species in a

peptide ensemble arising after enzymatic digestion of a typical complex biological sample

such as a complete proteome. Two experimental routes are pursued to circumvent this

limitation and to enable comprehensive characterization of a complex peptide ensemble.

First, peptide ensembles are fractionated into a multitude of less complex and, there-

fore, more tractable ensembles before being analyzed by tandem mass spectrometry and

second, experiments are extensively repeated. Popular fractionation schemes separate

peptides with respect to properties such as e.g. size or isoelectric point. Reversed phase

liquid chromatography (LC) is the most common fractionation technique and separates

peptide ensembles according to hydrophobicity and is typically directly coupled to a

tandem mass spectrometry system (LC-MS/MS). Multidimensional fractionation strate-

gies comprise multiple steps of fractionation, typically fractionation according to some

physico-chemical property other than hydrophobicity followed by LC-MS/MS analysis.

(Fig. 8.1). Shotgun proteomics studies that achieved significant proteome coverage for

a variety of organisms have shown to build on extensive repetition of multidimensional

fractionation experiments (see e.g. [15]).

Methods for proteome coverage prediction estimate the expected number of peptide/protein

discoveries when experiments are repeated. Proteome coverage prediction is essential for

rational experimental planning of shotgun proteomics studies. Projects aiming at ex-
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tensive proteome coverage require a considerable amount of experimentation. Proteome

coverage should ideally increase efficiently with consecutive experiments. The choice

between competing experimental setups should thus be guided by their potential to

increase proteome coverage. Methods for proteome coverage prediction enable to ratio-

nally determine the optimal setup. Proteome coverage prediction furthermore enables

to estimate the maximal coverage as well the volume of experiments required to achieve

this coverage.

Proteome coverage prediction and related tasks have not been addressed until recently.

Fenyo et al. conducted simulation studies to generally investigate how fractionation of

peptide or protein ensembles might affect the efficiency of shotgun proteomics exper-

iments [43]. Brunner et al. roughly estimated upper and lower bounds for proteome

coverage from a real data set by assuming worst/best case scenarios [15]. Recently, an

infinite Markov model based on Dirichlet processes [8] has been proposed to character-

ize LC-MS/MS experiments and for the first time to predict proteome coverage for one

dimensional fractionation experiments [23].

In practice, it is highly desirable to predict proteome coverage of multidimensional frac-

tionation experiments since these strategies have shown to have the largest potential to

map out a proteome. However, there does not exist any method for proteome coverage

prediction of these experiments. This task is particularly challenging since the pro-

teomes represented by each fraction overlap to an unknown extent. Proteome coverage

prediction methods for multidimensional fractionation experiments have to account for

this phenomenon.

In this chapter we generalize the non-parametric approach to characterize peptide dis-

tributions arising in LC-MS/MS experiments [23] to further enable proteome coverage

prediction from integrated datasets compiled from multidimensional fractionation ex-

periments. Specifically, we propose a novel generalized hierarchical Pitman-Yor process

[134, 133] with self-referential base measures that addresses the issue of distribution

overlap which is introduced by the fractionation preceding the LC-MS/MS analysis.

Besides the possibility to characterize peptide distributions arising in the course of mul-

tidimensional fractionation experiments, this approach also lends itself to characterize

the biologically more relevant protein distributions. We assess our method on a set of

24 experiments from multidimensional fractionation of a L. interrogans whole proteome

sample and report better performance than ad hoc extrapolation schemes and other

approaches designed for one dimensional fractionation experiments. We discuss our re-
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Figure 8.1: Illustration of a typical multidimensional fractionation experiment. The initial
root peptide ensemble obtained from the biological source is separated by some fractionation
method (e.g. isoelectric focussing (IEF)), giving rise to a set of related peptide ensembles.
LC-MS/MS analysis is performed for each of these fractions. Liquid chromatography frac-
tionation generates a sequence of child peptide ensembles from the root ensemble. Each of
these ensembles is derived from the root ensemble by pooling peptides of similar polarity. The
sequence of ensembles features descending overall polarity in the course of the experiment.
During the experiment peptides πt are drawn from the sequence of ensembles and analyzed
by the mass spectrometer coupled to the liquid chromatography system and subsequently
identified computationally. We propose a non-parametric Bayesian approach to characterize
the distributions governing the peptide ensembles. We simulate further experiments and
thereby predict proteome coverage by sampling from these peptide distributions.

sults with respect to maximally achievable proteome coverage from a peptide- as well as

protein-centric perspective.

Methods

The following sections give technical background and details on the hierarchical Pitman-

Yor process framework for proteome coverage prediction based on integrated datasets.

Briefly, our approach characterizes the peptide/protein distributions arising in a mul-

tidimensional fractionation experiment and simulates further experiments by sampling

from these distributions. Proteome coverage is predicted by counting the number of

novel peptide/protein discoveries in the simulations. In the following sections we will

assume a peptide-centric view for clarity, i.e. consider peptide distributions instead of its

protein counterparts. Note that peptides, by virtue of being protein fragments, also refer

to protein identities. Therefore, the following sections can also be read by consequently

substituting peptides with proteins. Complications arising from peptides ambiguously
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referring to several protein identities are discussed in section 8.9.

8.3 Pitman-Yor processes

We apply Pitman-Yor processes to characterize peptide distributions arising in the course

of a series of proteomics experiments. In the following we briefly review the concept of

Pitman-Yor processes in the context of this work.

Like the Gaussian distribution is an appropriate distribution for a real valued random

variable in numerous applications, the Pitman-Yor process frequently is an appropriate

distribution for complex objects such as discrete distributions [66]. Loosely spoken,

Pitman-Yor processes are suited as priors over discrete distributions that are expected

to have most of their probability mass on a small number of atoms and only little

probability mass on the vast majority of atoms [133]. As various proteomics studies

have shown that protein/peptide frequencies exhibit such a property (see e.g. [26]), we

use Pitman-Yor processes as priors for distributions G over a set Π of peptides defined

by a protein database of the studied organism.

G | γ, d,H ∼ PY(γ, d,H) (8.1)

where PY(γ, d,H) is a Pitman-Yor process with a concentration parameter γ, a discount

parameter d and a base probability measure H. The base measure is defined over

Π (sample space). H is frequently chosen as the uniform measure, assigning 1/|Π|
probability mass to each π ∈ Π.

The so called Chinese Restaurant construction [12, 107] provides an intuitive way to see

which kind of distributions are likely to be drawn from a Pitman-Yor process PY(γ, d,H).

Imagine a restaurant with an infinite number of tables. At each table a specific dish is

served. We construct a distribution G over dishes after having seated an infinite number

of customers. Customers are seated according to a probabilistic rule. Specifically, the

probability of the t-th customer being seated at the table serving dish πt = k assumes

the values

P (πt = k | π1, ..., πt−1, γ, d,H) =

{
nk−d
t−1+γ

populated table
γ+kd
t−1+γ

next unpopulated table
(8.2)

where nk corresponds to the number of customers already sitting at the table serving

dish i. In case a customer happens to be seated at a new table, the dish served at this
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table is drawn from the base probability measure H. A procedural description of serving

a new customer in a restaurant with seating arrangement R = n1, n2... is as follows:

Seat(R, γ, d,H)

1 t← SampleTable(R, γ, d)

2 if t 6= new

3 then return Dish(R, t)

4 else return Sample(H)

The larger the concentration parameter γ, the higher the chances that a new customer

is seated at a new table. The more customers have already been seated, the less likely a

new dish will be served. The larger the discount parameter d the less likely a customer

is seated at an already populated table. Note that d < 1. In summary, the parameters

γ and d control, though in different ways, the deviation of G from the base measure H.

The Chinese Restaurant construction specifies the posterior to iteratively sample from

πt | π1, ..., πt−1, γ, d,H after marginalizing out G.

Pitman-Yor Processes are generalizations of the more commonly known Dirichlet pro-

cesses [12, 4]. More precisely, a Dirichlet Process DP(γ,H) is equivalent to a Pitman-Yor

process PY(γ, d,H) with d = 0. Both Dirichlet and Pitman-Yor processes will be used

as priors for peptide distributions that arise in the course of a multidimensional frac-

tionation experiment. After having estimated the process parameters we will simulate

further experiments by sampling according to the Chinese Restaurant construction.

8.4 Hierarchical process model for fractionation

experiments

In the following we characterize the distributions which arise in a multidimensional

fractionation experiment. We specifically describe a typical setup that comprises two

consecutive fractionation steps, where the first step splits the initial peptide ensemble

into a set of I fractions that are each analyzed by LC-MS/MS (Fig. 8.1). Besides

enforcing consistency along subsequent fractionation steps using hierarchical processes,

we further want our model to explicitly capture the similarity of corresponding peptide

distributions across different fractions.

The initial peptide ensemble follows the root distribution G. We assume a Pitman-Yor
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process prior PY(γr, dr, H) for G. The base measure H is chosen to be the uniform

distribution over the peptides defined by the protein database of the studied organism.

Peptides are not directly sampled from the root distribution G. Consider some time

point t during the LC-MS/MS analysis of fraction i. The peptide πit is sampled from the

child peptide distribution Gi
t of the peptide ensemble currently eluting from the liquid

chromatography column. Following [23] we assume that the preceding peptide πit−1 := j

is indicative for the current polarity of the chromatography and thereby the current

peptide distribution, i.e. with a slight abuse of notation we assume Gi
t = Gi

j. Further

we assume a Dirichlet process prior for Gi
j, resulting in an infinite Markov model for

LC-MS/MS experiments similar to [23].

Gi
j | γic, Aij ∼ DP(γic, A

i
j)

πt | πit−1 =j ∼ Gi
j (8.3)

We want the child distributions Gi
j to be consistent with the root distribution G, i.e.

we want to ensure that peptides having zero probability mass in the initial peptide

ensemble still have zero probability mass during an LC-MS/MS experiment. This notion

is captured by choosing G as base measure Aij in (8.3), yielding a hierarchical process

[134]. This choice ensures (1) that Gi
j is consistent with G, i.e. the support of Gi

j is

enclosed by the support ofG and (2) thatGi
j will have similarity toG to an extent defined

by the concentration parameter γic. Furthermore, we want to capture the similarity

between Gi
j and its corresponding distributions Gi′

j in all other fractions i′ 6= i. Therefore

we extend the base measure Aij in (8.3) to a (self-referential) linear combination of the

distributions (Gi′
j )Ii′=1 and G.

Aij = aiiG+
∑
l 6=i

ailG
l
j (8.4)

Since the values ai := (ail)
I
l=1 are not known beforehand, it is natural to treat them

as a random discrete distribution with a Dirichlet process prior. The aii reflect the

dissimilarity of fraction i from the other fractions by controlling the rate of sampling

peptides directly from the root distribution G. We account for their distinguished role

by putting prior weight αia on aii and incorporating this parameter by assuming for the

ai a biased (in the sense of [23]) Dirichlet process prior DPi(γ
i
a, α

i
a,M) with uniform

base measure M := (1/I)1..I . In the following, we will refer to the ai as the adapter

distributions.
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The self-referential base measures Aij are a crucial component of this process since they

capture the important overlap of peptide distributions across the fractions j arising in a

multidimensional fractionation experiment. The step from the simple base measure G as

described in [23] to the self-referential base measure enables to appropriately characterize

the peptide distributions describing such an experiment.

Putting together the precedent considerations we fully characterize the stochastic source

of a multidimensional fractionation experiment by

G | γr, dr, H ∼ PY(γr, dr, H)

ai | γia, αia,M ∼ DPi(γ
i
a, α

i
a,M)

Gi
j | γic, Aij ∼ DP(γic, A

i
j)

πt | πit−1 =j ∼ Gi
j (8.5)

Note that it is straightforward to assume Pitman-Yor process priors for all distributions.

This choice though comes at the cost of additional parameters that have to be learned

from data. In this work we wanted to focus on robustness and therefore we decided to

keep the priors of the child distributions as simple as possible.

8.5 Sampling sequences of protein Identifications

This section describes a nested, recursive Chinese Restaurant construction to sample

peptides from the hierarchical process model with self-referential base measures given

an already observed series π of already observed peptides, i.e. how to simulate further

experiments.

For each distribution in the hierarchical process model we have a restaurant representa-

tion, i.e. a seating arrangement. Specifically, we denote the restaurants corresponding

to the Gi
j as Rc

ij = (ncijk)
K
k=1, those to the aj as Ra

i = (naii′)
I
i′=1 and the root restaurant

as Rr = (nk)
K
k=1. To keep the notation uncluttered we incorporate the prior weights αia

into the counts naii and respectively Ra
i . R denotes the set of all restaurants. Note that a

set of seating arrangements R implies a series π of observed identifications. We further

summarize the set of parameters by θ := (γr, dr, γ
1
a, ..., γ

I
a, γ

1
c , ..., γ

I
c ).

For a given set of seating arrangements R we now want to sample the identification πt

for fraction i and preceding identification πt−1 = j. Verbally, we first have to iterate the
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Chinese Restaurant construction for the corresponding child distribution. In case this

iteration triggers a sampling event of its base measure, we have to determine which of

its mixture components is to be sampled. Therefore we iterate the Chinese Restaurant

construction of the corresponding adapter distribution. Subsequently, either the root

restaurant or, recursively, some of the sibling child restaurants of another fraction is

iterated. This procedure can summarized as shown below.

SampleIdentification(i, j,R,θ, H,M)

1 π ← Seat(Rc
ij, γ

i
c, 0, 0) // sample child

2 if π = 0

3 then i′ ← Seat(Ra
i , γ

i
a, 0,M) // sample adapter

4 if i′ 6= i

5 then π ← SampleIdentification(i′, j,R,θ, H,M)

6 else π ← Seat(Rr, γr, dr, H) // sample root

7 return π

The nested, recursive Chinese Restaurant construction serves to simulate further ex-

periments, i.e. to sample more peptides given an already observed series π of peptides

and will be useful in the following section to derive a likelihood function for paramater

estimation.

8.6 Empirical Bayes parameter estimate

Parameters of the hierarchical process model from section 8.4 can be estimated from a

series π of identifications by empirical Bayes inference, i.e. by choosing the parameters

to maximize a likelihood function L bR.

θ̂ := arg max
θ
L bR(θ) (8.6)

In the following we will specify L bR. Sampling a series π of identifications reduces to

iterate various Chinese Restaurant constructions according to the probabilities in (8.2).

We can define a likelihood function LR(θ) for a set of seating arrangements R, or the

corresponding series π of identifications.

LR(θ) = Lcr(R
r, γr, dr) ·

I∏
i=1

Lcr(R
a
i , γ

i
a) ·

J∏
j=1

Lcr(R
c
ij, γ

i
c) (8.7)
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where Lcr(R, γ, d)/Lcr(R, γ) corresponds to the likelihood of achieving a seating arrange-

ment R in a single restaurant representation of a Pitman-Yor/Dirichlet process sample

with parameters γ, d/γ. Note that prior weights αia of the adapter processes are appro-

priately incorporated into Ra
i and they are therefore not explicitly listed.

Lcr(R, γ, d) =

∏K
k=1(γ + kd) ·

∏nk

n=1(n− d)∏N
n=1(n+ γ)

(8.8)

with N =
∑K

k=1 nk and K corresponding to the number of populated tables.

We do observe the series π of identifications. Though we only have incomplete knowledge

about R. We observe the seating arrangements Rc
ij of the child processes.

ncijk =
∣∣πit : (πit−1 = j) ∧ (πit = k)

∣∣ (8.9)

where the πit ∈ πi denote identifications observed exclusively in fraction i. We do not

directly observe Rr and the Ra
i . We present a sparse estimate for R that is consistent

with π and complies with a minimal number of seating events in the root restaurant

representation Rr of the root distribution G. Consider the representation matrix M with

entries mik equaling one if a peptide k has been observed in fraction i or zero otherwise.

We want each peptide discovery k to be represented by some fraction fk. We further

want to choose the number of representing fractions to be as small as possible. This

problem is more commonly known as the NP-hard set cover problem [70]. We compute

the fk with the greedy heuristic, choosing at each step the fraction which covers the

largest number of remaining different peptides. Every time the peptide k is discovered,

i.e. sampled for the first time in a child process, we choose the corresponding adapter

process to trigger a sampling event in fk. Accordingly, we estimate the hidden seating

arrangements of the adapter and root restaurant representations.

naii′ =
∣∣i, j, k : (fk = i′) ∧ (∃ t : (πit−1 = j) ∧ (πit = k))

∣∣
nrk =

∣∣i, j, k : (fk = i ) ∧ (∃ t : (πit−1 = j) ∧ (πit = k))
∣∣ (8.10)

We finally determine the parameters θ̂ by optimizing L bR with a quasi-Newton method

[109]. In summary, we obtain an empirical Bayes parameter estimate from an observed

series π of identifications.
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8.7 Proteome coverage prediction with false

identifications

At this point we can specify how to predict the number of new peptide discoveries for

future experiments from a series π of already observed identifications. In a first step, we

estimate the parameters and hidden variables of the hierarchical process model (8.4) as

described in the preceding section 8.6. Second, we sample m peptide series (πnew,i)
m
i=1

by means of the nested Chinese Restaurant construction (8.5). For each πnew,i we count

the number of new discoveries. The expected proteome coverage we estimate as the

mean of discovery counts across all πnew,i.

In practice, the series π of observed peptides corresponds to a series of peptide-spectrum

matches that have been inferred computationally. Obviously peptide-spectrum matches

are not perfect. Fortunately, the fraction of false positive peptide-spectrum matches is

typically known [72, 41]. Furthermore it has been observed that false positive peptide-

spectrum matches distribute in a uniform-like manner across the protein database [23,

26]. To account for false positive peptide-spectrum matches we adaptively estimate

parameters and we adaptively sample novel peptide identifications as described in [23].

8.8 Results

We present results that demonstrate the proteome coverage prediction performance of

our hierarchical process model. To this end we studied a large multidimensional frac-

tionation experiment of a L. interrogans sample. We compared to a recent approach

designed for (one dimensional) LC-MS/MS experiments [23] and to ad hoc extrapolation

methods. We further extrapolated proteome coverage for the L. interrogans sample to

make statements about maximal coverage.

We studied an integrated dataset acquired from multidimensional fractionation experi-

ments for the bacterium L. interrogans. After protein extraction and tryptic digestion,

the resulting peptide mixture was fractionated according to the isoelectric point of the

peptides by off gel electrophoresis and each of the 24 fractions analyzed by LC-MS/MS

coupled to a FT-LTQ high mass accuracy instrument. Target-decoy database search with

Sequest/PeptideProphet [72] resulted in 59918 peptide-spectrum matches at a false dis-

covery rate of 1% [116].
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Figure 8.2: Proteome coverage prediction performance by cross validation. Training datasets
generated by subsampling the complete set of peptide-spectrum matches. Test of prediction
performance on complete dataset. (a) Hierarchical process model accuracy in terms of root
mean square deviation (rmsd) from the true progression of proteome coverage. Columns
correspond to relative training dataset size compared to the complete L. interrogans. (b)
Example trajectory for prediction from dataset instance with 10% relative size. Plot shows
trajectory of observed (real), predicted true positive (tp) and including false positive protein
discoveries (all). (c) Performance comparison of hierarchical process model with infinite
Markov model (imm), extrapolation of logarithmic regression (log) and linear extrapolation
of last experiment (lin). Box plot of log odds of rmsd (log(rmsdref/rmsdcomp)) for reference
and compared method (lin, log, imm). Median log odds for comparison with the other
methods are significantly lower than zero, indicating weaker performance than our approach.
The hierarchical process model is capable to reliably predict proteome coverage from a small
amount of identifications and clearly outperforms other applicable methods.

8.8.1 Cross validation prediction accuracy

We assessed proteome coverage prediction performance in a cross validation scenario.

Briefly, we generated various training datasets of decreasing size by subsampling the

complete set of peptide-spectrum matches. We performed proteome coverage prediction

for each training dataset and assessed accuracy by comparing to the real proteome cover-

age progression of the complete dataset. Precisely, we generated 20 training datasets by

20 times sampling 10% of all peptide-spectrum matches in the dataset while preserving

their fraction association. We repeated this procedure by also sampling 20, 30 or 50%

of all peptide-spectrum matches, finally obtaining 80 training datasets of varying size.

We assessed the prediction accuracy of the hierarchical process model (Fig. 8.2a). Pre-
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diction accuracy is measured as root mean square deviation of predicted and actually

observed progression of proteome coverage. Proteome coverage corresponds to number

of protein discoveries. Prediction accuracy is reasonable already for the smallest training

dataset sizes, i.e. 10% of the complete L. interrogans dataset. Fig. 8.2b depicts an

example prediction for the set of smallest training datasets. As expected, prediction ac-

curacy improves further for training datasets of larger size. Similar results are obtained

for prediction of proteome coverage in terms of peptide discoveries (data not shown).

We conclude that our approach is able to reliably predict proteome coverage already

from a small amount of data.

8.8.2 Proteome coverage prediction benchmark

We compared the hierarchical process model to other methods. We chose two simple

general purpose extrapolation methods and a method designed for proteome coverage

prediction of non-integrated datasets. We first considered an extrapolation scheme that

linearly extrapolated proteome coverage progression of the last LC-MS/MS experiment

of a training series. Second, we considered the extrapolation of a logarithmic regression

(y = a log x + b). We assessed prediction performance on the 80 training series as de-

scribed above and observed that the hierarchical process model clearly outperforms the

other methods (Fig. 8.2c). These results indicate that proteome coverage prediction

for integrated datasets is a non-trivial task that is not solved satisfactory by ad hoc

extrapolation methods and is different from the related task of proteome coverage pre-

diction for non-integrated datasets.

8.8.3 Detection of saturation coverage for L. interrogans

We estimated saturation proteome coverage for L. interrogans given the experimental

workflow described above. Therefore we performed proteome coverage prediction for in

silico repetition of all experiments. Proteome coverage in terms of peptide discoveries

appears to steadily increase (Fig. 8.3a). Proteome coverage in terms of protein dis-

coveries also seems to increase (Fig. 8.3b). This observation is however only true for

all protein discoveries including the false positive ones. Since our approach separately

accounts for the contribution of false and true positive protein discoveries (see section

8.7), we could exclusively monitor the progression of true protein discoveries. We ob-
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a b

Figure 8.3: Proteome coverage prediction beyond the L. interrogans dataset. Vertical lines
denote the extent of the dataset in terms of acquired peptide-spectrum matches (psm).
Trajectories correspond to predicted true positive (tp) and including false positive discoveries
(all) (a) Progression of peptide discoveries. (b) Progression of protein discoveries. Protein
discovery rate stagnates compared to the steadily increasing number of peptide discoveries.
The L. interrogans dataset achieves saturation coverage at the level of protein discoveries.

serve that the number of true positive protein discoveries does not change significantly.

Considering the rate of new true positive discoveries, we effectively have reached satu-

ration coverage for L. interrogans.

8.9 Discussion

For the first time, we propose a method to predict proteome coverage for multidimen-

sional fractionation experiments. This achievement is an important enabling step for

experimentalists since multidimensional fractionation experiments so far have the largest

potential to comprehensively characterize a proteome. We present a novel hierarchical

process to characterize distributions arising in the course of these experiments. This ap-

proach conceptionally extends methods exclusively suited for single fraction experiments

[23], by introducing self-referential base measures that accommodate similarities among

different experiment fractions. Our approach is generic since it operates on the level of

peptide or protein distributions and, therefore, it conceptually accommodates any kind

of heterogeneous set of fractions being analyzed by LC-MS/MS. Fractions do not neces-
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sarily have to originate from a single fractionation experiment. The considered fractions

might also be derived from different tissues or cell cultures as long as their analysis is

based on the same sequence database. Although we explicitly describe an approach that

accounts for two fractionation steps, it is conceptually straightforward to extend it from

a two level to a higher level hierarchy. However, the corresponding experimental setups

are rarely encountered in practice. We show that our model reliably predicts proteome

coverage of future experiments from a small amount of already performed experiments

and clearly outperforms other methods.

Besides providing predictions at the level of peptide discoveries, we demonstrate that our

approach yields reliable predictions of proteome coverage in terms of protein discoveries.

Specifically, we require the set of considered fragment ion spectra to be unambiguously

assigned to a protein identity to estimate future proteome coverage. This requirement is

usually met, since possible ambiguities introduced by peptide-spectrum matches whose

sequence maps to several protein identities are typically resolved by protein inference

engines, e.g. by reporting a minimal consistent set of protein identifications [96]. It

will though be interesting to extend our approach to allow for ambiguity in the protein

identity assignments.

There has been considerable discussion in the past about when to consider a proteome

to be mapped out. Our approach to proteome coverage prediction enables us to de-

tect saturation coverage for any kind of shotgun proteomics dataset. In this study the

L. interrogans dataset reaches saturation coverage at the level of protein discoveries.

Out of 3740 proteins reported in the sequence database, roughly 2000 proteins can be

faithfully observed — not less but also not a lot more. This analysis is a remarkable

result considering the manageable amount of experimentation (24 LC-MS/MS runs). It

should be noted that this result is valid for the given experimental setup, such as type of

protein extraction, enzymatic digestion, fractionation method, type of mass spectrome-

ter. Despite the sensitive state-of-the-art approach reported here, it remains conceivable

that other experimental approaches turn out to be able to explore other parts of the L.

interrogans proteome. Their potential could though be evaluated with the hierarchical

process model presented here. Therefore the presented method is suited to assist method

development since it objectively assesses the potential of a particular method to explore

a proteome.

Characterizing more complex proteomes (e.g. human) necessitates a considerably larger

amount of experimentation. In this context it will be promising to perform proteome
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coverage prediction for different experimental strategies at an early stage of the project

to design future experiments such that maximal proteome coverage is achieved efficiently

[120]. Our approach enables for the first time to accommodate any multidimensional

fractionation strategy to perform this task. Efficient study design will help to save costly

experiments, contribute to the reliability of the final set of protein discoveries [23, 26]

and furthermore enhance subsequent directed/targeted proteomics studies [118, 82].
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Proteomics Experiments

9.1 Summary

Large shotgun proteomics studies typically aim at substantial proteome coverage. The

complexity of any organism’s proteome necessitates extensive repetition of multidimen-

sional fractionation experiments. Such studies turn out to be obstructed by spending a

considerable amount of resources on performing non-informative experiments that do not

contribute novel protein discoveries. Shotgun proteomics studies would benefit from a

rational design approach that prioritizes future experiments according to their expected

impact on proteome coverage.

We present a non-parametric Bayesian approach to optimally design a shotgun pro-

teomics study, i.e. to select a fixed length experimental sequence that maximizes the

expected proteome coverage. Starting from a small amount of different experiments, we

efficiently estimate expected proteome coverage for all possible experiment sequences of

specified length. We build on our approach for proteome coverage prediction for single

experiment sequences in the context of multidimensional fractionation studies. We for-

mulate optimal experiment design as an optimization problem and show how to reduce

it to the commonly known maximum k-coverage problem. Our approach to optimal

design of shotgun proteomics studies enables researchers to accelerate the progression of

proteome coverage by focusing resources on truly informative experiments.

9.2 Introduction

Careful design of large shotgun proteomics studies considerably accelerates the progres-

sion of proteome coverage. We present a rational approach to optimally design a shotgun

proteomics study after having performed a small amount of experiments.
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The complexity of a proteome constitutes the main challenge for experimental ap-

proaches aiming at characterization of a proteome. Protein databases count thousands

of different protein sequences that each in average give rise to hundreds of different

peptide fragments. Also accounting for post translational modifications, it is reasonable

to assume that a biological sample gives rise to more than a million different peptide

species in a shotgun proteomics experiment. Contemporary mass spectrometers are far

from capable to characterize such a complex peptide mixture.

Fractionation strategies aim at reducing the complexity of peptide mixtures derived from

whole proteome digests by splitting them according to some physical property into more

tractable, less complex peptide mixtures. Reversed phase liquid chromatography con-

stitutes the central fractionation approach in the context of mass spectrometer based

proteomics (LC-MS/MS) [38]. It separates with respect to peptide polarity. Multidimen-

sional fractionation strategies add additional steps of fractionation according to different

physical properties other than polarity [55]. Peptide mixtures arising in the course of

multidimensional fractionation strategies are still too complex to be characterized by a

single experiment. Consequently, each fraction is repeatedly analyzed by LC-MS/MS.

This setup inevitably entails redundant and therefore nonessential identification of pep-

tides/proteins that have been seen in a previous experiment. Despite their redundancy,

the multidimensional fractionation strategy still constitutes the most successful strategy

to achieve extensive proteome coverage [138, 15, 5, 35, 119].

Several approaches have been presented to increase the efficiency of shotgun proteomics

studies. Directed mass spectrometer approaches aim at reducing the sequencing redun-

dancy by recording all peptide signals measurable in the mass spectrometer in a first

step and to then systematically issue sequencing events for each signal [118, 117]. Other

approaches aim at appropriately designing shotgun proteomics studies. Eriksson et. al

theoretically studied whether fractionation at the level of peptides or proteins is ex-

pected to better promote progression of proteome coverage. Brunner et. al proposed an

“analysis-driven experimentation“ strategy that consists of designing experiments that

are supposed to close the gap between the set of expected proteins and those actually

discovered by previous experiments.

We propose a novel complementary approach to optimally design a shotgun proteomics

study. Starting from a small amount of LC-MS/MS experiments performed for a set of
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biological samples and/or fractions, we estimate a sequence of LC-MS/MS experiments

(for this set of samples) that maximizes the expected proteome coverage. This approach

aims at reducing redundancy by identifying and focusing the experimental efforts on the

most information rich samples/fractions. Our approach builds on proteome coverage

prediction for a single experiment sequence [23, 24]. Finding the optimal experiment

sequence implicitly involves proteome coverage prediction of all possible sequences. We

show that this task reduces to the maximum k-coverage problem, a variant of the well

known set cover problem. We exemplify the impact of optimal design for a proteomics

study of the human proteome.

Notation

We use boldfaced variables to represent vectorial variables. We use the following index

notation. Normal font indices refer to single elements of a vector at position specified

by the index (e.g. el). Boldface (i.e. vectorial) indices refer to possibly several vector

elements at positions specified by the vectorial index (e.g. el := (el)l∈l).

We consider a scenario where we dispose of J different biological samples that are to

be analyzed by LC-MS/MS experiments. In the following we refer to an LC-MS/MS

experiment of a biological sample simply as an experiment.

We introduce the notion of an experiment sequence e := (el)1≤i≤m. Each entry el

denotes an LC-MS/MS experiment for the biological sample el. The realization of ex-

periment el gives rise to a protein identification trajectory πl which comprises the pro-

teins Πl := unique(πl). The complete experiment sequence gives rise to the trajectory

π := (πl)1≤l≤m and protein discoveries Π :=
⋃

1≤l≤m Πl. We refer to proteome coverage

as the cardinality of a protein discovery set.

9.3 Experiment Selection

This section describes how to select an optimal sequence of follow up experiments given

a set of already performed experiments. Experiment Selection can be formulated as an

optimization task.
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We consider a situation where we have already performed l LC-MS/MS experiments

for each of the J different samples. These experiments we denote by the experiment

sequence e0. We denote the trajectory of protein identifications as π0. We discussed the

task of proteome coverage prediction, i.e. the task of estimating the expected proteome

coverage E [c | e,π0] in terms of protein discoveries for the sequence of experiments e

after already having performed the experiments e0. For optimal experiment selection we

now want to perform m additional LC-MS/MS experiments and select them such that

they maximize the expected proteome coverage.

Experiment Selection Let π0 be a set of identification trajectories and Π0 be the

respective set of protein discoveries obtained for J biological samples. Select the opti-

mal sequence e∗ comprising m additional experiments. e∗ is considered optimal if its

expected proteome coverage c is maximal.

e∗ = arg max
|e|=m

E
[
c | e,π0

]
(9.1)

9.4 Empirical Experiment Selection

In the following, we will describe a tractable estimate for the optimal sequence e∗.

Briefly, we first describe how to evaluate the optimization objective, i.e. how to esti-

mate the expectation coverage for a given experiment sequence. In a second step we

reduce the optimization task to the well known NP-hard maximum k-coverage problem

for which good approximations are known.

Experiment Selection requires to evaluate the expectation value E [c | e,π0]. We are not

aware of a possibility to do this analytically. We can though estimate E [c | e,π0] for

some sequence e of experiments as the empirical mean of coverage from a sufficiently

large set of trajectories
(
πk
)

1≤k≤r sampled from π | e,π0 and the respective sets of

protein identifications Πk := unique(πk) \Π0. Each of these trajectories is obtained by
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running the proteome coverage prediction as described in section 8.

Ê
[
c | π0

]
=
∣∣Π0

∣∣+
1

r

∑
k

∣∣Πk
∣∣ (9.2)

The expected coverage for the experiment subsequence e′ := el with l ⊆ (1, ..,m) can

be estimated from trajectories sampled from π | e,π0. Specifically, we assume that we

already sampled the protein discovery sets
(
Πk
)

1≤k≤r. We then obtain Ê [c | e′,π0] by

simply considering those Πk
l that correspond to experiments specified in e′.

Ê
[
c | e′,π0

]
=
∣∣Π0

∣∣+
1

r

∑
k

∣∣Πk
l

∣∣ (9.3)

The expected coverage for any sequence of m experiments can be estimated by sam-

pling a tractable amount of protein trajectories. Therefore, we assume an experiment

sequence e = ({1}m , ..., {J}m) and sample r trajectories
(
πk
)

1≤k≤r from π | e,π0,

thereby obtaining protein discovery sets
(
Πk
)

1≤k≤r. By definition e comprises all exper-

iments sequences e′ of length m. The expected coverage for any experiment sequence

e′ of length m can now be estimated on the basis the protein discovery sets for e as

summarized in equation (9.3).

Experiment Selection can now be performed on the basis of the trajectories sampled

for the J ×m sized experiment sequence e = ({1}m , ..., {J}m). We therefore introduce

the Empirical Experiment Selection task that substitutes the exact coverage expectation

values with the respective empirical estimates obtained from a finite sample of protein

trajectories.

Empirical Experiment Selection Let π0 be a set of identification trajectories ob-

tained for J biological samples.
(
πk
)

1≤k≤r and
(
Πk
)

1≤k≤r are r trajectories/discovery

sets sampled from π | e = ({1}m , ..., {J}m),π0. Estimate the optimal sequence ê∗ com-

prising m additional experiments as the sequence maximizing the empirical estimate for

coverage expectation.

ê∗ = arg max
|l|=m

∑
k

∣∣Πk
l

∣∣ (9.4)
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9.5 Reduction to maximum k-cover

We reduce Empirical Experiment Selection to maximum k-cover [70]. Therefore we

introduce the expanded sets and subsequently show that Empirical Experiment Selection

is a maximum k-cover instance over a set of expanded sets.

Maximum K-Cover Let (Ul)1≤l≤m be a collection of sets. The maximum k-cover C

is defined as

C = arg max
|C′|=k

∣∣∣∣∣⋃
l∈C′

Ul

∣∣∣∣∣ (9.5)

Expanded Sets Let π0 be a set of identification trajectories obtained for J biological

samples, e an experiment sequence and
(
Πk
)

1≤k≤r r sets of protein discoveries obtained

from π | e,π0. Expanded sets are defined as follows.

Π̆l :=
⋃
k

Π̆k
l :=

⋃
k

{
(k, π) | π ∈ Πk

l

}
(9.6)

It is easy to see the following properties of expanded sets:

(1)
∣∣⋃

l Π
k
l

∣∣ =
∣∣∣⋃l Π̆

k
l

∣∣∣
(2)

∣∣∣Π̆k1
l

∣∣∣+
∣∣∣Π̆k2

l′

∣∣∣ =
∣∣∣Π̆k1

l ∪ Π̆k2
l′

∣∣∣ ∀k1 6= k2

(3)
∑

k

∣∣Πk
l

∣∣ =
∣∣∣⋃l∈l Π̆l

∣∣∣
Proof.

∑
k

∣∣Πk
l

∣∣ (def)
=
∑

k

∣∣⋃
l Π

k
l

∣∣ (1)
=
∑

k

∣∣∣⋃l Π̆
k
l

∣∣∣ (2)
=
∣∣∣⋃l

⋃
k Π̆k

l

∣∣∣ (def)
=
∣∣∣⋃l Π̆l

∣∣∣
Empirical Experiment Selection can now be reduced to maximum k-cover by resorting

to expanded sets.

Proposition. 9.5.1 Empirical Sample Selection reduces to a maximum set coverage

instance that consists of finding m sets from
(
Π̆l

)
l∈l⊆{1,..,J×m}

such that their union has

maximal cardinality.

Proof. ê∗
(def)
= arg max|l|=m

∑
k

∣∣Πk
l

∣∣ (3)
= arg max|l|=m

∣∣∣⋃l∈l Π̆l

∣∣∣
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9.6 Computation of maximum k-cover

Although finding a maximum k-cover is NP-hard [70], there are several approaches to

this algorithmic problem that show good performance in practice. The most popular

approach is an efficient greedy heuristic.

Greedy K-Cover(k,U1, ...,Um)

1 U ←
⋃m
l=1Ul

2 C ← ∅
3 repeat

4 l← arg maxl′ |Ul′ ∩U |
5 C ← C ∪ {l}
6 U ← U \Ul

7 until |C| = k

8 return C

Greedy k-cover achieves approximates the size of the globally optimal solution at least

up to a factor of 1− 1/e [64].

Maximum k-cover can also be formulated as an integer linear program [28]. For each

ui ∈
⋃
lUl and for each set Uj we introduce variables yi and respectively xj. The

assignment of the variables xj indicates whether the respective set Uj is included in the

cover (xj = 0) or not (xj = 1). The constraints and the objective of the program ensure

that yi = 1 iff the variable assignments for the xj correspond to a cover including ui and

that yi = 0 iff the respective cover does not include ui.

max
∑

i yi

s.t. ∑
j xj ≤ k∑

j:ui∈Uj
xj ≥ yi ∀i
yi ≥ 0 ∀i
yi ≤ 1 ∀i
xj ∈ {0, 1} ∀j

This formulation makes maximum k-cover amenable to standard solvers for integer linear

programs. A lot of instances occurring in practice can be solved efficiently and exactly
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9 Optimal Design of Integrated Proteomics Experiments

with this formulation.

9.7 Discussion

This chapter describes how the delineated proteome coverage prediction approaches in-

tegrate into the task of optimally designing a shotgun proteomics study, i.e. to maximize

the expected proteome coverage for a user defined amount of experimentation [21].

We assume that an initial number of LC-MS/MS experiments has been performed for

a set of protein mixture samples that were obtained from possibly various biological

sources and/or multiple fractionation steps. Our approach estimates a sequence of LC-

MS/MS experiments that yields maximal expected proteome coverage. We formulate

this task as an optimization problem and show how it reduces to maximum k-coverage,

a variant of the well known set cover problem.

This approach enables researches, at an early stage of a large proteomics study, to quan-

tify the potential of the individual samples/fractions to map out a proteome in the

context of all others and to which extent each deserves to be further studied by LC-

MS/MS experiments. By these means only the most informative data is acquired. This

strategy therefore contributes to the efficiency of a shotgun proteomics study aiming

at extensive proteome coverage. We discussed the deteriorating effect of dataset size

in the context of the error propagation from peptide-spectrum matches to the level of

protein identifications in chapter 4. Therefore, it is conceivable that, beyond efficiency

considerations, avoiding redundant experiments leads to higher sensitivity than strate-

gies affording exhaustive experimentation.

Our approach motivates a new strategy towards more comprehensive coverage of a pro-

teome of interest. Knowing about the dynamic nature of a proteome, we would like to

account for a possibly very large number of different biological samples that represent

the proteome under a variety of conditions/perturbations. While it might be feasible to

probe each of these many samples by a couple of whole cell lysate LC-MS/MS experi-

ments in such a scenario, it is not possible to follow up with extensive multidimensional

fractionation experiments on each sample. Our approach enables us to identify the most

informative subset of samples to be analyzed in depth. It is likely that the biological
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9 Optimal Design of Integrated Proteomics Experiments

samples feature highly redundant proteomes. In this case the informative subset could

turn out to be small enough to allow comprehensive in depth analysis and to reveal more

of the true richness of the underlying proteome.

We expect that our approaches to proteome coverage prediction and optimal design of

shotgun proteomics studies provide unique strategies to contribute to a more compre-

hensive view on proteomes.
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The mechanisms underlying complex diseases like cancer or diabetes are not well un-

derstood until today. Systems biology aims to elucidate these mechanisms by means

of expressive models of biological systems that take into account the entirety of their

components. Mass spectrometry based proteomics significantly contributes to systems

biology approaches by providing technologies to comprehensively characterize a pro-

teome, i.e. the protein components of a biological system.

Mass spectrometry based proteomics constitutes an efficient and generic approach to

measure almost any member of a proteome. Throughput and sensitivity of contem-

porary shotgun proteomics approaches allow to measure hundreds of proteins with a

manageable amount of experimentation and to further map out large parts of a pro-

teome for more extensive and elaborate experimental setups.

Shotgun proteomics experiments generate data that is very informative about the stud-

ied proteome. However, the inference steps from the mass spectrometrical data up to

the level of protein identifications are not trivial. The typically generated amount of

data and the need for objective and reproducible inference routines presuppose automa-

tion of the inference steps. This challenging requirement translates into a diversity of

statistical and algorithmic problems that have attracted a lot of interest in the statistics

and machine learning community.

Shotgun proteomics data is inherently noisy. The interpretation of mass spectrometrical

data is therefore inevitably afflicted with uncertainty. The ability to term quantitative

confidence measures for interpretations like peptide-spectrum matches or protein iden-

tifications is an indispensable prerequisite to appropriately evaluate the outcome of a

proteomics study.

This thesis contributes methods to estimate confidence measures for proteome mea-
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surements. First, a target-decoy strategy to estimate false discovery rates for peptide-

spectrum matches from iterated database searches is presented. This approach allowed

to compile a set of reliable identifications from an iterated database search allowing for

hundreds of amino acid modifications. This target-decoy approach thereby enabled to re-

liably reveal various novel and yet frequent variations of a proteome. Second, this thesis

introduces a generalized target-decoy strategy to estimate false discovery rates for protein

identifications. Although protein identifications constitute the biologically relevant out-

come of a proteomics study, confidence measures have been typically reported at the level

peptide-spectrum matches, implicitly assuming them to be a reasonable approximation

for those of protein identifications. We show how errors for peptide-spectrum matches

propagate non-trivially to the level of peptide-spectrum match assemblies, i.e. protein

identifications. We discovered that false discovery rates for proteins identifications are

significantly larger than for peptide-spectrum matches. We found this discrepancy to

be more pronounced the larger the underlying volume of mass spectrometrical data.

This finding has implications for the interpretation of data acquired in large shotgun

proteomics studies aiming at extensive proteome coverage. This thesis presents a formal

approach to derive guidelines how to optimally interpret the mass spectrometrical data

for a given set of interpretation tools, such as search engines or protein inference meth-

ods. For the datasets studied in this thesis we found that the best strategy consists of

accounting for all spectral data of sufficiently high quality. We particularly found that

for large studies the spectral data has to be much more carefully selected than appre-

ciated before. Beyond individual studies, this finding also applies to proteomics data

repositories. Our approach to estimate false discovery rates for protein identifications

can be used to automatically curate such repositories and thereby enhance systems bi-

ology projects building on these valuable resources.

It turns out that shotgun proteomics studies aiming at extensive proteome coverage

acquire a lot of redundant, non-informative data by measuring the same peptides over

and over again. It is beneficial to avoid this redundancy for efficiency and sensitivity

considerations. Avoiding non-informative experiments obviously saves resources with-

out loosing in terms of proteome coverage. Avoiding these experiments yields smaller

datasets and therefore, as we have seen in our study on protein false discovery rates,

also avoids accumulation of false positive protein identifications, potentially allowing to

confidently identify more weakly evidenced proteins. In conclusion, it is desirable to

design a shotgun proteomics study such that it focuses on informative experiments.
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This thesis contributes a framework to design shotgun proteomics studies in order to

maximize their expected proteome coverage. This framework lends itself to predict the

optimal sequence of experiment repetitions from a small amount of already performed

(LC-MS/MS) experiments on a set of protein mixtures. This approach builds on the

ability to predict proteome coverage for an individual sequence of experiments. This

thesis develops a non-parametric Bayesian approach to this task. The peptide distri-

butions arising in the course of LC-MS/MS experiments are characterized by means of

hierarchical Dirichlet processes and variants thereof. The intricate relationship among

similar peptide distributions over multidimensional fractionation experiments inspired

the formulation of a novel class of hierarchical processes, the fractal Dirichlet process.

We showed how these processes can be applied to accurately predict proteome coverage

from a small amount of experiments. Proteome coverage prediction can be used to de-

fine quantitative stop criteria that take into account the accumulation of false positive

protein identifications as well as the rate of novel protein discoveries for some unit of

experimentation. We showed cases where the maximally achievable coverage at a user

defined false discovery rate did not coincide with maximal number of true positive iden-

tifications. Proteome coverage prediction can furthermore assist experimental method

development by providing an additional quantitative measure for coverage potential. We

finally described how proteome coverage prediction formally integrates into estimating

an optimal sequence of experiments that maximizes the expected proteome coverage.

This optimization task can be reduced to maximum k-cover, a variant of the well known

set cover problem. It will be interesting to evaluate the impact of optimal design on

efficiency as well as sensitivity of the respective shotgun proteomics study.

The statistical concepts developed in this thesis are not confined to application scenar-

ios in mass spectrometry based proteomics. The first part of this thesis has generalized

the target-decoy strategy to estimate false discovery rates for protein identifications, i.e.

assemblies of peptide-spectrum matches. The target-decoy strategy is more generally

applicable to assess the confidence of inference results obtained from assigning hypothe-

ses (e.g. proteins) from a collection of hypotheses (e.g. protein database) to observations

(e.g. fragment ion spectra). After having compiled a suitable collection of decoy hy-

potheses, the target-decoy strategy can be straightforwardly applied, e.g. to a retrieval

task that consists of assigning song snippets to songs from a music database. The second

part of this thesis introduces the fractal Dirichlet process, i.e. a novel measure over a
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set of discrete measures generalizing the hierarchical Dirichlet process. We could show

that such a process is better suited to capture the intricate relationships among the

peptide distributions arising in integrated shotgun proteomics experiments. It will be

interesting to see whether other application scenarios, like e.g. language modeling, also

exhibit structures best captured by the fractal Dirichlet process.

In conclusion, this thesis contributes novel statistical methods that enable the experi-

mentalist to rationally decide which data to acquire and which of the many available

data analysis strategy to choose in order to efficiently achieve the most extensive and

yet reliable proteome coverage. The resulting curated data will constitute an impor-

tant resource for targeted quantitative proteomics approaches such as selected reaction

monitoring and thereby strengthen the role of proteomics data in the context of systems

biology projects building on heterogeneous data sources.

This thesis addresses questions and develops methods that lie at the interface of biology

and machine learning. This work exemplifies the power of machine learning concepts to

tackle biologically relevant problems as well as how biology can inspire a novel kind of

general tasks that lead to novel concepts in machine learning. I am convinced that both

fields will keep on benefiting from this synergy in the future.
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08/2006 Diplom (M.Sc.) in Computer Science

University of Tübingen
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