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Abstract

This thesis focuses on classi�cation and clustering of data where a part of
the data items are jointly emitted by several sources. We design an abstract
generative model which o�ers a clear semantic interpretation for such data.
Based on this model, we derive algorithms for multi-label classi�cation and
multi-assignment clustering.

For the task of multi-label classi�cation, we show that the presented algo-
rithms estimate source parameters more accurately and classify data items
more reliably than previously proposed methods. We apply our method
to classify acoustic streams in hearing instrument. Most modern hearing
instruments rely on such classi�cation to adapt to acoustic scenes encoun-
tered in daily live. In this setting, a correct detection of the present sources
is essential to provide comfortable listening in spite of a hearing impair-
ment. We propose a novel set of features for this classi�cation task and
show that our generative multi-label classi�cation algorithm outperforms
current techniques.

The generality of our model formulation allows us to describe prior work
in the same framework. Starting from this uni�ed speci�cation, we derive
the asymptotic distribution of the parameter estimators obtained by several
algorithms. Furthermore, we prove that a class of popular model assump-
tions implies a mismatch to the assumed generative process and therefore
causes an inconsistency of the parameter estimators and, consequently, sub-
optimal classi�cation results.

The generative algorithms for multi-assignment clustering are applied to
Boolean data. Also in this unsupervised setting, the parameters estimated
by the proposed algorithms are more precise and the obtained clustering
solution attains higher stability, both compared to state-of-the-art methods.
We apply our method to solve an important problem in computer security
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known as role mining. The Permissions of new users can be speci�ed more
precisely with the roles obtained by our generative methods than with roles
detected by other multi-assignment clustering techniques.

To compare the quality of di�erent clustering techniques independently
of particular assumptions, we apply the framework of approximation set
coding for cluster validation. We observe that the model selection based on
this general framework is in agreement with the selection based on speci�c
quality measures for multi-assignment clustering. According to both crite-
ria, the proposed algorithms are identi�ed as the best method for the given
clustering task. We thus show for the �rst time that approximation set
coding correctly regularizes the model complexity for a real-world learning
task.
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Zusammenfassung

Diese Dissertation behandelt die Klassi�kation und das Gruppieren von
Daten unter der Annahme, dass mindestens ein Teil der Datenpunkte von
mehreren Quellen gemeinsam generiert wird. Wir entwerfen ein allgemeines
generatives Modell mit einer klaren Semantik für derartige Daten. Basierend
auf diesem Modell entwickeln wir Algorithmen für die Klassi�kation mit
Mehrfachzugehörigkeiten und für die Gruppierung mit Mehrfachzuweisun-
gen.

Im ersten Teil der Arbeit gehen wir detailliert auf Klassi�kationsprob-
leme ein, in denen ein Datenelement gleichzeitig zu mehreren Klassen ge-
hören kann. Die von uns vorgestellten Algorithmen schätzen Quellenpa-
rameter genauer und klassi�zieren synthetische Daten präziser als bisher
bekannte Methoden. Anschliessend wenden wir unsere Algorithmen auf
die Klassi�kation von akustischen Daten an. Die meisten modernen Hörg-
eräte teilen die akustischen Signale in verschiedene Klassen ein und wählen
anschliessend, entsprechend der geschätzten Klasseneinteilung, die der Sit-
uation angepasste Verarbeitung des Signals. Dementsprechend hängt die
Gesamtleistung des Hörgerätes grundlegend von der korrekten Identi�kation
der vorhandenen Geräuschquellen ab. Wir präsentieren neue Kenngrössen
für diese Klassi�kationsaufgabe. In verschiedenen Experimenten ergeben so-
wohl die vorgestellten Merkmale als auch der generative Ansatz verbesserte
Resultate gegenüber dem aktuellen Stand der Technik.

Die Allgemeinheit unserer Formulierung ermöglicht uns ausserdem, die
bisherigen Klassi�kationsmethoden als Spezialfälle unseres Modells darzu-
stellen. Ausgehend von dieser einheitlichen Beschreibung leiten wir die
asymptotische Verteilung der Parameterschätzer verschiedener Methoden
her. Wir beweisen ausserdem, dass eine gängige Modellannahme eine Fehl-
anpassung des Modells an die Daten impliziert und dadurch zu inkonsisten-
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ten Parameterschätzern sowie sub-optimalen Klassi�kationsresultaten führt.

Im zweiten Teil untersuchen wir die unüberwachte Gruppierung von
Daten unter der Verallgemeinerung, dass ein Datenelement gleichzeitig zu
mehreren Gruppen gehören kann. Auch in diesem unüberwachten Szenario
liefern die vorgeschlagenen generativen Algorithmen präzisere Schätzer der
Quellenparameter und ermöglichen eine genauere Beschreibung von neuen
Datenelementen, beides im Vergleich zu bisherigen Methoden. Wir wenden
den generativen Gruppierungsalgorithmus auf ein wichtiges Problem aus der
Computersicherheit an, nämlich dem automatischen Ermitteln einer Menge
von Rollen für rollenbasierte Zugangskontrolle. Die von den vorgeschlage-
nen Algorithmen gefundenen Rollen beschreiben die Zugri�srechte neuer
Benutzer akkurater als die Rollen, welche von bisherigen Methoden mit
Mehrfachzuweisungen gefunden werden.

Die Bewertung der Qualität einer Datengruppierung basiert häu�g auf
Annahmen über die Natur der Datengruppen. Wir verwenden die Methode
der Codierung mittels Näherungsmengen um die Qualität der Lösungen
verschiedener Gruppierungsalgorithmen zu beurteilen. Die Modellpräferen-
zen dieser allgemeinen Methode stimmen mit der Auswahl auf Grund von
problemspezi�schen Kenngrössen überein. Dieses Modellselektionsprinzip
identi�ziert den vorgeschlagenen Algorithmus als für die vorliegende Grup-
pierungsaufgabe am besten geeignet. Damit wurde zum ersten Mal an Real-
weltdaten bestätigt, dass Codierung mittels Näherungsmengen die Modell-
komplexität korrekt kontrolliert.
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Chapter 1

Introduction

The word data is the Latin plural of datum, which is the past participle of
dare, �to give�, hence �something given�. The understanding of data in ma-
chine learning follows its etymology: Data are numbers, words, images, etc.,
accepted as they stand. They are viewed as the lowest level of abstraction
and the base from which information and knowledge are to be derived [59].

This thesis focuses on data which is obtained from measurements on
objects and thus describes properties of these objects. For many types of
objects, the properties of a single object may have been generated simulta-
neously by several sources. Vivid examples are acoustic situations, where
the emissions of various sources superpose each other and thus constitute
the sound waves perceived by a human ear or measured in a microphone.
For example in a cocktail bar, the properties of the acoustic situation are
determined by the people discussing in parallel with the music playing in the
background. An other example of properties generated by several sources
are the permissions of an employee in the computer system of a company:
These permissions typically consist of a set of general permissions granted
to all employees and more speci�c permissions required to ful�l the tasks
of the person in the company. The provenance of user permissions is thus
adequately described by a source or role which describes the general per-
missions, and a set of roles describing the permissions for specialized duties.
A user obtains all permissions contained in at least one of his roles.

In this thesis, we advocate a generative approach to model
and process data generated by several sources. To achieve this goal,
we �rst design a generative model which describes the assumed generative
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CHAPTER 1. INTRODUCTION

process for the data at hand. Such a model typically contains a number of
parameters which are to be learned based on a set of observed data.

The machine learning tasks arising in this context can be roughly split
into two groups:

• If the sources that generated the data items are known, we speak of
supervised learning. Such a situation is given e.g. by a set of recordings
together with labels describing the scenery. Possible tasks in such
a scenario include the automated labelling of a new recording (i.e.
classi�cation), or the identi�cation of the emissions of the individual
sources (i.e. source separation).

• The setting where the contributing sources are unknown is called un-
supervised learning. We encounter this data analysis challenge if we
are asked to group the data items according to some similarity criteria.
For example, consider your friends: you may group them according to
their music preference or their favourite sports. Some of these groups
will be overlapping, as some of your friends might enjoy Beethoven's
oeuvre as much as Madonna songs, or might be both passionate foot-
ball players and skiers.

The set of properties measured from an object depends on the nature
of the object under study and is typically large and diverse: The properties
of an acoustic situation reach from physical characteristics such as sound
intensity and frequency spectrum to qualities such as the mood of a music
track. For an employee in a company, properties include his function, work
place, salary, dress code and access permissions in the building as well as
within the computer system. When investigating an object, we usually focus
on a subset of properties: A person does not listen to a conversation partner
in the same way as to street noise on a big road crossing at rush hour. In
a company, the human resource department, the line manager and the IT
security group are all interested in di�erent characterizations of the same
employee.

The measurement and calculation of di�erent properties of an object is
denoted by feature extraction. In practice, this is often a two-step process,
consisting of a physical measurement and a subsequent transformation of the
measurement results into a more appropriate representation. In acoustics,
the physical properties are most commonly measured with a microphone
which yields an electric signal. Discretisation and the extraction of Fourier
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1.1. THESIS OVERVIEW

coe�cients to obtain a spectral representation are popular transformations
of this signal.

The relevance of individual features typically depends on the objective of
the subsequent processing. Feature design characterizes the task of drafting
a set of features, while feature selection chooses the most ones important for
a given task. The second step formalizes the selective perception outlined
above based on di�erent criteria to measure the relevance of a feature for
a given task. The design and selection of features are crucial steps in all
machine learning applications, as they de�ne which properties of the object
under study are retrieved and how they are measured. The data obtained
in this way is the only representation of the object in the subsequent pro-
cessing. The chosen feature set thus has to capture all properties which are
relevant for the subsequent machine learning task.

1.1 Thesis Overview

The thesis starts with the generic model describing how data items from
several sources are generated. This model is detailed in Chapter 2. Later
in this same chapter, we present and discuss the quality measures we will
use throughout this thesis.

The applications of this generative model to machine learning problems
are grouped in two parts. The �rst part covers our contributions in the
�eld of supervised learning. Chapter 3 motivates multi-label classi�cation
and discusses connections with related problems. In Chapter 4, we present
two feature sets based on sound-�eld indicators and evaluate their utility to
predict the hearing target and the reverberation intensity in acoustic scenes.
A generative classi�er for multi-label classi�cation is presented in Chapter 5
and evaluated both on synthetic and real-world data. The asymptotic dis-
tribution of estimators on multi-label data is studied in Chapter 6. The the-
oretical results are veri�ed in experiments on discrete and continuous data
and show that the proposed multi-label classi�cation algorithm outperforms
competing methods. Finally, we prove that some of the widely used tech-
niques for inference based on multi-label data incur a model mismatch and
therefore yield biased parameter estimators and sub-optimal classi�cation
results. The corresponding theorem is given in Chapter 7 and concludes the
�rst part.

The second part is concerned with unsupervised learning. The require-
ment for multi-assignment clustering and the problem of role mining are
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CHAPTER 1. INTRODUCTION

discussed in Chapter 8. Our approach to this problem is based on the as-
sumed generative process and is presented in Chapter 9 along with extensive
experiments on synthetic data and real-world access-control information for
role mining. The evaluation of the proposed multi-assignment clustering
method in the framework of approximation set coding is given in Chap-
ter 10 and concludes the second part.

We draw the conclusions of this thesis in Chapter 11.

1.2 Original Contributions

The main contributions of this thesis are the following:

• In cooperation with Alfred Stirnemann and Manuela Feilner from
Phonak, we have developed and analyzed a novel set of features based
on physical properties of the sound �eld. This feature set enables
several state-of-the-art algorithms to classify acoustic streams with
higher accuracy.

• The semantics of data generated by multiple sources has been unclear
in most situations. We have formulated a generic, generative process
for data emitted by multiple sources which facilitates a consistent
understanding of such data.

• Based on the assumed data-generating process, we have developed a
generative classi�cation algorithm for multi-label data. Experiments
on synthetic data show that the proposed method estimates the pa-
rameters signi�cantly more accurately and classi�es data items with
lower error rates than methods based on less speci�c assumptions on
the generative process. Experiments on real-world acoustic data con-
�rm the superior performance namely in the case of small training
data sets.

• On a theoretical level, we have derived the asymptotic distribution of
parameter estimators based on multi-label data in a general setting.
The predictions on the parameter accuracy based on these theoretical
results closely agree with the measurements from simulations in several
concrete examples.

• To obtain a clear conclusion on the type of assumptions that lead
to sub-optimal classi�cation results, we have proven that a particu-
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1.2. ORIGINAL CONTRIBUTIONS

lar class of algorithms for inference on multi-label data incurs model
mismatch and therefore yields biased parameters.

• In cooperation with Mario Frank, we have developed the method of
multi-assignment clustering for Boolean data. In experiments on syn-
thetic data, we have observed that the proposed method yields supe-
rior parameter accuracy as compared to state-of-the-art methods. On
real-world role-mining data, we observe that multi-assignment cluster-
ing outperforms the other methods in terms of the ability to predict
the permissions of new users. We have extended this model to in-
corporate business information and thus formulated a probabilistic
approach to hybrid role mining.

• We have demonstrated for the �rst time how the theory of approxima-
tion set coding is applied to a real-world problem by using this frame-
work to study variants of the multi-assignment clustering. Doing so,
we observe that model selection based on this generic, information-
theory based approach yields the same results as model selection
based on the speci�c quality measures for the parameter accuracy
and the prediction ability. The results of this section have been jointly
achieved with Mario Frank.
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Chapter 2

Fundamentals

In the following, we present the generative process which we assume to
have produced the observed data in a general form. The main part of the
data is explained by a structure represented by a set of K sources. An
independent noise process perturbs the pure data. The observed data is
thus a mixture of the structure and the noise contribution. Such generative
models are widely used in single-label classi�cation and clustering, but have
not been formulated in a general form for data which is jointly emitted by
several sources. Afterwards, we discuss the advantages and disadvantages
of generative models in machine learning and justify the focus onto this
approach for data generated by multiple sources. Finally, we introduce the
quality measures which we use throughout this thesis to assess the quality
of the results.

2.1 Structure Model for Data from Multiple
Sources

We assume that the systematic regularities of the observed data are gener-
ated by a set K of K sources. For simplicity, we assume that the sources
are numbered from 1 to K, i.e. K = {1, . . . ,K}. Furthermore, we assume
that all sources have the same sample space Ω. If this assumption is not
ful�lled, the task of determining the set of sources which have generated a
given observation x becomes easier, as sources which do not contain x in
their sample space can be ruled out as single generators of x.

7



CHAPTER 2. FUNDAMENTALS

2.1.1 Source Emissions and Source Set

We assume that each source k emits samples Ξk ∈ Ω according to a given
probability distribution P (Ξk|k). We restrict ourselves to parametric prob-
ability distributions P (Ξk|θk), where θk is the parameter tuple of source
k. Realizations of the random variables Ξk are denoted by ξk. Note that
both the parameters θk and the emission Ξk can be vectors. In this case,
θk,1, θk,2, . . . and Ξk,1,Ξk,2, . . ., denote di�erent components of these vectors,
respectively.

Emissions of di�erent sources are assumed to be independent of each
other. The tuple of all source emissions is denoted by Ξ := (Ξ1, . . . ,ΞK),
its probability distribution is given by P (Ξ|θ) =

∏K
k=1 P (Ξk|θk). The tuple

of the parameters of all K sources is denoted by θ := (θ1, . . . , θK).
Given an observation X = x, the source set L = {λ1, . . . , λM} ⊆ K

denotes the set of all sources involved in generating X. The set of all
possible source sets is denoted by L. If L = {λ}, i.e. |L| = 1, X is called
a single-source data item, and X is assumed to be a sample from source λ.
On the other hand, if |L| > 1, X is called a multi-source data item and is
understood as a combination of the emissions of all sources in the source
set L. This combination is formalized by the combination function

cκ : ΩK × L→ Ω ,

where κ is a set of parameters the combination function might depend on.
Note that the combination function cκ(·,L) only depends on emissions Ξk
of sources k which are in the source set L and it is independent of emissions
of sources that are not contained in the source set. Alternatively, one could
de�ne a set of combination functions indexed by the source set, where each
function would only take the emissions of sources in the source set as argu-
ments. For the sake of clarity, we prefer the notation with the source set as
second argument of the combination function.

The generative process for a data item under the structure model is
illustrated in Figure 2.1. It consists of the following three steps:

1. Draw a source set L from the distribution P (L).

2. For each k ∈ K, draw an independent sample Ξk from source k ac-
cording to the distribution P (Ξk|θk). Set Ξ := (Ξ1, . . . ,ΞK).

3. Combine the source samples to the observation X = cκ(Ξ,L).

8



2.1. STRUCTURE MODEL FOR DATA FROM MULTIPLE SOURCES

Ξ
k

K

x

L

Figure 2.1: The generative model for an observation X with source set L
under the structure model. An independent sample Ξk is drawn from each
source k according to the distribution P (Ξk|θk). The source set L is sampled
from the source set distribution P (L). These samples Ξ := (Ξ1, . . . ,ΞK) are
then combined to observationX by the combination function cκ(Ξ,L). Note
that the observation X only depends on emissions from sources contained
in the source set L.

2.1.2 The Combination Function

The combination function describes how emissions of possibly several sources
are combined to the structure component of the observation X. For source
sets of cardinality one, the value of the combination function is the value of
the emission of the corresponding source, i.e.

cκ(Ξ, {λ}) = Ξλ . (2.1)

For source sets with more than one source, the combination function can
be either deterministic or stochastic. Examples for deterministic combina-
tion functions are the sum and the Boolean OR operation. In this case, the
value of X is completely determined by Ξ and L. In terms of probability
distribution, a deterministic combination function corresponds to a point
mass at X = cκ(Ξ,L):

P (X|Ξ,L) = 1{X=cκ(Ξ,L)} . (2.2)

Stochastic combination functions can be very diverse and allow us e.g. to
formulate the well-known mixture discriminant analysis as a multi-source
problem.

Mixture Discriminant Analysis as Multi-Label Problem. Linear
Discriminant Analysis (LDA) [45, 91] �nds a linear combination of features
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CHAPTER 2. FUNDAMENTALS

which separates two or more classes of objects. This method can be viewed
as a prototype classi�er: Each class is represented by a prototype, for which
the centroid has to be estimated based on the training data. Based on this
idea, and assuming that all classes have equal variance, linear discriminant
functions between di�erent classes can be inferred.

In Mixture Discriminant Analysis (MDA) [55], this idea is generalized
insofar that several prototypes per class are allowed. For simplicity, assume
that each of the K classes consists of M prototypes, which all have equal
variance. With probability πk,m,

∑
m πk,m = 1 for m = 1, . . . ,M , a sample

Xn with label k comes from the mth prototype of class k. Alternatively, Xn

can be considered as belonging to all prototypes of class k, where �belonging
to� means �was possibly generated by�, with the degree of possibility param-
eterized by πk := (πk,1, . . . , πk,M )T . In this setting, the label set of X with
source k is translated into the source set L = {(k, 1), (k, 2), . . . , (k,M)}.

From a generative point of view, the model underlying MDA corresponds
to drawing a sample Ξ(k,m) from each of the K ·M prototypes and then
passing the tuple Ξ of all emissions and the source set Ln to the combina-
tion function cκ(Ξ,Ln), which is parameterized by κ = (π1, . . . ,πM ). The
stochastic behavior of the combination function is then described by

P (cκ(Ξ,Ln) = Ξ(k,m)) =

{
πk,m if (k,m) ∈ Ln

0 if (k,m) /∈ Ln

Stochastic combination functions render inference more complex, as a
description of the stochastic behavior of the function (the parameter vec-
tors πk for k = 1, . . . ,K in the example of MDA) has to be learned in
addition to the parameters of the source distributions. In the considered ap-
plications, deterministic combination functions su�ce to model the assumed
generative process. For this reason, we will not further discuss probabilistic
combination functions in this thesis.

2.1.3 Probability Distribution for Structured Data

Given the assumed generative process, the probability of an observation X
given the source set L and the parameters θ is given by

P (X|L,θ) =

∫
P (X|Ξ,L) dP (Ξ|θ) . (2.3)

We refer to P (X|L,θ) as the proxy distribution of observations with source
set L. Note that in the presented interpretation of multi-source data, the
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distributions P (X|L,θ) for all source sets L are derived from the single
source distribution according to Equation 2.3.

To get a full generative model, we introduce πL as the probability of
source set L. The overall probability of a data item (X,L) under the struc-
ture model is then given by

P (X,L|θ) = P (L) ·
∫
· · ·
∫
P (X|Ξ,L) dP (Ξ1|θ1) · · · dP (ΞK |θK) (2.4)

Several samples from the generative process are assumed to be indepen-
dent and identically distributed (i.i.d.). The probability of N observations
X = (X1, . . . , XN ) with source sets L = (L1, . . . ,LN ) is thus the product
of the probabilities of the single samples:

P (X,L|θ) =

N∏
n=1

P (Xn,Ln|θ) . (2.5)

The assumption of i.i.d. data items allows us a substantial simpli�cation of
the model but is not a requirement for the generative model presented in
this thesis.

2.2 Noisy Data from Multiple Sources

In addition to the structure mode, an independent noise process might in�u-
ence the observed data. Analogous to the structure part, the noise process is
described by a probabilistic model. We do not distinguish between aleatory
randomness (which is an intrinsic property of the observed process) and
epistemic randomness, the stochastic behavior of the measurement device
including e�ects of �nite precision in the computer.

Besides the constraint that noise emissions must have the same sam-
ple space as the structure model, all noise distributions are possible. For
sound recordings, Gaussian white noise is often chosen to model the ran-
dom �uctuations in the signal. For discrete data, the Bernoulli and binomial
distributions are popular assumptions for the noise distribution. Formally,
we denote the probability distribution according to which the unstructured
emissions are drawn by

PU (XU |θU ) .

When necessary, we use the upper index U to denotes variables, param-
eters and distributions of the unstructured part, and the upper index S to
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Ξ
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xS
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L

Figure 2.2: The combination function cSκ(Ξ,L) combines the source emis-
sions Ξ := (Ξ1, . . . ,ΞK) and the source set L to the structure part
XS = cSκ(Ξ,L). The unstructured part XU is generated by PU . The two
parts are then combined to the observation X = cMκ (XS , XU ) by a second
combination function cMκ .

denote the signal part. The upper index M denotes the properties of the
complete model, namely XM is the (observed) random variable generated
by the entire model.

Overall Model for Noisy Data

We use a second combination function to describe the combination of the
emissions XS from the structure model and the emissions XU generated
by the unstructured model. Denoting the emission of the overall model by
XM , we have

XM = cMκM (XS , XU ) , (2.6)

where κM denotes possible parameters this function. This combination is
assumed to be a deterministic function given XS and XN . The probabil-
ity of the (observed) XM given the source set L is the integral over the
probability of all pairs of structured and unstructured emissions that are
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combined to the observed value, i.e.

PM (XM ,L|θS ,θU , cS , cM )

=

∫∫
Ω

1{cM
κM

(XS ,XU )=XM} dPS(XS ,L|θS , cS) dPU (XU |θU )
(2.7)

The indicator function 1{cM
κM

(XS ,XU )=XM} codes the condition that the com-

bination function cMκM deterministically maps XS and XN to XM .
Several samples from the generative process are assumed to be indepen-

dent of each other. The probability of X = (X1, . . . , XN ) with correspond-
ing source sets L = (L1, . . . ,LN ) is thus the product over the probability
distributions of the individual pairs (Xn,Ln), for n = 1, . . . , N :

PM (XM ,L|θS ,θU , κS , κM ) =

N∏
n=1

PM (XM
n ,Ln|θS ,θU , κS , κM ) (2.8)

We develop an explicit noise model for unsupervised learning on Boolean
data (Chapter 9). For the classi�cation of acoustic data, we limit ourselves
to model the structure.

2.3 Generative Models: Assets and Drawbacks

Generative models assume that the observed data is drawn from a prob-
ability distribution. The goal of the inference procedure is to determine
this unknown probability distribution based on a number of data items. To
simplify the inference task, parametric distributions are often presumed.
With this hypothesis on the type of the distribution, inferences reduces to
estimating the parameters of the distribution.

The generative process is usually modeled as a two-step procedure: First,
a set of sources L involved in the generation of the data item X is drawn
from the distribution P (L). Second, the observation X is drawn from the
distribution P (X|L,θ), where θ are the parameters of the probability dis-
tribution. The joint probability of the feature vector X and the label set L
is given by P (X,L|θ) = P (L) ·P (X|L,θ). Our hypothesis on the generative
process responsible for the data is detailed in the previous sections.

In classi�cation, both the observation X and the source set L are pro-
vided in the training data. The focus of the learning task is to predict the
source set of a new observation Xnew. In the clustering task, no source sets
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are available, and the main goal is to assign data items into several groups.
Following a common convention, the source set L is called label set in the
context of classi�cation and assignment set for clustering.

Generative models de�ne only one approach to machine learning prob-
lems. For classi�cation, discriminative models do not infer a prior distri-
bution of the sources and only infer the conditional distribution of data
given the sources. A further reduction in complexity is obtained by dis-
criminant functions, which map a data item directly to a set of classes or
clusters [56, 54]. In clustering, aggregate techniques are examples of purely
distance-based clustering methods without an underlying generative model
[62].

For both supervised and unsupervised tasks, generative models are the
most demanding of all alternatives. If the only goal is to classify or cluster
data in an easy setting, designing and inferring the complete generative
model might be a wasteful use of resources and demand excessive amounts
of data. However, namely in demanding scenarios, there exist well-founded
reasons for generative models [10]:

Generative Description of Data. Even though this may be considered
as stating the obvious, we emphasize that assumptions on the gen-
erative process underlying the observed data can in general only be
incorporated in a generative model. This is particularly important
when an observation is generated by several sources. Under a purely
discriminative viewpoint, knowledge about the generative process can
typically not be taken into account, and alternative approaches such as
the reduction to a task where data comes from a single source have to
be employed. Such reduction techniques for classi�cation are discussed
in Section 5.1.1 for classi�cation and in Section 9.3 for clustering.

Interpretability. The nature of multi-source data is best understood by
studying how such data are generated. In all applications we consider
in this thesis, the sources in the generative model come with a clear
semantic meaning. Determining their parameters is thus not only an
intermediate step to the �nal goal of classi�cation or clustering, but
an important piece of information on its own.
Consider the cocktail party problem, where several speech and noise
sources are superposed to the speech of the dialogue partner. Identi-
fying the sources which generate the perceived signal is a demanding
problem. The �nal goal, however, goes even further, as we are ulti-
mately interested in the contributions of each of the sources, or, more
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speci�cally, in �nding out what our dialogue partner said. A gener-
ative model for the sources present in the current acoustic situation
enables us to determine the most likely emission of each source given
the complete signal. This approach, referred to as model-based source
separation [58], critically depends on a reliable source model.

Reject Option and Outlier Detection. Taking a generative approach
allows us to identify cases where no con�dent assignment of a data
item to a set of sources is possible. In such cases, the model can reject
to deliver a doubtful assignment and instead mark the observation as
not clearly assignable. Following this strategy helps us to reduce the
number of wrongly or inconsistently assigned data items.
Given a generative model, we can also determine the probability of a
particular data item. Samples with a low probability are called out-
liers. Their generation is not con�dently represented by the generative
model. Hence, the assignment to a set of sources might be uncertain in
such cases, even if a particular set of sources is clearly more probable
than all other sets. Furthermore, outlier detection might be helpful
in the overall system in which the machine learning application is in-
tegrated: Outliers may be caused by defective measurement device or
by fraud.

Since these advantages of generative models are prevalent in the consid-
ered applications, we restrict ourselves to generative methods when com-
paring our approaches with existing techniques.

2.4 Evaluation Criteria

In this section, we describe the evaluation criteria used in this thesis to
assess results in di�erent sections. We emphasize the need for a quality
measure which is well-adapted to the problem at hand � after all, only a
well-designed evaluation measure allows us to adequately compare di�er-
ent solutions. For the sake of completeness, we also discuss some quality
measures that will not be used in this work.

For both problems in the focus of this thesis, namely multi-label clas-
si�cation and multi-assignment clustering, no unique, generally accepted
quality measure exists, as this is the case e.g. for single-label classi�cation
or regression. For this reason, we use several measures to assess the quality
of experimental results.
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Type Classi�cation Clustering
estimation accuracy ap(θ̂,θ) ap(θ̂,θ)

MSE(θ̂,θ) MSE(θ̂,θ)

RMS(θ̂,θ) RMS(θ̂,θ)

reconstruction error [ERR(L̂train,Ltrain)] ∆p(x̂
(1),x(1))

[BER(L̂train,Ltrain)]

[prec(L̂train,Ltrain)]

[rec(L̂train,Ltrain)] [ν-cov(x̂(1),x(1))]

[F (L̂train,Ltrain)]

generalization ERR(L̂test,Ltest) Gp(û
(1),x(2))

BER(L̂test,Ltest)

prec(L̂test,Ltest)

rec(L̂test,Ltest)

F (L̂test,Ltest)
stab(x(1),x(2))

Table 2.1: Overview of performance measures for classi�cation and cluster-
ing. The criteria listed in square brackets are listed for the sake of com-
pleteness and will not be applied in this thesis.

We distinguish three di�erent types of measures, summarized in Ta-
ble 2.1: Model-based performance measures compare the estimated source
parameters with the true source parameters. These criteria are applicable
to both supervised and unsupervised learning and widely used in statistics
[76]. Quality assessment based on the reconstruction error is widespread
in clustering [79]. The corresponding training errors of classi�cation are
rarely used due to the danger of over�tting and a correspondingly too op-
timistic evaluation of the classi�er. A second, disjoint test data set allows
us to accurately estimate the ability of the classi�er to generalize the in-
ferred classi�cation rule to previously unseen data. The requirement for a
solution to generalize onto new data has only recently become popular in
the clustering community. More speci�cally, a clustering solution should
be stable under resampling [75], and the inferred model should be able to
explain new data [105]. This measure actually blurs the traditionally strict
separation between classi�cation (the goal is to predict labels for new data)
and clustering (aiming at grouping the given data).
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To obtain a generic description, we assume the parameters of source k
to be D-dimensional vectors, i.e. θk = (θk,1, . . . , θk,D). The corresponding
estimators are denoted by θ̂k = (θ̂k,1, . . . , θ̂k,D). The noise parameters are
denoted by θN . Furthermore, the reconstruction of the N ×D-dimensional
data matrix x by the model, given the inferred parameters, is denoted by
x̂. The assignment of an observation xn to a set of sources is coded either
in the source set Ln or with a binary vector zn,· ∈ {0, 1}K , with

zn,k =

{
1 if k ∈ Ln
0 if k /∈ Ln

(2.9)

We will use the notation with the source set Ln and notation with the
indicator vector zn,· in parallel.

2.4.1 Model-Based Performance Measures

The most direct way to measure for the inference quality is to compare the
true source parameters with the estimators obtained from a particular infer-
ence technique [76]. Such a direct comparison is typically only possible for
experiments with synthetically generated data. The possibility to directly
assess the inference quality and the extensive control over the experimental
setting are actually the main reasons for experiments on synthetic data.

`p Accuracy ap. The `p accuracy is de�ned as the p-norm between the
true and the estimated parameter vector averaged over all sources k and
over all dimensions d. In classi�cation, the numbering of the sources is
�xed, such that we can directly compute this measure as:

ap(θ̂,θ) :=
1

K ·D

K∑
k=1

p

√∣∣∣∣∣∣θk,· − θ̂k,·∣∣∣∣∣∣p (2.10)

The value of p is chosen depending on the data type. We use the Euclidian
norm (p = 2) for continuous data and the Hamming distance (p = 0) when
working with Boolean data. Furthermore, we use the Manhattan norm
(p = 1) when Boolean values are approximated with continuous variables.
Note that for Boolean data, the Hamming distance, the Manhattan norm
and the Euclidian norm are identical.

In clustering, we can not assume that the estimated sources are num-
bered in the same order as the sources in the generative process. To account
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for the arbitrary numbering of clusters, we permute the estimated centroids
θ̂k,· with a permutation π such that the estimated and the true centroids
agree best:

ap(θ̂,θ) :=
1

K ·D
min
π∈SK

K∑
k=1

p

√∣∣∣∣∣∣θk,· − θ̂π(k),·

∣∣∣∣∣∣p . (2.11)

SK denotes the set of all permutations of K elements. The optimal permu-
tation can be found e�ciently using the Hungarian algorithm [74].

Mean Square Error MSE. The mean square error is de�ned as the
average squared distance between the true parameter θ and its estimator θ̂:

MSE(θ̂,θ) :=
1

K

K∑
k=1

Eθ̂k

[∣∣∣∣∣∣θk,· − θ̂π(k),·

∣∣∣∣∣∣2] . (2.12)

The MSE can be decomposed as follows:

MSE(θ̂,θ) =
1

K

K∑
k=1

(
Eθ̂k
[∣∣∣∣∣∣θk,· − θ̂π(k),·

∣∣∣∣∣∣]2 + Vθ̂k
[
θ̂k

])
(2.13)

The �rst term, Eθ̂k
[∣∣∣∣∣∣θk,· − θ̂π(k),·

∣∣∣∣∣∣], is the expected deviation of the esti-

mator θ̂π(k),· from the true value θk,·, called the bias of the estimator. The

second term, Vθ̂k
[
θ̂k

]
indicates the variance of the estimator over di�erent

data sets. We will rely on this bias-variance decomposition when computing
the asymptotic distribution of the mean-squared error of the estimators.

Root Mean Square Error RMS. The root mean square error is de�ned
as the square root of the MSE:

RMS(θ̂,θ) :=

√
MSE(θ̂,θ) . (2.14)

This quality measure indicates the average Euclidian distance between the
parameter estimate θ̂k and the true value θk of the parameter. We will use
this criterion to measure the accuracy of parameter estimators.

The noise parameters of the models consists of a few scalar values. We
will compare these estimators directly with the true parameter values.
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true estimated classi�cation
classi�cation k ∈ L̂n k /∈ L̂n
k ∈ Ln true positive false negative

k /∈ Ln false positive true negative

Table 2.2: Contingency table for a base label k for a data item xn with true
label set Ln and estimated label set L̂n.

2.4.2 Performance Measures for Multi-Label Classi�-
cation

The error rate and the balanced error rate are measures adapted from single-
label classi�cation. The quality measures precision, recall and F-score are
inspired by information retrieval [107]. These measures are computed based
on the number of true positives, true negatives, false positives and false
negatives, as de�ned in Table 2.2. For a source k, estimated source sets
L̂ = (L̂1, . . . , L̂N ) and true source sets L = (L1, . . . ,LN ), let tpk(L̂,L),
fnk(L̂,L), fpk(L̂,L) and tnk(L̂,L) denote the number of true positives,
true negatives, false positives and false negatives.

Error Rate (ERR): The error rate is the number of wrong label sets
divided by the number of data items:

ERR(L̂,L) :=
1

N

N∑
n=1

1{L̂n 6=Ln} . (2.15)

If the true label sets are not uniformly distributed, the error rate is domi-
nated by observations with frequent label sets. For example, if 90% of the
data items have the label set {1} and only 10% are labeled {2}, a trivial
classi�er which assigns the label set {1} to all data items obtains an error
rate of only 10%.

Balanced Error Rate (BER): The balanced error rate is the ratio of
incorrectly classi�ed samples per label set, averaged over all label sets:

BER(L̂,L) :=
1

|L|
∑
L∈L

∑
n

(
1{L̂n=L}1{Ln=L}

)
∑
n 1{Ln=L}

(2.16)
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The balanced error rate gives equal weight to all possible label sets. If the
label sets are uniformly distributed, the balanced error rate corresponds to
the error rate.

Precision (prec): The precision of class k is the fraction of data items
correctly identi�ed as belonging to k, divided by the number of all data
items identi�ed as belonging to k:

preck(L̂,L) :=
tpk(L̂,L)

tpk(L̂,L) + fpk(L̂,L)
. (2.17)

A high precision indicates that most of the data items assigned to class k
do actually belong to class k.

Recall (rec): The recall for a class k is the fraction of instances correctly
recognized as belonging to this class, divided by the number of instances
which belong to class k:

reck(L̂,L) :=
tpk(L̂,L)

tpk(L̂,L) + fnk(L̂,L)
(2.18)

Hence, a high recall indicates that most of the observations belonging to a
class k are recognized as such.

F-score (F ): Good performance with respect to either precision or recall
alone can be obtained by either very conservatively assigning data items to
classes (leading to typically small label sets and a high precision, but a low
recall) or by attributing labels in a very generous way (yielding high recall,
but low precision). The F-score, de�ned as the harmonic mean of precision
and recall, �nds a balance between the two measures:

Fk(L̂,L) :=
2 · reck(L̂,L) · preck(L̂,L)

reck(L̂,L) + preck(L̂,L)
(2.19)

Precision, recall and the F-score are determined individually for each
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base label k. We report the average over all labels k:

prec(L̂,L) :=
1

K

K∑
k=1

preck(L̂,L)

rec(L̂,L) :=
1

K

K∑
k=1

reck(L̂,L)

F (L̂,L) :=
1

K

K∑
k=1

Fk(L̂,L)

The error rate and the balanced error rate are quality measures computed
on an entire data set. All these measures take values between 0 (worst) and
1 (best).

All quality measures presented for multi-label classi�cation can be com-
puted on either the training or the test set. As discussed above, only the
results on a previously unseen test set provide an unbiased estimate of the
performance of a particular classi�er. Unless stated di�erently, these mea-
sures are reported on the test set.

2.4.3 Performance Measures for Clustering

We group the quality measures for clustering into measures for the quality
of the reconstruction and measures for the ability of a solution to generalize.

Reconstruction

Two evaluation criteria for the reconstruction of the original data are intro-
duced in this section. From a generative point of view, all these measures
are sub-optimal insofar as they might punish a clustering algorithm which
is able to correctly infer the structure in spite of some noise in the data.
Conversely, exactly reproducing noisy data results in a higher score with
respect to these measures.

`p Distance to Input Data (∆p): The overall reconstruction accuracy
is computed as the average `p distance between the original matrix x and
the reconstructed data matrix x̂ over all data items and dimensions:

∆p(x̂,x) := p

√√√√ 1

N ·D

N∑
n=1

D∑
d=1

|x̂n,d − xn,d|p (2.20)
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Again, we set p = 1 for Boolean data and p = 2 for continuous data in R.
Note that the reconstruction is not balanced with respect to the true value
of the data: In a Boolean matrix where only 10% of the entries xn,d are 1,
a reconstruction with x̂n,d = 0 for all n and d achieves an average hamming
distance of only 0.1, even though such a result would clearly be considered
as a poor reconstruction.

ν-Coverage (ν-cov): The ν-coverage is a second quality measure for dis-
crete data. It measures the ratio between the number of correctly retrieved
elements with value ν and the true number of elements with value ν:

ν-cov :=
|{(n, d)|x̂n,d = xn,d = ν}|
|{(n, d)|xn,d = ν}|

. (2.21)

The 1-coverage is a popular measure in role mining (see Section 8.3) referred
to as coverage in this context. However, this measure has a severe short-
coming: Setting x̂n,d = 1 for all n, d, one trivially obtains a 1-coverage of
100%.

Generalization Ability

Stability (stab): The stability measure is based on the requirement that
a clustering solution obtained on one data set is transferable to a second
data set with the same distribution [75]. To quantify the degree to which
this requirement is satis�ed, two i.i.d. data sets x(1) and x(2) are separately
clustered to obtain the cluster assignment matrices ẑ(1) and ẑ(2). A classi�er
φ(1) is trained on the �rst data set x(1), using the cluster assignments z(1) as
labels. For the experiments reported afterwards, we used a nearest neighbor
classi�er with Hamming distance as a distance measure.

Ideally, the output φ(1)(x(2)) of the classi�er φ(1) applied to x(2) corre-
sponds to the clustering solution ẑ(2) for every object in x(2). Note that a
multi-label classi�er is needed to assess the stability of a multi-assignment
clustering. Furthermore, due to the random numbering of clustering so-
lutions, one has to �nd the permutation which minimizes the deviation.
For single-assignment clustering, the ratio r of inconsistently clustered data
item is then de�ned as

r(x(1),x(2)) :=
1

N
min
π∈SK

{
N∑
n=1

1{
π
(
φ(1)

(
x
(2)
n,·

))
6=ẑ

(2)
n,·

}
}

. (2.22)

22



2.4. EVALUATION CRITERIA

Note that π
(
φ(1)

(
x

(2)
n,·

))
and ẑ

(2)
n,· are considered unequal whenever they

di�er in at least one component.
A ratio of r = 0 is trivially obtained when we have only one clus-

ter, as there are no other clusters with which the assignment could be
confused1. As the number of clusters K increases, it becomes more dif-
�cult to obtain a small ratio of inconsistent data items. More precisely,
a random assignment of K clusters of equal size yields an inconsistency
ratio rrand = (K − 1)/K. Using rrand as normalization, the stability
stab(x(1),x(2)) := 1 − r(x(1),x(2))/rrand is de�ned as the di�erence be-
tween the perfect solution and r(x(1),x(2))/rrand. Replacing the number
of sources K by the number of possible source sets |L|, the stability of a
multi-assignment clustering solution is given by

stab(x(1),x(2)) = 1− |L|
|L| − 1

1

N
min
π∈PK

{
N∑
n=1

1{
π◦
(
φ(1)

(
x
(2)
n,·

))
6=ẑ

(2)
n,·

}
}
. (2.23)

The normalization with rrand allows us to compare clustering hypothesis
with di�erent numbers of clusters.

Test Reconstruction Error (Gp): The test reconstruction error mea-
sures to what extent a model inferred on a �rst data set x(1) can explain
a second dataset x(2) generated by the same distribution as x(1). In the
task of clustering vectorial data, the inferred model is represented by the
centroid estimators û(1). To estimate the test reconstruction error, we dis-
close a small percentage κ of randomly chosen dimensions D∗ ⊆ {1, . . . , D}
of each data item in x(2) to the model. This subset of dimensions is used
to assign each data item to an assignment set such that the `p-distance
between the input and the reconstruction is minimized:

ẑn,· := arg min
zn

 p

√∑
d∈D∗

∣∣∣xn,d − zn,· ⊗ u
(1)
·,d

∣∣∣p
 . (2.24)

Using the `p distance between the reconstruction and the input data allows
us to compute ẑ·,n independently of any model assumptions which are pos-
sibly made by the clustering solution. We will set p = 1 to determine the

1A second trivial solution is obtained whenK = N , i.e. each data item can be assigned
to its own cluster. Since this is a pathological case in which clustering does not make
sense, we do not further consider this situation.
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generalization error on Boolean data. The estimated assignment ẑ·,n is then
used to predict the undisclosed dimensions of xn. The generalization error
on data item n measures the deviation between the true and the predicted
values on the undisclosed dimensions:

Gp(û
(1),xn,·) :=

1

D − |D∗|
∑
d/∈D∗

∣∣∣xn,d − zn,· ⊗ û
(1)
·,d

∣∣∣ . (2.25)

The generalization error over all data items in x(2) = (x
(2)
1,· , . . . ,x

(2)
N,·) is

de�ned as the average over all data items:

Gp(û
(1),x(2)) :=

1

N

N∑
n=1

Gp(û,x
(2)
n,·). (2.26)

Furthermore, the calculations are repeated several times for di�erent choices
of D∗ in order to average out the e�ect of the random choice of D∗.

Note that both data sets x(1) and x(2) are in�uenced by noise. A perfect
generalization of x(2) with G = 0, i.e. a complete reconstruction of the new
data with the cluster centroids representing the estimated structure, is thus
not desired and not possible. However, since the noise in x(2) is assumed
to be independent of the noise in x(1), a generalization error (measured
on x(2)) similar to the reconstruction error (measured on x(1)) is a strong
indication that found the structure of the data generation process. On the
contrary, a generalization error that clearly exceeds the reconstruction error
indicates that the model is over�t on the �rst data set x(1).
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Chapter 3

Introduction

Data classi�cation, the problem of assigning each data point to a set of cat-
egories or classes, is the presumably best studied machine learning problem,
but it remains a challenge. Dichotomies or binary classi�cations distinguish
between two classes, whereas multi-class classi�cation denotes the case of
several class choices. We denote the number of classes by K.

Multi-label classi�cation characterizes pattern recognition settings where
each data point may belong to more than one category. Typical situations
where multi-labeled data is encountered are classi�cation of acoustic and vi-
sual scenes [11], text categorization [67, 81], and medical diagnosis [69]. For
the classi�cation of acoustic scenes, consider for example the well-known
Cocktail-Party problem [4], where several signals are mixed together and
the objective is to detect the original signal. In text classi�cation, a news
report about Sir Edmund Hillary would probably belong to the categories
Sports as well as to New Zealand, and in medical diagnosis, a patient may
su�er from several diseases at the same time.

While in single-label classi�cation, a single label indicates to which class
an observation belongs, we introduce the label set for multi-label classi�ca-
tion. This label set contains all classes an item belongs to, e.g. the label
set for the imaginary article about Edmund Hillary would most likely be
{Sports,NewZealand}.

In this work, we restrict ourselves to generative models, where each data
item is assumed to be generated by one (in the single-label case) or several
(in the multi-label case) sources. In the inference phase, the parameters of
these sources are estimated based on labeled training data. In the testing
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or classi�cation phase, the goal is to determine the set of sources which has
produced the given data items.

Despite its signi�cance for a large number of application areas, multi-
label classi�cation has only recently received increased attention from the
scienti�c community. Most of the approaches reduce the problem to one
or several single-label classi�cation tasks. The trivial approaches for this
conceptual simpli�cation either ignore data with multiple labels or con-
sider those items with multiple labels as a new class [11]. More advanced
approaches decompose the task into a series of independent binary classi-
�cation problems, deciding for each of the K classes whether the data at
hand belongs to it, and then combine the K classi�er outputs to a solution
of the original problem. We review these approaches in Chapter 5.

All these approaches have signi�cant drawbacks. The trivial approach
mainly su�ers from data sparsity, as the number of possible label sets is in
O
(
KMmax

)
, where Mmax is the maximal degree of the data items. Further-

more, many of these methods can only assign label sets that are present in
the training data. The main criticism on the reduction of the multi-label
task to a series of binary decision tasks for the confusion between frequent
co-occurrence and similar source statistics � in all approaches we are aware
of, the more often two sources occur together, the more similar are their es-
timated statistics. In this way, these methods neglect the information which
multi-labeled data contains about all classes in its label set, which deterio-
rates the source estimates and leads to poor classi�cation performance.

A particular interpretation of multi-label data is taken in [66]: Each
training instance is given a set of candidate labels, but only one of the
candidate labels is the correct one. However, this learning problem is more
di�cult than standard multi-class learning, because it is unclear which of the
labels is the target, and the source assumed to have generated the present
data �rst has to be estimated.

From a generative point of view, a label k ∈ L thus understood as �this
data item is possibly generated by source k�. In our proposed framework,
this understanding is modeled with a probabilistic combination function
which chooses a label out of the label set with a certain probability, as
exempli�ed in Section 2.1.2 for mixture discriminant analysis. Note that
the generative model also o�ers a theoretically well-founded approach to
determine the target label among the multiple labels. If the combination
function in the true generative process consists of selecting an emission from
one of the sources in the label set, this model reconstructs the generative
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model and is thus appropriate for this type of multi-label problems.

In Chapter 5, we propose a novel approach for the classi�cation of multi-
label data, which is inspired by the fundamental physical principle of su-
perposition found in acoustics and other wave phenomena. We assume a
source for each class and consider data with multiple labels as an additive
mixture of independent samples generated by the respective classes. A de-
convolution enables us to estimate the contributions of each source to the
observed data point and thus to use multi-label data for inference of the
class distributions. Similarly, the distributions of multi-label data are com-
puted based on the source distributions. Doing so, this approach allows us
to consistently model jointly occurring single- and multi-label data with a
small number of parameters.

The combination function describing superposition is the addition of the
respective intensities. In Chapter 6, we generalize the generative approach
to further combination functions such as the Boolean OR. Furthermore, we
extend the asymptotic theory for estimators inferred on single-label data to
multi-label data and use these result to describe the asymptotic behavior of
di�erent inference techniques based on their assumed combination function.
Finally, in Chapter 7, we proof that a common assumption for inference
based on multi-label data implies a model mismatch and consequently biased
parameter estimators and sub-optimal classi�cation results.

3.1 Classi�cation of Acoustic Streams

Our research on multi-label classi�cation is motivated by the design of in-
telligent hearing instruments for hearing impaired persons. To support a
comfortable and enjoyable interaction with the environment in spite of a
hearing loss, di�erent hearing aid characteristics are desired under di�erent
listening conditions. Modern hearing instruments therefore provide sev-
eral hearing programs to account for di�erent acoustic situations, such as
speech, speech in noisy environments, and music. These programs can either
be activated by the wearer, namely using a remote control, or they operate
automatically. Manual switching is a nuisance for the user since it burdens
him with the tasks of recognizing the acoustic situation and switching to
the optimally adapted program. Automatic program selection systems are
therefore highly appreciated by the users [17] and are provided by most
modern hearing instruments.

A reliable estimation of the hearing activity is essential, as the desired
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processing of the audio stream depends on the intention of the user: In a
dialog situation, the emphasis is clearly on speech intelligibility, and one
accepts some distortions of the voice of the dialog partner. However, when
listening to music, a natural sound is essential, while intelligibility is less
important: Even in an opera, you don't absolutely have to understand the
text of an aria.

A fundamental limitation of all automatic program selection systems is
already apparent [18]: Even if the hearing instrument is able to correctly
identify all sound sources in an acoustic situation, it is not always able to
recognize whether the user regards a sound as desired signal or as noise.
The situation in a piano bar, where people discuss and music is played
in the background, is very similar to a classic concert, where an annoying
neighbor never stops talking. Most program selection systems detect the
hearing activity therefore in two steps: The sources in the current acoustic
situation are identi�ed in the �rst step. As described above, this task is
an example of a multi-label classi�cation problem. In the second step, the
users hearing activity is estimated based on the identi�ed sources. This
estimation is mostly based on investigations by audiologist and common
sense. However, a more precise modeling of a situation may provide valuable
additional information to choose the appropriate hearing instrument setting.

Reverberation, on the other hand, is an important phenomenon which
entails a temporal and spectral smearing of the sound patterns and hence
causes an important loss of speech intelligibility. Detecting the reverberation
intensity is therefore a highly relevant problem not only for hearing instru-
ments, but also for mobile and line telephony. The degree of reverberation
is measured by the reverberation time T60, de�ned as the time required for
re�ections of a direct sound to decay by 60dB below the level of the direct
sound. The reverberation time is a�ected by the size and shape of the room
as well as the materials used in the construction. Large concrete rooms
have a high reverberation time, while small rooms with soft materials have
a small reverberation time. In all mentioned applications, a reliable estima-
tion of the reverberation time is a prerequisite to de-reverberate the input
signal and thus increase speech intelligibility in all mentioned applications.

In both hearing activity and reverberation time detection, the large vari-
ations within the collective sound groups render the two prediction problems
hard: The hearing instrument has to be able to determine the hearing ac-
tivity in basically all possible rooms, and to estimate the reverberation time
based on any type of signal.
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3.2 Multi-Instance Learning

Multi-instance or multiple-instance learning denotes a learning scenario
where less speci�c labels are available: While in classical learning prob-
lems, each instance is labeled, labels are only given to bags of instances in
the case of multi-instance learning [36].

A classical application for multi-instance learning is image classi�cation
[80]. Images are typically labeled globally, i.e. a label such as tree is assigned
if a tree is contained in the image. However, an image typically consists of
several sub-regions, and only one of them, in the considered case, shows a
tree. To infer characteristics of trees in images, the learning method thus
�rst has to estimate which part of the image represents a tree. Given this
partition, di�erent sub-regions are usually independent of each other in the
sense that a tree looks similar regardless of other objects shown in the image.

Images usually have several labels. Correlations between individual la-
bels are conveniently retrieved with a prior over label sets. The generative
process can be thought of drawing samples from the di�erent objects in the
image (e.g. a tree, a person and a sitting bench) and then positioning these
opaque sub-regions to yield the �nal image. The combination of di�erent
source emissions to the observed images is thus described by the juxtaposi-
tion. Given this generative process, the multiple labels describe the content
of the whole image, while � unless the image contains semi-transparent
elements � each segment of the image is described by a single label. Once
the di�erent subregions of the images are identi�ed, the classi�cation of the
di�erent segments is a single-label task.

3.3 Multi-Task Learning

Multi-task learning describes a setting where a problem is learned simul-
taneously with other related problems. All learning tasks share a common
representation. The restriction to a single representation regularizes the
solutions of each single learning task. Namely in scenarios where over�t-
ting would be a problem for a single learning task, e.g. if only a small
number of training data is available, the constraint to solve several tasks
based on the same representation therefore facilitates a superior classi�ca-
tion performance [5]. Typical applications of multi-task learning are image
classi�cation and segmentation [24, 117].

We are not aware of any work on multi-task learning where an individ-
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ual task consists of multi-label classi�cation. However, we do not see the
limitation to single-label tasks as a fundamental one. We conjecture that
multi-task learning will be bene�cial also for related multi-label problems.

On a theoretical level, the relatedness of several tasks can be de�ned
through a description of the data generating process [7]. This formal notion
of similarity between tasks renders the derivation of generalization bounds
possible and implies general conditions under which multi-task learning is
bene�cial in comparison to single-task learning.
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Features for Audio

Classi�cation

A succinct set of features is crucial for all classi�cation tasks. This chapter
treats the design and evaluation of features for audio-classi�cation in hearing
instruments. In this application, the detection of the predicted hearing
activity determines the processing of the sound signal. A reliable set of
features is therefore essential to achieve a good overall performance of the
hearing instrument. We introduce a set of sound �eld indicators (SFI) which
measure basic properties of the sound �eld. These indicators are proposed
as a novel feature set for this critical classi�cation task.

We investigate the prediction of two important speci�cations of a sound
clip: The hearing activity and the reverberation time. Each sound clip
is assigned to one of the �ve acoustic situations clean speech, speech in low
noise (SNR 5dB or better), speech in high noise (SNR 2dB or worse), noise,
and music. By assumption, the corresponding hearing activity is to follow
the speech whenever a speech source is present, otherwise to enjoy the music,
and no active listening in the case where only noise is present. Furthermore,
the reverberation time is given for each of the sound clips.

The indication on the intensity of the noise combined with the speech
signal is important to operate actuators such as the noise canceler at the
appropriate intensity. The signal to noise ratio (SNR) is used to quantify to
what extent the signal is corrupted by noise. This measure is de�ned as the
ratio between the power of the signal and the power of the noise and usually
measured in decibel (dB): SNR := 10 log10 (Psignal/Pnoise). The lower the
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SNR, the more corrupted is the signal by noise.

In this chapter, we focus on the features themselves and evaluate the per-
formance of di�erent feature sets with standard techniques for classi�cation
(to predict the hearing activity) and regression (when estimating the rever-
beration time). Generative approaches for reverberation time estimation
[92, 71, 70] explicitly model the reverberation process in order to estimate
the reverberation time. They are based on longer frames and typically also
imply a signi�cant computational load.

4.1 Feature Sets

In this section, we introduce the feature sets which are evaluated afterwards
with respect to their suitability to predict the hearing activity and the
reverberation time. We �rst present two novel feature sets, the sound-�eld
indicators (SFI) and the short-time statistics over the sound-�eld indicators
(SFIst) and then review three sets of well-known and widely used features.

Note that all features are computed on frames of length λ = 0.8sec. This
time constant is a trade-o� between the reliability of the feature estimation
and the time delay of the hearing instrument when settings are changed.

4.1.1 Sound Field Indicators

The sound �eld indicators (SFI) are computed on four-channel recordings,
with channels denoted x1, . . . , x4. The corresponding signals in the fre-
quency domain are denoted by X1 to X4. X∗ indicates the complex conju-
gate of X. We compute the (cross) power-spectrum densities Pij = Xi ·X∗j
between any two channels using Welch's averaged modi�ed periodogram
method of spectral estimation with 128 point segments, 75% overlap and
Hanning window [86]. This yields 65 non-redundant Fourier coe�cients at
equidistant frequencies. We propose to compute the following indicators for
each frequency:

Power Spectral Densities: The power spectral densities P11, P22, P33

and P44 of the four channels.

Cross Power Spectral Densities: The cross-power spectra between the
front and back microphone on both sides (i.e. P12 and P34) and between
the left and right side in the front and back half (i.e. P13 and P24).
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Mean Power Density: The mean pressure on both sides of the head, com-
puted as Pl = Xl ·X∗l with Xl = (X1 +X2)/2 for the left side, and similar
for the right side for Pr.

Transfer function: The transfer function between two microphones is the
cross-power spectral density of the microphones divided by the auto-power
spectral density of the reference microphone. We use the microphone with
the smaller number as reference and thus get Gij = Pij/Pii with i < j.

Coherence: The coherence measures the similarity between two channels,
computed as Cij = |Pij |2/(PiiPjj) with i < j.

Normalized Intensities: The signal intensity on the left side is de�ned
as I12 = Pl · U∗12. U12 = −(X1 −X2)/(ıωρd) is the particle velocity, where
ω = 2πf is the angular frequency, ρ the air density, d the distance be-
tween the two microphones of the hearing instrument and ı :=

√
−1 is the

imaginary unit. The active intensity is the real part, the reactive intensity
the imaginary part of the intensity. The intensity values are normalized
with the acoustic power of the mean pressure at the left ear, i.e. with
(X1 + X2)2/(4ρ · c), where c is the speed of sound. After some algebraic
simpli�cations, we get the following expressions for the normalized active
and reactive intensities:

Ia12n =
4 · c · = (P12)

ω · d · (P11 + P22 + P12 + P ∗12)

Ir12n =
2 · c · (P22 − P11)

ω · d · (P11 + P22 + P12 + P ∗12)

where = (·) denotes the imaginary part. The normalized intensities for the
right ear are computed analogously.

Acoustic Impedance: This indicator measures the relation between pres-
sure and particle velocity, where we use the mean pressure at either side.
For the impedance on the left side, we thus have

Z12 =
Pl
U12

=
X1 +X2

2

ı · ω · d
X2 −X1

,

and similar for the right side. For easier interpretation, we normalize Z12

by the wave impedance (ρ · c).

Front Cardioid Directivity: On either side of the head, a front cardioid
characteristic is calculated for the two microphone signals. On the left side,
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(a) Front Cardioid (b) Hyper-Cardioid

Figure 4.1: Polar sensitivity patterns of front cardioid and hyper-cardioid.
The front cardioid focuses on signals from the front, while signals from the
back are suppressed. The hyper-cardioid has a tighter front area than the
front cardioid, and an additional small lobe at the back, while signals from
the side are suppressed.

D = e−ıωd/c being the delay, we compute

FC12 = X1 −D ·X2 .

Again, the front cardioid characteristic is normalized with the mean pres-
sure: FC12n = FC12/Pl. Corresponding computations yield the front car-
dioid directivity for the right head side. See Figure 4.1(a) for an illustration
of the polar sensitivity patterns of the front cardioid.

Back Cardioid: Similarly to the front cardioid, the back cardioid represents
the beamformer output according to

BC12 = X2 −D ·X1

and the normalization is as for the front cardioid.

Fixed Beamformer: The beamformer aims at acoustically focussing to the
front direction by computing a weighted di�erence between the front and
back cardioid. In the �xed beamformer, the weights β(f) for this di�er-
ence are �xed and thus independent of the cardioid intensities. We use the
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normalized cardioid intensities, the beamformer result is thus

E
(f)
12 = FC12n− β(f) ·BC12n.

with β(f) = 0.3. Analogous for the right side.

Adaptive Beamformer: The weight β(opt) of the beamformer de�nes the
direction of maximum suppression. In the adaptive beamformer, the weight
is chosen such that sound from the back half-space is maximally suppressed.
Unlike the �xed beamformer, the adaptive beamformer is thus not limited
to suppressing sounds which come directly from behind. The unrestricted
optimal beamformer weights β̃12 are computed as

β̃12 =
< (FC12 ·BC∗12)

|BC12|2
,

where < (·) denotes the real part. Restricting the weights to the suppression
of the back hemisphere yields

β
(opt)
12 =


0 if β̃12 < 0

β̃12 if 0 ≤ β̃12 ≤ 1

1 if β̃12 > 1

As features, we use the value of the unrestricted β̃12, the optimal beam-
former weight β(opt)

12 restricted to the suppression of the back hemisphere,

and the beamformer output E(opt)
12 obtained with the optimal parameter

β
(opt)
12 .

Note that the cross-power spectral densities Pij , the transfer functions
Gij , the impedance, the cardioid directivities and the beamformer outputs
are complex values. In the following, they are represented using the absolute
value (in dB) and the phase (in degrees).

After computing these values for each frequency, the indicators are av-
eraged over 20 Bark bands. Thus, a total of 920 real-valued indicators are
extracted out of each frame of the acoustic stream.

4.1.2 SFI Short-Time Statistics

We propose the short-time statistics on the sound-�eld indicators (SFIst)
as a variant of the SFIs which also describes the variability of the indicators
over time. To measure these �uctuations, the sound-�eld indicators are now
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calculated on sub-frames of 0.08sec length, thus yielding 10 values of each
indicator per 0.8sec frame. The mean and the standard deviation of each
of these indicators are then computed. Only the sound �eld indicators on
channels 1 and 2, i.e. on the left side of the head, are used to obtain these
summary statistics.

The features obtained as average and standard deviation of feature F are
denoted by F_a10 and F_s10. The set of all average features is denoted by
SFIavg, and SFIstd denotes the set of all standard deviation features. Each
of these two feature sets contains 400 features which measure 20 properties
on 20 frequency bands. The set of the Sound-Field Indicator Short-Time
statistics, denoted SFIst, is the union of SFIavg and SFIstd.

4.1.3 Mel-Frequency Cepstral Coe�cients

The Mel-frequency cepstral coe�cients (MFCC) are a widely used feature
set for speech recognition, as they represent the speech amplitude spec-
trogram in a compact form [88]. The individual steps in the extraction of
these features are motivated by perceptual or computational considerations.
They are derived from a cepstral representation of the audio clip with fre-
quency bands chosen to be equally spaced in the Mel scale to support a
representation of sound which approximates the human perception.

We use the left-front signal x1 to determine the MFCCs. The concrete
steps are as follows:

Discrete Fourier Transform: Compute the discrete Fourier trans-
form Xm(s) of the input stream x1 at frame m and frequency s, for s =
0, . . . , Ns − 1, as

Xm(s) =

Ns−1∑
j=0

x1(j +mNs) · exp

(
− ı2πjk

Ns

)

where Ns is the number of samples per frame. In our setting, with sampling
frequency F = 20′480Hz and frame length λ = 0.8sec, we have Ns = F ·λ =
16′384.

Log-Power in Mel Scale: Map the power spectrum onto the Mel scale
using triangular overlapping windows and take the logarithm of the power
at each of the Mel frequencies. Using non-uniform �lter bank responses
Hb(s) approximating a triangular shape, the log-energy outputs LEm(b) for
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band b, b = 1, . . . , Nb, is

LEm(b) = log10

(
Ns−1∑
s=0

|Xm(s)| ·Hb(s)

)
.

Cepstral Coe�cients: Obtain the Mel-Frequency Cepstral Coe�cient
of the cth Mel-frequency, c = 1, . . . , Nc, by computing the Discrete-Cosine
transform of the log-energy outputs LE(b):

MFCCm,c =

Nb∑
b=1

LEm(b) cos

(
c

(
b− 1

2

)
π

Nb

)
.

The number of Mel-frequencies is usually Nc = 13.

Several variations of the MFCC extraction exist, which vary mainly in
the number of bands Nb and in the parametrization of the triangular �lters.
We use the MFCC implementation provided by Slaney [100] in Matlab .

4.1.4 Features for Auditory Scene Analysis

The �eld of auditory scene analysis (ASA) [13] has inspired a series of fea-
tures which are frequently used in applications of computational auditory
scene analysis. We use a set of features that is employed in state-of-the-art
hearing instruments to classify sounds into di�erent hearing activities.

Most of these features are based on statistics over several sub-parts of
the time window. We brie�y mention these features which were extensively
described and analyzed in [18, 19]. We refer to this feature set as ASA. All
these features are computed on the channel x1.

AHWidth: Width of the amplitude histogram, computed as the di�erence
between the 90% and the 10% percentile.

CGAV: Spectral center of gravity, averaged over several sub-windows.

CGFS: Variance of the spectral center of gravity.

LowFreqAbs: Energy in the lowest frequency bands.

MeanLev: Root of mean square level over several sub-windows.

Onset: Mean onset strength over all bands in the time frame.

PitchMean: Mean value of the pitch in the time frame.
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Tonality: Ratio between tonal and non-tonal segments in the time frame.

Spect1, Spect2, Spect3: Normalized spectral intensities in di�erent fre-
quency ranges.

4.1.5 Features for Music Genre Classi�cation

Further features for sound classi�cation [18, 37] and more speci�cally for
music genre classi�cation [110] are grouped into the feature set which we
refer to as MUSIC. Where available, we used the software Marsyas [109]
to extract these features.

Sample Amplitude Histogram Kurtosis (SAHK): This feature measures
the skewness of the amplitude histogram. It allows us to discriminate be-
tween continuous sounds and sounds which contain alternations between
signal and silence.

Time-Domain Autocorrelation Maximum (TACM): The maximum autocor-
relation time of the signal. This feature captures repetitions directly in the
time domain.

Beat-Spectrum Spectral Roll-Off (BBSRα): The spectral roll-o� of the
beat spectrum at level α is de�ned as the frequency below which α% of the
magnitude distribution lies. This measure of the spectral shape is computed
for α = 10, 20, . . . , 90.

Beat-Spectrum Threshold Crossings (BSTC): The number of spectral
peaks with some minimal height. BSTC facilitates the distinction between
structured clips (with few, high peaks) and unstructured clips.

Beat-Spectrum Overall Sum (BSSUM): The overall sum over the beat spec-
trum, an indicator for the strength of the beat.

Relative Amplitude of Highest Peak (BSRA): The amplitude of the sec-
ond peak divided by the amplitude of the second peak.

Beat-Spectrogram α-Percentile (BSPCTα): A robust way to estimate
the height of the highest peak in the beat histogram. This value is computed
for α = 90%, 95% and 97.5%.

4.2 Classi�cation and Regression Techniques

In this section, we introduce the classi�cation and regression techniques
employed to analyze the suitability of the feature sets for prediction of the
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reverberation time and the hearing activity. Given a feature vector of a
frame, the goal is to predict the hearing activity h or the reverberation
time T60. Predicting h is a single-label multi-class classi�cation problem
with K = 5 classes. To determine the reverberation time, the setting of
regression is more adequate, since the reverberation time is a continuous
value.

We use support vector machines (SVM) and random forests (RF) for
classi�cation, and linear models, SVM and RF for regression. These tech-
niques are brie�y introduced in the following. Note that linear discriminant
analysis (LDA) is not applicable for classi�cation in our setting, as the num-
ber of features exceeds the number of observations for all feature sets based
on the sound �eld indicators.

In the following, xn = (xn,1, . . . , xn,D)T denotes the feature vector, and
yn the label of sample n. The number of samples is N .

Linear Regression Models

In a linear regression model, the target variable yn (in our setting: the
reverberation time T60) is related to the vector of independent variables xn
according to

yn = wT · xn + w0 + εn ,

where εn is a random variable representing the deviations in this relation-
ship. The weight vector w and the bias w0 are chosen such that the mean
square error, averaged over all training samples, is minimized. Under the as-
sumption that the noise terms εn are independent and identically distributed
according to a Gaussian distribution, this corresponds to a maximum like-
lihood estimation of the parameters w and w0.

Support Vector Machines

Support vector machines are designed based on the idea that data items from
di�erent classes should be maximally separated. Assume the separation is
done by a plane. Any plane can be represented as the set of points x which
satisfy wT ·x−b = 0, where w is a the normal vector, and b/||w|| determines
the o�set of the plane along the normal vector w from the origin. In the
simplest case of two linearly separable classes, the margin between data from
the two classes is the distance between the two planes wT ·x−b = ±1, where
w and b are chosen such that the distance 2/||w|| is maximal, under the
constraint that both planes still separate the two classes. Thus, for all data
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items xn with labels yn ∈ {±1}, we have the condition yn ·(wT ·xn−b) ≥ 1,
and the optimization problem can be formulated as

min
w,b
||w|| s.t. yn · (wT · xn − b) ≥ 1 , n = 1, . . . , N

Writing this optimization problem in the dual form, it becomes apparent
that the classi�cation task only depends on the so-called support vectors,
the training samples on the margin. With ||w||2 = wT ·w and substituting
w =

∑N
n=1 αnynxn, one derives the optimization problem

max
α

L̃(α) s.t. αn ≥ 0 n = 1, . . . , N

with the Lagrange function

L(α) :=

N∑
n=1

αn −
1

2

N∑
n,m=1

αnαmynym · xTnxm .

Note that the data samples xn only enter via their scalar product xTnxm.
With the so-called kernel trick, the scalar product is replaced by a kernel
k(xn,xm), corresponding to a transformation of the feature space. We use
support vector machines with the following two kernels:

Linear Kernel: The linear kernel is the scalar product between the coor-
dinates of the two data items: k(xn,xm) = xTn · xm

Radial Basis Function (rbf) Kernel: The value of the radial basis func-
tion only depends on the pairwise distance between the data items:
k(xn,xm) = exp

(
−γ||xn − xm||2

)
In the rbf kernel, γ is a hyperparameter of the model which we optimize

via cross-validation (see below). For multi-class classi�cation, the standard
approach reduces the problem to a series of binary classi�cation problems
[22]. The adaption of the support vector machine for regression [38] employs
a risk function which ignores data points which are close to the predicted
value and thus predicts the value for a new input based on only a small
number of training data.

Random Forests

A random forest [14] is an ensemble method consisting of many (decision)
trees. For every tree, a set ofN bootstrap samples is drawn with replacement
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from the training data set. The remaining samples are called the out of bag
samples. As the sampling is done with replacement, some data items occur
multiple times in the bootstrap sample set, while 1/e ≈ 36.8% remain in
the out-of bag sample set.

The bootstrap samples form the root node of the tree. The tree is grown
recursively for each leaf node which is larger than the maximal size: Ran-
domly select a number of features, pick the best out of the chosen features,
split the data of the current node into two child nodes, and memorize the
split condition.

To predict the value of a sample, it is propagated down to the leaf nodes
in all trees according to the stored split conditions. For classi�cation, the
label of the new data item is then attributed according to the majority vote
over all trees. For regression, the predicted value is the mean of the values
of the dependent variable in all leaf notes.

The parameters of random forests are the number of trees in the forest
(usually 500) and the number of features tested at reach split (usually one
third of all features for regression, and the square root of the number of
features for classi�cation). The performance of random forests is remarkably
robust with respect to these values [57]. Random forests are specially suited
for classi�cation and regression in settings where the number of variables is
high compared to the number of samples.

In order to measure the prediction strength of the jth variable, the pre-
diction result on the out of bag samples is compared to the prediction result
on the same sample when the values of the jth variable are randomly per-
muted. These values are averaged over all trees and then used to indicate
how much the random forest relies on the values of this feature.

4.3 Evaluation of Feature Sets

In order to be able to precisely control the reverberation times, the evalu-
ation of the di�erent feature sets is done on arti�cially reverberated sound
clips. The original sounds were recorded in a reverberation-free room using
a KEMAR dummy head, which simulates the changes that occur to sound
waves when they pass a human head and torso. This setup allows us to
realistically record sound signals subject to e�ects such as di�raction and
re�ection around the human ear.

The sound source is placed straight ahead (at 0◦) at a distance of 1.5m.
On both sides of the dummy head, a behind-the-ear hearing instrument
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with two microphones is mounted to record two channels of the signal. As
a result, we obtain four channels corresponding to the microphone posi-
tions left-front (x1), left-back (x2), right-front (x3) and right-back (x4). All
recordings are made with a sampling rate of 20'480Hz.

We record sound clips of the three primary hearing activities clean
speech, noise and music. The clean speech clips contain recordings from
persons of both genders in English and German. The noise recordings con-
tain a variety of typical noise situations including social noise (e.g. in a
bar), human body noise (e.g. laughing), o�ce noise (e.g. a printer) and
household noise (e.g. a vacuum cleaner). The music recordings contain
samples of di�erent instruments as well as recordings of pop and classical
concerts. Roughly 20 recordings of each hearing activity are produced for
the experiments. Furthermore, the clean speech and noise clips are synthet-
ically mixed at di�erent signal to noise ratios (SNR) to yield recordings with
the hearing targets speech in low noise (SNR 5dB or more) and speech in
high noise (SNR 2dB or below). These two hearing targets contain roughly
50 clips each.

The dry sound recordings are arti�cially reverberated using the profes-
sional software Altiverb, which enables realistic simulation of reverberation
and is delivered with a wide range of high-quality recordings of impulse re-
sponses of real rooms of all sizes. We chose room impulse responses (RIR)
with 10 reverberation times T60 between 0.52sec and 12.6sec to cover the
reverberation characteristics of all rooms a person typically stays in.

To obtain independent samples, we use only one frame per sound clip as
sample for the respective hearing activity and regression time. Since some
of the ASA features need a settling time of roughly 10 seconds, we use the
features extracted on frame number 15, corresponding to the recording time
11.2sec to 12sec. As the values of the features are at di�erent ranges, we have
standardized all features setting the average to 0 and the standard deviation
to 1. Doing so, we get commensurate features [53], which is important
namely for linear discriminant analysis and support vector machines.

After normalization, the samples are split into a training and a hold-
out set. The training set is used to infer the model. For models with
hyperparameters (such as the cost value in the support vector machines),
these parameters are determined using grid-search and cross-validation on
the training set. For each hyperparameter, the training set is again divided
into 10 sub-sets. In 10 runs, each of these 10 subsets is used once as a
test set and 9 times as a training set. The hyperparameters are then set to
the value that yielded the best average performance on these test sub-sets.
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Then, the model is trained on the whole train set, and the performance on
the hold-out set is reported. The random forest is used with the default
parameter values and the cross-validation step is therefore omitted. All
results reported in the following are performance measures on the hold-out
data set.

As the number of samples varies for di�erent hearing activities, we use
the average rate of misclassi�ed samples per class, the balanced error rate
BER, to assess the classi�cation results in a way that takes the di�erent
number of samples per hearing activity into account.

4.3.1 Hearing Activity Classi�cation

We test the di�erent feature sets �rst independently and then conditioned
on the reverberation time.

When computing the classi�cation performance over all reverberation
times, we have to keep in mind that all sound clips are reverberated with 10
di�erent reverberation times. To get independent samples, we therefore ran-
domly choose a single reverberation time for each sound clip. The balanced
error rate for the hearing target classi�cation is depicted in Figure 4.2(a).
The four SFI-based feature sets outperform the three other feature sets,
namely the linear SVM yields more accurate results on the new feature
sets. Di�erences within the proposed feature sets can be observed depend-
ing on the classi�er. The performance on the ASA features is below the
performance on the SFI-based features for the linear SVM and for the ran-
dom forest classi�er. The two feature sets MFCC and MUSIC seem to be
too speci�cally tailored for a particular application and fail in this overall
comparison.

The most important features for prediction of the hearing activity with a
random forest are listed in Table 4.1. Note that predominantly the original
SFI features and some features from the feature set SFIavg are important
for this task. Both classes of features measure the average behavior of
the sound-�eld in the frame, but with di�erent averaging methods. Short-
time variations in the sound �eld indicators (which would be retrieved by
the SFIstd features) seem to be of little importance to predict the hearing
activity. The important features are measured in the medium and higher
frequencies. Furthermore, the decay in importance is relatively slow, there
does not exist a group of features which are clearly more important than
any other feature.

To study the in�uence of the reverberation time onto the classi�cation
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(a) All reverberation times (Subsampled) (b) Reverberation time T60 = 0.74sec

(c) Reverberation time T60 = 4.53sec (d) Reverberation time T60 = 12.6sec

Figure 4.2: Classi�cation performance of di�erent classi�cation techniques
on the task of predicting the hearing activity. The upper-left panel shows
the performance on a data set containing samples from all reverberation
times. The balanced error rate on samples with reverberation time 0.74sec,
4.53sec and 12.6sec is displayed in the other �gures.

performance, we repeat the same experiment using only samples with a
de�ned reverberation time. Following this procedure, the training and hold-
out data sets shrink by a factor of ten, which deteriorates the performance,
as can be seen in Figure 4.2(a). Apart from this deterioration due to the
small training data set, there is no clear e�ect of the reverberation time
onto the classi�cation accuracy.
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Feature Name Importance [%]
betaopt34n_960 0.882
ea34n_abs_3920 0.689
ef12n_abs_3920_a10 0.689
fc34n_abs_3920 0.677
PitchMean 0.671
ea12n_abs_3920_a10 0.629
fc12n_abs_3920_a10 0.613
betaopt12n_3360_a10 0.535
betaopt34n_160 0.532
ef34n_abs_3920 0.503
ef34n_ph_480 0.492
bc12n_abs_480_a10 0.492
betaopt12n_1120 0.481
betaopt12n_960 0.481
betaopt34n_3360 0.465

Table 4.1: The 15 most important features for prediction of the hearing
activity with random forests. The importance of the feature is determined
by the increase in the balanced error rate (in %) when the values of the
feature are randomly permuted over all data items.

4.3.2 Regression for Reverberation Time

In this section, we report results for the reverberation time prediction in
di�erent settings and with several regression methods.

In a �rst experiment, the regression analysis is conducted on samples
from all hearing activities. The distributions of the absolute values of the
residual for di�erent methods and di�erent feature sets is reported in Fig-
ure 4.3. Independent of the feature set, linear models only poorly predict
the reverberation time. The three other methods yield comparable accu-
racy, but nonlinear models (random forests and SVM with rbf kernel) tend
to be more accurate than the linear SVM.

Namely the MUSIC yield poor results, and also the results obtained on
MFCC are mostly behind the results obtained with the SFI-based or the
ASA features. This observation indicates their independence on the room
characteristics and is an important property in the application they are
originally designed for: If the goal is to represent speech or characterize
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(a) linear model (b) Random Forest

(c) SVM, linear kernel (d) SVM, rbf kernel

Figure 4.3: Residuals for regression on the reverberation time T60 for sound
clips of all hearing activities. The linear regression model performs poorly
compared to the random forest. The SVM with both linear and rbf kernel
perform comparable to the random forest.

di�erent genres of music, the features are ideally invariant to reverberation.
It is therefore to be expected that predicting T60 based on these features
yields a poor performance. The SFI features, the SFI short-time statistics
and the ASA features are all comparable in their prediction performance.

In a second experiment, the regression of the reverberation time is per-
formed conditioned on the hearing activity. For human listeners, reverbera-
tion estimation becomes more di�cult as the signal loses structure. We sim-
ulate this setting by predicting T60 for samples with hearing activity clean
speech, speech in low noise (SNR ≥ 5dB), speech in high noise (SNR ≤ 2dB)
and noise separately, using random forests (see Figure 4.4). Surprisingly,
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(a) clean speech (b) speech in noise, SNR ≥ 5dB

(c) speech in noise, SNR ≤ 2dB (d) noise

Figure 4.4: Residuals for regression on the reverberation time T60 for hearing
activities clean speech, speech in low noise (SNR ≥ 5dB), speech in high
noise (SNR ≤ 2dB) and noise, for regression with random forests.

there is on the average only a small decrease in the performance as the
signal looses structure. However, the variance in the performance clearly
increases as the signal looses structure.

The most relevant features for reverberation prediction with random
forests are listed in Table 4.2. These are mostly features from set SFIstd
that measure the short-time variations of the sound �eld indicators on low
frequencies. Compared to the features which are reliable to predict the hear-
ing activity (see Table 4.1), these are clearly di�erent feature statistics, and
the relevant features measure properties at lower frequency bands. Onset

is the only feature from a di�erent feature set, namely the ASA feature
set. Furthermore, a strong decay in the feature importance is observed,
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Feature Name Importance
P11_320_s10 0.7800
PMean12_320_s10 0.5830
P22_320_s10 0.4853
PMean12_800_s10 0.4584
P22_800_s10 0.4233
P11_800_s10 0.4204
P11_640_s10 0.2239
Ia12n_1840_a10 0.1928
Onset 0.1904
PMean12_640_s10 0.1802
P22_640_s10 0.1571
P11_960_s10 0.1339
P22_480_s10 0.1247
G12_ph_9440_s10 0.1117
P11_1840_s10 0.1107

Table 4.2: The 15 most important features for regression of reverberation
time with random forests. The importance of the feature measure the in-
crease in the residuum when the values of the feature are randomly permuted
over all data items.

with a vast majority of the features having a negligible importance for the
prediction of the reverberation time.
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Chapter 5

Methods for Multi-Label

Classi�cation

We review methods for multi-label classi�cation and then propose a novel,
generative approach to this task. Experiments on both synthetic and real-
world data show that the proposed method outperforms state-of-the-art
techniques with respect to parameter and classi�cation accuracy.

5.1 Related Work

The approaches to solve the task of multi-label classi�cation can be grouped
into three categories: Transformation methods reduce the multi-label prob-
lem to a series of single-label classi�cation problems, whose solutions are
then combined to answer to the original task of multi-label classi�cation.
Algorithm adaptation methods extend established classi�cation techniques
such that they can handle multiple labels. Finally, ranking-based methods
infer a ranking on the relevance of all possible labels for a given label along
with a cut-o�. Labels ranked above the cut-o� are then assigned to the
label set for the data item at hand. In the following, we present these three
approaches in detail.
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5.1.1 Transformation Methods

Reducing a given problem to one or several problems for which a solution
is already known is a widely-used approach in mathematics and computer
science. In supervised learning, it is often easier to design algorithms for
dichotomies, i.e. that distinguish between two classes. While some of these
algorithms can naturally be extended to separate multiple classes, such a
generalization becomes more involved for other techniques such as AdaBoost
and support vector machines. A single-label, multi-class problem, where a
given data item is to be assigned to one of K classes, with K > 2, can be
solved by deciding for each class individually whether or not a given data
item belongs to this class. With this approach, often termed one-against-
all classi�cation [95], the original multi-class problem is reduced to a series
of K dichotomies. The results of these dichotomies are then combined to
a single class label, using the constraint that each data item belongs to
exactly one class. Advanced combination techniques include e.g. the use of
error-correcting output codes [35]. A unifying framework for the reduction
of multi-class problems to binary problems for margin classi�ers is presented
in [3].

Given one-against-all classi�cation, the extension to multi-label classi�-
cation is straightforward: Drop the constraint that each data item belongs
to exactly one class and allow assignments to more than one class. This
technique was successfully applied to scene classi�cation [11] and to classi-
�cation of emotions in music [77].

More sophisticated methods either alleviate the burden of large-scale
multi-label classi�cation tasks by reducing the number of possible label sets
to be taken into consideration, or they obtain more accurate classi�cation
results by using prior information about the distribution of label sets. The
principle of maximum entropy [63, 64] is employed in [122] to capture cor-
relations in the label set. The assumption of small label sets is exploited in
the framework of compressed sensing by [60]. Conditional random �elds are
used in [51] to parameterize label co-occurrences. Instead of independent
dichotomies, a series of classi�ers is build in [94], where a classi�er gets the
output of all preceding classi�ers in the chain as additional input.

To our knowledge, all transformation methods use all data items with
label k to infer the binary classi�er for this class, thereby ignoring all other
labels of the data items. Inspired by [11], we call this inference technique
cross training and denote it by Mcross. Note that in this approach, the
total in�uence of a data item on the set of all parameter estimators grows
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with its label degree: While a single-label data item is used to train the
parameters of one source, a data item with degree, say, three in�uences the
estimation of the parameters of three sources.

A variation of cross training is proposed in [97] for improved functional
prediction of proteins. The total weight of each data item is equal, the
individual weights of labels are either given along with the label set, or, in
the absence of such information, are computed by uniformly distributing
the total weight over all labels in the label set. We refer to this method as
probabilistic training Mprob.

By ignoring the fact that a multi-label data item contains at least one
label besides the currently considered class k, transformation methods ex-
plain the entire data item with the single class k. This serious simpli�cation
typically leads to a high variation in the data used to train the classi�er for
class k. Thus inferring very broad classes, a classi�er trained by cross train-
ing will very generously assign labels, thus yielding a high recall, but a low
precision. We expect the same e�ect for probabilistic training, but to a
smaller extend, as with this training method, multi-label data items have a
smaller weight on the estimation of the parameters of an individual source
than in cross training.

Two further transformation methods are conceptually simple. The most
agnostic method to handle multi-label data is to simply ignore data items
with multiple labels. We denote this method byMignore [11]. Alternatively,
consider each label set found in the training data as label of a new multi-
class single-label classi�cation task [107]. This method, dubbed new training
Mnew, is also called combination method or label powerset learning. Due
to the high number of possible label sets even for moderate numbers of
classes, new training typically has to learn the parameters of a large number
of classes based on a small number of data items per class. To alleviate
this problem, the Pruned sets method [93] splits label sets which occur
infrequently in the training data into smaller label sets. In the random k-
labelsets (RAKEL) algorithm [108], the pruning is implemented with respect
to the maximal size of label sets, with too large label sets being discarded.

5.1.2 Algorithm Adaptation Methods

Several adaptations of instance-based classi�ers for multi-label classi�ca-
tion were proposed in the literature. The k-nearest neighbor algorithm was
adapted to multi-label data in [121]. Based on the k nearest neighbors,
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a decision on the class membership of a new data item is taken indepen-
dently for each class. A modi�ed entropy formula was employed in [25] to
adapt the C4.5 algorithm for knowledge discovery in multi-label phenotype
data. Given the modi�ed entropy formula, frequently co-occurring classes
are distinguished only on the bottom of the decision tree. Support vector
machines were introduced for this task in [67] and were shown to outperform
competing algorithms such as nearest neighbor and C4.5 algorithms.

Boosting was applied to multi-label text classi�cation e.g. in [98]. Weak
learners were trained to either minimize the Hamming loss (AdaBoost.MH)
or the ranking loss (AdaBoost.MR). Kernel methods are introduced in [42]
for dichotomy learning and ranking in order to solve the multi-label problem.

Latent semantic indexing (LSI) [32] is a technique for unsupervised di-
mension reduction which aims at �nding a linear mapping from the input
space to some low-dimensional latent space, thereby recovering most of the
structure in the data. Reformulating the cost function of LSI as a combina-
tion of the reconstruction error of the observation and the label data [120],
a low-dimensional latent space for both the observations and the label sets
is obtained.

An adaptation of a generative process to multi-label classi�cation for
text categorization was presented in [81]. The generative process for a doc-
ument is as follows: Select a label set L and then a vector of mixture weights
among the classes in the label set. For each word in a document, �rst choose
a class out of the label set according to the mixture weight, and then sam-
ple a word from this class according to the class-conditional distribution of
words. For simplicity, words are assumed to be independent of each other.
Since the mixture weights can not be observed, the model parameters are
inferred by estimation-maximization. A similar idea is pursued in [111],
where the class-conditional word probabilities are combined to word proba-
bilities for documents which belong to multiple categories. Two versions of
the model are presented, where the mixture weight of the class-conditional
word probabilities is either equal for all classes in a label set, or estimated
during the inference phase.

Strictly speaking, the approach presented in [81] models the task of text
classi�cation as a multi-instance rather than a multi-label problem: Every
word is generated by a single source, and the text is obtained by concatenat-
ing the di�erent words. The inference tasks, on the other hand, consists of
�rst identifying the subset of words that are generated by each of the sources
in the label set. This division of the text into words implies a single-label

54



5.1. RELATED WORK

classi�cation of words, and inferring the class-conditional densities reduces
to a standard task.

5.1.3 Ranking-Based Methods

The problem of label ranking consists of learning a mapping from data
items to rankings over a given number of K class labels. Label ranking
and classi�cation are related to each other as follows: Given a relevance
ranking over classes for a data item, single-label classi�cation selects the
most relevant class as the label for the data item at hand. Multi-label
classi�cation with a given number |L| of classes for a data item selects the
|L| most relevant classes as label sets for this data item [16]. Conversely, a
label or label set implies that the respective class(es) are more relevant for
the observed data item than any class which is not in the label set of the
data item.

Based on the training set, a classi�er can be trained for every pair of
labels (λ1, λ2) to decide which of the two labels are more relevant for a
given data item. If the label set of a data item contains λ1, but not λ2,
then λ1 is more important than λ2 for the given data item. If λ1 and λ2

are both in the label set or both not in the label set, then no information
about the relative relevance can be derived. To compute the label ranking
for a new observation, the K · (K − 1)/2 binary comparisons are combined
to a relevance ranking over all labels, with ties broken randomly [61]. To
determine the size of the label set, a �neutral� calibration label is introduced
to separate relevant from non-relevant labels [49]. The label set then consists
of all labels ranked more important than the neutral label.

The training of the binary classi�er for a pair of labels (λ1, λ2) relies on
a similar assumption as cross training: Information about the importance
is deducted from every data item which contains exactly one of the two
labels in its label set, thus ignoring all other labels which are possibly in
the label set as well. Moreover, the characteristics of data items with a
particular label λ1 depend on the label pair which is to be ranked. Ranking-
based methods therefore fail to provide a detailed semantic interpretation
of multi-label data.
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5.2 Generative Single-Label Classi�ers

A classi�er is a mapping that takes vector of observed features X as input
and provides a class label λ (in the single-label case) or a label set L (in
the multi-label case) as output. A generative classi�er assumes a generative
process (e.g. the process presented in Section 2.1.3 for the observed X in
order to predict the set of sources L involved in the generation of X.

5.2.1 Training Phase

In the training phase, the parameters θ of the assumed generative pro-
cess are estimated. This inference is based on a set of observations X =
(X1, . . . , XN ) with the corresponding label sets L = (L1, . . . ,LN ). A popu-
lar method to determine the parameters is themaximum likelihood principle:
The parameters are chosen such that the observed data is most likely under
the assumed generative model. Formally, with D := (X,L), the function

L : θ 7→ P (D|θ) L(θ; D) = P (D|θ) (5.1)

is de�ned as the likelihood function. The maximum likelihood estimator
θ̂ML is chosen such that the likelihood function attains its maximum:

θ̂ML = arg max
θ∈Θ

L(θ; D) . (5.2)

Since the logarithm of the likelihood function attains its maximum for the
same values of θ and is often easier to manipulate, we can alternatively
compute the maximum-likelihood estimator as

θ̂ML = arg max
θ∈Θ

`(θ; D) with `(θ; D) := logL(θ; D) . (5.3)

Some prior knowledge or assumptions on the value of the parameter
might be available. The parameter θ is then considered as a random variable
with prior distribution P (θ). Using Bayes' theorem [6], the a posteriori
probability distribution of θ after observing the data set D is given by

P (θ|D) =
P (D|θ) · P (θ)∫

Θ
P (D|θ′) · P (θ′) dθ

The method of maximum a posteriori estimation determines the parameter
θ such that the posterior distribution of this random variable attains its
maximum:

θ̂MAP = arg max
θ∈Θ

P (θ|D) = arg max
θ∈Θ
{P (D|θ) · P (θ)} . (5.4)
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Or, written again with the logarithm,

θ̂MAP = arg max
θ∈Θ
{`(θ; D) + logP (θ)} , (5.5)

where the maximization only ranges over values of θ for which P (θ) > 0.
Comparing the two expressions for the maximum a posteriori estima-

tor (Eq. 5.4 or Eq. 5.5) and the maximum likelihood estimator (Eq. 5.2
or Eq. 5.3), it becomes apparent that the maximum likelihood estimator
corresponds to a maximum a posteriori estimator with a uniform prior dis-
tribution over all possible values of the parameter θ. Such a prior is called
an uninformative prior [65].

It is common to assume that di�erent data items (Xn,Ln), n = 1, . . . , N ,
of a data set D are independent and identically distributed (i.i.d.). Under
this assumption, the probability of D is the product over the probabilities
of the single data items (Xn,Ln). Inserting this into Eq. 5.5, we get

θ̂MAP = arg max
θ∈Θ

{
N∑
n=1

`(θ;Xn,Ln) + logP (θ)

}
. (5.6)

As the number of data items grows, the maximum a posteriori estima-
tor thus converges to the maximum likelihood estimator, or, alternatively
speaking, the evidence of the data becomes more important than the prior
as more and more data items are available.

5.2.2 Decision Phase

In the decision phase, the label set Lnew of a new observation Xnew is to
be determined. Similar to the estimation of the parameters in the training
phase, the label set of a new emission can be determined according to the
principles of maximum likelihood or maximum a posteriori.

In maximum likelihood classi�cation, the label set L̂new of the new ob-
servation is estimated such that the observation is most likely, given the
model assumptions and the parameters θ̂ inferred in the training phase:

L̂new = arg max
L∈L

P (Xnew|θ̂,L) (5.7)

Alternatively, a prior distribution P (L) over the set L of all possible
label sets might be used in the classi�cation. This prior distribution is
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either inferred in the training phase or given externally. Using this prior,
the maximum a posteriori label set is determined according to

L̂new = arg max
L∈L

{
P (Xnew|θ̂,L) · P (L)

}
. (5.8)

Maximum likelihood and maximum a posteriori classi�cation results are
most di�erent when the class prior is structured, e.g. uni- or multi-modally
peaked. An example for this situation are medical screenings: Often, most
of the persons do not su�er from a particular disease X, i.e. we have
P (Patient su�ers from X)� P (Patient does not su�er from X).

5.3 A Generative Model for Multi-Label Clas-
si�cation

We propose an approach to classi�cation of multi-labeled data which extends
the generative model for single-label data by interpreting multi-labeled data
as a superposition of the emissions of the individual sources. A data item
X with label set L = {λ1, . . . , λM} of degree M is assumed to be the sum
of one sample from each of the contributing sources, i.e.

X =

M∑
k=1

Ξλk with Ξλk ∼ Pλk (5.9)

The distribution of X is thus given by the convolution of all contributing
sources:

X ∼ Pλ1 ∗ . . . ∗ PλM =: PL (5.10)

Thus, unlike in new training, the distribution of data with multiple labels
is traced back to the distribution of the contributing sources. We therefore
propose the name deconvolutive model and refer to this model asMdeconv.

Note that it is possible to explicitly give the distribution PL for data
with label set L. In contrast to new training, which would estimate PL
based solely on the data with this label set, we propose to compute PL
from the distributions of all sources contained in L. On the other hand,
the estimation of each source distribution is based on all data items which
contain the respective source in their label sets.
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5.3.1 Learning a Model for Multi-Label Data

In the following, we �rst describe the learning and classi�cation steps in gen-
eral and then we provide an explicit formula for the special case of Gaussian
distributions. In order to simplify the notation, we limit ourselves to the
case of data generated by at most two sources and to inference accord-
ing to the principle of maximum likelihood. The generalization to label
sets of higher degree and to maximum a posteriori inference is straightfor-
ward. Furthermore, we index the probability distributions with the label,
i.e. Pk(X) stands for P (X|θk) in the rest of this chapter.

General Learning Scenario

The probability distribution of multi-labeled data is given by Eq. 5.10. The
likelihood of a data item x given a label set L = {λ1, λ2} is

P{λ1,λ2}(X) = (Pλ1
∗ Pλ2

) (X)

=

∫
Pλ2(X − Ξ) dPλ1(Ξ) (5.11)

= EΞ∼Pλ1 [Pλ2
(X − Ξ)] . (5.12)

In general, it may not be possible to solve the convolution integral (Eq. 5.12,
and similar terms for superpositions of more sources) analytically. In such
cases, the formulation as an expected value (Eq. 5.12) renders numerical
techniques such as Monte Carlo sampling possible.

In the training phase, the optimal parameters θ̂k of the distribution Pk
are chosen according to the principle of maximum likelihood (Eq. 5.3), which
implies the condition

∂

∂θk

{∑
L∈L

∑
n:Ln=L

logPL(xn)

}
!
= 0 for k = 1, . . . ,K . (5.13)

Classi�cation in the General Case

When classifying a new data item Xnew, the estimated label set L̂new is
determined according to the principle of maximum a posteriori estima-
tion (Eq. 5.8). As in training, if the probability distribution of a data
item Xnew with label set Lnew = {λnew1 , λnew2 } of degree 2 can not be
expressed in closed form, Eq. 5.12 might be used to get an estimate of
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P{λnew1 ,λnew2 }(X
new) by sampling Ξ from Pλnew1

. The generalization to label
sets of degree larger than 2 is straight forward.

The classi�cation rule in Eq. 5.8 corresponds to a search over the set L
of possible labels. The large size of the search space for this optimization
can render the search for the optimal label very demanding. However, this
complexity is a property of the assumed generative process and thus an
inherent property of the data. We present an approximation method for
the classi�cation in Section 5.3.2.

Gaussian Distributions

Let us assume for the remainder of this section that all source distribu-
tions are D-dimensional Gaussian distributions, i.e. Pk = N (µk,Σk), with
µk ∈ R1×D and a positive-de�nite D × D matrix Σk, for k = 1, . . . ,K.
The convolution of Gaussian distributions is again a Gaussian distribution,
where the mean vectors and the covariance matrices are added:

N (µ1,Σ1) ∗ N (µ2,Σ2) = N (µ1 + µ2,Σ1 + Σ2) . (5.14)

By induction, a corresponding rule holds for convolutions of more than two
Gaussian distributions. This property drastically simpli�es the algebraic
expressions in our model.

Training for Gaussian Distributions. To �nd the optimal values for
the means and the covariance matrices, we have to solve the maximum
likelihood conditions

∂

∂µk

{∑
L∈L

∑
n:Ln=L

logPL(xn)

}
!
= 0

∂

∂Σk

{∑
L∈L

∑
n:Ln=L

PL(xn)

}
!
= 0

for k = 1, . . . ,K. These conditions yield a set of coupled nonlinear equa-
tions, which can be decoupled by proceeding iteratively. As initial values
for this iterative optimization procedure, we choose the sample mean and
variance of the single-label training data:

µ
(0)
k =

∑
n:Ln={k} xn

|{n : Ln = {k}}|
Σ

(0)
k =

∑
n:Ln={k}(xn − µ

(0)
k )(xn − µ(0)

k )T

|{n : Ln = {k}}|
.

For simpler notation, we de�ne the mean and covariance matrix of all
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sources except k in Ln as follows:

m
(t)
Ln\{k} :=

∑
λ∈Ln
λ6=k

µ
(t)
λ S

(t)
Ln\{k} :=

∑
λ∈Ln
λ 6=k

Σ
(t)
λ ,

where upper indices indicate the iteration steps. Using an iterative ap-
proach, the condition for the mean values yields the following update for-
mula for µk, k = 1, . . . ,K:

µ
(t+1)
k :=

( ∑
n:Ln3k

(xn −m(t)
Ln\{k})

(
Σ

(t)
Ln

)−1
)( ∑

n:Ln3k

(
Σ

(t)
Ln

)−1
)−1

. (5.15)

Deriving the data likelihood with respect to the covariance matrix Σk yields
the following condition:

1

2

∑
n:Ln3k

((
1D − (xn − µLn)(xn − µLn)TΣ−1

Ln

)
Σ−1
Ln

) !
= 0,

where 1D denotes the identity matrix in D dimensions. With ΣLn = Σk +
SLn\{k} and

V
(t)
n,Ln = (xn − µ(t)

Ln)(xn − µ(t)
Ln)T ,

the optimality condition for Σk can be rewritten as∑
n:Ln={k}

((
1D − VnLnΣ−1

k

)
Σ−1
k

)
+

∑
n:Ln3k
|Ln|>1

((
1D − ViLn(SLn\k + Σk)−1

)
(SLn\k + Σk)−1

) !
= 0

(5.16)

Note that for a training set containing only single label data, the second
sum in Eq. 5.16 vanishes, and the condition implies estimating Σk by the
sample covariance matrix. If the training set contains data with multiple
labels, the optimality condition can in general not be solved analytically,
as the condition for Σk corresponds to a polynomial whose degree is twice
the number of allowed label sets in L containing k. In this case, the opti-
mal value of Σ

(t)
k can either be determined numerically or using the Taylor

approximation

(SLn\k + Σk)−1 = Σ−1
k

(
SLn\sΣ

−1
k + 1D

)−1

≈ Σ−1
k

(
1D − ΣkS

−1
Ln\k

)
= Σ−1

k − S
−1
Ln\k .
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The approximation is typically quite crude; we therefore prefer using a nu-
merical solver to determine Σ

(t)
k for all sources k after having determined

the mean values µ(t)
k . We observed that the estimator for the mean values

is relatively robust with respect to changes in the covariance matrix. Fur-
thermore, the relative importance per data item for the estimation of µ(t)

k

decreases as the degree of its label increases. If enough data items with
low degree label sets are available in the training phase, the convergence of
the training step can be increased by discarding data items with high label
degrees with only minor changes in the accuracy of the parameter estimates.

Classi�cation for Gaussian Distributions. Recall the explicit formula
for the convolution of two Gaussian distributions (Eq. 5.14). This relation
yields a simple expression for the likelihood of the data Xnew given a par-
ticular candidate label set Lnew = {λnew1 , λnew2 }:

PLnew(Xnew) = N (Xnew; µ̂λnew1
+ µ̂λnew2

, Σ̂λnew1
+ Σ̂λnew2

)

Again, the label set for the new data item is assigned according to the
maximum a posteriori rule (Eq. 5.8). As the density functions for data with
multiple labels are computed based on the single source densities, this yields
more accurate density estimates namely for data with medium to large label
degree. This is the second major advantage of the proposed algorithm.

Further Examples of Stable Probability Distributions

The methods presented in the previous section for Gaussian distributions
are very general and they are applicable to all parametric distributions and
combination functions. However, an explicit expression for the probability
distribution of multi-label data is exists only for speci�c pairs of distribu-
tion and combination function. As exempli�ed in the previous section, the
addition of source emissions yields a random variable whose distribution is
described by the convolution of the distributions of the involved sources.
Since the convolution of Gaussian distributions is again a Gaussian distri-
bution, the probability distribution of the proxy distributions PL for |L| > 1
are of the same type as the source distributions Pk, and their parameters are
easily computed based on the parameters of the source distributions. This
fact dramatically simpli�es the calculations, and for small problem sizes, the
optimal parameter values can even be computed explicitly. Such a closed
form expression for the convolution integral and analytical solution of the
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optimal parameter values leads to much faster training and classi�cation.
In the following, we describe further pairs of source distributions and com-
bination functions for which the distribution of the combination of several
emissions is in the same family as the distribution of the single emissions.

Exponential distribution: If Ξj ∼ Exp(θj) with θj > 0 for j = 1, 2, then
the minimum of the two emissions is also exponentially distributed:
min(Ξ1,Ξ2) ∼ Exp(θ1 + θ2).

Log-normal Distribution: If Ξj ∼ Log-N (µj ,Σj), j = 1, 2, the product
also has a log-normal distribution: Ξ1 ·Ξ2 ∼ Log-N (µ1 +µ2,Σ1 +Σ2).

Bernoulli Distribution: If Ξj ∼ Ber(pj), j = 1, 2, then the conjunction
is Bernoulli distributed as well: Ξ1∧Ξ2 = min{Ξ1,Ξ2} ∼ Ber(p1 ·p2).
For the disjunction, we have Ξ1∨Ξ2 = max{Ξ1,Ξ2} ∼ Ber(p12), with
p12 := p1 + p2 − p1 · p2.

Gamma Distribution: If Ξj ∼ γ(b, pj) with b > 0 and pj > 0 for j = 1, 2,
the sum also follows a Gamma distribution: Ξ1 + Ξ2 ∼ γ(b, p1 + p2).

5.3.2 E�cient Classi�cation

In the proposed model, the classi�cation tasks consist of choosing a subset
of the given sources such that the observed data item has maximal likeli-
hood. If no restrictions on the set L of possible label sets apply, all possible
subsets of the source set K have to be considered. As there are O

(
2K
)

subsets of K, even classi�cation problems with moderate value of K have
a prohibitively high running time. However, good approximations are pos-
sible in the present case, as we exemplify in the following for sources with
Gaussian distribution.

A Heuristic to Reduce the Search Space. For Gaussian distributions
with equal spherical covariance matrix Σk = σ2 · 1D for all sources k =
1, . . . ,K, maximum a posteriori classi�cation (Eq. 5.8) of a new data item
Xnew ∈ RD can be reduced to

L̂new = arg max
L∈L

{
πL

σD(2π|L|)D/2
exp

(
−||X

new − µL||22
2|L|σ2

)}
(5.17)

= arg min
L∈L

{
||Xnew − µL||22

+|L|σ2(D log(2πσ2|L|)− 2 log(πL))
}
,

(5.18)
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where πL is the prior probability of the label set L. In cases where the set
L of admissible label sets is relatively small, L̂new can be found directly
within reasonable computation time. Such a situation arises e.g. when
the new data can only be assigned to a label set that is present in the
training set, i.e. if L is the set of all label sets contained in the training
sample, or when other restrictions are coded in the prior distribution if L,
e.g. a limitation to label sets with small degree. However, in a more general
setting, there are no such constraints, and the classi�er should also be able
to assign a label set that is not seen during the training phase. In this case,
L contains |2K| − 1 = 2K − 1 possible label sets. The time for direct search
thus grows exponentially with the number of labels K.

To address this problem, we determine a subset of sources K− ⊂ K
which, with high probability, have not contributed to Xnew. The optimiza-
tion in Eq. 5.8 is then restricted to label sets L containing only sources
which have not been excluded. This constraint limits the search space and
consequently speeds up classi�cation.

Note that all terms in Eq. 5.18 are positive. The label set prior typically
decreases as the degree increases, and the second term grows logarithmically
in the size of the label set. The later term thus tends to privilege smaller
label sets, and neglecting these two terms might thus yield larger label
sets. This is a type of regularization which we omit in the following, as we
approximate Eq. 5.18 by the following subset selection problem:

L̂new = arg min
L∈L

{
||Xnew − µL||22

}
, (5.19)

We de�ne the indicator vector ẑnew ∈ {0, 1}K , with ẑnewk = 1 if k ∈ L̂new
and ẑnewk = 0 otherwise, for all sources k. Using this notation, the above
minimization problem can be written as

ẑnew = arg min
z∈{0,1}K

{
K∑
k=1

zkµk −Xnew

}
.

Relaxing the constraints on ẑnew to z̃ ∈ RK , we get the following regression
problem:

z̃new = arg min
z̃∈RK

{
K∑
k=1

z̃kµk −Xnew

}
.

De�ning the matrix M of mean vectors as M = (µ1, . . . , µK)T ∈ RK×D, we
obtain the least-squares solution for the regression problem:

z̃new = XnewMT (MMT )−1 (5.20)
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In order to reduce the size of the search space for the label set, we propose
to compute a threshold τ for the components of z̃new. Only sources k with
z̃newk > τ are considered further as potential members of L̃new.

As we have omitted the constraints favoring small label sets, single
sources with mean close to Xnew might be discarded. This e�ect can be
compensated by adding label sets of small degree (up to 2 is mostly su�-
cient) containing only discarded classes to the reduced label set. Formally,
we de�ne K+ := {k ∈ K|z̃newk > τ} and L+ := {L ∈ L|L ⊆ K+} and replace
L in Eq. 5.17 by L+. In our experiments, we found that this heuristic can
drastically reduce computation times in the classi�cation task. The error
probability introduced by this technique is discussed in the following.

Error Analysis. We assume the true label set of Xnew is Lnew, with
the corresponding indicator vector znew. The heuristic introduces an error
whenever z̃newk < τ but znewk = 1, i.e. k is in the true label set Lnew. Thus,

P [error] = 1−
∏

k∈Lnew
P [z̃newk > τ ].

For the analysis, we assume that all source distributions have the same
variance σ2 · 1D. Then, we have

Xnew = znewM + ε , with ε ∼ N (0, |Lnew| · σ21D) .

Inserting this into Eq. 5.20, we �nd

z̃new = znew + εMT (MMT )−1 =: znew + ε′ ,

where we have de�ned ε′ := εMT (MMT )−1 ∼ N (0, |Lnew|σ2(MMT )−1).
Using the eigenvalue decomposition of the symmetric matrix MMT =
UΛUT , the distribution of ε′ can be rewritten as

ε′ ∼ UN (0, |Lnew|σ2Λ−1)U = U(|Lnew|)2Λ−2 · N (0, σ2) .

Note that Λ scales with the squared 2-norm of the mean vectors µ, which
typically scales with the number of dimensions D. For the special case when
U = 1D, we then have

P [error] = 1−
∏

k∈Lnew

1− Φ

 τ − 1

σ
√
|Lnew|Λ−1

kk
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where Φ(·) is the cumulative distribution function of the standardized nor-
mal distribution. Summing up, the probability of an error due to the heuris-
tic decreases whenever the dimensionality grows (Λkk grows), sources be-
come more concentrated (σ gets smaller), or the degree of the true label set
decreases (|Lnew| grows).

For a given classi�cation task, Lnew is unknown. In our experiments, we
derived an upper limit Mmax for the label degree from the distribution of
the label set degrees in the training set. Furthermore, we used the average
eigenvalue λ̄ of the eigenvalue decomposition of MMT to estimate Λkk.
Finally, σ can be estimated from the variance of the single labeled data.
With these estimates, we �nally get

P [error] ≤ 1−

(
1− Φ

(
τ − 1

σ
√
pmaxλ̄−1

))Mmax

(5.21)

Given an acceptable error probability, this allows us to choose the threshold
τ . Note that the bound is typically quite pessimistic, as most of the real-
world data samples have a large number of data with label sets of small
degree. For these data items, the e�ective error probability is much lower
than indicated by (5.21). Keeping this in mind, we get a reasonable error
bound also in the case where U 6= 1D.

5.4 Experimental Evaluation

We present experiments on arti�cial and real-world data with multiple la-
bels. We start with experiments on synthetic data in order to determine
the accuracy of the parameter estimators and then proceed to real-world
acoustic data.

5.4.1 Experiments on Synthetic Data

We use arti�cial data sampled from multivariate Gaussian distributions to
compute the accuracy of the source parameter estimates of di�erent models.
The arti�cial data scenario consists of 10 sources labeled {1, . . . , 10}. In or-
der to avoid hidden assumptions or e�ects of hand-chosen parameters, the
mean values of the sources are chosen uniformly from the 10-dimensional
hypercube [−2; 2]10. The covariance matrix is diagonal with diagonal el-
ements uniformly sampled from ]0; 1]. 25 di�erent subsets of {1, . . . , 10}
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(a) Distribution of label set degrees |L| in
the synthetic data

(b) Projection of the true Source centroids:
First two Principal Directions

Figure 5.1: Statistics on the synthetic data. The �rst two principal direc-
tions depicted on the right panel cover approximately 60% of the variance
of the centroids.

are randomly chosen and used as label sets. The distribution of the label
degrees as well as the �rst two principal components of a sample of source
centroids are depicted in Figure 5.1. As the principal component projections
in Fig. 5.1(b) represent approximately 60% of the variation of the centroids,
this classi�cation problem is a challenging one.

Training sets of di�erent sizes as well as a test set are sampled based on
the label sets and the additivity assumption (Eq. 5.9). This procedure is
repeated 10 times to average the results over di�erent instantiations of the
random variables.

Figure 5.2 shows the average deviation of the mean vectors and the aver-
age deviation of the largest eigenvalue from the corresponding true values.
For the estimates of the source means (Figure 5.2(a)), it can be clearly
seen that deconvolutive training is the most accurate. The deviation of the
parameters of new training is explained by the small e�ective sample size
available to estimate each of the mean vectors: AsMnew learns a separate
source for each label set, there are only two samples per source when the
training set size is 50. Mdeconv, on the other hand, decomposes the con-
tributions of each source to every data item. On the average,Mdeconv has
thus 2.5 times more training samples per parameter thanMnew. Further-
more, the samples used by Mnew to estimate the density distribution of
multi-labeled data have higher variance than the single label data.

For the estimation of the covariance (Figure 5.2(b)),Mdeconv still yields
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(a) Average Deviation of the Mean Estima-
tor

(b) Relative Deviation of the Largest
Eigenvalue of the Covariance Matrix

Figure 5.2: Accuracy of the parameter estimation of di�erent models. For
each model, the average (continuous bold line) over all classes and the stan-
dard deviation based on 10-fold cross-validation (dashed lines) is plotted.
We used a setting with 10 sources in 10 dimensions. The mean of each source
is chosen uniformly in [−2, 2]10. The sources are randomly combined to 25
label sets. Training data sets of di�erent sizes are then sampled according
to the generative model.

distinctly more precise values, but the di�erence to Mnew is not as large
as in the estimation of the mean values. This is due to the more compli-
cated optimization problem that has to be solved to estimate the covariance
matrix.

The estimates obtained by Mcross and Mprob for both the mean and
the covariance are clearly less accurate. Using a data item with multiple
label as a training sample independently for each class brings the source
parameters closer to each other, and thus away from their true values. As
multi-labeled data have a reduced weight for the estimation of the single
sources, this e�ect is less pronounced in Mprob than in Mcross. As the
estimator for the covariance matrix depends on the estimator of the mean,
the large deviations of the dominant eigenvalue are a consequence of the
inaccurate mean estimator.

The estimation of the covariance matrix is generally known as a hard
problem [101]. As no analytic solution of the optimality condition exists and
numerical methods have to be used, the computational e�ort to estimate
the covariance grows linearly in the number of dimensions when learning
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(a) Average Precision (b) Average Recall

(c) Average F-Score (d) Balanced Error Rate

Figure 5.3: Classi�cation performance on synthetic data.

diagonal covariance matrices and quadratically if a full covariance matrix
is assumed. Only for spherical covariances, the conditions can be solved to
get a set of coupled explicit equations, which can be used for an iterative
solution scheme. A possible remedy is to estimate the source covariances
based on single label data only and to use the deconvolution approach only
for estimating the mean values, or to assume the same covariance matrix
for all sources.

The estimation of the source means is much more stable and it performs
independently of the dimensionality of the data. As expected, the gain of
Mdeconv as compared to Mnew is larger if the covariance matrix does not
have to be estimated, and also the improvements in the classi�cation are
more pronounced.

For classi�cation (see Figure 5.3), the di�erences between the four stud-
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ied methods is most pronounced for the balanced error rate, which is the
most rigorous quality measure. Here,Mdeconv clearly outperforms all com-
petitors when only a limited number of training data is available. For larger
training data sets, Mnew is able to catch up and reaches the same perfor-
mance asMdeconv. BothMcross andMprob yield clearly worse results.

The di�erence between the methods are less pronounced when looking
at precision and recall, as the variance of these quality measures is clearly
higher then for the balanced error rate. Apart from the di�erent number of
training data per parameter, Mnew behaves comparably to Mdeconv. For
Mprob, we observe a cautious assignment of labels: This method reaches
almost the same precision as Mdeconv, but a recall which is signi�cantly
below the recall of all other methods. Mcross, on the contrary, obtains the
highest recall values of all methods in most settings, but pays the price of a
low precision. For the F-score, we �nd Mcross very close to Mnew, which
both are behindMdeconv for small and medium-sized training sets. Mprob

follows with a relatively large gap.
This comparison clearly shows that the quality assessment of multi-label

classi�cation techniques depends largely on the quality measure. However,
Mdeconv yields the best results in all cases. For the F-score, this is a trend,
while for the balanced error rate, this is highly signi�cant for small train-
ing data sets in comparison to all other methods, and highly signi�cant in
comparison toMcross andMprob for all training set sizes.

5.4.2 Experiments on Acoustic Data

For the experiments on real data, we use the research database provided by
the hearing instrument company Phonak. This challenging data set serves
as benchmark for next generation hearing instruments and captures the
large variety of acoustic environments that are typically encountered by a
hearing instrument user. It contains audio streams of every day acoustic
scenes recorded with state of the art hearing instruments.

Each sound clip is assigned to one of the four classes Speech (SP ), Speech
in Noise (SN), Noise (NO) and Music (MU). WhileMnew learns a sep-
arate source for each of the four label sets, Mcross, Mprob and Mdeconv

interpret SN as a mixture of SP and NO. SN is the only multi-label in
our real data setting. As mentioned before, the intra-class variance is very
high � just consider various genres of music, or di�erent sources of noise!
Additionally, mixtures arise in di�erent proportions, i.e. the noise level in
the mixture class varies strongly between di�erent sound clips. All these
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factors render the classi�cation problem a di�cult challenge: Even with
specially designed features and a large training data set, the accuracy is at
most 75%. Precision, recall and the F-score are around 80%.

Mel Frequency Cepstral Coe�cients (MFCCs) [88] have been extracted
from the sound clips at a rate of about 100Hz, yielding a 13-dimensional
feature vector per time window. As classi�cation is expected to be inde-
pendent of the signal volume, the intensity of the sound �les is normalized.
Thus, the additivity assumption (Eq. 5.9) is changed to

xSN =
xSP + xNO

2
(5.22)

Since the extraction of MFCCs is nonlinear, this modi�ed additivity prop-
erty in the signal space has been transformed into the feature space. A
sequence of 10 MFCC feature sets is used as feature vector, describing also
the short-time evolution of the signal. Features for the training and test
sets have been extracted from di�erent sound clips.

Hidden Markov models (HMM) are widely used in signal processing and
speech recognition [89]. We use a factorial HMM [50] with Gaussian output
and two states per sound source a simple generative model. In the training
phase, we use the approximations

EΞ∼PNO [PSP (xn − Ξ)] ≈PSP (xn − Eχ∼PNO [Ξ])

EΞ∼PSP [PNO(xn − Ξ)] ≈PNO(xn − EΞ∼PSP [Ξ])
(5.23)

to get a rough estimate of the individual source contributions to a data
item xn with label Ln = SN = {SP,NO}. In the classi�cation phase,
the formulation of the convolution as expected value (Eq. 5.12) is used to
estimate the probability of the binary label by sampling from one of the two
contributing sources.

Experiments are cross-validated 10 times. In every cross validation
round, the number of training samples is gradually increased from 4 (i.e.
one per label set) to 60. The di�erences in F-score and BER are depicted
in Fig. 5.4. The test sets consist of 255 data items.

Comparing the results of the four algorithms on the test data set, we
observe only minor di�erences in the precision, with Mdeconv tending to
yield slightly less precise results. The recall rate of Mdeconv, however, is
consistently higher than the corresponding results of its three competitors.
The F-score obtained by the deconvolutive multi-label classi�er is consis-
tently above the F-scores obtained byMnew,Mcross andMprob. As can be
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Figure 5.4: Di�erence of quality measures between the proposed method
and the three mentioned competing methods. The left column shows the
di�erences in F-Score (higher is better), the right one the di�erences in BER
(lower is better). The absolute values are around 0.6 for the F-score and
around 0.4 for the BER at the very small sample sizes. In all plots, the
green horizontal line at 0 indicates equal performance of the two compared
algorithms. Note the di�erence in scale between the two columns.
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observed in the plots,Mnew approachesMdeconv as the size of the training
set increases. The di�erence between Mdeconv and the two other models
does not shows a clear dependency on the size of the training set.

Di�erences are more pronounced in terms of the balanced error rate
BER (depicted in the right column of Figure 5.4). Mnew is clearly out-
performed on small training sets, but it is able to perform competitively
as more training data are available. For larger training sets, learning a
separate, independent class for the multi-labeled data asMnew does, some-
times even performs slightly better, as multi-label data might not exactly
ful�ll the additivity condition. Independently of the training set size, both
Mcross and Mprob are clearly performing worse than Mdeconv. These re-
sults con�rm the observations made on synthetic data: Mcross andMprob

su�er from unmatched model assumptions, andMnew has too few training
data if the training set size is limited.

Sophisticated Models for Speech Separation. The experimental set-
ting used in the experiments on acoustic data is rather limited. We brie�y
present some ideas to improve the performance of the classi�cation algo-
rithm on acoustic data, i.e. the identi�cation of sources.

The improvements presented below allow us to address a more complex
problem in digital signal processing: source separation. Given a mixture of
signals, the objective is to determine the original signals. An accurate gen-
erative model for acoustic sources not only yields more precise classi�cation
results, but also renders model-based source separation possible.

Features. As discussed in Chapter 4, Mel-frequency cepstral coe�cients
(MFCC) are not particularly suited to distinguish several types of
acoustic signals. One usually uses the log-power spectrum of the sig-
nal as features. These are approximately distributed according to a
Gaussian distribution and allow us to re-synthesize a signal (up to a
chosen frequency) based on the feature values [72].

Decomposition of Source Contributions. The approximation used in
our experiments (see Eq. 5.23) to estimate the contribution of in-
dividual sources to a given mixture is quite rough. The Algonquin
algorithm [48] is an e�cient technique to accurately approximate the
mixture of two sources emissions described by the log-power spectrum.

Gain Estimation. In our setup, we have implicitly assumed that the emis-
sions of several sources are mixed together at identical intensities. This
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assumption is not realistic in real-world scenarios. A heuristic to es-
timate the gain out of a prede�ned set of gains of synthetic mixtures
in presented in [58].

More Accurate Dynamics. If the three aforementioned improvements
have been implemented, a more detailed modeling of the temporal
dynamics is bene�cial for both recognition and separation of sources.

Furthermore, when the application is limited to speech signals, an addi-
tional grammar model describing the structure of a correct sentence further
improves the performance of the speech separation algorithm. Combining
these ingredients, model-based source separation is able to outperform hu-
man listeners in recognizing speech on synthetic mixtures of two speakers
[58] and yields currently the best results in both source recognition and
source separation. This achievement shows the power of elaborate genera-
tive models of the sort we proposed in the �eld of acoustics.
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Chapter 6

Asymptotic Analysis of

Estimators on Multi-Label

Data

Asymptotic theory in statistics refers to the limiting distribution of a sum-
mary statistic when the amount of data items over which the statistic is
computed increases to in�nity [12]. It has become an essential tool in statis-
tics, as the exact distributions of the quantities of interest is not available
in most settings. In the �rst place, asymptotic analysis is used to check
whether an estimation method is consistent, i.e. whether the obtained esti-
mators converge to the correct parameter values if the number of data items
available for inference goes to in�nity. Furthermore, asymptotic theory pro-
vides approximate answers where exact ones are not available, namely in
the case of data sets of �nite size, and describes for example how e�ciently
an inference method uses the given data for parameter estimation [78].

Consistent inference schemes are essential for generative classi�ers, and
a more e�cient inference scheme yields more precise classi�cation results
than a less e�cient one given the same training data. More speci�cally, for
maximum a posteriori classi�cation, if the estimated parameters converge
to the true parameter values, the expected error of a classi�er converges to
the Bayes error [34].

In this chapter, we �rst review the state-of-the-art asymptotic theory
for estimators based on single-label data. We then extend the asymptotic
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Table 6.1: Overview over the probability distributions used in this chapter.
A data item D = (X,L) is an observation X along with its label set L.

Symbol Meaning
Pθk(Ξk) true distribution of the emissions of source k, given θk
Pθ(Ξ) true joint distribution of the emissions of all sources.
PL,θ(X) true distribution of the observations X with label set L.
PML,θ(X) distribution of the observation X with label set L, as as-

sumed by methodM.
PL,D(X) empirical distribution of observation X with label set L

in the data set D.
Pπ(L) true distribution of the label sets
PD(L) empirical distribution of the label sets in D
Pθ(D) true distribution of data item D.
PMθ (D) distribution of data item D as assumed by methodM.
PD(D) empirical distribution of data items D in the data set D

PMD,θk(Ξk) Conditional distribution of the emission Ξk of source k
given θk and D, as assumed by inference methodM.

PMD,θ(Ξ) Conditional distribution of the source emissions Ξ given
θ and D, as assumed by inference methodM.

analysis to inference on multi-label data and proof statements about the
identi�ability of parameters and the asymptotic distribution of their esti-
mators in this demanding setting. We apply our result to two scenarios
encountered in our real-world problems and thus con�rm the theoretical
results as well as the more accurate parameter estimation of deconvolutive
training.

6.1 Preliminaries

In this section, we introduce the preliminaries to study of the asymptotic
behavior of the estimators obtained by di�erent inference methods. This
chapter contains some relatively heavy notation. The probability distribu-
tions used therein are summarized in Table 6.1.
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6.1.1 Exponential Family Distributions

In the following, we assume that the source distributions are members of
the exponential family. This means that the distribution Pθk(Ξk) of source
k admits a density pθk(ξk) which can be written in the following form:

pθk(ξk) = exp (〈θk, φ(ξk)〉 −A(θk)) . (6.1)

Here θk are the natural parameters, φ(ξk) are the su�cient statistics of the
sample ξk of source k, and A(θk) is the log-partition function, de�ned as

A(θk) := log

(∫
exp (〈θk, φ(ξk)〉) dξk

)
.

The expression 〈θk, φ(ξk)〉 denotes the inner product between the natural
parameters θk and the su�cient statistics φ(ξk):

〈θk, φ(ξk)〉 :=

S∑
s=1

θk,s · (φ(ξk))s .

The number S is called the dimensionality of the exponential family. θk,s is
the sth dimension of the parameter vector of source k, and (φ(ξk))s is the
sth dimension of the su�cient statistics. The (S-dimensional) parameter
space of the distribution is denoted by Θ.

The class of exponential family distributions contains many of the widely
used probability distributions. The Bernoulli, Poisson and the χ2 distribu-
tion are one-dimensional exponential family distributions; the Gamma, Beta
and normal distribution are examples of two-dimensional exponential family
distributions.

The joint distribution of emissions Ξ of the independent sources in the
source set K = {1, . . . ,K} is given by

Pθ(Ξ) =

K∏
k=1

Pθk(Ξk)

with the density function

pθ(ξ) =

K∏
k=1

pθk(ξk) =

K∏
k=1

exp (〈θk, φ(ξk)〉 −A(θk))
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In order to make the notation more compact, we de�ne the vectorial suf-
�cient statistic as φ(ξ) := (φ(ξ1), . . . , φ(ξK))T and the parameter vector
as θ := (θ1, . . . , θK)T . The cumulative log-partition function is de�ned as
A(θ) :=

∑K
k=1A(θk). Using the parameter vector θ and the emission vector

ξ, the density function pθ of the source emissions can then be written as

pθ(ξ) =

K∏
k=1

pθk(ξk) = exp (〈θ,φ(ξ)〉 −A(θ)) .

The product of independent exponential family distributions is thus again
a member of the exponential family.

Exponential family distributions have the property that the derivatives
of the log-partition function with respect to the parameter vector θ are
moments of su�cient statistics φ(·). Namely the �rst and second derivative
of A(·) are the expected �rst and second moment of the statistics:

∇θA(θ) = EΞ∼Pθ
[φ(Ξ)] ∇2

θA(θ) = VΞ∼Pθ
[φ(Ξ)] (6.2)

where EX∼P [X] and VX∼P [X] denote the expectation value and the co-
variance matrix of a random variable X sampled from distribution P .

6.1.2 Identi�ability

The representation of exponential family distributions in Eq. 6.1 may not
be unique, e.g. if the su�cient statistics φ(ξk) satisfy linear constraints.
In this case, the dimensionality S of the exponential family distribution
can be reduced. Unless this is done, the parameters θk are unidenti�able:
There exist at least two values θ(1)

k 6= θ
(2)
k of the parameters which imply

the same probability distribution p
θ
(1)
k

= p
θ
(1)
k

. These two parameter values

can not be distinguished based on observations, they are therefore called
unidenti�able [76].

De�nition 1. (Identi�ability) Let ℘ = {pθ : θ ∈ Θ} be a statistical model
with parameter space Θ. ℘ is called identi�able if the mapping θ → pθ is
one-to-one:

pθ(1) = pθ(2) ⇐⇒ θ(1) = θ(2) for all θ(1), θ(2) ∈ Θ .

Identi�ability of the model in the sense that the mapping θ → pθ can
be inverted is equivalent to being able to learn the true parameters of the
model if an in�nite number of samples from the model can be observed [76].
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In all concrete learning problems, identi�ability is always conditioned on
the data. Obviously, if there are no observations from a particular source
(class), the likelihood of the data is independent of the parameter values
of the never-occurring source. The parameters of the particular source are
thus unidenti�able.

6.1.3 M- and Z-Estimators

A popular method to determine the estimators θ̂ = (θ̂1, . . . , θ̂K) for a gen-
erative model based on independent and identically-distributed (i.i.d.) data
items D = (D1, . . . , DN ) is to maximize a criterion function of the type

θ 7→MN (θ) =
1

N

N∑
n=1

mθ(Dn) (6.3)

Here mθ : D 7→ R are known functions. An estimator θ̂ maximizing MN (θ)

is called an M-estimator : θ̂ = arg maxθMN (θ), where M stands for maxi-
mization.

For continuously di�erentiable criterion functions, the maximizing value
is often determined by setting the derivative (or, in the multidimensional
case, the set of partial derivatives) with respect to θ equal to zero. With
ψθ(D) := ∇θmθ(D), this yields an equation of the type

ΨN (θ) =
1

N

N∑
n=1

ψθ(Dn) , (6.4)

and the parameter θ is then determined such that ΨN (θ) = 0. This type
of estimator is called Z-estimator, with Z standing for zero.

Maximum Likelihood Estimators. Maximum likelihood estimators are
M -estimators with the criterion function mθ(D) := `(θ;D). The corre-
sponding Z-estimator is obtained by computing the derivative of the log-
likelihood with respect to the parameter vector θ, called the score:

ψθ(D) = ∇θ`(θ;D) . (6.5)

In the following, we mostly use the formulation of maximum likelihood
estimators as Z-estimators.
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Convergence ofM- and Z-estimators. Assume that there exist asymp-
totic criterion functions θ 7→M(θ) and θ 7→ Ψ(θ) such that

MN (θ)
P→M(θ) ΨN (θ)

P→ Ψ(θ) for every θ .

The maximizer θ̂N of MN converges to the maximizing value θ0 of M as N
goes to in�nity if the deviation between MN (θ̂N ) and MN (θ) converges to
0 in probability and if there is a unique, well-separated maximizer θ0 of M
[115]:

Theorem 1. Let MN be random functions and let M be a �xed function of
θ such that for every ε > 0

sup
θ∈Θ
|MN (θ)−M(θ)| P→ 0 sup

θ:d(θ,θ0)≥ε
M(θ) < M(θ0) .

Then, any sequence of estimators θ̂N with MN (θ̂N ) ≥ MN (θ0) + oP (1)
converges in probability to θ0.

The notation oP (1) denotes a sequence of random vectors that converge
to 0 in probability.

An equivalent theorem can be found for Z-estimators by applying The-
orem 1 to the functions MN (θ) = −||ΨN (θ)|| and M(θ) = −||Ψ(θ)||:

Theorem 2. Let ΨN be random vector-valued functions and let Ψ be a �xed
vector-valued function of θ such that for every ε > 0

sup
θ∈Θ
||ΨN (θ)−Ψ(θ)|| P→ 0 inf

θ:d(θ,θ0)≥ε
||Ψ(θ)|| > ||Ψ(θ0)|| = 0 .

Then any sequence of estimators θ̂N such that ΨN (θ̂N ) = oP (1) converges
in probability to θ0.

The second condition implies that θ0 is the only zero of Ψ(·) outside a
neighborhood of size ε around θ0. Since we assumed the criterion function
Ψ(·) to be continuous, it must be either strictly negative or strictly positive
for all θ which are more than ε away from θ0. Reverting to the antiderivative
M(θ) of Ψ(θ), this implies that M(θ) must be concave over the whole
parameter space Θ.
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Asymptotic Normality. Given consistency, the question about how the
estimators θN are distributed around the asymptotic limit θ0 arises. As-
suming the criterion function θ 7→ ψθ(D) to be twice continuously dif-
ferentiable, ΨN (θ̂N ) can be expanded through a Taylor series around θ0.
Together with the central limit theorem, the estimator θN is found to be
normally distributed around θ0 [115]. De�ning, for a more compact nota-
tion, v⊗ as the outer product of the vector v, i.e. v⊗ := vvT , we get the
following theorem:

Theorem 3. Assume that ED[ψθ0(D)⊗] < ∞ and that the map θ 7→
ED[ψθ(D)] is di�erentiable at a zero θ0 with non-singular derivative matrix.

Then, the sequence
√
n · (θ̂N − θ0) is asymptotically normal:
√
N · (θ̂N − θ0) N (0,Σ) , (6.6)

with asymptotic variance Σ

Σ = (ED[∇θψθ0(D)])
−1 · ED

[
(ψθ0(D))

⊗
]
· (ED[∇θψθ0(D)])

−T
. (6.7)

All expectation values are taken with respect to the true distribution of
the data items D.

6.1.4 Maximum-Likelihood Estimation on Single-Label
Data

To estimate parameters based on single-label data, a collection of data D =
{(X1, λ1), . . . , (XN , λN )}, λn ∈ {1, . . . ,K} for all n = 1, . . . , N , is separated
according to the class label, so that one gets K sets X1, . . . ,XK , where
Xk contains all observations with label k, formally Xk := {Xn|(Xn, λn) ∈
D, λn = k}. All samples in Xk are assumed to be i.i.d. random variables
distributed according to P (X|θk). It is assumed that the samples in Dk

do not provide any information about θk′ if k 6= k′, i.e. parameters for the
di�erent classes are assumed to be functionally independent of each other
[39]. Therefore, inference can be done independently for each class, yielding
K separate parameter estimation problems. In each problem, the criterion
function is

ΨNk(θk) =
1

Nk

∑
X∈Xk

ψθk((X, k)) , (6.8)

where Nk := |Xk| is the number of data items with label k. The parameter
estimator θ̂k is then determined such that ΨNk(θk) = 0.
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More speci�cally for maximum likelihood estimation of parameters of
exponential family distributions (Eq. 6.1), the criterion function ψθk(·) =
∇θ`(θ;D) (Eq. 6.5) for a data item D = (X, {k}) becomes

ψθk(D) = φ(X)− EΞk∼Pθk [φ(Ξk)] . (6.9)

Choosing the θ̂k such that the criterion function ΨNk(θk) is zero means
changing the model parameter such that the average value of the su�cient
statistics of the observations coincides with the expected su�cient statistics
of the source distributions:

ΨNk(θk) =
1

Nk

∑
X∈Xk

φ(X)− EΞk∼Pθk [φ(Ξk)] . (6.10)

Hence, maximum likelihood estimators in exponential families are moment
estimators [118]. The theorems of consistency and asymptotic normality
are directly applicable.

With the same formalism, it becomes clear why the inference problems
for di�erent classes are independent: Assume an observation X with label k
is given. Under the assumption of the generative model, the label k states
that X is a sample from source pθk . Trying to derive information about
the parameter θk′ of a second source k′ 6= k from X, we would derive pθk
with respect to θk′ to get the score function. Since pθk is independent of
θk′ , this derivative is zero, and the data item (X, k) does not contribute to
the criterion function ΨNk′ (θk′) (Eq. 6.10) for the parameter θk′ .

Fisher Information. For inference in a parametric model with a consis-
tent estimator θ̂k → θk, the Fisher information matrix I is de�ned as the
second moment of the score function. Since the parameter estimator θ̂ is
chosen such that average of the score function is zero, the second moment
of the score function corresponds to the variance of the su�cient statistic
φ(·):

IXk
(θk) := EX∼P

θG
k

[
ψθk(X)⊗

]
= −VX∼P

θG
k

[φ(X)] , (6.11)

where the expectation is taken with respect to the true distribution PθGk .
The Fisher Information thus indicates to what extend the score function
depends on the parameter. The larger this dependency is, the more the
provided data depends on the parameter value, and the more accurately
this parameter value can be determined for a given set of training data.
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The information of independent experiments or data sets is additive.
For two disjoint data sets D1 and D2 we thus have

I
X

(1)
k ,X

(2)
k

(θk) = I
X

(1)
k

(θk) + I
X

(2)
k

(θk) . (6.12)

The additivity property of the information allows us to specify the contri-
bution of di�erent subsets of data in the parameter estimation based on
multi-labeled data.

According to the Cramér-Rao bound [90, 31, 30], the inverse Fisher infor-
mation is a lower bound on the variance of any estimator of a deterministic
parameter. A consistent estimator for the parameter θk is called e�cient if
Σk = IXk

(θk)−1.
Under regularity conditions [115], which are ful�lled by maximum like-

lihood estimators, the asymptotic variance Σ in Eq. 6.7 becomes

Σ = IX(θ)−1 , (6.13)

i.e. the maximum likelihood estimators are e�cient.

6.2 Asymptotic Distribution of Multi-Label
Estimators

In this section, we extend the analysis to estimators based on multi-label
data. We restrict ourselves to maximum likelihood estimators for the pa-
rameters of exponential family distributions. Since we are mainly interested
in comparing di�erent ways to learn from data, we also assume the para-
metric form of the distribution to be known, and that the inference step
consists of estimating the parameters of a distribution in the exponential
family.

6.2.1 From Observations to Source Emissions

In single-label inference problems, each observation provides a sample of a
source indicated by the label, as discussed in Section 6.1.4. In the case of
inference based on multi-label data, the situation is more involved, since
the source emissions can not be observed directly. The relation between the
source emissions and the observations are formalized by the combination
function (see Section 2.1), which describes the observationX obtained based
on an emission vector Ξ.
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To do inference, one needs to determine which emission vector Ξ has
yielded the observed X. To solve this inverse problem, an inference method
relies on further assumptions besides the assumption on the type of distri-
bution, namely on the combination function. These design assumptions �
made implicitly or explicitly � enable the inference scheme to derive infor-
mation about the distribution of the source emissions given an observation.

In this analysis, we focus on di�erences in the assumed combination
function. We denote by PM(X|Ξ,L) the probability distribution of an
observation X given the emission vector Ξ and the label set L as assumed
by methodM. PM(X|Ξ,L) denotes the probabilistic representation of the
combination function. We formally describe several techniques along with
the analysis of their estimators in Section 6.3. It is worth mentioning that
for single-label data, all estimation techniques considered in this work are
equal and yield consistent and e�cient parameter estimators, as they agree
on the combination function for single-label data: The identity function is
the only reasonable choice in this case.

The probability distribution of X given the label set L, the parameters
θ and the combination function assumed by method M can be computed
by marginalizing Ξ out of the joint distribution of Ξ and X:

PML,θ(X) := PM(X|L,θ) =

∫
PM(X|ξ,L) dP (Ξ|θ) . (6.14)

For the probability of a data item D = (X,L) given the parameters θ under
the assumptions made by modelM, we have

PMθ (D) := PM(X,L|θ) = P (L) · PM(X|L,θ) (6.15)

= πL ·
∫
PM(X|Ξ,L)p(Ξ|θ) dΞ . (6.16)

Estimating the probability of the label set L, πL, is a standard problem of
estimating the parameters of a multinomial distribution [41]. According to
the central limit theorem, the empirical frequency of occurrence converges
to the true probability for each label set. Therefore, we do not further
investigate this estimation problem and assume that the true value of πL
can be determined for all L ∈ L.

The probability of a particular emission vector Ξ given a data item D
and the parameters θ is computed using Bayes' theorem:

PMD,θ(Ξ) := PM(Ξ|X,L,θ) =
PM(X|Ξ,L) · P (Ξ|θ)

PM(X|L,θ)
(6.17)
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We point out that the distribution PM(Ξ|D,θ) might depend on the pa-
rameters θ. This means that the estimation of the contributions of a source
may depend on the parameters of a di�erent source. Consider for example
the case where you observe the sum of emissions from two Gaussian dis-
tributions: The distribution of the emissions of one source depends on the
estimated mean and variance of the other source. More generally, while two
emissions Ξ1, Ξ2 are assumed to be independent, this independence is lost
once we condition on the observation X.

The distribution PM(Ξ|D,θ) describes the essential di�erence between
inference methods for multi-label data. For an inference methodM which
assumes that an observation X is a sample from each source contained in
the label set L, PM(Ξk|D,θ) is a point mass (Dirac mass) at X. For
methods which assume that several emission vectors are mapped to the
same observation, and PM(Ξ|D,θ) is a non-degenerate density function.

6.2.2 Conditions for Identi�ability

As in the standard scenario of learning from single-label data, parameter
inference is only possible if there is a one-to-one relation between the param-
eters θ and the distribution Pθ. Conversely, parameters are unidenti�able
if θ(1) 6= θ(2), but Pθ(1) = Pθ(2) . For our setting as speci�ed in Eq. 6.16,
this is the case if

N∑
n=1

log

(
πLn

∫
PM(Xn|ξ,Ln)p(ξ|θ(1)) dξ

)

=

N∑
n=1

log

(
πLn

∫
PM(Xn|ξ,Ln)p(ξ|θ(2)) dξ

)

but θ(1) 6= θ(2). The following situations imply such a scenario:

• A particular source k never occurs in the label set, formally

|{L ∈ L|k ∈ L}| = 0 or πL = 0 ∀L ∈ L : L 3 k

This is the trivial case � one can not infer the parameters of a source
without observing emissions from that source. In such a case, the
probability of the observed data (Eq. 6.16) is invariant of the param-
eters θk of source k.
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• The combination function ignores all (!) emissions of a particular
source k. Thus, under the assumptions of the inference method M,
the emission Ξk of source k never has an in�uence on the observation.
Hence, the combination function does not depend on Ξk. If this is the
case for all L, no information on the source k can be obtained from
the data.

• The data available for inference does not support distinguishing di�er-
ent parameters of a pair of sources. Assume for example that source 2
only occurs together with source 1, i.e. for all n with 2 ∈ Ln, we also
have 1 ∈ Ln. Unless the combination function is such that informa-
tion can be derived about the emissions Ξ1 and Ξ2 of both sources 1
and 2 for some of the data items, there is a set of parameters θ1 and
θ2 for the two sources that yields the same likelihood.
Consider for example two sources with Gaussian distributions with
parameters θk = (µk, σ

2
k) for k = 1, 2 and the addition as combination

function. Observations with label {1, 2} are then distributed accord-
ing to N (µ1 + µ2, σ

2
1 + σ2

2). If labels 1 and 2 always occurs together,
the value of the sums can be estimated, but there is no possibility to
determine the values of the parameters (µ1, σ

2
1) and (µ2, σ

2
2) of the

individual sources.

If the distribution of a particular source is unidenti�able, the assumption
that the source in question exists is questionable. More speci�cally, in the
�rst two cases, there is empirically no evidence for the existence of a source
which is either never observed or has no in�uence on the data. In the last
case, one might wonder whether the two classes 1 and 2 are really separate
entities, or whether it might be more reasonable to merge them to a single
class.

6.2.3 Maximum Likelihood Estimation on Multi-Label
Data

Based on the probability of a data item D given the parameter vector θ
under the assumptions of the inference method M (Eq. 6.16) and using a
uniform prior over the parameters, the log-likelihood of a parameter θ given
a data item D = (X,L) is then given by `M(θ;D) = log

(
PM(X,L|θ)

)
.

Using the particular properties of exponential family distributions (Eq. 6.2),
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we get the following expression for the score function:

ψMθ (D) = ∇`M(θ;D) (6.18)

= EΞ∼PMD,θ
[φ(Ξ)]−∇A(θ)

= EΞ∼PMD,θ
[φ(Ξ)]− EΞ∼Pθ

[φ(Ξ)] . (6.19)

Comparing the score function with the score function obtained in the single-
label case (Eq. 6.10), the di�erence in the �rst term becomes apparent.
While the �rst term is the su�cient statistic of the observation in the pre-
vious case, we now �nd the expected value of the su�cient statistic of the
emissions, conditioned on D = (X,L). This formulation contains the single-
label setting as a special case: Given the single-label observation X with
label k, we are sure that the kth source has emitted X, i.e. Ξk = X. In the
more general case of inference on multi-label data, several emission vectors
Ξ might have produced the observed X. The distribution of these emission
vectors (given the data item D and the parameter vector θ) is given by
Eq. 6.17. The expectation of the su�cient statistics of the emissions with
respect to this distribution now plays the role of the su�cient statistic of
the observation in the single-label case.

As in the single-label case, we assume that several emissions are inde-
pendent given their sources. The likelihood and the criterion function for a
full data set D = (D1, . . . , DN ) thus factorize:

`M(θ; D) =

N∑
n=1

`M(θ;Dn) ΨMN (θ) =
1

n

N∑
n=1

ψMθ (Dn) (6.20)

In the following, we analyze estimators θ̂MN which are Z-estimators, i.e.
obtained by setting ΨMN (θ̂MN ) = 0. We analyze the asymptotic behavior of
the criterion function ΨMN and derive conditions for consistent estimators.
Afterwards, we compute the convergence rate of the estimator to the true
value of the parameter.

6.2.4 Asymptotic Behavior of the Estimation Equation

We �rst analyze the criterion function as de�ned in Eq. 6.20. Note that the
N observations used to estimate ΨMN (θM0 ) come from a mixture of distri-
butions speci�ed by the label sets. Using the i.i.d. assumption (Eq. 6.20),
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and de�ning DL := {(X ′,L′) ∈ D|L′ = L}, we have

ΨMN (θ) =
1

N

N∑
n=1

ψMθ (Dn)

=
1

N

∑
L∈L

∑
D∈DL

ψMθ (D)

=
1

N

∑
L∈L
|DL|

1

|DL|
∑
D∈DL

ψMθ (D) (6.21)

Denote by NL := |DL| the number of training samples with label set L, and
by PL,D the empirical distribution of observations with label set L. Then,

1

NL

∑
D∈DL

ψMθ (D) = EX∼PL,D
[
ψMθ ((X,L))

]
is an average of independent, identically distributed random variables. By
the central limit theorem, this empirical average converges to the true av-
erage as the number of data items, NL, goes to in�nity:

EX∼PL,D
[
ψMθ ((X,L))

]
 EX∼PL,θG

[
ψMθ ((X,L))

]
. (6.22)

Furthermore, we de�ne π̂L := NL
N . Again by the central limit theorem, we

have π̂L  πL. Inserting (6.22) into (6.21), we get

ΨMN (θ) =
∑
L∈L

π̂LEX∼PL,D
[
ψMθ ((X,L))

]
 
∑
L∈L

πLEX∼PL,θG
[
ψMθ ((X,L))

]
(6.23)

Plugging in the value of the score function as derived in Eq. 6.19 into the
asymptotic behavior of the criterion function for Z-estimators (Eq. 6.23),
we get

ΨMN (θ) 
∑
L∈L

πLEX∼PL,θG
[
ψMθ ((X,L))

]
= ED∼PθG

[
EΞ∼PMD,θ

[φ(Ξ)]
]
− EΞ∼Pθ

[φ(Ξ)] (6.24)

This expression shows that also for inference based in multi-label data,
the maximum likelihood estimator is a moment estimator. However, the
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source emissions can not be observed directly, and the expected value of its
su�cient statistic takes its place, where the average is taken with respect to
the distribution of the source emissions assumed by the inference method
M.

6.2.5 Conditions for Consistent Estimators

In this section, we list conditions under which the estimator θ̂MN , determined
as a zero of ΨMN (θ), is consistent.

Theorem 4 (Consistency of Estimators). If the inference method M uses
the true conditional distribution of the source emissions Ξ given data items,
i.e. PM(Ξ|(X,L),θ) = PG(Ξ|(X,L),θ) for all data items D = (X,L),

then the estimator θ̂N determined as a zero of ΨMN (θ), as de�ned in Eq. 6.24,
is consistent.

Proof. The true parameter of the generative process, denoted by θG, is a
zero of ΨG(θ), the criterion function derived from the true generative model.
According to Theorem 2, a necessary condition for consistency of θ̂MN is

sup
θ∈Θ
||ΨMN (θ)−ΨG(θ)|| P→ 0 .

Inserting the expression for the criterion function as derived in Eq. 6.24, we
get the condition∥∥∥ED∼PθG

[
EΞ∼PMD,θ

[φ(Ξ)]
]
− EΞ∼Pθ

[φ(Ξ)]

−ED∼PθG

[
EΞ∼PGD,θ

[φ(Ξ)]
]

+ EΞ∼Pθ
[φ(Ξ)]

∥∥∥
=
∥∥∥ED∼PθG

[
EΞ∼PMD,θ

[φ(Ξ)]
]
− ED∼PθG

[
EΞ∼PGD,θ

[φ(Ξ)]
]∥∥∥ = 0 . (6.25)

Separating the generative process for the data itemsD ∼ PθG into a separate
generation of the label set L and an observation X, L ∼ PπG , X ∼ PL,θG ,
the condition in Eq. 6.25 is ful�lled if∑
L∈L

πLEX∼PG
L,θG

[∥∥∥EΞ∼PM
(X,L),θ

[φ(Ξ)]− EΞ∼PG
(X,L),θ

[φ(Ξ)]
∥∥∥] = 0 . (6.26)

Using the assumption that PM(X,L),θ = PG(X,L),θ for all data itemsD = (X,L),
this condition is trivially ful�lled.
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Di�erences between PMDδ,θ and P
G
Dδ,θ for some data itemsDδ = (Xδ,Lδ),

on the other hand, have no e�ect on the consistency of the result if either
the probability of Dδ is zero, or if the expected value of the su�cient statis-
tics is identical for the two distributions. The �rst situation implies that
either the label set Lδ never occurs in any data item, or the observation Xδ

never occurs with label set L. The second situation implies that the param-
eters are unidenti�able. Hence, we formulate the stronger conjecture that
if inference procedure which yields inconsistent estimators on data with a
particular label set, its overall parameter estimators are inconsistent.

As we show later in Section 6.3, ignoring all multi-label data yields con-
sistent estimators. However, discarding a possibly large part of the data is
not e�cient, which motivates the quest for more advanced inference tech-
niques to retrieve information about the source parameters from multi-label
data. However, advanced models entail the risk to assume a criterium func-
tion which yields inconsistent estimators. We discuss an example of a class
of such criterion functions in Chapter 7.

6.2.6 E�ciency of Parameter Estimation

Given that an estimator θ̂ is consistent, the next question of interest con-
cerns the rate at which the deviation from the true parameter value con-
verges to zero. This rate is given by the asymptotic variance of the estimator
in Eq. 6.7. In the following, we compute the asymptotic variance speci�-
cally for maximum likelihood estimators. This analysis allows us to compare
di�erent inference techniques which yield consistent estimators in terms of
how e�ciently they use the provided data set for inference.

Generalized Fisher Information. The Fisher information is introduced
to measure the information content of an data item about the parameters
of the source that are assumed to have generated the data. In multi-label
classi�cation, the de�nition of the Fisher information (Eq. 6.11) has to be
extended, as the source emissions are only indirectly observed. We de�ne
the Generalized Fisher Information as follows:

De�nition 2. Generalized Fisher Information. The General Fisher
Information IL measures the amount of information a data item D = (X,L)
with label set L contain about the parameter vector θ:

IL := VΞ∼Pθ
[φ(Ξ)]− EX∼PL,θ

[
VΞ∼PMD,θ

[φ(Ξ)]
]

(6.27)
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The term VΞ∼PMD,θ
[φ(Ξ)] measures the uncertainty about the source

emissions Ξ, given a data item D. This term vanishes if and only if the
data item D completely determines the source emission(s) of all involved
sources. In the other extreme case where the data item D does not reveal
any information about the source emissions, this is equal to VΞ∼Pθ

[φ(Ξ)],
and the generalized Fisher information is thus 0.

Asymptotic Variance. We are now ready to determine the asymptotic
variance of an estimator.

Theorem 5 (Asymptotic Variance). Denote by PMD,θ(Ξ) the distribution of
the emission vector Ξ given the data item D and the parameters θ under
the assumptions made by the inference method M. Furthermore, let IL
denote the generalized Fisher information of data with label set L. Then,
the asymptotic variance of the maximum likelihood estimator θ̂ is given by

Σ = (EL[IL])
−1 ·

(
VD
[
EΞ∼PMD,θ

[φ(Ξ)]
])
· (EL[IL])

−1
, (6.28)

where all expectations and variances are computed with respect to the true
distribution.

Proof. We derive the asymptotic variance based on Theorem 3 on asymp-
totic normality of M -estimators. The �rst and last factor in Eq. 6.7 are the
derivative of the criterion function ψMθ (D) as de�ned in Eq. 6.18:

∇θψ
M
θ (D) = ∇2

θ`
M(θ;D) =

∇2
θP
M
θ (D)

PMθ (D)
−
(
∇PMθ (D)

PMθ (D)

)⊗
. (6.29)

The particular properties of the exponential family distributions imply

∇2PMθ (D)

PMθ (D)
=
(
EΞ∼PMD,θ

[φ(Ξ)]− EΞ∼Pθ
[φ(Ξ)]

)⊗
+ VΞ∼PMD,θ

[φ(Ξ)]− VΞ∼Pθ
[φ(Ξ)]

. (6.30)

With ∇PMθ (D)/PMθ (D) = ψMθ (D) and using Eq. 6.19, we get

∇ψMθ (D) = VΞ∼PMD,θ
[φ(Ξ)]− VΞ∼Pθ

[φ(Ξ)] .

Taking the expectation over the data items D, we get the expected gener-
alized Fisher information matrix over all label sets:

ED∼PθG
[∇ψθ(D)] = ED∼PθG

[
VΞ∼PMD,θ

[φ(Ξ)]
]
− VΞ∼Pθ

[φ(Ξ)] = EL[IL] .

(6.31)
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For the middle term of Eq. 6.7, we have

ED∼PθG

[
(ψθ(D))

⊗
]

= VD∼PθG

[
EΞ∼PM

D,θ̂
[φ(Ξ)]

]
+
(
ED∼PθG

[
EΞ∼PM

D,θ̂
[φ(Ξ)]

]
− EΞ∼Pθ̂

[φ(Ξ)]
)⊗

The condition for θ̂ given in Eq. 6.24 implies

ED∼PθG

[
(ψθ(D))

⊗
]

= VD∼PθG

[
EΞ∼PMD,θ

[φ(ξ)]
]

(6.32)

Using Eq. 6.7 we get the expression for the asymptotic variance of the
estimator θ stated in the theorem.

According to this result, the asymptotic variance of the estimator is de-
termined by two factors. We analyze them in the following two subsections
and afterwards derive some well-known results for special cases.

Bias-Variance Decomposition

We de�ne the expectation-deviance for label set L as the di�erence between
the expected value of the su�cient statistics under the distribution assumed
by methodM, given observations with label set L, and the expected value
of the su�cient statistic given all data items:

∆EML := EX∼PL,θG
[
EΞ∼PM

(X,L),θ̂
[φ(Ξ)]− ED′∼PθG

[
EΞ∼PM

D′,θ̂
[φ(Ξ)]

]]
(6.33)

The middle factor (Eq. 6.32) of the estimator variance is the variance in
the expectation values of the su�cient statistics of the emission vectors Ξ.
Using the identity EX

[
X2
]

= EX [X]
2

+ VX [X], and splitting D = (X,L)
into the observation X and the label set L, it can be decomposed as

VD∼PθG

[
EΞ∼PM

D,θ̂
[φ(Ξ)]

]
= EL∼Pπ

[(
∆EML

)⊗]
+ EL

[
VX∼PL,θG

[
EΞ∼PM

(X,L),θ̂
[φ(Ξ)]

]]
.

(6.34)

This decomposition shows that two independent e�ects can cause a high
variance of the estimator:

1. The expected value of the su�cient statistics of the source emissions
based on observations with a particular label L deviates from the
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true parameter value. Note that this e�ect can be present even if
the estimator is consistent: These deviations of su�cient statistics
conditioned on a particular label set might cancel out each other when
averaging over all label sets and thus yield a consistent estimator.
However, an estimator obtained by such a procedure has a higher
variance than an estimator which is obtained by a procedure which
yields consistent estimators also conditioned on every label set.

2. The expected value of the su�cient statistics of the source emissions
given the observation X varies with X. This contribution is typically
large for one-against-all methods [95].

Note that for inference methods which ful�ll the conditions of Theorem 4,
we have ∆EML = 0. Methods which yield consistent estimators on any label
set are thus not only provably consistent, but also yield parameters with
less variation.

Special Cases

In the following, we focus on some special cases in which the above result
reduces to well-known results.

Variance of Estimators on Single-Label Data: If estimation is based
on single-label data, the source emissions are fully determined by the avail-
able data, as the observations are considered to be direct emissions of the
respective source. Formally, with D = (X,L) and L = {λ}, we thus have

PMD,θ(Ξ) =

K∏
k=1

PMD,θk(Ξk) , with PMD,θk(Ξk) =

{
1{Ξk=X} if k = λ
P (Ξk|θk) otherwise

The estimation procedure is thus independent for every source k. Further-
more, we have

EΞk∼PMD,θk
[φ(Ξk)] = X VΞk∼PMD,θk

[φ(Ξk)] = 0 .

Hence, Σ is a diagonal matrix, with diagonal elements

Σkk = I−1
{k}

(
VX∼P

θG
k

[φ(X)] +
(
EX∼P

θG
k

[φ(X)]− EΞk∼Pθk [φ(Ξk)]
)⊗)

I−1
{k}
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Variance of Consistent Estimators: For consistent estimators, we have

ED∼PθG

[
EΞ∼PMD,θ

[φ(Ξ)]
]

= EΞ∼Pθ
[φ(Ξ)]

and thus

Σ = (EL[IL])
−1 · VD∼PθG

[
EΞ∼PMD,θ

[φ(Ξ)]
]
· (EL[IL])

−1
.

Variance of Consistent Estimators on Single-Label Data: Combin-
ing the two aforementioned conditions, we get

Σλλ = VΞ∼Pθ
[φ(Ξ)]

−1
= IXλ

(θλ) , (6.35)

which corresponds to the well-known result for inference based on single-
label data obtained in Eq. 6.13.

6.3 Asymptotic Analysis of Multi-Label Infer-
ence Methods

In this section, we formally describe techniques for inference based on multi-
labeled data and apply the results obtained in Section 6.2 to study the
asymptotic behavior of estimators obtained with these methods.

6.3.1 Ignore Training (Mignore)

The ignore training is probably the simplest, but also the most limited way
of treating multi-label data: Data items which belong to more than one
class are simply ignored [11], i.e. the estimation of source parameters is
uniquely based on single-label data. Thus reducing the inference problem
to a single-label problem, the overall probability of an emission vector Ξ
given the data item D factorizes as

P ignoreD,θ (Ξ) =

K∏
k=1

P ignoreD,θ,k (Ξk) (6.36)

Each of the factors P ignoreD,θ,k (Ξk), representing the probability distribution of

source k, only depends on the parameter θk, i.e. we have P ignoreD,θ,k (Ξk) =

P ignoreD,θk
(Ξk) for all k = 1, . . . ,K. A data item D = (X,L) does only provide
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information about source k if L = {k}. In the case L 6= {k}, the probability
distribution of emissions Ξk, P

ignore

D,θ̂k
(Ξk), is not in�uenced by the data item

D, i.e. it maintains its value given the current parameter estimator θ̂k.

P ignore
D,θ̂k

(Ξk) =

{
1{Ξk=X} if L = {k}

P ignore
θ̂k

(Ξk) otherwise (6.37)

Observing a multi-label data items does not change the assumed probability
distribution of any of the classes. These data items are thus treated as
uninformative by the methodMignore.

Deriving the log-likelihood function implied by Equations 6.36 and 6.37
with respect to the parameter θk, we obtain the following criterion function
given a data item D:

ψignoreθ (D) =

K∑
k=1

ψignoreθk
(D) (6.38)

with

ψignoreθk
(D) =

{
φ(X)− EΞk∼Pθ̂k

[φ(Ξk)] if L = {k}
0 otherwise

(6.39)

The estimator θ̂ignore is consistent and normally distributed:

Lemma 1. The estimator θ̂ignoreN determined as a zero of Ψignore
N (θ) as

de�ned in Eq. 6.20 and Eq. 6.39 is distributed according to
√
N · (θ̂ignoreN − θG)→ N (0,Σignore) . (6.40)

The covariance matrix Σignore is given by

Σignore = diag
(

Σignore11 , . . . ,ΣignoreKK

)
(6.41)

with the matrices on the diagonal given by

Σignorekk = VX∼Pθk
[
ψignoreθk

((X, {k}))
]−1

. (6.42)

This statement follows directly from Theorem 3 about the asymptotic
distribution of estimators based on single-label data. A formal proof is given
in Section A.1 in the appendix.
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6.3.2 New Source Training (Mnew)

New source training de�nes new meta-classes for each label set such that
every data item belongs to a single class (in terms of these meta-labels) [107].
Doing so, the number of parameters to be inferred is heavily increased as
compared to the generative process.

We de�ne the number of possible label sets as L := |L| and assume an
arbitrary, but �xed, ordering of the possible label sets. Let L[l] be the lth

label set in this ordering. Then, we have:

PnewD,θ (Ξ) =

L∏
l=1

PnewD,θ,l(Ξl) (6.43)

As for Mignore, each of the factors represents the probability distribution
of one of the sources given the data item D. Hence

PnewD,θ,l(Ξl) = PnewD,θl
(Ξl) =

{
1{Ξl=X} if L = L[l]
PnewL,θl (Ξl) otherwise

(6.44)

For the criterion function on a data item D = (X,L), we thus have

ψnewθ (D) =

L∑
l=1

ψnewθl
(D) (6.45)

ψnewθl
(D) =

{
ψ(X)− EΞl∼Pθl [ψ(Ξl)] if L = L[l]

0 otherwise
(6.46)

The estimator θ̂newN is consistent and normally distributed:

Lemma 2. The estimator θ̂newN obtained as a zero of the criterion function
Ψnew
N (θ) is asymptotically distributed as

√
N · (θ̂newN − θG)→ N (0,Σnew) . (6.47)

The covariance matrix is block-diagonal

Σnew = diag (Σnew11 , . . . ,ΣnewLL ) (6.48)

with the diagonal elements given by

Σnewll = VX∼PnewL[l],θl

[
ψθGl (X)

]−1

. (6.49)
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Again, this corresponds to the result obtained for consistent single-label
inference techniques in Eq. 6.35. We refer to Section A.1 for a proof.

The main drawback of this method is that there are typically not enough
training data available to reliably estimate a parameter set for each label
set. Furthermore, it is not possible to assign a new data item to a label set
which is not seen in the training data.

6.3.3 Cross-Training (Mcross)

Cross-training, as proposed in [11], takes each sample x which belongs to
class k as an emission of class k � independently of which other labels the
data item has. The probability of the source emission vector Ξ thus factor-
izes into a product over the probabilities of the di�erent source emissions:

P crossD,θ (Ξ) =

K∏
k=1

P crossD,θ,k(Ξk) (6.50)

The probability distribution of each source is assumed to be independent of
all other sources, i.e. we have P crossD,θ,k(Ξk) = P crossD,θk

(Ξk), with

P crossD,θk
(Ξk) =

{
1{Ξk=X} if k ∈ L
Pθk(Ξk) otherwise

(6.51)

Again, P crossD,θk
= Pθk(Ξk) in the case k /∈ L means that X does not provide

any information about the assumed Pθk , i.e. the estimated distribution is
unchanged. For the criterion function, we have

ψcrossθ (D) =

K∑
k=1

ψcrossθk
(D) (6.52)

ψcrossθk
(D) =

{
φ(X)− EΞk∼Pθk [φ(Ξk)] if k ∈ L

0 otherwise
(6.53)

The parameters obtained byMcross are not consistent:

Lemma 3. The estimator θ̂cross obtained as a zero of the criterion function
ψcrossN (θ) are inconsistent if the training data set contains at least one multi-
label data item.

The inconsistency is due to the fact that multi-label data items are used
to estimate the parameters of all sources the data item belongs to without
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considering the in�uence of the other sources. The bias of the estimator
grows as the fraction of multi-label data increases. A formal proof is given
in the appendix (Section A.1).

6.3.4 Deconvolutive Training (Mdeconv)

The deconvolutive training method aims at estimating the distribution of
the source emissions given a data item D = (X,L). We assume in the
following that the true combination function is deterministic. Modeling the
generative process, the distribution of an observation X given the emission
vector Ξ and the label set L is given by

P deconv(X|Ξ,L) = 1{X=cdeconvκ (Ξ,L)} (6.54)

Integrating out the source emissions, we obtain the probability of an obser-
vation x given the label set L and the parameter vector θ as

P deconv(X|L,θ) =

∫
P (X|Ξ,L) dP (Ξ|θ) (6.55)

Using Bayes' theorem and the above notation, we have:

P deconv(Ξ|D,θ) =
P deconv(X|Ξ,L) · P deconv(Ξ|θ)

P deconv(X|L,θ)
(6.56)

If the true combination function is provided to the method, or the method
can correctly estimate this function, then P deconv(Ξ|D,θ) corresponds to
the true conditional distribution. The target function is given as

ψdeconvθ (D) = EΞ∼Pdeconv
D,θ̂

[φ(Ξ)]− EΞ∼Pθ
[φ(Ξ)] (6.57)

Unlike in the methods presented before, the combination function c used
in Mdeconv has to be provided along with the data. It is typically deter-
mined based on prior knowledge of the process which generates the data.
For this reason, it is not possible to describe the distribution of the estima-
tors obtained by this method in general. However, given the identi�ability
conditions discussed in Section 6.1.2, the parameter estimators converge to
their true values.
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6.4 Addition of Gaussian-Distributed
Emissions

We consider the case of two univariate Gaussian distributions with variance
σ2, σ > 0. The sample space of the Gaussian distribution is given by R,
and the probability density function is

p(ξ) =
1

σ
√

2π
exp

(
− (ξ − µ)2

2σ2

)
. (6.58)

Mean and standard deviation of the kth source are denoted by µk and σk,
respectively, for k = 1, 2. Rearranging terms in order to write the Gaussian
distribution as a member of the exponential family as in Eq. 6.1, we get

θk =

(
µk
σk2

,− 1

2σk2

)T
T =

(
x, x2

)T
A(θk) =

µk
2

2σk2
− ln

(
1

σk

)
= − θk,1

2

4θk,2
− ln

(√
−2θk,2

)
The natural parameters θ are not the most common parametrization of the
Gaussian distribution. However, the usual parameters (µk, σ

2
k) can be easily

computed from the parameters θk:

− 1

2σ2
k

= θk,2 ⇐⇒ σ2
k = − 1

2θk,2
θk,1 =

µk
σ2
k

⇐⇒ µk = σ2
k · θk,1 . (6.59)

The parameter space is Θ = {(θ1, θ2) ∈ R|θ2 < 0}. In the following, we
assume µ1 = −a and µ2 = a. The parameters of the �rst and second source
are thus given by

θ1 =

(
− a

σ1
2
,− 1

2σ1
2

)T
θ2 =

(
a

σ2
2
,− 1

2σ2
2

)T
(6.60)

As combination function, we choose the addition: k(Ξ1,Ξ2) = Ξ1 + Ξ2.
We allow both single labels and the label set {1, 2}, i.e. the set of possible
label sets is L = {{1}, {2}, {1, 2}}. The expected values of the observation
X conditioned on the label set are thus as follows:

EX∼P1 [X] = −a EX∼P2 [X] = a EX∼P1,2 [X] = 0 . (6.61)
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Since the convolution of two Gaussian distributions is again a Gaussian
distribution, data with the multi-label set {1, 2} is also distributed according
to a Gaussian. We denote the parameters of this proxy-distribution by θ12,
with

θ12 =

(
0,− 1

2(σ1
2 + σ2

2)

)T
.

In the following, we analyze the estimation accuracy of di�erent ap-
proaches and then compare the obtained results with results from experi-
ments. We focus on the estimation of the mean value. However, due to the
parametrization in the exponential families, we also need to compute the
estimator for the standard deviation. As a quality measure for the estimator
θ̂, we use the mean square error (MSE) as de�ned in Section 2.4.1.

Lemma 4. Assume a generative setting as described above. Denote the
total number of data items by N and the fraction of data items with label
set L by πL. Furthermore, we de�ne

w12 := π2σ
2
1 + π1σ

2
2 s12 := σ2

1 + σ2
2 .

The mean square error in the estimator of the mean, averaged over all
sources, for the inference methods Mignore, Mnew, Mcross and Mdeconv

is as follows:

MSE(µ̂ignore,µ) =
1

2

(
σ1

2

π1N
+

σ2
2

π2N

)
(6.62)

MSE(µ̂new,µ) =
1

3

(
σ1

2

π1N
+

σ2
2

π2N
+
σ1

2 + σ2
2

π12N

)
(6.63)

MSE(µ̂cross,µ) =
1

2
π2

12

(
1

(π1 + π12)2
+

1

(π2 + π12)2

)
a2

+
1

2
π12

(
π1

(π1 + π12)3N
+

π2

(π2 + π12)3N

)
a2

+
1

2

(
π1σ

2
1 + π12σ

2
12

(π1 + π12)2N
+
π2σ

2
2 + π12σ

2
12

(π2 + π12)2N

) (6.64)

MSE(µ̂deconv,µ) =
1

2

(
π2

12σ
2
2w12 + π12π2m1 + π1π

2
2s

2
12

(π1π2s12 + π12w12)
2
N

σ2
1

+
π2

12σ
2
1w12 + π12π1m2 + π2

1π2s
2
12

(π1π2s12 + π12w12)
2
N

σ2
2

) (6.65)
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(a) Estimator Accuracy forMignore (b) Estimator Accuracy forMnew

(c) Estimator Accuracy forMcross (d) Estimator Accuracy forMdeconv

Figure 6.1: Deviation of parameter values from true values: The box plot
indicate the values obtained in an experiment with 100 runs, the red line
gives the root mean square error (RMS) predicted by the asymptotic anal-
ysis. Note the di�erence in scale in Figure 6.1(c).

with m1 := (π2σ
2
1σ

2
12 + 2π1σ

2
2s12) and m2 := (π1σ

2
2σ

2
12 + 2π2σ

2
1s12).

The proof mainly consists of lengthy calculations and is given in Sec-
tion A.2. We rely on the computer-algebra system Maple for parts of the
calculations.

To verify the theoretical result, we apply the presented inference tech-
niques to synthetic data, generated with a = 3.5 and unit variance: σ1 =
σ2 = 1. The Bayes error, i.e. the error of the optimal generative classi�er,
in this setting is 9.59%. We use training data sets of di�erent size and test
sets of the same size as the maximal size of the training data sets. All ex-
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Figure 6.2: Accuracy of µ̂ for di�erent training set sizes and di�erent in-
ference techniques. Mcross is not consistent and thus has a non-vanishing
RMS error of a/2 in this experimental setting. The three other inference
techniques yield consistent estimators, but at di�erent convergence rates:
The estimators obtained by Mdeconv have the fastest convergence, Mnew

attains the slowest convergence of the three consistent techniques.

periments are repeated with 100 randomly sampled training and test data
sets.

In Figure 6.1, the average deviation of the estimated source centroids
from the true centroids are plotted for di�erent inference techniques and a
varying number of training data and compared with the values predicted
from the asymptotic analysis. Mcross has a clear bias, i.e. a deviation from
the true parameter values which does not vanish as the number of data
items grows to in�nity. All other inference technique are consistent, but
di�er in the convergence rate.

Furthermore, we observe that the predictions from theory agree with
the deviations measured in the experiments. Small di�erences are obtained
for small training set sizes, as in this case, the assumptions underlying the
asymptotic analysis are only partially ful�lled. As the number of data items
increases, these deviations vanish.

Figure 6.2 shows the asymptotic behavior of the estimation accuracy for
di�erent inference techniques. Mcross yields biased estimators, while the
three other methods yield consistent estimators. Mdeconv attains the fastest
convergence, followed byMignore. Mnew has the slowest convergence of the
analyzed consistent inference techniques, as this method infers parameters
of a separate class for the multi-label data. Due to the generative process,
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(a) Average Precision (b) Average Recall

(c) Average F-Score (d) Balanced Error Rate

Figure 6.3: Classi�cation quality of di�erent inference methods. Data is
generated from two sources with mean ±3.5 and standard deviation 1. The
experiment is run with 100 pairs of training and test data.

these data items have a higher variance, which entails a high variance of
the respective estimator. Therefore,Mnew has a higher average estimation
error thanMnew.

Finally, the quality of the classi�cation results obtained by di�erent
methods is given in Figure 6.3. The low precision value of Mdeconv shows
that this classi�cation rule is more likely to assign a wrong label to a data
item than the competing inference methods. Paying this price, on the other
hand,Mdeconv yields the highest recall values of all classi�cation techniques
analyzed in this work. On the other extreme, Mcross andMignore have a
precision of 100%, but a very low recall of about 75%. Note thatMignore
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only handles single-label data and is thus limited to attributing single la-
bels. In the setting of this experiments, the single label data items are very
clearly separated. A confusion is thus very unlikely, which explains the very
precise labels as well as the low recall rate. In terms of the F-score, which
is the harmonic mean of the precision and the recall, Mdeconv yields the
best results for all training set sizes, closely followed by Mnew. Mignore

andMcross lie clearly behind.
Also for the balanced error rate BER, the deconvolutive model yields

the best results, with Mnew reaching similar results. Both Mcross and
Mignore incur signi�cantly higher errors. InMcross, this e�ect is caused by
the biased parameter estimators, while Mignore has discarded all training
data with label set {1, 2} and can thus �not do anything with such data�.

6.5 Disjunction of Bernoulli-Distributed Emis-
sions

We consider the Bernoulli distribution as an example of a discrete distribu-
tion in the exponential family with emissions in B := {0, 1}. The Bernoulli
distribution has one parameter β, which describes the probability for a 1
(usually used to represent �success�). To represent the Bernoulli distribution
as a member of the exponential family, we use the following parametrization:

θk = log

(
βk

1− βk

)
φ(Ξk) = Ξk

A(θk) = − log (1− βk) = − log

(
1− exp θk

1 + exp θk

)
Given the parameter θk, the value of βk is given by βk = exp θk

1+exp θk
. We

use both parameterizations in parallel, with the semantics that β is the
probability for a 1, and θ is the parameter of the distribution as a member
of the exponential family. For simpler notation, we de�ne

ek := EΞ∼Bern(βk)[Ξ] =
exp θk

1 + exp θk
= βk (6.66)

vk := VΞ∼Bern(βk)[Ξ] =
exp θk

(1 + exp θk)2
= βk(1− βk) (6.67)
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As combination function, we consider the Boolean OR, which yields a 1
if either of the two inputs is 1, and 0 otherwise. Thus, we have

P (X = 1|L = {1}) = β1 (6.68)

P (X = 1|L = {2}) = β2 (6.69)

For the distribution of the multi-labeled observations, we have

P (X = 1|L = {1, 2}) = β1 + β2 − β1β2 := β12 (6.70)

Note that β12 ≥ β1 and β12 ≥ β2: When combining the emissions of two
Bernoulli distributions with a Boolean OR, the probability of a one is at least
as large as the probability that one of the sources emitted a one. Equality
implies either that the partner source never emits a one, i.e. β12 = β1 if and
only if β2 = 0, or that one of the sources always emits a one, i.e. β12 = β1

if β1 = 1.
The conditional probability distributions are as follows:

P (Ξ|(X, {1}),θ) = 1{Ξ(1)=X} ·Bern(Ξ(2)|θ(2)) (6.71)

P (Ξ|(X, {2}),θ) = Bern(Ξ(1)|θ(1)) · 1{Ξ(2)=X} (6.72)

P (Ξ|(0, {1, 2}),θ) = 1{Ξ(1)=0} · 1{Ξ(2)=0} (6.73)

P (Ξ|(1, {1, 2}),θ) =
P (Ξ, X = 1|L = {1, 2},θ)

P (X = 1|L = {1, 2},θ)
(6.74)

In particular, the joint distribution of the emission vector Ξ and the obser-
vation X is as follows:

P (Ξ = (0, 0), X = 0|L = {1, 2},θ) = (1− β1)(1− β2)

P (Ξ = (0, 1), X = 1|L = {1, 2},θ) = (1− β1)β2

P (Ξ = (1, 0), X = 1|L = {1, 2},θ) = β1(1− β2)

P (Ξ = (1, 1), X = 1|L = {1, 2},θ) = β1β2

All other combinations of Ξ and X have probability 0.

Lemma 5. Consider the generative setting described above, with N data
items in total. The fraction of data items with label set L by πL. Fur-
thermore, de�ne v1 := β1(1 − β1), v2 := β2(1 − β2), v12 := β12(1 − β12),
w1 := β1(1− β2), w2 := β2(1− β1) and

v̂1 =
π12

(π1 + π12)
2w2 (1− π12w2) v̂2 =

π12

(π2 + π12)
2w1 (1− π12w1) .

(6.75)
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The mean square error in the estimator of the Bernoulli parameter β̂, av-
eraged over all sources, for the inference methods Mignore, Mnew, Mcross

andMdeconv is as follows:

MSE(β̂new,β) =
1

3

(
β1(1− β1)

π1N
+
β2(1− β2)

π2N
+
β12(1− β12)

π12N

)
(6.76)

MSE(β̂ignore,β) =
1

2

(
β1(1− β1)

π1N
+
β2(1− β2)

π2N

)
(6.77)

MSE(β̂cross,β) =
1

2

(
π12

π1 + π12
w2

)⊗
+

1

2

(
π12

π2 + π12
w1

)⊗
+

1

2

1

π1N

v2
1

v̂2
1

(
π2

12 (β1 − β12)
2

(π1 + π12)3
+
π1v1 + π12v12

(π1 + π12)
2

)
(6.78)

+
1

2

1

π2N

v2
2

v̂2
2

(
π2

12 (β2 − β12)
2

(π2 + π12)3
+
π2v2 + π12v12

(π2 + π12)
2

)

MSE(β̂deconv,β) =
1

2

1

π1N

π2β12 + π12w2

π12(π1w2 + π2w1) + π1π2β12
v1

+
1

2

1

π2N

π1β12 + π12w1

π12(π1w2 + π2w1) + π1π2β12
v2

(6.79)

The proof of this lemma involves lengthy calculations that we partially
perform in Maple. Details are given in Section A.3 in the appendix.

To evaluate the estimators obtained by the di�erent inference methods,
we use a setting with β1 = 0.40 · 110×1 and β2 = 0.20 · 110×1, where 110×1

denotes a 10-dimensional vector of ones. Each dimension is treated indepen-
dently, and all results reported here are averages and standard deviations
over 100 independent training and test samples.

The root mean square error RMS of the estimators obtained by di�erent
inference techniques are depicted in Figure 6.5. We observe that values pre-
dicted by theory are in good agreement with the deviations measured in the
experiments. Comparing the accuracy of estimators from di�erent inference
techniques, we observe thatMcross yields clearly biased estimators. For the
three other methods,Mnew has the largest deviation, followed byMignore.
Mdeconv yields the most accurate parameters. The empirical RMS of all
considered methods is depicted in Figure 6.4. Note the high bias ofMcross,
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Figure 6.4: Root mean square error of estimators obtained by di�erent
estimation techniques as a function of the training set size.

while the remaining three techniques yield continuously more accurate pa-
rameters as the training set increases.

Recall that the parameter describing the proxy distribution of data items
from the label set {1, 2} is de�ned as β12 = β1 + β2 − β1β2 (Eq. 6.70) and
thus larger than any of β1 or β2. While the expectation of the Bernoulli
distribution (Eq. 6.66) is thus increasing, the variance (given in Eq. 6.67)
β12(1−β12) of the proxy distribution is smaller than the variance of the base
distributions. To study the in�uence of this e�ect onto the estimator pre-
cision, we compare the RMS of the source estimators obtained byMdeconv

andMnew, illustrated in Figure 6.6: The inference methodMdeconv is most
advantageous if at least one of β1 or β2 is small. In this case, the variance
of the proxy distribution is approximately the sum of the variances of the
base distributions. As the parameters of the base distribution increase, the
advantage ofMdeconv in comparison toMnew decreases. If both β1 and β2

are high, the variance of the proxy distribution is smaller than the variance
of any of the base distributions, andMnew yields more accurate parameter
estimators thanMdeconv.
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(a) Estimator Accuracy forMignore (b) Estimator Accuracy forMnew

(c) Estimator Accuracy forMcross (d) Estimator Accuracy forMdeconv

Figure 6.5: Deviation of parameter values from true values: The box plot
indicate the values obtained in an experiment with 100 runs, the red line
gives the RMS predicted by the asymptotic analysis.
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(a) RMS(β̂
new

,β) (b) RMS(β̂
deconv

,β)

(c) RMS(β̂
deconv

,β)−RMS(β̂
new

,β) (d)
RMS(β̂

deconv
,β)−RMS(β̂

new
,β)

RMS(β̂
new

,β)

Figure 6.6: Comparison of the estimation accuracy for β for the two meth-
odsMnew andMdeconv for di�erent values of β1 and β2.
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Chapter 7

Ignoring Co-Occurrence

Implies Model Mismatch

In the previous chapter, we have observed that Mcross yields biased pa-
rameter estimators. In this chapter, we show that if the true combination
function is a bijection in the emission of a single source, training an inde-
pendent generative classi�er by maximum likelihood for every class implies
a model mismatch, which in turn causes biased estimators.

7.1 Preliminaries

Before starting with the main theorem, we de�ne the type of co-occurrence
ignoring inference procedures and give a few auxiliary lemmata. We assume
that inference is based on a data set D = (D1, . . . , DN ) of N observations
Xn with corresponding label set Ln. The tuple Dn = (Xn,Ln), for n =
1, . . . , N , is called a data item.

7.1.1 Co-Occurrence-Ignoring Inference Procedures

We �rst de�ne sources co-occurrence:

De�nition 3. (Co-Occurring Sources) Two sources k1, k2, k1 6= k2, are
called co-occurring in the data set D if there exists at least one label set in
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D containing both k1 and k2. Formally, we have

k1, k2 co-occurring in D :⇐⇒ ∃n ∈ {1, . . . , N} : k1 ∈ Ln ∧ k2 ∈ Ln

Partial independence and partial conditional independence are de�ned
as follows:

De�nition 4. (Partially (Conditionally) Independent) Two vectors
of random variables X = (X1, . . . , XQX ) and Y = (Y1, . . . , YQY ) are called
partially independent, denoted by X ⊥⊥∂ Y , if there exist at least one pair
of vector components Xq1 , Yq2 , 1 ≤ q1 ≤ QX and 1 ≤ q2 ≤ QY , which are
independent, i.e. P (Xq1 , Yq2) = P (Yq2) · P (Xq1).
If there exists at least one pair of vector components Xq1 , Yq2 , for some
1 ≤ q1 ≤ QX and 1 ≤ q2 ≤ QY , which are independent conditioned on D
(i.e. P (Xq1 , Yq2 |D) = P (Yq2 |D) ·P (Xq1 |D)), then X, Y are called partially
conditionally independent, denoted by X ⊥⊥∂ Y |D.

In the remainder of this paper, we focus on the training or inference
phase of classi�ers. Using a particular inference scheme M, parameter
estimates are computed based on a data set with corresponding labels.

De�nition 5. (Co-Occurrence Ignoring Inference Procedures) An
inference procedureM based on maximum-likelihood is called co-occurrence
ignoring on a training data set D if it ful�lls the three following conditions:

1. M handles multi-labeled data.

2. The likelihood of the parameters θk of source k depends only on data
items which contain k in their label sets.

3. The parameters θk1 , θk2 of two co-occurring sources k1, k2 are assumed
to be partially independent given the training data D:

θk1 ⊥⊥∂ θk2 |D ∀ k1, k2 ∈ K.

The second condition generalizes the assumption made in single-label
classi�cation that parameter estimators for source k depend only on data
with this label (see Section 6.1.4).
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7.1.2 Model Mismatch

Since the training set has only �nite size, inference procedures typically suf-
fer from an estimation error, which typically decreases as more samples are
available. If the estimated distribution deviates from the true distribution
even in the asymptotic case of in�nite training data, the inference meth-
ods is said to yield inconsistent parameter estimators. A possible cause for
such estimators is a mismatch between the model assumed by the inference
procedure and the true model that generated the data.

As stated before, maximum likelihood estimators are unbiased. We show
in the following that co-occurrence ignoring inference schemes imply a model
mismatch and thus cause biased parameter estimators. Note that for iden-
ti�able parameters (de�ned in Def. 1), a di�erence between the estimated
and the true parameters implies a di�erence between the estimated and the
true probability distribution.

In later sections, we rely on representations of the density and the combi-
nation function as in�nite Taylor series. Functions which can be represented
as (in�nite) Taylor series are called analytic:

De�nition 6. (Analytic Function) An analytic function is an in�nitely
di�erentiable function f on Ω such that the Taylor series at any point

x0 ∈ Ω, T (f, x0, x) =
∑∞
n=0

f(n)(x0)
n! (x− x0)n, converges to f(x) for x in a

neighborhood of x0.

Polynomials, trigonometric functions, the logarithm and the exponential
function are analytic. Sums, products and compositions of analytic func-
tions are again analytic. Furthermore, the reciprocal of an analytic function
that is nowhere zero is analytic.

7.1.3 Auxiliary Lemmata

In this section, we present four auxiliary lemmata, which we refer to in
the proof of the main theorem. All proofs are given in the appendix (Sec-
tion A.4).

First, we need to de�ne some notation: Denote by k1 and k2, k1 6= k2,
two sources, parameterized by θ1 and θ2, which are assumed to be partially
conditionally independent. We denote by (θ1,c1 , θ2,c2) a pair of components
of θ1 and θ2 which are assumed to be conditionally independent given the
training data D. Denote by cκ,(k1,k2)(ξ1, ξ2) := cκ(ξ, {k1, k2}) the combi-
nation function for the label set {k1, k2}. Let dκ(ξ1, xn) := c−1

κ,(k1,k2)(ξ1, ·)
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be the inverse of the combination function cκ,(k1,k2)(ξ1, ξ2) with respect
to the second argument, and set dn(ξ) := dκ(ξ1, xn). We assume that
cκ,(k1,k2)(ξ1, ξ2) is a bijection in ξ2. All computations are analogous if
cκ,(k1,k2)(ξ1, ξ2) is a bijection in ξ1.

Derivatives of probability densities with respect to parameters are de-
noted with an upper dot on the density (we assume the parameter with
respect to which the derivative is taken is clear from the context). Deriva-
tives with respect to the random variable are denoted by the degree of the
derivation in upper brackets:

ṗk(ξ) :=
∂pk(ξ)

∂θk,ck

∣∣∣∣
θk,ck=θ̂MLk,ck

p
(m)
k (ξk) :=

∂mpk(ξ)

∂ξmk
for k = 1, 2 .

Lemma 6. Assume independent probability density functions pk(ξk) param-
eterized by θk, for k = 1, 2. Then, the derivative of the joint distribution
p12(·) with respect to both parameters evaluated at the value of the maximum
likelihood estimator θ̂ML

k of the parameter is zero. Formally:

ξ1 ⊥⊥ ξ2 =⇒ ∂2p12(ξ1, ξ2|θ1, θ2)

∂θ1∂θ2

∣∣∣∣
θ1=θ̂ML1 ,θ2=θ̂ML2

= 0 .

The following lemma allows us to rewrite the independence of two pa-
rameters given the data as an equality of two sums:

Lemma 7. Given a training data set D generated according to the gener-
ative process described in Chapter 2 with a combination function cκ being
a bijection in the emission of at least one source in the label set. If θ1 and
θ2, the parameter of sources k1 and k2, are learned by maximum likelihood,
partial conditional independence of θ1 and θ2 given D implies

∑
n

∫
ṗ1(ξ)ṗ2(dn(ξ)) dξ ·

∫
p1(ξ)p2(cn(ξ)) dξ

p(xn)2

=
∑
n

∫
p1(ξ)ṗ2(dn(ξ)) dξ ·

∫
ṗ1(ξ)p2(dn(ξ)) dξ

p(xn)2
,

(7.1)

where p(xn) :=
∫
p1(ξ) · p2(dn(ξ)) dξ. Note that only indices n with Ln =

{k1, k2} might have a non-zero contribution to the sum. For n with Ln 6=
{k1, k2}, the contributions on either side are 0.
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Informally speaking, the independence assumption between two param-
eter components implies that the partial derivatives of the data likelihood
with respect to the respective parameter components can be distributed
without changing the value of the expression: On the left hand side, the
partial derivative of p1 and p2 stand under the same integral, while they are
under di�erent integrals on the right hand side.

The following lemma allows us to write the equality condition implied
by the independence assumption as an equality of two Taylor series:

Lemma 8. Assume c(·) is an analytic function and the density functions
pk(ξk|θk) are continuously di�erentiable with respect to their parameters θk
and analytic functions with respect to the random variables ξk, for k = 1, 2.
Then, Equation 7.1 can be rewritten as an in�nite Taylor series

∞∑
i=0

Cilhs · ξi =

∞∑
i=0

Cirhs · ξi (7.2)

with coe�cients Cilhs and C
i
rhs given by

Ciα =
∑
n

1

p(xn)2

i∑
j=0

Cjα,1(xn)

j!
·
Ci−jα,2 (xn)

(i− j)!
, (7.3)

where α = lhs, rhs and

Cjlhs,1(xn) =

j−1∑
m=0

(
j − 1

m

)
ṗ

(j−1−m)
1 (0) · Sm(ṗ2, n) (7.4)

Cjlhs,2(xn) =

j−1∑
m=0

(
j − 1

m

)
p

(j−1−m)
1 (0) · Sm(p2, n) (7.5)

Cjrhs,1(xn) =

j−1∑
m=0

(
j − 1

m

)
p

(j−1−m)
1 (0) · Sm(ṗ2, n) (7.6)

Cjrhs,2(xn) =

j−1∑
m=0

(
j − 1

m

)
ṗ

(j−1−m)
1 (0) · Sm(p2, n) (7.7)
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for l ≥ 1. C0
α,i(xn) denote integration constants. Furthermore,

Sm(f, n) =
∑
t∈Tm

bm(t, f, n) (7.8)

bm(t, f, n) =
m! · f (

∑m
l=1 tl)(dn(0))∏m
l=1 tl!

·
m∏
l=1

(
d(l)
n (0)

l!

)tl
(7.9)

Tm =

{
(t1, . . . , tm) ∈ Nm0 |

m∑
l=1

i · tl = m

}
. (7.10)

The next lemma shows that the equality condition for the two Taylor
series (Eq. 7.2) implies that all derivatives of dn(·) evaluated at 0 must be
equal to 0.

Lemma 9. Given coe�cients Cilhs, C
i
rhs as de�ned in Equation 7.3, Equa-

tion 7.2 implies that all derivatives of dn(ξ) with respect to ξ evaluated at

ξ = 0 must be zero, i.e. d(m)
n (0) = 0∀m ∈ N.

This lemma implies that dn(·) is a constant in the neighborhood of 0.

7.2 Provable Model Mismatch due to Ignored
Co-Occurrence

We are now ready to formate the main theorem on model mismatch. We
�rst give the theorem for binary labels and then sketch the extension to
label sets of higher degree.

Main Theorem for Binary Labels

Theorem 6. Given is a training data set D with single-label and binary-
label data generated according to the generative process described in Chap-
ter 2. All source distributions are assumed to be continuously di�erentiable
w.r.t. the parameters, and analytic functions w.r.t. the random variables.
The binary combination function is a bijection in the emission of at least one
source in the label set, and its inverse with respect to any single argument
is an analytic function. Then, any co-occurrence ignoring inference scheme
M trained by maximum likelihood on D su�ers from model mismatch.
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The proof is done by contradiction. We assume that M �nds asymp-
totically the true parameters and then show that this assumption yields a
contradiction.

Proof. Theorem 6. Assume the model adopted byM to explain the data
set D matches the true model of the generative process. As the inference
schemeM is co-occurrence ignoring, there is at least one pair of parameters
θ1, θ2 which do not parameterize the same source and which M assumes
to be conditionally independent given the training data D. We denote the
source distributions parameterized by θk by pk (k = 1, 2). By Lemma 7,
conditional independence of parameters θ1, θ2 implies that the optimality
condition of maximum likelihood (Eq. 5.2) yields the condition given in
Eq. 7.1.

Since dn(·) is an analytic function, we can use Lemma 8 to rewrite Equa-
tion 7.1 as an in�nite Taylor series as given in Equation 7.2. By Lemma 9,
this implies that all derivatives d(m)

n (0) for m ≥ 1 are zero. Since dn(·) is
assumed to be analytic, it must be a constant in the neighborhood of 0. This
is a contradiction to the assumption that dn(·) is a bijection. Therefore, the
assumption thatM adopts the true model has to be rejected.

Extension to Labels of Higher Degree

In order to avoid too much clutter in the notation, we have given the proof
only for training data containing single- and binary-labeled data. The fol-
lowing corollary generalizes Theorem 6 to combination functions of any
arity.

Corollary 1. Given a training data set D with single-label and multi-label
data of any order generated according to the generative process described
in Chapter 2. All source distributions are assumed to be continuously dif-
ferentiable w.r.t. the parameters, and analytic functions w.r.t. the random
variables. The combination function is a bijection in the emission of at least
one source in the label set, and its inverse with respect to any single argu-
ment is an analytic function. Then, any co-occurrence ignoring inference
scheme trained by maximum likelihood on D su�ers from model mismatch.

The proof is very similar to the proof given for the case of binary labels.
We give a sketch of the proof in the appendix (Section A.4).
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7.3 Implications for Multi-Label Classi�cation

In the generative model described in Chapter 2 and depicted in Figure 2.1,
the single label sources are independent, and the observations with mul-
tiple labels are combinations of the emissions of these sources. Since the
binary combination function is assumed to be a bijection in one argument
if the other argument is �xed to a �xed value, this introduces a one-to-one
functional dependency between the observation and one of the source sam-
ples. It is therefore not surprising that co-occurrence ignoring classi�ers
incur a model mismatch. In the following, we discuss the implications of
the theorem for the performance of di�erent multi-label classi�ers.

First of all, instance-based classi�cation schemes such as the adaption of
the k-nearest neighbor algorithm [121] or C4.5 algorithm with an entropy
formula adapted for multi-label classi�cation [25] do not estimate any distri-
bution parameters. Theorem 6 is therefore not applicable to these classi�ers
and does not allow to draw any conclusions on their performance.

The de�nition of co-occurrence ignoring inference schemes (Section 7.1.1)
requires that the inference scheme handles data with multiple labels. Out of
the techniques presented in Section 6.3, Mignore andMnew do not match
this requirement.

The classi�cation methodsMcross andMprob do handle multi-label data
and are co-occurrence ignoring as they are described in the mentioned pub-
lications. Both methods independently learn source parameters for each
class and use also data with multiple labels for this. In doing so, they are
disregarding the contributions of classes in the label set other than the cur-
rently trained one. This leads to a systematic deviation of the parameter
estimators from the true parameter values.

In the pairwise ranking method [49], a di�erent set of source parameters
is learned for each pair of labels. This allows a di�erent parametrization of
the same source for di�erent �partner� labels. This model assumption does
not agree with the generative model in Eq. 2.4 and thus facilitates a model
mismatch.

The mixture model for the word distribution was presented in [81] as well
asMdeconv take into account co-occurring labels. Provided the combination
function assumed in the models matches the true combination function,
and that the true source distributions can be described with the parametric
distributions assumed by the model, the presented theorem does therefore
not imply a mismatch of these two methods with the true source.

With regard to the probability distribution, the theorem assumes density
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functions which are continuously di�erentiable with respect to the param-
eters and analytic functions with respect to the random variables. Most
continuous probability distributions ful�ll these requirements. Exceptions
are e.g. the Dirac delta function and the Cantor distribution.

The combination function is assumed to be a bijection in one of the
arguments. Most elementary mathematical operations like (weighted) sum
and di�erence, trigonometric functions, the logarithm, the product and the
exponential function as well as combinations thereof are bijections. Softmax
is also a bijection in any of the arguments. However, other combination
functions like maximum and minimum are not bijections, and the theorem
does not allow to draw any conclusion on inference procedures in this case.

Keeping this in mind, we recommend to use generative classi�ers for
multi-label classi�cation whenever the generative process is su�ciently well
known and the resulting optimization problem is stable and solvable within
reasonable time. If a generative model can not be employed, one might ei-
ther still use a classi�er based on independent pairwise classi�cations, being
aware that a model mismatch is inevitable and might lead to sub-optimal
classi�cation performance. Alternatively, the problem might be addressed
by an instance-based classi�cation technique, or using a generative inference
procedure which do not rely on any source independence, such asMignore

or Mnew. The latter option, however, is not recommended if only a small
number (compared to the number of label sets) of training data is available,
as is the case in most real-world applications.
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Chapter 8

Introducing Clustering

Clustering is the assignment of data items into subgroups or clusters such
that objects within the same cluster are �similar�, while objects from di�er-
ent clusters are �di�erent�. This de�nition is very general and symptomatic
for the situation in unsupervised learning: Widely accepted target functions
or quality measures rarely exist. The goal of clustering varies between di�er-
ent approaches and applications. We review and discuss several objectives
in Section 8.1.

Conventional clustering approaches assume that each data item belongs
to exactly one cluster and therefore yield a partitioning into disjoint subsets.
This assumption of mutually exclusive cluster assignments is too restrictive
in many applications where the properties of a data set can be more ad-
equately explained when data items might simultaneously belong to more
than one cluster. Fuzzy clustering weakens this constraint by allowing par-
tial memberships: An object can belong to several clusters, with a weight
vector indicating the degree of the membership to a cluster. All member-
ship weights sum up to 1. Classical single-assignment clustering is thus a
special case of fuzzy clustering, where all weight is concentrated on a single
cluster.

We present a novel approach which allows simultaneous assignments to
several clusters. This approach, termed multi-assignment clustering and
abbreviated MAC, goes beyond fuzzy clustering: Membership to a second
cluster does not reduce the degree of membership in the �rst cluster. Stan-
dard (single-assignment) clustering is extended insofar as the weight vector
only contains zeros and ones, but the weighted sum can exceed 1, indicating
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Figure 8.1: Overview over matrix factorization and clustering problems. An
arrow denotes specialization. Zn,· is an indicator vector, Zn,k = 1 implies
that the data item number n belongs to cluster k. While classical clustering
as well as MAC require Zn,k ∈ {0, 1}, possibilistic and fuzzy clustering relax
this constraint to Zn,k ∈ [0, 1].

full membership to several clusters. An overview over di�erent clustering
problems and their relations is given in Figure 8.1.

Multi-assignment clustering is applicable in all situations where data
items are described as vectors in a D-dimensional space. We study the clus-
tering of Boolean data to exemplify our method. This focus is motivated by
an important problem arising in computer security, namely the e�cient and
secure management of user privileges for access control system. Previous
work on clustering of Boolean data is reviewed in Section 8.2, followed by an
introduction of the security application in Section 8.3. The generative model
to cluster Boolean data and the inference process are described in detail in
Chapter 9. Finally, in Chapter 10, we apply an information-theoretic model
for cluster validation to evaluate and compare several clustering algorithms
without largely relying on speci�c assumptions.
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8.1 Objectives for (Boolean) Data Clustering

Besides the task of partitioning data items into similar groups, we under-
stand clustering also as a method to derive descriptive statistics about the
data. Each clusters substantially di�ers from the other clusters in some of
its properties. Accordingly, the formal objectives of data clustering can be
split into two groups: The �rst group focusses on the reconstruction of a
given data set, while in the second group, the emphasis lies on inference of
an assumed underlying structure.

In the following, we assume that the data set consists of N tuples in
D dimensions. We represent the data set as an N × D-matrix X, where
the nth row Xn,· represents the nth data item. Xn,d is the value of the nth

data item in dimension d. The cluster memberships are coded in a binary
matrix Z ∈ {0, 1}N×K , while the source centroids are stored in the K ×D-
dimensional matrix U. Uk,d describes the centroid value of the kth source
in dimension d.

We restrict ourselves to Boolean input data and clusters with Boolean
centroids, i.e. we have Xn,d ∈ {0, 1} and Uk,d ∈ {0, 1}. Hence, the source
emissions are not stochastic but completely determined by the source cen-
troids. For a compact description of the matrix decomposition, we de�ne
the matrix multiplication operator ⊗ such that

X = Z⊗U ⇐⇒ Xn,d =
∨
k

[Zn,k ∧ Uk,d] . (8.1)

Data item Xn,· is obtained from the source centroids U given the member-
ship indicator vector Zn,· as the Boolean matrix product, i.e. the combina-
tion function (see Section 2.1.2) c(·, ·) is given by

Xn,· = c(U, Zn,·) = Zn,· ⊗U ,

The same formalism is applicable to other data types. As an example,
de�ning the multiplication operator as the conventional matrix product de-
scribes the superposition of continuous source emissions.

Data Reconstruction

When focusing on data reconstruction, the goal is to explain a given data
set in an optimal way. Two main problem formulations exist from this point
of view. In the �rst formulation, the number of clusters is given and the goal

125



CHAPTER 8. INTRODUCING CLUSTERING

is to minimize the reconstruction error. This criterion is termed Min-Noise
Approximation.

De�nition 7. (Min-Noise Approximation) Given X, K and the matrix
norm p, �nd the matrices Z ∈ {0, 1}N×K and U ∈ {0, 1}K×D as

(Ẑ, Û) = arg min
Z,U
||X− Z⊗U||p .

Alternatively, the reconstruction error is bounded by δ and the goal is
to �nd the minimal number of sources such that the reconstruction error
does not exceed the target value. This setting is termed δ-Approximation.

De�nition 8. (δ-Approximation) Given X, δ ≥ 0 and p, �nd the mini-
mal number of roles K and the matrices U and Z such that

||X− Z⊗U||p < δ .

The order p of the norm is set to 1 for Boolean data. For continuous
data, the order is typically chosen to be p = 2.

Inference

Inference methods aim at determining the structure which is believed to
have generated to observed data.

De�nition 9. (Structure Inference) Given X and the assumption that X
has an underlying structure XS = Z⊗U, which is altered by a noise process:
XS ∼ P (XS ; Z,U), X ∼ P (X; XS ,ΘN ). Find the structure encoded in Z
and U.

There are two important di�erences between inference and reconstruc-
tion. First, a complete reconstruction of the data set X with the structure
Z ⊗ U is not desired for inference, as these methods explicitly assume a
noise process. The observed data X is thus assumed to be a noisy version
of the structure. Trying to completely reconstruct the noisy data with a
structure would imply to adapt to the noise in the data set and thus would
yield inaccurate estimators for the structure. Second, inference methods
yield a generative model for the data. Given such a model, it is possi-
ble to add additional data items to the existing clusters. The explanation
obtained for the data through the clustering process can be generalized to
new data which is not available during the inference phase. See Section 2.4.3
and Chapter 10 for details on how we measure the ability of the inferred
structure to generalize to new data.
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8.2 Related Work

Clustering Boolean data is a demanding problem. Starting from the for-
mulation as min-noise or δ-approximation problem (De�nitions 7 and 8),
the problem is also known as Boolean matrix factorization. Standard ap-
proaches for general matrix factorization, such as singular value decomposi-
tion (SVD), have been adapted for this problem but often yield poor results.
These methods neither take into account the limitation to values 0 and 1 for
all matrices, nor the particularities of the Boolean matrix product (Eq. 8.1).
While the �rst K singular vectors might still yield a relatively accurate de-
composition, rounding them to obtain Z and U yields very poor results in
both decomposition and prediction. The singular value decomposition is,
however, useful to denoise a Boolean matrix [84, 85].

To adapt independent component analysis (ICA) [28] for Boolean data,
the assumption of orthogonal centroids is maintained, while the mixture
weights are constrained to be non-negative and sum up to 1. The gener-
ative model formulated based on these assumptions is then solved with a
variational approach [68]. Binary independent component analysis (BICA)
yields good results on data which is generated from sources with orthogonal
centroids, but this assumption is too strict for most real-world data.

The Discrete Basis Problem Solver (DBPS) [84] is a greedy algorithm
which optimally describes the rows of a Boolean matrix as combinations
of basis vectors. The candidate set of basis vectors is determined by con-
sidering the individual rows as well as intersections between them, an idea
inspired by association rule mining [1]. A prede�ned number of basis vec-
tors is then iteratively chosen such that the approximation quality maxi-
mally increases in each step. Further combinatorial methods [26, 43] have
been specially designed for the application of role-mining (see next section).
However, we consider the DBPS as the best representative of combinatorial
methods. Note that there is no generative model underlying this type of
approaches.

A non-parametric generative model for Boolean data was proposed in
[119]. Emissions of individual sources are combined by the noisy-OR func-
tion [87], which adds additional entries 1 in the matrix. The model for
cluster assignments is the Indian Bu�et Process (IBP) [52], where an in-
�nite number of clusters is available, but only a �nite number of them is
responsible for the observed data. We refer to this model as the In�nite
Noisy-Or (INO).
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8.3 Application: Role Mining

In the modern economy, information constitutes a critical resource in ev-
eryday business. Data represents a value as it is expensive to collect and
often builds the basis for current and future operation. Furthermore, espe-
cially for companies in the service industry, data is often con�dential, as it
might reveal details about the health or �nancial situation of customers. A
professional, secure handling of such data is thus essential to build up the
indispensable trust between the client and the service provider. Companies
therefore have to control the use their computer and network resources as
well as read and write permissions on their data.

The principle of least privileges states that users should not have any
privileges except those needed to ful�ll the job. Assigning extra privileges
to users is understood as a security risk, as a malicious employee might
abuse his or her permissions and in�ict damage on the company.

Following the principle of least privileges, it is reasonable to assume
that employees with similar job duties share similar permissions. Deviations
from this assumption can have two causes: A user might get permissions
for a special duty besides the normal tasks. The respective permissions are
granted for a limited time and have to be revoked once the task is completed.
The second type of irregularities results from erroneous maintenance of the
user-permission matrix. Such irregularities are critical to the security of
the computer system. An access control system which is able to highlight
irregular permissions allows the IT security group to discover, review and
possibly revoke such irregular permissions and thus increases the security
of the computer system.

The standard approach for access control consists of designing a binary
access-control matrix X ∈ {0, 1}N×D, with

Xn,d =

{
1 if user n has access to resource d
0 if user n has no access to resource d

This approach is called direct access control and is still used in many com-
panies. However, it has two important drawbacks: First, maintaining the
access-control matrix involves a lot of human work, as a large number of per-
missions has to be set whenever a new employee joins the company or when
an employee changes position within the company, e.g. due to a promotion.
For this reason, direct access control is expensive and error-prone. Second,
irregularities in the access-control matrix are very di�cult to detect, and
security leaks might remain undiscovered for many years.
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Role-based access control (RBAC) formalizes the expected regularities
in the user permission matrix. Instead of direct assignments of users to
permissions, access is granted via roles: Each role de�nes a set of permis-
sions. Users are assigned to roles and obtain all permissions of the roles
they are assigned to. The de�nition of the industrial standard for RBAC
[44] explicitly states that users might belong to several roles. This design
freedom yields a clear and interpretable structure of the roles. Basic per-
missions (such as checking email) can be covered by a role shared by all
employees, while specialized permissions are granted via speci�c roles. If
multiple assignments were not allowed, a new role would have to be de�ned
for each combination. Doing so would dramatically increase the number of
roles.

The design of the set of roles is a crucial step when setting up an RBAC
system. Most companies start with a direct access control system. The
problem of Role Mining [73] consists of identifying roles in a user-permission
matrix X and thus describes a data-centered approach to replace the direct
assignments by a user-role assignment matrix Z and a role-permission as-
signment matrix U. Several formal de�nitions of the role mining problem
have been proposed in the literature [112, 46]. Based on the assumption
that permissions are granted based on the job pro�le, we regard role-mining
as an inference problem. Furthermore, role-based access control requires a
set of roles that allows the system administrator to equip new employees
with all required permissions. This step corresponds to the generalization
step discussed in Section 2.4.3.

From the business perspective, the roles should be interpretable as func-
tional roles within the company [27]. From a generative point of view,
several sets of roles might be roughly equally well suited to explain the
given user-permission matrix. In such a case, a particular set of roles can
be chosen such that the agreement with the provided business information
is maximized. We propose a probabilistic method to combine a generative
role-mining method with business information [47]. Experiments on data
from a Swiss company show that our approach yields a role set with largely
improved interpretability, while the generalization ability of the roles only
insigni�cantly deteriorates.

129



CHAPTER 8. INTRODUCING CLUSTERING

130



Chapter 9

Generative

Multi-Assignment

Clustering

To address the challenging problem of role mining, we concretize the general
generative model introduced in Chapter 2 for Boolean data. We describe
the inference procedure in detail and discuss some theoretical aspects of the
model. In experiments on synthetic and real-world data, we show that our
proposed method for multi-assignment clustering outperforms state-of-the-
art algorithms in both parameter accuracy and generalization ability.

9.1 Structure and Noise Models

We �rst present a probabilistic model for the structure in the data. In
Section 9.1.2 we describe two noise models and present a unifying view for
both of them.

9.1.1 Structure Model

The structure model is formalized by the Boolean matrix product xS =
z ⊗ u, with the operator ⊗ de�ned in Eq. 8.1. Given z and u, the matrix
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xS is completely determined: The probability distribution

pS(xn,d|z,u) =

[
K∏
k=1

u
zn,k
k,d

]xSn,d [
1−

K∏
k=1

u
zn,k
k,d

]1−xSn,d
(9.1)

is a point mass. Note that the Boolean nature of the data allows us to use
the data as an indicator variable: In the above equation, the �rst factor
is only relevant if xSn,d = 1. To simplify the notation, we introduce the
assignment set Ln as the set of all sources data item xn is assigned to:

Ln := {k ∈ {1, . . . ,K}|zn,k = 1} (9.2)

The signal contribution of a data item that belongs to the assignment set
L is given by

uL,d :=
∨
k∈L

uk,d , (9.3)

The probability distribution pS(xn,d|Ln,u) can then be written as

pS(xn,d|L,u) = [uL,d]
xSn,d [1− uL,d]1−x

S
n,d . (9.4)

Searching the optimal matrices z and u for a given xS is a combinatorial
optimization problem and is proven to be NP-hard [113]. Furthermore, due
to noise e�ects, the data x are random variables. We therefore switch over
to a probabilistic representation and treat also u as a random variable. We
assume each element of u to be independently distributed according to a
Bernoulli distribution with parameter βn,d := p(un,d = 0). De�ning the
Bernoulli parameter βn,d as the probability of un,d = 0 and not, as usual,
as the probability of un,d = 1, allows a compact notation: The Boolean OR
of a series of bits is zero only if all bits are zero, while all other inputs yield
a 1. De�ning βn,d := p(un,d = 0) captures this asymmetry: The probability
of uL,d = 0 is given by

p(uL,d = 0) = p

(∑
k∈L

uk,d = 0

)
=
∏
k∈L

p(uk,d = 0) =
∏
k∈L

βk,d =: βL,d .

To obtain the probability distribution of xSn,d given the parameters β, we

132



9.1. STRUCTURE AND NOISE MODELS

integrate out the Boolean centroids u and obtain

p(xSn,d|z,β) =
∑
{u·,d}

{
pS(xn,d|z, u·,d) · p(u·,d)

}

=

[
K∏
k=1

β
zn,k
k,d

]1−xSn,d [
1−

K∏
k=1

β
zn,k
k,d

]xSn,d
(9.5)

The matrix u ∈ {0, 1}N×D is thus replaced by β ∈ [0, 1]N×D. This reformu-
lation of the problem has two important advantages: First, the optimization
problem is drastically simpli�ed and allows us to �nd a solution in a reason-
able amount of time. Second, the probabilistic representation enables us to
detect exceptional elements in the matrix x. These elements are separated
out. In this manner, inference is not disturbed by irregular matrix entries
and yields accurate parameter estimates even from data with high noise
level.

Using βL,d as the parameter of the proxy distribution of data items with
label set L, the probability distribution of xn,d is given by

pS(xSn,d|L,β) = [βL,d]
1−xSn,d [1− βL,d]x

S
n,d . (9.6)

We emphasize that βL,d is only introduced for notational convenience and
is always derived from the parameters of the single sources βk,d.

9.1.2 Noise Models

Besides the structure, a separate noise process can in�uence the value of
xn,d. We discuss two di�erent global noise models in detail and then present
a unifying global noise model. Variants of the noise models with local noise
processes are brie�y discussed at the end of this section.

The term �noise� has a negative connotation, which might not be ade-
quate in all applications. For example in role mining, some deviations from
the structure are justi�ed, as explained in Section 8.3. However, in order
to underline their irregular emergence, we keep the term �noise� to describe
such exceptions.

We assume that all random variables are independent for all n = 1, . . . , N
and d = 1, . . . , D. The probability of a data matrix x is thus given by the
product over the probability of its elements. Formally we introduce m as
an indicator for the noise model and denote by θmN the parameters of the
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noise model. The entire parameter tuple of the generative model including
the noise model m is denoted by θm := (β,θmN ). Then, we obtain

pm(x|L,θm) =

N∏
n=1

D∏
d=1

pm(xn,d|Ln,θm) . (9.7)

The probability distributions pmxn,d(xn,d|Ln,θm) for the individual noise
models are detailed below.

Mixture Noise Model

The mixture noise model assumes a separate global Bernoulli process which
generates noisy bits XN

n,d. The distribution of XN
n,d is parameterized by the

noise parameter r ∈ [0, 1] indicating the probability of a noise bit to be 1:

XN
n,d ∼ Ber(r) , pmix(xNn,d) = rx

N
n,d · (1− r)1−xNn,d . (9.8)

We introduce a binary indicator υn,d to indicate whether xn,d is generated
by the noise process (υn,d = 1) or by the structure process (υn,d = 0). The
full generative process for xn,d is thus

xn,d = υn,dx
N
n,d + (1− υn,d)xSn,d (9.9)

The indicators υn,d cannot be observed. We assume that they also follow
a Bernoulli distribution. The parameter of the distribution is denoted by
ε and called noise fraction, as it indicates the expected ratio of noisy bits.
Marginalizing out υn,d, the overall probability distribution of XN

n,d is given
by

pmix(xn,d|Ln,β, r, ε) = ε · rxn,d(1− r)1−xn,d

+ (1− ε) · [βL,d]1−xn,d [1− βL,d]xn,d .
(9.10)

The parameters of the mixture noise model are thus θmixN = (ε, r). The
mixture noise model is illustrated in Figure 9.1.

In order to be formulated in the framework of Section 2.2, a probabilistic
combination function cMκM (xSn,d, x

N
n,d) is used to combine the structure and

the noise component to the observed value xn,d:

cMκM (xSn,d, x
N
n,d) =

{
xSn,d with probability 1− ε
xNn,d with probability ε

. (9.11)

In the above derivation, the indicator variables υn,d to capture the proba-
bilistic nature of the combination function.
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Figure 9.1: The generative model of multi-assignment clustering (MAC)
with mixture noise model.

Flip Noise Model

In the �ip noise model, we assume that a fraction of bits in xS is �ipped
by the noise process. Introducing the binary �ip indicator υn,d to specify
whether XS

n,d is �ipped (υn,d = 1) or not (υn,d = 0), the generative process
for xn,d is described by

xn,d = xSn,d ⊕ υn,d , (9.12)

where ⊕ denotes the addition modulo 2, also known as the XOR gate.
In a general version, the probability of a bit �ip depends on the original

value of the bit. For example in the case of role-based access control, users
call the help-desk if they are missing a permission. Lacking permissions
are thus corrected, while unnecessary extra-permissions might remain un-
detected. De�ning ε0 (ε1) as the probability of a bit �ip from 0 to 1 (from
1 to 0), i.e. ε0 := P (υn,d = 1|XS

n,d = 0) and ε1 := P (υn,d = 1|XS
n,d = 1),

the probability distribution for υn,d is given by

pflip(υn,d|xSn,d, ε0, ε1)

=

(
ε
xSn,d
1 · ε1−x

S
n,d

0

)υn,d
·
(

(1− ε1)x
S
n,d · (1− ε0)1−xSn,d

)1−υn,d
.

(9.13)
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The joint probability distribution of xn,d, xSn,d and υn,d is then given by

pflip(xn,d, x
S
n,d, υn,d|Ln,β, ε0, ε1)

= pflip(xn,d|xSn,d, υn,d) · pS(xSn,d|Ln,β) · pflip(υn,d|xSn,d, ε0, ε1) .

Integrating out the unobserved variables xSn,d and υn,d, we get

pflip(xn,d|Ln,β, ε0, ε1)

= (1− ε0)βLn,d(1− xn,d) + (1− ε1)(1− βLn,d)xn,d
+ ε0βLn,dxn,d + ε1(1− βLn,d)(1− xn,d) .

(9.14)

The bit �ip noise model is parameterized by θflipN = (ε0, ε1).

A special case of the bit �ip model is the symmetric bit �ip model,
where a �ip from 0 to 1 has the same probability as a �ip from 1 to 0, i.e.
ε0 = ε1 =: ε. In this case, Eq. 9.14 simpli�es to

psflip(xn,d|Ln,β, ε)
= (1− ε) [βLn,d(1− xn,d) + (1− βLn,d)xn,d]

+ ε [βLn,dxn,d + (1− βLn,d)(1− xn,d)] .
(9.15)

The symmetric bit �ip noise model has only one parameter: θsflipN = (ε).
In the formulation of Section 2.2, we have xn,d = υn,d, and the combina-

tion function cMκM (xSn,d, x
N
n,d) is given by the addition modulo 2 (Eq. 9.12).

Uni�ed Noise Model

In order to compare the two noise models, we introduce the bit set prob-
ability qmLn,d as the probability for xn,d = 1 under noise model m, with
m ∈ {mix, flip, sflip}. Reordering Eq. 9.10, and 9.14, we get

qmixLn,d = βLn,d(ε− 1) + (1− ε) + εr (9.16)

qflipLn,d = βLn,d(ε0 + ε1 − 1) + 1− ε1 (9.17)

Equating the coe�cients of βLn,d as well as the constant terms, we �nd the
following parameter values for equal probabilities under the mixture and
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the �ip noise models: mixture noise model
with parameters
θmixN = (ε, r)

 is equivalent to

 bit �ip noise model
with parameters

θflipN = (εr, ε(1− r))


 bit �ip noise model

with parameters
θflipN = (ε0, ε1)

 is equivalent to

 mixture noise model
with parameters

θmixN =
(
ε0 + ε1,

ε0
ε0+ε1

)


Note that the conversion is not possible for all parameter values of the
models. In particular, in the noise-free setting, we have ε0 = ε1 = 0 for the
�ip noise model, while the value of r in the mixture noise model is unde�ned.
However, since no samples are drawn from the noise source in this setting,
the value of r is irrelevant for the data probabilities. In the opposite case of
high �ip probabilities, the noise fraction ε = ε0+ε1 could reach values higher
than 1, which renders the probability of a noisy bit unde�ned. This is due to
a particularity of the bit �ip model: Flipping all bits does actually preserve
the complete information. The highest uncertainty is introduced when both
�ip probabilities are equal to ε0 = ε1 = 1/2. In an information-theoretic
setting, the bit �ip noise model corresponds to the binary symmetric channel
[29]. Given the equivalence and the anomalies of the �ip noise model, we
only consider the mixture noise model in the following.

Local Noise Models

The global noise models presented above can be extended to a noise process
which depends either on the dimension d or on the data item n. Doing so,
either the global noise fraction ε, the global noise parameter r or both of
them are replaced by dimension- or data-item wise parameters. We give
details for the case where both ε and r are local, the reduction to the case
where one parameter remains global is straight-forward.

Dimension-Wise Noise Process. The probability of xn,d under the
dimension-wise mixture noise model becomes

pd−mixxn,d
(xn,d|Ln,β, r, ε) = εd · r

xn,d
d (1− rd)1−xn,d

+ (1− εd) · [βLn,d]
1−xn,d [1− βLn,d]

xn,d .
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Data-Item-Wise Noise Process. Eq. 9.10 is replaced by

pn−mixxn,d
(xn,d|Ln,β, r, ε) = εn · r

xn,d
n (1− rn)1−xn,d

+ (1− εn) · [βLn,d]
1−xn,d [1− βLn,d]

xn,d .

These local noise models are very speci�c and able to describe particu-
larities of the data. For example in role mining, it seems plausible that
the error probability depends on the type of permission: The IT security
group is probably more careful when granting root permissions to the cen-
tral database than when allowing a user to change the background image
on the desktop.

9.2 Inference

As stated earlier, we choose the parameters according to the principle of
maximum a posteriori. As both the assignment sets as well as the param-
eter values are to be determined, we solve this optimization problem by
alternating between an estimation step and a maximization step. In the
estimation step (abbreviated as E-step), the assignments of data items to
clusters are estimated. Hence, the hard assignments z of data items to
single assignment sets are replaced by the posterior distribution over the
assignment sets, given the parameters and the data item:

pm(L|xn,·,θm) =
pm(xn,·|L,θm) · p(L)∑
L′ p

m(xn,·|L′,θm) · p(L′)
(9.18)

with

pm(xn,·|L,θm) =

D∏
d=1

pm(xn,d|L,θm) . (9.19)

p(L) denotes the prior probability of assignment set L. In the following, we
assume a uniform prior, i.e. p(L) = 1/|L| for all L. The maximization step
(M-step) consists of optimizing the parameters such that the data is most
probably under the assignments computed in the E-step. This algorithm is
called estimation-maximization (EM) algorithm [33].

The probability of the data matrix x given in Eq. 9.7 is highly non-
convex in the parameters, and a direct maximization would most likely be
trapped in a local optimum. We therefore modify the estimation step by
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introducing a parameter T , called the computational temperature, to vary
the width of the posterior distribution over the assignment sets:

γmn,L := p(L|xn,·,θm) =
(pm(xn,·|L,θm) · p(L))

1/T∑
L′ (p

m(xn,·|L′,θm) · p(L′))1/T
(9.20)

The limit of T →∞ yields the uniform distribution over all assignment sets.
Starting at a high value of T , the temperature is slowly decreased. Doing so,
the in�uence of the posterior probability grows and the assignments become
harder. For T = 1, we get back Eq. 9.18. This techniques is well-known as
deterministic annealing [96, 21] and usually formulated in terms of a risk
function R, which maps a clustering solution and the data to a real number.
To formulate our approach in this setting, we de�ne the risk of assigning
data item n to assignment set L as the negative log-likelihood of the feature
vector xn,·:

Rm
n,L := − log (pm(xn,·|L,θm)) =

D∑
d=1

log (pm(xn,d|L,θm)) (9.21)

Corresponding to Eq. 9.20, the posterior distribution of the label sets is
computed as γmn,L = exp(−Rm

n,L/T )/
∑
L′ exp(−Rm

n,L′/T ). Deterministic
annealing minimizes the Lagrange functional

F := −T logZ = R− T ·H , (9.22)

where Z is the state sum:

Zm :=

N∏
n=1

∑
L

exp
(
−Rm

n,L/T
)

(9.23)

In statistical physics, F is called the free energy of the system. Alternatively
to Eq. 9.22, it can be computed as

Fm := −T logZm = −T
∑
n

log

(∑
L

exp
(
−Rm

n,L/T
))

(9.24)

The right-hand side of Eq. 9.22 shows how the computational temper-
ature T determines the trade-o� between minimizing the expected risk
R :=

∑
n

∑
L γ

m
n,LR

m
n,L and the entropy H of the assignment probabilities

γmn,L.
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Given the probabilistic assignments γmn,L (Eq. 9.20) estimated in the E-
step, F is minimized as a function of the model parameters in the M-step.
We do this by setting the derivative of the free energy Fm with respect to
the generic parameter θ to zero:

∂Fm

∂θ
=
∑
n

∑
L
γmn,L

∂Rm
n,L

∂θ
(9.25)

=
∑
n

∑
L
γmn,L

∑
d

(1− 2xn,d)
∂qmL,d
∂θ

xn,d

(
1− qmL,d

)
+ (1− xn,d)qmL,d

!
= 0 . (9.26)

As an explicit solution for the optimal parameter values only exists for some
very small problems, we numerically determine the parameter values using
Brent's method [15]. This elaborate root-�nding algorithm combines bisec-
tion search, the secant method and inverse quadratic interpolation. Brent's
method reaches the reliability of bisection search at the computational speed
of the less reliable methods (bisection search and the secant method).

We �rst update the noise parameters θmN and then the centroid proba-
bilities β independently for each centroid µ and each dimension ν. When
updating βµ,ν , we use the values of βp,q, p 6= µ and q 6= ν, of the previous
iteration. Only at the end of the update procedure, the values of the matrix
β are overwritten. This assumption is clearly a simpli�cation but allows to
drastically reduce the computation time.

In the following, we give the optimality conditions for the models pre-
sented above. For a compact notation, we introduce

g0,m
L,ν :=

∑
n:xn,ν=0

γmn,L g1,m
L,ν :=

∑
n:xn,ν=1

γmn,L .

Optimality Conditions for the Mixture Noise Model. The deriva-
tives of the bit set probabilities qmixL,d with respect to the parameters of the
mixture noise model (θ ∈ {βµ,ν , ε, r}) are as follows:

∂qmix
L,d

∂βµ,ν
= (1− ε)βL\µ,d1ν=d1µ∈L

∂qmix
L,d

∂ε
= 1− r − βL,d

∂qmix
L,d

∂r
= −ε
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With w := εr + (1 − ε) (1− βL,ν), this results in the following extremality
conditions for the mixture noise model:

∂Fmix

∂βµ,ν
= (1− ε)

∑
L3µ

βL\µ,ν

{
g1,mix
L,ν

w
−
g0,mix
L,ν

1− w

}
= 0

∂Fmix

∂ε
=
∑
d

{∑
L

(1− r − βL,d)g1,mix
L,d

w
−
∑
L

(1− r − βL,d)g0,mix
L,d

1− w

}
= 0

∂Fmix

∂r
= ε

∑
d

{∑
L

g0,mix
L,d

1− w
−
∑
L

g1,mix
L,d

w

}
= 0

Again, numerical root �nding methods are employed to determine the op-
timal values of the parameters βµ,ν , ε and r.

Optimality Conditions for the Bit Flip Noise Model. We de�ne
ε := 1− ε0− ε1 to simplify the notation. The derivatives for the asymmetric
bit �ip model (θ ∈ {βµ,ν , ε0, ε1}) are:

∂qasymL,d

∂βµ,ν
= εβL\µ,ν1{ν=d}1{µ∈L}

∂qasymL,d

∂ε0
= −βL,d

∂qasymL,d

∂ε1
= 1− βL,d

Setting the derivatives of the free energy F with respect to the respective
parameters to zero results in the following update conditions for the optimal
parameter values:

∂F asym

∂βµ,ν
= ε

∑
L3µ

βL\µ,ν

{
g1,asym
L,ν

1− ε1 − εβL,ν
−

g0,asym
L,ν

ε1 + εβL,ν

}
= 0

∂F asym

∂ε0
=
∑
d

{∑
L

βL,dg
0,asym
L,d

ε1 + εβL,d
−
∑
L

βL,dg
1,asym
L,d

1− ε1 − εβL,d

}
= 0

∂F asym

∂ε1
=
∑
d

{∑
L

(1− βL,d)g1,asym
L,d

1− εβL,d
−
∑
L

(1− βL,d)g0,asym
L,d

ε1 + εβL,d

}
= 0

Optimality Conditions for the Symmetric Flip Noise Model. With
ε0 = ε1 = ε and setting ε := 1− 2ε, the above optimality conditions for the
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symmetric �ip noise model are:

∂F sym

∂βµ,ν
= ε

∑
L3µ

βL\µ,ν

{
g1,sym
L,ν

1− ε− εβL,ν
−

g0,sym
L,ν

ε+ εβL,ν

}
= 0

∂F sym

∂ε
=
∑
d

{∑
L

(1− 2βL,d)g
1,sym
L,d

1− ε− εβL,d
−
∑
L

(1− 2βL,d)g
0,sym
L,d

ε+ εβL,d

}
= 0

Inference is done in the same way as for the global noise models.

Estimating the Centroids u. As stated above, we infer the probabilistic
centroids β̂, while a Boolean description û of the centroids is required to
solve the problem of Boolean matrix factorization. We obtain û by rounding
β̂, formally

ûn,d =

{
1 if β̂n,d ≥ 0.5

0 if β̂n,d < 0.5
. (9.27)

In our experiments, we observe that the probabilistic centroids β̂ converge
towards either 0 or 1 unless there is a model mismatch or the algorithm is
severely stuck in a local optimum.

9.3 Equivalent Single-Assignment Clustering

In this section, we describe some of the theoretical properties of the multi-
assignment clustering model. Recall that L is the set of all admissible
assignment sets. L := |L| denotes the number of possible assignment sets.
Assuming an arbitrary, but �xed numbering of the admissible assignment
sets, L can be encoded as a binary matrix zL ∈ {0, 1}L×K . The lth row zLl,·
denotes the clusters contained in the lth assignment set. In this way, we
can decompose the assignment matrix z as z = zSAC ⊗ zL, where zSAC ∈
{0, 1}N×L denotes the exclusive assignments of data items to assignment
sets. zL then decomposes the assignment set to individual sources.

Given the above, the decomposition xS = z ⊗ u, which is searched for
in the structure inference problem (De�nition 9), can be written as

xS =
(
zSAC ⊗ zL

)
⊗ u = zSAC ⊗

(
zL ⊗ u

)
. (9.28)

This reformulation shows how, for a given centroid matrix u, an equivalent
single-assignment clustering (SAC) can be obtained. The assignment matrix
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z is replaced by assignments to a single cluster, zSAC . The centroids of the
SAC clusters are given by uSAC := zL ⊗ u.

The di�erence between single-assignment and multi-assignment cluster-
ing thus lies in the inference phase. SAC ignores the high dependency
between the centroids of di�erent clusters and therefore has to estimate a
much larger number of parameters than MAC. Given a �nite number of
data, we thus expect SAC to yield less accurate parameter estimators than
MAC. Experiments described in Section 9.4.1 con�rm this conjecture. Fur-
thermore, the additional assumptions underlying MAC reduce the number
of possible solutions in comparison to SAC, which we conjecture to further
improve the estimation accuracy.

9.4 Experiments

In this section, we present experimental results on both synthetic and real-
world data which allows us to compare the performance of MAC and of
previously presented methods under di�erent scenarios.

9.4.1 Experiments on Synthetic Data

In experiments with synthetic data we assess the performance of di�erent
clustering techniques under controlled conditions. To generate the data,
we use the two centroid sets depicted in Figure 9.2. The structure in the
data is generated as described in Section 2 and then perturbed to a variable
degree by noise. We vary the noise fraction ε to obtain data sets with di�er-
ent complexities. For all experiments, ten di�erent data sets are sampled,
each with a di�erent noise fraction. The reported performance results are
averages over these ten runs.

We start with a comparison of the estimator accuracy of di�erent in-
ference techniques and then discuss the performance of the variants of the
multi-assignment clustering method. Finally, we investigate the in�uence of
particular data set properties on the accuracy of the parameter estimators.

Comparing Clustering Techniques

We run the four clustering techniques MAC, BICA, DBPS and INO on syn-
thetic data generated from the overlapping sources depicted in Figure 9.2(b).
The structure is perturbed by a mixture noise process with variable noise
fraction ε and �xed noise parameter r = 0.5. We consider label sets up
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(a) Orthogonal Centroids (b) Overlapping Centroids

Figure 9.2: These three sources with 24 dimensions each are used to generate
the synthetic data for the experiments. Black indicates a 1, white a 0 at
the corresponding matrix element.

to degree 2, i.e. we have L = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} and
sample 50 data items per label set, yielding 350 data items in total. It is
worth noting that we also allow the empty assignment set. The properties
of data items which are assigned to no source are uniquely explained by the
noise process.

Figures 9.3(a) and 9.3(b) show the parameter accuracy for the proba-
bilistic parameter estimators β̂ and for the estimated binary parameters û,
which we determine by rounding β̂. Note that only MAC uses probabilis-
tic parameters, while the three other methods assume binary parameters.
For noise levels above 45%, INO typically uses only one or two clusters to
explain the data, identifying the rest of the data as noise. The accuracy
of the parameter estimation or the stability of the clustering solutions can
therefore not be measured for high noise fractions.

Concerning the estimators for the binary parameters, we observe that
MAC perfectly retrieves u for noise fractions up to 55%. As the noise
fraction further increases, the accuracy rapidly decreases and falls behind
DBPS, but remains higher than the results obtained by BICA and INO.
INO also yields perfect estimators for noise levels up to 30% but rapidly
deteriorates for higher noise levels. Note that INO assumes a noisy-or noise
process, i.e. r = 1, an assumption which is not ful�lled in this setting.
An unmet assumption is also the reason why BICA yields poor estimators
for all noise levels: This method assumes independent, i.e. orthogonal,
sources, while the data is generated with overlapping data. Therefore, the
restriction to orthogonal sources inhibits BICA from obtaining the correct
centroids. Finally, the DBPS su�ers from its greedy nature: The centroids
are chosen from the candidate set such that the number of elements in
the matrix x which can be explained with the new centroid is maximized.
Namely for overlapping centroids, it can be favorable to choose a candidate
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(a) Accuracy of Parameter Estimators (b) Accuracy of rounded Parameter Estima-
tors

(c) Reconstruction Error (d) Stability of Clustering Solutions

Figure 9.3: Accuracy of parameter estimation, reconstruction error and
stability for di�erent inference techniques on synthetic data. The data is
generated from overlapping sources with mixture noise with noise parameter
r = 0.5. The noise fraction ε varies along the x-axis of the plots.

which corresponds to the proxy centroid of an assignment set, a phenomenon
which we call combination-singleton confusion. These centroid estimators
thus only poorly agree with the true centroids. Furthermore, the DBPS
does not generatively model multiple assignments. For this reason, there
is no strong incentive for overlapping sources, as the corresponding matrix
elements are often already covered by a previously chosen centroid.

The accuracies of the probabilistic and the Boolean centroid estima-
tors, β̂ and û, are depicted in Figure 9.3(a) and Figure 9.3(b), respectively.
Comparing the two results shows that rounding is bene�cial for MAC. The
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relatively small deviations in the unrounded centroids are due to the fact
that the estimators make use of the relaxation from binary data in {0, 1}
to fractional values in the interval [0, 1]. While the di�erences between β̂
and the rounded centroids thus increases, the true values can be obtained
by rounding. Only for noise values above 55%, the rounded estimators û
di�er from the true binary centroids u.

Regarding the error in the reconstruction of the signal part xS (Fig-
ure 9.3(c)), we observe that both BICA and DBPS are able to partially
compensate for the inaccurate centroid estimators. These two methods in-
cur a signi�cant reconstruction error even when noise-free data (ε = 0) is
available for parameter inference. As the noise level increases, the recon-
struction error only slowly. INO obtains good reconstruction results for
noise levels up to 30% but is limited by its inaccurate centroid estimators
obtained for higher noise levels. MAC, on the other hand, bene�ts from the
accurate estimators û and clearly outperforms its competing methods for
noise levels up to 65%.

Finally, for the instability of the cluster assignments (Figure 9.3(d)),
we observe that MAC is able to �nd relatively stable cluster assignments
and signi�cantly outperforms its competitors for noise levels up to 50%.
The decreasing stability even for low noise fractions explains why slightly
erroneous reconstructions are obtained even if the parameters are perfectly
retrieved. Reconstruction errors in these cases are due to cumulated noise
e�ects on particular data items which case these data items to be assigned
to a �wrong� assignment set. Furthermore, note that the stability does not
decrease to zero in the case where the data is exclusively generated by noise.
In this regime, we observe that BICA, DBPS and MAC assign most data
items to a cluster that has only zeros in its structure and thus e�ectively
explain the while data by noise. Only a small fraction of the data items is
assigned to a cluster with non-empty centroid. Since this results in di�ering
cluster sizes, the stability remains above zero.

Comparing MAC Variants

In this section, we investigate the in�uence of the noise model and compare
the results obtained using multi-assignment clustering with the results of
the corresponding single-assignment clustering. We analyze the accuracy
of the estimators β̂ (Figure 9.4(a)) and of the rounded estimators û (Fig-
ure 9.4(b)). With the noise model, both MAC and SAC are able to yield
estimators which are, when rounded, fully correct for noise levels up to 45%.
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(a) Accuracy of Estimators β̂ (b) Accuracy of Estimators û

Figure 9.4: Accuracy of original and rounded parameter estimators for
multi-assignment and single-assignment clustering, both with and without
noise model.

MAC is able to yield precise results even for higher noise levels, it breaks
down at noise levels around 70%.

If no noise model is available, all matrix elements are to be explained
by the structure. In this setting, both MAC and SAC perform dramatically
worse than with noise model, and even for small noise levels, the unrounded
estimators are imprecise. MAC is doing slightly better than SAC for noise
levels up to 30% but then falls behind SAC. To our understanding, this
is due to additional assumption on the structure in MAC: This technique
interprets some data items as being generated by the disjunction of several
sources. If noise is present but not modeled, this essential assumption is not
ful�lled and leads to inaccurate estimators. Single-assignment clustering
does not rely on this structure assumption and is therefore less a�ected by
the unmodeled noise.

Comparison of Noise Model Variants. To investigate the performance
of local noise models presented in Section 9.1.2, we generate data with a
noise level ε linearly increasing from 0 to 2ε over the dimensions. The
average noise fraction ε is varied between 0% and 50%. In this setting, an
average noise ratio of 50% implies that the right-most columns are generated
entirely by the noise process. The noise parameter r is set to 50% for all
dimensions. Apart from this, the same experimental setting is used: 3
sources with at most two sources in each assignment set, and 350 objects.
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We use the non-overlapping source centroids as depicted in Figure 9.2.
Inference on this data is carried out with the following variants of MAC:

MACmixNN: MAC without noise model

MACmixGG: MAC with mixture noise model and global noise model

MACmixDG: MAC with mixture noise model and dimension-wise noise
intensity ε and global noise parameter r

MACmixDD: MAC with mixture noise model and dimension-wise noise
intensity ε and noise parameter r

MACmixUG: MAC with mixture noise model, with object-wise noise in-
tensity ε and global noise parameter r

MACmixUU: MAC with mixture noise model, with object-wise noise in-
tensity ε and noise parameter r

The estimators of the source parameters β̂ are depicted in Figure 9.5(a).
Surprisingly, we see that MACmixDD yields by far the least accurate esti-
mators and also has a high variation between the results obtained on several
data set sampled from the same distribution. Figure 9.5(c) shows the esti-
mated noise parameters ε̂d, for d = 1, . . . , D = 24 in the experiments where
the true average noise fraction was 30%. Also this parameter is very inaccu-
rate as soon as the true noise fraction per dimension exceeds roughly 20%.
For dimensions with noise fraction above this critical value, we observe that
the data is mainly explained by noise. The source accuracies are essentially
random. Note that also the stability of the clustering solutions, depicted in
Figure 9.5(e), rapidly decreases already for a small noise fraction of 10%.

All other MAC variants perform reasonably well: MACmixNN has by
de�nition a noise intensity of ε = 0. The global noise estimator obtained by
MACmixGG determines the average noise intensity very accurately. Fur-
thermore, it has a very small variance, as in the experiments presented
above, e.g. in Figure 9.3(b) for this noise level. MACmixDG, the true
model for these data, yields very accurate estimators for the noise intensity.
The data-item-wise noise models MACmixUG and MACmixUU perform
comparable to the global noise model MACmixGG.

We interpret this unexpected poor performance of MACmixDD as fol-
lows: At high computational temperatures in the deterministic annealing
scheme, the probabilistic source centroids β̂ take values strictly between 0
and 1. When determining the noise parameters, the values of β̂ are rounded.
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(a) Accuracy of û (b) Accuracy of û

(c) Accuracy of ε̂ (d) Accuracy of ε̂

(e) Stability (f) Stability

Figure 9.5: Parameter accuracy and stability for MAC variants with di�er-
ent noise models. The left column shows results obtained with the standard
con�guration where the intermediary values of β̂ are rounded when estimat-
ing the parameters. In the right column, this rounding is omitted.
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Doing so, the log-likelihood of explaining the observed noisy data at least
partially by structure increases. The freedom to choose the noise parameter
r dimension-wise enables the model to precisely adapt the estimated noise
process to the observed data, and noise thus becomes the favorable explana-
tion. MACmixDG does not have the freedom to choose dimension-wise noise
parameters r. The noise values obtained by MACmixUG and MACmixUU
have a high variance around the true value of the average noise fraction ε.
However, since these variations are orthogonal to the true variation of the
noise, they do not seem to disturb the inference of the centroids, as can be
shown in Figure 9.5(a).

Rounding the intermediate estimators β̂ before estimating the noise frac-
tion ε and the noise parameter r is a computational ruse that, in all cases
studied so far, yields more accurate parameter estimators and speeds up
computation. To determine the e�ect of this manipulation in the given set-
ting, we run the same experiment without rounding β̂. The results are given
in the right column of Figure 9.5. When the probabilistic parameter esti-
mators are used, the accuracy of both the centroid and the noise fraction
estimators obtained by MACmixDD drastically increases (Figures 9.5(b)
and 9.5(d)). MACmixDG yields clearly less accurate noise fraction esti-
mators than in the previous setting. Also the stability of the clustering
solutions obtained by the data-item-wise noise models increases. However,
MACmixUU now yields less stable results and does not use all possible as-
signment sets, which is why the stability can not be reported for average
noise fractions above 20%.

When the average noise fraction increases, MACmixDD is the �rst one of
the considered inference methods to incur errors on the estimated centroid
parameters û, and also MACmixDG is outperformed by e.g. MACmixGG
for higher noise fractions. We thus conclude that the local noise models
carry with them the acute danger of over-parametrization. We recommend
to compare results of the local noise models with the performance of a global
noise model even in applications where there is evidence for a local noise
model.

In�uence of Data Set Properties

Fraction of Multi-Assignment Data. It seems reasonable to expect
that the estimation of parameters is easier based on data generated by
single sources than on data generated by multiple sources. To verify this
intuition, we run BICA, DBPS, INO and MAC on three data sets with
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(a) BICA (b) DBPS

(c) INO (d) MAC

Figure 9.6: Accuracy of the rounded centroid estimators û for low, medium
and high ratio of data items from multiple sources.

varying numbers of data items per label degree. The �rst (second/third)
data set, represented in blue (green/red), consists of 20 (50/80) samples per
assignment set with more than one element, and of 80 (50/20) samples per
single source.

The results from this experiments are depicted in Figure 9.6 and con�rm
the intuition. Especially the DBPS (Figure 9.6(b)) is a�ected by the in-
creased complexity as more data items are generated from multiple sources.
The singlet-combination confusion is only a limited problem if the percent-
age of multi-assignment data is low, and error rates below 10% are obtained
for noise levels up to 45%. For higher multi-assignment data ratios, how-
ever, at least 20% of the centroid bits are wrongly estimated at all noise
levels.
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(a) BICA (b) DBPS

(c) INO (d) MAC

Figure 9.7: Accuracy of the rounded centroid estimators û on data sets with
5, 50 and 500 data items per source set.

For INO as well as MAC, we observe that the noise level up to which
fully accurate estimators can be obtained depends on the ratio of multi-
assignment data. For both methods, this limiting noise ratio is higher if a
lower ratio of data is generated by multiple sources. The largest di�erence
is observed between the data with 20% and 50% multi-assignment data
items. Further increasing the rate of such data items has a limited e�ect.
For BICA, �nally, the di�erence in estimation accuracy is less dramatic and
results mainly in a loss of accuracy which is almost independent of the noise
level.

Size of Data Set. As the size of the training data set increases, all infer-
ence methods studied in this thesis obtain, at least for some noise settings,
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more accurate estimators. In Figure 9.7, we report the accuracy of the cen-
troid estimator û for three di�erent data sets consisting of 5, 50 and 500
data items per assignment set. The overall data set thus consists of 35, 350
and 3500 data items, respectively.

For none of the methods, the accuracy on the noise-free data changes
as more training data becomes available. However, for noisy data, some
amelioration can be observed for both BICA and DBPS. For these two
methods, the main cause for inaccurate parameter estimators seems to be
the unmatched assumption of orthogonal centroids by BICA and the greedy
optimization procedure followed by DBPS. Therefore, these methods can
only slightly pro�t from the increased training data size.

A clear improvement is obtained by INO. As 50 or 500 data items are
available per source set, this method yields perfect estimators for noise
fractions up to 30%, while a high deviation is incurred already at the noise
level of 15% when training on the small data set. For MAC, the estimators
obtained on the small data set are very sensitive to noise. On larger training
data sets, however, the Boolean centroids are perfectly recovered for noise
fractions up to 55% (if N = 350) or even 65% (in the case where N = 3500).
MAC is thus best able to pro�t from more training data.

Type of Noise Process. To investigate the in�uence of the noise process,
we run experiments on data which is generated according to the noisy-or
noise process (i.e. r = 1) and thus corresponds to the assumptions made
by INO. The results, reported in Figure 9.8(a), show that INO now yields
more precise parameter estimators than on data generated with r = 0.5
(Figure 9.3(b)). However, INO still yields no stable number of clusters
for noise fractions above 40%. MAC also yields more accurate parameter
estimators on noisy-or data: The parameters are perfectly retrieved for
noise fractions up to 0.75, while the �rst deviations are already observed
for ε = 0.6 in the case of symmetric noise. Also note that the decay in
performance is much sharper on noisy-or data. The performance of BICA
and DBPS does not signi�cantly change between the two noise models.

Source Geometry. The results on data generated from orthogonal cen-
troids are depicted in Figure 9.8(b). This data set corresponds to the as-
sumptions made by BICA, and this method can dramatically improve its
estimator accuracy: The parameters are perfectly retrieved for noise frac-
tions up to 65%. DBPS also pro�ts from orthogonal centroids: due to the
orthogonal centroids, the di�erence of data items generated by di�erent

153



CHAPTER 9. GENERATIVE MULTI-ASSIGNMENT CLUSTERING

(a) Overlapping Centroids, noisy-or noise
(r = 1)

(b) Orthogonal Centroids, symmetric noise
(r = 0.5)

Figure 9.8: Dependence of the accuracy of the rounded centroid estimators
û on the source geometry and the noise process: The left panel shows
experiments on data from overlapping centroids, in the right panel, the
noise process is the noisy-or.

source sets is higher than in the setting of overlapping centroids. There-
fore, combination-singleton confusion no longer occurs, and the parameter
estimators are perfect for noise fractions up to 0.3 and then only slowly dete-
riorate. INO, again, chooses a varying number of clusters for noise fractions
above 0.45. Summing up, we �nd that all considered inference methods
improve their estimation accuracy when data is generated by orthogonal
centroids.

9.4.2 Experiments on Real-World Data

To evaluate the performance of our algorithm on real data, we apply multi-
assignment clustering to role-mining. We use a real-world dataset containing
the user-permission assignment matrix of N = 4900 users and D = 1300
permissions. A section of this data matrix is depicted in Figure 9.9. The
roles are inferred based on the permissions of the �rst 2000 users. The
permissions of the remaining users are used to compute the generalization
ability of the role set.

In order to evaluate the di�erent methods on more complex data with
higher noise level, we generate a modi�ed data set x̄ as follows: The �rst
and the second 500 permissions of the original matrix are combined by an
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Figure 9.9: An excerpt of the real-data matrix. a black dot indicates a 1 at
the corresponding matrix element, white indicates a 0. The full matrix has
size 4900× 1300.

element-wise OR operation to give the structure part of x̄, x̄S :

x̄S =
[
x̄Sn,d

]
2000×500

with x̄Sn,d = xn,d ∨ xn,d+500 (9.29)

Furthermore, 33% of the entries of the matrix x̄S are replaced by random
bits to yield the modi�ed matrix x̄, which exhibits both a clearly higher
structural complexity and a considerably increased noise level.

For the generalization experiment, we use again the permissions of un-
used users in the structure matrix x̄S . Doing so, we are able to detect
whether a method is able to infer a suitable role set even under conditions
with high noise level.

Results of Di�erent Inference Techniques

The results of the generalization experiments are depicted in Figure 9.10
for the four methods MAC, DBPS, BICA and INO. The ratio κ of dis-
closed permissions is varied between 0.05 and 0.5. All models pro�t from
an increased number of disclosed permissions.

On the original dataset (Figure 9.10(a)), DBPS and MAC perform com-
parably for lower values of κ. As κ is increased, MAC is able to outperform
DBPS, which we see as an indication for the more accurate parameter esti-
mators obtained by the proposed method. INO also performs well for low
κ, but is not able to improve as much as the other two methods when more
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(a) Generalization Ability on Original Data (b) Generalization Ability on Modi�ed
Data

(c) Average Role Overlap (%) on Original
Data

(d) Average Role Overlap (%) on Modi�ed
Data

Figure 9.10: Results from the generalization experiment on real data. 30
roles are used in MAC, DBPS and BICA. INO selects 34 roles on the original
data set (left column) and 25 on the modi�ed data set (right column). The
�gures in the upper row show the generalization error obtained with the
inferred roles, the average row overlap is displayed in the lower row.

dimensions are revealed. We assume that this is due to an unappropriate
noise model. The noise parameters obtained by MAC with mixture noise
model are ε ≈ 6% and r ≈ 20%, which is clearly di�erent from a noisy-or
noise process (which would correspond to r = 1). The performance of BICA
is signi�cantly behind the results obtained with the three other methods for
all values of κ. As the average centroid overlap of the roles inferred by MAC
is 6 − 7%, the assumption of independent, i.e. non-overlapping, centroids
made by BICA seems therefore appropriate and causes the high generaliza-
tion error. Note that roughly 13% of the matrix entries are 1. The most
trivial role set containing one single role with no permission would thus
yield a generalization error of 13%.

In the experiments on the modi�ed dataset with more structure and
higher noise level (Figure 9.10(b)), all methods incur higher prediction er-
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rors. MAC yields signi�cantly lower prediction errors than all its competi-
tors for all values of κ above 0.05. In comparison with the original dataset,
DBPS looses more generalization ability than all other methods and is con-
siderably behind MAC in the more di�cult setting. Also INO is clearly
behind MAC but still outperforms BICA and DBPS when a medium to
large rate of permissions is revealed.

Furthermore, it is enlightening to follow the trend in the performance
of di�erent methods as more and more dimensions are revealed: While
MAC and INO pro�t from the additional information and yield more precise
predictions, the performance of both DBPS and BICA shows only minor
changes. This indicates that these two methods have problems to infer
the underlying structure, which would allow to predict the permissions of
new users. As observed in the experiments on synthetic data, BICA su�ers
from the unmet assumption of orthogonal centroids, while for DBPS, the
problem is its greedy nature, which yields combination-singleton confusion.
Since these two methods do not have a noise model, the e�ect of the model
mismatch is aggravated when the noise level increases.

The lower row of Figure 9.10 shows the average role overlap between the
roles obtained with the di�erent methods. This is the average number of
permissions that the inferred roles have in common. The overlap between
the roles obtained by MAC does not change as the complexity and the noise
level of the data increases. By construction of the method, the average role
overlap obtained by BICA is 0. INO yields roles which are almost orthogonal
(overlap less than 1%, with 21 roles) for the more complicated case, while
an overlap of some 3% and 34 roles is observed when doing inference on the
original data set. DBPS, on the other hand, shows an opposite trend: The
roles share a higher number of permissions as the structure get more �ne-
grained and the noise level increases. The construction of the more complex
data set leads to a higher number of permissions in the data set and thus a
higher overlap between the permissions of di�erent users. Since DBPS de-
rives the candidate roles from individual data items and their intersections,
all candidate roles show an higher overlap.

Optimal Parameter Values

In the experiments reported in the previous section, we choose the number
of roles by educated guess, and the other parameters of the models are set
to their default values. INO uses non-parametric techniques to avoid a hard
choice of the number of clusters, but for the other methods considered in
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(a) Validation Data (b) Test Data

Figure 9.11: The generalization error (with κ = 0.1) for varying numbers of
clusters K. The number of clusters is displayed, the other parameters are
determined by exhaustive search (for MAC) over the parameter space of a
discretisation thereof. The performance on the cross-validation test sets is
shown on the left, the results on the hold-out set on the right. Note that
namely BICA performs clearly worse on the test data than on the validation
data, i.e. the roles obtained by BICA are not able to explain new data.

these experiments, namely the number of sources is a critical parameter. We
therefore investigate the dependency of the clustering performance on the
model order in the context of role mining. The experiments are based on a
data set with similar statistics as the one used in the previous experiments.
Roughly 1900 users are hold out as test set. The remaining 3000 users are
randomly split into a training and a validation set. This splitting is repeated
�ve times such that each user is once in the validation set and four times in
the training set. The number of permissions used in this experiment is 500.
In all experiments, the fraction κ of revealed permissions is κ = 0.1, with
10 random subsets of permissions revealed.

The number of roles is varied between 5 and 120. In order to determine
the optimal values of the remaining parameters (such as the maximal degree
of the assignments for MAC) for a given number of roles, the methods run
on a training set for each of the possible values of these parameters if the
number of possible parameter values is small. For continuous parameters,
we discretize the parameter space into roughly 50 equally spaced parameter
values spanning the whole range of possible parameter values. The predic-
tion performance on a separate validation set is evaluated and the parameter
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values for a given number of roles are set such that the average prediction
performance (averaged over the �ve splits in training and validation data)
on the evaluation set is maximized. The performance of the three methods
MAC, DBPS and BICA on the validation data is depicted in Figure 9.11(a).

The prediction ability of the role set inferred by a method with a �xed
number of classes is estimated on the separate test data set. The perfor-
mance values are displayed in Figure 9.11(b). While both MAC and DBPS
have a prediction error which is about 1% above the value obtained on the
validation set, the performance of BICA dramatically deteriorates on the
test data. Recall that BICA is the only method assuming orthogonal cen-
troids. In the experiments with synthetic data, we have observed that its
performance largely depends on this assumption being true. Furthermore,
all three competing methods support role overlap and do �nd overlapping
roles. These two observations are strong evidence that the actual underlying
structure contains roles with signi�cant overlap of permissions.
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Chapter 10

Approximation Set Coding

for Cluster Validation

In the experiments presented in Chapter 9, we compare di�erent clustering
models based on their performance with respect to a particular measure.
Furthermore, except for the INO, we determined the number of clusters
K either by knowing the true generative process (in the experiments with
synthetic data) or by an educated guess based on the data matrix. How-
ever, selecting an appropriate model and the right model order, i.e. the
right number of clusters, are fundamental issues in clustering problems [23].
Namely from a generative viewpoint, where selecting a model implies also
selecting an explanation of the observed data, model selection and model
order selection are fundamental tasks of scienti�c inquiry.

Several approaches to guide the selection of a clustering technique out
of the large variety of models and algorithms have been proposed. Most
of these approaches are based on criteria describing subjective ideas on the
property of a �good� clustering solution. For example, the Gap statistic
[106] prefers compact clusters around a centroid, while both the Akaike In-
formation Criterion (AIC) [2] and the Bayesian Information Criterion (BIC)
[99] assume that model errors are normally distributed. These model selec-
tion techniques are only reliable if the respective assumptions are ful�lled
and should not be applied in scenarios where elongated structures or non-
Gaussian errors can not be excluded.

Statistical learning theory [114, 116] advocates the generalization ability
of models to measure the quality of a model. The measure of stability (Sec-
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tion 2.4.3) has shown promising results for model order selection in practice
[9, 40, 75]. However, its reliability is disputed, as in the limit of in�nite
data, the stability only depends on the objective function of the clustering
methods, but not on its parameters [8]. More fundamentally, stability is
only one aspect of an ideal clustering solution. The other criteria is the
amount of information retrieved from the data. A small decrease in the
stability might be compensated by a large increase in the information con-
tent of the clustering solution. The goal of statistical modeling is thus a
trade-o� between stability and informativeness. In the following, we brie�y
summarize an information-theoretic approach to weight up these two con-
siderations [20] and detail the adaptation of the calculations to our setting.
We then show that this framework captures the accuracy as well as the
generalization ability of the inferred parameters.

10.1 Clustering As Communication

The idea underlying the information-theoretic model validation scheme is as
follows: The solutions for an inference problem should generalize to a new
data set. However, data sets di�er from each other due to perturbations.
For this reason, the single best solution is replaced by an approximation set,
which contains a number of �good� solutions. The size of the approximation
set is chosen such that the same clustering solutions are obtained on both
data sets.

Formally, a clustering is a function c which assigns each data item Xn,·,
n = 1, . . . , N , in the data set X to a set of clusters, i.e. c(Xn,·) = Ln ∈ L.
The hypothesis space C(X) contains all possible clustering solutions on X.
We assume a risk function R(c,X) to measure how well a particular cluster-
ing c groups the objects in X. Apart from the assignments of objects to sets
of clusters, the clustering costs typically depend on parameters θ describing
e.g. the centroids of a cluster. To simplify the notation, these parameters
are not explicitly listed as arguments of the clustering cost function R.

Given a data set X, the optimal clustering solution c⊥(X) is computed
such that the empirical risk on the data set X is minimized:

c⊥(X) := arg min
c∈C(X)

R(c,X) (10.1)

Assuming that X ∼ P (X) is a random variable generated by a stochastic
process, the empirical risk minimizer c⊥(X) is a random variable as well.
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The optimal solution on the training data might therefore not be suitable
for describing the clustering of a data set X. Instead, we de�ne the set
Cγ(X) of empirical risk approximations:

Cγ(X) := {c(X) : R(c,X) ≤ R(c⊥,X) + γ} (10.2)

The set Cγ(X) describes the set of objects which are statistically indis-
tinguishable with respect to their relevant properties. This set corresponds
to the micro-canonical ensemble in statistical physics [82, 83]. In our set-
ting, all solutions share the property of being γ-close to c⊥ in terms of their
costs.

Replacing the exact solutions with the approximation sets coarsens the
hypothesis space. The key question of learning remains to determine the
optimal resolution in the hypothesis space: The parameter γ has to be
chosen such that the approximation sets Cγ(X) are still identi�able under
the random variations of the data. Conversely, choosing γ too high yields a
too coarse-grained resolution and does not capture the optimal amount of
information contained in the data.

Approximation Set Coding and Approximation Capacity. To de-
scribe the identi�cation of approximation sets formally and to derive an
approximation capacity, we embed the problem of clustering in a communi-
cation framework. In this setting, the approximation sets represent the code
words, and the problem instances X form the noisy channel. The approxi-
mation capacity of this �channel� ranks models according to their stability
and informativeness. Good models are those which have a high capacity.

The communication process is organized in two stages:

Protocol Design The problem generator PG generates a �rst data set
X(1) ∼ P (X) and sends it to the sender S. S then transforms the
data by a set of permutations ΣS := {σj , 1 ≤ j ≤ 2nρ}. Thereby,

S generates 2nρ data sets {σj ◦X(1)
∣∣2nρ
j=1
} and consequently, 2nρ op-

timization problems with 2nρ approximation sets as solutions. These
permutations ΣS are shared with the receiver R and serve as code-
book.

Communication During communication, the sender S randomly selects
a permutation σs ∈ ΣS. This permutation is the message to be
communicated. The problem generator PG generates a new data set
X(2) ∼ P (X) from the same distribution as X(1). PG obtains the
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permutation σs and applies it to X(2). PG sends the resulting data
X̃(2) := σs ◦X(2) to the receiver R.

On the receiver side, the task is to determine the permutation σs. The
lack of knowledge about the permutation σs is mixed with the stochastic
variability in the source generating the data sets X(1) and X(2). To estimate
the permutation σ̂, R determines the intersections between Cγ(X̃) and the
approximation sets in the codebook of approximation problems:

∆Cγ,s = Cγ(σs ◦X(1)) ∩ Cγ(X̃(2)), σs ∈ Σ . (10.3)

The estimator for the permutation σ̂ is determined such that the intersection
is maximized:

σ̂ := arg max
σ∈Σ
|∆Cγ,s| . (10.4)

An error occurs whenever the estimated permutation σ̂ is di�erent from
the permutation σs chosen by the sender. Analyzing the error probability
P(σ̂ 6= σs|σs) of this communication protocol [20] shows that an asymptot-
ically non-vanishing error rate is achievable for rates

ρ ≤ Iγ(σs, σ̂) =
1

n

(
H(σs) + log

(
|∆Cγ,s|
|C(1)
γ ||C(2)

γ |

))
(a)
=

1

n
log

(
|ΣS| · |∆Cγ,s|

|C(1)
γ ||C(2)

γ |

)
, (10.5)

where H(σs) denotes the entropy of the random permutation chosen by
the sender. The transformation (a) assumes that the sender chooses this
permutation uniformly from all members of the permutation set ΣS, in
this case we have H(σs) = log |ΣS|. Furthermore, to obtain a compact
formulation, we have introduced C(q)

γ := Cγ(X(q)) for q = 1, 2.
Note that the mutual information Iγ(σs, σ̂) (10.5) is not de�ned when

the intersection set ∆Cs between the two approximation sets is empty.

10.2 Calculating the Approximation Capacity

To evaluate the mutual information, we calculate the sizes of approximation
sets. Assuming that the approximation sets are large, we use the canonical
state sum as an approximation of the micro-canonical state sum [83]:

∀γ,∃β s.t. |Cγ(X(q))| =
∑

c∈C(X(q))

exp(−βR(c,X(q))). (10.6)
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The weights exp(−βR(c,X(q))) are known as Boltzmann factors. Similarly,
to approximate the cardinality of the joint approximation set ∆C, we use

∀γ,∃β s.t. |∆Cγ,s| =
∑

c∈C(X(1,2))

exp(−βR(c,X(1))) · exp(−βR(c,X(2))) , (10.7)

with X(1,2) = (X(1),X(2)). It should be stressed that under these approx-
imations, the calculation of Iβ(σj , σ̂) requires only to calculate Boltzmann
factors exp(−βR(c,X(2))). In the following, we will always use the partition
sums to determine the size of the approximation sets. Doing so, we replace
the set sizes in Eq. 10.5 by the state sums (Equations 10.6 and 10.7), and
choose the parameter β instead of the micro-canonical parameter γ such
that the approximation capacity ρ is maximized.

Keep in mind that not for all β in Eq. 10.6 there exists a value of γ
such that the partition sum is equal to the size of the approximation set.
In particular for large values of β, the sum of Boltzmann factors may be
smaller than 1. In this pathological setting, the error of the approximation
used to compute the mutual information is very high, and no conclusion
can be drawn about the value of Iβ(σj , σ̂). However, since we are primarily
interested in the maximum of this information, around which the approxi-
mation sets necessarily have appropriate sizes, these limits are no handicap
for the proposed approach to model and model order selection.

Simpli�cations in a Factorial Model. In a general setting, computing
the state sum is still a very demanding task, which is mostly addressed using
further approximations or sampling techniques. A drastic simpli�cation is
possible if the individual data items are mutually independent. In such a
factorial model, the risk of a clustering solution is the sum of the risks of
assigning a data item to a particular cluster:

R(c,X(q)) =

N∑
n=1

R(cn, X
(q)
n )

and the size of the approximation set is determined according to

|C(q)
γ | =

N∏
n=1

∑
cn∈C(X(q)

n )

exp
(
−βR(cn, X

(q)
n )
)
. (10.8)

To simplify the state sum corresponding to the joint approximation set
(Eq. 10.7) in this way, we have to ensure that the product of Boltzmann
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factors goes over corresponding objects. To do so, we choose a permutation
on the data items of the second data set X(2) such that the overall `1
distance between data items in X(1) and X(2) is minimized:

π(2) := arg min
π∈PN

{
N∑
n=1

∣∣∣X(1)
n,· −X(2)

π(n),·

∣∣∣} , (10.9)

where PN is the set of all permutations on N objects. Using the Hungar-
ian algorithm [74], the permutation π(2) can be found in O

(
N3
)
running

time. With this permutation, the size of the joint approximation set is
approximated as

|∆Cγ,s| ≈
N∏
n=1

∑
cn∈C(X(1)

n )

exp
(
−βR(cn,X

(1)
n )
)
· exp

(
−βR(cn,X

(2)

π(2)(n)
)
)
.

The mentioned simpli�cations are applicable to sets of vectorial data where
the solution space of the two data sets X(1) and X(2) are identical. For non-
vectorial data (e.g. distance data), more involved mappings are required.

10.3 Experimental Evaluation

In this section, we present experiments indicating that the ranking of clus-
tering methods according to the approximation capacity corresponds to the
ranking according to specialized quality measures.

In the experiments, we restrict ourselves to single- and multi-assignment
clustering of Boolean data, both with and without a noise model. For
these models, we have a clearly de�ned risk function given by Eq. 9.21,
while the risk function is not clearly given for the other clustering methods
considered in Chapter 9. In the case of multi-assignment clustering, the
cluster solution cn for data item n might imply that n is assigned to several
clusters. Using the assignment set L to describe this assignment, the risk
R(c,Xn) corresponds to Rmixn,L as de�ned in Eq. 9.21.

10.3.1 Experiments on Synthetic Data

For the �rst experiment, we generate data from the �rst two overlapping
sources depicted in Figure 9.2(b) and add a padding of 30 additional di-
mensions containing only zeros. The set of possible source sets is L =
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(a) Accuracy of β̂ (b) Accuracy of û

(c) Approximation Capacity computed

based on β̂

(d) Approximation Capacity computed
based on û

Figure 10.1: Experiments on data sets generated by two slightly overlapping
sources. The parameter accuracy and the approximation capacity are shown
both for the original estimators β̂ as well as for the rounded estimators û.

{{1}, {2}, {1, 2}}, and 100 data items are sampled from each source set.
The noise process is symmetric, i.e. r = 0.5. Inference is carried out with
both SAC and MAC, each with and without a noise model.

Figure 10.1(a) shows the accuracy of the probabilistic centroids β̂. As
observed in previous experiments, the `1 distance between the true and the
estimated parameters grows almost linearly for both the MAC and the SAC
model without a noise model, while the two models with a noise component
incur only slight errors for noise fractions up to 60%. If the probabilistic
centroids are used to compute the approximation capacity, the inaccuracy
in the parameter estimators directly translates into a smaller capacity (Fig-
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ure 10.1(c)).
Figure 10.1(b) shows the accuracy of the rounded estimators û. The

rounding corrects most of the deviations in β̂ for noise fractions up to 60%.
Due to the symmetric noise process, the e�ect of the noise on β̂ leads to
a deviation from the true value that is, on the average, independent of the
true value: Instead of 0 (1), the estimator β̂k,d is β̂k,d = 0+η (β̂k,d = 1−η).
Even for relatively large values of η, rounding the estimator β̂k,d returns
the true value 0 (1) for ûk,d. As a consequence, the approximation capacity
obtained by all four inference techniques is comparable. Only for noise
fractions between 0.6 and 0.7, the more accurate parameter estimators due
to a noise model translate into a higher approximation capacity.

Considering Figure 10.1(d), we observe that the approximation capacity
attains its maximum of log2 3 ≈ 1.6 bits for noise-free data. As the noise
fraction increases, the capacity �rst only slightly diminishes but then rapidly
decreases for noise fractions above 20%. In the setting where ε = 0.5, the
capacity has fallen to half of the maximum, even though the parameter esti-
mators û are still perfect. The noise fraction of 50% implies that half of the
matrix entries are random and the number of distinguishable permutations
|ΣS| in Eq. 10.5 reduces to the square root of its value in the noise-free
case. Accordingly, the approximation capacity decays in spite of the perfect
parameter estimation.

To increase the di�erences between the four considered variants of MAC,
we design an experimental setup where symmetries are broken: We gener-
ate data from two twenty-dimensional orthogonal centroids with unequal
numbers of ones. Further dimensions are added to all emissions up to the
total number of D dimensions. The padding dimensions contain as many
values 0 as 1, the Hamming distance between the centroids thus remains
constant. Furthermore, we consider an asymmetric noise process with noise
parameter r = 0.75 such that the e�ects of noise do not cancel out in the
average. The data items are mainly generated by single-label sources, more
precisely we have N{1} = 150, N{2} = 140 and N{1,2} = 10.

The results obtained in this setting with D = 150 are given in Fig-
ure 10.2. The parameter estimators of the models without noise compo-
nent are clearly less accurate than the estimators obtained by MACmix
and SACmix. In this setting, the e�ect of the noisy data onto the esti-
mators is no longer symmetric but introduces a tendency towards 1. As a
consequence, and in contrast to the previous setting, rounding is no longer
as bene�cial, and the rounded estimators are less precise. For the noisy
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(a) Accuracy of û (b) Approximation Capacity computed
based on û

Figure 10.2: Estimator accuracy and approximation capacity on data gener-
ated from two asymmetric orthogonal sources. A total number of 300 data
items is drawn mainly from single sources, the noise process is asymmetric
with r = 0.75.

SAC model, the main problem is the small number of data items from the
combination {1, 2} that leads to erroneous estimators for this source.

The di�erences in the parameter accuracy are mirrored in the approx-
imation capacity. For both the noise-free and the noisy SAC model, the
approximation capacity clearly drops as the noise fraction becomes posi-
tive. Note that these two models incur small, but non-zero deviations in
their parameter estimators. MAC without noise model �rst maintains a
high approximation capacity, but then falls back to similar values as the
noise-free SAC model as the parameter estimators of the two models be-
come similar in accuracy. MAC with the mixture noise model maintains
the highest approximation capacity, in accordance with the highest preci-
sion in the parameter estimators.

The high sensitivity of the approximation capacity to small deviations in
the parameter estimators can be explained with the logarithmic form of this
quality measure. Consider for example the binary symmetric channel (BSC)
[29], where bits are �ipped with probability p. The information capacity of
this channel is given by C(p) = 1 − h(p), where h(p) denotes the binary
entropy function, given by h(p) = −p log p − (1 − p) log(1 − p). As seen in
Figure 10.3, a minor variation of a small value of p leads to a large change
in the information capacity. If p is around 0.5, the information capacity
reaches its minimum and shows little sensitivity for variations of p.
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Figure 10.3: Capacity of the binary symmetric channel (BSC) as a function
of the bit �ip probability p.

10.3.2 Experiments on Real-World Data

We conduct experiments on real-world data to determine the agreement
of the approximation capacity with several speci�c quality measures for
multi-assignment clustering. In these experiments, we trace the value of
the mentioned measures as a function of the computational temperature T
as it is gradually decreased in the deterministic annealing scheme. Note
that namely around phase transitions, the value of estimators and thus
also the value of the quality measures can rapidly (discontinuously) change
as the computational temperature is reduced. This phenomenon implies
�uctuations in all quality measures. Due to the high sensitivity of the
information capacity, the �uctuations are particularly pronounced for this
measure.

For these experiments we use the same data set as in Section 9.4.2. We
randomly split the data set �ve times into training and test sets and report
the averages and the standard deviations of the quality measures over these
splits.

The value of the estimated noise fraction ε̂ and the average pairwise
distance between centroids in û are depicted in Figures 10.4(a) and 10.4(b)
along with the approximation capacity. At high T , the estimated noise frac-
tion is high � remember that in the data set we used, roughly 13% of the
matrix elements are 1, all others are 0. The distance between di�erent cen-
troids is relatively low, indicating that the data is mostly explained as noise.
Correspondingly, the approximation capacity is low. As the computational
temperature decreases, the centroids become more and more dissimilar and
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(a) Approximation capacity and Estimated
Noise Fraction ε̂

(b) Approximation Capacity and Average
Pairwise Centroid Distance in û

(c) Approximation Capacity and Average
Risk of Optimal Assignment

(d) Approximation Capacity and General-
ization Error

Figure 10.4: The development of the approximation capacity in comparison
with several speci�c measures that characterize the evolution of the param-
eter estimators (upper row) and the clustering performance (lower row), as
a function of the computational temperature T .

the estimated noise fraction decreases. At T < 1, the data is mostly ex-
plained by the structure, and the approximation capacity reaches its maxi-
mum. As the temperature further decreases, the estimators maintain their
value, and also the approximation capacity stays at the same value.

With the responsibilities γmixn,L given in Eq. 9.20, the average risk of the
best assignment over all data items is computed as

R̂ :=
1

N

N∑
n=1

Rn,L̂n with L̂n = arg max
L∈L

γmixn,L .
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The average risk measures the match between the data and the model and
decreases as the model parameter become more adapted to the data (Fig-
ure 10.4(c)). Finally, for the generalization error in Figure 10.4(d), we
observe the same behavior as for the risk on the training data. This is again
an indication that the proposed multi-assignment clustering model is robust
against over�tting.

The framework of approximation set coding o�ers a theoretically well-
founded approach to model selection and model order selection. In our
experiments on both synthetic and real-world data, we have observed that
the generic criterion of approximation capacity agrees with speci�c criteria
such as parameter accuracy, empirical risk and generalization ability. We
advocate the use of this principle for all types of optimization problems. By
applying the ASC for the �rst time to a factual clustering problem, we have
bridged the gap between the theory [20] and application.
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Chapter 11

Conclusion

This thesis investigates the challenging problem of learning from data where
some data items are jointly generated by several sources. Starting from a
general model for the generative process of such data, we develop models
and algorithms for multi-label classi�cation (supervised learning) as well as
for multi-assignment clustering (unsupervised learning). These models are
explored in the context of an acoustic data mining problem and a informa-
tion security application.

Hearing instruments are widely used in western societies and allow its
wearers pleasant social interactions in spite of a hearing impairment. The
performance of these devices critically depends on the capability to detect
the current acoustic situation and thus to adapt the signal processing. In
this demanding setting, the proposed generative multi-label classi�er yields
lower classi�cation errors than state-of-the-art algorithms. While the extent
of the di�erence depends on the evaluation criterion, clear improvements are
observed for all quality measures. The more complex parameter optimiza-
tion is worthwhile namely in settings where only a small training data set
is available. We expect an extended acoustic model including e.g. reverber-
ation to further improve the hearing comfort for hearing instrument users.

In a theoretical study on the distribution of parameter estimators based
on multi-label data, we con�rm that the proposed generative method out-
performs its competitors in the accuracy of the parameter estimators. To-
gether with the fact that generative models with consistent parameter esti-
mators yield asymptotically optimal classi�cation results, this observation
provides a theoretically well-based explanation for the superior classi�ca-
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tion performance. At the same time, this �nding con�rms the power of
appropriately complex statistical models compared to oversimpli�ed mod-
eling. Furthermore, we have proven that some of the commonly made as-
sumptions in multi-label classi�cation imply a model mismatch. Inference
methods relying on these assumptions thus obtain inconsistent parameter
estimators.

In the unsupervised learning scenario, we again observe a superior accu-
racy of parameter estimators for models which take the generative nature of
the data into account, compared to methods without this additional knowl-
edge. In addition, the obtained clustering solutions are more stable under
resampling of the data, and the cluster representatives o�er a more precise
description of previously unseen data. Namely the second property is a key
feature in the application of role mining for role-based access control: The
set of roles inferred from a direct access-control matrix should endow new
users with the required permissions. Furthermore, we again observe that
some of the previously proposed models rely on unrealistic assumptions and
are therefore systematically disadvantaged in this real-world problem.

Cluster validation is a hard problem, and most validation techniques
rely on certain assumptions. The framework of approximation set coding
allows us to compare di�erent versions of our clustering algorithm without
presuming particular characteristics of a clustering solution. In several ex-
periments, we observe that model selection based on this universal cluster
validation framework chooses the model which performs best in terms of
specialized quality measures. Furthermore, this being the �rst application
of approximation set coding to a real-world problem, we facilitate the use
of assumption-free evaluation criteria for clustering.

In conclusion, this thesis demonstrates the importance of a su�ciently
general and complex model for both classi�cation and clustering. Algo-
rithms derived from generative models are applied to two important real-
world problems and outperform state-of-the-art methods which are based on
overly simplifying or unrealistic assumptions. A general theoretical frame-
work facilitates the extension of this work to further problems in machine
learning.
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Proofs

A.1 Asymptotic Distribution of Estimators

This section contains the proofs of the lemmata describing the asymp-
totic distribution of estimators obtained by the inference methodsMignore,
Mnew andMcross in Section 6.3.

Proof. Lemma 1. Mignore reduces the estimation problem to the standard
single-label classi�cation problem for K independent sources. The results
of standard (single-label) asymptotic analysis are directly applicable: The
estimators θ̂ignore are consistent and converge to the true parameter θG.

As only single-label data is used in the estimation process, the estimators
for di�erent sources are independent and the asymptotic covariance matrix
is block-diagonal, as stated in Eq. 6.41. The diagonal elements are given by
Eq. 6.35, which yields the expression given in the Lemma.

Proof. Lemma 2. Mnew reduces the estimation problem to the standard
single-label classi�cation problem for L := |L| independent sources. The re-
sults of standard asymptotic analysis (Section 6.1.4) are therefore directly
applicable: The parameter estimators θ̂new for all single-label sources (in-
cluding the proxy-distributions) are consistent with the true parameter val-
ues θG and asymptotically normally distributed, as stated in the lemma.

The covariance matrix of the estimators is block-diagonal as the parame-
ters are estimated independently for each source. Using Eq. 6.35, we obtain
the values for the diagonal elements as given in the lemma.
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Proof. Lemma 3. The parameters θk of source k are estimated indepen-
dently for each source. Combining Eq. 6.24 and Eq. 6.52, the condition for
θk is

Ψcross
N (θk) :=

∑
D

ψcrossθk
(D)

!
= 0

ψcrossθk
(D) = 0 in the case k /∈ L thus implies that D has no an in�uence on

the parameter estimation.
For simpler notation, we de�ne the set of all label sets which contain k

as Lk, formally Lk := {L ∈ L|k ∈ L}. The asymptotic criterion function
for θk is then given by

Ψcross(θk) = ED∼PθG

[
EΞk∼P crossD,θk

[φ(Ξk)]
]
− EΞk∼Pθk [φ(Ξk)] (A.1)

=
∑
L∈Lk

πLEX∼PL,θG [φ(X)] +
∑
L/∈Lk

πLEΞ∼Pθk [φ(X)]

− EΞk∼Pθk [φ(Ξk)]

(A.2)

Setting Ψcross(θk) = 0 yields

EX∼Pθ̂cross
k

[φ(X)] =
1

1−
∑
L/∈Lk πL

∑
L∈Lk

πLEX∼PL,θG [φ(X)] . (A.3)

The mismatch of θ̂crossk thus grows as the fraction of multi-label data grows.
Furthermore, the mismatch depends on the dissimilarity of the su�cient
statistics of the partner labels from the su�cient statistics of source k.

A.2 Lemma 4

Proof. Lemma 4. This proof consists mainly of computing summary statis-
tics.

Ignore Training (Mignore)

Mean Value of the Mean Estimator. As derived in the general de-
scription of the method in Section 6.3.1, the ignore training yields consistent
estimators for the single-label source distributions:

θ̂1,1 → −
a

σ2
1

θ̂2,1 →
a

σ2
2
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Variance of the Mean Estimator. Recall that we assume to have πLN
observations with label set L, and the variance of the source emissions is
assumed to be VΞ∼Pk [φ(Ξ)] = σ2

k. The variance of the estimator for the
single-label source means based on a training set of size N is thus V [µ̂k] =
σ2
k/(πkN).

Mean-Squared Error of the Estimator. With the above, the mean
square error, averaged over the two sources, is given by

MSE(θ̂ignoreµ ,θ) =
1

2

(
σ1

2

π1N
+

σ2
2

π2N

)
.

Since the estimators obtained by Mignore are consistent, the mean square
error only depends on the variance of the estimator.

New Source Training (Mnew)

Mean Value of the Estimator. The new source training is based on
single-label data items and therefore, according to Thm. 3 yields consis-
tent estimators. Note that this method uses three sources to model the
generative process in the given example:

θ̂1,1 → −
a

σ2
1

θ̂2,1 →
a

σ2
2

θ̂12,1 → 0

Variance of the Mean Estimator. The variance is given by Eq. 6.49
and takes the following values in our setting:

V [µ̂1] =
σ1

2

π1N
V [µ̂2] =

σ2
2

π2N
V [µ̂12] =

σ12
2

π12N
=
σ1

2 + σ2
2

π12N

Since the observations with label set L = {1, 2} have a higher variance than
single-label observations, the estimator µ̂12 also has a higher variance than
the estimators for single sources.

Mean-Squared Error of the Estimator. Given the above, the mean
square error is given by

MSE(θ̂newµ ,θ) =
1

3

(
σ1

2

π1N
+

σ2
2

π2N
+
σ1

2 + σ2
2

π12N

)
.
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Cross-Training (Mcross)

As described in Equation 6.50, the probability distributions of the source
emissions given the observations are assumed to be mutually independent
byMcross. The criterion function ψcrossθk

(D) is given in Equation 6.52. The
parameter θk is chosen according to Eq. A.3:

EX∼Pθcross
k

[X] =
1

1−
∑
L/∈Lk πL

∑
L∈Lk

πLEX∼PL,θG [X] (A.4)

Mean Value of the Mean Estimator. With the conditional expecta-
tions of the observations given the labels (see Eq. 6.61), we have for the
mean estimate of source 1:

µ̂1 = EX∼Pθcross1
[X] =

1

1− π2

(
π1EX∼P{1},θG [X] + π12EX∼P{1,2},θG [X]

)
= − π1 · a

π1 + π12
= − a

1 + π12

π1

(A.5)

and, similarly, for source 2,

µ̂2 =
π2 · a

π2 + π12
=

a

1 + π12

π2

(A.6)

The deviation from the true value increases with the ratio of multi-labeled
data items compared to the number of single-label data items from the
corresponding source.

Mean Value of the Standard Deviation Estimator. According to
the principle of maximum likelihood, the estimator for the source variance
σ2
k is the empirical variance of all data items which contain k their label

sets:

σ̂2
1 =

1

|D1 ∪D12|
∑

x∈(D1∪D12)

(x− µ̂1)
2

=
1

N(π1 + π12)

(∑
x∈D1

(x− µ̂1)
2

+
∑
x∈D12

(x− µ̂1)
2

)

=
π1π12

(π1 + π12)2
a2 +

π1σ
2
G,1 + π12σ

2
G,12

π1 + π12
(A.7)
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Quantity L = {1} L = {2} L = {1, 2}

EΞ∼Pcross
(X,L),θ̂

[φ(Ξ)]

(
X

θ̂2,1

) (
θ̂1,1
x

) (
X
X

)
EX∼PL,θG

[
EΞ∼Pcross

(X,L),θ̂
[φ(Ξ)]

] (
−a
µ̂2

) (
µ̂1

a

) (
0
0

)
VX∼PL,θG

[
EΞ∼Pcross

(X,L),θ̂
[φ(Ξ)]

] (
σ2
1 0
0 0

) (
0 0
0 σ2

1

) (
σ2
12 σ2

12

σ2
12 σ2

12

)

Table A.1: Quantities used to determine the asymptotic behavior of param-
eter estimators obtained byMcross for a Gaussian distribution.

and similarly

σ̂2
2 =

π2π12a
2

(π2 + π12)2
+
π2σ

2
G,2 + π12σ

2
G,12

π2 + π12
. (A.8)

The variance of the source emissions under the assumptions of method
Mcross is given by VΞ∼Pθ

[φ(Ξ)] = diag
(
σ̂2

1 , σ̂
2
2

)
.

Variance of the Mean Estimator. We use the decomposition derived
in Section 6.2.6 to determine the variance. Using the expected values of the
su�cient statistics conditioned on the label sets and the variances thereof,
as given in Table A.1, we have

EL
[
VX∼PL,θG

[
EΞ∼P cross

(X,L),θ̂
[φ(Ξ)]

]]
=

(
π1σ

2
1 + π12σ

2
12 π12σ

2
12

π12σ
2
12 π2σ

2
2 + π12σ

2
12

)
.

Furthermore, the expected value of the su�cient statistics over all data
items is

ED∼PθG

[
EΞ∼P cross

D,θ̂
[φ(Ξ)]

]
=

(
−π1a+ π2µ̂1

π1µ̂2 + π2a

)
Hence

EL∼Pπ
[(

EX∼PL,θG
[
EΞ∼P cross

(X,L),θ̂
[φ(Ξ)]− ED′∼PθG

[
EΞ∼P cross

D′,θ̂
[φ(Ξ)]

]])⊗]
=

(
π1π12

π1+π12
a2 − π1π12π2

(π1+π12)(π2+π12)a
2

− π1π12π2

(π1+π12)(π2+π12)a
2 π2π12

π2+π12
a2

)
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The variance of the su�cient statistics of the emissions of single sources
and the generalized Fisher information matrices for each label set are thus
given by

VΞ∼P cross
(X,{1}),θ̂

[φ(Ξ)] =

(
0 0
0 σ̂2

2

)
I{1} =−

(
σ̂2

1 0
0 0

)
VΞ∼P cross

(X,{2}),θ̂
[φ(Ξ)] =

(
σ̂2

1 0
0 0

)
I{2} =−

(
0 0
0 σ̂2

2

)
VΞ∼P cross

(X,{1,2}),θ̂
[φ(Ξ)] =

(
0 0
0 0

)
I{1,2} =−

(
σ̂2

1 0
0 σ̂2

2

)
The expected value of the generalized Fisher information matrices over all
label sets is

EL∼PL [IL] = −diag
(
(π1 + π12)σ̂2

1 , (π2 + π12)σ̂2
2

)
where the values of σ̂1 and σ̂2 are given in Eq. A.7 and Eq. A.8.

Putting everything together, the diagonal entries of the covariance ma-
trix of the estimator θ̂cross is given by

Σcrossθ =

(
vθ,11 vθ,12

vθ,12 vθ,22

)
(A.9)

with diagonal elements

vθ,11 =
π1 + π12

π1π12a2 + π1σ2
1 + π12σ2

12

(A.10)

vθ,22 =
π2 + π12

π2π12a2 + π2σ2
1 + π12σ2

12

. (A.11)

To get the variance of the mean estimator, recall Eq. 6.59. The covari-
ance matrix for the mean estimator is

Σcrossµ =

(
vµ,11 vµ,12

vµ,12 vµ,22

)
with vµ,11 =

1

π1 + π12
·
(

π1π12

(π1 + π12)2
a2 +

π1σ
2
1 + π12σ

2
12

π1 + π12

)
vµ,22 =

1

π2 + π12
·
(

π2π12

(π2 + π12)2
a2 +

π2σ
2
2 + π12σ

2
12

π2 + π12

)
.

The �rst term in the brackets gives the variance of the means of the two
true sources involved in generating the samples used to estimate the mean
of the particular source. The second term is the average variance of the
sources.

180



A.2. LEMMA 4

Mean-Squared Error of the Mean Estimator. Finally, the Mean
Squared Error is given by:

MSE(µ̂cross,µ)

=
1

2
π2

12

(
1

(π1 + π12)2
+

1

(π2 + π12)2

)
a2

+
1

2
π12

(
1

(π1 + π12)N

π1

(π1 + π12)2
+

1

(π2 + π12)N

π2

(π2 + π12)2

)
a2

+
1

2

(
1

(π1 + π12)N

π1σ
2
1 + π12σ

2
12

π1 + π12
+

1

(π2 + π12)N

π2σ
2
2 + π12σ

2
12

π2 + π12

)
This expression describes the three e�ects contributing to the estimation
error incurred byMcross:

• The �rst line indicates the inconsistency of the estimator. This term
grows with the mean of the true sources (a and −a, respectively)
and with the ratio of multi-label data items. Note that this term is
independent of the number of data items.

• The second line measures the variance of the observation x given the
label set L, averaged over all label sets and all sources. This term thus
describes the excess variance of the estimator due to the inconsistency
in the estimation procedure.

• The third line is the weighted average of the variance of the individual
sources, as it is also found for consistent estimators.

The second and third line describe the variance of the observations according
to the law of total variance:

VX [X] = VL[EX [X|L]]︸ ︷︷ ︸
second line

+EL[VX [X|L]]︸ ︷︷ ︸
third line

(A.12)

Note that (π1 +π12)N and (π2 +π12)N is the number if data items used
to infer the parameters of source 1 and 2, respectively.

Deconvolutive Training (Mdeconv)

Mean Value of the Mean Estimator. The conditional expectations of
the su�cient statistics of the single-label data are:

EΞ∼Pdeconv
(X,{1}),θ(Ξ)[φ1(Ξ)] =

(
X
µ̂2

)
EΞ∼Pdeconv

(X,{2}),θ(Ξ)[φ1(Ξ)] =

(
µ̂1

X

)
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Observations X with label set L = {1, 2} are interpreted as the sum of the
emissions from the two sources. Therefore, there is no unique expression
for the conditional expectation of the source emissions given the data item
D = (X,L):

EΞ∼Pdeconv
(X,{1}),θ(Ξ)[φ1(Ξ)] =

(
µ̂1

X − µ̂1

)
=

(
X − µ̂2

µ̂2

)
We use a the parameter λ ∈ [0, 1] to parameterize the blending between
these two extreme cases:

EΞ∼Pdeconv
(X,{1}),θ(Ξ)[φ1(Ξ)] = λ

(
µ̂1

X − µ̂1

)
+ (1− λ)

(
X − µ̂2

µ̂2

)
Furthermore, we have

EΞ∼Pθ
[φ1(Ξ)] =

(
µ̂1

µ̂2

)
The criterion function Ψdeconv

θ (D) for the parameter vector θ then implies
the condition

π1

(
X̄1

µ̂2

)
+ π2

(
µ̂1

X̄2

)
+ π12

(
λµ̂1 + (1− λ)(X̄12 − µ̂2)
λ(X̄12 − µ̂1) + (1− λ)µ̂2

)
!
=

(
µ̂1

µ̂2

)
,

where we have de�ned X̄1 and X̄2 as the average of the observations with la-
bel set {1} and {2}, respectively, and X̄12 as the average of the observations
with label set {1, 2}. Solving for µ̂, we get

µ̂1 =
1

2

(
(1 + λ)X̄1 + (1− λ)X̄12 − (1− λ)X̄2

)
(A.13)

µ̂2 =
1

2

(
−λX̄1 + λX̄12 + (2− λ)X̄2

)
. (A.14)

Since
E
[
X̄1

]
= −a E

[
X̄12

]
= 0 E

[
X̄2

]
= a ,

we �nd that the mean estimators are consistent:

E[µ1] = −a E[µ2] = a , (A.15)

independent of the chosen value for λ. In particular, we have

EX∼PL,θG
[
EΞ∼Pdeconv

(X,L),θ̂
[φ(Ξ)]

]
= ED′∼PθG

[
EΞ∼Pdeconv

D′,θ̂
[φ(Ξ)]

]
for all L.
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Mean of the Variance Estimator. We compute the second component
φ2(Ξ) of the su�cient statistics vector φ(Ξ) for the emissions given a data
item. Since the estimators for the mean are consistent, we do not distinguish
between the true and the estimated mean values any more. For single-label
data items, we have

EΞ∼Pdeconv
(X,{1}),θ̂

(Ξ)[φ2(Ξ)] =

(
X2

µ2
2 + σ̂2

2

)
EΞ∼Pdeconv

(X,{2}),θ̂
(Ξ)[φ2(Ξ)] =

(
µ2

1 + σ̂2
1

X2

)
For multi-label data items, the situation is again more involved. As when
determining the estimator for the mean, we �nd again two extreme cases:

EΞ∼Pdeconv
(X,{1,2}),θ̂

[φ2(Ξ)] =

(
X2 − µ2

2 − σ̂2
2

µ2
2 + σ̂2

2

)
=

(
µ2

1 + σ̂2
1

X2 − µ2
1 − σ̂2

1

)
We use again a parameter λ ∈ [0, 1] to parameterize the blending between
the two extreme cases and write

EΞ∼Pdeconv
(X,{1,2}),θ̂

[φ2(Ξ)] = λ

(
X2 − µ2

2 − σ̂2
2

µ2
2 + σ̂2

2

)
+ (1− λ)

(
µ2

1 + σ̂2
1

X2 − µ2
1 − σ̂2

1

)
Using EX∼P{1},θG

[
X2
]

= µ2
1 + σ2

1 , and similarly for other label sets, the
criterion function implies the following condition for the standard deviation
parameters

π1

(
µ2

1 + σ2
1

µ2
2 + σ̂2

2

)
+ π2

(
µ2

1 + σ̂2
1

µ2
2 + σ2

2

)
+ π12

(
λ
(
µ2

1 + σ2
1 + σ2

2 − σ̂2
2

)
+ (1− λ)

(
µ2

1 + σ̂2
1

)
λ
(
µ2

2 + σ̂2
2

)
+ (1− λ)

(
µ2

2 + σ2
1 + σ2

2 − σ̂2
1

) ) !
=

(
µ2

1 + σ̂2
1

µ2
2 + σ̂2

2

)
Solving for σ̂1 and σ̂2, we �nd

σ̂1 = σ1 σ̂2 = σ2 .

The estimators for the standard deviation are thus consistent as well.

Variance of the Mean Estimator. The variance of the conditional ex-
pectation values over observations X with label set L, for the three possible
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label sets, is given by

VX∼P{1},θG
[
EΞ∼Pdeconv

(X,{1}),θ
[φ(Ξ)]

]
= diag

(
σ2

1 , 0
)

VX∼P{2},θG
[
EΞ∼Pdeconv

(X,{2}),θ
[φ(Ξ)]

]
= diag

(
0, σ2

2

)
VX∼P{1,2},θG

[
EΞ∼Pdeconv

(X,{1,2}),θ
[φ(Ξ)]

]
=

(
(1− λ)2 λ(1− λ)
λ(1− λ) λ2

)
σ2

12

and thus

EL∼Pπ
[
VX∼PL,θG

[
EΞ∼Pdeconv

(X,L),θ
[φ(Ξ)]

]]
=

(
π1σ

2
1 0

0 π2σ
2
2

)
+ π12

(
(1− λ)2 λ(1− λ)
λ(1− λ) λ2

)
σ2

12

The variance of the assumed source emissions are given by

VΞ∼Pdeconv
(X,{1},θ

[φ(Ξ)] = diag
(
0, σ2

2

)
VΞ∼Pdeconv

(X,{2},θ
[φ(Ξ)] = diag

(
σ2

1 , 0
)

VΞ∼Pdeconv
(X,{1,2},θ

[φ(Ξ)] = VΞ∼Pdeconv
(X,{1,2},θ

[(
λΞ1 + (1− λ)(X − Ξ2)
λ(X − Ξ1) + (1− λ)Ξ2

)]
= λ2

(
σ2

1 −σ2
1

−σ2
1 σ2

1

)
+ (1− λ)2

(
σ2

2 −σ2
2

−σ2
2 σ2

2

)
With VΞ∼Pθ

[φ(Ξ)] = diag
(
σ2

1 , σ
2
2

)
, the generalized Fisher information

matrices for the single-label data are given by

I{1} = −diag
(
σ2

1 , 0
)

I{2} = −diag
(
0, σ2

2

)
For the label set L = {1, 2}, we have

I{1,2} =

(
(λ2 − 1)σ2

1 + (1− λ)2σ2
2 −λ2σ2

1 − (1− λ)2σ2
2

−λ2σ2
1 − (1− λ)2σ2

2 λ2σ2
1 +

(
(1− λ)2 − 1

)
σ2

2

)
Choosing λ such that the trace of the information matrix I{1,2} is maximized
yields λ = σ2

2/
(
σ2

1 + σ2
2

)
and the following value for the information matrix

of label set {1, 2}:

I{1,2} = −

 σ4
1

σ2
1+σ2

2

σ2
1σ

2
2

σ2
1+σ2

2
σ2
1σ

2
2

σ2
1+σ2

2

σ4
2

σ2
1+σ2

2

 = − 1

σ2
1 + σ2

2

(
σ4

1 σ2
1σ

2
2

σ2
1σ

2
2 σ4

2

)
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The expected Fisher information matrix is then given by

EL∼Pπ [IL] = −

 σ2
1

(
π1 + π12

σ2
1

σ2
1+σ2

2

)
π12

σ2
1σ

2
2

σ2
1+σ2

2

π12
σ2
1σ

2
2

σ2
1+σ2

2
σ2

2

(
π2 + π12

σ2
2

σ2
1+σ2

2

) 
With this, Σdeconvθ is

Σdeconvθ =

(
v2
θ,11 v2

θ,12

v2
θ,12 v2

θ,22

)
,

with the matrix elements given by

v2
θ,11 =

π2
12σ

2
2w12 + π12π2

(
π2σ

2
1σ

2
12 + 2π1σ

2
2s12

)
+ π1π

2
2s

2
12

σ2
1 (π1π2s12 + π12w12)

2

v2
θ,12 =

π2
12w12 + π12π1π2(2s12 − σ2

12)

(π1π2s12 + π12w12)
2

v2
θ,22 =

π2
12σ

2
1w12 + π12π1(π1σ

2
2σ

2
12 + 2π2σ

2
1s12) + π2

1π2s
2
12

σ2
2 (π1π2s12 + π12w12)

2

where, for simpler notation, we have de�ned

w12 := π2σ
2
1 + π1σ

2
2 s12 := σ2

1 + σ2
2 .

For the variance of the mean estimators, using Eq. 6.59, we get

Σdeconvµ =

(
v2
µ,11 v2

µ,12

v2
µ,12 v2

µ,22

)
,

with the matrix elements given by

v2
µ,11 =

π2
12σ

2
2w12 + π12π2

(
π2σ

2
1σ

2
12 + 2π1σ

2
2s12

)
+ π1π

2
2s

2
12

(π1π2s12 + π12w12)
2 σ2

1 (A.16)

v2
µ,12 =

π2
12w12 + π12π1π2(2s12 − σ2

12)

(π1π2s12 + π12w12)
2 σ2

1σ
2
2 (A.17)

v2
µ,22 =

π2
12σ

2
1w12 + π12π1(π1σ

2
2σ

2
12 + 2π2σ

2
1s12) + π2

1π2s
2
12

(π1π2s12 + π12w12)
2 σ2

2 . (A.18)
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Quantity L = {1} L = {2} L = {1, 2}

EΞ∼Pnew
(X,L),θ̂

[φ(Ξ)]

 X
ê2

ê12

  ê1

X
ê12

  ê1

ê2

X


EX∼PL,θG

[
EΞ∼Pnew

(X,L),θ̂
[φ(Ξ)]

]  e1

ê2

ê12

  ê1

e2

ê12

  ê1

ê2

e12


Table A.2: Expectation values used to determine the asymptotic behavior
of theMnew inference technique.

Mean-Squared Error of the Mean Estimator. Given that the esti-
mators µdeconv are consistent, the mean squared error of the estimator is
given by the average of the diagonal elements of Σdeconvµ :

MSEdeconvµ =
1

2
tr
(
Σdeconvµ

)
=
v2
µ,11 + v2

µ,22

2
(A.19)

Inserting the expressions in Eq. A.16 and A.18 yields the expression given
in the theorem.

A.3 Lemma 5

We compute the mean and variance of the mean estimator for each of the
considered inference techniques.

Proof. Lemma 5.

New Training

Mean Value of the Estimator. Using the expectation values as given
in Table A.2 and setting

EL∼PθG

[
EX∼PL,θG

[
EΞ∼Pnew

(X,L),θ̂
[φ(Ξ)]

]]
= EL∼Pθ

[φ(Ξ)] ,

we get the conditions

π1e1 + (π2 + π12)ê1 = ê1

π2e2 + (π1 + π12)ê2 = ê2

π12e12 + (π1 + π2)ê12 = ê12
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Quantity L = {1} L = {2} L = {1, 2}

VX [EΞ[φ(Ξ)]]

 v̂1 0 0
0 0 0
0 0 0

  0 0 0
0 v̂2 0
0 0 0

  0 0 0
0 0 0
0 0 v̂12


VΞ[φ(Ξ)]

 0 0 0
0 v̂2 0
0 0 v̂12

  v̂1 0 0
0 0 0
0 0 v̂12

  v̂1 0 0
0 v̂2 0
0 0 0


IL −

 v̂1 0 0
0 0 0
0 0 0

 −

 0 0 0
0 0 0
0 0 0

 −

 0 0 0
0 0 0
0 0 v̂12


Table A.3: Variances and information matrices used to determine the
asymptotic behavior of theMnew inference technique. SinceMnew is con-
sistent, we set θG = θ. The random variables X and Ξ are distributed as
X ∼ PL,θG and Ξ ∼ Pnew

(X,L),θ̂

Using π1 + π2 + π12 = 1, we �nd that all estimators are consistent:

θ̂1 = θG,1 θ̂2 = θG,2 θ̂12 = θG,12 .

This implies that êk = ek and v̂k = vk for k = 1, 2, 12. In the analysis of
the variance of the estimator, we do not distinguish between θG and θ̂new

and denote both the true and the inferred value by θ.

Variance of the Estimator. With the values of Table A.3, we have

EL
[
VX∼PL,θG

[
EΞ∼Pnew

(X,L),θ̂
[φ(Ξ)]

]]
= diag (π1v̂1, π2v̂2, π12v̂12)

VΞ∼Pθ̂
[φ(Ξ)] = diag (v̂1, v̂2, v̂12)

EL∼Pθ̂
[IL] = −diag (π1v̂1, π2v̂2, π12v̂12) .

The variation of the expectations is thus equivalent to the expected gener-
alized Fisher information matrix. The reduction of the multi-label learning
problem to the single-label problem is thus done in a consistent way by
Mnew. The variance of the source estimators is thus given by

Σnewθ = diag (π1v̂1, π2v̂2, π12v̂12)
−1

= diag

(
1

π1

(1 + exp θ1)2

exp(θ1)
,

1

π2

(1 + exp θ2)2

exp(θ2)
,

1

π12

(1 + exp θ12)2

exp(θ12)

)
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Note that this is the variance of the estimator θ̂new. To get the variance for
the estimator β̂new, we write β as a function of θ and do a Taylor expansion.
This yields

V[β(θ)] ≈
(
∂β(θ)

∂θ

)2

V[θ] (A.20)

With
∂β̂k(θk)

∂θk
=

exp θk
(1 + exp θk)2

this yields

Σnewβ ≈ diag

(
1

π1

exp θ1

(1 + exp θ1)2
,

1

π2

exp θ2

(1 + exp θ2)2
,

1

π12

exp θ12

(1 + exp θ12)2

)
= diag

(
1

π1
β̂1(1− β̂1),

1

π2
β̂2(1− β̂2),

1

π12
β̂12(1− β̂12)

)
.

We thus get the well-known result back.

Mean-Squared Error of the Estimator. Given that the estimators
βnew are consistent, the mean squared error is determined by the variances
of the estimators:

MSE(β̂new,β)

=
1

3

(
1

π1N
β1(1− β1) +

1

π2N
β2(1− β2) +

1

π12N
β12(1− β12)

)
.

Note that π1N is the number of data items with label set {1}, i.e. the
number of data items based on which β̂new1 is estimated.

Ignore Training Mignore

The ignore training trains only a subset of the parameters, the estimation
of the single parameters is based on the same data subsets as inMnew. We
therefore abbreviate the derivation of the properties for the concrete setting.

Mean Value of the Estimator. The estimator is consistent, i.e.

θ̂1 = θ1 θ̂2 = θ2

Again, we will therefore no longer distinguish between the estimators and
the true values.
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Variance of the Estimator. Using the results from the previous section
onMnew, we have

Σignoreθ = diag (π1v̂1, π2v̂2)
−1

= diag

(
1

π1

(1 + exp θ1)2

exp(θ1)
,

1

π2

(1 + exp θ2)2

exp(θ2)

)
,

and

Σignoreβ ≈ diag

(
1

π1

exp θ1

(1 + exp θ1)2
,

1

π2

exp θ2

(1 + exp θ2)2

)
= diag

(
1

π1
β̂1(1− β̂1),

1

π2
β̂2(1− β̂2)

)
.

Mean-Squared Error of the Estimator. With the above, we have

MSE(β̂ignore,β) =
1

2

(
1

π1N
β1(1− β1) +

1

π2N
β2(1− β2)

)
.

Again, π1N is the number of data items with label set {1}, i.e. the number
of data items based on which β̂ignore1 is estimated. Since Mignore ignores
data with multiple labels, not all data items are used in the training, and we
have π1N+π2N < N whenever multi-label data items occur in the training
data set.

Cross-Training Mcross

Mean Value of the Estimator. Using the results from Table A.4, we
get

EL
[
EX∼PL,θG

[
EΞ∼P cross

(X,L),θ̂
[φ(Ξ)]

]]
=

(
π1e1 + π2ê1 + π12e12

π1ê2 + π2e2 + π12e12

)
EΞ∼Pθ̂

[φ(Ξ)] =

(
ê1

ê2

)
Equating the two expected values, we get

ê1 =
π1e1 + π12e12

π1 + π12
ê2 =

π2e2 + π12e12

π2 + π12
. (A.21)

Note that these estimators are not consistent, with the bias depending on
π12, the proportion of data items with label set L = {1, 2}.
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Quantity L = {1} L = {2} L = {1, 2}

EΞ[φ(Ξ)]

(
X
ê2

) (
ê1

X

) (
X
X

)
EX [EΞ[φ(Ξ)]]

(
e1

ê2

) (
ê1

e2

) (
e12

e12

)
VX [EΞ[φ(Ξ)]]

(
v1 0
0 0

) (
0 0
0 v2

) (
v12 v12

v12 v12

)
VΞ[φ(Ξ)]

(
0 0
0 v̂2

) (
v̂1 0
0 0

) (
0 0
0 0

)
IL −

(
v̂1 0
0 0

)
−
(

0 0
0 v̂2

)
−
(
v̂1 0
0 v̂2

)

Table A.4: Quantities used to determine the asymptotic behavior of the
Mcross inference technique. The distributions of the random variables are
omitted for lack of space, they are X ∼ PL,θG and Ξ ∼ P cross

(X,L),θ̂
.

Variance of the Estimator. With the derived mean values, the expec-
tation deviances (Eq. 6.33) for the three label set are as follows:

∆E{1} =

(
π12(e1−e12)

(π1+π12)

0

)

∆E{2} =

(
0

π12(e2−e12)
π2+π12

)
∆E{1,2} =

(
π12(e1−e12)
π1+π12

π12(e2−e12)
π2+π12

)

The average expectation deviation over all label sets is thus

EL∼Pπ [∆EL] =

(
π2
12(e1−e12)2

π1+π12
−π

3
12(e1−e12)(−e2+e12)
(π1+π12)(π2+π12)

−π
3
12(e1−e12)(−e2+e12)
(π1+π12)(π2+π12)

π2
12(−e2+e12)2

π2+π12

)
,

and the expected variance of the su�cient statistics of the source emissions
is

EL∼Pπ
[
VX∼PL,θG

[
EΞ∼P cross

(X,L),θ̂
[φ(Ξ)]

]]
=

(
π1v1 + π12v12 π12v12

π12v12 π2v2 + π12v12

)
.
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With the values given in Table A.4, the expected generalized Fisher
information matrix over all label sets is given by

EL[IL] =

(
(π1 + π12)v̂1 0

0 (π2 + π12)v̂2

)
Hence, according to Theorem 5, the covariance matrix for the estimator

θ̂cross is given by

Σcrossθ =

(
vθ,11 vθ,12

vθ,12 vθ,22

)
(A.22)

with

vθ,11 =
π2

12 (e1 − e12)
2

(π1 + π12)
3
v̂2

1

+
π1v1 + π12v12

(π1 + π12)
2
v̂2

1

vθ,11 =
π3

12 (e1 − e12) (e2 − e12)

(π1 + π12)
2
v̂1 (π2 + π12)

2
v̂2

+
π12v12

(π1 + π12)v̂1(π2 + π12)v̂2

vθ,22 =
π2

12 (e2 − e12)
2

(π2 + π12)3v̂2
2

+
π2v2 + π12v12

(π2 + π12)2v̂2
2

,

where the estimated variances v̂1 and v̂2 are de�ned in Eq. 6.75.
To compute the variance of the estimator β̂cross, we apply a Taylor

approximation as in Eq. A.20. Hence we get

Σcrossβ =

(
vβ,11 vβ,12

vβ,12 vβ,22

)
(A.23)

with

vβ,11 =
v2

1

v̂2
1

(
π2

12 (β1 − β12)
2

(π1 + π12)3
+
π1β1 (1− β1) + π12β12 (1− β12)

(π1 + π12)
2

)

vβ,12 =
v1v2

v̂1v̂2

(
π3

12 (β1 − β12) (β2 − β12)

(π1 + π12)
2

(π2 + π12)
2 +

π12β12 (1− β12)

(π1 + π12) (π2 + π12)

)

vβ,22 =
v2

2

v̂2
2

(
π2

12 (β2 − β12)
2

(π2 + π12)3
+
π2β2 (1− β2) + π12β12 (1− β12)

(π2 + π12)
2

)
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Mean-Squared Error of the Estimator. Since the estimator obtained
byMcross is not consistent, the mean squared error of the estimator consists
of the bias and the variance. The bias of the estimators for the �rst and
second source are given by

∆1 := ê1 − e1 =
π12

π1 + π12
β2(1− β1)

∆2 := ê2 − e2 =
π12

π2 + π12
β1(1− β2) .

Inserting these bias terms and the average variance into the bias-variance
decomposition (Eq. 2.13) yields the expression given in the lemma.

Deconvolutive Training

Mean Value of the Estimator. The expectation values for the source
emissions given single-label observations are given in Table A.5. For the
label set L = {1, 2}, the setting of Boolean random variables with an OR
combination function is particular insofar as the observation X = 0 reveals
total information about the emissions of all sources in the label set:

Ξ|X=0,L={1,2} =

(
0
0

)
EΞ∼Pdeconv

(0,{1,2}),θ
[φ(Ξ)] =

(
0
0

)
IfX = 1, at least one of the source emissions must be 1, while no information
can be obtained about the other one. Using Eq. 6.74, the expected value of
the su�cient statistics in the case X = 1 and L = {1, 2} is

EΞ∼Pdeconv
(1,{1,2}),θ̂

[φ(Ξ)]

=
1

ê12

(
(1− β̂1)β̂2

(
0
1

)
+ β̂1(1− β̂2)

(
1
0

)
+ β̂1β̂2

(
1
1

))
=

1

ê12

(
β̂1

β̂2

)
Combining the two cases, we get the values indicated in Table A.5.

The criterion function states that the parameters are chosen such that

π1

(
e1

ê2

)
+ π2

(
ê1

e2

)
+ π12

e12

ê12

(
ê1

ê2

)
!
=

(
ê1

ê2

)
Solving for ê1 and ê2 and using e12 = e1 + e2 − e1e2, ê12 = ê1 + ê2 − ê1ê2

and π1 + π2 + π12 = 1, we �nd that the estimators are consistent:

ê1 = e1 ê2 = e2 . (A.24)
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Quantity L = {1} L = {2} L = {1, 2}

EΞ∼Pdeconv
(X,L),θ̂

[φ(Ξ)]

(
X
ê2

) (
ê1

X

)
X 1
ê12

(
ê1

ê2

)
EX∼PL,θG

[
EΞ∼Pdeconv

(X,L),θ̂
[φ(Ξ)]

] (
e1

ê2

) (
ê1

e2

)
e12
ê12

(
ê1

ê2

)

Table A.5: Quantities used to determine the asymptotic behavior of the
Mdeconv inference technique.

Quantity L = {1} L = {2}

VX∼PL,θ
[
EΞ∼Pdeconv

(X,L),θ
[φ(Ξ)]

] (
v̂1 0
0 0

) (
0 0
0 v̂2

)
VΞ∼Pdeconv

(X,L),θ
[φ(Ξ)]

(
0 0
0 v̂2

) (
v̂1 0
0 0

)
IL −

(
v̂1 0
0 0

)
−
(

0 0
0 v̂2

)

Table A.6: Variances and generalized Fisher information matrices for single
label observations used to determine the asymptotic behavior of theMdeconv

inference technique. The consistency of the estimators, i.e. θ̂ = θ, as found
in Eq. A.24, is used to simplify the notation. The corresponding values for
observations with label set L = {1, 2} are derived in the text.

As a consequence, the short-hands e12, v1, v2 and v12 are consistent as well.
In the remainder of this analysis, we therefore no longer distinguish between
estimators and their true value.

Variance of the Estimator. For single-label data, the computations of
the variances is straight forward, the values are given in Table A.6. For
observations X with multiple label L = {1, 2}, the variance is found by
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enumerating all possible values of the emission vector Ξ:

VΞ∼Pdeconv
(0,{1,2}),θ

[φ(Ξ)] =

(
0 0
0 0

)
VΞ∼Pdeconv

(1,{1,2}),θ
[φ(Ξ)] =

1

(e1 + e2 − e1e2)
2

(
e2v1 −v1v2

−v1v2 e1v2

)

This result again captures the particularities of the Boolean OR as combi-
nation function. Consider the variance of the estimator for Ξ1:

VΞ∼Pdeconv
(0,{1,2}),θ

[Ξ1] = 0 VΞ∼Pdeconv
(1,{1,2}),θ

[Ξ1] =
e2v1

(e1 + e2 − e1e2)2
.

The observation X = 0 reveals complete information about both source
emissions. If X = 1, the expected emission Ξ2 of the second source highly
in�uences the amount of information that can be derived from the obser-
vation about Ξ1: If the second source has a high probability to emit a 1,
i.e. if e2 is high, the variance of Ξ1 is only slightly reduced as compared to
the case where we have no observation, as information about Ξ1 can only
be obtained in the rare case when Ξ2 = 0. In contrast, if the second source
emits a 0 in most of the cases, e2 is low, the variance of Ξ1 is low, as Ξ1 must
be 1 in most of the cases when X = 1 is observed � otherwise, X = Ξ1∨Ξ2

would not be 1. The same is true for the variance of Ξ2.
For the generalized Fisher information matrix of observations with label

set L = {1, 2}, we get

I{1,2} =

 v1

(
e2
e12
− 1
)

−v1v2e12

−v1v2e12
v2

(
e1
e12
− 1
) 

The expected Fisher information matrix over all label sets is

EL[IL] = −

 v1

(
π1 + π12

(
1− e2

e12

))
π12

v1v2
e12

π12
v1v2
e12

v2

(
π2 + π12

(
1− e1

e12

)) 
To compute the variance of the expectation values over di�erent obser-

vations with label set L = {1, 2}, we enumerate all possible situations and
get

VX∼Pdeconv{1,2}),θ

[
EΞ∼PdeconvD,θ

[φ(Ξ)]
]

=

(
v1(1− e2) e1e12

v1v2
e12

v1v2
e12

v2(1− e1) e2e12

)

194



A.4. LEMMAS IN CHAPTER 7

Note that, if either e1 = 1 or e2 = 1, the variance vanishes, as in such a
setting, the observation is X = 1 for sure.

Using the values in Table A.6, the variance of the expected values is

EL
[
VX∼PdeconvL,θ

[
EΞ∼PdeconvD,θ

[φ(Ξ)]
]]

=

 (
π1 + e1(1−e2)

e12

)
v1 π12v1v2

π12v1v2

(
π2 + e2(1−e1)

e12

)
v2

 .

Finally, the covariance matrix Σθ for the estimator θ is given by

Σdeconvθ =

(
vθ,11 vθ,12

vθ,12 vθ,22

)
with vθ,11 =

π2e12 + π12e2(1− e1)

v1 (π12(e1π2(1− e2) + π1e2(1− e1)) + π1π2e12)

vθ,12 = − π12

π12(π1e2(1− e1) + e1π2(1− e2)) + π1π2e12

vθ,22 =
π1e12 + π12e1(1− e2)

v2 (π12(e1π2(1− e2) + π1e2(1− e1)) + π1π2e12)

For the variance of the estimator β, we use again Eq. A.20 and get

Σdeconvβ =

(
vβ,11 vβ,12

vβ,12 vβ,22

)
(A.25)

with vβ,11 =
π2e12 + π12e2(1− e1)

(π12(e1π2(1− e2) + π1e2(1− e1)) + π1π2e12)
v1

vβ,12 = − π12

π12(π1e2(1− e1) + e1π2(1− e2)) + π1π2e12
v1v2

vβ,22 =
π1e12 + π12e1(1− e2)

(π12(e1π2(1− e2) + π1e2(1− e1)) + π1π2e12)
v2

Mean-Squared Error of the Estimator. The mean squared error is
the average of the diagonal elements of the covariance matrix. Using the
values in Eq. A.25, we get the expression given in the theorem.

A.4 Lemmas in Chapter 7

Proof. Lemma 6. The independence implies

p12(ξ1, ξ2|θ1, θ2) = p1(ξ1|θ1) · p2(ξ2|θ2) ,
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thus

∂2p12(ξ1, ξ2|θ1, θ2)

∂θ1∂θ2
=
∂ṗ1(ξ1|θ1)

∂θ2
p2(ξ2|θ2) + ṗ1(ξ1|θ1)ṗ2(ξ2|θ2) . (A.26)

Since p1(·) is independent of θ2, the �rst summand is zero. If θ1 has the
maximum likelihood value, ṗ1(ξ1|θ1) = 0, and the sum is equal to zero.

Proof. Lemma 7. Using the notation of Section 7.1.3, the log-likelihood
of a data item Dn = (xn,Ln) with binary label set Ln = {s1, s2} can be
written as

`(Θ;Dn) = logP (Ln) + log

(∫
p1(ξ)p2(dκ(ξ, xn)) dξ

)
. (A.27)

Recall that the likelihood of the parameter vector θ1 is assumed to depend
only on data items which contain s1 in their label set, and that sources are
assumed to emit i.i.d. samples. Thus, the derivative of the log-likelihood of
the data set D with respect to θ1,c1 can be written as

∂`(Θ; D)

∂θ1,c1

=

N∑
n=1

Ln={s1}

∂`(Θ, Dn)

∂θ1, c1
+

N∑
n=1

Ln={s1,νn}

∂`(Θ, Dn)

∂θ1,c1

. (A.28)

The �rst term on the right hand side of Equation A.28 accounts for single
label data. By the de�nition of the inference procedureM, the parameter
vector θ2 and the sum are independent. The second term describes the
in�uence of data items with two labels. Again due to the assumption ofM,
its derivative with respect to θ2,c2 vanishes for all n with νn 6= s2. For the
remaining n with Ln = {s1, s2}, we have, using Lemma 6:

N∑
n=1

Ln={s1,s2}

∂

∂θ2,c2

{
∂`(Θ; D)

∂θ1,c1

}
= 0 .

Deriving `(Θ;Dn) as de�ned in Eq. A.27 with respect to θ1,c1 and inter-
changing the derivation and the integration yields

N∑
n=1

Ln={s1,s2}

∂

∂θ2,c2


∫ ( ∂p1(ξ)

∂θ1,c1

∣∣∣
θ1,c1=θ̂1,c1

· p2(dκ(ξ, x))

)
dξ∫

p1(ξ)p2(dκ(ξ, x)) dξ

 = 0 .
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Applying the derivation with respect to θ2,c2 and using the introduced no-
tation, one gets Eq. 7.1.

Proof. Lemma 8. The proof mainly consists of computing the Taylor se-
ries of all integrands around ξ = 0. The resulting polynomials are then
integrated and the coe�cients reordered.

The Taylor series of a function f(x) around x0 is de�ned as

T (f, x0, x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k ,

where f (k)(x0) is the kth derivative of f evaluated at x0. The kth derivative
of a product f(x) = f1(x) · f2(x) is given by the Leibnitz's law as

f (k)(x) =

k∑
j=0

(
k

j

)
f

(j)
1 (x) · f (k−j)

2 (x) .

The generalization of the chain rule for derivatives of higher order is
given by Faà di Bruno's formula:

∂m

∂xm
{f(dn(0))} = Sm(f, n) ,

with Sm(f, n) de�ned in Eq. 7.8. The Taylor series of the four integrands
are thus:

ṗ1(ξ) · ṗ2(dn(ξ)) =

∞∑
j=0

ξj

j!

j∑
m=0

{(
j

m

)
ṗ

(j−m)
1 (0) · Sm(ṗ2, n)

}

p1(ξ) · p2(dn(ξ)) =

∞∑
j=0

ξj

j!

j∑
m=0

{(
j

m

)
p

(j−m)
1 (0) · Sm(p2, n)

}

p1(ξ) · ṗ2(dn(ξ)) =

∞∑
j=0

ξj

j!

j∑
m=0

{(
j

m

)
p

(j−m)
1 (0) · Sm(ṗ2, n)

}

ṗ1(ξ) · p2(dn(ξ)) =

∞∑
j=0

ξj

j!

j∑
m=0

{(
j

m

)
ṗ

(j−m)
1 (0) · Sm(p2, n)

}
.

(A.29)

After integrating each of the two polynomials separately, multiplying and
re-arranging terms, we get the expressions presented in the Lemma.
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Proof. Lemma 9. The proof is done by induction over the order of the
derivative.
Base case: Equations 7.3 and A.29 show that setting C0

lhs = C0
rhs and

C1
lhs = C1

rhs implies that all integration constants are equal to zero (unless
we are willing to accept constraints on the probability densities and their
derivatives). With this, the non-zero terms of Cilhs and C

i
rhs for i = 2, 3 are

identical and thus do not allow to draw any conclusions on the value of the
derivatives of the inverse combination function dn(·). C4

lhs−C4
rhs is the �rst

non-vanishing di�erence between the coe�cients that contains a derivative
of dn(·):

C4
lhs − C4

rhs =
1

12
·c(1)(0)·

(
ṗ1(0)·p(1)

1 (0)− p1(0)·ṗ(1)
1 (0)

)
·
∑
n

ṗ2(dn(0))·p(1)
2 (dn(0))− ṗ(1)

2 (dn(0))·p2(dn(0))

p(xn)2
.
(A.30)

Requiring the left-hand side to be zero implies that at least one factor on the
right-hand side has to be zero. Requiring one of the two factors containing
probability densities to be zero might be impossible or at least a very hard
constraint on the family of distributions and its parameters1. The only
factor in Equation A.30 which is independent of probability densities is
c(1)(0). Therefore C4

lhs = C4
rhs implies c(1)(0) = 0.

Inductive Step: Assume that, for some integer z ≥ 1, we have used the
conditions Ci+3

lhs = Ci+3
rhs for i = 1, . . . , z to derive c(1)(0) = . . . = c(z)(0) = 0.

Using this inductive claim, we show that c(z+1)(0) = 0 follows from the
condition Cz+3+1

lhs = Cz+3+1
rhs .

The expression for Cz+4
lhs can be derived from Eq. 7.3 with α = lhs and

i = z + 4. Consider Cllhs,1 as de�ned in Eq. 7.4: Since c(i)(0) = 0 for i ≤ z
by the induction claim, bm(t, ṗ2, n) is zero whenever there is a i ≤ z with
ni > 0. Nonzero contributions to Sm(ṗ2, n) are therefore only possible if
either m = 0 or m > z. If m = 0, we have b0(t, ṗ2, n) = ṗ2(dn(0)). In the
second case, z < m ≤ l − 1 and l ≤ z + 3 limit the possible values of m to
m = z + 1, m = z + 2 and m = z + 3. Hence, the only t ∈ Tm leading to a

1Consider e.g. the univariate Gaussian distributions p1(z) = N (µ1, σ2
1). With

ṗ1(z) = p1(z) · z−µ1

σ2
1

, p
(1)
1 (z) = −p1(z) · z−µ1

σ2
1

and ṗ
(1)
1 (z) = p1(z) · (z−µ1)

2−σ2

σ4
1

, we

get ṗ1(0) · p(1)1 (0)− p1(0) · ṗ(1)1 (0) = − [p1(z)]
2 1
σ2
1
. This expression is di�erent from 0 for

all parameters and z. A similar reasoning is applicable for the sum over n.
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nonzero contributions are tm = 1 and ti = 0 for all i 6= m. Therefore,

Sm(p2, n) =

{
ṗ

(1)
2 (dn(0)) · c(m)(0) if z < m ≤ z + 3

0 otherwise.

Now consider Cllhs,2, de�ned in Eq. 7.5: With the same argumentation as
above, we see that all terms with 0 < m < z+1 are zero. Similar reasonings
allow to �lter out non-zero contributions to Cz+4

rhs . Thus, elementary but
lengthy calculations and separating di�erent derivatives of dn(·) lead to:

Cz+4
lhs =σz+4

lhs +
∑
n

1

p(xn)2

(
ṗ1(0) · ṗ2(dn(0)) · p(1)

1 (0) · p(1)
2 (dn(0))

+p1(0) · p2(dn(0)) · ṗ(1)
1 (0) · ṗ(1)

2 (dn(0))
)
· z + 2

(z + 3)!
· d(z+1)
n (0)

+
∑
n

1

p(xn)2

(
ṗ1(0) · ṗ2(dn(0)) · p1(0) · p(1)

2 (dn(0))

+p1(0) · p2(dn(0)) · ṗ1(0) · ṗ(1)
2 (dn(0))

)
· 1

(z + 3)!
· d(z+2)
n (0)

Cz+4
rhs =σz+4

rhs +
∑
n

1

p(xn)2

(
p1(0) · ṗ2(dn(0)) · ṗ(1)

1 (0) · p(1)
2 (dn(0))

+ṗ1(0) · p2(dn(0)) · p(1)
1 (0) · ṗ(1)

2 (dn(0))
)
· z + 2

(z + 3)!
· d(z+1)
n (0)

+
∑
n

1

p(xn)2

(
p1(0) · ṗ2(dn(0))ṗ1(0) · p(1)

2 (dn(0))

+ṗ1(0) · p2(dn(0)) · p1(0) · ṗ(1)
2 (dn(0))

)
· 1

(z + 3)!
· d(z+2)
n (0) .

σz+4
lhs and σz+4

rhs are sums over terms that do not contain any derivatives of
dn(·). Re-arranging terms and changing summation orders, we get σz+4

lhs =
σz+4
rhs .
Finally, the di�erence Cz+4

lhs − C
z+4
rhs is:

z + 1

2 · (z + 3)!
· c(z+1)(0)

·
∑
n

1

p(xn)2

((
p

(1)
1 (0) · ṗ1(0)− p1(0) · ṗ(1)

1 (0)
)
· p(1)

2 (dn(0)) · ṗ2(dn(0))

+
(
p1(0) · ṗ(1)

1 (0)− p(1)
1 (0) · ṗ1(0)

)
· p2(dn(0)) · ṗ(1)

2 (dn(0))
)
.
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As we do not want do put constraints on the source distributions, c(z+1)(0) =
0 follows from Cz+4

lhs = Cz+4
rhs . This proves the induction step and concludes

the proof of the Lemma.

Proof. Corollary 1. The log-likelihood of the parameters Θ given Dn is

l(Θ;Dn) = logP (L) + log

(∫ dn∏
i=1

p
k
(i)
n

(ξ
k
(i)
n
|θ
k
(i)
n

) · δcκ(ξ)=xn dξ

)
,

and the derivative of the parameter likelihood given the training set D is

∂`(Θ; D)

∂θ1,c1

=

K∑
d=1

∑
n:dn=d
s1∈Ln

∂`(Θ;Dn)

∂θ1,c1

.

Proceeding as in the proof of Lemma 7, we get

K∑
d=1

∑
n:dn=d
s1∈Ln

∫
p(ξ

(−1,2)
n )ṗs1(ξ

(1)
n )ṗs2(ξ

(2)
n ) dξn

p(xn)2

=

K∑
d=1

∑
n:dn=d
s1∈Ln

∫
p(ξ

(−1)
n )ṗs1(ξ

(1)
n ) dξnp(xn)·

∫
p(ξ

(−2)
n )ṗs2(ξ

(2)
n ) dξn

p(xn)2
,

(A.31)

with the following de�nitions for a more compact notation:

p(ξ(−q)
n ) :=

∏
s∈Ln\{sq}

ps(ξ
(s)
n ) q = 1, 2

p(ξ(−1,2)
n ) :=

∏
s∈Ln\{s1,s2}

ps(ξ
(s)
n ) .

The factors p(ξ(−1)
n ), p(ξ(−2)

n ), and p(ξ(−1,2)
n ) are independent of ξ1 and ξ2

and carry through the integration (with respect to ξ1 and ξ2) and the Taylor
series. The equality of the coe�cients of the Taylor series implies again that
the combination function is constant with respect to one argument, thus
contradicting the assumption that the combination function is a bijection.
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