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Abstract

Wireless technologies are becoming increasingly present and important
in our daily lives. They are being incorporated in more and more appli-
cations such as identity documents, payment systems, intelligent homes,
environmental monitoring, supply chains, medical devices. Certain crit-
ical issues in the security and privacy of these applications relate to the
identification of devices.

There are two major ways to identify devices in the network. The
first one, mostly used in today’s networks, relies on what devices hold
(e.g., unique identification numbers, cryptographic keys). The second
one, which is the focus of this thesis, consists of extracting unique
characteristics which are inherent to the device and can be observed.

In this thesis, we study the feasibility of uniquely identifying wire-
less devices using physical characteristics of their analog radio circuitry.
These characteristics are the result of hardware impairments introduced
during the manufacturing process. We focus on those features that ap-
pear in the transmitted radio signals and are therefore measurable dur-
ing the physical-layer device communication. We propose techniques
that enable the accurate identification of several types of wireless de-
vices, analyze the underlying assumptions and clarify the implications
on the security and privacy of wireless applications.

In the introductory part of this thesis, we provide a real-world ex-
ample that illustrates one problem with authenticating devices by what
they hold. We realize a practical attack on car access control systems
and discuss the potential of device identification to complement tradi-
tional authentication and prevent this and other device identity attacks.

Secondly, we study the problem of identifying same-model-same-
manufacturer active and passive wireless devices using physical-layer
characteristics. We consider low-power wireless transceivers and pas-
sive RFID transponders. We explore timing, modulation and spectral
properties of the radio signals and show that wireless devices can be
accurately identified under certain assumptions.

Finally, we evaluate the resilience of physical-layer device identifi-
cation methods to impersonation. We show that physical-layer identifi-
cation is vulnerable to certain types of impersonation attacks. We also
provide a classification of attacks and discuss the implications of the use
of physical-layer device identification in applications such as intrusion
detection, device cloning detection and device privacy protection.
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Zusammenfassung

Drahtlose Technologien werden zunehmend allgegenwärtig und wichtig
in unserem täglichen Leben. Sie werden in immer mehr Anwendun-
gen eingesetzt, wie zum Beispiel in Identitätskarten, Zahlungsystemen,
intelligenten Häusern, bei der Überwachung, in Lieferketten und medi-
zinischen Geräten. Für die Sicherheit der Anwendungen spielt auch die
eindeutige Identifizierung dieser Geräte eine wichtige Rolle.

Es gibt zwei Wege um Geräte im Netzwerk zu identifizieren. Erstens
können Geräte aufgrund von Informationen wie MAC-Adressen oder
kryptographischen Schlüsseln identifiziert werden. Zweitens, und dies
ist der Fokus dieser Arbeit, können Geräte aufgrund von einzigartigen
Charakteristika identifiziert werden, welche bei jedem Gerät beobachtet
werden können.

In dieser Arbeit erforschen wir die Durchführbarkeit der eindeuti-
gen Identifizierung von drahtlosen Geräten durch physikalische Charak-
teristika ihrer analogen Funkschaltkreise. Diese Charakteristika resul-
tieren aus Abweichungen im Produktionsprozess. Wir konzentrieren
uns auf Charakteristika, welche im übertragenen Signal auftauchen und
dadurch auf der physikalischen Ebene beim Empfänger messbar sind.
Wir stellen Techniken vor, welche die genaue Identifizierung mehrerer
Klassen von drahtlosen Geräten ermöglichen, analysieren die zugrun-
deliegenden Annahmen und erläutern die Folgen für die Sicherheit der
drahtlosen Anwendungen.

In der Einführung dieser Arbeit stellen wir ein Beispiel aus der
Praxis vor, welches das Problem der ausschliesslich kryptographischen
Identifizierung verdeutlicht. Wir erläutern unseren Versuchsaufbau, der
Angriffe auf Fahrzeugschliesssysteme ermöglicht und, diskutieren das
Potential der Identifizierung von Geräten auf der physikalischen Ebene
als Ergänzung zu traditionellen Authentifizierungssystemen, um diesen
und ähnliche Angriffe zu verhindern.

Zweitens erforschen wir das Problem der Identifizierung von aktiven
und passiven drahtlosen Geräten aus der gleichen Serie eines Herstellers,
aufgrund von physikalischen Charakteristika. Wir betrachten Charak-
teristika mit Bezug auf Zeit, Modulation und Spektraleigenschaften der
Funksignale und zeigen, dass drahtlose Geräte unter bestimmten Vo-
raussetzungen eindeutig identifiziert werden können.

Schliesslich werten wir die Widerstandsfähigkeit unserer Identifizie-
rung auf der physikalischen Ebene gegen Imitationsangriffe aus. Wir
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zeigen, dass die physikalische Identifizierung anfällig gegenüber eini-
gen Arten von Imitationsangriffen ist. Wir klassifizieren diese Angriffe
und diskutieren die Folgen für die Nutzung der Identifizierung auf der
physikalischen Ebene für Anwendungen wie die Erkennung von Eindrin-
glingen, Gerätekopien und Methoden zum Schutz der Privatsphäre.
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Résumé

Les technologies sans fil deviennent de plus en plus présentes et im-
portantes dans la vie quotidienne. Elles sont incorporées dans de nom-
breuses applications telles que documents d’identité, systèmes de paie-
ments, maisons intelligentes, surveillance, châınes d’approvisionnement,
équipements médicaux. La sécurité de ces applications est fortement
liée à l’identification de ces équipements radio.

Il existe deux moyens pour identifier les équipements radio dans
le réseau. Le premier, le plus couramment utilisé, est basé sur ce que
l’équipement en question possède (des numéros d’identification uniques,
clés cryptographiques). Le deuxième consiste à extraire des carac-
téristiques uniques, intrinsèques à l’équipement et qui peuvent être
mesurées.

Dans cette thèse, nous étudions la faisabilité d’identifier d’une mani-
ère unique les équipements radio en utilisant des caractéristiques physi-
ques de leurs circuits intégrés. Ces caractéristiques sont dues à des im-
perfections de fabrication de leurs composants. Nous nous concentrons
sur les caractéristiques qui apparaissent dans les signaux radio trans-
mis et en conséquence peuvent être mesurées pendant la transmission
au niveau physique. Nous proposons et analysons des méthodes pour
identifier plusieurs types d’équipements de manière précise, et nous ex-
pliquons les conséquences possibles pour la sécurité et la protection de
la vie privée de leurs utilisateurs.

Dans la première partie de la thèse, nous présentons un exemple de
la vie réelle qui montre un problème important d’authentification des
équipements basés sur des clés cryptographiques. Nous effectuons des
attaques contre des systèmes de contrôle d’accès de véhicules, et nous
discutons le potentiel de l’identification basée sur les caractéristiques
physiques pour prévenir ce type d’attaques, ainsi que pour d’autres
attaques liées à l’identité de l’équipement.

Deuxièmement, nous explorons le problème d’identification d’équi-
pements radio du même fabriquant et du même modèle en utilisant
des caractéristiques extraites de la communication au niveau physique.
Nous considérons des émetteurs-récepteurs radios actifs et des transpon-
deurs RFID passifs. Nous étudions des propriétés de temps, de mod-
ulation et les propriétés spectrales des signaux émis par l’équipement.
Nous montrons que les équipements radio peuvent être identifiés de
manière précise sous certaines conditions.
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Finalement, nous évaluons les possibilités de compromettre les méth-
odes d’identification d’équipements. Nous montrons que certaines at-
taques basées sur l’imitation des signaux sont possibles et efficaces.
Nous classifions l’ensemble de ces attaques et discutons les conséquences
de l’utilisation de ces techniques d’identification d’équipements radio
sur la détection d’intrusion, la détection de clones et la protection de
la vie privée.
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Chapter 1

Introduction

In today’s digital world, increasingly many consumer and business ap-
plications are carried out by wireless technologies. A number of wireless
access systems have been established (e.g., personal mobile communica-
tions) and others are emerging in new areas such as identity documents,
payment systems, intelligent homes, environmental monitoring, supply
chains, medical devices.

The wireless technologies and applications need to provide sufficient
level of security and privacy to users in order to be deployed in their
full potential. A critical part of any security and privacy mechanisms
is related to the device identity and the ability of identifying devices.
In particular, the device identity serves as a building block of authenti-
cation protocols which ensure that only authorized devices are allowed
to use system resources and perform transactions. The authentication
task becomes especially challenging when it must function in adversar-
ial settings, i.e., under device identity spoofing, identity compromise,
replication and cloning. In many emerging scenarios, device identities
would also have to be protected in order to avoid malicious actions such
as unauthorized device tracking [1].

Wireless devices are traditionally identified by unique information
that they hold such as a public identification number and/or cryp-
tographic private key. A prominent example of unique identification
number is the Media Access Control (MAC). While intended to be a
permanent and globally unique identification for a device, in practice it
is possible to modify it. Wireless applications, therefore, cannot safely
rely on such device identities [2]. For security applications, devices



Chapter 1. Introduction

Device Identification

Physical layer Data link layer Upper layers

Defensive use
(Protection agaist)

Offensive use
(Privacy compromise)

Relay 
attacks

Cloning 
attacks

Other
Unauthorized 

Tracking
Other

Figure 1.1: Physical-layer device identification presents defensive and of-
fensive uses. As a defensive mechanism, it can be used for protection against
relay, cloning and other identity-based attacks. As an offensive mechanism,
it aims at compromising the device privacy for purposes such as unauthorized
tracking.

would typically embed a cryptographic private key that can neither be
read nor copied, but its existence in the device can be proven. Such
keys are the basis for secure device authentication and secret key es-
tablishment [3].

A common feature of identification numbers and cryptographic keys
as device identity is that they relate to what the device holds. This
presents several security threats. First, authentication methods based
on what devices carry could be vulnerable to relay attacks. We demon-
strate a real-world relay attack in the following chapter. Second, if a
cryptographic key is compromised, secure device authentication would
be disabled. Furthermore, the key can be replicated to other devices,
i.e., create device clones and disturb network operations and services.
Device cloning that resulted in significant financial losses was the GSM
SIM card cloning [4].

Besides by what they hold, devices can be identified by what they
are, i.e., by some unique characteristics that they exhibit and that can
be observed. Examples include characteristics related to device compo-
nents such as operating system, drivers, clocks, radio circuitry. Analyz-
ing these components for identifiable information is commonly referred
to as fingerprinting, since the goal is to create fingerprints similar to
their biometric counterparts [5]. A special class of characteristics inher-
ent to a device are the hardware related impairments. These physical
artifacts are caused by physical limitations and imprecision in the man-
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ufacturing process. If the hardware imperfections are unique to a device
and can be easily measured, they can be used to create a fingerprint of
the device that cannot be easily modified or compromised.

In this thesis, we investigate hardware characteristics for identifi-
cation of wireless devices that manifest themselves in the transmit-
ted radio signals. We refer to it as physical-layer device identification.
More formally, physical-layer device identification is the process of fin-
gerprinting the analog circuitry of a device (or a class of devices) by
analyzing its communication at the physical layer. It is possible due
to analog radio circuit impairments introduced in the manufacturing
process that are measurable during wireless communication.

Physical-layer device identification presents both defensive and of-
fensive uses (Figure 1.1). As a defensive mechanism, it can provide an
additional layer of security against a number of threats such as relay
attacks, device cloning attacks, cryptographic key compromise. As an
offensive mechanism, it can be used by an attacker to extract finger-
prints of devices which allow device (user) tracking without its (his)
prior consent. This may become a major hurdle in devising solutions
that preserve the identity privacy of devices in the network [6].

The main goal of this thesis is to understand whether physical-
layer device identification is feasible and accurate for same-model-same-
manufacturer devices, analyze the underlying conditions and assump-
tions and clarify the defensive and offensive implications on the security
and privacy of wireless networks.

Contributions

� We demonstrate real-world relay attacks on automobile access
control systems. Our attacks enable vehicle access and drive
even though the secure authentication is not compromised. This
strongly motivates the study of device identification using char-
acteristics inherent to the device. If it is feasible and secure, it
would prevent relay attacks and other identity threats.

� We revisit transient-based identification of wireless transceivers
and show that specific spectral features in the turn-on signal tran-
sient enable accurate identification of same-model-same-manufac-
turer transceivers. We also find that the transient contains channel-
specific artifacts that cannot be easily removed. This property
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exposes the limitation of transient-based approaches for device
identification in dynamic environments.

� We design and implement novel methods for physical-layer iden-
tification of HF and UHF RFID devices. Our methods consist
of purpose-built readers for precise signal acquisition and a set
of time domain and spectral techniques for fingerprint extrac-
tion. Our experimental results demonstrate that same-model-
same-manufacturer RFIDs can be identified in a controlled setup.

� We elaborate on HF RFID device identification with signal acqui-
sition and feature extraction optimizations. We devise a method
that allows identification across different setups. Our results show
that HF RFID identification is not only feasible, but also accurate
and stable over time and across setups. This is an insightful result
as it confirms that identifiable information is readily available in
the RFID circuit for anti-cloning protection.

� Our investigation on longer range UHF RFID devices demon-
strates the feasibility of tracking RFIDs independently of their
location using the physical layer. This result proves the location
and/or identity privacy mechanisms on the logical layer are not
sufficient to guarantee privacy.

� We analyze the resilience of several physical-layer device identifi-
cation methods to attacks. More precisely, we design and imple-
ment a set of impersonation attacks. We show that such attacks
on device identification are feasible and realistic. One conclu-
sion is that these methods cannot be safely used in a number of
application scenarios, where their use has been suggested.

� We contextualize the implications of physical-layer device identi-
fication on the security and privacy of several applications.

Thesis Outline

We devote the remainder of Part I to a real-world example of relay
attacks on modern automobile entry and start systems. Our attacks
allow access to the vehicle and enable vehicle driving even though the se-
cure device authentication mechanism based on a shared cryptographic
key is not compromised. This security problem motivates the study of
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device identification using physical-layer characteristics as a defensive
mechanism against relay and other identity related attacks.

In Part II, we investigate the problem of identifying same-model-
same-manufacturer active wireless transceivers and passive RFID de-
vices using physical-layer characteristics.

In the case of wireless transceivers, we consider IEEE 802.15.4 sensor
nodes and show that the transient of the transmitted signal from the
device contains enough distinguishable information to enable accurate
device identification from short and long distances. We further explore
the effects of distance, antenna polarization, voltage and temperature
and analyze how these parameters affect the accuracy. Our findings
expose the limitations of transient-based techniques adoption in mobile
networks and dynamic environments.

For passively powered wireless devices, we focus on HF and UHF
RFID. These are incorporated in a number of applications such as
electronic passports, contactless identity and payment cards, supply
chain systems. We explore timing, modulation and spectral features
extracted from device communication to in- and out-of-specification
reader requests. Our results indicate the presence of accurate and sta-
ble physical-layer HF RFID device fingerprints. These fingerprints can
also be practical in the detection of cloned and/or counterfeit HF RFID-
enabled identity documents. Our study on UHF RFID tags demon-
strates the existence of timing characteristics that enable tracking of
users carrying multiple tags by a network of readers.

In Part III, we evaluate the resilience of several physical-layer device
identification approaches to impersonation attacks. Our findings show
that physical-layer device identities are vulnerable to certain types of
impersonation attacks. We also provide a classification of attacks and
discuss the implications of our results on physical-layer device iden-
tification in application scenarios such as intrusion detection, device
cloning detection and device privacy protection.

The related work is presented and compared to the work in this
thesis in Part IV. Finally, we conclude the thesis and discuss remaining
issues and possible future directions.
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Chapter 2

Example: Relay Attacks
on Car Entry Systems

Device identities typically consist of unique identifiers and cryptographic
private keys stored in the device. Authentication protocols leverage on
these to securely authenticate devices. We demonstrate that authenti-
cation protocols based on what devices hold can be vulnerable to relay
attacks if no protection measures are put in place.

Our real-world example focuses on a set of modern automobile en-
try and start systems. These systems allow to open and start a car
without owner interaction and have been developed by a number of
manufacturers. We build two efficient and inexpensive attack realiza-
tions, wired and wireless physical-layer relays, that allow an attacker
to enter and start the car by quickly relaying messages between the
car and the key. The secure authentication and encryption based on
shared keys between the car and key cannot prevent our attack. Given
the generality of the relay attack and the number of evaluated systems,
it is likely that all car entry and start systems based on similar designs
are vulnerable to the same attack.

Besides demonstrating relay attacks on PKES systems, we further
analyze the characteristics of these systems and discuss the results.
We discuss the fundamental issues with these systems and show the
importance of studying physical-layer device identification as a possible
solution.
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(a) A PKES Key and its backup
physical key.

Outside

Outside

Outside InsideTrunk Front

(b) Car LF coverage.

Figure 2.1: Backup key and LF coverage regions.

2.1 Passive Keyless Entry and Start

Passive keyless entry and start systems first appeared in [7]. The au-
thors proposed a system that automatically unlocks the vehicle when
the user carrying the key approaches the vehicle and locks the vehicle
when the user moves away. The system is referred to as ’Passive’ as it
does not require any action from the user. The communication between
the key and car is characterized by a magnetically coupled radio fre-
quency signal. In this system, the car concludes that the key is in the
physical proximity when it is within the allowed communication range.

Current PKES car keys use an LF technology that provides short
range communication (within 1-2 m in active and a few centimeters in
passive mode) and an UHF transceiver for longer range communication
(from 10 to 100 m). The LF channel is used to detect if the key is within
regions Inside and Outside of the car. Figure 2.1(b) shows the areas
in proximity of the car that are detected in order to allow a safe and
convenient use of the PKES system. The regions are as follows.

• Remote distance to the car (typically up to 100 m). Car open
and close is allowed by pushing a button on the key fob.

• Outside the car, but approximately 1 - 2 m from the door handle.
Car open and close is allowed by using the door handle.

• Inside the car. Engine start and car drive is allowed.

The PKES protocols vary depending on the manufacturer. Typi-
cally two modes of operation are supported, namely normal and backup
modes. The normal mode relies on a working battery, while the backup
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2.1. Passive Keyless Entry and Start

Table 2.1: PKES access control summary

Key position Authorization Medium used
Car ⇒ Key Key ⇒ Car

Normal mode: when the internal battery is present
Remote Active open/close - UHF
Outside Passive open/close LF UHF
Inside Passive start LF UHF
Backup mode: when the internal battery is exhausted

Remote Open/close Not available
Outside Open/close With physical key
Inside Start LF LF

mode operates without battery (e.g., when the battery is depleted). Ta-
ble 2.1 summarizes the access control modes.

Figure 2.2 shows two example protocols of car opening in a normal
mode. The car sends beacons on the LF channel either periodically or
when the door handle is operated. These beacons could be either short
wake-up messages or challenge messages that contain the car identifier.
When the key detects the signal on the LF channel, it wakes up the
micro-controller, demodulates the signal and interprets it. After com-
puting a response to the challenge, the key replies on the UHF channel.
This response is received and verified by the car. In the case of a valid
response the car unlocks the doors. Subsequently, in order to start the
car engine, the key must be present inside the car (region Inside in
Figure 2.1(b)). The key then receives different types of messages that
when replied will inform the car that the correct key is within the car
itself. The car will then allow starting the engine. It should be noted
that in normal mode the LF channel is only used to communicate from
the car to the key.

In backup mode, the user is still able to open and start his car. The
manufacturers usually embed a backup physical key within the key fob
to open the car doors. These are shown in Figure 2.1(a). In order to
start the engine the system uses the passive LF capabilities of the key.
Given the very short communication range as discussed before, the user
is required to place the key in the close proximity of some predefined
location in the car (e.g., the Start button).
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Car Key

If key in 
range

1. Wake up (LF)Periodic 
scan for

a key
2. Ack (UHF)

3. Car ID || challenge (LF)Challenge
the key

4. Key response (UHF)If correct, 
car opens

If car ID 
correct

(a)

Car Key

If key in
range
and

car ID
correct

1.Car ID || challenge (LF)Upon 
activation 
of door 
handle

2. Key response (UHF)If correct, 
car opens

(b)

Figure 2.2: Examples of Passive Keyless Entry and Start system protocols.
a) In a typical realization, the car periodically probes the channel for the
presence of the key with short beacons. If the key is in range, a challenge-
response protocol between the car and key follows to grant or deny access. b)
In a second realization, upon activation of the door handle, the car directly
sends a challenge that contains the car identifier. If the key is in range, it
directly responds to that challenge.

2.2 Relay Attack on Smart Key Systems

In this section we first describe generic relay attacks, and then we
present the attacks that we have implemented and tested on PKES
systems of several cars from different manufacturers. In our experi-
ments, we relay the LF communication between the car and the key.
The relay of the UHF communication (from the key to the car) was
not needed since this communication is ’long’ range (approx. 100 m)
and is not used for proximity detection. However, similar relay attacks
can also be mounted on the UHF communication if a longer relay than
100 m is required.

2.2.1 Relay Attacks

The relay attack is a well-known attack against communication sys-
tems [8]. Realizations have been demonstrated on credit card trans-
actions [9] and between nodes in wireless sensor networks, known as a
wormhole attack [10]. An example of relay attack on HF RFID is avail-
able in [11]. It consisted of demodulating the signal, transmitting it as
digital information using RF and then modulating it near the victim
device. That relay adds 15–20 us of delay which may be detected by a
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2.2. Relay Attack on Smart Key Systems

suitable key/car pair.
In this work, we design and implement a physical-layer relay at-

tack. Our attack does not demodulate and modulate the signal, i.e.,
only introduces the delays typical for analog RF components. It is
completely transparent to most security protocols designed to provide
authentication or secrecy of the messages. Even if a PKES system uses
strong cryptography (e.g., AES, RSA), it would still be vulnerable to
our proposed relay attack.

It should be noted that many relay attacks previously presented
are modulating and demodulating the signal. An obvious advantage of
such attacks is that they can be performed with commercial off-the-shelf
(COTS) hardware. The same setup can also be used to perform replay
or message forging. However, this approach has several drawbacks.
First, modulation and demodulation significantly increase the response
time of the attack; this extra time may be used to detect the relay.
Second, such a realization is dependent on the modulation and encoding
of the signal, which makes the relay specific to some systems. Both
drawbacks are avoided in our design and implementation of the relay
attack.

2.2.2 Relay Over-Cable Attack

In order to perform this attack, we used a relay (Figure 2.3) composed
of two loop antennas connected together with a cable that relays the
LF signal between those two antennas. An optional amplifier can be
placed in the middle to increase the signal power. When the loop an-
tenna is presented close to the door handle, it captures the car beacon
signal as a local magnetic field. This field excites the first antenna of
the relay, which creates by induction an alternating signal at the out-
put of the antenna. This electric signal is then transmitted over the
coaxial cable and reaches the second antenna via an optional amplifier.
The need for an amplifier depends on several parameters such as the
antenna quality, cable length, signal strength. When the relayed sig-
nal reaches the second antenna of the cable it creates a current in the
antenna which in turn generates a magnetic field in the proximity of
the second antenna. Finally, this magnetic field excites the antenna of
the key which demodulates this signal and recovers the original mes-
sage from the car. In all evaluated PKES systems, this is sufficient to
trigger the key sending an open or start authorization message over
the UHF channel. The message sent by the key will depend on what
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UHF signal (direct)

Real distance between car and key up to 100 m

Amplifier

LF signal relayed

Figure 2.3: The relay with antennas, cables and an (optional) amplifier.

was originally sent by the car. The car will send open command to the
key from the outside antennas and the start command form the inside
antennas. Therefore, the attacker (e.g., car thief) first needs to present
the relaying antenna in front of the door handle such that the key will
send the open signal. Once the door is unlocked, the attacker brings
the relaying antenna inside the car and after he pushes the brakes pedal
or the start engine button the car will send the start message to the
key. In both cases the key answers on UHF and the action (open or
start) is performed.

2.2.3 Relay Over-The-Air Attack

Relaying over a cable might be inconvenient or raise suspicion. For
example, the presence of walls or doors could prevent it. We therefore
design and realize a physical-layer relay attack over the air. Our attack
relays the LF signals from the car over a purpose-built RF link with
minimal delays. The link is composed of two parts, the emitter and
the receiver. The emitter captures the LF signal and up-converts it to
2.5 GHz. The obtained 2.5 GHz signal is then amplified and transmit-
ted over the air. The receiver part of the link receives this signal and
down-converts it to obtain the original LF signal. This LF signal is
then amplified again and sent to a loop LF antenna which reproduces
the signal that was emitted by the car in its integrity. The procedure
for opening and starting the engine of the car remains the same as
explained in the previous section.

Using the concept of analog up and down conversion allows the
attacker to relay the LF signal further away from the car, while keeping
the size, power consumption and price of the attack low. We note that it
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Figure 2.4: Simplified view of the attack relaying LF (130 KHz) signals
over the air by upconversion and downconversion. The relay is realized in
analog to limit processing time.

could be possible to transmit in LF over longer distances. However this
would require large antennas and a significant amount of power [12].

2.2.4 Experimental Relays Results

Some measurement results on the delay versus distance are reported in
Table 2.2 for both relay attacks.

In the cable LF relay, the delay is primarily introduced by the wave
propagation speed in solid coaxial cables which is approximately 66% of
that speed in the air. The delay of our amplifier is of the order of a few
nanoseconds. In the wireless LF relay, our measurements show a delay
of approximately 15 - 20 ns in both emitter and receiver circuitries, the
remaining delay being due to the distance between the antennas, i.e.,
approximately 100 ns for 30 m. Therefore for larger distances, using
the over-the-air relay should be preferred in order to keep the delay as
low as possible. In order to compute the total delay of the relay attack,
i.e., including both the LF and UHF links, we should add the UHF car-
key communication which assumes wave propagation with the speed of
light and will only depend on the distance.

Figure 2.5(a) shows the part of the wireless relay that receives mes-
sages from the car. Signals are received using the white loop antenna
(right in the picture). This antenna must be positioned near to the car
emitting antennas, for example at the door handle or the start button
(Figure 2.6) in order to obtain a good signal from the car. This signal
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(a) Car side (b) Key side

Figure 2.5: Experimental relay over-the-air realization.

Table 2.2: Relay setup distance and delay. The measured delays are for
the LF channel only. The UHF channel delay is based on direct car-key
communication and assumes wave propagation at the speed of light. The
latter should be added to obtain the total relay delay.

Attack Distance Delay Comments
(m) (ns)

Cable
30 160 (±20) Open and start works reliably
601 350 (±20) Amplification may be required

Air 302 120 (±20) Reliable open, engine start
works

1 With an amplifier between two 30 m cables.
2 Tested distance. Longer distances can be achieved.

is amplified, up-converted and retransmitted at 2.5 GHz with a dipole
antenna (black in front of the picture).

Figure 2.5(b) shows the receiver side of the over-the-air relay which
should be placed in the proximity of the key. The dipole antenna re-
ceives the relayed 2.5 GHz signal, and a down conversion setup extract
the original car signal which is then relayed to the key using a loop
antenna. While the setup on those pictures is made of experimental
equipment, it can easily be reduced to two small and portable devices.

2.3 Evaluation on Different Car Models

Both above presented setups were initially tested on a few different
car models. To further evaluate the generality of the attack we tested
10 cars (including one after-market PKES) on which we ran several
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(a) Loop antenna placed next to
the door handle.

(b) Starting the engine us-
ing the relay.

Figure 2.6: The relay attack in practice: (a) opening the door with the
relay. (b) starting the car with the relay, in the foreground the attacker with
the loop antenna starts the car, in the background the table (about 10 meters
away) with the receiver side (Figure 2.5(b)) of the wireless relay and the key.
Emitter side (Figure 2.5(a)) of the wireless relay is not shown on this picture.

experiments. The cars were either rented on purpose or the experiments
were performed with the agreement of the car owners. In one case, a
car manufacturer representative proposed us to evaluate the attack on
a car he made available to us. In another case, a car owner, who
recently had a similar car stolen asked us to evaluate his second car’s
PKES. The aftermarket PKES system was bought and analyzed for
the purpose of our experiments for about 200 USD. Finding other car
models for testing was not always easy. In some cases, we were able
to rent cars or found volunteers through personal relationships. The
tested cars models cover a wide range of types and price as follows: 2
models in SUV class, 4 executive or luxury class (>50K) cars, 1 minivan
and 2 cars in the compact class (<30K). We had two different models
for only two of the tested manufacturers. During the evaluation of
the 10 different PKES systems, we observed that all of them differed
in their implementation. We also noticed that even if they relied on
the same general idea and similar chips the overall system behaved
differently for each model 1. The differences were found in timings,
modulation and protocol details (e.g., number of exchanged messages,

1This was also the case for the models from the same manufacturers.

17



Chapter 2. Example: Relay Attacks on Car Entry Systems

message length). Only the aftermarket system was obviously not using
any secure authentication mechanisms.

When possible, on each car we measured the distances for the relay,
the maximum acceptable delay and the key response time and spread.

2.3.1 Distance Measurements

In order to validate the feasibility of the attack in practice, we tested
several distances for the cable relay. This allows to evaluate the possible
attack setup, a longer relay distance over the cable will allow the thief to
act when the car owner is relatively far from his car, reducing chances of
detection. We further measured the distance form the relaying antenna
to the key, a longer distance will make the attack easier (e.g., avoid
suspicion from the user).

The cable relay was performed with off-the-shelf coaxial cables. We
built two 30 m cables that we combined for the 60 m relay tests. We
used a set of antennas, two home made antennas, and a large antenna 2

for an improved antenna-key range. We performed the attacks with
these antennas both with and without amplification. If the LF signal
near the car was weak we used a 10 mW low-noise amplifier to increase
the signal power. To further improve key to antenna range we used a
power amplifier with a nominal power of 2 to 5 W.

The results of these experiments are shown in Table 2.3. The relays
over the 3 cable lengths were always successful when we were able to
test them. In most of the cases the signal received on the collecting
antenna was strong enough to perform the relay over the cable without
any amplification.

However, without amplification at the key-side relay antenna, the
key could only be excited from a few centimeters up to 2 m. With a
power amplifier, we were able to achieve a range between 2 and 8 m,
(with the key fob in the person’s pocket which corresponds to the typical
key placement). We note that the distance achieved between the relay
antenna and the key depends on the strength of the collected signal from
the car side and the sensitivity of the key. Finally, the values reported
here show that the attack is practical as the key can be activated up
to 8 meters away from the antenna and the distance from the key to
the car can be extended up to 60 meters. It is likely that using more
powerful amplifiers would further increase these distances.

2Antenna size 1.0 x 0.5 m Texas Instruments RI-ANT-G04E
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2.3. Evaluation on Different Car Models

Table 2.3: Experimental results on distance. Legend: ’�’ relay works with-
out amplification, ’A’ with amplification, ’-’ not tested

Car Relay cable Key to antenna distance [m]
30 m 60 m No Ampli. With Ampli.

open go open go open go open go
Model 1 � � � � 2 0.4 - -
Model 2 A A A A 0.1 0.1 2.4 2.4
Model 3 � � � � - - - -
Model 4 � � - - - - - -
Model 5 � � � � 2.5 1.5 6 5.5
Model 6 A A A A 0.6 0.2 3.5 3.5
Model 7 A A - - 0.1 0.1 6 6
Model 8 � A - - 1.5 0.2 4 3.5
Model 9 � � � � 2.4 2.4 8 8
Model 10 � � - - - - - -

2.3.2 Maximum Acceptable Delay

In order to measure the maximum theoretical distance of a physical-
layer relay, we computed for each tested PKES system the maximum
acceptable delay by relaying LF messages with a variable delay. For
this purpose we used a USRP1 from Ettus Research [13] with LFRX
and LFTX boards. This allowed us to receive and send messages at 135
KHz. However, we found that the minimal processing delay achievable
by this software radio platform (SDR) was between 10 and 20 ms. This
proved to be too slow on all but one PKES we tested.

The delay in a software defined radio device is mainly due to buffer-
ing and sending data over the USB to (resp. from) the computer for
processing and the software processing. To reduce this delay we mod-
ified the USRP FPGA to bypass the RX (resp. TX) buffers and the
communications with the computer. With this modification and ap-
propriate configuration of the USRP the digitized signals were directly
relayed by the FPGA from the receiving path to the transmitting path.
We experimentally measured the resulting minimal delay to be 4 us.
To insert an additional, tunable, delay we added a FIFO between the
RX and TX path. Changing FIFO memory and the decimation rate
allowed us to accurately test delays between 4 us and 8 ms. For larger
delays we had to use an unmodified USRP with a tunable delay in
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Table 2.4: Maximum delay, key response time and spread

Car Max. Delay Key Response
Time Spread

Model 1 500 us 1782 us (±8) 21 us
Model 2 5 ms 11376 us (±15) 47 us
Model 4 500 us - -
Model 5 1 ms 5002 us (±4) 11 us
Model 6 10-20 ms 23582 us (±196) 413 us
Model 7 620 us 1777 us (±12) 25 us
Model 8 620 us 437 us (±70) 162 us
Model 9 2 ms 1148 us (±243) 436 us
Model 10 35 us 2177 us (±8) 12 us

software. This, however, reduced the delay precision.
Table 2.4 shows the measured maximum delays on the tested vehi-

cles. Large delays allow to relay messages over longer distances. The
maximum delays were measured to be within 35 us to tens of ms de-
pending on the car model. This leads to a theoretical distance between
5 and 1500 km for the wireless physical-layer relay. With faster soft-
ware defined radio platforms demodulation and modulation relays can
also be envisioned [14].

2.3.3 Key Response Time and Spread

Other characteristics of the smart key that are relevant to the physical-
layer relay performance are the key response time and spread. The
key response time is the elapsed time between the moment when the
challenge is sent by the car and the beginning of the response from
the smart key. The key response time spread is the difference between
the minimum and maximum key response times that we have observed.
The computation of these two measures allows us to estimate (i) how
much delay could the physical-layer relay attack exploit without any
practical detection being possible (ii) what is the design decision behind
the maximum acceptable delays allowed by the evaluated systems. We
note that the numerical differences of these two measures between car
models are due to the hardware used as well as the implementation of
the secure protocols (e.g., message size, type of encryption).

In order to measure the key response time and spread, we recorded
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the protocol message exchanges between the car and key with an oscil-
loscope using high sampling rate (from 20 to 50 MS/s depending on the
PKES system). This allowed us to have a precise estimation (within
tens of nanoseconds) of the start and end of transmitted messages. Ta-
ble 2.4 summarizes the average key response time with its standard
deviation and the key response time spread computed from 10 different
message exchanges during car open.

The results show large differences between different car models. The
key response standard deviations vary from 4 to 196 us, and the max-
imum spread - from 11 to 436 us. These values show that the current
implementations exhibit large variance. That is, possible solutions that
rely on measurements of the average key response time in order to de-
tect the time delay introduced by our attack would be infeasible; even
the smallest key response time spread of 11 us (Model 5) is already too
large to be used for the detection of our attack. We recall that our
30 m wireless physical-layer relay requires approximately 120 ns in one
direction (Table 2.2).

Moreover, we also observe that higher key response spread leads to
higher acceptable delay. The manufacturers seem to fix the maximum
acceptable delay at 20 to 50 times of the measured spread (except for
Model 10). The reason is most likely to provide high reliability of the
system as any smaller delays could occasionally make car owners being
denied access to the car and/or authorization to drive.

2.4 Implications

Our realization of relay attack on PKES systems could be put into prac-
tice in numerous scenarios. In one scenario, the attackers can install
their relay setup in an underground parking, placing a relay antenna
close to the passage point (e.g., exit corridor). When the user leaves
his car and exits the parking confident that his car is locked, a second
attacker can place the second antenna to the door handle and wait until
the car owner passes by the passage point. At that moment the key in
his pocket will receive car signals and will send back an open command
to the car. As this message is sent over UHF, it will reach the car even
if the car is within several tens of meters. The car will therefore unlock.
Once that the attacker has access to the car, the signals from within the
car are relayed and the key will believe it is inside the car and emit the
allow start message. The car can now be started and driven. Indeed,
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most of the cars will detect the missing key, however for safety reasons,
the car will not stop. Similarly, the car might detect a missing key for
several other reasons including if the key battery is depleted. None of
the evaluated cars stopped the engine if the connection with key was
cut.

In a second scenario, the attacker can go with one relay antenna
close to a window to activate a key left inside a closed building (e.g.,
on a table). This is possible when the antenna–key range is larger. In
such case, if the car is parked close to the building, the attacker is able
to open and start it without entering the building.

The described relay attack could not be easily traced unless the car
keeps a log of recent entries and records exchanged signals (e.g., for
later analysis). It will be difficult for the owner to prove that he is not
the one that actually opened and used the car, as there are no physical
traces of car entry. This can have legal implications for car owners in
case that their cars or property from their cars are stolen due to this
PKES vulnerability.

Our attack provides physical access to the interior of the car, and
therefore can be used in conjunction with other attacks. For example,
rootkits on car computers can be installed that allow an attacker to
take control of the entire car [15].

2.5 Summary and Discussion

We showed that a set of modern car entry systems (PKES) are vulner-
able to fast physical-layer relay attacks. While immediate or mid-term
countermeasures could be envisioned [16], our attacks reveal two funda-
mental problems with proximity access control based on cryptographic
shared keys for device authentication.

The first is related to physical proximity. Instead of verifying that
the correct key is in its physical proximity, the car verifies if it can
communicate with the key. In adversarial settings this cannot be taken
as a proof of physical proximity. Possible solutions include distance-
bounding protocols which guarantee that physical proximity is securely
verified [17–23]. This means that the attacker cannot convince the car
that the key is closer than it really is.

The second problem is related to the device identity used for secure
device authentication. The authentication is performed based on what
the devices (car and key) hold (a shared cryptographic key) and not on
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what the devices really are. The key does not verify that the messages
come indeed from the car. In relay attacks, they are always transmitted
by a third device owned by the attacker.

Device authentication can potentially be enhanced using device
identification techniques that verify what the device really is. This im-
plies that one entity (e.g., key) stores a fingerprint of the other entity
(e.g., car) and can measure this fingerprint from the communication
with that entity. Given that the attacker’s device would ideally not
have the same fingerprint as the car, the key would not recognize it
as being the car. It would therefore discard all retransmitted messages
and the relay attack would be prevented.

In the reminder of this thesis, we present our research and results
on extracting and analyzing fingerprints of wireless devices. More pre-
cisely, we focus on device identification based on analog (radio) circuitry
properties based on that they exhibit and that can be observed at the
physical communication layer.
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Chapter 3

Device Identification
Background

Physical-layer device identification is based on device fingerprints cor-
responding to unique characteristics extracted from the device’s com-
munication at the physical layer. Here we present its functionality in
the broader concept of a physical-layer device identification system. We
introduce the building blocks of such systems and the key concepts in
their design and performance evaluation. These serve as a basis for the
proposed systems in the remaining parts of this thesis.

3.1 System Overview

A typical physical-layer device identification system involves three en-
tities as shown in Figure 3.1: a wireless device, a device identification
subsystem, and an application using the identification. The goals is
to identify (or verify the identity of) devices or their affiliation classes
based on device characteristics which are observable from the radio
communication. That is, physical-layer device identification systems
acquire, process, store, and compare signals transmitted from devices.

Such an identification system can be viewed as a pattern recogni-
tion system. It acquires signals from devices, also referred to as iden-
tification signals, extracts identification-relevant information from the
those signals, also referred to as fingerprints, compares the extracted
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Figure 3.1: Building blocks of physical-layer identification system.

fingerprints with already enrolled device fingerprints and provides the
relevant results to the application subsystem.

Typically, we distinguish two functional phases in the identification
system: enrollment and identification. During enrollment, signals are
captured from each device or a class of devices considered by the ap-
plication. Fingerprints obtained from feature extraction are stored in a
database typically linked with a device or class identifier. During iden-
tification, identification signals from the device (class of devices) are
acquired, fingerprints are extracted and compared with the enrolled
reference fingerprints. We consider the following modes of operation:
(i) Device identity verification: verify that a device identity matches its
claimed identity or class (1:1 comparison) (ii) Device classification: clas-
sify a device with unknown identity (but in the enrollment database)
to the most likely device or class of devices in the enrollment database
(1:N comparisons).

In this thesis, we focused on device identity verification as this mode
of operation is most suitable for security applications such as intrusion
detection, device authentication and relay detection. Device classifi-
cation may also be a valid mode of operation in certain close-world
scenarios. These scenarios are of very limited use. Therefore, we pro-
vide results on device classification only to compare with related work.

3.2 System Entities

In the following, we briefly discuss the main physical-layer device iden-
tification system entities, processes and evaluation criteria.
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3.2.1 Device

Physical-layer device identification is based on fingerprinting the ana-
log circuitry of devices by observing their radio communication. Con-
sequently, any device that uses radio communication may be subject to
physical-layer identification. Wireless devices are typically composed
of antennas, analog front-ends, digital back-ends and logic units with
different levels of complexity. For example, active wireless transceivers
(e.g., 802.15.4 sensor nodes) are significantly more complex than passive
RFID transponders.

The feasibility of uniquely identifying wireless devices among other
devices or classes of devices depends on the hardware impairments in-
troduced during manufacturing of the analog circuitry and its com-
ponents (e.g., resistors, capacitors, transistors). Understanding the
sources of variability within a given device or class of devices has rele-
vant implications on the design of the device identification system.

3.2.2 Identification Signals

Wireless devices communicate via radio signals by sending data ac-
cording to specifications and protocols. Given that physical-layer iden-
tification extracts unique characteristics from the radio signals during
communication, we define identification signals as the signals that are
collected for the purpose of identification.

Identification signals can be either device transmissions during nor-
mal operation or specific transmissions for the purpose of identification.
Therefore, identification signals can be either passively acquired by the
system (e.g., by recording device transmissions) or actively triggered
(e.g., by sending a request to the device and recording its response).
This procedure may be repeated a sufficient number of times such that
the system is able to extract the device characteristics needed for iden-
tification.

3.2.3 Features and Device Fingerprints

The characteristics extracted from the identification signal for the pur-
pose of identification are referred to as features. They could be located
in specific data or non-data parts of the identification signal. They of-
ten relate to well-understood signal characteristics defined or not in de-
vice specifications. These specifications device typically include various
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characteristics and error tolerances (e.g., amplitude, frequency). Some
of them are used for quality control and FCC certification. In addition,
features can be extracted from signals without a-priory knowledge of
a specific signal characteristic. They can also be further enhanced by
statistical analysis in order to improve their discriminant capabilities.

The purpose of the features is to form device fingerprints, also re-
ferred to as device physical-layer identities. A device fingerprint is a set
of features or a composition of features. Depending on the application,
various fingerprint properties can be required such as universality (every
device must have the features), uniqueness (no two devices should have
the same fingerprints), permanence (fingerprints should be robust, e.g.,
invariant to distance and location, stable over a specified time interval).
Other application-specific requirements may be related to acquisition
and data-dependency of the device fingerprints (Section 12).

3.3 System Processes

The physical-layer identification system (Figure 3.1) has to acquire
identification signals (acquisition), extract features and form finger-
prints (feature extraction), and compare fingerprints (fingerprint match-
ing). The system may either passively collect identification signals or
it may actively request devices to send back specific responses.

3.3.1 Acquisition

The acquisition process ensures capturing, digitalizing and storing the
identification signals. It should neither influence nor degrade (e.g., by
adding noise) the signals needed for identification, i.e., it should pre-
serve and bring into the digital domain the unique signal characteristics
which the identification relies on.

Acquisition can be passive and/or active. In passive acquisition,
the system acquires identification signals without interacting with the
devices, e.g., identification signals can simply relate to data packets
sent by devices during normal communication with other devices. In
active acquisition, the system acquires the identification signals after
requesting the devices to transmit them. Besides the advantages of
obtaining identification signals “on demand”, active acquisition may
request identification signals that are not part of the communication
specification.
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3.3.2 Feature Extraction

The feature extraction process deals with extracting features from iden-
tification signals that are used to distinguish devices or classes of de-
vices. Typically, it implements functions that directly relate the identi-
fication signal to the features. For example, when considering features
like modulation errors, the feature extraction process is a demodulator
with functions to compute these errors. Feature extraction can also be
based on time domain and/or spectral transformations of the identi-
fication signal to create new distinguishable features. These transfor-
mations could be further enhanced statistical analysis and/or feature
selection techniques [24].

3.3.3 Fingerprint Matching

Fingerprint (feature) matching compares newly extracted device fin-
gerprints with reference fingerprints enrolled in the system database.
Depending on the application, it can provide an yes/no answer whether
a device fingerprint matches a chosen reference fingerprint (identity
verification) or a list of devices that the device fingerprint most likely
originated from (identification). The choice of the matching algorithm
depends on the extracted features and the application requirements.

3.4 Performance Evaluation

Identification systems are typically evaluated in terms of accuracy, ro-
bustness, computational speed, exception handling, cost and security.

3.4.1 Accuracy

A critical performance factor is often considered to be the accuracy,
i.e., how precise is the system during identification. Here we detail our
methodology and metrics to measure the accuracy in device identity
verification. For completeness, we also discuss device classification.

Device Identity Verification

We evaluate the accuracy of our system based on the methodology
for threshold-based identity verification since this is the most widely
accepted way for evaluating biometric systems [5]. We adopt Equal
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Error Rate (EER) and Receiver Operating Characteristic (ROC) as
performance metrics. Their definition and computation are discussed
below. We note that the system accuracy often cannot be theoretically
established, but only statistically estimated using test databases.

The EER and ROC are based on the errors that occur during hy-
pothesis testing that establishes matching between two samples. The
null hypothesis Ho states that the two samples match and the alter-
native hypothesis Ha - that the two samples do not match. In such
a setting, there are two possible errors: False Match and False Non-
Match. False Match means that the system decidesHo whenHa is true.
In our system this is equivalent to a decision that a device’s (claimed)
identity is legitimate while in reality it is an imposter device. We refer
to it as a False Accept. False Non-Match means that the system decides
Ha when Ho is true. In our system, this is equivalent to a decision that
a device’s identity is not legitimate while in reality it is. We refer to it
as a False Reject.

The False Accept Rate (FAR) and False Reject Rate (FRR) rep-
resent the frequencies at which the above errors occur. The FAR and
FRR are closely related to each other in the Receiver Operating Char-
acteristic (ROC). The ROC is a curve which allows to automatically
compute FRR when the FAR is fixed at a desired level and vice versa [5].
The operating point in ROC, where FAR and FRR are equal, is called
the Equal Error Rate (EER). The EER represents the most common
measure of the accuracy of an identification system [25].

We estimate the ROC and EER as follows. We compute the simi-
larity score between all reference and test fingerprints from all devices.
We then separate these scores in two categories: genuine and imposter.
The genuine category includes all scores from matching two fingerprints
from the same device. The imposter category contains all scores from
comparing two fingerprints from different devices. Given that each
score represents the similarity between two fingerprints (identities), we
compute the rate of falsely rejected and falsely accepted fingerprints
using a threshold. The scores from the genuine category that are above
this threshold indicate the number of false rejects or the FRR, while
the scores from the imposter category that are below the threshold in-
dicate the number of false accepts or the FAR. The EER is the error
rate where both FAR and FRR are equal. The value of the threshold
at the EER is our threshold T for an accept/reject decision.

For ROC presentation, we use Genuine Accept Rate (GAR = 1
- FRR) instead of FRR because GAR shows the rate of accepts of
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legitimate identities for a given FAR (e.g., FAR = 1%).
Our methodology for EER and ROC validation is based on the

method of cross-validation [26]. Cross-validation consists of partition-
ing the dataset into disjoint subsets, training the system and validat-
ing it on independent subsets. We perform multiple rounds of cross-
validation using different partitions, and the presented estimates are
averaged over these rounds.

Device Classification

Device classification has often been used in evaluating device finger-
printing techniques even though for security applications it is not the
correct accuracy metric (see Chapter 9). The system operating in clas-
sification mode measures unknown devices, obtains their fingerprints
and assigns them to one of the devices (or classes) in its available set
of devices. The commonly adopted metric in that case is the classifica-
tion error rate (CER) which is defined as the percentage of incorrectly
assigned device fingerprints to their respective devices or classes. We
use this metric in certain cases to compare the efficacy of our proposed
techniques to related work. Our methodology for CER validation is
also based on cross-validation.

3.4.2 Feature Stability

Another important characteristic of physical-layer device identification
system is the robustness of the measured fingerprints. We also refer to
it as feature stability. The identification system may need to operate in
different scenarios and conditions, e.g., identify devices from different
distances and location. Therefore, the performance evaluation should
ideally include the stability of the fingerprints to (i) external environ-
mental aspects that directly influence the identification signal propa-
gation such as signal interference, multipath and distance/location and
(ii) device-related aspects like internal temperature and voltage.

Understanding feature stability is crucial to understanding the pos-
sible applications of physical-layer identification.

3.4.3 Other Performance Factors

Other performance factors also include computational resources, system
cost and exception handling. In physical-layer identification the com-
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putational resources such as acquisition speed, memory consumption
and system cost are directly related to the hardware being used. The
higher the hardware quality, the higher the cost. Where necessary, we
discuss these issues in the case of our proposed prototype systems. We
also suggest alternative implementations and improvements to reduce
the overall cost of the identification system.

Identification systems including physical-layer device identification
systems usually need an exception handling procedure. Typically, Fail-
ure to Use, Failure to Enroll and Failure to Acquire events need to be
appropriately handled [5]. In this thesis, we do not discuss exception
handling solutions as they are orthogonal to the identification system.
We invite the reader to consult [5] for related discussion.
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Chapter 4

Transient-based
Identification of Wireless
Transceivers

Identification of wireless transceivers based on the characteristics of
their radio transmissions can provide an additional layer of security in
wireless networks. This layer can be used to detect and/or prevent
intrusion, replication and relay attacks. In this chapter, we investigate
the feasibility of uniquely identifying same model and manufacturer
low-power IEEE 802.15.4 (CC2420) radio devices using discriminant
information present in the turn-on transient part of radio packet trans-
mission. We propose a system comprised of acquisition, feature ex-
traction and matching procedures and show that it enables accurate
device identification under certain assumptions. We further explore
the performance of our approach in terms of distance, antenna polar-
ization, voltage and temperature and analyze how these parameters
affect the accuracy. The obtained results expose the limitations of us-
ing transient-based identification in dynamic (mobile) environments.

Last, but not least, we validate the applicability of our proposed
transient-based identification system to other radio transceivers. We
show that it achieves similar accuracy on a set of low-power CC1000
radio transceivers. Therefore, our approach is likely to be applicable to
a wider range of modern transceivers.
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Figure 4.1: Turn-on transient at the start of each new packet transmission
– IEEE 802.15.4 CC2420 radio transceivers.

4.1 System Overview

Our transient-based device identification system is an instance of the
physical-layer device identification system in Chapter 3. We refer to it
as transient-based because the physical-layer fingerprints are extracted
from the turn-on transient in device packet transmissions. It is the
part of the signal before data modulation where the signal amplitude
gradually rises to a specified level (Figure 4.1). The unique properties
of the transient are believed to originate in the analog circuitry which
includes amplifiers, filters, mixers and transmitting antenna. Each of
these components contains a number of passive (e.g., resistance) and
active (e.g., capacitance, transistor) components which contribute to
the behavior of the transient signal.

Our system consists of a single hardware acquisition setup with
feature extraction and matching components implemented in software.
The hardware setup acquires packet radio transmissions from devices
and extracts the turn-on transient signal from each packet transmis-
sion. Feature extraction builds device fingerprints from a number of
collected turn-on transients (identification signals). Fingerprint match-
ing process verifies whether the measured fingerprints correspond to the
stored fingerprints of the device during enrollment.

In terms of wireless transceiver devices, we considered 50 COTS
Tmote Sky sensor nodes equipped with Chipcon CC2420 low-power ra-
dio transmitters. All devices were same model and manufacturer with
a signature ”4M 94V-0 H014-4787”. Given that they were purchased
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Figure 4.2: Hardware signal acquisition setup.

in two sets, we cannot fully assert that they were all produced at the
same production line, even though such an assumption is highly plau-
sible. We also validated our system on a number of Mica2 sensor nodes
equipped with Chipcon CC1000 radios.

4.2 Signal Acquisition

4.2.1 Hardware Setup

Figure 4.2 shows the schematic of the hardware setup used to capture
turn-on transient signals. The signals are acquired by a Standard Horn
directional antenna and subsequently amplified by an ultra low-noise
and low-power amplifier with a noise figure of 0.15 dB. Due to the low
power of the sensor devices, it is critical to amplify the signal without
losing its unique characteristics, as the signal-to-noise ratio degrades
drastically within meters. An ultra low-noise and low-power amplifier
proved to be the best choice among a number of amplifiers we tested.
Figure 4.1 visualizes a turn-on transient signal acquired from 10 m.

We use a low insertion loss bandpass filter to eliminate radio fre-
quencies outside the IEEE 802.15.4 band [27]. We then down-convert
this amplified and filtered signal to an intermediate frequency of 450
MHz using a frequency mixer and a synthesizer. We down-convert the
signal in order to acquire it with sufficient precision on a 1 GHz oscillo-
scope. If the transmitted 2.4 GHz signals are not down-converted, the
oscilloscope significantly attenuates the received signals (25 dB less).
Another solution is to use larger bandwidth oscilloscope. However, we
did not have this type of equipment at our disposal.

Due to the frequency artifacts during conversion, we pass the inter-
mediate frequency signal through a lowpass filter and a DC blocking
capacitor. We then record it with a sampling rate of 4 GS/s.
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Table 4.1: Acquired datasets.

Goal Distance # Signals # Devices Total
1 Accur. 10 m 600 50 30000
2 Accur. 40 m 600 10 6000
3 Volt. 10 m 200 10 2000
4 Polar. - 600 10 6000

4.2.2 Collected Data

During data collection, each device was positioned on the same tripod,
previously fixed at a given distance from the fingerprinter’s antenna.
Polarizations of the sensor devices’ antennas (all devices were equipped
with standard on-board integrated antenna) and of the fingerprinter’s
antenna were aligned and perpendicular to the ground. The devices
were run on 2 x 1.5V AA batteries (Dataset 1,2,4) and 2 x 1.2V AA
batteries (Dataset 3). The experiments were made indoors (Dataset
1,3,4) and in an underground parking space (Dataset 2) for about 20
minutes with equally spaced packet transmissions in order to acquire a
large number of signal samples for performance evaluation. The ambi-
ent temperature of the environment was varying between 18 and 23◦C.
The recorded datasets and main measurement parameters are summa-
rized in Table 4.1.

4.2.3 Transient Extraction

From each acquired signal (one signal corresponds to one packet), we
extracted its turn-on transient. It should be noted that in a regular
transmission from the nodes, the transient is present in each trans-
mitted packet. Each acquired signal trace lasted 500 ns, of which the
transient consistently occupied approximately 125 ns for all devices in
our population (Figure 4.1). Given the 4GS/s sampling rate of our
oscilloscope, this corresponded to approximately 500 data points. We
therefore defined the identification signal as the first 512 data points
from the detected starting point of the transient determined according
to the slope detection in [28].

We also note that we observed very similar and stable maximum
signal amplitudes at the fingerprinter’s antenna. The large majority
of devices had a mean amplitude of approximately 145-7 mV with a
standard deviation of about 4 mV (Dataset 1).
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Figure 4.3: Accuracy after initial transformation (Dataset 1).

4.3 Feature Extraction

The goal of feature extraction is to obtain distinctive feature templates
(fingerprints) from the identification signals. Our feature extraction
process consists of two phases: (1) initial transformation and (2) fea-
ture extraction using statistical analysis. The initial transformation
is chosen from a set of known transformations and is an input into a
Linear Discriminant Analysis (LDA) for feature extraction [26].

In the initial transformation phase, we experimentally test a num-
ber of signal transformations to find initial features that capture most
discriminant information. In the statistical analysis phase, we statis-
tically reduce the dimensionality by discarding noisy dimensions using
LDA projections. We note that LDA has been effectively applied to dis-
criminate human biometrics [29, 30] and outperforms related methods
when the training data is sufficiently large [31].

4.3.1 Initial Transformation

We considered the following initial transient transformations: Raw -
the original identification signal (raw transient), no transformation; Hil
- the envelope of the identification signal obtained by the Hilbert trans-
form [32]; Raw+ - the FFT spectra of the identification signal; Hil+
- the FFT spectra of its envelope; Prop - relative differences between
adjacent FFT spectra of the identification signal.
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Figure 4.4: Feature extraction process.

We tested the use of these initial transformations in our identifica-
tion system. The results using Dataset 1 are summarized in Figure 4.3
in terms of EER. They show that when using the original identification
signals (Raw) or their envelopes (Hil), our system scores a high EER
(15%) which translates into a low identification accuracy. This makes
these two transformations unsuitable for further analysis. Using FFT
spectra significantly decreases the error rate (Raw+, Hil+, Prop), with
(Prop) scoring the lowest EER. We therefore chose the relative differ-
ences between adjacent FFT spectra (Prop) as the transformation for
further feature extraction.

The above results were validated with 4-fold cross validation [26].
Three folds of Dataset 1 were used for training and the remaining one
fold for testing. Each fold contained 150 identification signals per de-
vice. This resulted in a total of 300 genuine and 22050 imposter match-
ings per fold1 to compute the EER.

4.3.2 Feature Extraction

In this section, we describe our feature extraction process based on the
relative differences between adjacent FFT spectra as initial transfor-
mation.

For a given device, spectral Fisher-features are extracted from N
identifications signals using a linear transformation derived from LDA.
Figure 4.4 illustrates the process. First, we extract the transient part
of the recorded signal l. We denote this part by f(t, l), where f(t, l) is

1Each fold contains 3 feature templates (fingerprints) per device. This results in 6
different matchings of fingerprints of the same sensor node (i.e., genuine matchings)
and 441 different matchings of fingerprints from different sensor nodes matching(i.e.,
imposter matchings). This makes 300 genuine and 22050 imposter matchings for 50
devices.
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the amplitude of the signal l at time t.
In Step (i), we apply a one-dimensional Fourier transformation on

f(t, l) to obtain F (ω, l):

F (ω, l) =
1√
M

M−1∑
m=0

f(t, l) exp(−2πi
tω

M
) (4.1)

where M is the length of transient and 0 ≤ t ≤ M − 1.
We then compute the relative difference between the adjacent spec-
tra of the |F (ω, l)| denoted in a vector form as: �sl = [ |F (2, l)| −
|F (1, l)| |F (3, l)|−|F (2, l)| · · · |F (M/2−1, l)|−|F (M/2−2, l)| ]t where
the DC component and redundant half of the spectrum are removed.

In Step (ii), a projected vector �gl, also called a Fisher-feature, is
extracted from the Fourier spectrum using an LDA matrix WL:

�gl = W t
L�sl (4.2)

Based on the above description, the Fisher-feature extraction from
N identification signals for a given sensor device is written as G = W t

LS
where G is an array of gl and S is a matrix S = [ s0 .. sl .. sN ].

Finally in Step (iii), the feature template h used for matching
(recognition) is computed:

h = {Ĝ; ΣG} (4.3)

where Ĝ denotes the mean vector of G and ΣG denotes the covariance
matrix of G.

The number of identification signals N used to build the feature
template and the number of projected vectors in WL (i.e., the Fisher
subspace dimension) are experimentally determined.

4.3.3 Training and Feature Matching

The LDA matrix WL is derived by a standard LDA procedure based
on scatter matrices [26]. Here, WL is the optimal Fisher discrimi-
nant projection given as the set of κ eigenvectors in matrix W that
correspond to the κ-highest eigenvalues in the generalized eigenvalue
problem: SbW = ΛSwW , where Λ is the eigenvalue matrix, Sw is the
within-class scatter matrix showing the average scatter of sample fea-
tures h from the same sensor device and Sb is the between-class scatter
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representing the average scatter of sample features h from different
sensor devices.

Mahalanobis distance is used to find the similarity between feature
templates (fingerprints). The result of matching a reference hR and a
test hT feature templates is a matching score, calculated as follows.

Matching score =

√
(hT − hR)tΣ−1

G (hT − hR) (4.4)

Values of the matching score closer to 0 indicate a higher similairy.
It should be noted that the proposed feature extraction and match-

ing method can be efficiently implemented in hardware as it uses only
linear transformations for feature extraction and inter-vector distance
matching to compute similarity. These operations have a low memory
footprint and are computationally efficient.

4.4 Performance Evaluation

4.4.1 Accuracy analysis

In our evaluation, we first considered Dataset 1 which that contained
identification signals from all 50 devices taken at distance of 10 meters.
The number of identification signals used to build feature templates
was fixed to N = 50. The results, validated by 4-fold cross validation,
are presented in Figure 4.5(a). They show the accuracy (EER) of our
system depending on the subspace dimensionality. The original feature
dimensionality after the initial transformation was D = 254.

The results demonstrate a very small EER, which is, for dimen-
sionality D ≥3 between 0.0024 (0.24%) and 0.005 (0.5%). This means
that our system correctly identifies the same-model-same-manufacturer
transceivers with an accuracy higher than 99.5% (GAR at the EER op-
erating point). We later show that the accuracy achieved in this set is
also preserved for larger distances.

Figure 4.5(a) suggests that using the first 5 eigenvectors for pro-
jection is sufficient for accurate identification. This results in compact
fingerprints2. EER degrades progressively for higher dimensional sub-
spaces. This phenomenon is more pronounced when N decreases, in
particular for N < 30 as shown in Figure 4.5(b).

2If each dimension is represented by a 4-byte floating-point number, the feature
template h size is 20 (5x4) bytes for Ĝ plus 100 (5x5x4) bytes for ΣG resulting in
a total of 120 bytes.
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Figure 4.5: (a) Eigen- and Fisher-features accuracy for different subspace
dimensionality. Dimensionality 1 is in the inner plot. (b) Fisher-features
accuracy for different subspace dimensionality and identification signals N
(Dataset 1).

Figure 4.5(a) also compares Eigen- vs. Fisher-feature extraction.
Eigen-feature extraction is based on Principal Component Analysis
(PCA). The validated EERs show that Fisher LDA is more effective
for lower dimensional subspaces (1-3 eigenvectors). However, we cannot
assert this with statistical confidence for higher dimensional subspaces.

In order to fully characterize the system accuracy, we plot the ROC
for the 5-dimensional features versus the number of identification sig-
nals N (Figure 4.6). Reducing N degrades the Genuine Accept Rate
for lower FAR (e.g., 0.01%). This is not readily visible in Figure 4.5(b)
where the differences in EER for N > 10 are statistically insignificant
(Table 4.2). The ROC analysis suggests that if an application is re-
quired to operate at low FAR (< 0.1%), it must use more identification
signals in order to achieve high GAR.

Table 4.2 summarizes the underlying data, namely the number of
identification signals N , total genuine and imposter matchings per-
formed, Accept/Reject threshold T (at EER point), EER and its con-
fidence interval (CI).

4.4.2 Stability analysis

In the following analysis, we investigate the stability of our proposed
technique in terms of distance, antenna polarization, voltage and tem-
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Figure 4.6: Receiver operating characteristic (ROC) for different number
of identification signals N used to build the feature template (Dataset 1).
The Fisher-feature subspace dimensionality is fixed to 5. See Table 4.2 for
the underlying data.

Table 4.2: Summary of accuracy for Dataset 1.

N Test matchings Thr T EER (%) EER CI (%)
Genuine Imposter lower upper

50 300 22050 3.01 0.24 0 0.49
40 300 22500 3.95 0.34 0.02 0.66
30 600 39200 3.87 0.32 0.07 0.56
20 1000 61250 4.10 0.34 0.21 0.47
10 1000 61250 6.74 0.72 0.62 0.82
5 1000 61250 16.04 2.72 2.38 3.06

perature. We also validate our system on other radio transceivers.

Distance

For distance evaluation, we performed measurements in the university
parking, which allowed us to collect signals up to 40 m line-of-sight
(LoS). We used the first 10 devices from our population (Dataset 2).

Table 4.3 compares the validated EERs for differentN and distances
of 10 and 40 m respectively. The system is trained separately for each
distance. We did not observe statistically significant effects on the
system accuracy. Our acquisition setup was successful in preserving
the features in the transient signal.

In order to complete the analysis on the effect of distance on the
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Table 4.3: EER at 10 and 40 meters (Dataset 1-2).

N Test matchings EER (%) Valid.
Genuine Imposter 10m 40m

50 60 810 0 0 4-fold
40 60 810 0 0 5-fold
30 120 1440 0 0 5-fold
20 200 2250 0.57 0.36 5-fold
10 200 2250 1.35 3.41 5-fold

recognition accuracy, we performed cross-matching between feature
templates extracted from both distances. We registered a significant
increase of EER = 0.38 (38.01%) for N = 50. This result shows that
while the frequency information in the transient signal is unique within
a given distance, it changes across different distances for the same an-
tenna polarization.

Polarization

In order to quantify the effect of antenna polarization, we collected
identification signals under the same conditions as in Dataset 1, but
with a changed polarization of the antenna on the device by 45◦ with
respect to the fingerprinter antenna. We then matched the extracted
feature templates to the reference feature templates in Dataset 1. This
resulted in a impractical EER = 0.39 (39%).

As this result could have been influenced by the training proce-
dure where only training data from one type of polarization was used,
we collected transient data samples from 10 sensor nodes at 3 differ-
ent antenna polarizations (Dataset 4). The identification accuracy did
not improve, the reason being that varying the polarization changed
the frequency information in the identification signal (Figure 4.7(b)).
These changes could not be separated by a linear discriminant. We
acknowledge that further work is needed to quantify how much change
in polarization can be tolerated (e.g., small perturbations).

Voltage and Temperature

For voltage evaluation, we used 2x1.2V NiMH and 2x1.5V alkaline bat-
teries which provided two different voltage levels of 2.4 and 3V respec-
tively. Figure 4.7(a) shows the matching scores between fingerprints
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Figure 4.7: (a) Matching fingerprints acquired at the same voltage and
between two different voltage levels provides similar values, within the gen-
uine distribution. (b) Turn-on transients captured at two different antenna
polarization present large spectral differences.

taken at the same voltage level (blue triangles) and between finger-
prints taken at different voltage levels (red circles) for 10 devices. We
do not observe a significant difference between genuine matching scores
coming from the same and between voltage levels. The scores are close
to 0 and within the boundary of the genuine score distribution (i.e.,
below T = 3.01). The EER for this set of 10 nodes remained 0.

This is an expected result given that the sensor nodes are equipped
with a low-power micro-controller which requires 2.1 – 3.6 V for oper-
ation. It should be noted that such a result is not necessary true for
high-power transmitters [33].

Our experiments did not show that surrounding temperature changes
affect the accuracy. We point out however that the ambient temper-
ature during our experiments did not vary substantially, the variance
being approximately 5◦C between the two environments used. We did
not investigate extreme changes of temperature (e.g., intentional heat-
ing) and higher variance of the ambient temperature which usually
occurs in outdoor environments.

4.4.3 Device classification and comparison

In application scenarios where the number of devices is known, CER
can be used to evaluate the ability of a system to classify identifica-
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Table 4.4: Average CER (Dataset 1).

N # Samples 1-NN (%) 3-NN (%) Valid.
50 300 0.07 0 4-fold
40 300 0.07 0 5-fold
30 600 0.25 0.07 5-fold
20 1000 0.97 0.45 5-fold
10 1000 3.71 2.43 5-fold

tion signals to their corresponding devices. Table 4.4 summarizes the
average CER of our system on Dataset 1 using k-Nearest Neighbor
classifiers. We provide these results for direct comparison with related
work 9. It should be noted however that comparison by value could be
misleading given the differences in device population (same vs. different
manufacturers), radio hardware and experimental parameters.

We also applied our proposed features to the data collected by the
authors in [28]. It consisted of 2000 transient data samples captured
from 10 Mica2 devices equipped with CC1000 (433Mhz) radios from
15 cm distance. The transient part occupied approximately 100 ns (200
data points). Our system scored an EER=0.0167 (1.67%) on that data,
showing that CC1000 radios can also be identified with high accuracy.
It should be noted that this result can possibly be improved if the linear
transformation WL is trained for CC1000 radios. This was not possible
due to the small size of the available data.

In terms of device classification, our system achieved a CER of
3.2% compared to the 30% reported in [28]. In that particular case, we
can assert with certainty that our transient-based identification system
significantly improves over related work.

4.5 Summary and Discussion

We investigated transient-based identification of low-power 802.15.4
transceivers (Chipcon CC2420). Our proposed system enabled accu-
rate device identification as long as devices did not change their lo-
cation and distance with respect to the signal acquisition antenna. It
was also validated on other low-power transceivers (Chipcon CC1000)
where it significantly improved previously reported results.

We also evaluated the performance of our techniques with respect to
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distance, antenna polarization and voltage. We showed that large fixed
distances and variable voltage preserve fingerprint properties, whereas
varying distance and antenna polarization distort the fingerprints and
cause significantly lower identification accuracy. These findings severely
limit the usability of transient-based identification in mobile scenarios
where devices change their locations.

The reason for the discussed behavior is most likely due to the pres-
ence of channel-specific characteristics in the turn-on transient intro-
duced by different multi-path propagation, path loss and polarization.
These create large differences in the frequency spectrum of the transient
and prevent accurate fingerprint comparison. While channel estimation
procedures could in theory be applied to estimate the channel and re-
duce its effect on the device communication, our efforts in that direction
were not successful. More precise channel compensation is required in
order to preserve the unique device features. It is an open research
question under which type of wireless channels this may be possible.

Another issue with transient-based identification in general is the
requirement on high-quality hardware. Transients are very short in time
and acquisition requires fast analog-to-digital conversion (ADC). From
practical considerations, it is important to investigate whether turn-
on transients contain discriminant information at lower intermediate
frequencies. This will significantly reduce the hardware cost.
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Chapter 5

Physical-layer
Identification of Passive
RFID

RFID technology is deployed in a number of devices such as contactless
identity cards, electronic passports, payment credit cards, consumer
products. Many studies have addressed security and privacy issues re-
lated to RFID deployment on the logical layer. Examples include device
authentication, cloning detection, unauthorized tracking, inventorying.

In this chapter, we investigate the security and privacy implica-
tions of RFID devices by looking at the properties of their physical
communication layer. In particular, we focus on physical-layer identi-
fication of HF and UHF RFID devices. We present a hardware setup
for RFID signal acquisition to in- and out-of-specification reader re-
quests and a set of techniques which extract timing, modulation and
spectral features from the acquired signals. We evaluate our system on
HF RFID smart cards, UHF RFID tags and a set of electronic pass-
ports. We demonstrate that RFID exhibit physical-layer characteristics
with different properties. Some of these can be effectively used to build
accurate device fingerprints and therefore enable detection of cloned
RFID devices. Others can be used in an offensive manner to perform
unauthorized tracking of devices despite any logical layer protection
mechanism.



Chapter 5. Physical-layer Identification of Passive RFID

5.1 System Overview

We consider a physical-layer device identification system that consists
of a single acquisition setup and feature extraction and matching mod-
ules implemented in software. For RFID signal acquisition, we use a
purpose-built reader to transmit in- and out-of-specification requests
and record the corresponding RFID device responses, also referred to
as identification signals. Given that HF and UHF RFID acquisition se-
tups are similar, we only detail the signal acquisition setup in case of HF
RFID. For details on UHF RFID, we invite the reader to consult [34].

Our identification system operates in two modes, namely RFID de-
vice identity verification and classification. The former is used to assess
the ability to verify the identity of same model and manufacturer RFID
devices. In case of identity documents, this could mean identifying doc-
uments from the same country, year and place of issuance. The latter
is used to check the ability to associate RFID devices to predefined
classes. In case of identity documents, classes may include the country
that issued the document or the year of issuance.

For performance evaluation, we considered HF and UHF RFID de-
vice populations (Table 5.1). Our primary set of HF devices consisted
of 50 JCOP NXP 4.1 smart cards [35] which contain ISO 14443 compli-
ant NXP RFID transponders [36]. We chose these cards since they are
popular for use in identity documents and access cards, and because
they have been used by hackers to demonstrate cloning attacks against
e-passports [37]. We also validated our techniques on 8 HF RFID elec-
tronic passports1. In case of UHF RFID, we used a primary set of 50
ALN9540 tags compliant with EPCglobal UHF Class 1 Generation 2
(EPC C1G2) standard [38]. We chose these particular tags as they are
representative for industrial applications.

5.2 Signal Acquisition

In this section, we first describe our signal acquisition setup. We then
detail the different types of experiments we performed and present the
collected datasets from our population of devices.

1The small quantity of the electronic passports used in the experiments is due
to the difficulty of finding people who are in possession of such passports and at the
same time willing to allow experimentation on them.
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Figure 5.1: Signal acquisition setup. Envelope and modulation generators
generate wake-up signals that initiate the response from the RFID transpon-
der. This wake-up signal is transmitted by the transmitting antenna. The
acquisition antenna captures both the wake-up signal and the response from
the transponder. The signal from the acquisition antenna is then captured
and recorded by the oscilloscope.

5.2.1 Hardware Setup

Figure 5.1 displays the hardware setup that we use to collect RF sig-
nals from the HF RFID devices. Our setup is essentially a purpose-built
RFID reader that can operate within the standard-specified RFID com-
munication [36] and out of specification. This enables a broader range
of experiments. The setup consists of two signal generators used for en-
velope generation (envelope generator) and for signal modulation (mod-
ulation generator) as well as two transmission and acquisition anten-
nas. The envelope generator is loaded with a waveform that represents
the communication protocol wake-up command2 required for initiating
communication with the RFID. The envelope waveform is then sent to
the modulation generator and is modulated according to the ISO/IEC
14443 protocol Type A or B, depending on the device being used. The
modulated signal is then sent over the transmission antenna. Finally,
the wake-up signal and the RFID response (identification signal) are
received at the acquisition antenna and digitized with the oscilloscope.
The separation of the envelope generation and modulation allows to in-
dependently vary baseband and RF characteristics in our experiments.

In order to collect identification signals, we make use of an antenna
arrangement (Figure 5.2 (b) where the acquisition antenna is positioned
between the transmission antenna and the RFID. A wooden platform
holds the transmission and acquisition antennas in a fixed position to

2ISO/IEC 14443 for RFID communication defines two different communication
protocols, Type A and B, which use different wake-up commands.
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(a) (b)

Figure 5.2: (a) Transmission and acquisition antennas. (b) An electronic
identity document being placed in the fingerprinting setup.

avoid changes in antenna position. The platform is separated from the
desk by a non-conductive wooden cage. The transmission and acquisi-
tion antennas are both connected to an oscilloscope. We use the reader
signal at the transmission antenna to trigger the acquisition at the os-
cilloscope. We note that device responses can also be observed at the
transmission antenna. Given that our acquisition antenna had higher
gain, we opted for the described setup to obtain better signal quality.

5.2.2 Performed Experiments

Using the proposed setup, we performed the following experiments.

Experiment 1: In this experiment we initiate communication with the
RFID according to its specification. In case of HF RFID, the envelope
generator generates Type A or B envelopes in baseband at the nomi-
nal bit rate of Fb = 106 kbit/s. The modulation generator modulates
the baseband signal at the standard carrier frequency Fc = 13.56 MHz
using 100% ASK for Type A and 10% ASK for Type B3. In UHF
RFID, the envelope generator outputs a select command with phase-
reversal amplitude shift keying (PR-ASK) baseband modulation ac-
cording to [38]. The modulation generator up-converts the baseband
signal to one of the standard carrier frequencies Fc = 866.7 MHz. For
both technologies, the experiment consists of the following steps. A

3For 100% ASK modulation, we used pulse modulation as the built-in amplitude
modulation (AM) in our generators could not reach the required precision.
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Figure 5.3: Examples of RFID reader request and response. (a) HF RFID
communication according to ISO/IEC 14443 Type A (Fc = 13.56 MHz). (b)
UHF RFID communication according to EPCglobal UHF Class 1 Gen. 2
(Fc = 868 MHz).

period of unmodulated carrier is transmitted to power the device and
the oscilloscope begins recording the data at this instant. The carrier
is then modulated according to the wake-up command specification.
When the commands are no longer transmitted, an unmodulated pe-
riod of carrier is maintained to get the device response. The carrier is
turned off between each observation to ensure that the device reboots
each time. Figure 5.3 shows examples of HF and UHF RFID responses
at RF. This experiment allows to test if devices can be distinguished
when they respond to standard reader requests.

Experiment 2: In this experiment, we challenge the RFID device
with the same signals as the previous experiment, but using out-of-
specification frequencies. For HF RFID, we varied the carrier frequency
Fc from 12.96 MHz to 14.36 MHz with a step of 100 KHz. In case of
UHF RFID, we specified different backscatter link frequency (BLF)
through the TRcal parameter considering TRcal = 15, 17, 33, 83, 225,
250. We expect the variation in the RFID response to be higher when
the device is performing out-of-specification communication. The rea-
son behind this reasoning is that manufacturers mainly focus on opti-
mizing the standard frequency ranges.
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Figure 5.4: HF RFID responses to out-of-specification signals. (a) Response
to a 10-cycle burst signal of non-modulated 5 MHz carrier. (b) Response to
a frequency linear sweep of carrier from 100 Hz to 15 MHz, 10 ms

Experiment 3: This set of experiments is only performed on HF
RFID as it is specifically designed for close proximity. We send out-
of-specification burst and frequency sweep signals and recorded the de-
vice response. The burst signal consists of 10 cycles non-modulated
5 MHz carrier (maximum allowed burst frequency). The frequency
sweep signal consists of non-modulated carrier linear sweep from 100 Hz
to 15 MHz. The duration of the sweep is fixed to the maximum allowed
by our generator, 10 ms. Both signals were sent with the maximum al-
lowed peak-to-peak amplitude of 10 V and power of 1 W. Figure 5.4
shows recorded device responses to the described burst and frequency
sweep reader requests. One should note the different shape artifacts.

Using the out-of-specification signals allows to test the devices under
extraordinary conditions. We expect to see variations between devices
since each device antenna and charge pump are possibly unique. During
power-up they may present a unique modification of the activating field.
Testing many different frequencies provides details about the RF circuit
resonance in each device.

5.2.3 Collected Data

Using the proposed hardware setup, we performed the above described
experiments and collected device responses (identification signals) from
all available sets of devices. For the privacy of our research subjects, we
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Table 5.1: Population of electronic passports

# Passports Label Country Year Place of Issue
2 ID1, ID2 C1 2006 P1
1 ID3 C1 2006 P2
1 ID4 C1 2006 P3
1 ID5 C1 2007 P4
1 ID6 C2 2008 P5
1 ID7 C3 2008 P6
1 ID8 C1 2008 P1

Table 5.2: Collected data (* identification signals per device per run)

Dataset Model # Dev. Experiment # Runs Total*
1 E-passport 8 1,2,3 2 50
2 JCOP card 50 1,2,3 2 50
3 ALN9540 10 1,2 10 100
4 ALN9540 50 2 1 100

labeled the passports from ID1 to ID8. To further protect their privacy,
we replaced the country and place of issuance with pseudonyms C1 to
C3 and P1 to P6 respectively (Table 5.1).

Our data collection procedure for a single experiment run was as
follows: We positioned the target RFID device on the experimental
platform with all other devices being at an out-of-range distance from
the activating field. We then placed a heavy non-conductive weight
on top of the device in order to fix it firmly and horizontally on the
platform. For each RFID device, we performed all experiments at fixed
acquisition timing offsets and a sampling rate of 4 GS/s. We saved
the recorded data on a disk for later analysis. For each device we
performed at least two runs, completely removing and replacing the
RFID on the experimental platform between runs. For UHF RFID,
we also performed independent runs that varied the location of the tag
with respect to the reader. For each experiment, we collected between
50 and 100 responses per device per run. Table 5.2 summarizes the
collected datasets.
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Figure 5.5: Timing and modulation feature extraction. (a) Time interval
error (TIE) in an example UHF RFID response. (b) Modulation feature in
an example HF RFID response.

5.3 Feature Extraction and Matching

The goal of the feature extraction is to obtain device fingerprints which
most effectively support the two initial objectives, namely classifica-
tion and identification. In this section, we detail the extraction and
matching procedures of timing, modulation and spectral features.

5.3.1 Timing Features

In RFID communication protocols, the reader typically initiates the
communication by sending commands to the RFID device (tag). The
device then responds to the reader with the requested information (e.g.,
identification number). Although similar on the logical layer, these pro-
tocols differ on the physical layer where they use different modulation
schemes and/or include a number of stages.

The RFID standards specify the time within which the device needs
to respond to commands issued by the reader as well at the duration
of the response. These characteristics depend on the standard and
specified time and frequency tolerances. There are different ways to
measure these characteristics including looking at the number of cycles
and cycle duration or data rate frequency. Given that we have acquired
device responses with a high sampling rate, we had a precise time do-
main information. Therefore, we measured how far each active edge of
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the clock varies from its ideal position in time. This deviation is often
referred to as the time interval error (TIE). Figure 5.5 shows the cycles
of an RFID response and TIE. Given that TIE increases linearly, we
define its slope ∂TIE as our timing feature; ∂TIE is proportional to the
data rate frequency.

In order to compute ∂TIE , we have to accurately find the points
of start and end of each clock cycle. We use a two-step threshold-
based detection algorithm. In the first step, a rough-point detection
of the start and end time points of each clock cycle is computed for
device response. This step allows to quickly determine approximate
points amenable to more precise point detection. In the second step,
we look at the signal around the rough detected points and use an
slope detection algorithm to accurately detect the start and end points
of each clock cycle.

After computing the described points, we apply a standard linear
least square fitting algorithm (LSF) to determine ∂TIE . More precisely,
we fit a line y = a · x + b to the set of cycle points {(xi, yi) : i ∈
{1, ..., C}}, by minimizing the least square error. Here C is the number
of clock cycles used to fit the line, xi is the index of the clock cycle, and
yi is the TIE at clock cycle i. The ∂TIE is the fitted line coefficient a.

For each cycle i, we compute TIEi with respect to the 10% of the
cycle step height, i.e., at 0.1 · (Ai − Bi) + Bi, where Bi and Ai are
respectively the average low-state amplitude and the average high-state
amplitude of the response for cycle i (Figure 5.5).

It should be noted that the notions of TIE and ∂TIE are close to
the notion of clock offset and clock skew as in [6, 39]. The difference
resides in the communication layer used for measurement. We measure
TIE from the physical-layer signal, while in related work, the clock off-
set/skew are derived from timestamps available from upper-layer proto-
cols (e.g., TCP). Such timestamp information is not available in RFID
communication and therefore cannot be used.

5.3.2 Modulation Features

RFID communication defines a number of different data modulation
mechanisms (e.g., on off keying, amplitude shift keying). A choice of
features can therefore be the shape of the RFID modulated response
at a given carrier frequency Fc. Figure 5.5 (b) shows the shape of the
On-Off keying modulation from one of our smart cards. Below is the
procedure to obtain the shape.
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Let’s denote the RFID response as f(t, l), where f(t, l) is the am-
plitude of the signal l at time t. One way to obtain the signal shape
(envelope) is to use Hilbert transformation [40].

In Step (i), we apply Hilbert transform on f(t, l) to obtain H(t, l):

H(t, l) = Hil(f(t, l)) (5.1)

where Hil is a function implementing the Hilbert transform [41].
In Step (ii), the starting point of the modulation in H(t, l) is de-

termined using slope detection algorithm. The end point is fixed to a
predefined value (see Section 5.4) and then the modulation fingerprint
is extracted.

Feature matching between a reference and a test fingerprints is per-
formed using standardized Euclidean distance, where each coordinate
in the sum of squares is inversely weighted by the variance of that
coordinate [42].

5.3.3 Spectral Features

In this section, we describe the extraction and matching of spectral
features from HF RFID device responses (identification signals) to a
burst and a frequency sweep (Section 5.2.2).

Both frequency sweep and burst device responses were high dimen-
sional: each sweep response contained 960000 samples (dimensions) and
each burst – 40000. Our data contained many noisy dimensions and we
could not determine which frequencies were effective for discrimination.
We therefore used a statistical approach based on Principal Component
Analysis (PCA) for high-dimensional data [26]. Dimensions that did
not contribute to the total covariance were discarded. Given that the
number of dimensions was very high, orders of magnitude higher than
the number of data samples we could process, standard PCA could not
be applied. In the following, we describe the spectral feature extraction
and matching.

Extraction and Matching

For a given RFID device, spectral PCA features are extracted from N
captured samples using a linear transformation derived from PCA for
high-dimensional data. We denote a signal by f(t, l), where f(t, l) is
the amplitude of the signal l at time t. The features are extracted in
the following three steps:
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In Step (i), we apply a one-dimensional Fourier transformation on f(t, l)
to obtain F (ω, l):

F (ω, l) =
1√
M

M−1∑
m=0

f(t, l) exp(−2πi
tω

M
), (5.2)

where M is the length of signal considered and 0 ≤ t ≤ M − 1 is time.
We then remove the DC component in F (ω, l) and the redundant part
of the spectrum; we denote the remaining part of the spectrum by �sl.
In Step (ii), a projected vector �gl, also called a spectral feature, is
extracted from the Fourier spectrum using a PCA matrix WPCA:

�gl = W t
PCA�sl (5.3)

The feature extraction from N captured samples for a given RFID is
then given by G = W t

PCAS where G is an array of �gl and S is a matrix
S = [ �s0 .. �sl .. �sN ].
Finally, in Step (iii), the feature template (fingerprint) h used for
matching is computed:

h = {Ĝ; ΣG} (5.4)

where Ĝ denotes the mean vector of G and ΣG denotes the covariance
matrix of G. The number of captured samples N used to build the
feature template and the number of projected vectors in WPCA (i.e.,
the subspace dimension) are experimentally determined.

Mahalanobis distance is used to find the similarities between finger-
prints4. The result of matching a reference hR and a test hT feature
templates is a matching score, calculated as follows.

scr(hR, hT ) = min(
√
(ĜT − ĜR)tΣ−1

GR(ĜT − ĜR),√
(ĜT − ĜR)tΣ−1

GT (ĜT − ĜR)) (5.5)

Values of the matching score closer to 0 indicate a better match be-
tween the feature templates. The proposed matching uses the mean
and covariance of both test and reference templates. It also ensures the
symmetric property, that is scr(hR, hT ) = scr(hT , hR).

4We discovered that the feature templates are distributed in ellipsoidal manner
and therefore use Mahalanobis distance that weights each projected feature accord-
ing to the obtained eigenvalues.
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Training PCA transformations

In order to compute the eigenvalues and corresponding eigenvectors
of the high-dimensional data (the number of device responses � the
number of dimensions), we used the following lemma:

Lemma: For any K ×D matrix W , mapping x → Wx is a one-to-
one mapping that maps eigenvectors of WTW onto those of WWT .

W denotes a matrix containing K samples of dimensionality D.
Using this lemma, we can first evaluate the covariance matrix in a
lower space, find its eigenvectors and eigenvalues and then compute the
high-dimensional eigenvectors in the original data space by normalized
projection [26]. Based on this description, we compute the PCA matrix
WPCA=[ �u1 �u2 . . . �ui] by solving the eigenvector equation:

(
1

K
XTX)(XT �vi) = λi(X

T �vi) (5.6)

where X is the training data matrix K × D and �vi are the eigen-
vectors of XXT . We then compute the eigenvectors of our matrix �ui

by normalizing:

�ui =
1√
Kλi

(XT �vi) (5.7)

It should be noted that other techniques for dimensionality reduc-
tion could be employed (e.g., linear discriminant analysis, probabilistic
PCA). Given the satisfactory results with this scheme, we did not con-
sider other methods.

5.4 Performance Evaluation

We present our experimental evaluation starting with the spectral fea-
tures which demonstrated capabilities of uniquely identifying RFID de-
vices. We then discuss the capabilities of the timing and modulation
features.

5.4.1 Spectral Features

For the evaluation of our spectral features, we considered the sets of HF
RFID smart cards and e-passports (Dataset 1 and 2). We estimated
the benchmark accuracy over a single run collected data and quantified
the feature stability by considering all independent runs together.
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Figure 5.6: Spectral features identification accuracy for N identification
signals used to built the fingerprint and feature dimensionality D (Dataset
2). (a) Burst spectral features (b) Sweep spectral features

We validated our results using cross-validation [26]. Given the col-
lected 50 identification signals per device per run, we used 5-10 signals
for training and the remaining 40-45 for testing. The exact number
depended on the number of identification signals N used to build the
fingerprint. The training and testing data were thus separated.

Feature accuracy

Burst feature accuracy. The results are presented in Figure 5.6 (a) for
different number of identification signals N and subspace dimensional-
ity. The dimension of the features before the projection is 19998. Our
system reached an EER of 0.0537 (5.37%) for N = 15. This means that
the considered RFID devices were correctly identified with an accuracy
of approximately 95% (GAR at the EER operating point).

Sweep feature accuracy. For computational reasons, we did not consider
the entire sweep identification signal. Instead, we extracted the spectral
features from the part of the signal between 6 ms and 9 ms. This part
contained the biggest shape changes as shown in Figure 5.4(b). This
decision reduced allowed significantly faster feature extraction.

Figure 5.6 (b) shows the results for N = 15 and different subspace
dimensionality. The dimension of the original features before projection
is 49998. We obtained an EER of approximately 0.0469 (4.69%), when
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Figure 5.7: Feature stability using two independent runs (Dataset 2). (a)
Burst spectral features (b) Sweep spectral features.

using the first 5 eigenvectors to project and store the feature template.
The obtained accuracy is therefore similar to the one obtained with the
burst features, i.e., our system correctly identifies the individual devices
with an accuracy of approximately 95% (GAR at the EER point).

Using the collected data from the electronic passports (Dataset 1),
we obtained an EER = 0 with both the burst and sweep spectral fea-
tures. While this result validates the efficacy of the spectral features, we
note that the passport data contains different classes of devices which
facilitates the identification task.

Table 5.3 summarizes the underlying data, namely the number of
responses N , total genuine and imposter matchings performed for EER
computation5, Accept/Reject threshold and EER.

Feature stability

In the previous sections we have analyzed the identification accuracy
using burst and sweep spectral features within a single experiment run.
This allows us to have a benchmark for estimating the stability of the

5The number of genuine and imposter matchings depends on the number of avail-
able fingerprints per device. For N=10, we are able to built 4 different fingerprints
with the testing data within a run. This results in 6 different matchings of finger-
prints from the same device (i.e., genuine matchings) and 392 different matchings
of fingerprints from different devices (i.e., imposter matchings). For 50 devices, this
makes 300 genuine and 19600 imposter matchings.
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Table 5.3: Summary of accuracy for spectral features (Dataset 2, D = 5,
4-fold cross validation).

Type Run N Test matchings T EER (%)
Genuine Imposter

Burst 1 15 150 11025 1.88 5.37 (4.38;6.36)
1 10 300 19600 2.91 7.79 (5.29;10.28)

1x2 15 200 9800 2.64 6.57 (6.25;6.89)
Sweep 1 15 150 11025 1.68 4.69 (3.65;5.74)

1x2 15 200 9800 1.93 5.46 (5.08;5.84)

features. In particular, we performed the following stability analysis:

1. Using the linear transformations WPCA obtained in the first run,
we selected 4 feature templates (2 from each run) and computed
again the EER by considering only the cross matching scores of
fingerprints from different runs6. The process was repeated 3
times with different feature templates from the two runs to vali-
date the feature stability.

2. We trained the system over the first 20 devices and then used
the obtained linear transformation to estimate the accuracy over
the remaining 30 devices. This analysis tests the stability of
the obtained linear transformations to discriminate independent
transponder populations7.

Table 5.4: Accuracy of spectral features for independent training and test-
ing sets (Dataset 2, D = 5, 3-fold cross validation)

Type Run N Test matchings T EER (%)
Genuine Imposter

Burst 1x2 15 120 3480 2.78 7.33 (6.01;8.65)
Sweep 1x2 15 120 3480 2.03 5.75 (5.45;6.05)

Figure 5.7 compares the EER accuracy obtained with the first run
(Run 1) and the accuracy obtained by mixing fingerprints of both runs

6This procedure is required in order to remove any possible bias from cross
matching scores of fingerprints from the same run. We point out that this results
in a reduced number of genuine and imposter matchings for the EER computation.

7The motivation behind this division (20 vs. 30) is that it gives sufficient number
of samples for both training and testing.
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(Run 1×2) for a fixedN = 15. Table 5.3 displays the confidence interval
for subspace dimension of 5 eigenvectors. The obtained EERs do not
show a statistically significant difference between the two experiments
for both the burst and sweep features using 4-fold cross validation.

Table 5.4 summarizes the EER accuracy obtained using independent
transponder sets for training and testing using the two runs in Dataset
2. The subspace dimensionality was fixed to D = 5 and the number
of identification signals N = 15. Even if the testing population (30
devices) is smaller, we observe that both features perform similarly to
the benchmark accuracy (Table 5.3).

Combining sweep and burst features

Given that the identification accuracies of both burst and sweep spec-
tral features are similar; in order to fully characterize the identity veri-
fication we computed the ROC curves for the burst and sweep features
as shown in Figure 5.8(b). We notice that while the EERs are similar,
the curves exhibit different accuracies at different FARs. In particular,
for low FAR ≤ 1% the sweep features show lower GAR.

The burst and sweep features discriminate the fingerprints in a dif-
ferent way, and therefore these features can be combined in order to
further increase the accuracy. Such combinations are being researched
in multi-modal biometrics [43] where different ”modalities” (e.g., fin-
gerprint and vein) are combined to increase the identification accuracy
and bring more robustness to the identification process [43].

A number of integration strategies have been proposed based on
decision rules [44], logistic functions to map output scores into a single
overall score [45], etc. Figure 5.8 shows the EERs and ROC curves of
feature combination by using the sum as an integration function. The
overall matching score between a test and a reference template is the
sum of the matching scores obtained separately for the burst and sweep
features. Table 5.5 summarizes the results.

For the benchmark datasets (Run 1), we observe significant im-
provement of the accuracy reaching an EER = 2.43%. The improve-
ment is also significant for all target FARs (e.g., 0.1%, 1%) as shown
in Figure 5.8 (b). We also observe a statistically significant improve-
ment on using fingerprints from both Run 1 and 2. The accuracy is
slightly lower (EER=4.38%). These results motivate further research
on feature modalities and novel integration strategies.
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Figure 5.8: (a) Identification accuracy by combining the sweep and burst
features (b) Receiver operating characteristic (ROC) for burst and sweep
spectral features and their combination (Dataset 2, D = 5 and N = 15). See
Table 5.5 for the underlying data.

Table 5.5: Summary of accuracy when combining burst and sweep features
(Dataset 2, D = 5, 4-fold cross validation).

Type Run N Test matchings T EER (%)
Genuine Imposter

B&S 1 15 150 11025 1.56 2.43 (1.54;3.33)
B&S 1x2 15 200 9800 2.18 4.38 (3.9;4.9)

Other performance factors

Our analysis showed that using the first 5 eigenvectors kept the system
accuracy high. If 5 eigenvectors are used to store the device fingerprint,
the proposed burst and sweep spectral features form compact finger-
prints of RFID devices. More precisely, if each dimension is represented
by a 4-byte floating-point number, the size of the device fingerprint
h = {Ĝ; ΣG} is 20 (5×4) bytes for Ĝ and 100 (5x5x4) bytes for the
square covariance matrix ΣG resulting in a total of 120 bytes.

In terms of acquisition and extraction efficiency, the burst spectral
features are significantly more efficient for digital acquisition and ex-
traction due to their lower dimensionality. More precisely, we measured
an acquisition and extraction time of 2 s per burst vs. 26 s per sweep
on a machine with 2.00 GHz CPU, 2 GB RAM running Linux Ubuntu.
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Figure 5.9: Timing feature for HF and UHF RFID. (a) HF RFID smart
cards and e-passports of the same type exhibit stable, but indistinguishable
time interval errors (TIE). (b) Same type UHF RFID tags present stable and
distinguishable TIE over different configurations.

Even though all components of the feature extraction can be imple-
mented in hardware, processing sweep signals would be significantly
slower to due to higher sampling rates required.

5.4.2 Timing Features

Here we discuss our findings on the timing feature accuracy using HF
and UHF RFID devices (Dataset 1,2,3). Figure 5.9(a) visualizes the
time interval error (TIE) for a set of randomly selected 5 HF RFID
smart cards and 3 e-passports (ISO 14443 Type A). For each device, 4
fingerprints are visualized at the nominal frequency Fc = 13.56 MHz.
The results show that TIE is stable over time, but cannot be used to
distinguish same type HF RFID devices. This is also true for all tested
in- and out-of-specification frequencies. We could only observe timing
differences between Type A and Type B HF RFID. Given that we had
only one model/manufacturer of Type B HF RFID at our disposal, we
cannot conclude that TIE would at least vary between manufacturers.

Figure 5.9(b) illustrates the first derivative of TIE (∂TIE) for a
set of 10 randomly selected UHF RFID tags for TRcal = 15. For
each tag, 220 fingerprints collected using 11 different configurations
are visualized. Our configurations consisted of 8 different locations
up to 6 meters from the acquisition antenna as well as 3 cases where
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Figure 5.10: Empirical distribution of ∂TIE based on measuring 50 UHF
RFID (ALN9540) tags (Dataset 4). A total of 1000 fingerprints (20 per tag)
are used to fill in the histogram bins. The bin width is fixed to two times the
average standard deviation of ∂TIE .

the transmitting power and/or device orientation were varied. ∂TIE

is not only stable, but also different for same manufacturer and type
tags. This is primarily due to the allowed standard tolerances in the
backscatter link frequency (BLF) [38].

In order to quantify the capability of ∂TIE to distinguish UHF RFID
tags, we estimated the entropy from the empirical distribution of ∂TIE

obtained from the entire set of 50 devices. The obtained result sug-
gested that we could learn 5.84 bits of information about a given tag.
The entropy measure depends only on the ∂TIE variation which directly
relates to the BLF tolerances. According to the empirical distribution
in Figure 5.10, we observed a BLF tolerance of ±14.01% around a mean
frequency of approx. 1400 KHz. If we consider the maximum allowed
BLF tolerance in the standard [38], i.e., ±22% for BLF = 320 KHz,
the maximum possible entropy would be 9.86 bits8. However, we could
not observe such large BLF variations in our tested population of UHF
RFID devices. We also observed similar distinguishable behavior on two
smaller sets of 10 devices of two other manufacturers (Analog Devices
(AD) and UPM). We acknowledge that more investigation is required
to find the frequencies that allow highest entropy. These frequencies
may also depend on the manufacturer.

8The maximum possible entropy is achieved when the probability distribution of
∂TIE is assumed to be uniform [46].
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Figure 5.11: Modulation of responses of 4 different classes (C1),(C1-
ID2),(C2),(JCOP). (a) First run (b) Second run. The modulation is stable
across acquisition runs (Dataset 1,2).

5.4.3 Modulation Features

For the modulation feature evaluation, we considered e-passports and
smart cards (Dataset 1 and 2). The passports ID1-4 and ID7-8 as well
as the smart cards used Type A, whereas ID5-6 used Type B ISO 14443
communication. It is interesting to notice that within the same country
(C1) we had documents with different types: ID1-4 used Type A and
ID5 - Type B.

Our modulation features showed discriminant artifacts that differ
from one device to another on out-of- specification carrier frequencies.
Figure 5.11 shows the modulation shapes of 4 different classes of Type A
protocol devices. These were recorded at an out-of-specification carrier
frequency Fc = 13.16 MHz. Visual inspection shows that the modula-
tion shapes were stable and different for the considered classes.

In order to quantify these observations more precisely, we considered
classification with 3 classes (2 countries + JCOP cards) with all finger-
prints from two different runs. The classification process was repeated
8 times with 8 different reference fingerprints per class for validation.
The results showed an average classification error rate of 0%. In addi-
tion, after detailed inspection of the modulation features we discovered
that ID2 from C1 differed significantly from the representatives of that
class. We therefore formed a new classification scenario with 4 classes
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and obtained an error rate of 0%. We should note that ID1 and ID2
were issued by the same country, in the same year and place of is-
sue. However, the embedded RFID differed a lot. The modulation of
ID1, ID3 and ID4 from C1 could not be further distinguished using the
combination of modulation features and Euclidean matching.

Similar to Type A, the 2 Type B passports from two different coun-
tries (C1,C3) available in our population showed complete separability.

In summary, the modulation shapes at an out-of-specification car-
rier frequency present potential to classify different models (e.g., coun-
tries). They are quickly extractable and stable across different runs.
We acknowledge that our data set is insufficient due to the difficulty of
obtaining e-passports. We believe however that our investigation could
stimulate future work with a larger set of e-passports.

5.5 Summary and Discussion

We investigated timing, modulation and spectral features for physical-
layer identification of RFID. Our results demonstrate that RFID de-
vices exhibit physical-layer characteristics that enable their identifica-
tion in a controlled setup.

Spectral features extracted from the device responses to burst and
linear frequency sweep signals enable device identification with an er-
ror rate (EER) as low as 5%. These features are also stable and can
be combined in order to further improve the accuracy. The obtained
results motivate the use of HF RFID physical-layer fingerprints in doc-
ument cloning detection solutions. For related results on UHF RFID
devices, we invite the reader to consult [34].

Timing features such as the time interval error (TIE) and mod-
ulation could be effective in distinguishing certain types of devices.
In particular, TIE can be used to identify up to 26 UHF RFID tags
independently of the tag location. While more investigation is re-
quired to consider practical issues (e.g., lower cost hardware) and assess
more scenarios (e.g., mobility), given the allowed standard tolerances,
UHF RFID devices leak distinguishable information that enables their
(un)authorized tracking. This was not possible for the tested HF RFID
devices due to higher manufacturing precision of their internal clocks.
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Chapter 6

Towards Practical
Identification of HF
RFID Devices

In the previous chapter, we have demonstrated the feasibility of dis-
tinguishing RFID devices based on physical-layer fingerprints. In this
chapter, we go further into practical issues of physical-layer HF RFID
identification such as accuracy, stability and transferability.

We propose an improved signal acquisition and enhanced feature
extraction and matching methods. This system enables significantly
more accurate identification with an EER as low as 0.005 (0.5%). It
also removes the requirement for statistical analysis. The extracted fin-
gerprints are stable over multiple independent acquisitions during an
extended period of time. We also propose a solution based on channel
equalization that allows fingerprint verification across acquisition se-
tups. This scenario is of practical importance when device fingerprints
are acquired at one setup and verified on another one.

Our improvements strengthen the application of physical-layer HF
RFID identification in the detection of cloned and/or counterfeit iden-
tity documents. In this scenario, presented documents are measured
in a controlled setup, their fingerprint is then extracted and verified
with the enrolled fingerprints of legitimate documents. We discuss this
application in more details in Chapter 8.



Chapter 6. Towards Practical Identification of HF RFID Devices

6.1 Problem and System Overview

In this work, we focus on building accurate and stable physical-layer fin-
gerprints of short range HF RFID-enabled devices (same manufacturer
and type) for the purpose device identity verification (Chapter 3).

Our system is comprised of a fingerprinting hardware, acquisition
(antenna) setup and feature (fingerprint) extraction and matching pro-
cedures. The block diagram of its components is illustrated in Fig-
ure 6.1. We use two acquisition setups to test the accuracy and stability.
These are comprised of two independent sets of same manufacturer and
type antennas. Due to cost, we could not replicate the fingerprinting
hardware which would have provided two entirely independent systems.
However, given the precision of our hardware in rendering the signals,
its influence on the system performance should be negligible.

The feature extraction and matching procedures are implemented in
software and performed offline. We consider extracting physical-layer
fingerprints from device responses to high-energy bursts of sinusoidal
carrier (Figure 6.3). Our decision stems from the fact that these finger-
prints are suitable for identification, fast to acquire and computation-
ally efficient to use in feature extraction and matching.

For the performance analysis, we considered the same set of 50 HF
RFID smart cards (ISO 14443, 13.56 MHz) as in Chapter 5. Due to
limited resources, we could not evaluate on larger sets. Nevertheless,
the considered data population allows fair comparison with prior results
and should be indicative for the accuracy and stability of the proposed
techniques.

6.2 Signal Acquisition

In this section, we first describe our hardware and antenna setup. We
then detail the different types of experiments we have performed and
present the collected datasets from our population of RFID devices.

6.2.1 Hardware Setup

Figure 6.1 shows the block diagram of the fingerprinting hardware and
acquisition setup in our system. The fingerprinting hardware consists
of an arbitrary waveform generator [47] and oscilloscope [48]. A time
and frequency reference module provides a precise and stable 10 MHz
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Figure 6.1: Hardware setup. The setup consists of an arbitrary wave-
form generator, oscilloscope and acquisition (antenna) setup. The arbitrary
waveform generator and oscilloscope are connected to a common time and
frequency reference module.

reference clock to both waveform generator and oscilloscope. This guar-
antees optimal precision and stability in rendering and acquiring the
signals. The fingerprinting hardware is connected to the acquisition
(antenna) setup (Figure 6.2). The latter consists of three PVC plates
to hold the two antennas and device to be measured. The acquisition
antenna1 is positioned between the transmission pad antenna2 and the
device (smart card). The proposed setup guarantees a robust and pre-
cise structure in order to avoid antenna and card position fluctuations.
The design also optimizes the signal-to-noise ratio (SNR) of the cap-

1Texas Instruments ANT 100x100MM 50 Ω 13.56 MHz
2Texas Instruments RFID ANT PAD 320x240MM 13.56 MHz
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(a) Platform plates (b) Assembled setup

Figure 6.2: Antenna setup. The setup consists of a platform with three
plates that hold two antennas and the device to be measured. The bottom
plate holds a pad-style transmission antenna, the middle plate holds the
acquisition antenna and the top plate provides a slot for placing devices
(smart cards).

tured signals3. Appropriate low-noise cabling is also used to reduce the
noise in the entire setup.

The hardware setup is used as follows. The purpose-build burst
signal (challenge) is sent by the arbitrary waveform generator to the
transmission antenna and the device response as observed by the ac-
quisition antenna is recorded at the oscilloscope for later processing.
The challenge signal is also sent in parallel to the second channel of
the oscilloscope in order to provide an exact trigger for digitizing the
device response. This design guarantees precise time alignment of all
recorded responses. The entire process is controlled by a computer.

6.2.2 Performed Experiments and Collected Data

Our physical-layer analysis focused on collecting device responses to
high-energy bursts of sinusoidal carrier (see Section 6.1 for motivation).
We power the RFID smart card by a burst signal of RF energy. Our
burst consists of 10 cycles non-modulated carrier at a center frequency
Fc, output power of 1 W (30 dBm) and peak-to-peak amplitude of
Vpp = 10 V. The center frequency is a parameter that we determine
experimentally. Figure 6.3(a) shows the recorded response to an RF

3We note that the device response could also be observed at the transmission
antenna. Our two antenna design is more suitable for identification as it increases
the received SNR and provides separate transmission and reception channels.
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Figure 6.3: Reader challenge and device response. (a) A non-modulated
carrier sinusoidal signal burst of 10 cycles is sent to the smart card and its
response is acquired simultaneously. (b) The spectrum of the response is
mostly contained between 11 and 17 MHz. Additional artifacts could also be
observed at higher frequencies.

burst signal challenge at Fc = 12 MHz with a signal-to-noise ratio of
21 dB. Since the device internal components (e.g., charging capacitor)
and antenna characteristics are unique, we observe that during power-
up each device exhibits a unique modification of the activating field.

Using our hardware setup, we collected device responses from 50
HF RFID smart cards (same model and manufacturer) at a rate of
2 responses/second. This rate was selected to allow enough time to
record the data on a stable storage. Each received device response was
sampled at 4 GS/s (maximum allowed with our oscilloscope) during a
period of 10 μs. Our data collection procedure for a single collection
”run” was as follows: We positioned the target RFID device on the
antenna setup ensuring that all other devices remain out-of-range of
the activating field. We then collected 50 device responses at a fixed
acquisition timing offset and saved them on a disk for later analysis.
For any subsequent collection run, we removed and replaced the RFID
device on the acquisition setup. The hardware was switched off between
runs collected on different days.

Table 6.1 summarizes the collected datasets and measurement pa-
rameters. Dataset 1 contains device responses from 10 different smart
cards. For each card, we collected 50 responses per burst frequency of
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Table 6.1: Collected data from 50 HF RFID smart cards.

Dataset Setup # Dev. Burst Freq. # runs # signals

1 I 10 9-15 MHz 1 3500
2 I 50 12 MHz 2 5000
3 II 50 12 MHz 2 5000
4 I 10 12 MHz 7 3500

9 to 15 MHz with a step of 1 MHz. This dataset is used for parameter
selection (e.g., frequency). Dataset 2 and 3 contain device responses
from the entire set of 50 smart cards. For each card, we collected 100
responses at a burst frequency of 12 MHz in two separate runs; that is
the card was removed and repositioned on the setup across each run.
The experiment was performed on the two acquisition setups, referred
to as setup I and II in the rest of the paper. This dataset is used to
evaluate the accuracy and stability of our proposed techniques within a
single setup (Section 6.4.1) and across setups (Section 6.4.3). Dataset
4 is composed of device responses from 10 smart cards acquired in a
period of approximately 60 days (7 different runs). The dataset is used
to evaluate the stability of our features to multiple independent acqui-
sitions (Section 6.4.2).

6.3 Feature Extraction and Selection

In this section, we describe the extraction, selection and matching of
features (fingerprints) from the collected data (Section 6.2.2).

6.3.1 Basic Feature Extraction

For a given RFID card, we first proceed in extracting our basic feature
from N acquired responses (samples). We denote a sample by f(t, l),
where f(t, l) is the normalized amplitude of the signal l at time t.
We apply one-dimensional Fourier transformation on f(t, l) to obtain
F (ω, l):

F (ω, l) =
1√
M

M−1∑
m=0

f(t, l) exp(−2πi
tω

M
), (6.1)
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where M is the length of signal considered and 0 ≤ t ≤ M − 1 is time.
We then remove from F (ω, l) the DC component and redundant part
of the spectrum; we denote the remaining part of the spectrum by �sl.

The extracted basic features �sl are in a high dimensional subspace
(20000 dimensions). This requires effective dimensionality reduction to
remove noisy dimensions (e.g., spectra from other transmissions) and
dimensions that do not contribute to discriminating the devices. We
describe a new way of effective dimensionality reduction based on filter-
ing. We also refine the dimensionality reduction by statistical analysis
in previous work to allow using the new features.

6.3.2 Feature Selection by Filtering

A projected vector �bl, also called filtered features, is extracted from the
basic features �sl using a bandpass filter transformation WBPF :

�bl = W t
BPF �sl. (6.2)

The feature extraction from N captured responses for a given RFID
device is then given by G = W t

FS where G is an array of �bl and S is a
matrix S = [ �s0 .. �sl .. �sN ].

In our implementation, we used a Chebyshev I bandpass filter design
with filter order of 100. The passband frequencies (Fp1 and Fp2) are
experimentally determined. Using this technique the dimensionality of
filtered features could be drastically reduced to only tens of dimensions
depending on Fp1 and Fp2.

6.3.3 Feature Selection by Statistical Analysis

In this section, we detail the feature selection by statistical analysis.
Our goal is similar to the above, but instead of using filtering, we use
principal component analysis (PCA) for effective dimensionality reduc-
tion4. The main idea behind PCA is find a compact feature subspace
that contains most of the total covariance in the data. This statistical
step can either be applied directly to the basic features or to the filtered
features as follows.

A projected vector �pl, also called statistical features, is extracted
from the basic �sl or filtered �bl features using a previously obtained
PCA transformation WPCA:

4We note that other alternative dimensionality reduction techniques could also
be effective (e.g., Discriminant Analysis).
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�pl =

{
W t

PCA�sl if initial feature is �sl
W t

PCA
�bl if initial feature is �gl

(6.3)

The feature extraction from N captured responses for a given RFID
device is then given by G = [ �p0 .. �pl .. �pN ]. For computation of the
eigenvalues and corresponding eigenvectors of the PCA transformation
we used the lemma and procedures described in Section 5.3.3.

6.3.4 Feature Matching

Finally, the feature template (fingerprint) h consists of two components
computed from G:

h = {Ĝ; ΣG}, (6.4)

where Ĝ denotes the mean vector of G and ΣG denotes the covariance
matrix of G. It is important to note that we computed the covari-
ance ΣG by shrinkage estimation [49] because standard covariance al-
gorithms proved to be unstable when the number of dimensions was
higher. An additional advantage of the shrinkage method is that it also
yields a positive definite and well conditioned covariance. We used the
implementation provided in the R tool [50].

Mahalanobis distance is used to find the similarity between a refer-
ence hR and test hT fingerprints.

scr(hR, hT ) = min(
√
(ĜT − ĜR)tΣ−1

GR(ĜT − ĜR),√
(ĜT − ĜR)tΣ−1

GT (ĜT − ĜR)) (6.5)

Values of the matching score closer to 0 indicate a better match
between the feature templates. The proposed matching uses the mean
and covariance of both test and reference templates. Thus, it also
ensures the symmetric property scr(hR, hT ) = scr(hT , hR).

6.3.5 Channel Equalization

Here, we present a simple channel equalization technique that allows to
preserve fingerprint quality in cases where different sets of antennas cre-
ate significant channel differences and distort the extracted fingerprints.
We note that channel equalization is a common procedure in wireless
communications that aim at reducing amplitude, frequency and phase
distortion introduced by the channel [51]. The procedure is as follows.
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Before any set of measurements on a given antenna setup, we first
collect a number of device responses (50) and compute the channel fre-
quency response. In order to equalize the channels between two setups,
we compute an equalization vector �w = [w1wf · · ·wF ] that contains
weights for each frequency f ∈ [Fp1, Fp2] such that the sum of mean
square errors between the normalized amplitudes of two frequency re-
sponses �x, �y,

∑F
f=0(yf −wfxf )

2 is minimal; F is the dimensionality of
the frequency response. Before matching the test fingerprints extracted
from one setup to reference fingerprints extracted from another, we ap-
ply the compensation w for each test fingerprint. Therefore, the test
fingerprint becomes {ŵG; ΣwG}.

We note that in our channel estimation, we measured each setup
without and with an RFID smart card on it. We discovered that the
plastic material of the smart cards slightly shifts the channel frequency
response with the same constant factor for our entire set of devices. We
therefore need to adjust the channel equalization weights measured for
each setup without card with that constant factor.

6.4 Performance Evaluation

We evaluate the accuracy of our system based on the metrics and
methodology from Chapter 3. We perform multiple rounds of cross-
validation using different partitions, and the presented estimates are
averaged over these rounds. As we have collected two or more runs in
each dataset, we used one run to train the system and extract refer-
ence fingerprints from each device. Within that run, we divided the
responses per device in five disjoint sets of 10 responses. In each cross-
validation round, we used 10 responses per device for training and the
remaining up to 40 to build reference fingerprints. Depending on the
number of responses N to build a fingerprint, we had 2 to 4 different
reference fingerprints per device (e.g., 4 for N = 10, 2 for N = 15,20).
The remaining run(s) in our datasets were used to build independent
test fingerprints. All test fingerprints were then matched to all reference
fingerprints and the metrics computed as discussed above.

6.4.1 Accuracy Analysis and Comparison

In this section, we present the results of our analysis on the accuracy of
the our proposed system on two separate acquisition setups. We first
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Figure 6.4: Accuracy in EER for different frequencies of the burst signal
challenge (Dataset 1). The number of responses used to build the fingerprint
was fixed to N = 10. We observe that the discriminant capabilities of our
features depend on the chosen frequency. For further analysis, we selected
burst frequency of 12 MHz.

experimentally determine the burst signal frequency on a smaller set of
devices (Dataset 1). We then use the entire set of devices (Dataset 2
and 3) to evaluate the system parameters and obtain reliable estimates
of the identification accuracy.

One of the critical parameters for our identification system is to de-
termine (experimentally) the appropriate frequency of the burst signal.
Given that our antenna setup was tuned for HF RFID communication
at 13.56 MHz, we could only record device responses to burst frequen-
cies between 9 and 15 MHz. Statistical analysis was directly applied
to the extracted basic features as it was difficult to perform filtering
without knowing where the discriminant features reside. We observed
that burst frequency of 12 MHz yields the lowest EER for our antenna
set configuration (Figure 6.4). We therefore fixed it to this value for
all our subsequent measurements and analysis. We later show that the
second antenna setup behaves in the same way. It should be noted that
the suitable burst frequency is likely to depend on the resonance and
tuning of the chosen antenna set5. Further investigation with specific
antenna measurements is needed in order to quantify the exact causes
of this behavior.

After having determined the burst frequency, we proceeded to an-

5We have also tested another different set of antennas, and the lowest EER was
reached for both 10 and 12 MHz.
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Figure 6.5: Accuracy in EER for different number of responses used to build
the fingerprint (N) and subspace dimensionality (Dataset 2 and 3). The EER
for D = 40 corresponds to the system accuracy after feature selection by
filtering. Lower dimensional subspaces are obtained by an additional PCA.
The results show that feature selection by filtering already achieves high
accuracy. Statistical analysis could additionally be used to effectively reduce
the feature dimensionality (i.e., fingerprint size).

alyzing the features and estimating the identification accuracy of our
system. In particular, we considered the number of device responses
used to build each fingerprint (N) and the dimensionality (D) of the
feature subspace.

For all collected device responses, we observed that the features
that have contributed the most to discriminating device fingerprints
were contained between 11 and 15 MHz. This is also corresponding to
the most significant part of the device response spectrum. Therefore,
we applied feature selection by filtering (Section 6.3.2) with parame-
ters Fp1 = 11 MHz and Fp2 = 15 MHz. This procedure reduced the
features (fingerprint) dimensionality to D = 40. In our figures/hfrfid2,
unless specified otherwise, the accuracy at D = 40 represents the fea-
tures (fingerprints) as selected by filtering only. An additional feature
selection by PCA was applied on those features in order to display the
accuracy in lower dimensional feature subspaces (D < 40).

Figure 6.5 shows the obtained EERs varying the number of re-
sponses N and principal components (referred to as subspace dimen-
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sionality6) for our two acquisition setups (Setup I and II). The obtained
results demonstrate that both setups exhibit similar EERs of approx-
imately 0.5%. The EER improves significantly by using higher N and
reaches stable estimates for N ≥ 15. The additional statistical analysis
based on PCA confirms that using the first 5 eigenvectors (D = 5)
to project and store the fingerprint keeps the accuracy the same while
reducing the fingerprint size. More importantly, with our filtered fea-
tures only (D = 40), the accuracy is similar. This shows that there is
no need for additional statistical analysis if the memory requirements
are met. Table 6.2 shows the fingerprint size in bytes depending on how
many dimensions are used. Typically, if each dimension is represented
by a 4-byte floating-point number, the size of the corresponding feature
template h = {Ĝ; ΣG} is D × 4 bytes for Ĝ and D × D × 4 bytes for
the square covariance matrix ΣG where D is the dimensionality.

Table 6.2: Fingerprint size (in bytes) from subspace dimensionality

Subspace dimensionality (D)
5 10 15 20 30 40

Fingerprint size 120 440 960 1680 3720 6560

Feature selection by filtering vs. by direct statistical analysis

We compare the accuracy of our proposed feature selection by filtering
to the feature selection by direct dimensionality reduction from the
original high dimensional data space. Figure 6.6 shows the EERs for
N = 20 using Datasets 2 and 3. We observe that our filtering method is
at least as accurate. In addition, it presents the following advantages:
(i) Statistical training is not required in order to perform identification
(ii) Feature extraction is more efficient as it does not require additional
linear transformations (e.g., Wpca) (iii) The bandpass filter operation
is directly implementable in the analog domain with a filter and the
features can be immediately acquired by a spectrum analyzer.

6.4.2 Stability Analysis

In the previous sections we have analyzed and compared the identifica-
tion accuracy using two runs and two acquisition setups. This allowed

6The number of principal components is directly related to the fingerprint size.
The higher the number of principal components, the bigger the fingerprint size.
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Figure 6.6: Accuracy in EER using feature selection by filtering only and
by direct statistical analysis (PCA), i.e., no prior filtering (Dataset 2 and 3).
The number of responses used to build the fingerprint was fixed to N = 20.
The results for the two setups show a comparable accuracy of both feature
selection approaches.

us to have a benchmark of the system accuracy. Here, we further ex-
plore various factors that could influence the accuracy of our proposed
features within a single acquisition setup. Given the specificity of the
different setup case, we detail it in the next section. Here, we considered
the following scenarios:

Multiple runs: The purpose of this analysis is to evaluate the longer
term stability of our features. We collected multiple acquisitions
from 10 devices during a period of 60 days. The setup was placed
in a air-conditioned room for the entire duration of the experi-
ment. We acquired a total of 7 runs in different days/time within
the measurement period. The fingerprints from each device in
these runs were matched to the reference fingerprints and the
EER is reported. The hardware equipment was switched off after
each run.

SNR: We evaluate the effect of the signal-to-noise ratio (SNR) on the
identification accuracy of our system. For that purpose, we grad-
ually decreased the SNR of all responses in our set of 10 devices.
We then performed fingerprint matching between fingerprints ex-
tracted at a decreased SNR and reported the EER.
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Figure 6.7: Longer term stability and effect of signal-to-noise ratio (SNR).
(a) Accuracy in EER using multiple acquisition runs over a period of 60 days,
N = 20 and D = 40 (Dataset 4). The results demonstrate the stability of
our fingerprints, i.e., EER is stable. (b) Accuracy in EER using fingerprints
with reduced SNR. Significant influence on the accuracy is only observed for
SNR ≤ 18 dB and N ≤ 10.

Figure 6.7(a) shows the accuracy for multiple runs over a period of
60 days. Our system accurately reproduces the test fingerprints of the
considered RFID devices, and the fingerprints remained stable during
the period of measurement. We also observed an interesting behavior
related to the signal acquisition. Even if our time base had a frequency
stability of 10−7 Hz, the clock frequency seemed to stabilize at a slightly
different value (within 0.1 Hz) for some runs. Therefore, the fingerprints
acquired in these runs exhibited minor constant offsets that we had
to compensate using our channel equalization procedure. While these
differences were small, for high accuracy applications, they should be
compensated. An alternative approach would be to use a more precise
time base. There exists time bases that provide a frequency stability
of approximately 10−12 Hz with a very low phase noise [52].

The original collected data had an SNR of approximately 21 dB.
At that SNR for the 10 devices, we reached an EER of 0% for both
acquisition setups. We only started observing a significant decrease of
the accuracy when N ≤ 10 and SNR ≤ 18 dB. Therefore, Figure 6.7(b)
shows the accuracy at a reduced SNR for N = 10. Given that the
SNR is directly related to the output power of our arbitrary waveform
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Figure 6.8: Receiver operating characteristic (ROC).

generator, the analysis shows that that output power could be reduced
two times to 500 mW and still provide high accuracy. This maybe
required for certain regulatory considerations. In summary, not only
the center frequency, but also the SNR is an important parameter that
needs to be carefully adjusted. We note that lower SNR could probably
be compensated by using a larger number of responsess to build the
device fingerprint. However, this would increase the acquisition and
computational time.

Last but not least, it should be noted that our experiments were
performed in a controlled environment where there were no large devi-
ations in the ambient temperature. Physical-layer properties are likely
to be influenced by large temperature changes. Due to lack of special
environment for testing this factor and also the fact that temperature
could be well controlled, we did not consider it in our analysis.

We complete the analysis by providing the Receiver Operating Char-
acteristic (ROC) of our identification system (Figure 6.8). The ROC
characterizes the accuracy with respect to the operating False Accept
Rate (FAR). The two setups exhibit very similar behavior. If the FAR
is fixed to a value higher than 0.5% our system will correctly identify
100% of the devices. However if an application is required to operate at
much lower FAR points (e.g., 0.01%), the accuracy would be affected.
The ROC therefore clarifies that our identification system is currently
not suitable for applications that require operation with very low prob-
ability of false acceptance. Table 6.3 summarizes the details about the
number of genuine and imposter matching scores used in our estimate
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Table 6.3: Summary of ROC and EER computation settings (5-fold cross
validation)

Set N Test matchings Threshold EER (%)
Genuine Imposter T

I 10 500 24900 13.03 0.92 (0.82;1.02)
I 15 300 14900 8.30 0.62 (0.49;0.75)
I 20 200 9800 6.39 0.46 (0.37;0.55)
II 10 500 24900 12.87 0.93 (0.73;1.13)
II 15 300 14900 8.56 0.53 (0.39;0.67)
II 20 200 9800 6.12 0.40 (0.21;0.59)

computations, the operating threshold at EER, the average EER and
number of cross validations.

6.4.3 Different Setups Case

In the previous sections, we have shown that our physical-layer fin-
gerprint extraction and matching is accurate within single acquisition
setups, demonstrated on two such realizations. We recall that the two
antenna setups were composed of same model and manufacturer Tx
and Rx antennas. While this property of both antenna setups guaran-
teed us high and reproducible accuracy, it did not allow us to achieve
the desired accuracy across setups.

Figure 6.9 presents the accuracy of the two antenna setups for
N = 20 separately (a) and when the fingerprints from setup II are con-
sidered as test fingerprints and matched to the reference fingerprints
extracted from setup I (b). The EER is significantly higher reaching
rather impractical error rates of 40%.

We discovered that the reason for this poor performance is to do
with the significant differences in the wireless channel incurred by the
two set of antennas. Figure 6.9 (c) shows the differences in similarity
between two consecutive channel measurements with one setup and be-
tween setups. We observe large variations in the frequency response
from 11 to 15 MHz, the bandwidth at which our fingerprints are ex-
tracted. In terms of distance similarity (Euclidian distance), there was
more than an order of magnitude difference between the two antenna
setup frequency responses.

Given the above observations, we applied channel equalization (Sec-
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ter channel equalization

Figure 6.9: The effect of channel differences on the system accuracy. (a)
EER for setup I and II separately. (b) EER after matching fingerprints be-
tween setup I and II (c) Channel frequency response within a single setup and
between setups (d) EER after equalizing the channel and matching finger-
prints between setup I and II. The results show that the two setups exhibit
different channel properties which prevent direct cross-setup fingerprint com-
parison. Channel equalization is required to verify the fingerprints acquired
across setups in order to achieve high accuracy.
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tion 6.3.5) to compensate the channel effects. Our channel equalization
consisted of measuring the frequency response difference between se-
tups, compensating the test fingerprints in one setup with the appro-
priate channel coefficients and matching those fingerprints to the ref-
erence fingerprints in the other setup. We note that the methodology
remained the same, except for the additional pre-processing (channel
equalization) step for the test fingerprints.

Figure 6.9 (d) shows the EER after the channel equalization of ap-
proximately 1% for the lower dimensions. These error rates are very
close to the nominal accuracy of our fingerprints on a single setup. They
clearly demonstrate that the RFID-enabled devices do have distinctive
fingerprints that are independent of the acquisition setup.

On antenna properties. We further investigated the differences be-
tween our two sets of antennas by measuring the antenna reflection
coefficients (S11 parameter). These are likely to being among the fac-
tors that could affect our proposed features7. Our Tx and Rx antennas
were made of a magnetic loop with capacitors to excite a resonance
where fr = 1/(2π

√
LC). L is the inductance of the magnetic loop and

C the total capacitance of the combination of capacitors.

For the Tx antennas, assuming a linear frequency span of 1 MHz,
the error between both antennas was about 150 kHz/13.56 MHz =
1.1%. For the Rx antennas, similarly assuming a linear frequency span
of 1 MHz, the error between both measurements is about 30 kHz/13.56
MHz = 0.2%. Given that standard SMD capacitors usually have a
tolerance of approximately 5%, it is considered rather common that
the resonance frequencies differ. In fact, 1.1% and 0.2% is already
much better than 5% which shows that the manufacturer might have
already tried to find the best possible combination of capacitors.

While these measurements and related findings cannot fully explain
the differences that we have observed in the two antenna setups, they
show that it is difficult to achieve identical antenna characteristics by
standard manufacturing and components. The same point would be
valid in the case if one wants to produce similar RFID-enabled devices.
These observations strengthen the need to better understand the roots
of identifiability (Section 12).

7Many other antenna characteristics can also be measured. However, the mea-
surement procedures require special environment and hardware. It is out of the
scope of this work.
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(a) 2 Tx Antennas (b) 2 Rx Antennas

Figure 6.10: Antenna reflection measurements. (a) Set of transmission
antennas (b) Set of receiving antennas. The middle line in the graphs is at
the center frequency of 13.56 MHz. Each square represents 1 MHz along
the X-axis and 5 dB on the Y-axis. The measurements show that even
same model and manufacturer antennas exhibit stable and distinguishable
properties. For the Tx antennas, the deviation in reflection coefficients is
more significant than for the Rx antennas.

6.4.4 Possible Performance Optimizations

In our system, device responses are acquired at a fixed rate of 2 re-
sponses per second. This rate was chosen to provide enough time for the
system to acquire the data on a computer (Matlab). As a consequence,
the raw data to build a typical device fingerprint takes between 5 and
10 seconds for N ∈ [10; 20]. Further pre-processing is required to ex-
tract the features which is in the order of milliseconds if PCA is used for
feature selection. In the case of feature selection by filtering, additional
5 s are required per response. The times are measured on a machine
with 2.00 GHz CPU, 2 GB RAM running Linux Ubuntu. This shows
that digital filtering is an expensive operation on high-dimensional data.
However, this step can be handled with analog filters before acquisition
at the oscilloscope. Moreover, it is even possible to directly acquire
our spectral features by using a spectrum analyzer as an acquisition
hardware. The combination of analog filtering and spectrum analyzer
would allow to directly obtain the fingerprints without passing by the
time domain and digital processing. Given the conclusion that no sta-
tistical analysis is required, our fingerprints can be directly matched to
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stored fingerprint templates. This optimization together with higher
acquisition rate would enable device identification within only a few
seconds, i.e., practical in real-world deployments.

Last but not least, it should be noted that all the components of
the feature extraction can also be implemented efficiently in hardware
for further performance improvements.

6.5 Summary

We investigated practical issues in physical-layer identification of HF
RFID devices (smart cards). We proposed an improved hardware setup
and enhanced feature extraction techniques that enable significantly
more accurate device identification than related work. We further
showed that our techniques provide physical-layer fingerprints that are
stable over longer periods of time. Their identification quality can be
preserved across different acquisition setups if channel equalization is
applied. Our results significantly strengthen the use of physical-layer
identification in anti-cloning solutions.
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Chapter 7

Attacks on
Physical-layer
Identification

In the previous chapters, we proposed a set of techniques for physical-
layer identification of active and passive wireless devices. Here, we con-
sider the transient-based identification in Chapter 4 and modulation-
based identification [53] and analyze their resilience to impersonation
attacks. We chose those techniques as they represent two different
classes of physical-layer identification and have been shown to provide
the highest identification accuracy for active wireless transceivers.

More precisely, we investigate impersonation attacks by feature re-
play, signal replay and hill-climbing strategies. In feature replay, we
modify radio signals to match the targeted identification features, while
in signal replay we capture and replay radio signals in RF. In hill-
climbing, we modify the transmitted signals by varying the polarization
of the radio waves.

We study the required hardware and conditions that make physical-
layer identification vulnerable to impersonation attacks and show that
the considered techniques are subject to impersonation; however, transi-
ent-based techniques are more difficult to reproduce due to wireless
channel and antenna artifacts. We assess the feasibility of performing
impersonation attacks by extensive measurements as well as simulations
using collected data from wireless devices.
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FingerprinterFingerprintees
(target devices)

Attacker

Infrastructure

Figure 7.1: Our system consists of a wireless network with a number of
wireless devices (fingerprintees) and a fingerprinting device (fingerprinter).
We assume that in the system initialization phase the fingerprints of the
devices are registered with the fingerprinter. The fingerprints are extracted
from the packets sent by the devices and verified by the fingerprinter. The
goal of the attacker is to impersonate a target device by generating packets
that contain the fingerprints of that device.

7.1 System and Attacker Model

We consider the following setting: a wireless network is deployed in an
area A. The network consists of N wireless devices and a fingerprinting
device. A physical-layer device identification system is used in the net-
work as described in Chapter 3. During the initialization phase, the fin-
gerprinting device (e.g., wireless access point) extracts a physical-layer
fingerprint of each wireless device in its network and stores it in a back-
end database. During network operation, the fingerprinter records each
packet radio transmission of wireless devices, extracts their fingerprints
(according to the specified fingerprinting methodology) and verifies if
the extracted fingerprints match one of the reference fingerprints in the
back-end database.

We focused on two instances of physical-layer identification systems,
one based on the transient technique in Chapter 4 and a second one
following the modulation-based technique proposed in [53]. Figure 7.2
visualizes the parts of the transmitted signals used for identification in
both techniques. The approaches have been demonstrated to provide
accurate identification of active wireless transceivers from the same
model and manufacturer.

The attacker’s goal is to break the physical-layer identification sys-
tem in the network which operates at a fixed application specific thresh-
old T . The threshold serves as an Accept/Reject decision boundary for
determining if a given fingerprint is genuine (belonging to the set of
legitimate devices) or if it is an imposter (belonging to an intruder de-
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Figure 7.2: (a) Transient-based techniques extract unique features for de-
vice identification from the radio signal transient shape at the start of each
new packet transmission. (b) Modulation-based techniques extract frequency
and constellation symbol imperfections (i.e., modulation errors).

vice) (see Chapter 3 for more details). The purpose of the attacker is
therefore to create impersonating signals whose identification features
fall in the accept region of the identification system.

Definition 1 We say that an impersonation attack is successful with
a probability p if the matching score between fingerprints of a device
targeted for impersonation (D) and that of the attacker (A) is below
the application specific threshold T with probability p.

Given that the considered modulation-based identification technique
was evaluated in related work using device classification, we adapt the
above definition in the case of classification. We note that in stan-
dard classification, there is no notion of rejection based on threshold,
i.e., the classifier assigns an unknown device fingerprint to the device
that has the highest similarity in the entire set of devices. Therefore,
Definition 1 should be modified as follows.

Definition 2 We say that an impersonation attack is successful with
a probability p if the classification process assigns the fingerprints of
attacker (A) to the class of fingerprints of the device targeted for im-
personation (D) with probability p.

We consider the following three impersonation methods and related
assumptions:
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• Impersonation by Feature Replay : In this attack, we modify the
radio signal characteristics of an attacker device to closely match
all or part of the features used to identify the device targeted for
impersonation. We assume that the attacker knows the features
used by the identification system and the exact feature extraction,
matching and decision making processes.

• Impersonation by Signal Replay : In this attack, we record signals
from a device targeted for impersonation and retransmit those
signals without modification at RF with high-end arbitrary wave-
form generators. We do not assume any knowledge of the features
used for identification.

• Impersonation by Hill-Climbing : In this attack, we vary the an-
tenna polarization of an attacker device during transmission in
order to find a polarization degree that closely match the fea-
tures of a device targeted for impersonation. We do not assume
any knowledge of the features used for identification.

For all impersonation methods, the attacker is in possession of all
necessary hardware equipment to measure and reproduce radio com-
munication signals at any location. He can also build a second fin-
gerprinting device for emulating the entire identification process. The
attacker does not have access to the true reference fingerprints captured
by the fingerprinter F and the only feedback he can get from F is an
Accept/Reject response. However, in some application scenarios the
attacker might have access to the location of the fingerprinter in order
to collect the signals from it.

As an instance of the above system and attacker models, we con-
sidered a network with 3 wireless devices (Universal Software Radio
Peripheral - USRP [13]) and the fingerprinting device is a high-end Ag-
ilent Digital Signal Analyzer (DSA) [54]. The attacker is in possession
of two devices for the proposed impersonation attacks: a 4-th USRP de-
vice and a high-end 20 GS/s arbitrary waveform generator (Tektronix
AWG 7000B [55]). These two types of devices allow evaluating an at-
tacker with different strengths: low-cost USRP versus high-quality, but
costly signal generator.
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7.2 Impersonation by Feature Replay

In this section, we present an impersonation attack on the modulation-
based identification proposed in [53]. We first provide background on
the identification technique and then detail the attack design, imple-
mentation and test scenarios.

7.2.1 Modulation-based Identification

Modulation-based identification was proposed in [53] as an alterna-
tive to transient-based techniques to uniquely identify same model and
manufacturer wireless devices. This class of techniques focuses on ex-
tracting unique features from the modulated signal. More precisely,
the authors in [53] extracted five distinctive signal properties of IEEE
802.11b modulated signals, namely the Frame frequency offset (F1),
Frame SYNC correlation (F2), Frame I/Q origin offset (F3), Frame
magnitude error (F4) and Frame phase error (F5). These five features
together formed a fingerprint of the wireless device, subsequently used
for device identification. They were extracted from each packet frame
by means of a high-end vector signal analyzer at 70 MHz intermediate
frequency (IF) for high precision. The accuracy of the fingerprints for
device identification was tested with a k-NN classifier with L1 distance
similarity and an SVM classifier with maximum-margin separation [26].
The experimental results from over 100 IEEE 802.11 Network Interface
Cards (NIC) demonstrated an identification (classification) accuracy of
over 99%.

7.2.2 Attack Design

In this attack, we use the capabilities of a USRP with the GNU radio
software library [56] to modify parameters in the radio transmission of
individual 802.11 packets. In particular, we find that a combination of
digital and analog techniques can be applied to modify F1, F3, F4 and
F5 detailed below. The basic ideas are summarized in Figure 7.3.

Frame frequency offset (F1) is the most discriminative feature [53]
in the considered modulation-based technique. It represents the dif-
ference (offset) between the carrier frequency of the fingerprintee and
the fingerprinter. In order to pretend being a given device with re-
spect to F1, we need to adjust the carrier frequency of our attacking
device to the carrier frequency of the targeted for impersonation device.
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Figure 7.3: Attacks on modulation-based identification. We are able to
modify the signal frequency offset (F1) by changing its carrier frequency in
the analog domain, the I/Q origin offset (F3), magnitude (F4) and phase
(F5) errors by modifying its original constellation in the digital domain.

We achieved this by using the analog circuit of the USRP which allows
arbitrary changes of the carrier frequency with the precision of 0.01 Hz.

Frame SYNC correlation (F2) is the second most discriminative fea-
ture. It measures the modulation quality of the frame synchronization
preamble by normalized cross-correlation with the ideal synchroniza-
tion sequence. We found that this feature is difficult to modify in a
deterministic way. We later demonstrate that it is not necessary to
modify this feature in order to impersonate a targeted device with high
accuracy. We also show that an attack including impersonation of this
feature improves the impersonation accuracy (Section 7.3).

Frame I/Q origin offset (F3) is the third most discriminative fea-
ture in the modulation-based identification. It shows the distance of the
ideal I/Q plane centered at (0,0) and the average of all measured I/Q
values (symbols in an I/Q constellation) within a packet frame. The
Frame I/Q origin offset is usually specific to a given transceiver under
the assumption that the analog circuit is provided with the ideal fixed
constellation symbols (e.g., ±0.707± 0.707i in a Gray-coded constella-
tion). The latter are generated digitally in the digital signal processing
(DSP) module of the radio transceiver. In our attack, we digitally
shrink or expand the ideal constellation symbols’ position in order to
change the Frame I/Q origin offset.

Frame Magnitude (F4) and Phase (F5) errors are the least dis-
criminative features in the modulation-based identification. The frame
magnitude error is the average difference in the scalar magnitude be-
tween all ideal and measured I/Q symbol values, while the frame phase
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Figure 7.4: Experimental results on incremental modification of the frame
frequency offset (F1) and frame I/Q origin offset (F3). The results show
that we can deterministically change feature values of one device in order to
match those of a targeted device.

error is the average difference in phase (i.e., angle in degrees) between
the ideal and all measured I/Q symbol values in the frame. We mod-
ify these values in the digital domain by shrinking/expanding the I/Q
symbols in order to impersonate these features.

It is important to note that the digital modifications of F3, F4
and F5 must take into consideration the analog circuit deviations that
occur in processing the signal from the D/A converter to the antenna
and compensate them. In addition, any modifications must also not go
beyond the standard tolerances of the impersonated technology [57].

In Figure 7.4 we show some experimental results from determinis-
tically decreasing the features F1 and F3 of the attacker’s device to
the values exhibited by the target device (Device 2). In particular, the
frame frequency offset is closely equalized at f = fC + 4.7 kHz where
fC is the original carrier frequency of the attacker’s device. The Frame
I/Q origin offset exhibited by the target device was closely equalized by
shrinking the attacker’s QPSK constellation points by a factor of 0.7%.

7.2.3 Measurement Setup and Attack Procedure

For the purpose of performing and evaluating the attack, we used four
USRPs (3 genuine devices and 1 attacker device). For close matching
of the signals used in [53], we developed an 802.11-style QPSK digital
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baseband modulator. The frame is constructed according to the IEEE
802.11 specification [57] with a preamble (used for coarse frequency off-
set estimation), followed by a longer preamble for fine frequency offset
and channel estimation and the actual data payload. The frequency
estimation algorithms were implemented according to [58] which are
well established algorithms for that purpose. It should be noted that
more sophisticated algorithms will only improve the computation of the
errors. The data payload was modulated using QPSK modulation [40].
All packet frames contained the same content transmitted at a data
rate of 1Mb/s.

The design of the fingerprinter is shown in Figure 7.5. Each signal
was captured with a standard 2 dB dipole antenna and subsequently
amplified by an ultra low-noise and low-power amplifier (NF=0.15 dB)
and filtered by a low insertion loss bandpass filter to eliminate radio
frequencies outside the industrial, scientific and medical (ISM) band.
The received signal was digitized by an Agilent Digital Signal Ana-
lyzer [54] and processed by our 802.11-style QPSK digital demodulator
for feature extraction. Feature matching and classification was per-
formed offline with Matlab. The genuine devices were positioned at
fixed locations to the fingerprinter’s antenna. We note that for the
modulation-based features the distance should not have an effect on
the classification accuracy as outlined in [53].

We started the impersonation attack by modifying the carrier fre-
quency in order to reach the one of the targeted genuine device. We
determined the carrier frequency of the targeted device by analyzing
the power spectrum density of the radio transmission. Subsequently,
we adjusted the frame I/Q origin offset, magnitude and phase of the
attacking device by digitally modifying its ideal QPSK constellation
symbols (Figure 7.3) to closely reproduce the feature values of the tar-
geted device after the entire analog processing at the attacking device.
Here, we chose to measure the targeted device communication, compute
the corresponding features and then adjust them appropriately. There
is a second possible approach that consists of launching a hill-climbing
attack [5] by repeatedly sending signals with modified features until
they are identified as the targeted device.

7.2.4 Attack Evaluation Results

In this evaluation, we used the capabilities of a software-defined radio
for feature replay and followed the design described in Section 7.2. For
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Figure 7.5: Fingerprinter hardware setup.

data collection, feature extraction and matching, we followed the pro-
cedures in [53]. We briefly summarize them: we used 80 valid frames 1

per genuine device and computed the corresponding F1, F2, F3, F4
and F5 features. A device reference fingerprint was built from a total
of 20 frames and the remaining 60 frames were used to build testing
fingerprints. All presented results were validated using 4-fold cross val-
idation [26]. The similarity score between reference and testing device
fingerprints was computed with L1 distance as proposed in [53].

For evaluation with respect to Definition 1, we had to fix the ap-
plication specific threshold T . We chose to set T to the threshold of
the EER operation point which is the mostly used threshold for evalu-
ation [5, 25]. In our particular case, EER = 0% and the corresponding
TEER = 0.05. It should be noted that if one would like to have a real-
istic estimate of the EER and corresponding T , a much larger amount
of devices must be considered [5]. Therefore, the above results, should
only be used to assess the attacker’s ability to go below the system’s
operating point T .

To visualize the impersonation attack performance, we computed
the genuine, imposter and attacker scores in all folds and show them in
the form of histograms. The genuine matching scores were computed
by matching the testing frames from the devices to their respective ref-
erence fingerprints. The imposter matching scores were computed in
the same way, but using the reference fingerprints of the other devices.
The attacker scores were computed by matching the impersonating (at-
tacker) frames to the reference fingerprint of the targeted device. We
used an average of 5 frames to compute the overall matching score.
This is consistent with [53] where it was shown that averaging over
more than 4 frames is needed to achieve the highest accuracy.

Figure 7.6 shows the matching scores of the impersonating (at-

1We consider as valid the frames that comply with the standard [57].
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Figure 7.6: Modulation-based identification: genuine, imposter and at-
tacker matching score histograms. (a) Impersonation attack by feature re-
play of F1 and F3. (b) Impersonation attack by feature replay of F1, F3 and
F5. The device fingerprints were computed by averaging the features over
5 packet frames. The application specific operating threshold was fixed to
T = 0.05.

tacker’s) frames against the target device (Device 2). If we reproduce
only F1 and F3 features, the impersonating frames will be rejected by
the system in approx. 60% of the cases according to Definition 1 with
T = TEER. This is shown in Figure 7.6a. If we lower the operating
point, the system can reject 80% of the impersonating frames while only
slightly increasing its FRR. On the other hand, if we reproduce F1, F3
and F5 features, we successfully place 98% of the impersonating frames
below TEER, i.e., the impersonation success rate is 98% (Figure 7.6b).

It should be noted that if the system can tolerate some false rejects,
it can reduce the attack success rate, however annihilating the attack
without significantly increasing the FRR cannot be achieved (e.g., at
T = 0.025 the system will reject all impersonating frames, but also 50%
of its genuine frames).

In Figure 7.6b, we also observe that the attacker matching scores
are still shifted towards the imposter histogram scores. This is due to
the fact that our attack did not modify the F2 and F4 characteristics
of the attacking device. We found that F2 was hard to change digitally
and F4 could not be independently modified without influencing F3 due
to computational dependence. Therefore, we chose to modify the most
discriminative of the two, F3. We now show that the impersonation
attack by signal replay sufficiently preserves all the features and places
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Table 7.1: Classification success rates on genuine devices

1-NN 3-NN 5-NN SVM
87.65% 97.78% 100% 100%

all impersonating frames in the genuine matching score space.

Impersonation in classification

We considered the k-Nearest Neighbor (k-NN) and Support Vector Ma-
chine (SVM) classifiers trained and executed as in the related work [53].
For complete compliance with [53], in the k-NN 2 classifier half of the
training frames (10) were discarded from the reference device finger-
print by removing the frames whose features deviated the most from
the overall mean. No frames were removed from the testing set. The
similarity measure was L1 distance.

The classification success rates using k-NN and SVM classifiers for
distinguishing the 3 genuine devices are shown in Table 7.1. Both k-NN
and SVM classifiers successfully classify the fingerprints of the genuine
devices. Inline with [53], the k-NN classifier requires averaging over a
number of frames (k ≥ 4) to reach its highest accuracy. In our case, a
success rate of 100% was reached for k = 5.

After tuning our attacking software-defined radio device in order to
match the feature F1, F3 and F5 of the target device (Device 2) as well
as possible (see Figure 7.4), we injected the attacker’s collected frames
in the k-NN and SVM classifiers by replacing all Device 3 frames and
computed again the classification success rates.

The results in Table 7.2 show the success rate of classifying genuine
frames and impersonating frames with feature replay of F1 and F3. The
impersonation attack success rate is 62% for the 5-NN classifier, while
for the SVM classifier it tops 100%. On the other hand, if the attacker
performs a feature replay with F1, F3 and F5, it will impersonate both
classifiers in 100% of the cases (Table 7.3). An impersonation attack
by signal replay also succeeds in 100% inline with the previous results.

It should be noted that the above results on classification are highly
dependent on the number of classes (devices) and the separability be-

2We complied to the definition of parameter k and notation k-NN in [53]. We
note that these definitions are different from the commonly accepted ones in pattern
recognition [26].
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Table 7.2: Genuine and attacker classification success rate on Device 2 by
feature replay of F1 & F3

1-NN 3-NN 5-NN SVM
Input Device 2 Device 2 Device 2 Device 2

Device 2 73.33% 98.33% 100% 100%
Attacker 50% 50% 62.33% 100%

Table 7.3: Genuine and attacker classification success rate on Device 2 by
feature replay of F1, F3 & F5

1-NN 3-NN 5-NN SVM
Input Device 2 Device 2 Device 2 Device 2

Device 2 73.33% 98.33% 100% 100%
Attacker 63.33% 98.33% 100% 100%

tween different device fingerprints. It is interesting to observe that a
system with highly discriminative classifier such as SVM was easier to
impersonate (p = 100% with 2 reproduced features). In our case, this
is due to the fact that SVM builds large decision boundaries well sep-
arating the three devices. Therefore, few modifications of the features
towards the features of one of the 3 devices make the impersonating
frames cross the decision boundary of that device. However, if the
number of classes is larger, this might not be sufficient and more im-
personated features would be required. This finding suggests that if
the attacker can modify only some of the features of an identification
technique, a good strategy would consist of identifying a device in the
network that differs the most from all other devices and try imperson-
ating that device. We also point out that a general problem of standard
classification is that without a rejection criterion, the attacker would
be always assigned to one of the genuine devices.

7.3 Impersonation by Signal Replay

In this section, we demonstrate a device impersonation attack by ra-
dio signal replay on modulation and transient-based identification. As
opposed to the previous attack, we do not modify the signal character-
istics, but retransmit the entire radio packet frame in its integrity at
the RF frequency. For the impersonation attacks, we considered the
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same modulation-based identification technique (Section 7.2.1) and the
transient-based technique described in Chapter 4.

7.3.1 Attack Design

In this attack, we use the capabilities of the 20 GS/s arbitrary waveform
generator Tektronix AWG 7000 Series [55]. Due to its fast digital to
analog converter, this generator can output any 802.11 signals directly
at the required radio frequency of 2.4 GHz. Unlike in the previous
attack, where the attacker tries to match as close as possible the features
of a device targeted for impersonation, in this attack, we captured the
signals of the target device at the RF frequency and replayed them
without any modification. This attack is more powerful than feature
replay attacks since it does not require knowledge of the features that
are extracted by the fingerprinter. It simply requires that the attacker
records the transmissions of the targeted device.

A more sophisticated attack based on signal replay would be to
produce crafted signals by replaying parts of the message. In the case of
modulation-based identification, the attacker can replay the preamble
part of the message to reproduce F1 and F2 and craft its own payload.
Furthermore, the attacker can also craft his own payload and at the
same time reproduce all F3, F4 and F5 features. This is due to the
fact that he has full control over the features in the digital domain and
relies on the arbitrary waveform generator to directly output the crafted
signal in RF thanks to the 20GS/s digital-to-analog (D/A) converter.

In transient-based identification only the transient part of the signal
is used for identification. Therefore, the attacker can create a message
with the transient part in its integrity concatenated with the actual
payload. In this case, the replay attack becomes an impersonation
attack. We point out however that such an attack can only be mounted
with a high-end arbitrary waveform generator which has the available
bandwidth to output the crafted transient signals.

7.3.2 Measurement Setup

To evaluate the impersonation attack by signal replay, we built an ex-
perimental setup in a lab environment. The setup consisted of two
tripods: the first was used to hold the device to be impersonated; the
second holds two identical 2 dB dipole antennas, connected to the fin-
gerprinter and the attacker respectively. Both antennas were fixed on
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the platform separated by a distance of 30 cm in order to avoid near-
field effects, but still get a high signal-to-noise ratio (SNR). The design
of the fingerprinter was the same as shown in Figure 7.5 with an ad-
ditional implementation of the transient-based feature extraction and
matching procedures that were proposed in [59].

We first collected frames from the targeted device. Subsequently,
we replayed the recorded frames to the fingerprinter and evaluated the
attack performance.

7.3.3 Attack Evaluation Results

In this evaluation, we used our high-end 20 GS/s arbitrary waveform
generator to retransmit device packet frames in their integrity at RF.
Following the procedures in Section 7.3, we collected 20 frames from
the target device (Device 2) at the attacker’s position. Subsequently,
we retransmitted those frames towards the fingerprinter twice, resulting
in 40 impersonating frames. It should be noted that the device signals
were captured at RF = 2.4 GHz and sampling rate of 20 GS/s in order
to preserve as much as possible the radio signal (e.g., no downconversion
to intermediate frequency). The genuine and replayed matching score
histograms are shown in Figure 7.7.

We observe that all the genuine score bins are filled with the scores
resulted from matching with the impersonating (replayed) frames. The
results demonstrate that signal replay at RF is a powerful attack that
makes the impersonating (attacker’s) frames very difficult to distinguish
from the genuine device frames.

As in the previous section, we used the high-end arbitrary wave-
form generator to retransmit transient signals. We implemented the
transient-based identification technique in [59] and followed the pro-
posed procedure in Section 7.3. We collected transient signals from 3
Tmote Sky sensor nodes in order to fully match the conditions in [59].
We present our results for replaying these signals both using a cable
and air interface to better assess the limitations of our attack.

Figure 7.8 shows the genuine and imposter histograms from match-
ing transient-based features from the original devices captured with our
setup as well as the histograms of matching original and replayed tran-
sients by arbitrary waveform generator over a cable and over the air.
The results clearly show that the replayed signals over the cable closely
match the original signals. This is an important result as it shows that
the arbitrary waveform generator can retransmit transient signals with
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Figure 7.7: Modulation-based identification: genuine and replayed (at-
tacker) matching score histograms obtained by signal replay at RF with a
20 GS/s arbitrary waveform generator. The two histograms are overlapping
making it very difficult to distinguish a genuine device from the attacking
device.

high accuracy.

On the other hand, replaying the same signals over the air altered
the signals, so that the replayed signals were recognized as imposter
signals and the impersonation attack failed. We further investigated
the issue and discovered that in addition to the device fingerprint in
the transient-based features, there is also the presence of the wireless
channel characteristics. In order to confirm the channel effect on the
transient, we simulated a frequency selective channel to estimate the
degree of modification of the original transient signals under channel
changes. The results showed that different channels modify the tran-
sient features and the system rejects all attacker’s replayed transient
signals at the threshold T = 3.01 [59].

Impersonation of transient-based spectral features [59] is inherently
more difficult due to channel and antenna effects on the transient part
of the signal as shown in our analysis. While our high-end signal gener-
ator can accurately reproduce it as well over a cable (i.e., fixed channel),
replaying over the air from a different location is not likely to be suc-
cessful to impersonate a device. However, we could impersonate the
targeted device from its location. There are two possible scenarios that
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Figure 7.8: Transient-based identification: genuine and imposter matching
scores are from the genuine fingerprinting system; attacker matching scores
with fingerprints of the device targeted for impersonation over a wire and
over the air. The attacker transient signals over cable are indistinguishable
from those of the genuine device.

could achieve this depending on the attacker model. In the first sce-
nario, if we are allowed to measure the transient signal of the targeted
device before actual transmission through the antenna (e.g., capture
the device and measure over a cable with an oscilloscope), we can then
replay it with the arbitrary waveform generator from the same location.
In the second scenario, a possible compromise of the fingerprinter would
reveal the transient signal received at the fingerprinter. Subsequently,
we need to estimate the wireless channel response between the targeted
device location and the fingerprinter, compensate the transient signal
accordingly and replay it with the arbitrary waveform generator. This
second scenario can also be applied if the attacker is allowed to collect
frames at the location of the fingerprinter.

In summary, the modulation-based features and L1 distance similar-
ity measure proposed in [53] are vulnerable to impersonation attacks by
feature and signal replay. Impersonation by signal replay at RF makes
the impersonating (attacker) frames almost indistinguishable from the
genuine frames of the targeted for impersonation device.
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Table 7.4: Hill-climbing attack on device ID = 9.

N 50 20 10 5
Hill-attack distance 42.74 38.12 35.89 21.61

Threshold 3.01 4.10 6.74 16.04

7.4 Impersonation by Hill-Climbing

In this section, we analyze the resilience of transient-based features to
a hill-climbing attack by varying antenna polarization and show that
impersonation would be possible if a small number of signals is used
for feature extraction.

7.4.1 Attack Design and Results

A hill-climbing attack is a well-known attack on biometric recognition
systems [5]. This attack consists of repeatedly submitting data to an
algorithm with slight modifications. Only modifications that preserve
or improve the matching score are kept in the process. Eventually,
a score that exceeds the identification system operating threshold T
might be achieved. This results in successful impersonation without
providing the genuine biometric.

To perform the attack, we would ideally need a specialized device
that is able to create transient signals (similar to the ones generated by
the sensor nodes) and at the same time allow for introducing variations
in it. In order to closely much these requirements, we decided to use
3 additional sensor nodes that are not part of the population of 50
sensor nodes used so far. In order to create variations in the shapes,
we mounted external antennas on the sensor nodes. We then manually
changed the radio wave propagation by rotating the nodes’ antenna in
order to find a polarization that impersonates a sensor node from the
targeted network.

We collected 50 transient data samples from 7 different polarizations
of the antennas of the 3 sensor nodes. We then supplied these transient
data samples to identification system. Figure 7.9 displays the matching
scores obtained during the attack in a 3D representation for N = 5.
For clarity reasons, all scores that exceed 100 are not displayed.

The identification procedure becomes more vulnerable to the imper-
sonation attack when N decreases. In particular, the matching scores
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Figure 7.9: Hill-climbing attack scores. The X-axis contains the 21 (3
sensor nodes x 7 antenna polarizations) attacking features; the Y-axis shows
the reference features of the 50 sensor nodes targeted for impersonation; the
Z-axis is the matching score obtained between each attacking and reference
features. The thick surface is the Accept/Reject threshold (T=16.04).

against one of the sensor nodes (ID = 9) for N = 5 were consistently
very close to the Accept/Reject threshold T = 16.04 (Table 7.4). Device
impersonation is possible for N ≤ 5. A real system needs to consider
acquiring N > 5 transient identification signals in order to build the
fingerprint to ensure protection against this type of impersonation.

7.5 Summary and Discussion

We investigated the feasibility of performing impersonation attacks on
certain physical-layer identification techniques. We designed and im-
plemented impersonation attacks by feature replay, signal replay and
hill-climbing on modulation and transient-based identification. Our re-
sults show that modulation-based features can be impersonated with
high accuracy by simply modifying and replaying them. Transient-
based features can also be reproduced using a high-end arbitrary wave-
form generator over a wire, but they are hard to record by an external
attacker since they are channel- and antenna-dependent. Therefore,
actual replay of transient features over the air is likely to succeed only
from the location of the device targeted for impersonation. In the alter-
native case, where the attacker could only launch impersonation attacks
from other locations, he would need to accurately estimate and com-
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pensate appropriately all channel properties present in the transient
features. Given that feedback signaling is typically needed for channel
state information (CSI) estimation [60], it would be difficult to launch
deterministic impersonation attacks without receiver cooperation. We
note however that further work is required to better quantify the exact
influence of the channel and antenna on the transient features.

Given that the characteristics of transient-based features are related
to the features used in RFID identification in Chapters 5 and 6, i.e.,
they are both frequency based, we conjecture that replay attacks with
high-end arbitrary waveform generators are also feasible in that case.
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Chapter 8

Implications on Selected
Applications

In this chapter, we discuss the implications of physical-layer device
identification on the security and privacy of wireless networks. These
implications stem from the main findings and results in this thesis and
are presented in the context of selected applications. We first provide
a classification of possible attacks on physical-layer identification. We
then describe the requirements of each application and analyze the
feasibility and security aspects of physical-layer device identification.

8.1 Classification of Attacks

We distinguish between attacks on the identification system that aim
at subverting the decision of an application (e.g., grant or not grant
access) and attacks on the anonymity of wireless devices that aim at
identifying them disregarding their will to be identified. We do not
discuss attacks that could be performed by an attacker who controls
internal system components. The latter are classical to identification
systems and have been already extensively discussed [5].

We assume a Dolev-Yao style attacker [61]. The attacker has the
ability of observing, capturing, modifying, composing, and (re)playing
identification signals transmitted by authorized devices. To observe
and capture identification signals, the attacker needs to have access
to the identification area or may directly acquire identification signals
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from the target device. This implies temporal possession and possibly
knowledge of the challenges used to acquire the identification signals.
The attacker can arbitrarily modify and compose identification signals.
To (re)play identification signals, the attacker is allowed access to the
identification area. We discuss restrictions of this strong attacker in
the context of each application.

8.1.1 Signal replay attack

In a signal replay attack, the attacker’s goal is to observe analog identi-
fication signals of a target device, capture them in a digital form (digital
sampling), and then transmit (replay) these signals towards the iden-
tification system by some appropriate equipment. The attacker does
not modify the captured identification signals, i.e., the analog signal
and the data payload are preserved. This attack is similar to message
replay in the Dolev-Yao model and is illustrated in Figure 8.1. The
difference resides in the level of replayed information. The message re-
play attack preserves the bits of information within the message (e.g.,
01101), while a signal replay aims at preserving the digital sampling of
the signal. Message replay is subsumed by signal replay. It should be
noted that replaying digital signal samples cannot be as exact as replay-
ing information bits. This is due to inherent randomness in hardware
components and the wireless medium. Improvement of replay accuracy
can be achieved by high-end hardware and controlled wireless medium.

The signal replay attack does not assume attacker’s knowledge of the
feature extraction and matching procedures used by the identification
system. However, knowledge on how to observe, capture, and submit
identification signals to the system is required.

Given the requirement of digitizing analog signals and subsequent
analog conversion for radio transmission, the attacker needs appropriate
devices for capturing and rendering the identification signals. Some
knowledge on the features used (e.g., baseband or RF) would narrow the
choice of device. The range of devices includes low-cost hardware [13],
high-end signal analyzers [54], and arbitrary waveform generators [55].

It should be noted that analog identification signals can also be
relayed without being previously stored in a digital form. A few com-
ponents such as amplifiers and antennas are required to perform the
task. An example of such relay attack is our physical-layer relay in
Chapter 2.
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Figure 8.1: Comparison of message and signal attacks. A and B are genuine
parties. E is a Dolev-Yao attacker that can observe, capture, modify, and
compose messages or signals. A signal replay attack aims at preserving the
digital sampling S(f,m) of the signal carrying message m and features f as
opposed to a message replay attack which preserves the bits of information
within the message. In signal replay, the features do not need to be known
to the attacker. In a feature replay attack, the attacker needs to know the
features f and then can compose signals that reproduce f. The difficulty for
the attacker resides in composing the signal S’(f,m’) that preserves f.

8.1.2 Feature replay attack

Unlike signal replay attacks, where the goal of the attack is to repro-
duce the captured identification signals in their integrity, the feature
replay attack creates, modifies or composes identification signals that
reproduce only the features of the identification system. The analog
representation of the forged signals may be different, but the features
should be the same (similar) as illustrated in Figure 8.1.

The feature replay attack is comparable to message forging in the
Dolev-Yao model where the attacker can arbitrarily modify and com-
pose messages. The difference is that forging involves analog and/or
digital signal samples and data payload (information bits) as opposed
to information bits only in the Dolev-Yao model. The difficulty of this
attack resides in the ability to compose signals while preserving the
identification features. In order to impersonate a device, the attacker
needs to know the features that the identification system extracts to
identify a device and needs to be able to forge signals while preserving
their distinctive features. This corresponds to attacks on message au-
thentication, where the attacker typically needs to know the secret key
in order to create an authentic message or has to be able to modify/forge
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existing messages such that they appear authentic to the receiver.
The feature replay attacks could be launched in a number of ways.

Similar to a signal replay attack, special devices such as arbitrary wave-
form generators could be used to produce the modified or composed
signals. The attack could also be launched by finding a device that ex-
hibits similar features to a targeted device, which is then used during
the identification procedure. This scenario is relevant in applications
where a large set of possibly same-model-same-manufacturer devices
could be obtained by the attacker.

A third way for launching feature replay attacks is to replicate the
entire circuitry of the targeted device or at least the components in-
fluencing the identification features. This is probably the hardest way
as it assumes precise knowledge of the hardware component(s) affect-
ing/causing the features. It is unclear if that is feasible in practice.

8.1.3 Other attacks

For completeness, we should mention the coercion attacks. In this
attack, an attacker needs to come into (temporal) possession of an au-
thorized device, and use it during the identification procedure. While
straightforward, such an attack has relevant implications in certain ap-
plications.

8.2 Intrusion Detection in Wireless Net-
works

As a first application of physical-layer identification, we consider its
most widely discussed use as an intrusion detection mechanism in wire-
less networks. Several scenarios can be envisioned covering wide and
local area networks.

In a first scenario, a primary layer of access control by a crypto-
graphic mechanism that authenticates the devices with the network is
deployed to prevent unauthorized devices (users) of using the resources
of the network (e.g., WLAN). Physical-layer identification is deployed
in the network as a second layer of access control to defend against
authentication break-in (e.g., cryptographic key compromise). An at-
tacker who succeeds to compromise the authentication keys will not be
able to gain access to the network with her own device unless he is able
to subvert the physical-layer identification.
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Additional benefits of physical-layer identification in such settings
are (i) detection of multiple identification numbers used by a device
(e.g., MAC addresses in WLAN) (ii) detection of an identification num-
ber or a cryptographic key used by multiple devices.

In a second scenario, physical-layer device identification can be used
to detect relay attacks. The primary layer of access control is again
based on cryptographic authentication. However, the attacker does not
aim at compromising the authentication, but forwards legitimate pack-
ets received at one point of the network to another point that is usually
multiple hops. Relaying legitimate network packets can be used to in-
fluence network operations [62, 63] or to gain access as demonstrated
in Chapter 2. Given that the attacker is only able to perform relay
attacks with his own wireless devices, his activity would be detected
as the physical-layer identities would be different from the legitimate
ones. Once an intrusion attempt is witnessed, the network can take
appropriate measures to raise an alarm or ignore the affected packets.

System requirements and analysis. The discussed scenarios pose
specific requirements to the physical-layer identification system. In the
case of static network configurations, physical-layer device fingerprints
need to be temporally stable and occasional external interferences have
to be removed by appropriate exception handling. In the mobile case,
the devices would typically communicate between each other and with
the infrastructure from random locations under different wireless chan-
nel conditions. Mobility implies that the physical-layer device finger-
prints have to be resilient to distance, location and channel randomness.

Our results on transient-based identification (Chapter 4) suggest
that access control in static with quasi-static channels could be pro-
vided with high accuracy. However, the fingerprints extracted from the
transient signal do not only contain device specific information, but also
wireless channel characteristics which vary depending on the location
and distance. These fingerprint properties introduce severe restrictions
on the usability of transient-based identification (e.g., authentication
must be performed only from a particular location). Other physical-
layer identification techniques such as [53] could be more appropriate
in mobile scenarios.

Security requirements and analysis. In terms of security require-
ments, the identification system must be resilient to remote imperson-
ation attacks. In particular, given the distance and uncontrolled nature
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of the considered wireless networks, attacks by signal and feature replay
are of a particular concern.

Our results show that the investigated transient and modulation-
based physical-layer identification approaches are vulnerable to imper-
sonation attacks and cannot be safely used to detect intrusion. With
the appropriate equipment, the attacker is able to reproduce physical-
layer identification features (fingerprints) with high accuracy. Certain
physical-layer techniques can also be impersonated with relatively low-
cost devices such as software-defined radios [13]. Furthermore, the less
location sensitive a physical-layer fingerprint is, the easier it is for the
attacker to impersonate it from any location.

Our results further motivate the investigation of techniques that can
detect impersonation. These techniques have to either make sure that
the signals or features are not known to the attacker such that he cannot
replay them or have to detect from the replayed signals that they have
been replayed. Whether such impersonation detection is feasible, is an
open question that motivates future work.

8.3 Document Cloning Detection

We already witness the inclusion of wireless technologies, more precisely
RFID in identity documents [36], electronic passports [64] and payment
cards [65]. RFID allows storage of data (e.g., photos, private keys) and
is intended to authenticate document holders and communicate data
to authorized systems in a secure way.

Despite a number of protection measures, it has been shown that
confidentiality of passport data can be compromised [66] and data
stored on the RFID chip can be successfully extracted and cloned
on other RFID-enabled devices [37, 67–69] even if defense mechanisms
specified by the standard [64] are in place.

Our results from Chapters 5 and 6 strongly support the use of
physical-layer RFID identification to protect against document cloning
in two different settings. In the first setting, the fingerprints are mea-
sured before RFID deployment and are stored in a back-end database,
indexed with the unique document identifier. When the authenticity of
the document with identifier ID is verified, the fingerprint of the docu-
ment transponder is measured and then compared with the correspond-
ing transponder fingerprint of document ID stored in the database. In
the second setting, the physical-layer fingerprints are measured before
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their deployment, but are stored in the RFID memory, digitally signed
by the document-issuing authority and protected from unauthorized
remote access. When the document authenticity is validated, the bind-
ing between the document ID and the fingerprint stored on the RFID
is ensured through cryptographic verification of the authority’s signa-
ture. If the signature is valid, the stored fingerprint is compared to
the measured fingerprint of the document. The main advantage in this
use case is that the document authenticity can be verified offline. The
main drawback is that the fingerprint is stored on the chip and requires
appropriate memory resources and access protection.

System requirements and analysis. The requirements on the prop-
erties of the physical-layer fingerprints are significantly different com-
pared to the intrusion detection scenario. Given that the anti-cloning
verification must be achievable in multiple locations (e.g., country bor-
der controls), special purpose-built devices need to be devised. This
relaxes the requirement on the fingerprints to be robust to environ-
mental factors and channel effects as these can be controlled in the
purpose-built measurement setup. However, the setup should be of
high quality in order to preserve the fingerprint from undesirable dis-
tortions. Additionally, the fingerprints have to be compact enough to fit
in the RFID chip memory. The cloning detection accuracy will depend
on the system error rates.

Our RFID identification techniques meet the above requirements
in case of identity documents and electronic passports. The proposed
techniques can distinguish RFID-enabled devices with high accuracy,
are stable over extended periods of time and can be verified on dif-
ferent measurement setups. Furthermore, the fingerprints are compact
enough to be stored on the current chips. More precisely, the stan-
dard [64] provides space for such storage in files EF.DG[3-14], which
are left for additional biometric and future use; RFID device finger-
prints can be stored in those files. Our proposal does not require the
storage of a new public key or maintenance of a separate public-key in-
frastructure, since the integrity of the fingerprints, stored in EF.DG[3-
14] will be protected by the existing passive authentication mechanisms
implemented in current e-passports.

Security requirements and analysis. For launching signal and fea-
ture replay attacks, the attacker has to obtain the fingerprint of the
RFID in the original document. In order to extract a fingerprint he
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needs to fully control the target document (hold it in possession) for
long enough time to complete the extraction. Using the methods from
our study, it would be hard, if not infeasible, for the attacker to extract
the same fingerprints remotely (e.g., from 1 meter away). In our exper-
iments, such remote feature extraction process resulted in an EER of
approximately 50%. We assume that this is due to the change in wire-
less channel conditions (e.g., antenna orientation, multipath, noise).

After obtaining the original fingerprint, the attacker can try to
launch impersonation attacks, producing or finding a device with sim-
ilar properties. Impersonation attacks by signal replay and feature
replay require a generator device that has similar external appearance
as the one that is being cloned. In case of e-passports or identity smart
cards, replay attacks require introducing a special device. It is not clear
if and how this is feasible.

Building (producing) a cloned device is currently considered a hard
task because of the complexity. Although manufacturing process vari-
ation influences the RFID micro-controller, it is likely that the main
source of detectable variation lies in the RFID radio circuitry and an-
tenna. Understanding how each component in the circuitry contributes
to the device fingerprint or at least which components contribute the
most is still an open research problem.

A more realistic strategy would be to find an RFID chip and antenna
configuration that exhibit similar fingerprints to these of the target for
cloning document. Such a task also requires knowledge on the feature
extraction process. To realize this attack, the attacker needs to test a
given quantity of RFID from the same manufacturer and model. The
number of devices that have to be tested depends on the system error
rates.

8.4 Device Privacy Protection

In the above applications, we presented the implications on defensive
uses of physical-layer device identification. We now consider an offen-
sive scenario where physical-layer identification aims at compromising
device privacy. In such a scenario, legitimate devices in a wireless net-
work communicate in a way that preserves the user (device) identity
from being leaked to active or passive attackers. Such mechanisms
typically aim at hiding unique identifier information in packet trans-
missions and reveal it only to the intended recipients. They have been
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studied in the case of anonymous routing [70, 71] in wireless ad-hoc
networks, location privacy in wireless local area networks (WLAN) [72]
and recently has attracted lots of attention in the RFID community.

The deployment of RFID raises various privacy concerns for users, in
particular clandestine tracking and inventorying [1]. Given that RFID
is already present in identity documents, payment credit cards [] and is
likely to replace barcodes in consumer products, a person carrying sev-
eral RFID could be vulnerable to clandestine tracking. Given the large
reading ranges of certain RFID (e.g., UHF RFID tags), users carrying
them can be profiled, identified and tracked using a network of RFID
readers without their prior consent. Several solutions that guarantee
protection against clandestine tracking have been proposed [73]. They
typically exploit RFID identification number pseudonymity by means
of cryptographic mechanisms [74–78] at the logical protocol layer.

Our results on RFID physical-layer identification show that RFID
leaks distinguishable information at the physical layer independently
of any logical layer protocol. In case of UHF RFID tags, intended for
consumer products [79], distinguishable information can be extracted
independently of the location and distance to the reader up to 6 meters.

Therefore, using our techniques, people can be profiled based on
physical-layer properties of a set of tags and then tracked with high ac-
curacy. More precisely, each tag in our tested set of tag models provides
approximately 6 bits of distinguishable information which corresponds
to uniquely identifying up to n = 26 tags. As a consequence, a set of

k tags can be identified among C(n + k − 1, k) =
(
n+k−1

k

)
= (n+k−1)!

k!(n−1)!

sets. This means that for a set of k = 5 tags (same model and manu-
facturer), there exist 6 · 106 unique combinations which correspond to
approximately 22.5 bits of distinguishable information. It should be
noted that while these numbers would depend on tag manufacturers,
they should be comparable for other models/manufacturers given that
all manufacturers should comply with the link frequency tolerances in
the standard (Chapter 5).

In summary, our findings demonstrate the feasibility of tracking
a set of RFID tags using the physical layer. While further work is
required to evaluate certain practical issues (e.g., using low-cost and
portable hardware), it is clear that RFID leaks information and privacy-
preserving protocols at the logical layer cannot guarantee tag pseudony-
mity and untraceability. This problem adds to the multiple-tag RFID
security and privacy issues [80].
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8.5 Summary

We discussed the main results of this thesis in the context of intru-
sion detection, cloning detection and privacy protection. Physical-layer
techniques can provide accurate identification of wireless devices under
certain conditions. However, they cannot be directly used in certain
real-life scenarios due to either robustness problems that force severe
restrictions on the usability or security issues that prevent the safe use
of identification in adversarial settings. Examples of such scenarios
include access control and intrusion detection in wireless networks.

Document cloning detection scenarios that rely on a controlled setup
are suitable for physical-layer identification. In case of RFID-enabled
documents/smart cards, physical-layer fingerprints are accurate, robust
and stable over longer periods of time.

Finally, physical-layer identification can also be used to compromise
device identity privacy despite any logical-layer protection mechanisms.
Certain classes of RFID exhibit physical-layer properties that enable
device tracking with high accuracy.
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Chapter 9

Device Identification
Techniques

Device identification also referred to as device fingerprinting covers a
broad spectrum of techniques spanning the physical, data link, trans-
port and application layers. In this chapter, we describe the related
work in the area of wireless device identification using hardware-related
characteristics. We also compare the existing techniques to our pro-
posed methods. Table 9.1 provides a comparison of selected approaches.
Finally, we briefly discuss other device identification approaches.

9.1 Wireless Transceiver Identification

Identification of radio signals gained interest in the early development
of radar systems during the World War II [81, 82]. In a number of
battlefield scenarios it became critical to distinguish own from enemy
radars. This was achieved by visually comparing oscilloscope photos of
received signals to previously measured profiles [81]. Such approaches
gradually became impractical due to the increasing number of trans-
mitters and more consistency in the manufacturing process.

In mid and late 90s a number of research works appeared in the
open literature to detect illegally operated radio VHF FM transmit-
ters. Subsequently, research efforts continued on radio transceivers for
wireless personal and local area networks. Depending on the signal
part used for identification, fingerprinting techniques can be catego-



Chapter 9. Device Identification Techniques

rized in transient-based, modulation-based and other approaches. For
each category, we discuss the works in a chronological order.

Transient-based approaches use the turn-on/off transient of a radio
signal for device identification and could be traced back to the early
90s. These approaches require transient detection and separation be-
fore feature extraction and matching. The detection and separation of
the turn-on transient depend on the channel noise and device hardware
and have been shown to be critical to most systems [83, 84]. Toon-
stra and Kinsner [85,86] introduced wavelet analysis to characterize the
turn-on transients of 7 VHF FM transmitters from 4 different manufac-
turers. Device fingerprints were composed of wavelet spectra extracted
from signal transients captured at the FM discriminator circuit. The
extracted fingerprints were classified by means of a genetic algorithm
(neural network) without any error. Gaussian noise was added to the
original transients in order to simulate typical field conditions. Hip-
penstiel and Payal [87] also explored wavelet analysis by filter banks
in order to characterize the turn-on transients of 4 different VHF FM
transmitters. They showed that Euclidean distance could be used to
accurately classify extracted device fingerprints to each manufacturer.
Choe et al. [88] presented an automated device identification system
based on wavelet and multi-resolution analysis of turn-on transient sig-
nals and provided results on classification of 3 different transmitters.

Ellis and Serinken [89] studied the properties of turn-on transients
exhibited by VHF FM transmitters. They discussed properties of uni-
versality, uniqueness, and consistency in 28 VHF FM device profiles
characterized by the amplitude and phase of the transients. By visual
inspection, the authors showed that there were consistent similarities
between device profiles within the same manufacturer and model and
device profiles from different models that could not be visually dis-
tinguished. Moreover, some devices did not exhibit stable transient
profiles during normal operation. The authors suggested that further
research is needed to quantify environmental factors (e.g., doppler shift,
fading, temperature). Following these recommendations, Tekbas et
al. [33, 90] tested 10 VHF FM transmitters under ambient tempera-
ture, voltage, and noise level changes. The device fingerprints were
composed of transient amplitude and phase features obtained from the
signal complex envelope. A probabilistic neural network (PNN) was
used for classifying the fingerprints. The experimental results showed
that the system had to be trained over a wide temperature and opera-
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tional supply-voltage ranges in order to achieve low classification error
of 5%. Classification accuracy of low-SNR transients could be improved
by estimating the SNR and modifying its level in the training phase [90].

Transient-based approaches were also investigated in modern wire-
less local and personal area networks (WLAN/WPAN), primarily for in-
trusion detection and access control. Hall et al. [91–93] focused on Blue-
tooth and IEEE 802.11 transceivers. The authors captured the tran-
sient signals of packet transmissions from close proximity (10 cm) with
a spectrum analyzer. They extracted the amplitude, phase, in-phase,
quadrature, power, and DWT coefficients and combined them in device
fingerprints. Classification results on 30 IEEE 802.11 transceivers com-
posed of different models from 6 different manufacturers [92,94] showed
error rates from 0 to 14% depending on the model and manufacturer.
The average classification error rate was 8%. The same technique was
also applied to a set of 10 Bluetooth transceivers and showed similar
classification error rates [93]. The authors also introduced dynamic
profiles, i.e., each device fingerprint was updated after some amount
of time, in order to compensate internal temperature effects in the
considered devices. These works used a limited set of same model
and manufacturer devices. The experiments were performed from close
proximity. No indication on the feasibility of device identification in
practical scenarios was provided.

Ureten et al. [32] proposed extracting the envelope of the instanta-
neous amplitude of IEEE 802.11 transient signals for device classifica-
tion. The authors classified signals captured at close proximity from 8
different manufacturers using a probabilistic neural network. The clas-
sification error rates fluctuated between 2 and 4% depending on the
fingerprint size. One weakness of this approach is that it works only
on devices from different models. An attacker could easily compromise
such a system by using a device from the same manufacturer.

In the discussed works, signal transients were captured at close prox-
imity to the fingerprinting antenna, approximately 10 to 20 cm. The
classification error rates were primarily estimated from a set of dif-
ferent model/manufacturer devices; only a few devices possibly had
identical hardware. Physical-layer identification of same-model-same-
manufacturer devices was considered by Rasmussen et al. [28]. The
authors explored similar characteristics as prior works, namely tran-
sient duration, amplitude variance, number of peaks of the carrier sig-
nal, difference between normalized mean and maximum value of the
transient power, and the first DWT coefficient. Experimental results
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on 10 UHF (Mica2/CC1000) sensor devices with identical radio hard-
ware showed a classification error rate of 30% from close proximity.
This result clearly demonstrated that more investigation was required
to evaluate the feasibility of accurately identifying identical devices.

None of the aforementioned works considered the feature (finger-
print) stability with respect to acquisition distance, antenna polariza-
tion and location. They did not study the resilience of physical-layer
device identification to attacks.

In Chapter 4 ( [59]) we revisited wireless transceiver identification
based on turn-on transients in order to address the above issues. In
particular, we considered a large set of same-model-same-manufacturer
transceivers and stability analysis. We showed that it is possible to
identify device with high accuracy using the frequency information
within the transient signal. However, frequency information within
the transient changes with distance, polarization and location. This
and the security analysis of transient-based identification in Chapter 7
exposed for the first time the limitations of transient-based approaches
for device identification in a number of security applications where their
use has been suggested. These are detailed in Chapter 8.

Modulation-based approaches to device identification focused on
extracting unique features from the modulated part of the signal. Brik
et al. [53] used five distinctive signal properties of modulated signals,
namely the frequency error, SYNC correlation, I/Q origin offset, and
magnitude and phase errors as features for physical-layer device identi-
fication. The latter were extracted from IEEE 802.11b packet frames,
previously captured using a high-end vector signal analyzer. Device
fingerprints were built using all five features. Fingerprint classification
was performed with k-NN and SVM classifiers specifically tuned for
the purpose. The system was tested on 138 identical 802.11b NICs and
achieved a classification error rate of 3% and 0.34% for k-NN and SVM
classifiers respectively. The signals were acquired at distances from 3
to 15 m. Preliminary experimentation on varying locations of 3 devices
showed that the extracted fingerprints were stable to location changes.
However, no convincing information on the underlying conditions was
provided. Attacks were not considered as well.

Candore et al. [95] further analyzed the accuracy of modulation-
based features by exploring classifier combination methods. They au-
thors focused on weighted voting and maximum likelihood strategies.
Experimental results on a set of experimental radios showed an average

128



9.1. Wireless Transceiver Identification

device detection rate of 88% and false alarms of 12%. The accuracy
could be improved with increasing the number of frames used to build
the device fingerprint.

Other approaches to physical-layer identification of wireless trans-
ceivers considered more regions in the transmitted signals. In particu-
lar, a number of works have appeared extracting identification features
from non-transient signal parts such as near-transient, packet preamble.

Suski et al. [96] proposed using the baseband power spectrum den-
sity of the packet preamble to uniquely identify wireless devices. Device
fingerprints were created by measuring the power spectrum density of
the preamble of an IEEE 802.11a (OFDM) packet transmission. Finger-
prints comparison was performed by spectral correlation. The authors
evaluated the accuracy of their approach on 3 devices and achieved
an average classification error rate of 20% for packet frames with SNR
greater than 6 dB. Klein et al. [97] further explored IEEE 802.11a
(OFDM) device identification by applying complex wavelet transfor-
mations and multiple discriminant analysis (MDA). The classification
performance of their technique was evaluated on 4 same model Cisco
wireless transceivers. The experimental results showed improvements
in terms of SNR of approximately 8 dB for a classification error rate of
20%. Varying SNR and burst detection error were also considered in
this work.

Reising et al. [98] used the near-transient and midamble regions of
GSM-GMSK burst signals to classify 4 mobile phones from four differ-
ent manufacturers. The authors observed that that the classification
error using the midamble is significantly higher than using transients.
Various factors were identified as potential areas of future work on
identification of GMSK signals. In a subsequent study [99], the same
authors demonstrated that the near-transient RF fingerprinting is suit-
able for GSM signal fingerprinting consistent with their prior work on
802.11a (OFDM) benchmark accuracy [97].

Jana et al. [39] proposed an identification technique based on clock
skews in order to protect against unauthorized access points (APs)
in a wireless local area network. The AP fingerprint consisted of its
clock skew as measured by the client station. This technique has been
previously shown to be effective in wired networks [6]. The authors
showed that they could distinguish between different APs and therefore
detect an intruder AP with high accuracy. The possibility to compute
the clock skew relied on time-stamps available during AP association.
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We point out that most of the above discussed works considered
standard classifiers and classification error rate as a performance metric.
While such a metric is appropriate for applications with well-known
type and number of classes (e.g., [100]), it is not suitable for applications
such as intrusion detection, device authentication, wormhole detection
due to: 1) In intrusion-related applications, the number of classes (i.e.,
devices) is unlimited. 2) Standard classifiers will classify test signals
coming from a device that does not belong to the classes of devices to
one of these classes.

9.2 Passive Transponder Identification

Passive Radio Frequency Identification (RFID) are being incorporated
in contactless identity cards [36], electronic passports [64], payment
credit cards [65] and products in supply chain systems [101]. Due to
the security and privacy threats related to RFID deployment, a number
of works have addressed RFID authentication, key management and
privacy-preserving deployment, among others [1, 102–105]. Although
the literature contains many investigations of RFID security and pri-
vacy on the logical level, the security implications of the RFID physical
communication layer have remained largely unexplored.

Passive RFID device identification using the physical layer has been
recently considered [106–110]. Periaswamy et al. [106] addressed finger-
printing of UHF RFID tags. The authors proposed a method to enable
ownership transfer of UHF RFID tags using the minimum power re-
sponse of tags as a physical-layer fingerprint. The authors used a small
set of 8 tags from 2 models and showed visual evidence that UHF tags
can be distinguished. In a more detailed study [109], the authors eval-
uated the ability of the minimum power response to uniquely identify
large sets of UHF tags. An experimental evaluation on two manufac-
turers (50 tags per manufacturer) demonstrated an average identifica-
tion success rate of 94.4% (with false accept rate of 0.1%) and 90.7%
(with false accept rate of 0.2%). While these results are particular to
the physical behavior of UHF RFID backscatter communication, they
confirm the main findings in Chapters 5 and 6 ( [111,112]), namely the
ability to accurately identify same-model-same-manufacturer RFID de-
vices. Even though, the authors did not consider any feature stability
experiments, the proposed technique is unlikely to be able to remotely
identify tags from any distance and location due to: (i) the minimum
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power response provides UHF tag’s energy-harvesting information and
it is indicated at a specified frequency and distance [113]. This implies
that it varies with the distance. (ii) Experiments in reflective envi-
ronments have demonstrated significant variations in the tag minimum
power response [114].

The closest work to our UHF RFID in Chapter 5 ( [34]) is [110]. In
an independent investigation, the authors experimentally showed that
UHF tag responses exhibit stable and consistent duration within same-
model-same-manufacturer tags. This is very similar to our time interval
error (TIE) feature for distinguishing UHF RFID tags. Experimental
results on 30 tags from 3 major manufacturers (10 tags per manufac-
turer) showed a classification error of 2%, 4% and 60% for the respective
manufacturers. A limitation of that work compared to ours is that the
authors did not attempt to evaluate their findings on larger sets, nei-
ther they tried to theoretically explain and compute the entropy of the
tag response duration as a device identification feature. Nevertheless,
we can consider these results as an important confirmation that dis-
tinguishing UHF tags using timing characteristics is possible for other
major manufacturers then the ones considered in this thesis.

Romero et al. [107] investigated electromagnetic characteristics and
showed that different models of HF RFID cards were identifiable. Their
method consisted of observing certain frequencies in the transient and
frequency response of the device. The authors showed visually that the
fingerprints of devices from 4 different models form clearly separable
clusters in the feature space.

Following our work [111], Romero et al. improved their previously
proposed technique. Their study [108] demonstrated that precise mea-
surements of the unloaded resonance frequency and quality factor of HF
RFID cards also allow identification of different card models as well as
identification of individual cards of the same model. The results from
combining resonance information together with measurements of the
energy at the carrier harmonics during transmission enabled identifica-
tion with an error rate as low as 4%. These rates were obtained on a
set of 4 models with 10 devices per model.

The aforementioned works on HF RFID device identification are
the closest to our Chapters 5 and 6 ( [111, 112]). However, they did
not consider neither feature stability analysis, nor the transferability
of the device fingerprints between acquisition setups. Moreover, our
optimized identification features achieved lower error rates (an Equal
Error Rate of 0.5%).
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RFID uniqueness for cloning protection can also be achieved with
physical unclonable functions (PUFs) [115–117], certificates of authen-
ticity [118,119] and watermarking schemes [120]. PUF-enabled RFIDs
contain a special circuit that maps input challenges to output responses
using a function (PUF) determined by the inherent variations of that
circuit. The difficulty of controlling these variations prevents an ad-
versary from duplicating the PUF-enabled chips given some assump-
tions on its capabilities. The main limitation of PUF-based identifi-
cation is that it requires PUF-enabled devices. However, it presents
the advantage of relying on “controlled” variability as opposed to un-
intentionally introduced manufacturing variability that physical-layer
device identification exploits. Recently, it has been shown that several
PUF-constructions can be broken by numerical modeling attacks [121].

Lakafosis et al. [119, 122] realized RF physical objects to be in-
cluded in RFID tags as certificates of authenticity (CoA) in order pro-
tect against counterfeiting [118]. The physical object consisted of a
structure of copper wires which exhibits unique RF effects in the high-
frequency range 5 - 6 GHz. The authors also implemented a purpose-
built reader to extract the objects and provided performance and se-
curity evaluation. This type of designs is similar to watermarking
schemes which aim at providing unforgeable properties in the device
hardware [120, 123, 124]. One limitation is that watermarks typically
require specialized procedures to be verified.

For completeness, we should also mention that identification of HF
RFID-enabled identity documents has also been attempted on the log-
ical layer. Richter et al. [125] reported on the possibility of detecting
the country that issued a given passport by looking at the bytes that
an e-passport RFID sends as a reply in response to some carefully cho-
sen commands from the reader. This technique enabled classification
of RFID chips used in electronic passports. Our technique differs from
that proposal as it enables not only classification, but also identifica-
tion of individual passports. Moreover, the technique proposed in [125]
cannot be used for cloning detection since the attacker can modify the
responses of a tag on the logical level.

9.3 Other Identification Approaches

This thesis considered identification of wireless devices based on im-
perfections in their analog circuitry that can be measured during radio
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Chapter 9. Device Identification Techniques

communication. Physical fingerprints for device identification can also
be extracted from the internals of the device circuitry. Examples in-
clude measuring the MOSFET threshold voltages [126], threshold volt-
age mismatch in NOR cells [127], and the power-up of the SRAM [128]
for RFID identification. An advantage of these techniques is that they
can possibly be applied to any hardware. The drawback, however, is
the requirement of special access to the device circuitry as opposed to
the techniques developed in this work.

We note that other physical properties of the wireless communica-
tion could be used for security applications such as access control and
location distinction. In particular, a number of works have explored
the physical properties of the wireless channel for device authentica-
tion [129,130] and device location distinction [131]. While the channel
characteristics are believed to be unique within a given location due to
specific multipath effects, these characteristics are not inherent to the
device and therefore cannot be used for device identification unless the
device is bound to its location.

We conclude this section by mentioning that the present work cov-
ers the physical-layer subset of techniques on device identification. In
general, device identification spans all communication layers of the OSI
architecture [132] and a variety of network devices. Device identifi-
cation (fingerprinting) has been explored on both wired and wireless
devices at the link, transport, and application layers, among many oth-
ers [6, 125,133–139].
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Chapter 10

Security Related Work

In this chapter, we focus on security aspects of device identification.
In particular, we include the literature on security analysis of device
identification and relay attacks.

10.1 Attacks on Device Identification

The large majority of works have focused on exploring feature extrac-
tion and matching techniques for physical-layer device identification.
In parallel to our investigation of attacks, Edman and Yener [140] de-
veloped impersonation attacks on modulation-based identification [53].
They showed that low-cost software-defined radios [13] could be used
to reproduce modulation features and impersonate a targeted device
with a success rate of 50–75%. To the best of our knowledge this was
the only related work considering impersonation attacks on existent
physical-layer device identification techniques.

Our contributions in Chapter 7 ( [59, 141]) differ in a number of
aspects. First, we developed a broader range of impersonation at-
tacks, namely feature-replay, signal-replay and hill-climbing attacks.
We tested these attacks on both modulation and transient-based iden-
tification using both software-defined radios (SDR) and high-end arbi-
trary waveform generators. The authors in [140] studied only imperson-
ation of modulation-based identification using SDR. Second, the work
in [140] achieved lower impersonation rates of 55-75%. This was likely
due to the following differences in our feature- and signal-replay attack
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semantics, measurement setup and fingerprint extraction: (i) We used
8 GHz oscilloscope to measure the signal imperfections with high preci-
sion. (ii) Our modulation feature extraction and matching followed [53],
while in [140] some of the most discriminative features (F2) were not
computed. This modified the original modulation identification de-
sign. (iii) We used a high-end arbitrary waveform generator for signal
replay at RF as opposed to an SDR in [140]. Finally, we evaluated
the effectiveness of our proposed attacks using both threshold-based
identification and two classification methods (k-NN and SVM); [140]
considered only SVM classification.

10.2 Relay attacks

Relay attacks are well-known attacks in wireless systems. They have
been demonstrated in other scenarios, e.g., in [142] as mafia-fraud at-
tacks, in [10] as wormhole attacks. Similarly, the relationship between
secure communication and physical neighborhood notions has been pre-
viously studied in [143–145].

The closest work to our investigation on car key systems can be
found in [146, 147]. The authors perform security analysis of keyless
entry systems including relay attacks. While the performed analysis
identifies the relay problem, the authors did not provide neither hard-
ware design, nor practical implementation of the attack. Finally, no
adequate countermeasures were proposed. Some practical attacks on
PKES systems have been recently reported [148]. However, no detailed
information was available to verify wether the attack was real.

In terms of PKES system details, major electronic parts suppliers
provide components for their realization [149–152], those components
are then used by various car manufacturers. Although variations exist
in the protocols and cryptographic blocks (Keeloq in [152], TI DST in
[150], AES in [149]), all manufacturers provide systems based on the
same combined LF/UHF radio technology. We also note that certain
remote key entry systems have been shown to have weaknesses caused
by short keys and weak encryption algorithms [153–156]. Our attack
is independent of cryptography mechanisms, so solving such issues will
not provide protection against physical-layer relay attacks.
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Chapter 11

Conclusion

The successful application of wireless technologies to new areas depends
on the deployment of appropriate security and privacy measures. One
critical issue related to security and privacy is device identification.
It presents both defensive and offensive perspective. As a defensive
mechanism (e.g., authenticating devices), it must function in the face of
device identity spoofing, device cloning, cryptographic key compromise,
relay attacks. As an offensive mechanism (e.g., breaking user’s privacy),
it tries to gain information about user’s identity and location without
his prior consent. In this thesis, we investigated device identification
from both perspectives using the physical layer.

In the introductory part, we demonstrated that certain automobile
entry and start systems are vulnerable to relay attacks. The secure
car/key authentication was not sufficient to prevent unauthorized ve-
hicle access and drive. One of the fundamental problems was that the
system had no means to recognize that the car credentials were relayed
to the key by another device. This problem shows that it is important
to identify devices based on inherent physical characteristics in order
to prevent relay and other identity-based attacks.

Secondly, we investigated the feasibility and related assumptions
of identifying wireless devices using the physical-layer. We looked
at radio hardware imperfections introduced during the manufactur-
ing process, which appear in radio transmissions. We considered ac-
tive wireless transceivers and passive RFID transponders. For wireless
transceivers, we showed that the transient part of a packet transmission
provided unique characteristics for identification of same-model-same-
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manufacturer transceivers with high accuracy. We clarified the under-
lying conditions allowing for such high accuracy. Our findings suggest
that the transient properties are modified when the device changes dis-
tance and/or location, and therefore cannot be directly used for iden-
tification in mobile scenarios.

In the case of passive RFID devices, we explored timing, modula-
tion and spectral features for device identification using in- and out-of-
specification reader requests. Spectral features enabled device identi-
fication with low error rates in a controlled setup. Device fingerprints
based on such features proved to be stable over time. They could also
be extracted on one acquisition setup and verified on another if chan-
nel equalization was applied. Our results strongly support the use of
physical-layer RFID identification in document cloning detection (e.g.,
e-passports), where the presented document is measured, its fingerprint
is extracted and then compared to a previously enrolled fingerprint of
the legitimate document.

Timing and modulation features showed effectiveness in distinguish-
ing certain classes of RFID. In particular, time interval errors can be
used to distinguish UHF RFID tags of the same model and manufac-
turer irrespective of the tag location to the reader. If a user carries
a number of these tags, his location can be followed by a network of
readers. This type of tracking cannot be easily prevented unless new
cross-layer (physical and logical) mechanisms are devised.

Finally, we evaluated the resilience of selected physical-layer device
identification techniques to impersonation attacks. We designed and
implemented attacks by feature replay, signal replay and hill-climbing
strategies. Our evaluation showed that physical-layer identification was
vulnerable to impersonation. We clarified the underlying assumptions.
Our findings suggest that these techniques cannot be safely used in a
number of security scenarios where their use has been suggested. A
prominent example are intrusion detection scenarios where unautho-
rized access is detected by device identification.
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Chapter 12

Future Work

This thesis made a further step into understanding physical-layer device
identification, its assumptions and implications on the security and
privacy of wireless devices and networks. However, there are several
research areas that remain to be investigated as follows.

Sources of identification

The exact components that make devices uniquely identifiable remain
unclear. While their exact determination is a difficult task as it requires
low-level analog circuit modeling, simulations and measurements, such
analysis can provide (i) means to improve feature extraction for optimal
accuracy (ii) means to perform a detailed security analysis (iii) insights
on whether more precise manufacturing is able to prevent physical-layer
device identification. We note that our feature extraction and matching
methods are based on observations of the device behavior and experi-
mentation. Understanding the source of variability in wireless devices
would allow modeling the device circuitry and possibly draw theoreti-
cal bounds about the accuracy, entropy and stability of physical-layer
fingerprints.

While the above proposed analysis may look difficult in the case
of wireless transceivers given their analog complexity, passive RFID
devices present relatively simple circuits that are a good starting point
for investigation.

We note that more precise manufacturing and quality control may
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minimize the hardware imperfections. It remains an open research
problem whether this is practical and if all device imperfections could
technically be removed.

Remote identification

The feasibility or non-feasibility of accurately identifying wireless de-
vices remotely at the physical-layer under different channel conditions
(e.g., due to mobility or dynamic environment) is an open challenge.
Although this thesis demonstrated that certain classes of devices could
be distinguished remotely, the possibility to do the same on wireless
devices in general and with high accuracy remains an open issues. Fu-
ture insights on that matter are likely to have important implications
on the design of location and identity privacy-preserving protocols.

A possible starting point in that direction would be to look at pre-
cise wireless channel estimation and compensation procedures. Such
procedures could possibly preserve the inherent device characteristics
from the random effects of the channel. Under which type of wireless
channels this may be possible is an interesting area of research.

Security aspects

In the security context, the difficulty of impersonating or building
or finding wireless devices that would exhibit similar physical-layer
identities needs to be better understood and quantified. While we
have demonstrated that high-end arbitrary waveform generators have
sufficient capabilities to accurately reproduce physical-layer signals,
their use is unrealistic in several scenarios (e.g., device cloning de-
tection). Protection again impersonation and replay attacks could be
further studied by looking at data-dependent physical-layer character-
istics. Such characteristics, if they exist and are unique, would enable
physical-layer device identification that vary with the data sent by the
device. This proposed direction goes towards the concept of physical
unclonable functions (PUFs). In PUF solutions, embedded hardware-
based functions produce outputs that depend on the data input.
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