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Abstract

When we deal with combinatorial objects mathematically or algorith-
mically, we may observe that the intrinsic difficulty is governed by
some structural parameters. The use of structural parameters is di¬

verse: it often happens that finding a good structural parameter opens

a door to proofs of mathematical statements. On the computational
side, there are lots of algorithmic results stating that an algorithm is

more efficient if a certain structural parameter is smaller. Also, success¬

ful structural parameters are further generalized or specialized for par¬
ticular purposes so that the use can fit into broader context. Treewidths

of graphs and VC-dimension used in discrete and computational ge¬

ometry are such examples.

This thesis tries to identify some nice structural parameters for

three combinatorial or geometric objects. It consists of three rather in¬

dependent parts.

In Part I, we consider the clique complex of a graph, which is the

family of all cliques in the graph and is a special independence system

(i.e., closed under taking subsets). It is known that every indepen¬
dence system is the intersection of finitely many matroids, and a nat¬

ural greedy algorithm gives a solution of value at most k times away

from the optimal value for the maximum weight independent set prob¬
lem when the independence system is the intersection of k matroids.

Therefore, we regard this k as a nice structural parameter. Our main

result is the characterization of the clique complexes which are the in¬

tersections of k matroids for each natural number k. The same question
was asked by Fekete, Firla & Spille for matching complexes, but since

a matching complex is a special clique complex, our result is more gen¬
eral than theirs. Several related results are provided.

In Part II, we study abstract convex geometries introduced by Edel-

man & Jamison in 1985. An abstract convex geometry is a combinato¬

rial abstraction of convexity concepts appearing in a lot of objects such
as point configurations, partially ordered sets, trees and rooted graphs,
and it is defined in a purely combinatorial way. Our result states that

actually each abstract convex geometry can be obtained from some

point configuration. This result can be seen as an analogue of the

topological representation theorem for oriented matroids by Folkman
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& Lawrence. However, our theorem gives an affine-geometric repre¬
sentation of an abstract convex geometry. This suggests the intrinsic

simplicity of abstract convex geometries, and that the minimum di¬

mension of a representation can be considered as a good structural

parameter for an abstract convex geometry. As an application of our

representation theorem, we study open problems raised by Edelman &
Reiner about local topology of the free complex of an abstract convex

geometry. We settle their problem affirmatively when the realization

is 2-dimensional and separable. This can be seen as a first step to the

solution of their problems.

In Part III, we design fixed-parameter algorithms for some geomet¬
ric optimization problems. Fixed-parameter tractability is a concept

capturing hardness of the problem when some parameter associated

to the problem is small. We consider the number of inner points as

a parameter for geometric optimization problems on a 2-dimensional

point set. Since many of such problems can be solved in polynomial
time when the number of inner points is zero (i.e., the points are in

convex position), this parameter should be a nice choice. To support
this intuition, we consider two specific problems, namely the travel¬

ing salesman problem and the minimum weight triangulation prob¬
lem. For both of them, we devise fixed-parameter algorithms, and

show that they can be solved in polynomial time when the number

of inner points is at most logarithmic in the number of input points.
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Zusammenfassung

Bei der mathematischen oder algorithmischen Betrachtung kombina¬

torischer Objekte stellt man fest, dass die intrinsische Schwierigkeit
von einigen strukturellen Parametern der Objekte beherrscht wird.

Die Verwendung struktureller Parameter dient zu verschiedenen

Zwecken: einerseits tritt häufig der Fall ein, dass eine gute Auswahl

eines strukturellen Parameters eine Tür zu Beweisen mathematis¬

cher Aussagen öffnet. Andererseits existiert eine Vielzahl von algo¬
rithmischen Ergebnissen, die zeigen, dass ein Algorithmus effizien¬

ter ist, wenn ein bestimmter struktureller Parameter klein ist. Zu¬

dem werden erfolgreiche strukturelle Parameter oftmals weiter verall¬

gemeinert oder für bestimmte Zwecke weiter spezialisiert, um so in

einem breiteren Zusammenhang Verwendung zu finden. Beispiele für

solche Parameter sind Baumweiten von Graphen und VC-Dimension

in diskreter Geometrie.

In dieser Arbeit wird versucht, einige gute strukturelle Parameter

für drei kombinatorische oder geometrische Objekte zu identifizieren.

Die Arbeit besteht aus drei unabhängigen Teilen.

In Teil I betrachten wir den Clique-Komplex eines Graphen, unter

dem die Familie aller Cliquen des Graphen verstanden wird und

der ein spezielles Unabhängigkeitssystem darstellt. Es ist bekannt,
dass jedes Unabhängigkeitssystem Durchschnitt von endlich vielen

Matroiden ist, und dass ein natürlicher Greedy-Algorithmus für das

Problem einer unabhängigen Menge maximalen Gewichts einen Wert

liefert, der um höchstens einen Faktor k von der optimalen Lösung
abweicht, wenn das Unabhängigkeitssystem Durchschnitt von k Ma¬

troiden ist. Daher betrachten wir dieses k als guten strukturellen Pa¬

rameter. Das Hauptresultat dieses Abschnitts ist die Charakterisierung
von Clique-Komplexen, die Durchschnitt von k Matroiden sind (für

jede natürliche Zahl k). Die gleiche Frage wurde von Fekete, Firla und

Spille für Matching-Komplexe gestellt. Da ein Matching-Komplex ein

Spezialfall eines Clique-Komplexes ist, ist unser Resultat wesentlich

allgemeiner. In diesem Teil werden darüber hinaus weitere Resultate

in Zusammenhang mit diesem Problem präsentiert.

Teil II behandelt das Studium abstrakter konvexer Geometrien,

die von Edelman und Jamison 1985 eingeführt wurden. Eine ab-
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strakte konvexe Geometrie ist eine kombinatorische Abstraktion von

Konzepten der Konvexität, die in vielen Objekten wie Konfiguratio¬
nen von Punkten, partiell geordneten Mengen, Bäumen oder Wurzel¬

graphen eine wichtige Rolle spielen; eine abstrakte konvexe Geometrie

wird allerdings auf rein kombinatorische Weise definiert. Wir zeigen
in diesem Abschnitt, dass man jede abstrakte konvexe Geometrie

von bestimmten Konfigurationen von Punkten erhalten kann. Dieses

Ergebnis kann als Analogon zum Satz der topologischen Darstellung
von orientierten Matroiden von Folkman und Lawrence betrachtet

werden. Im Gegensatz zu Folkman und Lawrence geben wir jedoch
eine affin-geometrische Darstellung von abstrakten konvexen Geome¬

trien an. Dies suggeriert zum einen die intrinsische Einfachheit von

abstrakten konvexen Geometrien, zum anderen suggeriert es auch die

Wahl der minimalen Dimension einer Darstellung als guten struk¬

turellen Parameter. Als eine Anwendung unseres Theorems betra¬

chten wir offene Probleme von Edelman und Reiner über die lokale

Topologie des freien Komplexes einer abstrakten konvexen Geome¬

trie. Wir lösen dieses Problem im positiven Sinn für den Fall, dass

die Realisierung zweidimensional und separabel ist. Dies kann als er¬

ster Schritt zur vollständigen Lösung der Probleme von Edelman und

Reiner betrachtet werden.

In Teil III entwerfen wir parametrisierte Algorithmen für einige ge¬
ometrische Optimierungsprobleme. Parametrisierte Komplexität ist

ein Konzept, um die Schwierigkeit des Problems zu erfassen, wenn

ein bestimmter Parameter des Problems klein ist. Wir betrachten

die Anzahl innerer Punkte als einen Parameter für geometrische Op¬
timierungsprobleme auf einer zweidimensionalen Punktmenge. Da

viele Probleme dieser Art in polynomieller Zeit gelöst werden können,

wenn die Anzahl der inneren Punkte null ist (i.e., die Punkte sind in

konvexer Lage), sollte dieser Parameter eine gute Auswahl sein. Um

die Intuition zu bekräftigen, betrachten wir zwei spezielle Probleme:

das Rundreiseproblem sowie das Problem der Triangulierung mini¬

malen Gewichts. Für beide Probleme entwerfen wir parametrisierte
Algorithmen und zeigen, dass die Probleme in polynomieller Zeit

gelöst werden können, wenn die Anzahl der inneren Punkte logarith¬
misch in der Anzahl der Eingabepunkte ist.
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Chapter 0

Introduction

The Phantom: Still hungry for an

introduction!

The Phantom of the Opera (1989)

0.1 Use of Structural Parameters

When we deal with combinatorial objects mathematically or algorith-
mically, we may observe that the intrinsic difficulty is governed by
some structural parameters. The use of structural parameters is di¬

verse. It often happens that finding a good structural parameter opens
the door to proofs of mathematical statements. On the computational
side, there are lots of algorithmic results stating that an algorithm is

more efficient if a certain structural parameter is small. Also, success¬

ful structural parameters are further generalized and specialized for

particular purposes so that they can fit into a broader context.

This thesis does not aim at defining what a "structural parameter"
is. We think that it makes little sense to define it formally; it is not the

main goal of this thesis to classify several parameters as structural ones

or non-structural ones. However, we would like structural parameters
to have some characteristics. First of all, since it is structural, the pa¬
rameter value must only depend on the object itself. Second, it must

reflect some "complexity" of the object; for example, if an object has a

smaller parameter value, then the problem under investigation should

be easier to solve.

1



2 Chapter 0. Introduction

Indeed, discrete mathematics and theoretical computer science

have been investigating a lot of structural parameters. To obtain some

intuition, let us look at two prominent examples: one from graph the¬

ory and one from discrete and computational geometry.

0.1.1 Example: the Graph Minor Theorem and

Treewidth

The first example comes from the graph minor theorem, which has

been known as Wagner's conjecture [Wag37] and has recently had

a complete proof by the series of articles of Robertson & Seymour
[RS83, RS86a, RS84, RS90a, RS86b, RS86c, RS88, RS90c, RS90b, RS91,

RS94, RS95b, RS95c, RS95a, RS96, RS03a, RS99, RS03b, RS04a, RS04b].

(Diestel's book [DieOO] contains a relatively short exposition of that

proof.) The following is a statement of the graph minor theorem: every
infinite family of finite graphs contains two graphs such that one is a

minor of the other.

Before Robertson & Seymour, it was proven that the graph minor

theorem is true for trees by Kruskal [Kru60], and they relied on this

fact. One of the ideas which Robertson & Seymour had was to intro¬

duce a tree-decomposition and the treewidth of a graph. We are not

going to define what a tree-decomposition and a treewidth are, but at

least it is good to notice that the treewidth can be seen as a parame¬
ter representing how close a graph is to a tree. (For example, a graph
has treewidth 1 if and only if it is a tree.) With these concepts accom¬

panied by a lot of far-from-trivial lemmas, they are able to apply the

proof strategy which Kruskal used in order to complete the proof of

the graph minor theorem.

After the invention, tree-decompositions and treewidths have be¬

come important in graph algorithms and a deep theory has arisen. For

example, a result by Courcelle [Cou91] states that any decision prob¬
lem which can be described by the so-called monadic second order

logic can be solved in linear time for graphs of bounded treewidth,
and the result also gives such an algorithm assuming that a tree-

decomposition is given. (Since Bodlaender [Bod96] provides a linear-

time algorithm to compute a tree-decomposition when a given graph
has bounded treewidth, this assumption is reasonable.) This is gener-



0.1. Use of Structural Parameters 3

alized to optimization problems and counting problems by Arnborg,
Lagergren & Seese [ALS91]. There are even linear-time algorithms
which do not require a tree-decomposition [ACPS93, BvAdFOl]. Sur¬

vey articles by Bodlaender [Bod93, Bod97, Bod05] nicely explain some
of the algorithmic aspects on treewidths.

Recent development on fixed-parameter algorithms for planar
graphs is also influenced by tree-decompositions. They are nicely ex¬

plained in Niedermeier 's habilitation thesis [Nie02]. Most recent re¬

sults are given by Fomin & Thilikos [FT04]. This direction of research

is extended to the so-called bidimensional graph problems, and there

a local treewidth plays an important role. Demaine & Hajiaghayi
[DH05a, DH05b] gave surveys on this topic.

Thanks to the algorithmic success of treewidths, similar notions

have been introduced. One of the most important one is the

cliquewidth, which was introduced by Courcelle, Engelfriet & Rozen-

berg [CER93] and was related to graph algorithms by Courcelle &

Olariu [CO00]. Analogously to the treewidth, there is a result due to

Courcelle, Makowsky & Rôties [CMR00] stating that every optimiza¬
tion problem which can be expressed by the monadic second order

logic is linear-time solvable for graphs of bounded cliquewidth.

0.1.2 Example: Vapnik-Chervonenkis Dimension in

Discrete and Computational Geometry

Vapnik & Chervonenkis [VC71] introduced a concept which is nowa¬

days called the Vapnik-Chervonenkis dimension or shortly VC-

dimension. (The name was coined by Haussler & Welzl [HW87].)

Vapnik & Chervonenkis defined this concept in the context of statis¬

tical learning theory. The VC-dimension becomes one of the super-

key concepts in the theory of empirical processes and computational
learning theory [Vap98, SS01]. One of the theorems by Vapnik & Cher¬

vonenkis is the following. For a set system of VC-dimension d, there

exists an ^-approximation of the system of size 0(4- log |), and such

an ^-approximation can be found by random sampling. Here, an e-

approximation of a set system is a subset of the ground set which ap¬

proximates the size of every set in the family within an additive error

e. (We are not going to give a formal definition.)
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A concept similar to an ^-approximation was introduced by Haus¬

sler & Welzl [HW87] while they studied the simplex range query in

arbitrary dimension, which is a problem in computational geometry.

They proved the so-called e-net theorem, which states that for a set

system of VC-dimension d, there exists an e-net of the system of size

0( j log | ), and such an e-net can be found by random sampling. Here,

an e-net of a set system is a subset of the ground set which intersects

every set in the family that has at least e-fraction many elements of the

size of the ground set. With proper definitions, we can show that an

^-approximation is an e-net, but not the other way around in general.
However, the results above show that e-nets are better in size than e-

approximations by a factor of 1/e.

Haussler & Welzl [HW87] applied the e-net theorem to give a bet¬

ter upper bound for the simplex range query, and it turned out that

the concept of VC-dimension is quite useful in discrete and compu¬
tational geometry. For example, in the proof by Alon & Kleitman of

the (p, q)-theorem (for convex sets), which was proposed by Hadwiger
& Debrunner, the e-net theorem plays a key role. Recently, Matousek

[Mat04] showed that any set system of bounded VC-dimension has a

(p,q) -theorem. So, families of bounded VC-dimension behave nicely.
Additionally, as an answer to a conjecture by Kavraki, Latombe, Mot-

wani & Raghavan [KLMR98] on the art gallery problem, Kalai & Ma¬

tousek [KM97] proved that if X is a compact simply-connected set in

the plane of Lebesgue measure 1, such that any point x G X sees a

part of X of measure at least e, then one can choose a set G of at most

0(j log j) points in X such that any point of X is seen by some point
of G. To show that, they just needed to prove that a certain set system
has bounded VC-dimension.

On the computational side, Matousek [Mat95] designed an effi¬

cient deterministic algorithm to construct an e-net for a set system
of bounded VC-dimension. (A simplified presentation is given by
Chazelle & Matousek [CM96], for example.) This was used for de-

randomizing many geometric algorithms, for example, by Har-Peled

[HP99], by Chazelle & Matousek [CM96], and by Ramos [RamOl].

The e-net theorem and the notions around it play a great role in

discrepancy theory. Books by Matousek [Mat99], Chazelle [ChaOl] and

Matousek [Mat02] are nice guides for the e-net theorem and related

materials
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With its success, VC-dimension is generalized in several ways. For

example, Matousek [Mat99, Exercise 5.2.10] discusses a generalization
of VC-dimension to k-valued functions. (The usual VC-dimension cor¬

responds to binary functions.) Raz [RazOO] introduced the concept of

VC-dimension of a set of permutations.

0.1.3 Viewpoint of the Thesis

Treewidth and VC-dimension are just examples of structural param¬

eters; structural parameters are all around in combinatorial objects.
However, we hope that these two examples convince us so that struc¬

tural parameters in combinatorial objects should be of interest.

Looking at the two examples above, we observe that the first key
step was actually to find a nice structural parameter of objects. Then,
the associated results were established and the theory has been en¬

riched. In this thesis, we study three kinds of discrete objects with

their structural parameters. Our emphasis is on the identification of

new structural parameters which we expect to be useful for discrete

mathematics and theoretical computer science. (So, we are still hungry
for parameters.)

0.2 Summary and Organization

According to the objects we study, the rest of the thesis is decomposed
into three parts. Table 1 shows the correspondence of the parts, the

objects we look at, the structural parameters and the type of results we

obtain. Each part is written in a self-contained way so that the reader

can start anywhere. (As a consequence, some definitions are repeated.)

0.2.1 Part I

In the first part, we consider independence systems with their relation

to matroids. An independence system is a set system such that any
subset of a member of the system is also a member. Depending on
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Object Structural Parameter Type of Result

I clique com¬

plex

the minimum number

of matroids we need

to represent a given
clique complex as their

intersection

characterization

II abstract

convex

geometry

the minimum dimen¬

sion of an affine real¬

ization

realization theorem

and its application
to topological com¬

binatorics

III planar point
set

the number of inner

points
fixed-parameter al¬

gorithms

Table 1: Correspondence of the concepts and the results

the context, an independence system is called an abstract simplicial
complex (in combinatorial topology and topological combinatorics),
a hereditary hypergraph (in hypergraph theory) and an order ideal

(in poset theory). An "independence system" is a term mainly used

in matroid theory, which was initiated by Whitney [Whi35]. A ma-

troid is an independence system which additionally satisfies the so-

called augmentation axiom. Good sources about matroids are a book

by Oxley [Oxl92] on fundamental properties of matroids and repre-

sentability questions, and the three-volume book by Schrijver [Sch03]
on relations to combinatorial optimization. We often encounter ma¬

troids in combinatorics. For example, if we have a set of vectors

in some vector space, the independent subsets of the vectors form

a matroid. If we have a graph, the edge sets of its forests form a

matroid. From lattice theory, it is known that a geometric lattice

is an equivalent notion to a matroid. In theory of hyperplane ar¬

rangements, the enumerative aspects are well treated through ma¬

troids [Sta04]. Polyhedral combinatorics has been founded on the ba¬

sis of matroid theory [Sch03]. Matroids have numerous applications
in combinatorial design [Dez92], combinatorial optimization [Sch03]
which leads to submodular-type optimization [Fuj91] and further to

discrete convex analysis [Mur03], secret sharing schemes in cryptogra¬

phy [BD91, NW01], rigidity [Whi92, Rec89, GSS93], electric engineer¬
ing [Rec89, Nar97], systems analysis [Rec89, MurOO], and so on.
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It is folklore that every independence system is the intersection of

finitely many matroids. Therefore, we can associate with each indepen¬
dence system the minimum number of matroids whose intersection is

the independence system. We consider this number as a structural pa¬

rameter of independence systems, and then we see that the larger the

parameter value of an independence system is, the more complex the

description of the system becomes. Another fact which supports this

choice of a parameter is the following one due to Jenkyns [Jen76] and

Körte & Hausmann [KH78]: the greedy algorithm approximates the

optimal value within a factor of k for the maximum weight indepen¬
dent set problem in the intersection of k matroids. This means that

the smaller the structural parameter of an independence system is, the

better approximation the greedy algorithm gives.

As a foundation of this structural parameter, we try to characterize

the independence systems which are the intersections of k matroids,
for each A; G IN. Unfortunately we do not find an answer to this ques¬

tion, but for the special case of clique complexes we find an answer.

Given a graph, the clique complex of the graph is the collection

of all cliques of the graph, where a clique of a graph is defined to

be a vertex subset whose elements are pairwise adjacent. In the lit¬

erature a clique complex is also called a flag complex. A clique com¬

plex is a natural independence system arising from a graph, and it has

connections to many other questions in, for example, extremal com¬

binatorics [Bol95], algebraic combinatorics [Ham90, CS04], topological
combinatorics [CD95] and hypergraph theory [ABM03, MesOl, Mes03].

Furthermore, the class of clique complexes contains other important
classes of independence systems such as the matching complexes of

graphs and the order complexes of partially ordered sets.

The main theorem of this part is the following. The clique complex
of a graph is the intersection of k matroids if and only if there exist

k partitions of the vertex set of the graph into stable sets such that a

pair of vertices is not an edge of the graph if and only if it is contained

in some stable set from one of the partitions. This theorem gives a

polynomial-time checkable certificate for a graph to have a clique com¬

plex which is the intersection of k matroids. Thus, the theorem implies
that the corresponding decision problem belongs to NP.

As a corollary of the main theorem, we show a good characteriza-
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tion of graphs with clique complexes which are the intersections of two

matroids. This enables us to determine in polynomial time whether the

clique complex of a given graph is the intersection of two matroids. As

well, we consider the following extremal problem: what is the maxi¬

mum number of matroids we need for the representation of the clique
complex of a graph with n vertices? We give a complete answer to this

question: "n — \ matroids are always sufficient, and necessary in some

case."

Recently the same problem was studied by Fekete, Firla & Spille
[FFS03] for matching complexes. Since matching complexes are always
clique complexes, we are able to derive most of their results as corol¬

laries of our main theorem.

Part I is based on joint work with Kenji Kashiwabara & Takeaki Uno

[KOU03].

0.2.2 Part II

Part II is devoted to an abstraction of the concept of convexity. Convex¬

ity is one of the central concepts in geometry. We study abstract convex

geometries introduced by Edelman & Jamison [EJ85]. They are finite

set systems fulfilling additional conditions, and obtained from diverse

objects and processes. For example, a proper definition of a "convex

set" in a finite point set gives rise to abstract convex geometries. This

also applies to partially ordered sets, trees, chordal graphs, Ptolemaic

graphs, and acyclic oriented matroids. Searching processes in a rooted

graph give an abstract convex geometry as well.

Abstract convex geometries appear in a lot of seemingly unrelated

contexts. Since it is an abstraction of a geometric concept, it natu¬

rally arises in discrete geometry [EJ85, ER00, ERW02]. In combina¬

torial optimization, abstract convex geometries are considered equiv¬
alent to antimatroids, where an antimatroid is a specialization of a

greedoid and a greedoid is a generalization of a matroid [KLS91],
so a certain bottleneck-type optimization problem can be solved by
a greedy algorithm [BF90]. From lattice theory, we can see that fi¬

nite lower semimodular lattices are equivalent to abstract convex ge¬
ometries [EJ85, Ste99]. From the viewpoint of closure operators, ab-
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stract convex geometries can be seen as closure spaces with anti-

exchange closure operators [EJ85, KLS91, And02]. Namely an abstract

convex geometry is a nice counterpart of a matroid since a matroid

can be seen as a closure space with exchange closure operator. In

submodular-type optimization, it has turned out that abstract con¬

vex geometries are "essential" for the so-called dual greedy algorithm
to work [KO03, Fuj04]. While pursuing a well-behaving structure in

queuing theory, Glasserman & Yao [GY94] arrived at abstract convex

geometries. In mathematical psychology, an abstract convex geometry
arises in the study of knowledge spaces [FD88, Fal89, Kop98, DF99a].

Furthermore, a path-independence choice function in social choice

theory is also an equivalent notion to an abstract convex geome¬

try [JDOl, Kos99, MROl, And02]. In scheduling, a generalization of

usual precedence constraints to the so-called AND/OR precedence
constraints gives rise to an abstract convex geometry [MSS04]. There¬

fore, the relationship with directed hypergraphs and Horn theory of

boolean functions can also be seen.

An abstract convex geometry is introduced through an extraction

of geometric convexity of finite point sets, and it is defined in a purely
combinatorial manner. This is a direction from geometry to combina¬

torics. Our result exhibits a kind of the opposite direction. As a main

result, we show that every abstract convex geometry can be defined

via finite point sets. More precisely speaking, we define a general¬
ized convex shelling, which is an abstract convex geometry specified
by two finite point sets, and we prove that every abstract convex geom¬

etry is isomorphic to some generalized convex shelling. We call such a

generalized convex shelling an affine realization of the abstract convex

geometry.

The main theorem naturally provides a structural parameter for ab¬

stract convex geometries. Namely, we can take the minimum dimen¬

sion of point sets of an affine realization of an abstract convex geome¬

try. Therefore, our theorem gives a fresh view to the theory of abstract

convex geometries.

The main theorem enables us to study abstract convex geometries
in a geometric setting, which allows us to use geometric machiner¬

ies. As an application of the main theorem we study an open prob¬
lem posed by Edelman & Reiner [ER00]. The problem is concerned

with local topology of a certain simplicial complex associated with an
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abstract convex geometry. We settle the problem affirmatively when
abstract convex geometries have two-dimensional affine realizations.

The main theorem in this part is based on joint work with Kenji
Kashiwabara & Masataka Nakamura [KNO05]. The result about topol¬
ogy is the author's individual work [Oka04].

0.2.3 Part III

Finally in Part III, we study the algorithmic aspects of a finite set of

points in the Euclidean plane.

Several optimization problems on finite planar point sets are

known to be solvable in polynomial time when the set forms the vertex

set of some convex polygon. (In such a case the points are said to be

in convex position.) However, the problems often become hard (or not

known to be easy) when the points are arbitrarily placed. Having these

two cases, we observe "inner points make the problems hard." Here

we define an inner point of a point set as a point in the interior of the

convex hull.

From this observation, we take the number of inner points as a

structural parameter of a finite planar point set. Especially we look

at some optimization problems which can be efficiently solved when

this structural parameter is small. Then the next question would be

"how large the parameter can get in order to assure a polynomial-time
algorithm?"

To study this question, we adapt the viewpoint of parameterized
computation. In parameterized computation we consider a parame¬
terized problem, formally defined as a pair of a usual computational
problem and a parameter. An algorithm for a parameterized problem
is called a fixed-parameter algorithm (or an FPT algorithm) if it runs

in time 0(f(k)nc) where n is the size of the input of the problem, k

is the parameter, c is a constant independent of n and k, and / is a

computable function. For example, an algorithm with running time

0(3kn2) is allowed, but 0(nk) is not. If we consider the case where k

is small, say k = 10, the first algorithm runs in 0(n2), while the sec¬

ond one runs in 0(n10). Furthermore, the first algorithm runs in poly¬
nomial time in n even if k = O(logn), while this is not true for the sec-
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ond one. So, the power of fixed-parameter algorithms is clear. Recently
quite a few survey articles on parameterized computation have been

written [Nie98, DFS99a, DFS99b, FelOl, Fel02, Dow03, Fel03a, Fel03b,

Nie04, FG04, DM04] and books on this topic [DF99a, Nie02] are also

available.

Niedermeier [Nie04] gives a state-of-the-art survey on parameteri¬
zation in parameterized computation. He identifies several ways of pa¬

rameterizing computational problems based on some previous results.

The most common one is to parameterize with respect to outputs. For

example, we take the size of an output as a parameter. Another view

gives a parameterization with respect to inputs. The latter one is the

parameterization that our result use, and indeed our study is one of

the results which motivates Niedermeier [Nie04] to name it "distance-

from-triviality" parameterization. Namely, in our case, the number of

inner points measures the distance from the trivially solvable (or poly-
nomially solvable) case in which the points are in convex position. This

way of parameterization has only been studied for graph problems by
Cai [Cai03], Marx [Mar04], and Guo, Hüffner & Niedermeier [GHN04],
for the satisfiability problem by Szeider [Sze04], and for a string prob¬
lem by Guo, Hüffner & Niedermeier [GHN04]. Therefore, our results

are the first and unique fixed-parameter contribution to the distance-

from-triviality approach for geometric problems.

As concrete examples, we study two geometric problems. The first

one is the traveling salesman problem. In this problem, we are given n

points in the Euclidean plane and we want to find a shortest tour (i.e., a

way to visit all points and go back to where we started). This problem
is in general NP-hard, as proven by Garey, Graham & Johnson [GGJ76]
and independently by Papadimitriou [Pap77]. However, the problem
becomes easy when the points are in convex position. Therefore, pa¬
rameterization by the number of inner points makes sense. We design
two fixed-parameter algorithms for this problem. The first one runs

in 0{k\kn) time and O(k) space, and the second one runs in 0(2kk2n)
time and 0(2kkn) space. Here k represents the number of inner points

among given n points. We also study some variants of the travel¬

ing salesman problem such as the prize-collecting traveling salesman

problem and the partial traveling salesman problem, and give fixed-

parameter algorithms for them as well.

The second problem we investigate is the minimum weight trian-
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gulation problem. In this problem, we are again given n points in the

Euclidean plane, and we want to find a triangulation of the point set

(i.e., a subdivision of the convex hull of the set into triangles such that

each edge connects points from the set and each triangle contains no

point from the set in its interior) of minimum weight. Here, the weight
of a triangulation is measured by the sum of the lengths of its edges.
In general, the minimum weight triangulation problem is not known

to be solvable in polynomial time nor to be NP-hard. This is one of

the open problems listed in the book by Garey & Johnson [GJ79] which

are still unsolved. For the parameterized version of this problem, we

give a fixed-parameter algorithm running in 0(6^n5logn) time. Here

again, k represents the number of inner points among given n points.

The basic technique common to these algorithms is dynamic pro¬

gramming. As well, a well-established enumeration technique plays
an important role.

The results on the traveling salesman problem in this part is based

on joint work with Vladimir Deïneko, Michael Hoffmann & Gerhard

Woeginger [DHOW04], and the results on the minimum weight tri¬

angulation problem is based on joint work with Michael Hoffmann

[HO04].
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And it seems that overall, we are short

of examples. The methods for coming

up with useful examples (or

counterexamples for commonly
believed conjectures) are even less

clear than the methods for proving.

Gil Kalai (2000)

Matroid Representation of

Clique Complexes

1.1 Introduction

An independence system is a family of subsets of a non-empty finite set

such that all subsets of a member of the family are also members of the

family. A lot of combinatorial optimization problems can be seen as

optimization problems on the corresponding independence systems.
For example, in the minimum cost spanning tree problem, we want to

find a maximal set with minimum total weight in the collection of all

forests of a given graph, and this collection is an independence system.
In the maximum weight matching problem we consider the collection

of all matchings of a given graph. This is also an independence sys¬
tem. More examples are provided by Korte & Vygen [KV02]. In this

chapter, we study independence systems arising from the maximum

weight clique problem.

A clique in a graph is a subset of the vertex set which induces a

complete graph. In the maximum weight clique problem, we are given
a graph and a weight function on the vertex set, and we want to find

a clique which maximizes the total weight of its vertices. As is well

known, the maximum weight clique problem is NP-hard even if the

Chapter 1

15



16 Chapter 1. Matroid Representation of Clique Complexes

weight function is constant [GJ79]. This means that there exists no

polynomial-time algorithm for this problem unless P = NP. Moreover,

Hâstad [Has99] proved that there exists no polynomial-time algorithm
for this problem which approximates the optimal value within a factor

n1_e for any e > 0 unless NP = ZPP. (Here, n stands for the number

of vertices in a given graph.) Therefore, the maximum clique prob¬
lem is deeply inapproximable. Thus, one wants to determine classes

of graphs on which they can perform well. To do that, we adapt the

viewpoint of independence systems and matroids. For the maximum

weight clique problem, we look at the family of all cliques of a graph
as an independence system. Such an independence system is called a

clique complex.

It is known that every independence system can be represented as

the intersection of a finite number of matroids. Jenkyns [Jen76] and Ko¬

rte & Hausmann [KH78] showed that, for the maximum weight base

problem on an independence system which can be represented as the

intersection of k matroids, a natural greedy algorithm approximates
the optimal value within a factor k. (Their result can be seen as a gener¬
alization of the validity of the greedy algorithm for matroids, shown by
Rado [Rad57] and Edmonds [Edm71], although their results showed

that the validity of the greedy algorithm even characterizes matroids.)
Thus, this number k is a measure of "how complex an independence
system is with respect to the corresponding optimization problem."

Here, we want to notice the importance of clique complexes in

fields other than combinatorial optimization. In extremal combina¬

torics, the /-vector of a clique complex (namely, the sequence of the

numbers of cliques of all sizes in a graph) is studied in connection

with Turân's problem. (See Bollobâs [Bol95].) Related to that, in al¬

gebraic combinatorics, problems on the roots of the /-polynomial of a

clique complex are studied. For example, Hamidoune [Ham90] asked

whether the /-polynomial of the clique complex of a graph whose com¬

plement is claw-free has only real roots. (It was only recently that the

problem has been solved by Chudnovsky & Seymour [CS04].) Also,

Charney & Davis [CD95] made a conjecture on clique complexes which

triangulate a homology sphere of odd dimension. For this topic, see

Stanley's survey article [StaOO]. Finally, in topological combinatorics,
when we refer to the topology of a graph, it usually means the topology
of the clique complex of the graph. The topology of clique complexes
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plays an important role when one investigates Hall-type theorems in

hypergraphs [ABM03, MesOl, Mes03]. Similarly, when we refer to the

topology of a partially ordered set, it usually means the topology of

the order complex of the partially ordered set, which turns out to be a

clique complex.

In this chapter, we investigate how many matroids we need for the

representation of the clique complex of a graph as their intersection.

We show that the clique complex of a given graph G is the intersection

of k matroids if and only if there exists a family of k stable-set partitions
of G such that every edge of G (the complement of G) is contained in

a stable set of some stable-set partition in the family. This theorem im¬

plies that the following decision problem belongs to NP: given a graph
G and a natural number k > 0, determine whether the clique complex
of G has a representation by k matroids or not. This is not a trivial fact

since in general the size of an independence system can be exponential.
As another consequence, we show that the class of clique complexes is

the same as the class of the intersections of partition matroids. This

may open a new direction of research to attack some open problems
on clique complexes.

Formerly, Fekete, Firla & Spille [FFS03] investigated the same prob¬
lem for matching complexes, and they characterized a graph whose

matching complex is the intersection of k matroids, for every natural

number k. Since the matching complexes form a subclass of the class of

clique complexes, we observe that some of their results can be derived

from our theorems as corollaries.

Further, we consider an extremal problem related to our theorem.

Namely, we determine how many matroids are necessary and suffi¬

cient for the representation of every graph with n vertices. This num¬

ber turns out to be n — 1. We also investigate the case of two matroids

more thoroughly. This case is especially important since the maximum

weight base problem can be solved exactly in polynomial time for the

intersection of two matroids by Frank's algorithm [Fra81]. (Namely,
in this case, the maximum weight clique problem can be solved in

polynomial time for any non-negative weight vector.) There, we will

see that an algorithm by Protti & Szwarcfiter [PS02] checks whether

a given clique complex has a representation by two matroids or not

in polynomial time. Additionally, we show that the clique complex
of a graph G is the intersection of k matroids if and only if G itself is
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the intersection of k matroids. (Here, we regard graphs themselves as

independence systems of rank 2.) Thus, this reveals the intimate rela¬

tionship between a graph and its clique complex in terms of matroid

intersection.

The organization of this chapter is as follows. In Section 1.2, we in¬

troduce some terminology on independence systems. The proof of the

main theorem is given in Section 1.3. Some immediate consequences
of the main theorem are also given there. In Section 1.4, we consider

an extremal problem related to our theorem. In Section 1.5, we inves¬

tigate the case of two matroids. In Section 1.6, we study a graph itself

as an independence system and relate it to our theorem. In Section

1.7, we deduce some results by Fekete, Firla & Spille [FFS03] from our

theorems. We conclude with Section 1.8.

1.2 Preliminaries

1.2.1 Graphs

A graph is a pair G = {V,E) of a finite set V, called the vertex set of

G, and a family E ç ( ^ ) of two-element subsets of V, called the edge
set of G. An element of V is called a vertex of V, and an element of

E is called an edge of V. The vertex set of G is denoted by V(G) and

the edge set of G is denoted by E(G). When we make a picture of

a graph for illustration, we draw vertices as points and edges as arcs

connecting two corresponding vertices.

A subgraph of a graph G = (V,E) is a graph H such that V(H) ç

V(G) and E{H) ç E(G). For a vertex subset W ç V(G), the subgraph
induced by W is a subgraph H defined as V(H) := W and E(H) :=

E(G) n (^). The subgraph induced by W is denoted by G[W}. The

complement of G is a graph H defined as V(H) := V and E(H) := ( 2 ) \

E, and denoted by G. A complete graph is a graph in which every two

vertices form an edge. A clique of a graph G = (V, E) is a subset K ÇV

such that the induced subgraph G[K] is complete. A stable set of a

graph G = {V,E) is a subset S ÇV such that the induced subgraph
G[S] contains no edge.



1.2. Preliminaries 19

For a graph G = (V,E), the degree of a vertex vGVis the number

of edges containing v. The maximum degree of G is the maximum of

the degrees over all vertices, and denoted by A(G). A proper k-coloring
of G is a map from V to {1,.. .,k} (regarded as the set of "colors")
such that every two vertices forming an edge are mapped to different

colors. A proper coloring of G is a proper /c-coloring of G for some k G

IN. The preimage of each color is called a color class. The chromatic

number of G is the minimum A; G IN such that a proper /c-coloring of G

exists. We denote the chromatic number of G by xiß). A graph G is k-

colorable if x{G) <k. Similarly, we may define a proper k-edge-coloring as
a map from E to {1,..., k} such that every two edges sharing a vertex

are mapped to different colors. A proper edge-coloring, a color class,
the edge-chromatic number and the k-edge-colorability are defined in an

analogous way. We denote the edge-chromatic number of G by x'iß).

1.2.2 Independence Systems and Matroids

Now we introduce the notions of independence systems and matroids.

For details, see Oxley's book [Oxl92]. Given a non-empty finite set V,

an independence system on V is a non-empty family X of subsets of V

such that X G X implies Y G X for all Y ç X ç V. The set V is called

the ground set of the independence system. In the literature, an inde¬

pendence system is also called an abstract simplicial complex. A matroid

is an independence system X additionally satisfying the following aug¬
mentation axiom: for X,Y G X with \X\ > \Y\ there exists z <E X\Y such

that 7U{4 G X. For an independence system X, a set X is called in¬

dependent if X el, and X is called dependent otherwise. A base of an

independence system is a maximal independent set, and a circuit of an

independence system is a minimal dependent set. (Notice that, in this

chapter, we use the word "circuit" only for independence systems, not

for graphs.) We denote the family of bases of an independence system
X and the family of circuits of X by B(X) and C(l), respectively. Note

that we can reconstruct an independence system X from B(X) as

I={XCF|XCß for some ß G 0(1)}, (1.1)

and fromC(X) as

X = {X Ç V | C £ X for all C G C(l)}. (1.2)
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It can be shown that B(l\) = BiX-i) if and only if X\ = X2; similarly
C{X\) = CiX-i) if and only if X\ = X2. We can see that all the bases of a

matroid have the same size from the augmentation axiom, but this is

not necessarily the case for an independence system in general.

Let X be a matroid on V. We say that x,y G V are parallel in X if

{x,y} is a circuit of the matroid X or x = y. The next is a well known

fact.

Lemma 1.1. For a matroid, the relation that "x is parallel to y" is an equiv¬
alence relation on its ground set.

Proof. Let X be a matroid on V. Choose three distinct elements x,y,z G

V such that {x,y} and {y,z} are circuits of X. We claim that {x,z} is

a circut of X as well. Since {x,y} and {y,z} are circuits, it holds that

[x] G X and {z} G X. Therefore, it suffices to show that {x,z} 0 X.

For the sake of contradiction, suppose that {x, z} G X. Since {x, y} is

a circuit of X, it holds that {y} G X. By the augmentation axiom for ma¬

troids, we have that {x,y} G X or {y,z} G X. However, this contradicts

the assumption that {x,y} is a circuit of X (implying {x,y} 0 X) and

{y, z} is a circuit of X (implying {?/, z} 0 X). This is a contradiction. D

Let Xi and X2 be independence systems on the same ground set V.

The intersection of X\ and X2 is just X\ n X2. The intersection of three

or more independence systems is defined in a similar way. Note that

the intersection of independence systems is an independence system
as well. In addition, we have the following lemma. For a set system T,

we denote by MIN(JF) the family of minimal sets in T, namely,

MIN(Jr) := {X G T I Y % X for any Y G T \ {X}}.

Lemma 1.2. Let X\,... ,Xm be independence systems on the same ground
set. Then, thefamily ofcircuits o/ni ?i is thefamily of the minimal sets in

\S?=xC(X%),i.e.,

(TO
\ /TO \

nx,j=MINf jJCft)].

Proof. We prove the case m = 2. The general case can be proven in the

same way.
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Since any two sets in MIN(C(Xi) UC(X2)) have no inclusion relation¬

ship, there exists an independence system X which has MIN(C(Xi) U

C(l2)) as its family of circuits. We claim that X\ n X2 = X.

First let us look at the outline of the proof with logic flavor.

X G Xl n X2

0(IE XO A (X G X2)

^-.((X0Zi)V(X0X2))

^ --((3C! G C(X!) : d Ç X) V (3C2 G C(X2) : C2 Ç X))

& ^(3C G C(X!) U C{X2) :CÇX)

^ VC G C(X!) U C(l2) :C£X

^ VC G MIN(C(X!) U C(l2)) :C£X

ox ex.

The first equivalence is clear. The second one is de Morgan's law. The

third equivalence is due to Equality (1.2). The fourth equivalence is

clear. The fifth is again de Morgan's law in predicate calculus. The

sixth needs an argument. We will discuss it later. The seventh one is

again due to Equality (1.2).

Now, we claim that the sixth equivalence is true. Since C{X\) U

C(l2) ^ MIN(C(Xi) U C(X2)), the direction from left to right (or from

top to bottom) is true. How about the opposite direction? Assume

that C % X for any C G MIN(C(Xi) U C{X2)). We want to show that

D £ X for any D G C{XX) U C(l2). Fix D G C{XX) U C(l2) arbitrarily.
Then, there exists a (not necessarily proper) subset D' of D such that

D' e MIN(C(Xi) U C{X2)). If X contains D, then X should also con¬

tain D'. However, by our assumption it holds that D' $Z X. This is a

contradiction. Hence, X does not contain D, i.e., D $Z X. Thus, we

have shown that D <£. X for any D e C{X\) U C(I2). The proof is com¬

pleted. D

The following well-known observation is crucial for this chapter.

Lemma 1.3. Every independence system can be represented as the intersec¬

tion ofa finite number of matroids on the same ground set.

Proof. Let X be an independence system, and denote the circuits

of an independence system X by C^\...,C^ (i.e., C(X) = {C^\
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.. .,C(TO)}). Consider the independence system X^ with a unique cir¬

cuit C(Xi) = {C^)} for each i e {1,...,m}. Then, it follows that

(TO

\

P| Xi = MIN({CW,.. .,C^}) = {C^\...,C^} = C(X),

where the first identity is by Lemma 1.2 and the second one is due

to the fact that {C^\.. . ,C(TO)} is the family of circuits of X and no

two circuits have inclusion relationship. The third identity is from the

definition. Since the family of circuits determines an independence
system uniquely, it follows that X = P| x X^.

What remains to show is that the independence system X^ is a ma¬

troid for each i e {!,.. .,m}. To prove this claim, we have to check

the augmentation axiom. Fix an arbitrary i e {1,... ,ra] and take two

sets X,Y eXi such that |X| > \Y\. Now, for the sake of contradiction,

suppose that C^ ç Y U {z}, namely Y U {z} is dependent in Xi, for

all z G X \ Y. Since Y G Xi, we know that Y does not contain C^K

Therefore, to have C^ ç Y U {z}, it must hold that y is a proper sub¬

set of C^\ This implies that C^ = Y U {z}. Since this holds for all

z e X \ Y, we can see that X \Y = {z}. However, this implies that

X = Y U {z} = C(l\ which means that X is not independent in X^. This

is a contradiction. D

Note that the matroids X\,... ,Xm in the proof are actually graphic
matroids. (A graphic matroid is an independence system isomorphic
to the family of forests in some multigraph.) Therefore, Lemma 1.3

itself can be strengthened to "every independence system can be rep¬
resented as the intersection of a finite number of graphic matroids on

the same ground set," although it is not important for the discussion

in the rest of the chapter.

Due to Lemma 1.3, we are interested in the representation of an

independence system as the intersection of matroids. Following the

construction in the proof of Lemma 1.3, we see that at most \C(X)\ ma¬
troids are enough to represent X as their intersection. However, we

might do better. In the rest of this chapter, we study clique complexes.
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1.3 Clique Complexes and the Main Theorem

A graph gives rise to various independence systems. Among them, we

study clique complexes.

The clique complex of a graph C = {V,E) is the collection of all

cliques of C. We denote the clique complex of C by £(C). Note that

the empty set is a clique and {v} is also a clique for each v G V. So

we see that the clique complex is actually an independence system on

V. We also say that an independence system is a clique complex if it is

isomorphic to the clique complex of some graph. Notice that a clique
complex is also called a.flag complex in the literature.

Here, we give some examples of clique complexes. (We omit neces¬

sary definitions.) (1) The family of stable sets of a graph C is nothing
but the clique complex of C. (2) The family of matchings of a graph C
is the clique complex of the complement of the line graph of C, which

is called the matching complex of C. (3) The family of chains of a par¬

tially ordered set P is the clique complex of the comparability graph of

P, which is called the order complex of P. (4) The family of antichains of

a partially ordered set P is the clique complex of the cocomparability
graph (i.e., the complement of the comparability graph) of P.

The next lemma may be folklore.

Lemma 1.4. Let X be an independence system on a finite set V. Then, X

is a clique complex if and only if the size of every circuit in X is two. In

particular, the circuits of the clique complex of G are the edges of G (i.e.,

C{{G)) = E(G)).

Proof. Let X be the clique complex of C = (V,E). Since a single vertex

v e V forms a clique, the size of each circuit in X is greater than one.

Each dependent set of size two in X is an edge of the complement of

C. Observe that they are minimal dependent sets since the size of each

dependent set in X is greater than one. In order to show that they are

the only minimal dependent sets, suppose that there exists a circuit

C of size more than two in X. Then each two elements in C form an

edge of C because of the minimality of C. Hence C is a clique in C.

However, this is a contradiction to the assumption that C is dependent
in X (i.e., not a clique in C).
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Conversely, let X be an independence system on V and assume that

the size of every circuit of X is two. Now construct a graph G' = (V, E')
with E' = {{u,v} e (2) I {u,v} 0 C(X)}, and consider the clique com¬

plex (G'). By the opposite direction which we have just shown above,

we can see that the circuits of (Gf) are the edges of G', and they are

the circuits of X. Therefore we have that C((G')) = C(X). Since the

family of circuits uniquely determines an independence system, this

concludes that X is the clique complex of G'. D

Now, we start studying the number of matroids which we need

for the representation of a clique complex as their intersection. For a

graph C, denote by ß(G) the minimum number of matroids such that

the clique complex <£(C) is the intersection of them. Namely,

f k }
/j(G) := min < k | £(C) = Q X^ where Xi,...,X^ are matroids >

.

First, we characterize the graphs C satisfying /i(G) = 1 (namely the

graphs whose clique complexes are indeed matroids). To do this, we

define a partition matroid. A partition matroid is a matroid X(V) associ¬

ated with a partition V = {P\, P2,..., Pr} of V (that is, V = [fi=1 Pi and

Pi n Pj; = 0 for all i ^ j), defined as

X(V) :={IQV\ \lC\Pi\ <lforalHG{l,...,r}}.

To justify the name "partition matroid" we need to show the following.

Lemma 1.5. A partition matroid is a matroid.

Proof. Let X(V) be the partition matroid associated with a partition
V = {P\,... ,Pr} of a ground set V. First we show that X(V) is an in¬

dependence system. Let / G X(V) and J ç I. By definition, for each

i e {1,... ,r} we have \I n Pi\ < 1. Since J ç I, we have J n Pi ç I n Pi.

Therefore, it follows that | J n Pi\ < \I n Pi\ < 1 for every i e {1,...,r}.
This proved that X(V) is an independence system.

Now, we check that X(V) satisfies the augmentation axiom. Let

X,Y e X(V) such that \X\ > \Y\. Then, there must exist ie {!,...,r]
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•
#

P P2
r\ • • •

P3

Partition V = {Pi,P2,P3} of V

Figure 1.1: The correspondence of a partition matroid and a complete
multipartite graph.

such that \Xf\Pi\ =1 and \Y n Pi\ = 0. Let us denote {z} := X n Pj.
We claim that y U {z} e X(P). Indeed, for j G {1,... ,r} \ {i}, we have

KyujzDnP^l = \(yn p3) u ({z} n Pj)\
= \Yn Pj\ + \{z}n Pj\ < 1 + 0 = 1,

and for i we have

|(yu{z})nPi| = |ynPi| + |{z}nPi| = 0 + 1 = 1.

The proof is completed. D

Next we observe that X(P) is a clique complex. Indeed we can see

that X(P) = (Gp) if we construct the following graph Gv = {V,E)
from V: two vertices u,v G V are adjacent in G-p if and only if u and

v are elements of distinct partition classes in V. See Figure 1.1 for an

illustration.

An alternative argument is to observe that

C(X(V)) = <{u,v} e ( J I {u,v} ç Pi for some ie {l,...,r}l.

Then, we find out that X(P) satisfies the condition in Lemma 1.4, and

this shows that X(P) is a clique complex. Note that G-p constructed

above is a complete r-partite graph with the partition V. (In Figure 1.1,

Gp is a complete tripartite graph.) In particular, this means that, if C

is a complete multipartite graph, then ß(G) = 1. In the following char¬

acterization of a matroidal clique complex, we prove that the converse

also holds.
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Lemma 1.6. Let G = (V,E) be a graph. Then thefollowing are equivalent.

(1) The clique complex of G is a matroid.

(2) The clique complex of G is a partition matroid.

(3) G is complete r-partitefor some r.

Note that the equivalence of (1) and (3) in the lemma is noticed by
Okamoto [Oka03].

Proof. Since a partition matroid is a matroid, "(2) => (1)" is clear. From

the discussion above, "(3) => (2)" is immediate. So we only have to

show "(1) => (3)."

Assume that the clique complex <£(C) is a matroid. By Lemma 1.4,

every circuit of £(C) is of size two, which corresponds to an edge of C.

Therefore, the elements of each circuit are parallel in <£(C). By Lemma

1.1, the parallel elements induce an equivalence relation on V, which

yields a partition V = {P\,..., Pr } of V for some r. By the construction,

this equivalence relation is the same as "x and y are equivalent if and

only if there is no edge between x and y'vcvG." Thus, we can see that C

is a complete r-partite graph with the vertex partition V. D

For the case of two or more matroids, we use a stable-set partition.
A stable-set partition of a graph C = (V, E) is a partition V = {P\,..., Pr }
of V such that for each ie {!,. ..,r}, the set Pi is a stable set of C. (Note
that a stable-set partition is nothing but a proper coloring of a graph.
However, here we are not interested in how many colors we need (i.e.,
the size of V) as we do not study the proper coloring problem here.)
The following theorem is the main result of this chapter. It tells us how

many matroids we need to represent a given clique complex as their

intersection.

Theorem 1.7. Let G= (V,E)bea graph. Then, thefollowing are equivalent.

(1) The clique complex £(C) can be represented as the intersection of k

matroids (i.e., ß(G) < k).

(2) There exist k stable-set partitions V^\.. .,V^ of G which fulfill the

following condition.
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piX) p(2) p(3)

GV(\) GV(2) GV(3)

Figure 1.2: An example for Theorem 1.7.

Condition P:

{u,v} G (^) is an edge of G if and only if {u,v} ç S for

someSe[jk=1V^.

In particular, when Condition P is fulfilled, it holds that

k

£(C) = Ç]X(V^).

Before proving Theorem 1.7, we illustrate the theorem by a pictorial
example. Look at Figure 1.2. In the graph C = {{v\,.. .,vs},E), there
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are seven edges, and

p(!) = {{v1,V4:},{v2,V3},{v5,V6}},

p(2) = {{v1,v3,v5},{v2},{v^,v6}},

p(3) = {{v^vo,}, {v2,v^\, {v5}, {v6}}

are stable-set partitions of C. We can see that these stable-set parti¬
tions meet Condition P, that is, for each {u,v} G E(G), there exists a

stable set S e V^ U p(2) U p(3) such that {u,v} ç S. For example,
look at {vi,vs} e E(G). Then we have a stable set {^1,^3,^5} G V^>
such that {^1,^5} ç {^1,^3,^5}. Indeed, the clique complex £(C) can

be written as the intersection X(pW) n X(p(2)) n X(p(3)) of three parti¬
tion matroids, or in other words, the intersection £(Cp(i) ) n £(Cp(2) ) n

C(Cp(3)) of the clique complexes of complete multipartite graphs,
which are partition matroids (Lemma 1.6).

The intuition behind Condition P in Theorem 1.7 is as follows. Sup¬
pose that we consider the clique complex £(C) of a given graph C,

and we want to gather some complete multipartite graphs G\,... ,C^

so that we can ensure that £(C) = Hi=i ^ßi)- Then by Lemma 1.2

it holds that C((G)) = MINflJiU C((G))). Let us assume that this is

equal to (jf=i C(£(C)), just for the sake of an intuitive discussion. Then

it follows that E(G) = (jf=i E(Gi) by Lemma 1.4. Therefore, for every

edge e of C there must bei e {!,... ,k} such that e is not an edge of C^.

Actually, Condition P in Theorem 1.7 makes it sure that this require¬
ment is satisfied.

To prove Theorem 1.7, we use the following lemmas.

Lemma 1.8. Let G = {V,E) be a graph. If the clique complex £(C) can be

represented as the intersection ofk matroids (i.e., ß(G) < k), then there exist

k stable-set partitions V^\...,V^ such that £(C) = f]k=1X(V^).

Proof. Assume that <£(C) is represented as the intersection of k ma¬

troids X\,..., Xfc. Choose j e {1,..., k} arbitrarily, and look at Xj.

By Lemma 1.1, the parallel elements of Xj induce an equivalence
relation on V. Let V^> be the partition of V arising from this equiv¬
alence relation. Then, we can see that the two-element circuits of X?
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are the circuits of the partition matroid X(P(•?)), namely, it holds that

{C G CiXj) | \C\ = 2} = C(1(VÜ))). Furthermore, by Lemmas 1.2 and

1.4, it holds that

/ k

C((G)) = MIN MJC(X,

k

MINm{CGC(Xi)||C|=2}j

MIn( \JC(I(V®)) j.

Here, the first identity is due to Lemma 1.2. The second one is due to

Lemma 1.4 and the assumption that £(C) = Hi=i CÇZ-i)- (^ we do not

have this assumption, there is no assurance for this identity to be true.)
The last one is what we observed just above. Now finally, Lemma 1.2

concludes that £(C) = f]k=1X(V^). D

Here is another lemma.

Lemma 1.9. Let G = (V,E) be a graph and V be a partition of V. Then

£(C) ç X(P) ifand only ifV is a stable-set partition of G.

Proof. Assume that V is a stable-set partition of C. Choose / G £(C)
arbitrarily. Then we have that \I n P\ < 1 for each P G V by the defini¬

tions of a clique and a stable set. Hence it follows that / G X(P). Thus

we have that £(C) ç X(P).

Conversely, assume that £(C) ç X(P) for a partition V of V(G).
Choose P e V and a clique K e (G) of G arbitrarily. From our as¬

sumption, we have that K e X(V). Therefore, it holds that \K n P\ < 1

from the definition of a partition matroid. This means that P is a stable

set of C. Hence, V is a stable-set partition of C. D

Now we are ready for the proof of Theorem 1.7.
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Proof of Theorem 1.7. Assume that the clique complex £(C) of a given
graph C = (V,E) is the intersection of k matroids X\,...,X^. From

Lemma 1.8, <£(C) can be represented as the intersection of k matroids

associated with some stable-set partitions V^\... ,V^> of C. We show

that these partitions V^\...,V^ fulfill Condition P. By Lemma 1.4,

{u, v} is an edge of C if and only if {u, v} is a circuit of the clique com¬

plex £(C). Then, it follows that

/ k \ k

{u,v} e C(£(C)) = MIN (J C(I(V®)) = (J C(X(P^)).

(The first identity is due to Lemma 1.2, and the last identity relies

on the fact that the size of each circuit of a partition matroid is two.)
This implies that there exists at least one index i e {1,...,/c} such that

{u,v} e C(X(P^)). Since we have

C(X(V^)) = <{u,v}e (T) | {u,v}ÇSforsomeSeV^\,

we can conclude that {u,v} ç S for some S G pW if and only if {u,v}
is an edge of C. One direction of the theorem is finished.

Conversely, assume that we are given k stable-set partitions
pW,... ,p(fc) of V satisfying Condition P. We show that

k

C(C) = f|X(P^).

By Lemma 1.9, we can see that £(C) ç X(P^)) for each ie {l,...,k}.
This implies that £(C) ç P|^=1X(p(*)). What remains to prove is

£(C) D f)i=1X(V^). However, in order to show that, we only have

to prove that C((G)) ç \Jk=1C(X(V^)). Why is it true? Assume

that C(£(G)) Ç \Jk=1C{X{V^)), and take X e f]k=1X{V^) arbitrarily.
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Then, we have the following chain of implications.

k

xe Ç]x(v^)
i=\

^Vie{l,...,k}-.X eX{V{i))

& Vi e {1,...,k}\JC e C(X(P^)) -C^X
k

& VC G (J C(X(P^))) : C % X

i=\

=>\/C eC((G)) :C£X

^XG£(C).

(Here, the second and fifth equivalences are due to Equality (1.2); the

fourth implication is by our assumption.)

Now, we know that we have to show C((G)) ç \Jk=1C(X(V^)).
Pick C G C((G)) arbitrarily. By Lemma 1.4 we can see that C is an

edge of C. Set {u,v} := C e E(G). From Condition P, there exists

some S e \Ji=iV^ such that {u,v} ç S. This means that {u,v} G

Ui=i C(X(V^)). Thus the proof is completed. D

Next, let us look at some consequences of the discussion in this

section. First of all, Theorem 1.7 implies that the clique complex <£(C)
of a graph C can be represented as the intersection of k matroids if

and only if £(C) can be represented as the intersection of k partition
matroids arising from stable-set partitions of G. Therefore, if you want

to find /i(G), you only have to search within the partition matroids

arising from stable-set partitions of C. This considerably reduces the

time/cost of the search.

In Lemma 1.8, we showed that, for a given graph C on the vertex

set V whose clique complex £(C) is the intersection of k matroids, we

can find k partition matroids whose intersection is <£(C). Moreover, we

can show the following "converse" statement.

Corollary 1.10. For any collection of k partitions V^\V^2\... ,V^ of a

finite set V, there exists a graph G onV such that £(C) is the intersection of
the partition matroids X(p(1)),X(p(2)),.. .,X(p(fc)).
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Proof. From a given collection of partitions P^1),... ,p(fe) of V, we con¬

struct a graph C as follows. The vertex set of C is V. Two vertices

u and v are connected by an edge in C if and only if they do not lie

in a common class of pW for any i e {!,...,k} (i.e., there exists no

S e pW such that {u,v} ç 5 for any i e {1,.. .,/c}). Then we can see

that pW,... ,p(fc) are stable-set partitions of C. Moreover, they satisfy
Condition P in the statement of Theorem 1.7. Therefore, by Theorem

1.7, we can conclude that £(C) = f|f=i X(P^). D

This leads to the following important consequence, which charac¬

terizes the clique complexes as the intersections of partition matroids.

Corollary 1.11. For every k > 0, the class of clique complexes which are the

intersections of k matroids is the same as the class of the intersections of k

partition matroids; in particular, the class of clique complexes is the same as

the class of the intersections ofpartition matroids.

Proof. Combine Lemma 1.8 and Corollary 1.10. D

At the end of this section, we would like to notice that Theorem 1.7

implies that the following decision problem belongs to NP.

Problem: Clique Complex /c-Matroid Representation

Instance: a graph C and a positive integer k

Question: Is /i(G) < /c?

Let us state this fact as a corollary.

Corollary 1.12. Clique Complex /c-Matroid Representation be¬

longs to NP.

Note that this corollary is not trivial since a matroid itself can have

an exponential number of independent sets.

Proof. By Theorem 1.7, k stable-set partitions satisfying Condition P

is a certificate for the positive answer to the decision problem above.

Since the size of stable-set partition is polynomial in the size of a graph
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C and k is at most the number of vertices in C, these k stable-set par¬
titions constitute a polynomial-size certificate. Furthermore, Condi¬

tion P can be checked in polynomial time for a given graph and given
k stable-set partitions of the graph. This concludes that the decision

problem Clique Complex /c-Matroid Representation belongs to

NP. D

However, we do not know that Clique Complex /c-Matroid

Representation belongs to P, or even to coNP. It could be NP-

complete. When k is fixed, the situation is somehow changed. For

k = 1, due to Lemma 1.6 the problem can be solved in polynomial time.

The case k = 2 is discussed in Section 1.5, and we prove that in this case

the problem can also be solved in polynomial time.

1.4 An Extremal Problem for Clique Com¬

plexes

Remember that ß(G) is the minimum number of matroids needed for

the representation of the clique complex of C as their intersection. Fur¬

thermore, let /i(n) be the maximum of /i(G) over all graphs C with n

vertices. Namely,

/i(n) := max{/i(C) | C has n vertices}.

In this section, we determine /i(n) exactly. It is straightforward to

observe that /i(l) = 1. For the case of n > 2, we can immediately obtain

Mn) ^ (2) fr°m Lemmas 1.3 and 1.4. However, the following theorem
tells us that the truth is much better.

Theorem 1.13. For every n>2, it holds that ß(n) = n — l.

First, we prove that /i(n) > n — 1. Consider the graph K\ U Kn_\.

(Figure 1.3 shows K\ U if5.)

Lemma 1.14. For n>2, it holds that ß(Ki U Kn_i) = n — 1. Particularly
itfollows that ß(n) >n — l.
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KxUKs

Figure 1.3: The graph K\ U if5.

Proof. First, observe that K\ U ifn_i has n — 1 edges. Therefore,
Lemma 1.4 implies that the number of the circuits of <£(ifi U ifn_i) is

n — 1. Then, by the argument below the proof of Lemma 1.3, it follows

that ß{Kx U Kn-i) < \C(£(KiU Kn-{))\ =n-l.

Now, suppose that ß{K\ U Kn_\) < n — 2. By Theorem 1.7, there

exist at most n — 2 stable-set partitions V^\... ,p(n_2) of K\ U Kn_\

satisfying Condition P, namely, each edge e of K\ U ifn_i is contained

in some set S G Ur=i2 ^^^ Then, the pigeon hole principle tells us that

there exists an index i* e {l,...,n — 2} such that at least two edges
of K\ U Kn_\ are contained in sets of p(l*\ Let e,e' be such (distinct)

edges of K\ U Kn_\ and Pe,Pe' £ V^ be unique sets such that e ç

Pe and e' ç Pei. (The uniqueness follows from the fact that V^l> is a

partition.) Remember that e and e' share a vertex (since e, e' are edges
of K\ U ifn_i). This implies that Pe n Pe/ 7^ 0. Therefore, it holds that

Pe = Pei since T>(1*) is a partition. Set e = {n,7;} and e' = {u,v'}. We can

find {v,v'} is also contained in Pe. However, {v,v'} is an edge of K\ U

Kn_\. This contradicts the fact that J>(1*) is a stable-set partition (i.e., Pe
is a stable set of K\ U ifn-i). Thus, it follows that \i[K\ U Kn-\) =n — \.

For the second part, we just follow the definition of /i(n). Then we

can find that /i(n) > ß{K\ U Kn-\) = n — 1. D

Next we prove that /i(n) < n — 1. To do that, first we look at the

relation of /i(G) with the edge-chromatic number x'iß) of the comple¬
ment.

Lemma 1.15. It holds that ß(G) < x'{G)for every graph G. Particularly, if
the number n of vertices of G is even then we have that ß(G) <n — l, and if
n is odd then we have that ß(G) <n. Moreover, if ß(G) = n then n is odd

and the maximum degree ofGisn — 1 (i.e., G has an isolated vertex).

Proof. Consider a minimum proper edge-coloring of C, and let k :=
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Figure 1.4: The construction in the proof of Lemma 1.15.

x'{G). We construct k stable-set partitions of a graph C with n vertices

from this edge-coloring.

We have the color classes C^\..., C^k> of the edges from the mini¬

mum proper edge-coloring. (Figure 1.4 is an illustration. In the exam¬

ple of the figure, we have x'iß) = 4. The first row shows a given graph
C and its complement C. In the second row, we can find a minimum

proper edge-coloring of C, and each C^ depicts a color class of this

coloring.)

,(0 (0-
Take a color class C^> =

{e^ ,..., ejr } (i e {1,..., k}) and construct

a stable-set partition V^1' of C from C^ as follows: S is a member of

V^1' if and only if either
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(1) S is a two-element set belonging to C^ (i.e., S = e^ for some

je{l,...,^})or

(2) S is a one-element set {v} which is not used in C^ (i.e., v 0 e^-
for any j e {1,...,^}).

Notice that V^> is actually a stable-set partition of C. Then we col¬

lect all the stable-set partitions V^\... ,V^> constructed by the proce¬
dure above. Moreover, these stable-set partitions satisfy Condition P in

Theorem 1.7 since each edge of C appears in exactly one of the C^'s.

Hence, by Theorem 1.7, it follows that /i(G) < k = x'iß). In Figure 1.4,

the constructed stable-set partitions are put in the third row. Thus we

have shown that /i(G) < x'{G).

Notice that x'iß) < x'{Kn) for any graph C with n vertices. There¬

fore, if n is even, then we can conclude that /i(G) <n — l since x'{En) =
n — \. Similarly, if n is odd, then we can conclude that /i(G) < n since

x'(Kn) is n.

For the last part of the lemma, assume that ß(G) = n. From the

discussion above, n should be odd. Now, let us remind Vizing's theo¬

rem [Viz64, Viz65], which states that for a (simple) graph H with max¬

imum degree A(H) we have that x'{H) = A(H) or A(H) +1. Since

A(C) < n - 1, it follows that

n = /i{G) < x'(G) < A(C) + 1 < n.

Therefore, /i(G) = n holds only if A(C) + 1 = n. D

Finally, we show that if a graph C with n vertices, n odd, has an

isolated vertex then ß(G) <n — l. This completes the proof of Theorem

1.13.

Lemma 1.16. Let n be odd and G be a graph with n vertices which has an

isolated vertex. Then it holds that ß(G) <n — l.

Proof. Let v' be an isolated vertex of C. Consider the subgraph of C

induced by V(G) \ {v'}. Denote this induced subgraph by G' (i.e., G' =

G[V(G) \ {v'}}). Since G' has n — 1 vertices and this is even, we have

ß(G') < n — 2 from Lemma 1.15.
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Figure 1.5: The construction of stable-set partitions from an edge-
coloring.

Now we construct n — 1 stable-set partitions of C satisfying Con¬

dition P from n — 2 stable-set partitions of G' satisfying Condition

P as well. Denote the vertices of G' by v\,... ,vn-\, and stable-set

partitions of G' satisfying Condition P by V'^ ',...,V'^n~ ' (where
some of them may be identical in case ß{G') < n — 2). Then construct

stable-set partitions V^\... ,V^n~2\V^n~^ of C as follows. For each

i e {!,...,n-2], put P e 7>W if and only if either

(1) P e V'{i) and Vi^Por

(2) v' eP,P\ {v'} e V'{i) and v{ e P.

Furthermore, put P e p(n_1) if and only if either

(1) P = K}(*G{l,...,n-2})or

(2) P = {v',vn_1}.

Figure 1.5 illustrates the construction of V^ (i e {1,...,n — 1}). The

first row shows a given graph C where the topmost vertex v' is iso-
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lated. In the second row, we can find three stable-set partitions of

G' = G[{vi,v2,V3,V4}} satisfying Condition P. In this row, the symbol
o is used to indicate the neglected vertex v'. In the third row (lowest),
the constructed stable-set partitions of C are shown according to the

considered vertices.

For conclusion, it is enough to check that the stable-set partitions
V^x>,...,V^n~x> constructed above satisfy Condition P. Choose any

edge e of C. If e is also an edge of G', then we can find a set S' e

\jn-2Vf(i) such that e ç gf since p,(l) ^p,(n-2) saüsfy Conditk)n

P. From the construction of V^\... ,V^n~2\ we observe that for each

i e {!,...,n-2} and each P' e V'^ there exists a set P e V® such

that P' ç P. Therefore, for S' above, we also have S e U^T]2^ such

that S' ç S, which implies that e ç S. If e is not an edge of G', then e

is expressed as e = {v',Vi} for some i e {!,... ,n — l}. Then it turns out

that e is contained in a member of V^ which was put in V^ by the

second alternative. In this way, we have verified that V^\... ,p(n_1)
satisfy Condition P. D

1.5 Characterizations for Two Matroids

In this section, we look more closely at clique complexes that can be

represented as the intersections of two matroids.

To do this, we invoke another concept. The stable-set graph of a

graph C = (V, E) is a graph whose vertices are the maximal stable sets

of C and two vertices of which are adjacent if the corresponding two

maximal stable sets of C share a vertex in C. We denote the stable-set

graph of a graph C by S(G). Figure 1.6 shows an example of a stable-

set graph.

The next lemma establishes the relationship between /i(G) and the

chromatic number x(«S(C)) of the stable-set graph.

Lemma 1.17. Let G be a graph and k be a natural number. Then the clique
complex £(C) can be represented as the intersection ofk matroids ifthe stable-

set graph S(G) is k-colorable. In other words, it holds that ß(G) < x{<S{G)).
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{vi,V3,V5}

{V5,V6} ^T\ {v2,V3}

{V4,V6}

{VIVA'S

Figure 1.6: A stable-set graph.

Proof. Assume that we are given a proper /c-coloring c of S(G), i.e., a

map c : V(S(G)) - {1,.. .,k} where c(S) ^ c{T) whenever S n T ^ 0.

Then gather the maximal stable sets of C which have the same color

with respect to the coloring c, that is, put Ci := {S e V(S(G)) \ c(S) = i}
for each i e {1,... ,/c}. By construction, the members of Ci are disjoint
maximal stable sets of C for each i e {l,...,/c}.

Now we construct a graph Gi from Ci as follows. The vertex set of

Gi is the same as that of C, and two vertices of Gi are adjacent if and

only if either

(1) one belongs to a maximal stable set in Ci and the other belongs
to another maximal stable set in Ci, or

(2) one belongs to a maximal stable set in Ci and the other belongs
to no maximal stable set in Q.

Figure 1.7 explains the construction of Gi by the example in Figure 1.6.

In that figure, three colors of S(G) are depicted by •, and o, and in the

second row, the shaded groups show maximal cliques corresponding
to the vertices in S(G) colored by identical colors.

Note that Gi is complete r-partite, where r is equal to | Q | plus the

number of the vertices which do not belong to any maximal stable set

in Ci. (This holds in general, not just in the picture above.) Then con¬

sider (Gi), the clique complex of C^. By Lemma 1.6, we can see that

(Gi) is actually a matroid. Since an edge of C is also an edge of Gi (or

by Lemma 1.9), we have that £(C) ç £(C;).

Now we consider the intersection X = f]k=i^(Gi). Since £(C) ç

(Gi) for every i e {1,..., k], we have £(C) ç X. Since each circuit of
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Vl {v\,V3,V5}

V6 //*\ V2 {V5,V6} ^¥\ iv2,V3}

vA G

{v^Vß

{v\,v±} S{G)

-f t • color 1
to,*>4}

m color2

o color 3

Figure 1.7: The construction of Gi in the proof of Lemma 1.17.

£(C) is also a circuit of (Gi) for some i e {1,..., k] (recall Lemma 1.4),
we also have C((G)) ç C(X), which implies £(C) D X. Thus we have

£(C) =X. D

Let us note that the inequality /i(G) < x(<5(C)) is tight. Indeed, a

tight example has already appeared in Figure 1.6. In that example, it

holds x{S{G)) = 3- On tne other hand, by Theorem 1.18 below, we

can see that /i(G) > 3 since S(G) is not 2-colorable. Figure 1.7 shows

three stable-set partitions satisfying Condition P. So, by Theorem 1.7

we conclude that /i(G) =3.

Furthermore, note that the converse of Lemma 1.17 does not hold

in general even if k = 3. A counterexample is the graph C = (V,E)
defined as

V = {v1,v2,v3,V4,v5,v6} and

E = {{vi,v2},{v3,v±},{v5,v6}}.

See Figure 1.8. In the graph shown in Figure 1.8, consider the following
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vi

v2

•

•

/ v3

n G

{vi,V3,V5}

{>1, ^4,^5}

{vi,V3,V6}

,^4/^ô}

{v2,v3,v6}

{v2,v±,v6}

5(G)

Figure 1.8: A counterexample for the converse of Lemma 1.17.

stable-set partitions of C:

p(!) = {{vi,V3,V5},{v2,V±,V6}},

p(2) = {{v1,v3,v6},{v2,v±,v5}},

p(3) = {{v1,v^,v5},{v2,v3,v6}}.

We can check that these stable-set partitions fulfill Condition P in Theo¬

rem 1.7. Therefore, by Theorem 1.7, we can see that <£(G) is the intersec¬

tion of three partition matroids X(V^), X(V^) and X(V^). However,

S(G) is not 3-colorable but 4-colorable. (Since S(G) has a clique of size

four, it is not 3-colorable. On the other hand, we can color S(G) with

four colors as indicated in Figure 1.8.)

By a similar argument, we can also see that, if we consider a graph
consisting of only n/2 independent edges (i.e. a graph which is a

matching), then the difference between /i(G) and x(«S(C)) can be ar¬

bitrarily large.

However, the converse holds if k = 2.

Theorem 1.18. Let G be a graph. The clique complex £(G) can be repre¬
sented as the intersection of two matroids if and only if the stable-set graph
S(G) is 2-colorable (i.e., bipartite).

Proof. The if-part is straightforward from Lemma 1.17. Now we prove
the only-if-part. Assume that <£(G) is represented as the intersection of

two matroids. Due to Theorem 1.7, we may assume that these two ma¬

troids are associated with stable-set partitions p(1),p(2) of C satisfying
Condition P.
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Let S be an arbitrary maximal stable set of C. Now we claim the

following.

Claim 1.18.1. It holds that S e V^ U V^2\ Namely, every maximal stable

set of G is contained in V^> or V^2\

Proof of Claim 1.18.1. To prove this claim, from the maximality of S, we

only have to show that S ç P for some P e V^ U V^2\ (Then, the

maximality of S tells us that S = P.) Since V^ and V^2' are partitions
of V(G), this claim clearly holds if l^l = 1. If l^l = 2, the claim holds

from Condition P.

Assume that l^l > 3. Then consider the following independence
system on S:

X := {/ Ç S I I Ç P for some P e P(1) U P(2)}.

Choose a base B (i.e., a maximal independent set) of X arbitrarily. If

B = S holds, then we are done (since B ç P for some PgP^U V^).
Since B ç S, it suffices to show that B D S.

Now, suppose that S \ B ^ 0 for a contradiction. Without loss of

generality, we may assume that B is contained in a set P of V^\ If

there exists an element u e (S\B)nP, then it follows that {u}UB ç P.

This contradicts the maximality of B in X. Therefore, (5\5)nP = 0;
in other words B = S n P.

Since B ç S holds and 5 is a stable set of C, every two-element sub¬

set of S is a circuit of £(G) (i.e., an edge of C). Fix u e S\B arbitrarily
and also choose v e B arbitrarily. Then we have {u,v} ç S is an edge
of C. Therefore, by Condition P there must exist Q e V^1' U V^2' con¬

taining {u, v}. Since B ç P, we have v G P. If Q would be a member of

pW, then it holds that v e PnQ, which contradicts the fact that V^
is a partition. Therefore, Q must be a member of V^2'. Since Q contains

w and p(2) is a partition of V(G), we can see that Q must be a (unique)
set of V^2' which contains u. Since the choice of v was arbitrary, this

set Q must contain all v e B, which implies that {u} U B is contained in

Q. However, we may conclude that {u}U B eXby the definition of X

and the fact that Qv e V^2'. This contradicts the maximality of B. The

claim has been verified. D
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v2 {vi,v3,v5}

o

vA G
{v2,v±}

{^5/^6}

S(G)

Figure 1.9: An illustration of the proof of Theorem 1.18.

Coming back to the proof of Theorem 1.18, we now color the ver¬

tices of S(G), i.e., the maximal stable sets of C, according to V^> and

p(2). If a maximal stable set S belongs to V^\ then S is colored by 1.

Similarly, if S belongs to V^2\ then S is colored by 2. (If S belongs to

both, then S can be colored by either 1 or 2 arbitrarily.) By the claim

above, this procedure can color all vertices of S(G), and furthermore

this coloring is certainly a proper 2-coloring of S(G) since V^1' and V^2'
are partitions of V(G). D

Figure 1.9 is an illustration of what we saw in the proof. The graph
C in Figure 1.9 has three maximal stable sets, and they form the ver¬

tex set of the stable-set graph S(G). In the second row, we can see

two stable-set partitions satisfying Condition P. According to these

stable-set partitions, we can color the vertices in S(G). In this example,

{v\,v3,v^} is colored by • (color 1) since {^1,^3,^5} appears in V^\ and

{v5,vs} is colored by o (color 2) since {v5,vs} appears in V^>. Then,

{v2,v/^\ appears in both of V^ and V^2\ Therefore we can color it by
either • or o arbitrarily. In the picture above, we just chose o by chance.

Some researchers already noticed that the bipartiteness of S(G) is
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•A -II -N
Ki UK3 Ki U K2 U K2 Ki U P3

Figure 1.10: The forbidden induced subgraphs for Proposition 1.19.

characterized by other properties. We gather them in the following
proposition. Here, the line graph of a multigraph C is a graph L(G)
such that the vertex set of L(G) is the edge set of C and two vertices

in L(G) are adjacent through an edge if and only if the corresponding
two edges in C share a vertex in C.

Proposition 1.19. Let G be a graph. Then thefollowing are equivalent.

(1) The stable-set graph S(G) is bipartite.

(2) G is the complement of the line graph ofa bipartite multigraph.

(3) G has no induced subgraph isomorphic to

Kx U K3,KX UK2U K2,KX U P3 orC2~^~3(k = 1,2,.. J,

where C2fc+3 denotes a cycle of length 2k + 3. See Figure 1.10.

Proof. "(1) -<=> (2)" is immediate from a result by Cai, Corneil &

Proskurowski [CCP96]. Also, "(1) -<=> (3)" is immediate from a result

by Protti & Szwarcfiter [PS02]. D

Notice that we can decide whether the stable-set graph of a graph
is bipartite or not in polynomial time using the algorithm described by
Protti & Szwarcfiter [PS02]. Here, we briefly describe their algorithm.
To sketch their algorithm, first we have to observe that if S(G) is bi¬

partite then C contains at most 2n maximal stable sets. (This is not

trivial. For a proof, see the original paper [PS02].) Using this observa¬

tion, they provided the following algorithm. At the first step, we list

the maximal stable sets of C using an algorithm with polynomial de¬

lay by Tsukiyama, Ide, Ariyoshi & Shirakawa [TIAS77], for example. If

the algorithm starts to generate more than 2n maximal stable sets then

we stop the whole execution and answer "No" (since S(G) cannot be

bipartite from the observation above). If it generates at most 2n max¬

imal stable sets and halts, then we proceed to the second step. At the
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second step, we explicitly construct S(G), which can be done in poly¬
nomial time since the number of vertices ofS(G) is at most 2n. Then, as

the third step, we check that S(G) is bipartite or not, which can also be

done in polynomial time. If it is bipartite then answer "Yes," otherwise

"No." In total, this procedure runs in polynomial time.

For the class of graphs satisfying a condition in Proposition 1.19 we

can solve the maximum weight clique problem exactly in polynomial
time by Frank's algorithm [Fra81] for the maximum weight base prob¬
lem in the intersection of two matroids. Notice that in Frank's algo¬
rithm we need to know what the two matroids are. (More precisely
speaking, we are required to have a polynomial-time algorithm to de¬

cide whether a given set is an independent set of each of the two ma¬

troids.) However, the above algorithm by Protti & Szwarcfiter [PS02]

explicitly gives a proper 2-coloring of the stable-set graph if the answer

is "Yes." Hence, from the argument in the proof of Theorem 1.18 we

can find the corresponding stable-set partitions of the graph, which are

sufficient for Frank's algorithm.

You may wonder about the intersection of three matroids. As for

the recognition problem, we do not know so far that the problem to

decide whether the clique complex of a given graph is the intersection

of three matroids or not can be solved in polynomial time, or is NP-

complete. We leave this question as an open problem. As for optimiza¬
tion, the problem to find a maximum weight clique in a graph whose

clique complex is the intersection of three matroids turns out to be NP-

hard, even for the unweighted case. Here, we want to describe the

reason briefly. In Corollary 1.11, we mentioned that the class of clique
complexes which are the intersections of three matroids is the same

as the class of the intersections of three partition matroids. Therefore,

our problem is exactly to find a maximum weight base in the intersec¬

tion of three partition matroids. However this problem contains the

maximum 3-dimensional matching problem as a special case, which is

known to be NP-hard [GJ79] (and even MAX-SNP-hard [Kan91]). This

implies that our problem is intractable for three matroids.
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1.6 Graphs as Independence Systems and the

Intersection of Matroids

We can regard a graph as an independence system such that a subset

of the vertex set is independent if and only if it is either

(1) the empty set,

(2) a vertex of the graph or

(3) an edge of the graph.

In this section we consider how many matroids we need to represent a

graph (viewed as an independence system) by their intersection. First,

we establish a lemma on the matroidal case.

Lemma 1.20. Let G be a graph. Then thefollowing are equivalent.

(1) G is a matroid.

(2) £(C) is a matroid.

(3) G is complete r-partitefor some r.

For the proof, we need the concept of truncation. Let X be an in¬

dependence system on V. For k > 0, the k-th truncation of X is the

subfamily X-k of X defined as

X^k :={X eX\ \X\ <k}.

We can see that the truncation of an independence system X is also an

independence system, and if X is a matroid then X-k is also a matroid

for every k > 0. Note that the /c-th truncation is also called the (k—1)-
dimensional skeleton especially when we study "simplicial complexes"
instead of "independence systems."

Proof ofLemma 1.20. "(2) ^ (3)" is nothing else Lemma 1.6. "(2) => (1)"
is immediate from the two facts that C is the 2-truncation of <£(C) and

that the truncation of a matroid is also a matroid. Now we prove "(1)
=> (3)." Suppose that C is not complete r-partite for any r. Then, C

has three vertices u,v,w such that {u,v} is an edge but neither {u,w}
nor {v, w} is an edge of C. However, this contradicts the augmentation
axiom of a matroid. D
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The following theorem states that the minimum number of ma¬

troids for a graph equals that for the clique complex of this graph.

Theorem 1.21. Let G be a graph and kbe a natural number. Then G can be

represented as the intersection ofk matroids if and only if the clique complex
£(C) can be represented as the intersection ofk matroids.

Proof. First, we show the if-part. Let £(C) be represented as the inter¬

section of k matroids X\,... ,X^, i.e., £(C) = HiLi^i- Due to Theorem

1.7, without loss of generality, we may assume that Xi is a partition ma¬

troid for each ie{l,. ..,k}. Then consider the truncations Zj- ,... ,X^ ,

and observe that f|f=i 2p = (fliU Ti)-2- °n the other hand/ & follows

that C = £(C)-2 = (f]i=iXi)-2 by our assumption. Thus we conclude

that C = (f\i=i Xi)-2, namely C is the intersection of k matroids.

Next we show the only-if-part. Let C be represented as the inter¬

section of k matroids J\,..., J^, namely C = Hi=i 3i- Without loss of

generality, we may assume that the size of every base of Ji is at most

two for each i e {1,...,/c}. (If not, then consider the truncation Jr-
,

which does not change the intersection that we are considering since

the size of every base in C is at most two.) Then we can regard Ji
as a graph for every i e {1,.. .,/c}. Let us denote this graph by G\.
From Lemma 1.20, the clique complex of G[ is a matroid (since G[ is

a matroid). Now we have that G = Ç\k=1G'i. Therefore, it holds that

£(C) = C(D?=iGi) = riiU^i)- Since we have Just observed that

£(C^) is a matroid for each i e {!,.. .,k], this completes the proof. D

1.7 Matching Complexes

In this section, we apply our theorems to matching complexes of

graphs, and observe that some results by Fekete, Firla & Spille [FFS03]
can be deduced from our more general theorems.

A matching of a graph C = {V,E) is a subset M ç E of the edge
set in which the edges are pairwise disjoint, that is, e n e' = 0 for each

e,e' e M. The matching complex of a graph C is the family of matchings
of C, and denoted by dJl(G). We can see that the matching complex
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%R(G) is indeed an independence system on E. Note that the matching
complex dJl(G) is identical to the clique complex of the complement of

the line graph of C, i.e., ffl(G) = <£(L(G)). Recall that the line graph of a

graph C is a graph L(G) such that the vertex set of L(G) is the edge set

of C and two vertices in L(G) are adjacent through an edge if and only
if the corresponding two edges in C share a vertex in C. We also call

a graph C a line graph if there exists some graph whose line graph is

C. For a line graph C, a graph H is called a root graph of the line graph
C if C = L(H). Note that a root graph of a line graph is not unique
in general. For example, K3 is the line graph of K3 and also of Ki/3,
i.e., both K3 and K\r3 are root graphs of K3. Also, note that not every

graph is a line graph; for example, K\i3 is not a line graph.

First, let us deduce the characterization of matroidal matching com¬

plexes from Lemma 1.6.

Corollary 1.22. Let G be a graph. The matching complex ffl(G) is a matroid

ifand only if G is the disjoint union ofstars and triangles.

Proof. Assume that m(G) is a matroid. Since m(G) = £{L{G)) holds, it

holds that L(G) is a complete r-partite graph for some r by Lemma 1.6.

This means that L(G) is a disjoint union of complete graphs. Let K be

a connected component of L(G), which is a complete graph. Now, we

want to find the root graphs of K. Then we observe that a root graph
of K\ is K2(= K\ri), and this is a unique root graph of K\) a root graph
of K2 is K\2_r and this is a unique root graph of K2; root graphs of K3

are K3 and Ki/3, and they are the only root graphs of K3; a root graph
of Kn (n > 4) is K\rn, and this is a unique root graph of Kn. (Note that

our graph is always simple, i.e., without a loop or a multiple edge.)
Therefore, C is the disjoint union of stars and triangles.

Let us show the converse. Assume that C is the disjoint union of

stars and triangles. Then we can see that L(G) is a complete multi¬

partite graph. From Lemma 1.6, it follows that 9Jl(G) = (L(G)) is a

matroid. The proof is completed. D

Fekete, Firla & Spille [FFS03] studied the matching complex in the

same spirit as we did in this chapter. They proved the following state¬

ment for the intersection of two matroids. In this chapter, we derive

this result as a corollary from our theorem.
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4- M M
K1/3 W± W-

Figure 1.11: Graphs appearing in the proof of Corollary 1.23.

Corollary 1.23 ([FFS03]). Let G be a graph. The matching complex ffl(G)
is the intersection of two matroids if and only if G contains no subgraph (not

necessarily induced) isomorphic to C2k+3 (k = l,2,...), and each triangle in

G has at most one vertex of degree more than two.

To prove Corollary 1.23, we use the following fact on a line graph.

Lemma 1.24. Let G be a graph, H be a line graph, and R\, ..., -R& be the

root graphs of H. Then L(G) contains no induced subgraph isomorphic to H

ifand only ifG contains no subgraph (not necessarily induced) isomorphic to

any of R\,. ..,Rk-

Proof. Straightforward from the definitions of a line graph and a root

graph. D

With use of Lemma 1.24, we can prove Corollary 1.23.

Proof of Corollary 1.23. Assume that there exist two matroids Xi,X2 on

E(G) such that 9Jl(G) =X\ HX2. From the observation above, this is

equivalent to (L(G)) =X\T\ X2. By Theorem 1.18, this is also equiv¬
alent to L(G) contains no induced subgraph isomorphic to K\ U K3,

K\V} K2U K2, K\ U P3 or C2&+3 (k = 1,2,...). Therefore, by Lemma

1.24, we can see that this is also equivalent to L(G) contains no sub¬

graph (not necessarily induced) isomorphic to K\r3 = K\ U K3, W4 =

i^iU^U K2, W~ = K1UP3 or C2k+3 (k = 1,2,...). See Figure 1.11

for the shapes of these graphs.

About the root graphs of Ki/3, W4, W± ,
and C2&+3 (k = 1,2,...), we

observe the following.

(1) There is no root graph of K\i3 (i.e., K\i3 is not a line graph).
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Ct A

Figure 1.12: The root graphs appearing in the proof of Corollary 1.23.

(2) A root graph of W4 is C~£ (in Figure 1.12) and this is a unique root

graph of W4.

(3) A root graph of W^ is A (in Figure 1.12) and this is a unique root

graph of W± .

(4) For each k = 1,2,..., a root graph of C2&+3 is C2&+3 and this is a

unique root graph of C2&+3-

Thus, we can see that Lemma 1.24 implies that the matching com¬

plex dJl(G) is the intersection of two matroids if and only if C contains

no subgraph isomorphic to C~£, A or C2^,+3 (k = 1,2,...). Hence, for

the proof of the corollary, it is enough to observe that C contains no

subgraph isomorphic to C£ or A if and only if each triangle in C has

at most one vertex of degree more than two.

To observe that, first assume that C contains no subgraph isomor¬

phic to C~£ or A and also suppose that there exists a triangle in C which

has at least two vertices of degree more than two. Let u and v be such

vertices in the triangle (u ^ v). Then the above assumption means that

there exist edges {u,x} and {v,y} in G. In case x = y, we see that C

contains C~£ as a subgraph. In case x ^ y, we see that C contains A as

a subgraph. Therefore, in both cases this is a contradiction.

Conversely, assume that each triangle in C has at most one vertex

of degree more than two. Pick a triangle T in C arbitrarily. Then we see

that T cannot be contained in a subgraph isomorphic to C£ or A in C

since C£ and A have two vertices of degree more than two. This means

that C contains no subgraph isomorphic to C£ or A. This concludes

the proof. D

Fekete, Firla & Spille [FFS03] also gave a characterization of the

matching complex which can be represented as the intersection of k

matroids for a general k. Their characterization involves an integer
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programming formulation of the problem to find the right k. We ob¬

serve that their characterization is also a corollary of our theorem. We

need to introduce their formulation.

First, we introduce the variables. Since the circuits of 9Jl(G) corre¬

sponds to the paths of length two (this is an immediate consequence

from Lemma 1.4 and the fact that 971(C) = <£(L(C))), it makes sense

that we use a variable x e {O,!}^'-"'*^*^^) where V(G) denotes the

family of all paths of length 2 in C. We denote a path of length 2 in C

by (u, v, w) when v is the midpoint of the path and u, w are the end-

points of the path. Note that the path (w, v, u) is identified with the

path (u,v,w), so exactly one of them belongs to V(G). The interpre¬
tation of the variable x is as follows. Assume that 9Jl(G) is the inter¬

section of k matroids Xi,...,Xk. For i e {!,.. .,/c} and (u,v,w) e V(G),
x[i, (u,v,w)] = 1 if (u,v,w) is a circuit of X^; otherwise x[i, (u,v,w)] = 0.

Fekete, Firla & Spille [FFS03] considered the following set of con¬

straints.

Cover condition: Yli=ix[i'(u'v'w)] —

1 for all (u,v,w) e V(G),

Claw condition: x[i, (u,v,w)} +x[i, (u,v,t)} +x[i, (w,v,t)} ^2 for

all i e {1,.. .,/c} and (u,v,w),(u,v,t),(w,v,t) e V(G),

Triangle condition: x[i,(u,v,w)} + x[i, (v,w,u)} + x[i, (w,u,v)\ ^
2 for all i e {1,.. .,/c} and (u,v,w),(v,w,u),(w,u,v) e V(G),

Matching condition: x[i,(u,v,w)} + x[i, (v,w,t)} < 1 for all i e

{1,.. .,/c} and (u,v,w), (v,w,t) e V(G).

(See Fekete, Firla & Spille [FFS03] for the detail of these constraints.)
Note that the Claw condition and the Triangle condition can be written

as linear inequality constraints as well.

Corollary 1.25 ([FFS03]). Let G be a graph. Then ffl(G) is the intersection

ofk matroids ifand only if there exists a vector x e {0,1}{1'---^}X V(G) which

satisfies all ofthefour conditions above (namely, the Cover condition, the Claw

condition, the Triangle condition and the Matching condition).

Proof. Let C = (V,E) be a given graph. First, let us assume that

yjl(G) = (L(G)) is the intersection of k matroids. Then, by Theorem

1.7, there exist k stable-set partitions V^\... ,V^> of L(G) which sat-

isfy the following condition: {e,f} e (2J is an edge of L(G) if and
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only if {e,f} Ç S for some S e \Jk=1 V®. Put e = {u,v} and / = {w,t}
for some u,v,w,t e V. Then, we can see that this condition is equiv¬
alent to that {e,f} e (2) forms a path (u,v = t,w) of length 2 in C if

and only if {e,f} ç S for some S G (jf=i 'P^ In the sequel, we write

"(u,v,w) ç S" instead of "{e,/} ç 6"' when e = {u,,u} and / = {w,t}
form the path (u,v = t,w) of length 2. Let us summarize this condition

as follows and call it Condition P'.

Condition P':

{e,f}e ( 2 ) forms a path (u, v = t,w) of length 2 in C (where
e = {u, v} and / = {w, t}) if and only if (u, v,w) ç S for some

Se\Jk=1V^.

Now, we construct x e {0,l}i1'---'k}x'p(G) from our stable-set par¬
titions. For i e {l,...,/c} and (u,v,w) e V(G), set x[i,(u,v,w)} = 1 if

(u,v,w) ç S for some S eV^; set x[i,(u,v,w)] =0 otherwise. We show

that the vector x constructed above satisfies the four conditions.

First, check the Cover condition. Fix a path (u,v,w) of length 2 in

C arbitrarily. Then, from Condition P', there exists at least one index

i* such that (u,v,w) ç S for some S G V^*\ Our construction implies

thatx[i*,(u,v,w)] = 1. Therefore, we have that ^f=i^K {u,v,w)\ > 1.

Since the choice of the path (u,v,w) was arbitrary, this inequality holds

for all paths of length 2 in C. Hence, x satisfies the Cover condition.

Secondly, we check the Claw condition. Suppose that the Claw con¬

dition is violated, namely there exist an index i e {1,..., k} and paths
(u,v,w),(u,v,t),(w,v,t) e V(G) such that x[i, (u,v,w)\ +x[i,(u,v,t)} +

x[i,(w,v,t)] =2. By the symmetry of (u,v, w),(u,v,t), (w,v,t), we may
assume that x[i,(u, v, w)\ = l,x[i, (u,v,t)\ =1 and x[i,(w,v,t)} =0 with¬

out loss of generality. The construction of x implies that there exist

SuwfSut e V^ such that (u,v,w) ç Suw and (u,v,t) ç SUf. Therefore,

{u,v} e Suw and {u,v} G Sut. This implies that Suv n Sut ^ 0. On the

other hand, since V^ is a partition of E and Suw,Sut G V^l\ it holds

that Suw n Sut = 0- This is a contradiction. Thus, we have shown that

x satisfies the Claw condition.

Next, we check the Triangle condition. Suppose that the Tri¬

angle condition is violated, i.e., there exist an index i e {1,...,/c}
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and paths (u,v,w),(v,w,u),(w,u,v) G V(G) such that x[i,(u,v,w)} +

x[i,(v,w,u)] +x[i,(w,u,v)] = 2. By the symmetry of (u,v,w),(v,w,u),
(w,u,v), we may assume that x[i,(u,v,w)] = 1, x[i,(v,w,u)] = 1 and

x[i, (w,u,v)} = 0, without loss of generality. Then, our construction im¬

plies that there exist Su, Sv G V^ suchthat (u,v,w) ç Su and (v,w,u) ç

Sv. Therefore, we can see that {v, w} G Su and {v, w} G Sv. This means

that Suil Sv ^ 0. On the other hand, since V^ is a partition of E, and

SU,SV eT(l\ it holds that Sun Sv = 0. So, they contradict each other.

Thus, we have shown that x satisfies the Triangle condition.

Finally, we check the Matching condition. Suppose that the

Matching condition is violated, i.e., there exist i G {l,...,/c} and

(u,v,w),(v,w,t) eV(G) such that x[i,(u,v,w)] +x[i,(v,w,t)] > 1. Since

x is a {0,l}-vector, we have that x[i,(u,v,w)] = 1 and x[i,(v,w,t)] =

1. Because of our construction, there exist SU,SV G V^> such that

(u,v,w) ç Su and (v,w,t) ç Sv. Therefore, we can see that {v,w} G Su
and {v,w} G Sv. Then, by the same reason as in the case of the Trian¬

gle condition, we obtain a contradiction. Thus, we have checked that x

meets the Matching condition.

The discussion above concludes the only-if-part of the corollary. So

it remains to show the if-part.

Assume that there exists a vector x G {0/l}i1'---'k}x'p(G) which sat¬

isfies the Cover condition, the Claw condition, the Triangle condition

and the Matching condition. From this vector, we construct k stable-

set partitions Q^\..., QP^> of L(G) which satisfy Condition P' above.

Since Condition P' is equivalent to Condition P in Theorem 1.7, this

concludes the proof.

Fix i e {l,...,k}. Then we put {{w,^}} G Q}-1) if there exists

no (u,v,w) e V(G) such that x[i,(u,v,w)} = 1 and also there exists

no (v,u,t) e V(G) such that x[i,{v,u,t)] = 1. Furthermore, we put

{{w,^},{^,w}} G QW if x[i,(u,v,w)} = 1.

We now must check that QW is indeed a stable-set partition of L(G)
for each i e {l,...,/c} as desired. Fix i e {1,...,k] arbitrarily. First, let

us check that Qw is a partition of V(L(G)), i.e., a partition of E(G).

Clearly E(G) = (J Q^ for each i e {1,.. .,/c}. Suppose, for contradic¬

tion, that there exist two distinct sets S,T e Q® such that S n T ^ 0.
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Since each set in QW is of size 1 or 2, we have the following two cases.

As the first case, assume that l^l = 1 and \T\ =2, say S = {{u,v}} and

T = {{u,v}, {v, w}}. However, this contradicts our construction of Q(l\
The second case is where l^l = \T\ = 2. We have two subcases. Assume

that S = {{u,v},{v,w}} andT = {{u,v}, {v,t}} where w ^ t. Then from

our construction we have that x[i,(u,v,w)] = 1 and x[i,(u,v,t)] = 1.

By the Claw condition, we should have x[i,{t,v,w)] = 1. However,

the Matching condition requires x[i,{u,v,t)] + x[i, (t,v,w)} < 1. This

is a contradiction. Next, assume that, say, S = {{u,v},{v,w}} and

T = {{v,u},{u,t}}. In this case, again from the construction we have

that x[i, (u,v,w)} = 1 and x[i, (v,u,t)} = 1. If w ^ t, then this contradicts

the Matching condition. If w = t, then from the Triangle condition we

should have that x[i, (u,w,v)} = 1. However, this again contradicts the

Matching condition. Thus, QW partitions E(G).

Secondly, we check that each set S G QW is a stable set of L(G).
If \S\ = 1, then clearly S is stable. Assume that l^l = 2, say, S =

{{u,v},{v,w}}. Since (u,v,w) is a path of length 2 in C, {u,v} and

{v,w} are adjacent in L(G). This means that they are not adjacent in

L(G). Therefore {{u,v},{v,w}} is stable in L(G). Thus, we proved
that Qw is a stable-set partition of L(G) for each i e {1,..., k}.

Now, we check the constructed stable-set partitions Q^\..., QP^>

satisfy Condition P' above. However, this can be easily checked with

the Cover condition. This concludes the whole proof. D

1.8 Concluding Remarks

In this chapter, motivated by a quality of a natural greedy algorithm
for the maximum weight clique problem, we characterized the clique
complex of a graph which can be represented as the intersection of k

matroids (Theorem 1.7). This implies that the problem to determine

the clique complex of a given graph has a representation by k matroids

or not belongs to NP (Corollary 1.12). Furthermore, in Section 1.5 we

observed that the corresponding problem for two matroids can be solv¬

able in polynomial time. However, the problem for three or more ma¬

troids is not known to be solved in polynomial time. We leave the

further issue on computational complexity of this problem as an open
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problem. In addition, we showed that n — 1 matroids are necessary and

sufficient for the representation of the clique complexes of all graphs
with n vertices (Theorem 1.13), and looked at the relationship between
the clique complex of a graph and the graph itself as independence
systems (Theorem 1.21).

In Corollary 1.11, we proved that the class of clique complexes is

the same as the class of the intersections of partition matroids. This

result sheds more light on the structure of clique complexes, and may

give a new research direction to attack some open problems on them.

Formerly, Fekete, Firla & Spille [FFS03] studied matching com¬

plexes from the viewpoint of matroid intersections. In Section 1.7, we

have observed that some of their results can be derived from our more

general theorems.

Finally, we would like to mention open problems arising from the

study. As mentioned at the end of Section 1.5, we are not aware of a

polynomial-time algorithm to decide whether the clique complex of a

given graph is the intersection of three matroids or not. This is open.
As another open question, we want to mention the following. In The¬

orem 1.13, we showed that /i(n) = n — 1 for n > 2. There, the graph
showing /i(n) > n — 1 was disconnected. Therefore, we can ask what

we can say if we are restricted to graphs with a certain connectivity
requirement. For example, what is the maximum possible ß(G) when
C is connected, or 2-connected, ...

and so on. This problem remains

open.
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An attentive reader might have

noticed that while here we call the

function e^n subexponential, the title

implicitly calls e exponential. We
believe that this is excusable: what one

calls a mountain depends very much

on whether one lives in Holland or in

Switzerland, for example.

Jirka Matousek (2004)

The Affine Representation
Theorem for Abstract

Convex Geometries

2.1 Introduction

Abstract models of geometric concepts are useful. For example, a ma¬

troid is considered as the abstraction of linear and affine dependence
[Oxl92], and plays an important role in finite geometry and coding the¬

ory, and also in systems analysis [MurOO] and combinatorial optimiza¬
tion [Sch03], etc. Another example is an oriented matroid, also consid¬

ered as the abstraction of linear and affine dependence, and it captures
essences of convex polytopes, point configurations, and hyperplane
arrangements [BLS+99, Zie98]. Oriented matroids play an important
role in the theory of convex polytopes, discrete geometry, computa¬
tional geometry and linear programming, and they are known to be

quite powerful models.

One of the most important theorems in oriented matroid theory
is the "topological representation theorem" by Folkman & Lawrence

[FL78]. The topological representation theorem states that every sim-

Chapter 2
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pie oriented matroid can be represented as a "pseudohyperplane ar¬

rangement." Therefore, in principle, when we study an oriented ma¬

troid, we only have to look at the corresponding pseudohyperplane
arrangement. (Another proof of the topological representation theo¬

rem for oriented matroids has recently been found by Bokowski, King,
Mock & Streinu [BKMS], built on the earlier work by Bokowski, Mock

& Streinu [BMS01].) A recent study by Swartz [Swa03] revealed the

topological representation of matroids, stating that every simple ma¬

troid can be represented as the arrangement of homotopy spheres.

In this chapter, we study yet another example of combinatorial ab¬

straction of geometric concepts, namely abstract convex geometries.
Abstract convex geometries (or convex geometries for short) were in¬

troduced by Edelman & Jamison [EJ85] as an abstraction of convexity,
and they can be seen as a "dual" (or a "polar" or a "complement") of

antimatroids [Die89]. (Therefore, we sometimes use the word "anti-

matroid" instead of "convex geometry" to express the same object.)
Convex geometries and antimatroids appear not only in papers on

discrete geometry [EJ85, ER00, ERW02] but also in some other areas

like social choice theory [JDOl, Kos99, MROl], knowledge spaces in

mathematical psychology [DF99a], the discrete-event system [GY94],
and semimodular lattices [Ste99]. Furthermore, convex geometries
form a greedily solvable special case of a certain optimization problem
[BF90], and a recent development has uncovered the relationship of

convex geometries with submodular-type optimization [Fuj04, KO03].
From the opposite side of view, convex geometries form a special sub¬

class of closure spaces, and antimatroids form a subclass of greedoids
[BZ92, KLS91].

In this chapter, we prove the representation theorem for convex ge¬
ometries. The theorem states that every convex geometry can be rep¬
resented as a "generalized convex shelling." Since a generalized con¬

vex shelling is defined in a purely affine-geometric manner, this the¬

orem gives an affine-geometric representation of a convex geometry.
Since an affine-geometric representation theorem does exist neither for

matroids nor for oriented matroids, our affine-geometric representa¬
tion theorem for convex geometries indicates the intrinsic simplicity of

convex geometries. Just as the topological representation theorem for

oriented matroids plays a significant role in the theory of oriented ma¬

troids, we hope that our theorem plays a similar role in the theory of
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convex geometries.

Organization In Section 2.2, we give a definition of convex geome¬
tries and state our theorem precisely. The proof of the theorem is con¬

structive. In Section 2.3, we give a construction for the proof. In Sec¬

tion 2.4, we collect facts on convex geometries which will be used for

showing the validity of the construction. In Section 2.5, we conclude

the proof. Section 2.6 summarizes the chapter and gives some recent

progresses to which our result has opened the direction.

Geometric Preliminaries and Notation The set of non-negative real

numbers and the set of positive real numbers are denoted by IR>q and

IR>0, respectively.

We call points x\,x2, ...,xn e \Rd affinely independent if for any real

numbers Ai,X2,...,Xn £ IR,

n n

y^ XiXi = 0 and Y^ A^ = 0

i=\ %=\

imply Ai = • • • = An = 0. An affine basis of IRd is a maximal set of

points in IR which are affinely independent. From the definition,

we can see that the cardinality of an affine basis is always d+1, and

if {xi,x2,...,x^+i} is an affine basis, then for every point x e \Rd

there exist real numbers Ai,...,A^+i summing up to "1" such that

X =
z_^i=\ \xi-

A convex combination of points x\,x2,.. .,xn e \Rd is an expression
Y^i=i ^ixi where Ai,..., An G IR>o are non-negative real numbers sum¬

ming up to 1. A set S ç |R^ is convex if all convex combinations of

points in S also lie in S. For a set S ç IR^, the convex hull of S is a

unique minimal convex set containing S, and is denoted by conv(5').
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2.2 Convex Geometries and the Representa¬
tion Theorem

In this section, we give the definition of a convex geometry, which was

introduced by Edelman & Jamison [EJ85], and we state our theorem

precisely.

Let E be a non-empty finite set. A family C of subsets of E is called

a convex geometry on E if C satisfies the following three axioms:

(LI) 0 G C and E G C;

(L2) itX,Y e C, then X n Y e C;

(L3) if X e C \ {E}, then there exists some element e e E\X
such that X U {e} G C.

A member of a convex geometry C is called a convex set. Two convex

geometries C\ on E\ and C2 on E2 are isomorphic if there exists a bijec-
tion iß : £i —» E2 such that ^(X) G C2 if and only if X e L\.

Let us look at some examples of convex geometries.

Example 2.1 (convex shelling). Let P be a finite set of distinct points
in IR^, and define

C := {X Ç P | convpT) flP = I}.

Then, we can see that C is a convex geometry on P, and we call this

kind of convex geometries a convex shelling on P. A convex geometry

isomorphic to the convex shelling on some finite point set P is also

called a convex shelling.

Example 2.2 (poset shelling). Let E be a partially ordered set endowed

with a partial order -<, and define

C := {X Ç E | e G X and / ^ e imply / G X}.

(Namely, £ is the family of order ideals of E.) Then we can see that C

is a convex geometry on E, and we call this kind of convex geometries
a poset shelling on E.
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Example 2.3 (tree shelling). Let V be the vertex set of a (graph-
theoretic) tree T, and define

C := {X Ç V | G[X] is connected},

where G[X] denotes the subgraph of G induced by X. Then we can

see that C is a convex geometry on V, and we call this kind of convex

geometries a tree shelling.

Example 2.4 (graph search). Let G = (V, E) be a connected graph with
root r eV, and define

C := {X Ç V \ {r} | G[V \ X] is connected},

where G[V\X] again denotes the subgraph of G induced by V \X.
Then we can see that C is a convex geometry on V \ {r}, and we call

this kind of convex geometries a graph search.

In the literature, we can find more examples of convex geometries
arising from various objects [EJ85, KLS91].

Now we introduce yet another example of convex geometries,
which was so far not mentioned explicitly.

Example 2.5 (generalized convex shelling). Let P and Q be finite point
sets in \Rd such that P n conv(Q) = 0. (In particular, P n Q = 0.) Then

define

£ := {X Ç P | conv(X UQ)nP = X}.

We call C the generalized convex shelling on P with respect to Q. If Q = 0,
this just gives a convex shelling on P. So, as the name indicates, a

generalized convex shelling is a generalization of a convex shelling.
While at first sight it is not obvious that a generalized convex shelling
is indeed a convex geometry, later we will prove it as Lemma 2.2.

A generalized convex shelling is related to a minor of a convex ge¬

ometry. Let C be a convex geometry and A, B e C be convex sets of C

such that A ç B. Then, define

C[A,B] :={X CB\A\XuAeC}.
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As in the following lemma, it is known that C[A,B] is a convex geom¬

etry on B \ A and it is called a minor of C (Remark that the defini¬

tion of a minor is different from that in a paper of Edelman & Jamison

[EJ85]. Rather, our definition obeys that in the book by Korte, Lovâsz

&Schrader[KLS91].)

Lemma 2.1. Let C be a convex geometry on E and A,B e £ satisfy A ç

B ç E. Then C[A,B] is a convex geometry on B\A.

Proof. We only have to check that C[A,B] satisfies (LI), (L2) and (L3).
Let us check (LI) first. Since A e C, we have 0 U A = A e C. Hence

0 G C[A,B]. Similarly, since B e C, we have (B\A)uA = B e£. Hence

B\AeC[A,B].

Secondly, we check (L2). Choose X,Y e C[A,B] arbitrarily. Then,
it follows that X\jA,Y\jAeC. Using (L2) for C, we get (lUi)n
(7Ui)e C, namely {XnY)\jAeC. Therefore, it holds that ln7G

C[A,B].

Finally, we check (L3). Choose X e C[A,B] \{B\A] arbitrar¬

ily. Then we have lUie£,lni = 0 and lUiCß. Apply¬
ing (L3) to Xyj A many times, we can find a sequence e\, e2,..., e^ G

E\(XU A) of elements such that (X U A) U {e\,...,e^ G C for all

i e {1,..., k} and (X U A) U {e\,..., e^} = E. Let i* be the minimal

index in {!,..., k] such that e^* e B\(X U A). Then we can see that

pUi) U {ei,...,ej*}) nB = (XUA) U{e^} and from (L2) we can

also see that this belongs to C. Thus we have found e^* Gß\(lU A)
suchthat (lUi)U {e^} G C, namely X U {e^} G C[A,B]. D

In this proof, we have used the "chain argument," which is useful

in the theory of convex geometries, and will be used again in the rest

of this chapter.

The next lemma shows that a generalized convex shelling is a minor

of some convex shelling. Together with Lemma 2.1, this implies that a

generalized convex shelling is a convex geometry.

Lemma 2.2. Let P and Q befinite point sets in IRd such that P n conv(Q) =

0. Furthermore, let C be the generalized convex shelling on P with respect to

Q, and C be the convex shelling on PUQ. Then it holds that £ = £[Q,PU
Q\.
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Proof. First, because of the condition that P n conv(Q) = 0, it follows

that Q e jC. So, jC[Q,PU Q] is well-defined. Since

£ = {X ÇPUQI conv(X) n(PUQ) = X},

it follows that

£[Q,PUQ] = {Xc(PuQ)\Q\XuQe£}

= {X cp\xuQe£}
= {X Ç P | conv(X UQ)n(PUQ)=XUQ}
= {X Ç P | conv(X UQ)nP = I}
= £.

Notice that the derivations of the second and the fourth identities use

the assumption that P n conv(Q) = 0, in particular P n Q = 0. This

concludes the proof. D

We are ready to state our main theorem. This states that the

class of convex geometries coincides with the class of generalized con¬

vex shellings defined geometrically, although convex geometries arise

from diverse objects as we have seen.

Theorem 2.3. Every convex geometry is isomorphic to a generalized convex

shelling.

The main concern of this chapter is the proof of Theorem 2.3. For

the proof of Theorem 2.3, in the next section we construct finite sets

Pq and Qo of points from a given convex geometry C with the follow¬

ing property: C is isomorphic to the generalized convex shelling on Pq
with respect to Qq. In Section 2.4, we prepare more concepts from con¬

vex geometries which are needed in the proof. Section 2.5 completes
the proof of the validity of the construction.

2.3 Construction of Point Sets

In our construction, we use rooted circuits of a convex geometry. So,

at the beginning of this section, we introduce rooted circuits. A rooted



66 Chapter 2. Affine Representations of Convex Geometries

circuit of a convex geometry was originally defined by Korte & Lovâsz

[KL84].

In order to define a rooted circuit, we need other technical terms.

For a convex geometry C on E and Ae_E, the trace of C on A is defined

as

Jr{C,A) :={Ini|lG£}.

A rooted set is a pair (X,r) of a set X and an element r of X. A rooted

subset of E is a rooted set (X, r) such that X ç E.

Here comes the definition of a rooted circuit. Let C be a convex

geometry on £". A rooted subset (C,r) of E" is called a rooted circuit of

£ if Tr(£, C) = 2e \ {C \ {r}}. We denote by C(C) the family of rooted

circuits of a convex geometry C.

Now we are ready for our construction. We construct point sets

Pq and Qq from a given convex geometry C on E so that £ can be

isomorphic to the generalized convex shelling on Pq with respect to

Qo-

Let n := \E\. We use an (n—1)-dimensional space IRn_1. For each

element ee E, we take a point p(e) G IRn_1 such that the points {p{e) G

IRn_1 | ee E} form an affine basis of IRn_1. Then, for each rooted circuit

(C,r) e C(C) of C we choose a point q(C,r) G IRn_1 determined as

q(C,r):=\C\p(r)- ]T p(e). (2.1)

eGC\{r}

Note that p(r) is a convex combination of the points in {p(e) \ e G

C \ {r}} U {q(C,r)} with positive coefficients for every rooted circuit

{C,r) e C{£). Actually, this property is all that is needed in the con¬

struction. The definition of q(C,r) above is just one of such choices,
but it eases the later calculation. Thus, we have set up \E\ + \C(C)\
points in IRn_1.

Let Pq = {p(e) \ e G E} and Q0 = {q(C,r) \ (C,r) G C(C)}. Then it

holds that Pq n Qq = 0. Now our claim is as follows.

Lemma 2.4. For Pq and Qq constructed as above, the generalized convex

shelling on Pq with respect to Qq is isomorphic to C.
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This lemma proves Theorem 2.3. The proof of Lemma 2.4 will be

done in Section 2.5.

To illustrate the construction, let us look at examples for n = 3. Be¬

low we enumerate all of the six non-isomorphic convex geometries on
E = {1,2,3} together with their rooted circuits.

A == 2i1'2'3}, C(C{j -= 0,

£2 == A\{{1,3}}, C(C2) -= |({1,2,3},2)},

£3 == A \ {{3}}, C{C3) -= {(R3},2)},

A == £3\{{2,3}}, c(A) == {({1,3},1),({2,3},2)},

£5 == £3\{{i}}, C(C5) --= {({1,2},2),({2,3},2)},

A> == A \ {{2}}, C(C6) --= {({1,2},1),({1,3},1),({2,3},2)}.

Figure 2.1 depicts the construction of the point sets for these examples.

2.4 More Properties of Convex Geometries

In this section, we introduce more concepts from the theory of convex

geometries, which will be needed in the proof of Lemma 2.4 (i.e., The¬

orem 2.3). The reader is encouraged to interpret these concepts and

lemmas with the examples in Section 2.2.

Let C be a convex geometry on E. Then the closure operator of C is a

map T£ :2E —> 2E defined as

Tc(A)-.= [){X e £ \ A ç X}

for A ç E. By (L2) in the definition of a convex geometry, we can see

that Tjß(A) e C for every ACE. Furthermore, from the definition of a

closure operator, we can prove the following facts.

Lemma 2.5. Let Cbe a convex geometry on E, and T£ the closure operator

ofC.

(Tl) (Characterization ofconvex sets.) For X ç E, it holds that X e C

ifand only ifr^X) = X.

(T2) (Extensionality.) A ç Tjc(A)for Aç E.
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Figure 2.1: Construction of the point sets for n = 3.

(T3) (Idempotence.) tc(tc(A)) = rc(A)for ACE.

(T4) (Monotonicity.) Aç B implies rc(A) ç tc(B)
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(T5) (Anti-exchange property.) Let A ç E and e,feE such that

erfände, f# r£(A). Iff e r£(A U {e}) then e 0 r£(A U {/}).

Proof. The properties (T1)-(T4) are immediate from the definitions.

The proof of the antiexchange property (T5) goes as follows.

Let A, e and / be as in the description of (T5). Further, let X be a

set such that X ç E \{e\, X e C and X is maximal (in the sense of set-

inclusion) with respect to these two properties. Since T£(A) ç E \ [e]
and T£(A) e C, such a set X always exists, and we have A ç t^A) ç

X. By (L3) in the definition of a convex geometry, there exists some

element e' e E\X such that X U {e'} e C. If e' ^ e, then X U {e'} ç
E \ {e}. This contradicts the maximality of X. Therefore e' = e follows.

This implies that lU{e}G£.

Assume that /Gr^U {e}). Since iU{e}Clu {e} and lU{e}G
C, it holds that /Gr£(iU {e}) Çr£(lU {e}) = X U {e}. (Here, we
have used (T4) and (Tl).) Since e^/, we have / G X. This means that

!U{/} = X. Therefore, it follows that tc{X U {/}) = tc{X) = X $ e.

(Here again we have used (Tl).) By the monotonicity (T4) we have that

tc{A U {/}) Ç tc{X U {/}). Hence it holds that e^T£{AU {/}). D

Note that the properties (T1)-(T4) of Lemma 2.5 even hold for

more general "closure spaces" [EJ85, KLS91]. So the anti-exchange
property (T5) is a characteristic feature of convex geometries. Actu¬

ally, (T5) characterizes a convex geometry in the following sense: a

map t : 2E —> 2E satisfying extensionality, idempotence, monotonic¬

ity and also r(0) = 0 is the closure operator of some convex geome¬

try if and only if r additionally satisfies the anti-exchange property
[EJ85,KLS91].

In the following lemma, we can see that a trace of a convex geome¬

try is again a convex geometry and that the closure operator of a trace

is nicely combined with the closure operator of the original convex ge¬

ometry.

Lemma 2.6. Let Cbe a convex geometry on E, and T£ the closure operator

of C. Then, Tr(£,A) is a convex geometry on Afor every Aç E. Moreover,

the closure operator rjr^/A^ : 2A —» 2A of Tr(£, A) is derived as

TMc,A)(B)=TC(B)nAforBÇA.
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Proof. Fix A ç E and check that Jr(C,A) satisfies (LI), (L2) and (L3).
First we check (LI). Since 0 n A = 0, we have 0 G Tr(£,A). In addition,
since ^ni = i,we have A G Tr(£,A).

Next we check (L2). Choose X nA,Y nA eJr(jC,A) where X,Y e

£. Since XnYeCby (L2), we have {X nA)n{Y nA) = [X nY)nAe
Tr(C,A).

Finally we check (L3). Choose XnAe Tr(C,A) where X e C. By
(L3) there exists e e E\X such that X U {e} G C. If e G A \ X, we

are done. If not, applying (L3) to X many times, we get a sequence

e\,...,e]çeE\X such that X U {e\,..., ei} e C for all i = 1,..., k and

X U {e\,... ,ejç} = E. Let i* be the minimum index such that e^* G A.

Then we have (X U {ei, ...,ej»})ni=(lU {e^ }) n ^4 G Tr(£, A). Thus

we have found e^ Gi\(Ifl A) such that (X U {e^}) n A e Tr(£,A).

For the second part, we just calculate as follows. For any B ç A,

rMc,A)(B) = f){X e Tr(C,A) \ B Ç X}

= Ç]{xr\A\XeC,Bçx}
= {Ç]{XeC\Bçx})r\A
= T£(B)nA.

Here, the first and the last identities are due to the definition of the

closure operator. The second one comes from the definition of the trace.

D

Now, we look at how the closure operator reveals properties of

rooted circuits.

Lemma 2.7. Let Cbea convex geometry on E. If (C,r) is a rooted circuit of
C,thenreTC(C\{r}).

Proof. Assume that {C,r) e C(C). This means that Tr(C,C) =2C\{C\
{r}}. Since t£{C \ {r}) = f]{X e C \ C \ {r} Ç X} by definition, in

order to show that rGr/;(C\{r}) we only have to check that r G X for

all X e C such that C \ {r} ç X. Take such a set X arbitrarily. Then it
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holds that

xncÀC {rEX)'

\C\{r} (r?X),

since C \ {r} ç X. However, if X n C = C \ {r}, one would conclude

that C\{r} e Tr(C,C). (Recall the definition of the trace: Tr(C,C) =

{X nC \ X e C}.) This contradicts our assumption. So it should hold

that X n C = C, which means r e X. D

Here is another lemma.

Lemma 2.8. Let Cbe a convex geometry on E, and r 0 X ç E. Then r e

Tjß(X) \ X ifand only if there exists C ç Xu {r} such that (C, r) is a rooted

circuit of C.

Proof. First we prove the if-part. Assume that there exists C ç X U {r}
such that (C,r) G C(C). Then, from Lemma 2.7, we can see that r G

T£(C \ {r}). Combining this with T£(C \ {r}) ç T£,(X) (following by
the monotonicity (T4)) and r 0 X, we obtain r G T£,(X) \ X.

To prove the converse, assume that r G T£,(X) \ X. Let DÇIbe

a minimal subset of X satisfying r G T£,(D). Note that such a set D

always exists because X itself satisfies r G T£,(X), and D is not empty
because r^(0) = 0 by (LI) and (Tl). Now we claim that (D U {r},r) is a

rooted circuit of C This will finish the whole proof.

Since D is not empty, we may choose an arbitrary element e e D.

By the minimality of D, it holds that r 0 t^{D\ {e}). Then, we claim

the following.

Claim 2.8.1. It holds that e#T£(D\ {e})for every ee D.

Proof of 2.8.1. Suppose the contrary; namely, e G T£,(D \ {e}). Then, us¬

ing monotonicity (T4), we obtain

D = (D\ {e}) U {e} Ç T£(D \ {e}) U {e} = r£(D \ {e}).

By monotonicity (T4) and idempotence (T3), we can see that r£{D) ç

tc(tc(D \ {e})) = rc(D\ {e}). On the other hand, it holds that tc{D \
{e}) Ç tc{D) again by the monotonicity (T4). Therefore, it holds that
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Tjß{D) = Tjß{D\ {e}). Since r G t£{D) by the choice of D, this implies
that r G Tjß{D\ {e}). However, this contradicts the observation that

r $T£(D\ {e}) as seen just above the statement of this claim. Thus, the

claim is proven. D

By Claim 2.8.1, the observation above that r 0 t£(D\ {e}) and the

monotonicity (T4), it follows that

D\{e} = (DU{r})nT£(D\{e})eJr(C,DU{r}). (2.2)

(Remember that T£(A) e C for all A ç E.) Furthermore, since r G

T£(D), it holds that (D \ {e}) U {r} ç tc(D) by the monotonicity (T4).
Hence, we obtain

(D \ {e}) U {r} = ((D \ {e}) U {r}) n r£(D) G Tr(C,D U {r}). (2.3)

Since the expressions (2.2) and (2.3) hold for all e G D, by using (L2) we

can see that Tr(£,DU {r}) = 2DuM \ {£>}.

The following lemma due to Korte & Lovâsz [KL84] says that the

family of rooted circuits of a convex geometry determines it uniquely.

Lemma 2.9. Let C(C) be thefamily ofrooted circuits ofa convex geometry C

on E. Then we have

C = {XCE\ (E\X) HC ^ {rjfor all {C,r) eC{C)}.

Proof. First we show that

C Ç {X Ç E I (E \ X) n C =£ {r} for ail {C,r) G C(C)}.

Choose X e C arbitrarily, and suppose that there exists some rooted

circuit (C,r) G C(£) such that (E \ X) n C = {r}. Then we have X n

C = C\ {r}. However, this means that C \ {r} G Tr(C,C), which is a

contradiction to the definition of a rooted circuit. So it should hold that

(E \ X) n C ^ {r} for all {C,r) G C(£).

Let us show the other direction. Choose X 0 C arbitrarily. This

means that X C T£(X) by (Tl) and (T2). Therefore, there exists an

element r G T£(X) \ X. By Lemma 2.8, we have a set C ç X U {r} such

that (C,r) is a rooted circuit of C. So it follows that (E \ X) n C = {r},
concluding the lemma. D
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The next lemma shows that rooted circuits are minimal in a certain

sense.

Lemma 2.10. Let Cbe a convex geometry on E, and (C,r) a rooted circuit

of C. Then Tr(£,D) = 2D for any proper subset D ÇC.

Proof. First of all, observe that

Tr(£,D) = {XnD\X eC}
= {(xnC)nD\x eC}
= {YHD\Y GTr(£,C)}

= {YDD\Y e2c\{C\{r}}}.

Here, the first and the third identities are due to the definition of a

trace. The second one comes from the assumption that D Ç C, and the

last one from the definition of a rooted circuit.

Now, we have two cases. First consider the case in which D ^
C \ {r}. Then, all subsets of D belong to 2e \{C \ {r}}. Therefore,

Jr(£,D) = 2D holds. Next consider the case in which D = C \{r}.
Then, C H D = C \ {r} and every proper subset of D belongs to

2C \ [C \ {r}}. Therefore, we also have Tr(£, L>) = 2D. D

Here are more properties of rooted circuits.

Lemma 2.11. Let Cbe a convex geometry on E, and C be thefamily of rooted
circuits of C. Then thefollowing properties hold.

(CI) If{Clrr), (C2,r) e C and C1 ç C2, then C1 = C2.

(C2) If (Ci,r{),(C2,r2) G C and r\ G C2 \ {r2}, then there exists

(C3,r2) e C such that C3 ç d U C2 \ {n}.

Proof. Let us first prove (CI). Suppose C\CC2. Then, using Lemma

2.10, we can see that Tr(£,Ci) = 2Cl. This is a contradiction to the

assumption that (C\,r) is a rooted circuit. Hence (CI) follows.

Next we prove (C2). Let X := (C1 U C2) \ {r\,r2}. Since

C2 \ {r2} Ç (d U C2) \ {r2}
= ((C1UC2)\{r1,r2})U{r1}
= xu{n},
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we have r2 G T£(C2 \ {r2}) Çt£(XU {n}) by Lemma 2.7 and the mono¬

tonicity (T4) of T£. Similarly, we have r\ G T£(C\ \ \r{\) Çr/;(IU {r2})-
Therefore by the anti-exchange property (T5), we obtain r\ G T£(X) or

r2er£[X).

If r\ e T£(X), then it follows that

c2\{r2} çxu{n} ç T£(x) u{n} = tc{x),

where the second inclusion is due to the monotonicity (T4), and in the

last identity we use the assumption r\ G t£(X). Therefore, it should

hold that

ri G T£(C2 \ {r2}) Ç T£(T£(X)) = rc(X)

by Lemma 2.7, the monotonicity (T4) again and the idempotence (T3).
Hence in either case we have r2 G T£(X) \ X. Then, by Lemma 2.8,

there exists C3ÇXU {r2} such that (C3, r2) is a rooted circuit of C. D

Let us note that (CI) and (C2) in Lemma 2.11 actually characterize

the family of rooted circuits of a convex geometry among families of

rooted subsets. That is, a given family C of rooted subsets of E satisfies

(CI) and (C2) if and only if C is the family of rooted circuits of some

convex geometry on E. This characterization is due to Dietrich [Die87,

Die89].

Here, we observe the relation of a rooted circuit and the closure

operator.

Lemma 2.12. Let Cbe a convex geometry on E. Then (C,r) G C(C) if and

only ifr er£(C\ {r}) and r £t£(D\ {r})for every proper subset D ÇC.

Proof. Assume that (C,r) e C(C). From Lemma 2.7 it follows that r G

T£(C \ {r}). Now we show that r £t£(D\ {r}) for every proper subset

D CC. Choose a proper subset D CC arbitrarily. Then Lemma 2.6 tells

us TjYt£iC\{D \ {r}) = T£(D\ {r}) n C. Since (C,r) is a rooted circuit

of C, we have D \ {r} G Tr(£,C), which implies Tjrr£/C\(D \ {r}) =

D \ {r} by (Tl) in Lemma 2.5. Therefore, we have T£(D \ {r}) nC =

D \ {r}. Since r 0 D\ {r} and r G C, it follows that r 0 T£(D\ {r}).
The only-if-part has been proven.
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Next, we prove that if r e T£(C \ {r}) and r 0 t£(D\ {r}) for any

proper subset D C C, then {C,r) G C(C). Since r e T£(C \ {r}) (by
the assumption) and r ^ C\ {r}, we have r e T£(C\ {r}) \{C\ {r}).
Therefore, by Lemma 2.8, there exists C' ç (C \ {r}) U {r} = C such

that {C',r) eC{C). By Lemma 2.7, we have r G tc{C \ {r}). Since

we have assumed that r 0 t£(D\ {r}) for any proper subset D C C, it

should hold that C" = C. This implies that (C,r)eC{C). D

Now, we determine the closure operator of a generalized convex

shelling.

Lemma 2.13. Let P and Q befinite point sets in \Rd such that P n conv(Q) =

0, and C be the generalized convex shelling on P with respect to Q. Then

T£(A) = cony(A UQ)nP

for Ac P.

To prove Lemma 2.13, we use the following lemma.

Lemma 2.14. Let Cbe a convex geometry on E, and S ç E. Consider the

minor £' := C[S,E\. Then, it holds that t£/(T) = t£(T u5)\ S for each

TCE\S.

Proof. From the definitions of the closure operator and a minor, it holds

that

T£,{T) = Ç\{Xe£\Tçx}
= Ç\{X ÇE\XUS eC,TÇX}

= P|{y \S\YeC,TuSÇY}

= (f){Y eC\TuSÇY}\ \S

= T£(TUS)\S.

In the third identity, we replaced X U S by Y. D

Proof ofLemma 2.13. First observe that the closure operator T£* of the

convex shelling C* on P U Q is given by T£* (B) = conv(B) fl(PUQ)
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for each B ç P u Q. From Lemma 2.2, the generalized convex shelling
C on P with respect to Q is the same as C*[Q,PUQ]. Therefore, from

Lemma 2.14, we obtain

TC(A) = TC*(A\JQ)\Q
= (conv(AuQ)n(PUQ))\Q
= conv(^UQ) HP.

This concludes the proof. D

Combining Lemmas 2.12 and 2.13, we can obtain a characterization

of the family of rooted circuits of a generalized convex shelling.

Lemma 2.15. Let C denote the generalized convex shelling on P with respect
to Q, and let C ç P and r e C. Then (C,r) G C(C) if and only if r e

conv((C\{r}) U Q) andr 0conv((L>\ {r}) U Q)for any proper subset D C

C.

Proof. This is a direct consequence of Lemmas 2.12 and 2.13. D

2.5 Proof of the Main Theorem

As explained in Section 2.3, for a given convex geometry C on E, we

construct point sets Pq and Qq. We denote by C! the generalized convex

shelling on Pq with respect to Qq.

First we have to check that Pq and Qq satisfy the precondition of a

generalized convex shelling, namely Pq n conv(Qo) = 0-

Lemma 2.16. For Pq and Qq constructed in Section 2.3, it holds that

conv(Po) n conv(Qo) = 0; in particular, P0 n conv(Qo) = 0.

To show Lemma 2.16, the next fact is useful, which will be used

later again and again.

Lemma 2.17. Let Vbea set ofaffinely independent points in IRd and V\, V2 ç

V. Ifthere exist sets {av e IR>o | v e V\}and {ßv e IR>o | v e V2} ofpositive
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numbers such that

y
j
av = 2_, ßv und y, avV = /^ ßyV/

v<EVi v<EV2 v<eV\ v<EV2

then it holds that Vi = V2.

Proof. Compute as

o = ^2 avv
- ^2 @vV

v<EV\ v<EV2

= ^2 iav-ßv)v+ ^2 avv- ^2 ^vV-

vev1nv2 veVi\v2 vev2\Vi

Since V consists of affinely independent points, so does V]_UV2. The

affine independence of the points in V\ U V2 and our assumption that

Y,{av \veVi} = Y,{ßv \veV2] imply that

• av - ßv = 0 for v e Vi n V2,

• av = 0 for v e Vi \ V2,

• ßv = 0iorveV2\V1.

Since av > 0 for v G Vi and ßv > 0 for v G V2, this is possible only if

Vi = V2. D

Now we are ready to show Lemma 2.16 with Lemma 2.17.

Proof ofLemma 2.16. Let E' ç E and {(C^n),.. .,(Ck,rk)} ç C{£) be

minimal sets such that the convex hull of the points from {p(e) \ e G E'}
intersects conv({q(Ci,ri) \ i = 1,.. .,k}). By the minimality, there exist

some positive numbers Àe G IR>o for every ee E' and ßi,...,ßk e IR>o
such that

k k

^Ae = l, ^2/ii = l and ^2 Xep(e) =^2ßiq(Ci/ri).
eeE' i=l eeE' i=l

By the construction of Qq, we have

k I \ k

^2 XeP{e)+J2ßi Yl P^ =J2^i\Ci\p(ri)-
eeE' i=\ \eeCl\{rl} J i=\
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Since the points in {p(e) \ e G E} are affinely independent, using
Lemma 2.17 we obtain

k

E,u{J(Cl\{rl}) = {rl\ie{l,...,k}}.
i=\

Let us denote R = {ri \ i e {1,..., k}}. Then the identity above implies
that

k k

R = Ru\J(Cl\{rl}) = [jCl. (2.4)
i=i i=i

By the conditions (LI) and (L3) in the definition of a convex geom¬

etry, there exists a subfamily {Xj \ j = 0,1,... ,n} ç C such that Xq C

X\ C • • • C Xn and |X,-1 = j for each j e {0,1,..., n}. Especially, Xq = 0

and Xn = £". Fix such a subfamily {X, | j e {0,... ,n}}. Then there ex¬

ists an index j* such that \(E\Xj*) n R\ = 1. Let {r} := (E \ Xj*) n R.

From the identity (2.4), there exists a rooted circuit {C,r) G C(£) such

that C CR since rGi?. Then it follows that (E \ Xj* ) n C = {r}. How¬
ever this implies that Xj* 0 £ by Lemma 2.9, which is a contradic¬

tion. D

Lemma 2.16 tells us that Cq is well-defined. In order to prove
Lemma 2.4, we only have to show that C(C) is isomorphic to C{Cq)
thanks to Lemma 2.9. Namely, we want a bijection if; : E —> Pq such

that (iß(C),iß(r)) e C{Cq) if and only if (C,r) G C(£). In our case, the

natural bijection ip : E —> Pq is as follows: ^(e) = p(e) for eeE. Thus

we only have to show the next lemma.

Lemma 2.18. In the setting above, it holds that

C(£o) = {ty(C)Mr))\(C,r)eC(C)}.

This lemma follows from the following two lemmas (Lemmas 2.19

and 2.20) and (CI) in Lemma 2.11.

Lemma 2.19. In the setting above, for every rooted circuit (C,r) G C(C),
there exists (Co,ro) G C(Cq) such that Cq ç iß(C) and tq = iß(r).

Lemma 2.20. In the setting above, for every rooted circuit (Co,ro) G C(Cq),
there exists (C,r) e C(C) such that C ç i/j~1(Cq) and r = ^_1(ro).
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Before proving Lemmas 2.19 and 2.20, let us show how Lemma 2.18

can be derived from them.

Proof ofLemma 2.18. First we prove that if {C,r) G C(C) then

(^(C),^(r)) G C{Cq). Take an arbitrary rooted circuit {C,r) G C(C).
Then from Lemma 2.19, there exists some {Cq,tq) G C(Cq) such that

Cq ç i/j(C) and vq = t/j(r). Note that r = ^_1(ro) since ^ is a bijec¬
tion. Then from Lemma 2.20, there exists some {C,r) G C(C) such that

C ç iJj~1(Cq) and f = tp~1(rQ). So we have r = ^~1{tq) = f.

Now using (CI) in Lemma 2.11, we have

{C,r) = ^-\CQ),^-\rQ)) = {C,f).

Since ^ is a bijection, we also have

W>(C),^(r)) = (C0,r0) = (^(C)^(f)).

Therefore, we have (iß(C),ip(r)) G C{Cq) since {Cq,vq) G C{Cq).

Similarly, we can show that if {Cq,tq) G C(Cq) then it holds that

(ij-1(CQ),ij-1(r0))eC(C). D

To prove Lemma 2.19, we use Lemma 2.15.

Proof ofLemma 2.19. Take an arbitrary rooted circuit {C,r) G C(C).
From our construction, we have

p(r) e conv({p(e) | e G C \ {r}} U {q(C,r)}),

which implies

^(r) Gconv(^(C\{r})UQ0)-

Take a subset Cq ç iß(C) such that ip(r) G conv((Co \ {tp(r)}) U Qq) and

^(r) 0 conv((öo \ {^(r)}) u Qo) f°r any proper subset Dq C Cq. (Note
that such a set Cq exists because if ^(r) e Aç B and ^(r) G conv((^4 \
j>(r)}) U Qo)tnen ^(r) ^ conv((£ \ {^(r)}) U Qo)0 From Lemma 2.15,

it follows that (C0,iß(r)) G C{C0). D

In order to prove Lemma 2.20, we prepare another lemma.
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Lemma 2.21. In the setting above, let e e E be an element which satis¬

fies the following condition: there exist a subset F ç E\ {ë} and some

{Ci,ri),.. .,(Cfc,rfc) G C(C) such that pie) is a convex combination of the

points from {p{f) | / G F} U {g(Cj,rj) | i G {1,.. .,/c}} with all positive
coefficients.

(1) It holds that

k

F\J{ri\ie{l,...,k}} = {ë}u\J(Ci\{ri}).

(2) It holds that eer£{F).

Proof. Let us first prove (1). From the assumption, there exist some

{Xf e IR>o | / G F} and {m e IR>0 | i G {1,..., k}} such that

k k

EA/+E^ = 1 and J^2XfPU)JrS}2ßi(l{Ci,ri)=p{e).
feF i=i feF i=i

From the construction of Qq, it follows that

p® = E xfPW + EM I ci Wn) - E p^)'
feF i=\ \ eeC%\{r%} J

meaning that

k k

E xfp^+E^ i ci\p^=p®+E E ^(e) •

/GF i=\ i=leeCi\{n}

By Lemma 2.17, it holds that

A;

FU{r,M = l,...,A:} = {ë}u|J(Q\{ri}).
i=l

Thus, part (1) is proven.

For part (2), set R := {r^ | « G {1,..., k}} and

F* U(^AW) U{e} \i?.
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By part (1) of this lemma, we have F* ç F. Moreover, by part (1) again,
it follows that ë G R. Therefore, F* can be represented as

F*=([jCi\\R.

We claim that for every X e C satisfying F* ç X it holds that ë G X.

To show that by a contradiction, we suppose that there exists X* e C

such that F* ç X* and ë 0 X*. Since ee R and ë 0 X*, we have ë G

{E \ X*) n R. This implies that \(E \ X*) n R\ > 1. So by the chain

argument, there exists Z e £ such that \(E\Z)n R\ = l and Z Z} X*.

Without loss of generality, let us say {ri} = (E \ Z) n R. Since F* ç

X* Ç Z we have (E \ Z) n F* = 0. Therefore, it follows that

(E\Z)n (]J{Ci \i = l,...,k})=(E\Z)n (F* U R)

= {{E\Z)nF*)ö{{E\Z)nR)
= 0u{n}
= in}-

Then we obtain (E \ Z) n Ci = {r{\. However this implies that Z 0 C,

together with Lemma 2.9. This is a contradiction.

Let us consider T£(F*). Since F* ç T£(F*) e C (the extensionality
of T£), it holds that ë G T£(F*). (Here, we have used the claim above.)

By the monotonicity (T4) of T£ we obtain t£(F*) ç T£(F). From this

we conclude that e G T£(F). D

Now we are ready to prove Lemma 2.20.

Proof ofLemma 2.20. Let (Co,ro) G C(Cq). From Lemma 2.15, we can see

that ro G conv((Co \ {ro}) U Qq) and ro 0 conv((L>o \ lro}) U Qq) for any

proper subset Dq C Cq. Let us observe the following.

Claim 2.21.1. There exists some subset Qi ç Q0 such that tq is a convex

combination of the pointsfrom conv((Co \ {ro}) U Qi) with all positive coef¬
ficients.
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Proof of Claim 2.21.1. To see this, suppose contrarily that there exists no

such set. Namely, for any subset Qi ç Q0/ every convex combination

of the points from (Co \ {ro}) U Qi representing ro has a term with a

zero coefficient. Take Qi = 0. Then this particularly implies that if we

write ro as

ro = E xpp

peC0\{r0}

for some non-negative real numbers Xp, p e Cq\ {ro}, and let

F := {p e Cq \ {r0} | Xp > 0},

then F is a proper subset of Cq \ {ro}. It holds that ro G conv(F) ç

conv(F U Qq). However, this contradicts the assumption that ro 0

conv((.Do \ {ro}) U Qq) for any proper subset Dq C Cq. The claim is

proven. D

Using Claim 2.21.1 together with Lemma 2.21(2), we obtain

^_Vo) e ^(^_1(Co \ {ro}))- Choose C Ç ^{Cq) such that

^~Vo) e r£(C \ ty-Hro)}) and ^(vq) 0 r£(D \ WVo)}) for any

proper subset D ÇC. (Note that such a set C exists because of the same

reason as in the proof of Lemma 2.19.) By Lemma 2.12, it follows that

{C,^-\rQ))eC{C). D

This completes the whole proof. Q.E.D.

2.6 Conclusion

In this chapter, we have provided the affine representation theorem for

(abstract) convex geometries. This should be as useful as the represen¬
tation theorem for oriented matroids by Folkman & Lawrence [FL78].

Actually, the theorem has opened several new directions of research.

We indicate some of them here.

1. Our theorem makes it possible to talk about the dimension of the

space in which a given convex geometry can be realized. Hachi-

mori & Nakamura [HN04] studied stem clutters of a convex ge¬

ometry which can be realized in the 2-dimensional space. They
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gave a characterization of a stem clutter in dimension 2 with the

max-flow min-cut property.

2. The next chapter studies an open problem posed by Edelman &

Reiner [EROO] from the viewpoint of our theorem. Especially,
we solve the question affirmatively for 2-dimensional separa¬
ble generalized convex shellings. (Here, "separable" means that

conv(Po) H conv(Qo) = 0- Because of Lemma 2.16, our theorem

can be strengthened to: every convex geometry is isomorphic to

some separable generalized convex shelling.)

We hope that our theorem gives a fruitful tool in the theory of con¬

vex geometries and related fields.





A good proof should be easy to verify
— and it should be easy to falsify, in

case it is wrong.

Emo Welzl (2003, in an explicitly
written form)

Local Topology of the Free

Complex of a

Two-Dimensional

Generalized Convex

Shelling

3.1 Introduction

An Euler-Poincaré type formula for the number of interior points in

a d-dimensional point configuration was proved by Ahrens, Gordon

& McMahon [AGM99] for d = 2, and proved by Edelman & Reiner

[EROO] and Klain [Kla99] independently for arbitrary d. The approach
by Klain [Kla99] used a more general theorem on valuation, while that

by Edelman & Reiner [EROO] was topological. (Edelman, Reiner &

Welker [ERW02] gave another proof based on oriented matroids. Pin-

chasi, Radoicic & Sharir [PRS04] gave yet another proof using elemen¬

tary geometric arguments for point configurations in general position.)
In the paper by Edelman & Reiner [EROO], they studied the topology

85

Chapter 3
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of deletions of the free complex of a convex shelling (arising from a

point configuration), and also mentioned a possible generalization to

a convex geometry. More precisely speaking, their open problems are

as follows. (The necessary definitions will be given in the following
section.)

Open Problem 3.1 (Edelman & Reiner [EROO]). Let Cbe a convex geom¬

etry on E and denote thefree complex ofC by Free(£).

1. Is the deletion de\Free(n{x) of an element x e E contractible if

Depc{x) ^ E?

2. Is de\Free(n{x) homotopy equivalent to a bouquet of spheres if

Dep^x) = E,

Edelman & Reiner [EROO] answered Open Problem 3.1 affirma¬

tively for convex shellings to derive the forementioned Euler-Poincaré

type formula, and further for poset double shellings and simplicial
shellings of chordal graphs as well. Subsequently, Edelman, Reiner

& Welker [ERW02] answered it affirmatively for convex shellings of

acyclic oriented matroids.

With the view from the previous chapter, we resolve Open Problem

3.1 for 2-dimensional separable generalized convex shellings.

Theorem 3.2. Let P and Q be non-empty finite point sets in IR2 such that

conv(P) n conv(Q) = 0. In addition, let C be the generalized convex shelling
on P with respect to Q. Consider the free complex Free(£) of C. Then the

following holds.

1. If Dep^(x) ^ P, then the deletion de\Free(n{x) of an element x e P

is contractible (i.e., homotopy equivalent to a single point).

2. If Dep^(x) = P, then delFree(£) (x) is contractible or homotopy equiv¬
alent to a O-dimensional sphere (i.e., two distinct points).

Theorem 3.2 settles the problem for the special case of 2-

dimensional separable generalized convex shellings. However, our

case is not just a special case. Thanks to Theorem 2.3 of the previous
chapter, every convex geometry is isomorphic to some separable gen¬
eralized convex shelling in some dimension. Therefore, our result is a

step toward the solution of Open Problem 3.1.
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The organization of this chapter is as follows. In the next section

we introduce the necessary terminology about simplicial complexes
and convex geometries. Section 3 sketches the proof of our theorem.

We conclude the chapter in Section 4 with some examples.

3.2 Preliminaries

In this chapter, we assume a moderate familiarity with graphs and con¬

vex geometries. You can consult Chapter 1 for graphs, and Chapter 2

for convex geometries.

3.2.1 Simplicial Complexes

Let E be a finite set. An abstract simplicial complex on E is a non-empty

family A of subsets of E satisfying that: if X e A and Y ç X then

y G A. Often an abstract simplicial complex is just called a simplicial
complex and this is nothing but an independence system as it appeared
in Chapter 1. However, since we are talking about topology we use the

term "abstract simplicial complex" which is more usual in that field.

For a simplicial complex A on E, a subset of E is called a face of the

simplicial complex A if it belongs to A; if not it is called a non-face.
(Namely, in the terminology of independence systems, a face is an in¬

dependent set and a non-face is a dependent set.)

For a simplicial complex A on E and an element x e E, the deletion

of x in A is defined by de\/±{x) := {X e A | x 0 X}. Note that the

deletion is a simplicial complex on E \ {x}.

When we talk about topology of a simplicial complex, we refer to a

geometric realization of the simplicial complex. A d-dimensional simplex
is the convex hull of d+1 affinely independent points. Conventionally,
the empty set is considered a (—1)-dimensional simplex. Let A be a

simplicial complex on E. A geometric realization of A is a collection C

of simplices satisfying the following condition: there exists a mapping

i/j : E —> IR for some natural number d such that the convex hull of

the image ip(X) is an (£—l)-dimensional simplex of C for each X e A

of size £, where £ is a natural number, and every two simplices in C
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do not intersect in their relative interiors. It is known that for every

simplicial complex A such that the faces have at most k elements there

exists a geometric realization of A in IR2
,
and this bound is tight.

Details can be found in Matousek's book [Mat03] for example.

Our topological investigation is restricted to the Euclidean case. So

we just define some terms within the Euclidean space. Let X and Y be

sets in \Rd. Two continuous maps /o,/i : X —> Y are homotopic if there

exists a continuous map F : X x [0,1] —> Y such that F(x,0) = fo(x)
and F(x,l) = fi{x) for all x G X. Two sets X,Y ç \Rd are homotopy
equivalent if there exist two continuous maps / : X -^Y and g : Y —> X

such that the composition / o g : Y —> Y and the identity map idy :

Y —> Y are homotopic and also the composition g o / : X —> X and

the identity map idx : X —> X are homotopic. Intuitively speaking,
X and Y are homotopy equivalent if one of them can be deformed

continuously to the other.

3.2.2 Convex Geometries

Here we introduce terminology for convex geometries which have not

appeared in Chapter 2.

Let E be a non-empty finite set and C be a convex geometry on E.

For a set A ç E, an element e G A is called an extreme point if e 0 t£(A \
{e}). We denote the set of extreme points of A by ex£(^4). Namely,
define the operator ex£ : 2E —> 2E as

ex£(A) := {e e A \ e is an extreme point of A in C}.

We call ex£ the extreme point operator of C. Notice that the extreme

point operator ex£ of a convex geometry C on E satisfies the following
properties:

Intensionality: ex£(^4) ç A for all ACE,

which is clear from the definition. Ando [And02] gives a detailed treat¬

ment on closure operators and extreme point operators in a more gen¬
eral setting.

A set A ç E is called independent if ex£(^4) = A. We say that e

depends on f if there exists an independent set A such that f e A,
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e G T£(A) and e ^ T£(A\ {f}). We denote the set of all elements on

which e depends by Dep£(e). A set X ç E is called free if X e C and

ex^(X) = X. We denote the family of free sets of a convex geometry
C by Free(£). Note that Free(£) forms a simplicial complex for any

convex geometry C, as shown in the next lemma.

Lemma 3.3. Let Cbe a convex geometry on E. Then Free(£) is a simplicial
complex on E.

Proof. Let X e Free(£) and Y ç X. We want to show that

exc(Y)=Y and (3.1)

tc(Y) = Y. (3.2)

First we prove Equality (3.1). By the intensionality of ex£(Y), it

holds that ex^(y) ç Y. So, we only have to prove that Y ç ex£(Y).
Choose e G Y arbitrarily. Since X = ex£ (X) and e also belongs to X, e is

an extreme point of X. Namely, we have e 0 T£(X \ {e}). By the mono¬

tonicity (T4) of T£, it follows that tc(Y \ {e}) Ctc(X\ {e}). Therefore,
it concludes that e 0 T£(Y \ {e}). This shows that Y ç ex£(Y).

Next, we prove Equality (3.2). To prove it, we only have to show

that T£(X \ {e}) = X \ {e} for all e G X. That is because, from

Condition (2) in the definition of convex geometries, we have Y =

OeeX\Y x \ iei = f)eeX\Y Tdx \ W) e C, which means tc(Y) = Y.

Fix an arbitrary element e G X. By the extensionality (T2), we have

X \ {e} ç T£(X\ {e}). By the monotonicity (T4) and the assumption
that T£(X) = X, we also have T£(X \ {e}) ç T£(X) = X. Therefore,

T£(X \ {e}) is either X \ {e} or X. However, since e is an extreme

point of X, we have e 0 T£(X \ {e}). This concludes that T£(X \ {e}) =

X \ {e}. Hence, we have tc{X \ {e}) = X\ {e\. D

Thus, it is natural that we call Free(£) the free complex of a convex

geometry C. Note that in general there might exist an element x e E

such that {x} 0 Free(£).

Let us remind the definition of a generalized convex shelling. Let

P and Q be finite point sets in \Rd (where d is a positive integer) such

that P n conv(Q) = 0. Then the generalized convex shelling on P with
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respect to Q is a convex geometry C defined as follows: C := {X ç

P | P n conv(X U Q) = X}. We also call a convex geometry C a d-

dimensional generalized convex shelling if there exist finite point sets P

and Q in \Rd such that P n conv(Q) = 0 and £ is isomorphic to the gen¬
eralized convex shelling on P with respect to Q. The next lemma tells

us the closure operator and the extreme point operator of a generalized
convex shelling.

Lemma 3.4. Let Cbe a generalized convex shelling on P with respect to Q.

Then, we have

T£(X) = Pnconv(XuQ),

ex^(X) = {x e X | xis an extreme point of conv(X UQ)}

for each set X ç P.1 In particular, X ç p isfree ifand only ifP n conv(X u

Q) = X and every element ofX is an extreme point o/conv(X u Q).

Proof. The statement for the closure operator has already been proved
as Lemma 2.13. Here, we prove that the extreme point operator is as

claimed. The proof is based on the following chain of equivalences.

p e exc{X) ^p^ TL[X \ {p})

(by the definition of ex^)

^p^PH conv((X \ {p}) U Q)

(from the first part of this lemma)

<&p<£conv((X\{p})UQ)

(since p e P)

<^p£conv((XuQ)\{p})

-<=> p is an extreme point of conv(X U Q)

(by the definition of an extreme point).

The second part is immediate from the first two parts of this lemma

and the definition of a free set. D

In this chapter, we study the free complex of a 2-dimensional sep¬
arable generalized convex shelling. Since we already know that Open

^ere, you would notice that we are using the phrase "extreme point" in two different

meanings. One for an extreme point in a convex geometry one for an extreme point of

the convex hull. But they should be clear from the context.
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Problem 3.1 has been solved when Q = 0 [EROO], we may make the

following assumption, which is important in this chapter.

Assumption 3.5. When we talk about the generalized convex shelling on P
with respect to Q in the rest of this chapter, Q is always non-empty unless

stated otherwise.

3.3 Proof of Theorem 3.2

3.3.1 Basic Properties and the Outline

Now we concentrate on 2-dimensional separable generalized convex

shellings. Let P and Q be two non-empty finite point sets in IR2

such that conv(P) n conv(Q) = 0. Denote by C the generalized con¬

vex shelling on P with respect to Q. Since conv(P) n conv(Q) = 0, there

exists a line which strictly separates conv(P) and conv(Q). Fix such a

line, and call it £. In the rest of the chapter, we visualize £ as a vertical

line, and P is put left to £ and Q right to £.

To prove Theorem 3.2, we use the following fact.

Lemma 3.6 (Hachimori & Nakamura [HN04]). A minimal non-face of
thefree complex Free(£) ofa d-dimensional generalized convex shelling is of
size at most d.

Lemma 1.4 from Chapter 1 shows that a simplicial complex whose
minimal non-faces are of size 2 is a clique complex of some graph.
(Let us remind the definition of a clique complex: the clique complex
of G is the family of cliques of G.) Therefore, the free complex of a

2-dimensional generalized convex shelling C is the clique complex of

some graph, and this graph is actually the 1-dimensional skeleton of

Free(£). (The d-dimensional skeleton of a simplicial complex A is a col¬

lection {X e A | |X| < d+1}. Note that a 1-dimensional skeleton can

be regarded as a graph.) Denote by G(C) the 1-dimensional skeleton of

Free(£) regarded as a graph. The following lemma tells what G(C) is.

Lemma 3.7. A point x e Pisa vertex ofG(C) ifand only ifP n conv({x} U

Q) = {x} holds, i.e., conv({x} U Q) contains no point ofP exceptfor x. Two

points x,y e Pform an edge ofG(C) if and only if they are vertices ofG(C)
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and P n conv({x,y} U Q) = {x,y} holds, i.e., conv({x,y} U Q) contains no

point ofP exceptfor x,y.

Proof. First of all, notice that x e P is a vertex of G(C) if and only if

{x} e Free(£), and that {x,y} ç P is an edge of G(C) if and only if

{x,y} e Free(£).

Assume that x e P satisfies {x} e Free(£). Then, from Lemma 3.4,

this is equivalent to saying that P n conv({x} U Q) = {x} and x is an

extreme point of conv({x} U Q). However, x is always an extreme point
of conv({x} U Q) since we have the assumption that P n conv(Q) = 0.

Thus, we have shown that x e P is a vertex of G(C) if and only if P n

conv({x} U Q) = {x}.

For the second part, first choose arbitrary two vertices x,y of G(C).
Namely, x and y satisfy the condition in the first part. Now we show

that {£,£/} is an edge of G(C) if and only if Pncor\v({x,y}UQ) = {x,y}.
Assume that {x,y} is an edge of G(C). Again, from Lemma 3.4, this

is equivalent to saying that P n conv({x,y} U Q) = {x,y} and x and y

are extreme points of conv({x,y} U Q). However, the property that x

and y are extreme points of conv({x,y} U Q) can be derived from our

assumption that x and y are vertices of G(C). To verify this, suppose
that x is not an extreme point of conv({x,y} U Q). This means that

x e conv({y} U Q). However, this implies that y violates the condition

that P n conv({y} U Q) = {y}. So this is a contradiction to the first part
of this lemma. Thus, we have shown the second part. D

Thanks to Lemma 3.7, we can regard G(C) as a geometric graph.
Namely, we can geometrically construct G(C) in the following way.

First, we remove a point x e P if and only if the condition that

P fi conv({ï} U Q) = {x} is violated. The remaining points from P

are the vertices of G(C) (by Lemma 3.7). Among these remaining
points, we connect two points x,y e P by a line segment if and only
if P n conv({x,y} U Q) = {x,y} holds. This process gives the edges
of G(C). Figure 3.1 is an example of G(C), where P consists of eight
points 1,... ,8 and Q of two points qi and Q2- The right one is the re¬

sulting geometric graph G(C). The point 2 does not remain in G(C) as

a vertex since P n conv({2} U Q) = {2,5,6}.

The rest of the proof is organized in the following way.
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1. We prove that G(C) is connected (Lemma 3.8).

2. We prove that G(C) is chordal (Lemma 3.9).

3. We observe that the clique complex of a connected chordal graph
is contractible (Lemma 3.10).

4. We show the relation of a cut-vertex of G(C) and a dependency
set (Lemmas 3.13 and 3.14).

The rest of the section is divided according to the proof scheme above.

Figure 3.1: (Top) given sets of points. (Bottom) the resulting geometric
graph G(C).
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3.3.2 Connectedness of the Graph

First, we show the connectedness of G(C).

Lemma 3.8. In the setup above, G(C) is connected.

Proof. The proof is done by induction on the number of points in P.

When \P\ = 1, G(C) consists of only one vertex. So G(C) is connected.

Fine.

Assume that \P\ > 1. Let us choose a point v of P which is the

furthest from conv(Q).

Let P' = P\ {v} and C! be the generalized convex shelling on P'

with respect to Q. We have two cases.

Case 1: v is not a vertex of G(C). In this case, we claim that G(C') =

G(C). First we show that the vertex sets are the same. To show that,

suppose not. If G(C') owns a vertex u which is not a vertex of G(C),
then it must hold that v G conv({n} U Q). However, this means that v is

closer to conv(Q) than u. This contradicts the choice of v. On the other

hand, if G(C) owns a vertex w which is not a vertex of G(C'), then there

must exist a point x e P' \P such that x e conv({w} U Q). However,

this is impossible because P' ç P, consequently P' \P = 0. Thus, the

vertex sets of G(C) and G(C') are the same.

Secondly we show that the edge sets are the same. This can be done

in a similar way to the vertex sets. Thus, the claim follows.

By induction hypothesis, G(C') is connected. Then from the claim

above, we conclude that G(C) is connected.

Case 2: v is a vertex of G(C). In this case, we introduce further sym¬
bols. Let £ be a line supporting conv(Q) and perpendicular to the line

spanned by v and the point in conv(Q) closest to v. Further, let £v be a

line parallel to £ and passing through v. Denote by £j and £_\_ the lines

supporting conv({?;} U Q) and passing through v. These lines £, £v, £j
and £± are well-defined since conv(P) n conv(Q) = 0. See Figure 3.2.

Note that £j and £± coincide when \Q\ = 1. By an argument similar to
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Figure 3.2: v is not an isolated vertex.

the first case, we can observe that G(C') = G(C) — v.

Now, by the induction hypothesis, G(C') is connected. Therefore, it

suffices to show that v is not an isolated vertex of G(C).

From our choices, the vertices of G(C) other than v should lie either

in the space bounded by £v and £-y or in the space bounded by £v and

£±. Let Vy (and V±) be the set of vertices of G(C) lying in the former

(and latter, respectively) space, as in Figure 3.2. Note that at least one of

the two is non-empty since the number of vertices of G(C) is more than

one. Assume that Vy is non-empty, without loss of generality. Then

choose a vertex in Vy which is closest to £j and name it vj. We can see

thatPncor\v({v,vj}UQ) = {v,vj} because of our choices. This means

that {v,vj} forms an edge in G(C), thus v is not an isolated vertex of

G(C). It concludes the whole proof. D
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3.3.3 Chordality of the Graph

Next, we show the chordality of G(C). A graph is chordal if it has no

induced cycle of length more than three.

Lemma 3.9. In the setup above, G(C) is chordal.

Proof. Suppose, for the contradiction, that G(C) has an induced cycle
of length more than 3. Choose such an induced cycle C arbitrarily, and
denote by Vq the set of vertices of C.

The convex hull of Vq and the convex hull of Q have two outer

common tangents £\ and £2? Choose v\ G Vq n £1 and V2 G Vq n £2

arbitrarily.

We observe that v\ 7^2- To show that, suppose not. Then, since £1
and £2 are outer common tangents of conv(V^) and conv(Q), all points
of Vc must be contained in {^1} U conv(Q). However, this is a contra¬

diction to the fact that v\ is a vertex of G(C) (remember Lemma 3.7).
Therefore, v\ is distinct from V2-

Now, we have two cases.

Case 1: {^1,^2} is an edge of C. In the cycle C, two vertices v\ and

V2 are joined by two distinct paths. By our assumption, one of them is

i)\wi, namely a path of length one. Let v\u\ UfcV2 be the other path.
(Here, a path is denoted by the sequence of consecutive vertices on it.)
Since the length of C is more than three, it holds that k > 2.

Since {^1,^2} is an edge of G(C), by Lemma 3.7 it follows that

conv({vi, ^2} U Q) contains no point of P \ {v\, V2}, in particular none of

{u\,... ,U]ç}. Since we chose v\ and V2 via the outer common tangents
of conv(V^) and conv(Q), this implies that all points of {ui,. ..,ujS\
lie in the region bounded by ^1,^2 and the line spanned by v\,V2-

Take a point ui G {ui,.. .,ujç} which is closest to the line segment
VÏV2- Since k > 2, at least one of {v\,Ui\ and {v2,Ui} is not an

edge of G(C). Without loss of generality, assume that {v\,Ui} is not

an edge. Since all points of {ui,...,u^} lie in the region bounded

2Here, an outer common tangent of two convex sets A and B is a line I which touches

A, B and determines a halfplane containing both of A and B.
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by £i, £2 and the line spanned by v\,V2, we have conv({^1,^2} U

Q) ç conv({vi,V2,Ui} U Q). Since {vi,Ui} is not an edge of G(C), by
Lemma 3.7 there must exist a point p G conv({vi,Ui} U Q). How¬

ever, {vi,ui},{111,112},. . ,{ui-i,Ui} are edges of G(C) and we have

convd^i,^} U Q) ç [j'l-~^0cor\y({uj,Ujjri} U Q) by our choices, where

uq is set to v\. This means that there exists some index j e {0,... ,i—1}
such that the set conv({uj,Uj+i} U Q) contains p. Lemma 3.7 implies
that {uj,uj+i} is not an edge of G(C). This is a contradiction.

Case 2: {^1,^2} is not an edge of C. By Lemma 3.7, there must exist

a point of P \ {^1,^2} belonging to conv({vi, ^2} U Q). Let p be the fur¬

thest point from the line spanned by v\ and V2 among all such points
in P \ {v\, V2}. Consider a path in C joining v\ and V2, and denote it by
v\u\ U]çV2. Since {^1,^2} is not an edge, we have k > 1.

Now we claim that this path has p as a vertex. To show that, de¬

note by £ the line spanned by v\ and V2 and further denote by £p the

line parallel to £ which passes the point p. Because of our choice, the

points u\,...,ujç must lie in the region bounded by £, £v, £1 and £2.

Then, we can see that U^=oconv(i'wj''wj+i} u Q) contains p, where uq

and ujç+i are set to v\ and V2 respectively. This implies the existence

of some index j e {0,...,k} such that convd^-,Uj+i} U Q) contains p.

This contradicts the fact that {uj,uj+i} is an edge of G(C). Thus the

claim is proved.

Now, we know that a path in C joining v\ and V2 passes p. However,

we have two such paths in C. Since they must not share a vertex other

than v\ and V2, this is a contradiction. D

Then we observe the next lemma.

Lemma 3.10. The clique complex of a connected chordal graph is homotopy
equivalent to a single point.

Proof (Sketch). We prove it by induction on the number of vertices. If a

graph has only one vertex, it is always connected and chordal, and the

clique complex consists of a single point. So the statement is true.

Assume that a connected chordal graph G has at least two vertices.

Then we use a useful property of chordal graphs due to Dirac [Dir61]:
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every chordal graph has a vertex whose neighbors form a clique. Let

us take such a vertex and name it v. Then v and its neighbors form a

clique in G. Since G is connected, the neighborhood of v is not empty.
Now remove v from G to obtain a smaller graph G' := G—v. Since G'

is also connected and chordal, the clique complex of G' is homotopy
equivalent to a single point by the induction hypothesis. Then we put
v back to G. This corresponds to gluing the clique complex of G' and

a simplex by a facet of the simplex. So the result is also homotopy
equivalent to a single point.

For a complete proof following the definition of homotopy equiv¬
alence, we have to give two continuous functions. This can be done

along the line of the arguments above. D

Therefore, from Lemmas 3.9 and 3.10, we immediately obtain the

following.

Corollary 3.11. The free complex Free(£) of a 2-dimensional generalized
convex shelling is homotopy equivalent to a single point.

Note that Corollary 3.11 holds for all d-dimensional generalized
convex shellings even if Q = 0. A proof of Corollary 3.11 has already
been given by Edelman & Reiner [EROO] (based on a theorem in Edel¬

man & Jamison [EJ85]). However, our approach is discrete-geometric
while they used tools from topological combinatorics.

Since an induced subgraph of a chordal graph is also chordal, we

can immediately see the following.

Lemma 3.12. Let x be a vertex ofG(C) and cx be the number of connected

components of G(C)—x. Then delFree(n(x) is homotopy equivalent to cx

distinct points.

Therefore, in order to prove Theorem 3.2, we only have to show the

following two lemmas.
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3.3.4 Relationship of a Cut-Vertex and a Dependency
Set

Lemma 3.13. Let x be a cut-vertex ofG(C). Then G(C)—x has exactly two

connected components.

Proof. Since x is a vertex of G(C), we have P n conv({x} UQ) = {x}.
Consider two connected components C\ and C2 of G(C)—x. Choose

u e V(C\) and v G V{C2) such that {x,w} and {x,v} are edges of G(C).
Since {u,,u} is not an edge of G(C), it should hold that P n conv({u,v} U

Q) 7^ {w,v}. Let P' := (P n conv({u,v} UQ))\ {w,i>}. From the obser¬

vation above, P' ^ 0. We claim that 1 G P'. To show that, suppose that

x 0 P' for the sake of contradiction. Let P" be the set of vertices of G(C)
which also belong to P, namely P" := {y G P' \ P n conv({?/} UQ) =

{2/}}. (Note that P" ^ 0.) Then each y e P" lies in either

(1) conv({n}uQ),

(2) conv({i;} U Q), or

(3) conv({n,i;} U Q) \ (conv({n} UQ)U conv({i;} U Q)).

When (1) or (2) happens, u or v cannot be a vertex of G(C) by Lemma

3.7, respectively. This is a contradiction. Therefore, it holds that P" ç

conv({u,v} UQ)\ (conv({-w} UQ)U conv({?;} U Q)). Now, let us take the

convex hull of P" U {u, v}, and it has two chains of edges connecting u

and v. By our assumption, one is the edge {u,v} and the other consists

of at least two edges. Consider the latter one. (In Figure 3.3, the gray

region is the convex hull of P" U {u,v}.) Then this chain corresponds
to a path from u to v in G(C). However, this means that C\ and C2 are

not distinct connected components of G(C)—x. A contradiction. Thus,

we have x e P'.

Now, suppose that G(C)—x has at least three connected compo¬

nents, say Ci,C2,Co,. As before, choose u e V(C\),v G V(C2),w e

V(C$) such that {x,u}, {x,v} and {x,w} are edges of G(C). Consider

two outer common tangents ^1,^2 of conv({u,v, w}) and conv(Q). With¬

out loss of generality, let u be the intersection of £1 and conv({u,v, w}),
and v be the intersection of £2 and conv({u,v,w}). Note that these in¬

tersection points must be distinct by the same reason as in the proof of

Lemma 3.9. Let £ be the line spanned by u and v. We have two cases.
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Figure 3.3: Where does x lie?

Case 1: w and Q lie on the same side of £. In this case, we can see

that conv({w} U Q) is identical to the intersection of conv({u,v} U Q),
conv({v,w}yjQ) and conv'({u,w}UQ). By the claim above, x belongs to

all of these three sets. Therefore, x belongs to conv({w} U Q). However,

since w is a vertex of G(C), this contradicts Lemma 3.7.

Case 2: w and Q lie on the different sides of L By an argument sim¬

ilar to Case 1, we can observe that x belongs to conv({w} U Q), which
is again a contradiction. D

Lemma 3.14. Let x be a vertex ofG(C). If x is a cut-vertex ofG(C), then

Dep£(x) = P.

Proof. Assume that x is a cut-vertex of G(C). We have to show that

Dep£(x) = P, namely, for every y e P there exists a set A ç P such

that

(1) ex£(A) = A,

(2) ye A,

(3) x e T£(A), and

(4) x?Tc(A\{y}).

Fix y e P arbitrarily. According to the position of y, we have several

cases. Let £j and £± be lines supporting conv({x} U Q) which pass

through x. (In case \Q\ = 1, they coincide.) Denote by £j the closed
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conv(Q)
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Figure 3.4: The whole plane is divided into four parts.

halfplane determined by £j which contains Q, and by £j the closed

halfplane determined by £j which does not contain Q. We define £j_
and £^ analogously. Then, the whole plane is decomposed into four

parts:

R
DD

if n ej_,
R^-.= £^nä,

R^ ^ n £\,

R^:=£^n£f.

Figure 3.4 illustrates this decomposition.

First, let us observe that R-- contains no point from P \ {x}. To

show that, suppose that it contains a point p e P\ {x}. If it lies in

"front" of conv(Q) (i.e., the bounded region determined by £j, £_y and

conv(Q)), then it holds that p G conv({x} U Q). However, this means

that x is not a vertex of G(C) by Lemma 3.7. A contradiction. Other¬

wise, the line segment connecting p and x intersects conv(Q). However,

this implies that conv(P) n conv(Q) is not empty. A contradiction to our

assumption. Thus, R-- contains no point from P \ {x}.
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Hence we obtain three cases to consider about the position of y.

However, the cases of P-2 and R^- are symmetric. So the essential

cases are the following two.

Case 1: y lies in P^2. m this case, we can choose {y} as A. We claim

that this A satisfies conditions (l)-(4) above. Since y is an extreme point
of conv({y} U Q), by Lemma 3.4 condition (1) is fulfilled. The second

condition is true by definition. The third and fourth conditions can be

verified via Lemma 3.4. This case is done.

Case 2: y lies in R^-. From the argument in the proof of Lemma

3.13, we can see that one component Gj of G(C) —x lies in R^- and the

other component G_\_ of G(C)—x is contained in P-2. Both of them are

non-empty. Now, let A be the set of points of P which are moreover the

extreme points of conv({y} U V(G±) U Q). We claim that this A satisfies

conditions (l)-(4) above.

By Lemma 3.4, condition (1) is clear. Since y lies on the different

side of £-y than Q and V(G±), we can see that y is an extreme point
of conv({y} U V(G±) U Q). Hence, condition (2) is fulfilled. Since Q
and V(G_\_) lie on the different sides of £±, and no vertex of G± lies

on £ (because of Lemma 3.7), we see that x 0 cor\v(V(G±) U Q), which
means that condition (4) is satisfied.

To verify condition (3), take any vertex v of G±. By the anti-

exchange property (T5) of the closure operator (Lemma 2.5) and

Lemma 3.4, we can find a point z G conv({2;} U Q) which is a vertex

of Gj. Since x is a cut-vertex of G(C), {z,v} is not an edge of G(C).
Then, by Lemma 3.7 and the fact that x is a cut-vertex, we can see that

corw/({z,v} U Q) contains x. Namely, we have

x e conv({z,v} U Q) Ç cor\v({y,v} U Q)

Çœnv{{y}UV{G±)UQ),

which implies that condition (3) holds by Lemma 3.4. In this way, the

whole proof is completed. D

Thus, we are able to conclude the proof of Theorem 3.2. Q.E.D.
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Figure 3.5: Examples.

3.4 Examples

In this section, we show that both cases in Theorem 3.2.2 can really
occur by exhibiting such examples.

Look at Figure 3.5. In both of the examples, P = {1,2,3,4,5} and

Q = {0.1,(12}• Let Ci and C2 be the generalized convex shellings on P

with respect to Q of the left-hand side and the right-hand side of Figure
3.5, respectively. The solid lines show the edges of G(C), and the dotted

lines are just used for the clarification of the placement of points.

In both cases, we can observe that Dep^ (4) = P and Dep^ (4) = P.

In the left case, the deletion of 4 from G{C\) results in a disconnected

graph, therefore delFree(£1)(4) is homotopy equivalent to two distinct

points. However, in the right case, the deletion of 4 from G^C^) results

in a connected graph, therefore delFree(£2) (4) is contractible.

The right example is especially interesting because before this work

we did not have an example of a convex geometry C on a finite set E

which has an element eeE such that Dep£(e) = E and delFree(£) (e) is

contractible. Namely, this is the first example of such a kind.



104 Chapter 3. Local Topology of a Free Complex

Note added after the examination Recently, Hachimori & Kashi¬

wabara [HK04] completely solved Open Problem 3.1. According to

their solution, the first problem is affirmative while the second one is

negative in general.
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There is something in common

between Hungarian, and Japanese,
and Hispanic mathematics. We can

start a paper by saying "Let P be a set

of n points in the plane..." and no one

will ask us, "Why? Why?"

Janos Pach (2004)

The Traveling Salesman

Problem with Few Inner

Points

4.1 Introduction

A lot of NP-hard optimization problems on graphs can be solved in

polynomial time when the input is restricted to partial k-trees, that is,

graphs with treewidth at most k, where k is fixed. In this sense, the

treewidth is regarded as a natural parameter to measure the complex¬
ity of graphs. This is based on the observation that "some NP-hard

optimization problems on graphs are easy when the class is restricted

to trees."

We try to address the following question: what is a natural pa¬
rameter that could play a similar role for geometric problems as the

treewidth does for graph problems? One basic observation is that

"some NP-hard optimization problems on a point set in the Euclidean

plane are easy when the points are in convex position," namely, they
are the vertices of a convex polygon. Therefore, the number of inner

points can be regarded as a natural parameter for the complexity of

Chapter 4
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geometric problems. Here, an inner point is a point in the interior of

the convex hull of the given point set. Intuitively, we might say that

"fewer inner points make the problem easier to solve."

In this chapter, we concentrate on one specific problem: the trav¬

eling salesman problem. The traveling salesman problem (TSP) is one

of the most famous optimization problems, which comes along many
kinds of applications such as logistics, scheduling, VLSI manufactur¬

ing, etc. In many practical applications, we have to solve TSP instances

arising from the two-dimensional Euclidean plane, which we call the

2DTSP. Also most of the benchmark instances for TSP belong to this

class. Theoretically speaking, the general 2DTSP is strongly NP-hard

[GGJ76, Pap77]. On the other hand, the problem is trivial if the points
are in convex position. Therefore, the following natural question is

asked: what is the influence of the number of inner points on the com¬

plexity of the problem? Here, an inner point of a finite point set P is a

point from P which lies in the interior of the convex hull of P.

We provide simple algorithms based on the dynamic programming
paradigm. The first one runs in O(klkn) time and O(k) space, and the

second runs in 0(2kk2n) time and 0(2kkn) space, where n is the total

number of input points and k is the number of inner points. Observe

that the second algorithm gives a polynomial-time solution to the prob¬
lem when k = O(logn). Although the first algorithm is inferior to the

second one in terms of time complexity, the first one has a benefit in its

space complexity and also it is easy to parallelize.

From the viewpoint of parameterized computation [DF99b, Nie02],
these algorithms are fixed-parameter algorithms when the number

of inner points is taken as a parameter, hence the problem is fixed-

parameter tractable (FPT). Here, afixed-parameter algorithm has running
time 0(f(k)nc), where n is the input size, k is a parameter, c is a con¬

stant independent of n and k, and / : IN —^ IN is an arbitrary computable
function. For example, an algorithm with running time O(440^n) is a

fixed-parameter algorithm whereas one with 0(nk) is not.

We also study two variants of the traveling salesman problem:
the prize-collecting traveling salesman problem, introduced by Balas

[Bal89], and the partial traveling salesman problem. Both problems are

also strongly NP-hard. We show that these problems in the Euclidean

plane are FPT as well.
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Computational Model Here, let us notice the computational model

we use in this and the next chapters. As usual for computational prob¬
lems, we use a random-access machine (RAM) but we allow it to deal

with real numbers. Namely, a real number of any precision can be

stored at a single place. Also we allow some operations on real num¬

bers at unit cost. They include addition, subtraction, multiplication,
division, comparison, and taking the square root. The square root

is important for our algorithms since we have to look at Euclidean

distances. This model is called the real RAM model (see the book of

Preparata & Shamos [PS85] for example).

Related Work Since the literature on the TSP and its variants is vast,

we only point out studies on the TSP itself which are closely related

to our result. To the author's knowledge, only few papers studied the

parameterized complexity of the 2DTSP. Probably the most closely
related one is a paper by Deineko, van Dal & Rote [DvDR94]. They
studied the 2DTSP where the inner points lie on a line. The prob¬
lem is called the convex-hull-and-line TSP. They gave an algorithm run¬

ning in O(kn) time, where k is the number of inner points. Deineko &

Woeginger [DW96] studied a slightly more general problem called the

convex-hull-and-£-line TSP, and gave an algorithm running in 0(k^n2)
time. Compared to these results, our algorithms deal with the most

general situation, and are fixed-parameter algorithms with respect
to k. As for approximation algorithms, Arora [Aro98] and Mitchell

[Mit99] found polynomial-time approximation schemes (PTAS) for the

2DTSP. Rao & Smith [RS98] gave a PTAS with better running time

0(nlogn + 2Poly(1/e)n). As for exact algorithms, Held & Karp [HK62]
and independently Bellman [Bel62] provided a dynamic programming
algorithm to solve the TSP optimally in 0(2nn2) time and 0(2nn)

space. For geometric problems, Hwang, Chang & Lee [HCL93] gave

an algorithm to solve the 2DTSP in n°(v) time based on the so-called

separator theorem.

Organization The next section introduces the problem formally, and

gives fundamental lemmas. Sections 4.3 and 4.4 describe algorithms
for the 2DTSP. Variations are discussed in Section 4.5. We conclude

with an open problem in the final section.
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4.2 Traveling Salesman Problem with Few In¬

ner Points

Let P ç IR2 be a set of n points in the Euclidean plane. The convex hull

of P is the smallest convex set containing P. A point p e P is called an

inner point if p lies in the interior of the convex hull of P. We denote

by Inn(P) the set of inner points of P. A point p e P is called an outer

point if it is not an inner point, i.e., it is on the boundary of the convex

hull of P. We denote by Out(P) the set of outer points of P. Note

that P = Inn(P) U Out(P) and Inn(P) n Out(P) = 0. Let n := \P\ and

k := |lnn(P)|. (So, we have |Out(P)| = n—k.)

A tour on P is a linear order (x\,X2, -,xn) of the points in P. We

say that this tour starts at x\, and we assume that all indices are taken

modulo n in the tour so that xn+i can be identified with x\. We of¬

ten identify the tour (x\,.. .,xn) on P with a closed polygonal curve

consisting of the line segments x~[x~2, X2X3, ..., xn-ixn, xnx\. The

length of the tour is the Euclidean length of this polygonal curve, i.e.,

Y^ï=id{xi'xi+i)' where d(xi,Xi+i) stands for the Euclidean distance

from Xi to Xi+i. The objective of the traveling salesman problem (TSP) is

to find a shortest tour. The following lemma was probably first noted

by Flood [Flo56] and nowadays it is folklore.

Lemma 4.1 (Flood [Flo56]). Every shortest tour has no crossing.

Proof. Let P be a given set of n points in the plane, and (x\,.. .,xn) be

a shortest tour on P which has a crossing on xïx~ï+ï and xjxjlj (i < j).
See the left part of Figure 4.1 where n = 8, i = 3 and j = 6. Then, we

remove xïx~ï~~ï and xjxjl~ï, and add xjocj and xï~~ïx~j~~ï to form another

tour (the right part of Figure 4.1). Then by the triangle inequality we
obtain d(xi,Xj) + d(xi+i,Xj+i) < d(xi,Xi+i) + d(xj,Xj+i). Therefore

the second tour is shorter than the first tour. This is a contradiction to

the assumption that the first one is shortest. D

This lemma immediately implies the following lemma, which plays
a fundamental role in our algorithm. We call a linear order on Out(P)
cyclic if every two consecutive points in the order are also consecutive

on the boundary of the convex hull of P.
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Figure 4.1: Proof of Lemma 4.1.
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Figure 4.2: Proof of Lemma 4.2.

Lemma 4.2. In every shortest tour on P, the points ofOut(P) appear in a

cyclic order.

Proof. For the sake of contradiction, suppose that there exists a shortest

tour t which does not respect a cyclic order on Out(P). This means

that when (x\,x\, rxn-k) ls a cycÜc order on Out(P), there exists an

index i e {1,...,n — k} such that x° and x°+1 are not consecutive on

t (where i +1 is considered modulo n—k). Let x° be the next point
of x° in t. By the assumption, j is not i + 1 modulo m. Therefore, a

polygonal chain from x° to x°- divides the convex hull of P into two

parts and both parts contain an outer point which does not participate
in this polygonal chain. See Figure 4.2. The tour r continues itself to

one of the partitioned side, and when it tries to enter the other side,

we obtain a crossing. This contradicts Lemma 4.1 since r is a shortest

tour. D

With Lemma 4.2, we can establish the following naive algorithm:
take an arbitrary cyclic order on Out(P), then look through all tours

(i.e., the linear orders) tt on P which respect1 this cyclic order; com-

For a set S and a subset S' Ç S, we say that a linear order 7r on S respects a linear
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pute the length of each tour and output the best one among them. The

number of such tours is 0(k\nk). Since the computation of the length
of a tour takes O(n) time, in total the running time of this algorithm is

0(k\nkJrl). So, if k is constant, this algorithm runs in polynomial time.

However, it is not a fixed-parameter algorithm with respect to k since

k appears in the exponent of n.

4.3 First Fixed-Parameter Algorithm

First, let us notice that later on we always assume that, when P is given
to an algorithm as input, the algorithm already knows Out(P) together
with a cyclic order 7 = (pi,.. .,pn_^) on Out(P). Also, note that the

space complexity in the algorithms below do not count the input size,

as usual in theoretical computer science.

Our first algorithm adapts the following idea. We look through all

linear orders on Inn(P). Let tt be a linear order tt on Inn(P). We will

try to find a shortest tour on P which respects both the cyclic order

7 on Out(P) and the linear order tt on Inn(P). Then, we exhaust this

procedure for all linear orders on Inn(P), and output a minimum one.

Later we will show that we can compute such a tour in 0(/en) time and

O(k) space. Then, since the number of linear orders on Inn(P) is k\ and

they can be enumerated in amortized O(l) time per one linear order

with O(k) space [Sed77], overall the algorithm runs in O(klkn) time

and O(k) space.

Now, given a cyclic order 7 on Out(P) and a linear order tt on

I nn(P), we describe how to compute a shortest tour among those which

respect 7 and tt by dynamic programming. For dynamic programming
in algorithmics, see the textbook by Cormen, Leiserson, Rivest & Stein

[CLRS01], for example.

We consider a three-dimensional array Fi[i,j,m], where i e

{1,.. .,n—k}, j e {0,1,.. .,/c}, and m G {Inn,Out}. The first index i

represents the point Pi in Out(P), the second index j represents the

point qj in Inn(P), and the third index m represents the position.

order -k' on S' if the restriction of 7r onto S' is -k'
.



4.3. First Fixed-Parameter Algorithm 113

The value Fi[i,j,m] represents the length of a shortest "path" on

{pi, ...,pi]yj{qi,...,qj} that satisfies the following conditions.

• It starts at pi e Out(P).

• It visits exactly the points in {pi,... ,pi} U {q\,.. .,qj}. (If j = 0,

set {qi,...,qj} = (/).)

• It respects the orders 7 and tt.

• If m = Out, then it ends at Pi (an outer point). If m = Inn, then it

ends at qj (an inner point).

Then, the length of a shortest tour respecting tt and 7 can be com¬

puted as

min{F1[n-/c,/c,Out] + d{pn_k,pi],Fi[n-k,k,\r\r\] +d(qk,pi)}.

Therefore, it suffices to know the values Pi [i, j,m] for all possible i,j,m.

To do that, we establish a recurrence. First let us look at the bound¬

ary cases.

• Since we start at p\, set Fi [1,0,Out] = 0.

• There are some impossible states for which we set the values to

00. Namely, for every j e {1,..., k} set Fi [1, j, Out] = 00, and for

every i e {1,.. .,n—k} set Fi[i,0,Inn] = 00.

Now, assume we want to visit the points of {pi,... ,pi} U {q\,... ,qj}
while respecting the orders 7 and tt and arrive at qj. How can we get
to this state? Since we respect the orders, either (1) first we have to visit

the points of {pi,.. .,Pi}U {q\,..., qj-i} to arrive at Pi then move to qj,
or (2) first we have to visit the points of {pi,... ,pi] U {q\,... ,qj-{\ to

arrive at qj-i then move to qj. Therefore, we have

Fi[i,j,\nn]=min{Fi[i,j-l,Out] +d(pi,qj),F1[i,j-l,\nn\ +d(qj-i,qj)}

(4.1)

for (i,j) e {1,..., n—k} x {1,... ,k}. Similarly, we have

Fi[i,j,Out]=min{Fi[i-l,j,Out\+d{pi-i,Pi),Fi[i-l,j,\nn}+d{qj,Pi)}

(4.2)
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for (i,j) e {2,.. .,n—k] x {0,.. .,/c}, where d(qQ,Pi) is considered oo for

convenience. Since what is referred to in the right-hand sides of Equal¬
ities (4.1) and (4.2) has smaller indices, we can solve this recursion

in a bottom-up way by dynamic programming. This completes the

dynamic-programming formulation for the computation of F\[i,j,m].

The size of the array is (n—k) x (/c+1) x 2 = O(Zcn), and the com¬

putation of each entry requires to look up at most two other entries of

the array. Therefore, we can fill up the array in O(Zcn) time and O(Zcn)

space.

Now, we describe how to reduce the space requirement to 0(/c).
For each (i,j) e {1,...,n—k} x {1,.. .,/c}, consider when Fi[i,j,\nn] is

looked up throughout the computation. It is looked up only when we

compute Pi[i,j+l,lnn] and Fi[i+l,j,Out\. So the effect of Fi[i,j,\nn]
is local. Similarly, the value Fi[i,j,Out] is looked up only when we

compute Pi[i,j+l,lnn] and Fi[i+l,j,Out\. We utilize this locality in

the computation.

We divide the computation process into some phases. For ev¬

ery i e {!,...,n—k}, in the i-th phase, we compute F\[i,j,Inn] and

Ei [i, j, Out] for all j e {0,..., k}. Within the i-th phase, the computation
starts with Fi[i,l,Out] and proceeds along Fi[i,2,Out],Fi[i,3,Out],...,
until we get Fi [i, k, Out]. Then, we start calculating Fi [i, 1,1 nn] and pro¬
ceed along Fi [i,2,1 nn], Pi [i,3, Inn],..., until we get Pi [i, k, Inn]. From the

observation above, all the computation in the i-th phase only needs the

outcome from the (i-l)-st phase and the i-th phase itself. Therefore,

we only have to store the results from the (i—l)-st phase for each i.

This requires only 0(/c) storage.

In this way, we obtain the following theorem. Let us remind that

log{k\) = S{klogk).

Theorem 4.3. The 2DTSP on n points including k inner points can be solved

in O(klkn) time and 0(/c) space. In particular, it can be solved in polynomial
time ifk = 0(log n/ log log n). D
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4.4 Second Fixed-Parameter Algorithm with

Better Running Time

To obtain a faster algorithm, we make use of the trade-off between

the time complexity and the space complexity. Compared to the first

algorithm, the second algorithm has a better running time 0(2kk2n)
but needs more space 0(2kkn). The idea of trade-off is also taken by
the dynamic programming algorithm for the general traveling sales¬

man problem due to Bellman [Bel62] and Held & Karp [HK62], and

our second algorithm is essentially a generalization of their algorithm.
(For a nice exposition of this "dynamic programming across the sub¬

sets" technique together with other methods for exact computation, see

Woeginger's survey article [Woe03].)

In the second algorithm, we first fix a cyclic order 7 on Out(P).
Then, we immediately start the dynamic programming. This time,

we consider the following three-dimensional array F2[i,S,r], where

i e {l,...,n-k}, S Ç Inn(P), and r G S U {pi}. We interpret F2[i,S,r]
as the length of a shortest path on {pi,.. .,Pi}U S that satisfies the fol¬

lowing conditions.

• It starts at pi e Out(P).

• It visits exactly the points in {pi,.. .,Pi}U S.

• It respects the order 7.

• It ends at r.

Then, the length of a shortest tour can be computed as

min{P2[n—k,Inn(P),r] +d(r,pi) \ r G Inn(P) U {pn-k}}-

Therefore, it suffices to know the values P2 [i, S, r] for all possible triples
(i,S,r).

To do that, we establish a recurrence. The boundary cases are as

follows.

• Since we start at p\, set P2[l,0,pi] = 0.

• Set F2W, S,pi] = 00 when 5^0, since this is an unreachable situ¬

ation.
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Let i e {2,... ,n—k} and S ç Inn(P). We want to visit the points of

{pi,... ,pi] U S while respecting the order 7 and arrive at Pi. How can

we get to this state? Since we respect the order 7, we first have to visit

the points of {pi,.. .,Pi-\} U S to arrive at a point in S U {pi-i} and

then move to pi. Therefore, we have

E2[i/S,pi} = min{F2[i-l,S,t]+d(t,Pi) \ t G5ufe_i}} (4.3)

for i e {2,.. .,n—k} and S ç Inn(P). Similarly, we have

F2[i,S,r}=min{F2[i,S\{r},t}+d(t,r)\te(S\{r})U{pl}} (4.4)

for i e {2,.. .,n—k}, S ç Inn(P), 5^0 and r e S. This completes the

dynamic-programming formulation for the computation of P2 [i, S, r].

The size of the array in this algorithm is (n—k) YTs=o \s)s =

0(2kkn), and the computation of each entry requires to look up 0(/c)
other entries. Therefore, we can fill up the array in 0(2kk2n) time and

in 0(2kkn) space. Thus, we obtain the following theorem.

Theorem 4.4. The 2DTSP on n points including k inner points can be solved

in 0(2kk2n) time and 0(2kkn) space. In particular, it can be solved in poly¬
nomial time ifk = 0(log n). D

4.5 Variants of the Traveling Salesman Prob¬

lem

Since our approach to the TSP in the previous section is based on the

general dynamic programming paradigm, it is also applicable to other

variants of the TSP. In this section, we discuss two of them.

4.5.1 Prize-Collecting Traveling Salesman Problem

In the prize-collecting TSP, we are given an n-point set P ç IR2 with a

distinguished point he P called the home, and a non-negative number

c(p) e IR for each point p e P which we call the penalty of p. The goal
is to find a subset P' ç P\{h} and a tour on P' U {h} starting at h
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which minimizes the length of the tour minus the penalties over all

p e P' U {h}. In this section, the value of a tour (or a path) refers to the

value of this objective.

For this problem, we basically follow the same procedure as the

TSP, but a little attention has to be paid because in this case we have to

select some of the points from P. In addition, we have to consider two

cases: h G Inn(P) or h G Out(P).

First Algorithm

First, let us consider the case h G Out(P). In this case, we fix a cyclic
order 7 on Out(P), which starts at h, and we look through all linear

orders on Inn(P). Let 7 = {pi,P2,- .,pn-k), where pi = h, and fix one

linear order tt = {qi,q2,- -,qk) on Inn(P). Then, we consider a three-

dimensional array Fi[i,j,m], where i G {1,... ,n—k], j G {0,1,..., k}
and m G {Inn, Out}. The value Pi [i,j,m] is interpreted as the value of an

optimal path on {pi,... ,pi} U {q\,...,q3;} which satisfies the following
conditions.

• It starts at pi G Out(P).

• It visits some points from {pi,... ,pi} U {q\,...,q3;}, and not more.

(Ifj = O,set{4i,...,^} = 0.)

• It respects the orders 7 and tt.

• If m = Out, then it ends at Pi. If m = Inn, then it ends at qj.

We want to compute the values Fi[i,j,m] for all possible triples
{i,j,m).

The boundary cases are:

• Pi[l,j,Out] = —c(pi) for every j G {1,.. .,/c}; and

• Fi[i,0,Inn] = 00 for every i e {!,.. .,n—k},

and the main part of the recurrence is:

Fi[i,j,\nn] =min{ min {Fi[i',j-1,0ut] + d{pi',qj) - c{qj)},
i'e{l,...,i}

min \Fi[i,j',\nn] + d(qj,,qj) - c(qj)}}
j'(E{0,...,j-l}
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for (i,j) G {1,...,n—k} x {1,... ,/c}, and

Fi[i,j,Out] =min{ min {Fi[i',j,Out] + d{pi',pi) - c{pi)},
i'e{i,...,i-i}

min {Fi[2-l,/,lnn] + d(qj/,pi) - c(pi)}}

for (i,j) e {2,.. .,n—k} x {0,.. .,/c}. For convenience, d(qo,Pi) is con¬

sidered to be oo.

Then, the value of an optimal prize-collecting tour respecting tt and

7 can be computed as

min{ min {Fi[i,k,0ut\ + d(pi,pi)},
ie{l,...,n—k}

min {Fi[n-k,j,\nn]+d{qj,pi)}}.
je{o,...,k}

Since the size of the array is O(Zcn) and each entry can be filled by
looking up 0(n) other entries, the running time is 0(/cn2). Therefore,

looking through all linear orders on I nn(P), the overall running time of

the algorithm is 0(/c!/cn2).

Next, let us consider the case h G Inn(P). In this case, we look

through all linear orders on Inn(P) staring at h, and also all cyclic
orders on Out(P). Fix one linear order tt = {qi,q2,- -,qk) on 'nn(-P)/
where q\ = h, and one cyclic order 7 = {pi,P2,---,Pn-k) on Out(P).
Then, we consider a three-dimensional array F\[i,j,m], where i G

{0,1,..., n—k}, j e {!,...,k} and m G {lnn,Out}. The interpretation
and the obtained recurrence is similar to the first case, hence omit¬

ted. However, in this case, the number of orders we look through is

0(/c!n). Therefore, the overall running time of the algorithm in this

case is 0(/c!/cn3). Thus, we obtain the following theorem.

Theorem 4.5. The prize-collecting TSP in the Euclidean plane can be solved

in 0(k\kn3) time and O(kn) space, when n is the total number of input
points and k is the number of inner points. In particular, it can be solved in

polynomial time ifk = 0(log n/ log log n). D

Second Algorithm

Now we adapt the second algorithm for the 2DTSP to the prize-
collecting TSP. Let us consider the case h G Out(P). (The case
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h e Inn(P) can be handled in the same way.) For a cyclic order 7 =

(pi,.. .,pn_jç) on Out(P) with p\ = h, we define a three-dimensional

array P2 [i, S, r] where« G {1,.. .,n—k}, S ç Inn(P) and r e SU {pi}. We

interpret F2[i,S,r] as the value of an optimal path on {p\,.. .,Pi} U S

that satisfies the following conditions.

• It starts at p1 G Out(P).

• It visits some points of {p\,.. .,pi}U S.

• It respects the order 7.

• It ends at r.

Then, the value of an optimal tour can be computed as

min{P2[n—k,Inn[P),r] -\-d{r,p\) \ r G P}.

The boundary cases are:

• F2[l,ÏÏ,pi] = -c(pi);

• P2[l,5',r] = 00 when 5^0.

The main part of the recurrence is

F2[i,S,Pi] = min {F2[i-l,S,t] + d(t,Pi) - c(Pi)}
teSu{Pl-1}

for i e {2,.. .,n—k} and S ç Inn(P); and

F2[i,S,r]= min \F2[i,S\ {r},t} +d(t,r) - c(r)}
te(S\{r})U{Pl}

for i e {2,.. .,n—k}, S ç Inn(P) and r e S. Then, we see that the com¬

putation can be done in 0(2kk2n) time and 0(2kkn) space.

Theorem 4.6. The prize-collecting TSP in the Euclidean plane can be solved

in 0(2kk2n) time and 0(2kkn) space, when n is the total number of input
points and k is the number of inner points. In particular, it can be solved in

polynomial time ifk = 0(log n). D
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4.5.2 Partial Traveling Salesman Problem

In the £-partial TSP2, we are given an n-point set P ç IR2 with a distin¬

guished point h e P called the home, and a positive integer £ < n. We

are asked to find a shortest tour starting at h and consisting of £ points
from P.

We do not give an adaptation of the first algorithm for the TSP, al¬

though it is possible but too tedious to elaborate. So, we just describe

a variation of the second algorithm.

Second Algorithm

Similarly to the prize-collecting TSP, we have to consider two cases:

h e Inn(P) or h G Out(P). Here we only consider the case h G Out(P).
(The case h G Inn(P) is similar.) Fix a cyclic order 7 = (pi,.. .,pn_]ç)
on Out(P), where p\ = h. We consider a four-dimensional array

F2[i,S,r,m], where i G {1,...,n—k}, S ç Inn(P), r G S U {pi}, and

me {!,...,£}. Then, F2 [i, S, r, m] is interpreted as the length of a short¬

est path that satisfies the following conditions.

• It starts at p1 G Out(P).

• It visits exactly m points of {p\,.. .,Pi}U S.

• It respects the order 7.

• It ends at r.

Note that the fourth index m represents the number of points which

have already been visited. Then, the length of a shortest tour through
£ points is

min{F2[i,\nn(P),r,£] +d{r,pi) \ i G {1,...,n-k},r G Inn(P) U{pi}}.

Therefore, it suffices to compute the values P2 [i, S, r,m] for all possible
i,S,r,m.

The boundary cases are:

2Usually the problem is called the fc-partial TSP. However, since k is reserved for the

number of inner points in the current work, we will use £ instead of k.
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• F2 [i, S, r, 1] = 0 if i = 1 and r = p\) Otherwise P2[i, S,r, 1] = 00;

• F2[l,S,pi,m] = 00 for m > 1.

The main part of the recurrence is:

F2[i,S,Pi,m]= min {F2[i—l,S,t,m—l]+d(t,Pi)}
tG^U{p,_i}

fori G {2,...,n-k},S ç Inn(P) and m G {2,...,£};

F2[i,S,r,m}= min {F2[i,S\{r},t,m-l]+d(t,r)}
te(S\{r})U{Pl}

fori G {l,...,n-k},S ç lnn(P),r G S and m G {2,...,£}.

Although the size of the array is 0(2kk£n), we can reduce the space

requirement to 0(2kkn) because of the locality with respect to the

fourth index m. In this way, we obtain the following theorem.

Theorem 4.7. The £-partial TSP in the Euclidean plane can be solved in

0(2kk2£n) time and 0(2kkn) space, where n is the total number of input
points and k is the number of inner points. In particular, it can be solved in

polynomial time ifk = O(logn).

4.6 Concluding Remarks

We have investigated the influence of the number of inner points in

the two-dimensional Euclidean traveling salesman problem. Our re¬

sults support the intuition "fewer inner points make the problem eas¬

ier to solve," and nicely "interpolate" triviality when we have no in¬

ner point and intractability for the general case. This interpolation has

been explored from the viewpoint of parameterized computation. Let

us note that the results in this chapter can also be applied to the two-

dimensional Manhattan traveling salesman problem, where the dis¬

tance is measured by the £i-norm. That is because Lemmas 4.1 and 4.2

are also true for that case. More generally, our algorithms solve any
TSP instance (not necessarily geometric) for which n—k points have to

be visited in a specified order.

The major open question is to improve the time complexity
0(2kk2n). For example, is there a polynomial-time algorithm for the

2DTSP when k = 0(log2 n)?
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License to Kill (1989)

The Minimum Weight
Triangulation Problem
with Few Inner Points

5.1 Introduction

Following the line of the previous chapter, we continue the study of ge¬
ometric optimization problems with few inner points. This chapter is

devoted to the minimum weight triangulation problem, which is noto¬

rious as one of the problems not known to be NP-hard nor solvable in

polynomial time for a long time [GJ79]. However, when the points are

in convex position, the problem can be solved in polynomial time by
dynamic programming. The main result in this chapter is an exact al¬

gorithm to compute a minimum weight triangulation in 0(6kn5 logn)
time, where n is the total number of input points and k is the num¬

ber of inner points. From the viewpoint of parameterized complex¬
ity [DF99b, Nie02] this is a fixed-parameter algorithm if k is taken as

a parameter. Furthermore, the algorithm implies that the problem can

be solved in polynomial time if k = O(logn).

Actually, our algorithm also works for simple polygons with inner

Chapter 5
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points. Or, rather we should say that the algorithm is designed for

such objects, and as a special case, we can compute a minimum weight
triangulation of a point set. This digression to simple polygons is es¬

sential because our strategy is based on recursion and in the recursion

we encounter simple polygons.

Related work Since the literature on the minimum weight triangu¬
lation problem is vast, we just mention some articles that are closely
related to ours. As already mentioned, finding a minimum weight tri¬

angulation of a finite point set is not known to be NP-hard nor solv¬

able in polynomial time [GJ79]. For an n-vertex convex polygon, the

problem can be solved in 0(n3) using dynamic programming. For

an n-vertex simple polygon, Gilbert [Gil79] and Klincsek [KH80] inde¬

pendently gave a dynamic-programming algorithm running in 0(n3)
time. But with inner points the problem seems more difficult. An¬

other polynomial-time solvable case was discussed by Anagnostou &
Corneil [AC93]: they considered the case where a given point set lies

on a constant number of nested convex hulls. As for exact algorithms
for the general case, Kyoda, Imai, Takeuchi & Tajima [KITT97] took

an integer programming approach and devised a branch-and-cut al¬

gorithm. Aichholzer [Aic99] introduced the concept of a "path of a

triangulation," which can be used to solve any kinds of "decompos¬
able" problems (in particular the minimum weight triangulation prob¬
lem) by recursion. These algorithms were not analyzed in terms of

worst-case time complexity. As for approximation of minimum weight
triangulations, Levcopoulos & Krznaric [LK98] gave a constant-factor

polynomial-time approximation algorithm, but with a huge constant.

5.2 Preliminaries and Description of the Re¬

sult

We start our discussion by introducing some notation and definitions

used in this chapter. Then we state our result in a precise manner. From

now on, we assume that input points are in general position, that is, no

three points are on a single line and no two points have the same in¬

coordinate. When a point p has a larger ^-coordinate than a point q, we
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say p is right of q; otherwise p is left of q.

The line segment connecting two points p, q G IR2 is denoted by pq.

The length of a line segment pq is denoted by d(p,q), which is mea¬

sured by the Euclidean distance. A polygonal chain is a planar shape
described as 7 = (jf=oPiPi+i where po,...,P£ G IR2 are distinct points
except that pq and p£ can be identical (in such a case, the chain is closed).
For a closed polygonal chain we assume in the following that all in¬

dices are taken modulo £. The length of 7 is the sum of the lengths
of the line segments, that is, length(7) = Ya=q d{Pi,Pi+i)- We say 7 is

selfintersecting if there exist two indices i,j e {0,.. .,£—1}, i ^ j, such

that {PiPi+inpjpj+i) \ {Pi,Pi+i,Pj,Pj+i} ± 0. Otherwise, we say 7 is

non-selfintersecting. The points pq,.. . ,p£ are the vertices of 7. When 7 is

not closed, pq and p£ are called the endpoints of 7. In this case, we say 7

startsfrom pq (or p£).

A simple polygon P is a simply connected compact region in the

plane bounded by a closed non-selfintersecting polygonal chain. A

vertex of P is a vertex of the polygonal chain which is the boundary of

P. We denote the set of vertices of P by Vert(P). A neighbor of a vertex

p e Vert(P) is a vertex ç G Vert(P) such that the line segment pq lies on

the boundary of P.

Following Aichholzer, Rote, Speckmann & Streinu [ARSS03], we

call a pair II = iß,P) a pointgon when P is a simple polygon and S is a

finite point set in the interior of P. We call S the set of inner points of II.

The vertex set of II is Vert(P) U S, and denoted by Vert (Ft). Figure 5.1

shows an example of a pointgon.

Let II = (S,P) he a pointgon. A triangulation T of a pointgon
II = (S, P) is a subdivision of P into triangles whose edges are straight
line segments connecting two points from Vert (Ft) and which have no

point from Vert (Ft) in their interior. The weight of T is the sum of the

edge lengths used in T. (Especially, all segments on the boundary of P

are used in any triangulation and counted in the weight.) A minimum

weight triangulation of a pointgon II is a triangulation of II which has

minimum weight among all triangulations.

In this chapter, we study the problem of computing a minimum

weight triangulation of a given pointgon II = (S,P). The input size

is proportional to |Vert(II)|. In the sequel, for a given pointgon II =
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Figure 5.1: A pointgon II = (S,P). In this chapter, the points of S are

drawn by empty circles and the points of Vert(P) are drawn by solid

circles.

(S,P), we set n := |Vert(II)| and k := \S\. Our goal is to find an ex¬

act algorithm for a pointgon II = (S,P) when l^l is small. The main

theorem of this chapter is the following.

Theorem 5.1. LetlJ= (S,P) beapointgon. Letn:= |Vert(II)| andk := \S\.
Then we can find a minimum weight triangulation ofU in 0(6fcn5logn)
time. In particular, if k = O(logn), then a minimum weight triangulation
can befound in polynomial time.

This theorem shows that, in the terminology of parameterized com¬

putation, the problem is fixed-parameter tractable, when the size of S

is taken as a parameter.

In the next section, we prove this theorem by providing an algo¬
rithm.

5.3 A Fixed-Parameter Algorithm for Mini¬

mum Weight Triangulations

First, we describe a basic strategy for our algorithm. The details are

then discussed in Sections 5.3.2 and 5.3.3.
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(a) Case (1). (b) Case (2).

Figure 5.2: Situations in Observation 5.2.

5.3.1 Basic Strategy

An inner path of a pointgon II = {S,P) is a polygonal chain 7 =

Ui=oPiPi+i sucn that P0/---/P£ are all distinct, Pi e S for each i e

{1,.. .,£—1}, pq,P£ e Vert(P), and 7 \ {po/WJ is contained in the inte-

rior of P. An inner path \ji=Q PiPi+i Is called x-monotone if the x-coor-

dinates of po,...,P£ are either increasing or decreasing.

The basic fact we are going to use is the following.

Observation 5.2. Let II = (S,P) be a pointgon and pbe a vertex oflJ with

the smallest x-coordinate. Denote by p',p" the neighbors ofp in P. Then,for
every triangulation T oflJ, either

(1) there exists a non-selfintersecting x-monotone inner path startingfrom
p and consisting of edges ofT, or

(2) the three points p,p',p" form a triangle ofT.

The situation in Observation 5.2 is illustrated in Figure 5.2.

We would like to invoke Observation 5.2 for our algorithm.

Let II = {S,P) he a pointgon, and p G Vert(P) the vertex with the

smallest x-coordinate. A non-selfintersecting x-monotone inner path
divides a pointgon into two smaller pointgons. (See Figure 5.2(a) and

recall the general position assumption.) Hence, by looking at all non-

selfintersecting x-monotone inner paths starting from P, we can recur-
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sively solve the minimum weight triangulation problem. To establish

an appropriate recursive formula, denote by V(p) the set that consists

of the line segment p'p" and of all non-selfintersecting x-monotone in¬

ner paths starting from p. Each non-selfintersecting inner path 7 G V{p)
divides our pointgon II into two smaller pointgons, say 11^ and Tl".

Then, we can see that

mwt(n) = min {mwt(Il') + mwt(Il") - lengthM}. (5.1)
-yeV(p)

1 1

To see that Equality (5.1) is really true, the following observation

should be explicitly mentioned, although the proof is straightforward
and thus omitted.

Observation 5.3. Let Tl = (S, P) be a pointgon and Tbea minimum weight
triangulation of Tl. Choose an inner path 7 which uses edges ofT only, and let

Tl' and Tl" be two smaller pointgons obtained by subdividing Tl with respect
to 7. Then, the restriction of T to Tl' is a minimum weight triangulation of
Tl'. The same holdsfor Tl" as well.

Therefore, by solving Recursion (5.1) with an appropriate boundary
(or initial) condition, we can obtain a minimum weight triangulation
of II. Note that even if II is a convex pointgon, the pointgons 11^ and

Tl" encountered in the recursion might not be convex. Thus, our di¬

gression to simple polygons is essential also for the minimum weight
triangulation problem for a finite point set, i.e., a convex pointgon.

5.3.2 Outline of the Algorithm

Now, we describe how to solve Recursion (5.1) with the dynamic-pro¬
gramming technique.

First, let us label the elements of Vert(P) in a cyclic order, i.e., the

order following the appearance along the boundary of P. According
to this order, let us denote Vert(P) = {po,pi,.. .,pn-k-i}- Then, pick
a vertex pi e Vert(P), and consider a non-selfintersecting x-monotone
inner path 7 starting from pi. Let pj G Vert(P) be the other endpoint
of 7. Note that Vert(7) \ {pi,Pj} consists of inner points of II only.
Therefore, such a path can be uniquely specified by a subset T ç S.
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That is, we associate a triple (i,j,T) with an x-monotone inner path
PÏÔ1U ÖTÖ2 U • • • U qt-\qt U ôïpj where T = {^1,^2,.. -,qt}- For the sake

of brevity we write j{T) to denote the inner path associated with T

when the endpoints Pi,pj are clear from the context.

For two vertices Pi,pj G Vert(P) on the boundary of Tl, and a set

T ç S of inner points, let Tl(i,j,T) he the pointgon obtained from II as

follows: the boundary polygon is the union of the polygonal chains

UlZi P£P£+i and 7(T). (Note that we only consider the case where

7(T) is well-defined, that is, it does not intersect the boundary poly¬
gon.) The inner points of Tl(i,j,T) consist of the inner points of II con¬

tained in the boundary polygon specified above. Furthermore, denote

by mwt(i,j,T) the weight of a minimum weight triangulation of the

pointgon Tl(i,j,T). Then, Equality (5.1) can be rewritten in the follow¬

ing way if we take pq for the role of p:

mwt(II) =

min( min {mwt(0,i,T) + mwt(i,0,T) - length(7(T))},
tl<i<n-k,TÇS

mwt(l,n-/c-l,0) +d(p0,pi) + d(po,pn_k_i)j . (5.2)

The number of values considered in the right hand side of Equality
(5.2) is 0((n—k)2k) = 0(2kn). Hence, for the computation of mwt(II)
it is sufficient to know mwt(i,j,T) for every triple {i,j,T) of two in¬

dices i,j e {0,.. .,n—k—l} and a subset T ç S. Since the number of

such triples is 0(2^n2), the efficient computation of each value results

in fixed-parameter tractability of the minimum weight triangulation
problem.

Nevertheless, to compute these values, we have to generalize the

class of pointgons under consideration. That is because pointgons we
encounter in the recursion might not be of the form Tl(i,j, T). Therefore

we introduce two additional types of pointgons.

First of all, we call a pointgon which can be defined as the form of

Tl(i,j,T) a type-1 pointgon in the following. See Figure 5.3(a) for illus¬

tration.

Another class of pointgons is defined for two indices i,j G

{0,...,n—/c—l}, two disjoint subsets Ti,T2 ç S, and a vertex r G Vert(II).
Then, Ti{i,j,T\,T2,r) is a pointgon bounded by the x-monotone path
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Pi

(a) A type-1 pointgon. (b) A type-2a pointgon.

(c) A type-2b pointgon. (d) A type-3 pointgon.

Figure 5.3: The three types of subpointgons of II. The vertex r belongs
either to Vert(P) or S.

connecting pi and r through T\, the x-monotone path connecting pj

and r through T2, and U^=i P£P£+i- (Again we only consider those tu¬

ples which are well-defined, that is, where the paths described above

are indeed x-monotone and do not cross each other.) We call such a

pointgon a type-2 pointgon of Tl, and divide them into two subclasses

according to whether r is a convex (type-2a) or reflex (type-2b) vertex

of the pointgon. Figures 5.3(b) & 5.3(c) illustrate the definition.

The last kind of pointgons uses at most one vertex of P. For a vertex

r G Vert(n) and two subsets Ti,T2 ç S with T1nT2 = {s}, we define

the pointgon n(Ti,T2,r) as one which is bounded by two x-monotone

paths connecting r and s through Ti and through T2, respectively. We
call such a pointgon a type-3 pointgon of II. See Figure 5.3(d) for an
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example.

Let us count the number of these pointgons. The number of type-1

pointgons is 0(2kn2); the number of type-2 pointgons is 0(3kn3); the

number of type-3 pointgons is 0(3kn). Therefore, the total number

of these pointgons is 0(3^n3). Our goal in the following is to com¬

pute the weights of minimum weight triangulations of these point¬

gons efficiently. Denote by mwt(i,j,T) the weight of a minimum

weight triangulation of a type-1 pointgon Tl(i,j,T). Similarly, we de¬

fine rr\wt(i,j,Ti,T2,r) and mwt(Ti,T2,r) for type-2 and type-3 point¬

gons, respectively.

Before describing the algorithm, let us discuss why we encounter

these three types of pointgons only in the recursion. For this, we have

to be careful which vertex to choose as p in the recursion step. Recall

that in any step of Recursion (5.1) there are two cases: either p is cut off

by joining its neighbors by an edge, or the pointgon is subdivided by
an x-monotone inner path starting from p. Also recall that in Observa¬

tion 5.2 we required p to be the leftmost point of the pointgon. If we

apply the same argument as in Observation 5.2 to an arbitrary vertex

of the pointgon, in the first case there appears an inner path starting
from p that is almost x-monotone, i.e., x-monotone except for the first

edge incident to p.

Initially we have a given pointgon II = {S,P) and choose the left¬

most vertex as p. If p is cut off (Figure 5.4(a)) the result is a type-1
pointgon where T = 0. Otherwise, any x-monotone inner path starting
from p divides the pointgon into two type-1 pointgons (Figure 5.4(b)).

When we apply Recursion (5.1) to a type-1 pointgon Tl(i,j,T), we
choose as p the leftmost vertex of the inner path j(T) (which might
just consist of a single edge joining pi and pj). If p is cut off, the result

is either again a type-1 pointgon (Figure 5.5(a)) or a type-2a pointgon
(Figure 5.5(b)). Otherwise, consider the vertex q on j{T) next to p.

In every triangulation, the edge pq must belong to some triangle. To

make such a triangle we need another vertex, say z. Let us choose z

to be such that pz is the first edge of an almost x-monotone inner path
7' starting from p. If z e Vert(P), then we get a type-1 pointgon, the

triangle pqz and a type-2a pointgon when z is right ofp (Figure 5.6(a)),
or a type-1 pointgon, the triangle pqz and a type-1 pointgon when z is

left of p (Figure 5.6(b)). If z G S, then we have four subcases. When z
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(a) The vertex p is cut off. (b) An inner path from p.

Figure 5.4: Subdivisions obtained from II. From now on in the pictures,
the vertex p is indicated by a larger circle, and the numbers enclosed

by squares represent the types of subpointgons obtained by the corre¬

sponding subdivisions.

is right of p and 7' ends at a vertex of j{T), we get a type-1 pointgon,
the triangle pqz and a type-3 pointgon (Figure 5.7(a)). When z is right
of p and 7' ends at a vertex of P, we get a type-1 pointgon, the triangle
pqz and a type-2a pointgon (Figure 5.7(b)). When z is left of p and 7'
ends at a vertex of j{T), we get a type-2b pointgon, the triangle pqz

and a type-3 pointgon (Figure 5.8(a)). When z is left of p and 7' ends at

a vertex of P, we get a type-2b pointgon, the triangle pqz and a type-2a
pointgon (Figure 5.8(b)).

We choose r as p when we apply Recursion (5.1) to a type-2a point¬

gon Tl(i,j,Ti,T2,r). If p is cut off, then the result is either again a type-
2a pointgon or a type-1 pointgon (Figure 5.9(a)). Otherwise, consider

an x-monotone inner path starting from p. If the path ends at a ver¬

tex of P, we get two type-2a pointgons (Figure 5.9(b)). If, on the other

hand, the inner path ends at a vertex in S, then it subdivides the point¬

gon into a type-2a and a type-3 pointgons (Figure 5.9(c)).

When we apply Recursion (5.1) to a type-2b pointgon, we choose

as p the leftmost vertex of the inner path. Since p is a reflex vertex,

p cannot be cut off. So, every x-monotone inner path starting from p

subdivides the pointgon into two type-1 pointgons (Figure 5.9(d)).

When we apply Recursion (5.1) to a type-3 pointgon II(Ti, T2, r), we
choose r as p. Then, no matter how we divide the pointgon by the op-
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(a) The vertex p is cut off and a neighbor of p

is left of p.

(b) The vertex p is cut off and the neighbors
of p are right of p.

Figure 5.5: Subdivisions obtained from a type-1 pointgon.

erations in the recursion, the result again consists of type-3 pointgons
(Figure 5.10).

So much for preparation, and now we are ready to give the outline

of our algorithm.

Step 1: enumerate all possible type-1 pointgons Tl(i,j,T), type-2
pointgons Tl(i,j,Ti,T2,r), and type-3 pointgons II(Ti,T2,r).

Step 2: compute the values rr\wt(i,j,T), rr\wt(i,j,Ti,T2,r), and

mwt(Ti,T2,r) for some of them, which are sufficient for Step 3,

by dynamic programming.

Step 3: compute mwt(II) according to Equality (5.2).

We already argued that Step 3 can be done in 0(2kn) time. In the

next section we will show that Steps 1 & 2 can be done in 0(6kn5 log n)
time, which dominates the overall running time.
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z

(a) The vertex z belongs to Vert(P) and z is

right of p.

(b) The vertex z belongs to Vert(P) and z is

left of p.

Figure 5.6: Subdivisions obtained from a type-1 pointgon (continued).

5.3.3 Dynamic Programming

Now, we are going to explain how to compute the values of

rr\wt(i,j,T), rr\wt(i,j,Ti,T2,r), and mwt(Ti,T2,r) for all possible
choices of i, j,Ti,T2,r.

First we enumerate all possibilities of i,j,Ti,T2, r. Each of them can

be enumerated in O(l) time, and each of them can be identified as a

well-defined pointgon or not (i.e., the inner paths do not intersect each

other nor the boundary) in O(nlogn) time. (Apply the standard line

segment intersection algorithm [SH76].) Therefore, they can be enu¬

merated in 0(3^n3 • 1 • nlogn) = 0(3^n4logn) time. This completes
Step 1 of our algorithm.

Then, we perform the dynamic programming. For each pointgon
enumerated in Step 1, determine the vertex p and consider all possi¬
ble subdivisions with respect to p as described in the previous section.
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(a) The vertex z is right of p and the path 7'
ends at a vertex in S.

(b) The vertex z is right of p and the path 7'
ends at a vertex of P.

Figure 5.7: Subdivisions obtained from a type-1 pointgon (continued).
The vertex z belongs to S.

Each subdivision replaces II by two smaller pointgons. Then, as we

have argued in the previous section, these two pointgons can be found

among those enumerated in Step 1.

We can associate a parent-child relation between two pointgons
IIi,Il2 in our enumeration: II1 is a parent of II2 if II2 is obtained as

a smaller pointgon when we subdivide IJ4 by a path starting from p

(which is fixed as in the previous section) or through the edge cutting
off p. It can also be thought as defining a directed graph on the enu¬

merated pointgons: namely, draw a directed edge from II1 to II2 if the

same condition as above is satisfied.

Observe that if IIi is a parent of II2, then the number of inner points
in II2 is less than that in II1 or \T\\ + IT2I is smaller in II2 than in FI4.

Therefore, the parent-child relation is well-defined (i.e., there is no di¬

rected cycle in the directed-graph formulation).

Now, to do the bottom-up computation, we first look at the lowest
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(a) The vertex z is left of p and the path 7'
ends at a vertex in S.

(b) The vertex z is left of p and the path 7'
ends at a vertex of P.

Figure 5.8: Subdivisions obtained from a type-1 pointgon (continued).
The vertex z belongs to S.

descendants (or the sinks in the directed-graph formulation). They are

triangles. So, the weights can be easily computed in constant time.

Then, we proceed to their parents. For each parent, we look up the

values of its children. In this way, we go up to the highest ancestor,

which is Ft. Thus, we can compute mwt(II).

What is the time complexity of the computation? First, let us es¬

timate the time for the construction of the parent-child relation. The

number of enumerated pointgons is 0(3^n3). For each of them, the

number of possible choices of non-selfintersecting x-monotone paths is

0(2kn). For each of the paths, we can decide whether it really defines a

non-selfintersecting path in O(nlogn) time. Therefore, the overall run¬

ning time for the construction is 0(3^n3 • 2^n • nlogn) = 0(6^n5 logn).

In the bottom-up computation, for each pointgon we look up at

most 0(2kn) entries and compute the value according to Equality (5.1).

Therefore, this can be done in 0(3^n3 • 2^n) = 0(6^n4).
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(a) Type-2a. p is cut off. (b) Type-2a. The inner path ends
at a vertex of P.

(c) Type-2a. The inner path ends (d) Type-2b.
at a vertex in S.

Figure 5.9: Subdivisions obtained from a type-2 pointgon.

Hence, the overall running time of the algorithm is 0(3^n4 logn +
6^n5logn + 6^n4) = 0(6^n5logn). This completes the proof of Theo¬

rem 5.1.

5.4 Conclusion

In this chapter, we studied the minimum weight triangulation problem
from the viewpoint of parameterized computation. We established an

algorithm to solve this problem for a simple polygon with some inner

points. The running time is 0(6^n6logn) when n is the total num¬

ber of input points and k is the number of inner points. Therefore,
the problem is fixed-parameter tractable with respect to the number
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(a) The vertex p is cut off. (b) An inner path from p.

Figure 5.10: Subdivisions obtained from a type-3 pointgon.

of inner points. We believe the number of inner points in geometric
optimization problems plays a role similar to the treewidth in graph
optimization problems.

Since our algorithm is based on a simple idea, it can be extended

in several ways. For example, we can also compute a maximum

weight triangulation in the same time complexity. (It seems quite re¬

cent that attention has been paid to maximum weight triangulations
[Hu03, WCY99].) To do that, we just replace "min" in Equalities (5.1)
and (5.2) by "max." By a similar idea, we can also compute a triangu¬
lation which minimizes the length of a longest edge, which maximizes

the length of a shortest edge, which minimizes the area of a largest tri¬

angle, which maximizes the area of a smallest triangle (studied by Keil

& Vassilev [KV03]), which minimizes the largest angle, and so on. An¬

other direction of extension is to incorporate some heuristics. For ex¬

ample, there are some known pairs of vertices which appear as edges
in all minimum weight triangulations, e.g. the /3-skeleton for some ß
and the LMT-skeleton; see [BDE02, CX01, WY01] and the references

therein. Because of the flexibility of our algorithm, we can insert these

pairs at the beginning of the execution as edges, and proceed in the

same way except that we can use the information from these prescribed
edges.

The obvious open problem is to improve the time complexity of

our algorithm. For example, is it possible to provide a polynomial-
time algorithm for the minimum weight triangulation problem when

fc = 0(log2n)?
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Postscript

Each chapter started with a quotation.

The quotation from The Phantom of the Opera in Chapter 0 and the

quotation from License to Kill in Chapter 5 have been found at the In¬

ternet Movie Database (IMDb) http : //www. imdb. com/.

The quotation from Gil Kalai in Chapter 1 can be found in his pa¬

per [KalOO]. The paper not only provides nice short surveys about five

topics, but also gives some thoughts on a role and a future direction

of mathematics. This is communicated to me by Günter Ziegler at

IAS/Park City Mathematics Institute Graduate Summer School 2004

"Geometric Combinatorics" where he gave a series of lectures on con¬

vex polytopes.

The quotation from Jirka Matousek in Chapter 2 can be found in

his paper coauthored with Tibor Szabö [MS04]. When I looked at a

1/2 1/3
preprint version of their paper, I found a problem with en and en

.

Then, he put this remark in the paper as a footnote. I am happy with

his amazing response.

The quotation from Emo Welzl in Chapter 3 can be found in his

lecture notes on satisfiability [Wel03] where he starts the discussion on

NP-completeness. This sentence is one of his mottos and he repeated
(and will repeat) again and again, but as for the citation the lecture

notes mentioned above seems the first explicit appearance. I hope that

the thesis follows his statement.

The quotation from Jânos Pach in Chapter 4 was told by Jeff Er-

ickson via his weblog [Eri04]. It seems that Jânos Pach addressed the

words at the banquet of Japanese Conference on Discrete and Compu¬
tational Geometry 2004 held in Tokyo. However, I am not sure that

what he said is true or not.
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