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Abstract

Mathematical models in the form of differential equations can often not
be solved analytically, but need to be simulated by means of a numerical
method. Particle methods are mesh-free schemes that use independent
or pairwise interacting particles to represent the physical properties of a
system. This allows for natural adaptivity in complex or deforming ge-
ometries. The Lagrangian frame of reference when tracking the particles
during a simulation renders particle methods particularly successful in the
area of fluid mechanics. Their numerical stability in advection-dominated
problems is superior to that of descriptions in an Eulerian frame of refer-
ence.
The general particle strength exchange (PSE) operators [31] approximate
derivatives on scattered particle locations to any desired order of accuracy.
Convergence, however, is limited by the discretization error resulting from
an inherent numerical quadrature.
In this thesis, we introduce a consistent discretization correction framework
for PSE operators. With this correction, the operators yield the desired
rate of convergence for any resolution, both on uniform Cartesian and irreg-
ular particle distributions, as well as near boundaries. The discretization
correction allows setting the kernel width to arbitrarily small values for
constant interparticle spacing. We show that, on uniform Cartesian par-
ticle distributions, this leads to a seamless transition from discretization-
corrected (DC) PSE operators to classical finite-difference stencils. We
further identify relationships between DC PSE operators and operators
used in corrected smoothed particle hydrodynamics, reproducing kernel
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particle methods, differential reproducing kernel and moving least squares
approximations, and vorticity redistribution schemes. We analyze the pre-
sented DC PSE operators with respect to their accuracy, rate of conver-
gence, computational efficiency, numerical dispersion, numerical diffusion,
and stability and compare to uncorrected (UC) PSE operators and, when-
ever appropriate, to standard finite-difference stencils. Several benchmarks
form the basis for a discussion of the operators.
Benchmarking produces an operator assessment that is highly dependent
on the problems considered. We therefore introduce three objective, prob-
lem-independent measures for the assessment of operator qualities and
demonstrate their use in operator choice and deeper understanding of the
influence of an operator’s parameters on its properties.
Finally, we formulate and test a numerical method for the solution of trans-
port problems that is based on DC PSE operators and that benefits from
their strengths. It unites the concepts of Lagrangian particle methods
and self-organization of particles driven by particle-particle interactions.
Multiresolution requirements are satisfied by means of a monitor function
that is used to scale the particle-particle interactions. This, and the ad-
vection of the particles, renders the method naturally adaptive. Particle
insertions and removals guarantee dynamic adaptation of the local particle
densities and therefore the total number of particles. All computations are
local, such that the method is well suited for parallelization on distributed-
memory machines.
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Kurzfassung

Mathematische Modelle in Form von Differentialgleichungen können häufig
nicht analytisch gelöst werden sondern müssen mit Hilfe numerischer Me-
thoden simuliert werden. Partikelmethoden benutzen keine Gitter zur Dis-
kretisierung des Kontinuums, sondern voneinander unabhängige oder paar-
weise interagierende Partikel um die lokalen physikalischen Systemeigen-
schaften zu repräsentieren. Dies ermöglicht unter Anderem eine unkom-
plizierte Anpassung an komplexe oder sich verformende Geometrien. Die
Lagrangesche Betrachtungsweise, d.h. das Verfolgen der Partikel während
einer Simulation, macht Partikelmethoden besonders auf dem Gebiet der
Strömungsmechanik attraktiv. In konvektionsdominierten Problemen wei-
sen Partikelmethoden eine höhere numerische Stabilität auf als Methoden,
die auf der Eulerschen, d.h. ortsgebundenen, Betrachtungsweise basieren.
Die allgemeinen particle strength exchange (PSE) Operatoren nähern mit
beliebiger Genauigkeit Ableitungen von Funktionen an, deren Werte nur
auf im Raum verstreuten Punkten (Partikeln) gegeben sind. Die Konsis-
tenzordnung wird jedoch durch einen durch numerische Quadratur ent-
standenen Diskretisierungsfehler herabgesetzt.
In dieser Dissertation führen wir ein konsistentes System zur Diskretisie-
rungskorrektur von PSE Operatoren ein. Mit Hilfe dieser Korrektur erzie-
len die Operatoren die gewünschte Konsistenzordnung für alle räumlichen
Auflösungen, sowohl auf äquidistanten kartesischen und unregelmässigen
Partikelverteilungen als auch in der Nähe von Rändern. Die Diskretisie-
rungskorrektur erlaubt es, bei konstantem Partikelabstand die charakte-
ristische Breite des Kerns der Operatoren beliebig schmal zu wählen. Wir
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zeigen, dass dies auf kartesischen Partikelverteilungen zu einem nahtlosen
Übergang zwischen discretization-corrected (DC) PSE Operatoren und
klassischen Differenzenquotienten der Finite-Differenzen Verfahren führt.
Desweiteren identifizieren wir die Beziehungen zwischen DC PSE Opera-
toren und Operatoren, die in corrected smoothed particle hydrodynamics,
reproducing kernel particle methods, differential reproducing kernel und
moving least squares Approximationen, sowie in vorticity redistribution
schemes benutzt werden. Wir untersuchen die vorgestellten DC PSE
Operatoren hinsichtlich ihrer Genauigkeit, Konsistenzordnung, Effizienz,
numerischer Dispersion, numerischer Diffusion und Stabilität und verglei-
chen sie sowohl mit den unkorrigierten PSE Operatoren als auch, wenn
angemessen, mit herkömmlichen Differenzenquotienten. Wir besprechen
die Operatoren auf Basis mehrerer Testprobleme.
Die Beurteilung von Operatoren hängt stark von der Auswahl der Testpro-
bleme ab. Deshalb führen wir drei objektive problemunabhängige Maße
zur Beurteilung der Qualität der Operatoren ein. Wir führen ihren Nutzen
für die Auswahl geeigneter Operatoren vor und veranschaulichen mit ihrer
Hilfe wie die Eigenschaften des Operators von seinen freien Parametern
abhängen.
Schließlich formulieren und testen wir eine numerische Methode für die
Lösung von Transportgleichungen, die auf DC PSE Operatoren basiert. Sie
vereinigt Konzepte Lagrangescher Partikelmethoden mit adaptiver Selbst-
organisation der Partikel, die auf paarweisen Interaktionen basiert. Die
Anforderungen, die durch das Vorhandensein mehrerer Skalen auftreten,
werden mit Hilfe einer Überwachungsfunktion befriedigt, die dazu dient
die Interaktionspotentiale zu skalieren. Eine Partikeleinführungs- und ent-
fernungsstrategie garantiert, dass sich sowohl die lokale Partikeldichte als
auch die Gesamtzahl Partikel den Anforderungen dynamisch anpasst. Alle
Berechnungen sind lokaler Natur, so dass sich die Methode für die Paral-
lelisierung auf distributed-memory Mehrprozessorensystemen eignet.
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Introduction

Background

Computer simulations have become a powerful tool in science, on a par
with theory and experiments. They render hidden dynamics observable
and provide full control over all parameters, allowing us to test hypotheses
or models. Simulations can also be used for educational purposes and can
substitute experiments where performing an experiment is impossible for
practical, theoretical, or ethical reasons.
A scientific simulation is the implementation of a model. It is hence of
great importance for a simulation to represent the model adequately. In
many areas, such as engineering, natural sciences, and economics, models
(or fundamental laws) are often formulated as differential equations. Only
few differential equations can be solved analytically. As a consequence, sci-
entific simulations are closely linked to the development of numerical meth-
ods and to numerical analysis. The goal is to find approximate numerical
solutions with guaranteed error bounds at reasonable computational cost.
This thesis focusses on the approximation of differential operators in par-
ticle methods. Particle methods are mesh-free schemes that use particles
to represent the physical properties of a system. This allows for natural
adaptivity in complex or deforming geometries. The Lagrangian frame of
reference when tracking the particles during a simulation renders particle
methods particularly successful in the area of fluid mechanics. Their nu-
merical stability in advection-dominated problems is superior to that of
descriptions in an Eulerian frame of reference.
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Introduction

In continuum particle methods the smooth approximation of a function f
in the weak formulation is

fh
δ (x, t) =

∑
p

ωp(t)ζδ(x− xp), (1)

where the index p runs over all particles, ωp is the particle weight or
strength, xp is the particle position, and ζδ is the mollification kernel or
cutoff function with characteristic length δ,

ζδ(z) =
1
δn
ζ
(z

δ

)
,

and ∫
Rn

ζ(z)dz = 1.

Here and in the following, n denotes the number of spatial dimensions. The
particle strengths ωp are usually chosen as ωp = vpf(xp), where vp = hn

p

is the particle volume and hp the local interparticle spacing. With certain
continuity requirements on f and ζ, the error f − fh

δ is bounded [72].
Consider the transport equation

∂f

∂t
+∇ · (fu) = g, (2)

where u denotes a velocity and g a source term. The evolution of the
particle strengths ωp, the particle volumes vp, and the particle positions
xp is then defined by

dxp

dt
= u(xp, t),

dωp

dt
= vpg

∣∣
xp,t

,
dvp

dt
= vp∇ · u

∣∣
xp,t

. (3)

This can be derived in a straightforward way by taking the material deriva-
tives of the fields ω(x, t) = v(x, t)f(x, t) and v(x, t), where v is the volume
per particle, with respect to the velocity field u and substituting the trans-
port equation (2).
In the strong formulation, the function approximation is

fh
δ (x, t) =

∑
p

fp(t)ζ
(

x− xp

h

)
, (4)
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and the equations of motion are

dxp

dt
= u(xp, t),

dfp

dt
= g
∣∣
xp,t
− fp∇ · u

∣∣
xp,t

. (5)

For irregular particle distributions, however, equation (4) is a poor approx-
imation of the function f , unless the cutoff function ζ inherently accounts
for the inhomogeneous particle spacings.
Independent of whether the weak or strong formulation is used, the ap-
proximation of derivatives plays a key role. If the source term g depends
on derivatives of the field f , as is for example the case in diffusion with
g = ∇2f , or if the divergence of u is unknown, field derivatives need to be
evaluated at particle locations in order to evolve ωp and vp according to
equations (3) or fp according to equations (5). Derivative approximations
are hence crucial for solving the governing equations.
Diffusion terms are commonly approximated using particle strength ex-
change (PSE) operators [48], which were originally designed by Degond
and Mas-Gallic [26, 27]. The conservative PSE operators approximate the
Laplacian of f at the position of particle p as

∇2f(xp) ≈
∑

q

vq(fq − fp)ηε(xp − xq),

where ηε is an appropriate kernel function, scaled to characteristic width
ε.1 Later, Eldredge and coworkers [31] developed general PSE operators
for the approximation of arbitrary differential operators.

Problem Statement and Motivation

For large-enough kernel widths ε the derivative approximation using PSE
operators converges with O(εr). The consistency of PSE operators, how-
ever, is limited by a discretization error resulting from numerical quadra-
ture over the particle locations. This discretization error is constant or of
negative order and dominates for small kernel widths ε. It can be reduced
only by increasing the number of particles in the support of the scaled
kernel function ηε, resulting in the overlap condition h < aεq, q > 1. The

1 The conservative derivative approximation in SPH [48, equation (24)] can be con-
sidered a special case of a PSE operator with ε = δ = h and η = ∇2ζ.
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resulting approximation is then of order O(hr/q).
In order to obtain a consistent O(hr)-approximation, that is to reduce the
total number of particles required to reach a given level of accuracy, a
discretization correction can be performed. Several variants of discretiza-
tion-corrected (DC) PSE operators have been used in state-of-the-art sim-
ulations [9, 39, 43, 70, 76]. However, while the numerical properties of the
original, uncorrected (UC) PSE operators are well known,

(i) an analysis of DC PSE operators and

(ii) a classification of their position in the field of differential operators

are missing. Also the key question of

(iii) whether the additional computational cost for the discretization cor-
rection is amortized by the gain in accuracy

is yet unanswered. In case of a positive answer, it should also be interesting
to investigate the use of DC PSE operators

(iv) in multiresolution simulations, and

(v) in Lagrangian particle methods for the strong formulation.

Point (iv) is of particular interest as particle methods are increasingly used
for multiscale simulations. If we find DC PSE operators to be valuable in
multiresolution problems, they could be used in a straightforward way to
compute derivatives on multiresolution particle configurations and to in-
terpolate the particle properties onto a mesh, e.g., for efficiently solving the
Poisson equation. This could simplify the design of accurate and efficient
multiresolution particle methods.
Why is it interesting to consider point (v)? Lagrangian particle methods
based on the weak formulation of the field approximation are normally
more attractive than those based on the strong formulation because they
are robust in handling field discontinuities. However, dynamic particle
management, including particle insertion and removal, is simplified by the
strong formulation since particle volumes are disregarded. Dynamic par-
ticle management is particularly advantageous for fast evolving fields with
multiple scales; where small scales appear, particles are inserted, where
small structures are dissipated, particles can be removed. As nonuniform
particle distributions usually deteriorate the accuracy of the strong field
approximations for UC cutoff functions ζ, discretization correction is ex-
pected to be beneficial.
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Outline

In this thesis, we address the five questions presented above. In addition,
we introduce performance measures for diffusion operators, providing a
useful tool for developing a deeper understanding of the role of the tunable
operator parameters. We demonstrate that the measures are useful for the
selection of efficient operators.
This thesis is structured as follows:

Chapter 1 We briefly review PSE operators as a class of discretized
integral operators that can be applied to scattered data in order to ap-
proximate derivatives.

Chapter 2 We present a discretization-correction framework for PSE
operators that renders the operators pointwise consistent while keeping
the number of particles required for operator evaluation constant. We
analyze the impact of discretization correction on operator properties such
as accuracy, numerical diffusion and dissipation, and stability in explicit
time stepping. Some fundamental tests are presented to compare basic
features of the corrected operators to those of the original operators and
standard finite-difference stencils. The performance of these three types
of operators in benchmark simulations forms the basis for an assessment
of DC PSE operators.

Chapter 3 Various numerical methods provide a large selection of op-
erators for approximating field derivatives. For certain parameter choices
DC PSE operators become equivalent or similar to other operators. Aim-
ing for a unifying description, we discuss the relations to operators used
in finite-difference methods, corrected smoothed particle hydrodynamics,
reproducing kernel particle methods, differential reproducing kernel and
moving least squares approximations, and vorticity redistribution schemes.
We prove that certain classical finite-difference stencils are special cases of
DC PSE operators.

Chapter 4 Diffusion is a fundamental transport phenomenon. Diffu-
sion operators hence often play a key role in numerical simulations. Besides
PSE operators, there are many other possible operators for approximat-
ing a diffusion term in particle methods. Which one is best suited for a
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given problem? How big are the differences? How does a certain param-
eter influence the properties of a specific operator? These questions, if
asked, are usually tackled by testing a set of different operators on a set
of benchmark problems. The answers then naturally depend on the choice
of the benchmark problems and conclusions outside the scope of the test
problems are speculative. We therefore present three measures that en-
able an predictive rating of operator properties. All presented measures
are by design independent of the problem to be solved. We illustrate their
potential and limitations in a parameter study and a case study.

Chapter 5 We introduce a self-organizing adaptive multiresolution par-
ticle method for solving transport problems in a Lagrangian frame of ref-
erence. It combines the idea of Lagrangian particle methods with that of
particle self-organization from particle-particle interaction potentials. This
allows for natural adaptation to multiresolution fields in the strong formu-
lation of the transport problem. The discretization correction presented
and assessed in chapter 2 enables straightforward and accurate simulations.
Based on the solution of benchmark problems we compare the presented
method to a remeshed Lagrangian particle method and a multiresolution
wavelet particle method.

Chapter 6 We close this thesis by summarizing its results and conclu-
sions and by putting forward ideas for subsequent work.
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CHAPTER

ONE

Particle Strength Exchange Operators

1.1 Introduction

In Lagrangian particle methods, such as smoothed particle hydrodynam-
ics (SPH) or vortex methods, continuous flow fields are discretized over
scattered particle locations. The particles follow the flow in a Lagrangian
way. They need not satisfy any connectivity constraints. That is, they
are not required to form a structured or unstructured mesh. In order to
accurately and efficiently approximate the viscosity or diffusion term in
vortex methods for viscous flow, particle strength exchange (PSE) opera-
tors were introduced by Degond and Mas-Gallic 1989. They can handle
both isotropic [27] and anisotropic diffusion [26].
The PSE operators were preceded by methods specifically designed to sim-
ulate diffusion in vortex methods. Kuwahara and Takami [50] account for
viscous effects by spreading (or smoothing) the vorticity when computing
the velocity. They point out that – due to superposition of vortices – their
“equations are not strictly exact because they are incompatible with the
Navier-Stokes equations”. Thus, they state that they introduce an artifi-
cial viscosity, not the real one. In the random walk method, introduced by
Chorin [17], the particles (vortex positions) are displaced by Gaussian ran-
dom steps in order to simulate diffusion. The dynamics of the numerical
particles hence reflect the dynamics of Brownian motion. After conver-
gence of viscous splitting methods for the Navier-Stokes equations had
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Chapter 1. Particle Strength Exchange Operators

been proven by Beale and Majda [5], convergence of the random walk vor-
tex method was proven by Marchioro and Pulvirenti [60], Goodman [40],
and Long [58]. Nevertheless, a large amount of noise is introduced by
the random walk such that large numbers of particles are required for
high accuracy [34]. The core spreading (or core expanding) algorithm –
a deterministic way of simulating diffusion – as described in Leonard’s
review [55] has been shown to approximate the wrong equations [41]. A
consistent deterministic displacement scheme for simulating diffusion was
introduced by Degond and Mustieles [28] one year after the PSE oper-
ators were published. They define an equivalent convection velocity for
the diffusion process, but remark that this method may be less accurate
and more expensive than other methods for the Navier-Stokes and the
heat equations and may be more suited for problems in kinetic theory of
plasma physics. Another deterministic approach to simulating the viscous
term in vortex methods is the exchange of vorticity between particles or
the redistribution of vorticity among particles. Among others, the works
of Raviart [72], Choquin and Huberson [15], Cottet and Mas-Gallic [24],
and Fishelov [33] follow this approach. In some methods, the quantity
carried by the particles is interpolated onto a mesh at each time step after
the particles have been advected. The diffusion term – or the amount of
strength exchanged – may then be computed on the mesh using classical
finite-difference stencils as done, for example, by Bergdorf and cowork-
ers [9]. The advantage of this approach is that the particles do not form
clusters or holes in the course of the simulation. Also, the construction
of neighbor lists becomes unnecessary. The interpolation procedure, also
called remeshing, can be combined with the diffusion step of the simula-
tion [85]. In Free Lagrangian Methods [36], a finite difference scheme is
constructed for the (irregular) particle positions using a Voronoi diagram.
The PSE operators were developed following the idea of exchanging vor-
ticity between particles. Thus, using PSE operators particles are neither
displaced nor do their volumes change in order to represent diffusion. The
amount of strength they exchange is based on an approximation of the dif-
fusive flux, while the total amount of vorticity is conserved. The resulting
method has been shown to be superior to the random walk method [16].
In 2002, Eldredge and coworkers generalized PSE operators to estimate
any spatial derivative of a field carried by particles [31].
The classical PSE operators are briefly described in §1.3 and the gener-
alized operators are recollected in §1.4. We begin by recapitulating the
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1.2. Multiindex Notation

multiindex notation in §1.2, which will be used throughout this thesis.

1.2 Multiindex Notation

For compactness of notation, we use the following multiindex notation: for
a multiindex α, α = (α1, . . . , αn) ∈ Nn, and a vector x = (x1, . . . , xn)T ∈
Rn,

|α| =
n∑

i=1

αi, xα =
n∏

i=1

xαi
i , α! =

n∏
i=1

αi!,

and a sum over all indices α for which |α| = k is written as
∑

|α|=k.
Derivatives of a multivariate field f(x) ∈ R, x ∈ Rn, are expressed as

Dβf(x) =
∂|β|f(x)

∂xβ1
1 ∂xβ2

2 . . . ∂xβn
n

.

1.3 The Classical PSE Operators for Diffusion

Degond and Mas-Gallic [26, 27] designed PSE operators for both the case
of isotropic and anisotropic diffusion. In the case of isotropic diffusion, the
approximated diffusion operator L(·) is defined by

Lf(x) = ∇ · (ν(x)∇f(x)) =
∑
|α|=1

[
Dαν(x)Dαf(x) + ν(x)D2αf(x)

]
.

(1.1)

Here, α = (α1, · · · , αn) ∈ Nn is a multiindex, n is the number of spatial
dimensions, f is the field to be diffused, and ν is the viscosity (or diffusion
coefficient). In the case of anisotropic viscosity, the viscosity field is repre-
sented by the positive symmetric tensor ν ∈ Rn×n. The diffusion operator
L(·) is then defined by

Lf(x) = ∇ · (ν(x)∇f(x)) =
n∑

i,j=1

Dei [νij(x)Dejf(x)] (1.2)
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Chapter 1. Particle Strength Exchange Operators

where νij are the elements of the matrix ν, and ei is the unit vector
along dimension i. The isotropic and the anisotropic case are discussed
separately below.

1.3.1 The Case of Isotropic Diffusion

The PSE operators Qh(·) approximate the isotropic diffusion operator L(·)
using the information about the field f(x) and the viscosity ν(x) carried
by particles of characteristic spacing h.
The PSE operator for isotropic diffusion is defined as

Qhf(x) =
1
ε2

∑
p∈N (x)

vp (f(xp)− f(x))µ(x,xp)ηε(x− xp), (1.3)

where xp and vp are the position and the volume of particle p, respectively,
and N (x) comprises all particles contained in an rc-neighborhood around
x. The cutoff radius rc is typically chosen such that the neighborhood
N (0) coincides (with a certain accuracy) with the support of the scaled
kernel function

ηε(z) = ε−nη(z/ε),

where ε is the kernel width.
For conservation of mass, µ(x,y) is set to a symmetric mean of ν(x) and
ν(y), for example, µ(x,y) = (ν(x) + ν(y))/2. The kernel function η is
chosen such that the moment conditions

Zα = Y α, 1 ≤ |α| ≤ r + 1,
Zα∗ <∞, |α| = r + 2, (1.4)

where

Zα =
∫

Rn

zαη (z) dz =
∫

Rn

(z

ε

)α

ηε (z) dz,

Zα∗ =
∫

Rn

|zαη (z)|dz =
∫

Rn

∣∣∣(z

ε

)α

ηε (z)
∣∣∣ dz,

Y α =

{
2, α = 2ei, i = 1, . . . , n,
0, else,

(1.5)
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1.3. The Classical PSE Operators for Diffusion

are satisfied.
The error ε(x) = Qhf(x)−Lf(x) can be split into two parts and bounded
as follows:

1. The mollification error εε is the difference between the continuous
integral operator Q(·) and the exact operator L(·) applied on f :

εε(x) = Qf(x)− Lf(x)

=
1
ε2

∫
Rn

(f(y)− f(x))µ(x,y)ηε(x− y)dy

−∇ · (ν(x)∇f(x)) .

Given that the moment conditions (1.4) are satisfied, the mollifica-
tion error can be bounded as

|εε(x)| ≤ Cεr,

where C includes the norms ‖f‖r+2,∞,Rn , ‖ν‖r+1,∞,Rn , and the mod-
ified moments Zα∗, |α| = r + 2, as defined in (1.5). This result is
derived by Taylor-expanding f(y) and µ(x,y) around x.

2. The saturation error or discretization error εh represents the differ-
ence between the discrete operator Qh(·) defined in equation (1.3)
and its continuous form Q(·):

εh(x) = Qhf(x)−Qf(x)

=
1
ε2

∑
p∈N (x)

vp (f(xp)− f(x))µ(x,xp)ηε(x− xp)

− 1
ε2

∫
Rn

(f(y)− f(x))µ(x,y)ηε(x− y)dy.

The error can be bounded as

|εh(x)| ≤ C hm

εm+1

for f, ν ∈ Wm,p(Rn) and a kernel function η ∈ Wm,1(Rn), m > n,
whose support when centered at x should be covered by the particles

5
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in the neighborhood N (x).1 The constant C depends on f and ν as
well as on η and m, more specifically on the norm ‖η‖m,1,Rn . Letting
h or ε tend to zero, the discretization error tends to zero if the ratio
c = h/ε tends to zero as well – faster than h1/(m+1) or ε1/m. To
shrink the discretization error with the mollification error as εr, the
ratio c needs to be decreased as h(r+1)/(m+r+1) or ε(r+1)/m. Keeping
the ratio c = h/ε constant, the error bound grows with decreasing
kernel width ε (or interparticle spacing h).2 Obviously, whenever the
support of the kernel function is not covered by the neighborhood
around x, an additional, constant error occurs when approximating
Q(·) by Qh(·). This error depends on rc/ε as well as on f and ν. It
can be reduced to the desired accuracy by increasing rc/ε.

1.3.2 The Case of Anisotropic Diffusion

The anisotropic diffusion operator L(·), defined in equation (1.2), is ap-
proximated by the PSE operator Qh(·) defined by

Qhf(x) =
1
ε4

∑
p∈N (x)

vp (f(xp)− f(x)) ηε(x− xp)

×
n∑

i,j=1

µij(x,xp)(x− xp)ei+ej ,

1We denote by W m,p(Ω) the Sobolev space W m,p(Ω) = {u ∈ Lp(Ω); D|α|u ∈
Lp(Ω), ∀α ∈ Nn, |α| ≤ m}. We provide W m,p(Ω) with the norm

‖u‖m,p,Ω =

0@ X
|α|≤m

‖Dαu‖p
Lp(Ω)

1A1/p

.

2 We remark that the commonly used and infinitely often differentiable Gaussian ker-
nel function is not part of W∞,1(Rn) since its derivatives Dαη, |α| =∞, do not belong
to the space L1(Rn). Nevertheless, for the Gaussian kernel function, η ∈ W m,1(Rn) is
true for an arbitrarily large integer m. The value of ‖η‖m,1,Rn , however, grows faster
than exponentially for large m; the bound Ccm for large m therefore grows as we let m
grow. Settling for a smaller integer m will result in a tighter bound for the discretization
error.
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where

µ(x,y) =
1
2

[
ν(x) + ν(y)− tr(ν(x) + ν(y))

n+ 2
I

]
and I is the identity matrix in Rn×n.
The conditions on the kernel function η then are

Zα = Y α, 3 ≤ |α| ≤ r + 3,
Zα∗ <∞, |α| = r + 4,

where

Y α =


1, α = 2ei + 2ej , i, j = 1, . . . , n, i 6= j,

3, α = 4ei, i = 1, . . . , n,
0, else.

The error analysis is identical to the one given for the isotropic operator
in §1.3.1.

1.4 The General PSE Operators

For the construction of general PSE operators, Eldredge and coworkers [31]
approximate any spatial derivative Dβf(x) of a (sufficiently smooth) field
f by an integral operator Qβ(·) defined by

Qβf(x) =
1
ε|β|

∫
Rn

(f(y)± f(x)) ηβ
ε (x− y)dy. (1.6)

The scaled operator kernel

ηβ
ε (z) =

1
εn
ηβ
(z

ε

)
is chosen such as to fulfill the continuous moment conditions

Zα = Y α, αmin ≤ |α| ≤ r + |β| − 1, (1.7)
Zα∗ <∞, |α| = r + |β|, (1.8)
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where

Y α =

{
(−1)|β|β!, α = β,

0, else,
αmin =

{
0, |β| odd,
1, |β| even.

(1.9)

The sign in equation (1.6) is chosen positive for odd |β| and negative for
even |β|.
The integral operator defined in (1.6) is then discretized by midpoint
quadrature over the particles, thus,

Qβ
hf(x) =

1
ε|β|

∑
p∈N (x)

vp (f(xp)± f(x)) ηβ
ε (x− xp). (1.10)

The error ε(x) = Qβ
hf(x)−Lf(x) can again be split into the mollification

error and the discretization error as described for the original PSE operator
in §1.3.1. The discretization error is bounded by Chm/εm+|β|−1 for even
|β| and Chm/εm+|β| for odd |β|.
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CHAPTER

TWO

Discretization Correction of PSE

Operators

2.1 Introduction

Both the original and the generalized PSE operators involve two numerical
approximation errors: the mollification error and the discretization error.
The mollification error is of order εr, where ε is the kernel width and
the exponent r is defined by the kernel design. The discretization error
from the numerical quadrature over the particle locations can be reduced
by reducing the interparticle spacing h faster than the kernel width ε.
If the ratio c = h/ε is kept constant, the discretization error limits the
convergence as depicted in figure 2.1. In order for the operator to be
consistent, h and ε have to satisfy the condition c = h/ε → 0 as h and ε
tend to zero [20, 72]. This leads to an overlap condition of the type h ≤
aεq, 0 < a < 1. The value of q depends on the desired order of accuracy r.
It is, however, always greater than one. Highly accurate approximations
thus typically require large numbers of particles, both in total and in the
operator support: as the kernel width ε is decreased, the interparticle
spacing needs to be increased, causing the total number of particles in
the simulation to grow as ε−qn in Rn. Simultaneously, the number of
particles in the operator support grows as ε1−q. The computational cost
for evaluating the operator at all particle positions therefore roughly grows

9
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small c (many particles
in operator support)

large c (few particles
in operator support)

medium c

log(h)

lo
g(

er
ro

r)

Figure 2.1: Cartoon convergence plots for PSE operators.

as ε−n(q+ q−1
n ). If one could keep the ratio c constant, it would only grow

as ε−n.
Discretization correction of the PSE operators aims at removing the dis-
cretization error. The removal renders the overlap condition unnecessary.
Then, rth-order accuracy is attained for any ratio c. The idea of discretiza-
tion correction is to replace the continuous moment conditions – equations
(1.8) for the general PSE operators – by corresponding discrete moment
conditions. Using such discretization-corrected (DC) kernels ensures con-
vergence over the entire range of resolutions.
To the best of our knowledge, discretization correction for particle methods
was first described by Cottet and coworkers [21] for interpolation kernels.
Shankar and van Dommelen [80] presented a DC redistribution scheme
which handles the viscous term in vortex methods. DC PSE operators
have been used in many state-of-the-art simulations: Hieber and Koumout-
sakos [43], for example, used it for a second-order approximation of the
Laplacian on symmetric particle distributions. Bergdorf and coworkers [9]
pointed out the possibility of discretization correction of the anisotropic
diffusion operator derived by Degond and Mas-Gallic [26]. Sbalzarini and
coworkers used DC PSE operators to approximate the Laplacian with
second-order accuracy [76] on uniform Cartesian particle distributions.
Poncet [70] used the original and the DC anisotropic diffusion operators
in vortical ring simulations and compared the results to classical finite
difference (FD) stencils. His corrected operator is of order one on arbi-

10



2.1. Introduction

trary particle distributions and of order two on symmetric ones. Golia and
coworkers [39] formulated two different discretization corrections for PSE
operators to estimate the gradient and the Laplacian of a field. Their cor-
rected operators guarantee second-order accuracy on symmetric particle
distributions and first or zeroth order on arbitrary particle distributions.
Some authors avoid the computational overhead of discretization correc-
tion by reinitializing the particles on a uniform Cartesian grid (a procedure
called remeshing) at each time step, as for example Bergdorf and cowork-
ers [9], or every few time steps, as for example Koumoutsakos [47]. Doing
so, the correction has to be determined only once at the very beginning of
the simulation (or beforehand) and can be reused from then on. Other au-
thors combined diffusion and remeshing into a single kernel [85] to further
reduce the computational cost.
In all of these previous applications of DC PSE operators, however, little
attention has been paid to their numerical properties. Even though the
uncorrected (UC) PSE operators have been analyzed thoroughly by their
inventors, general analysis of DC PSE operators was missing in the lit-
erature. Also, it was unclear whether the additional computational cost
for discretization-correcting the operators is amortized by their gain in
accuracy.
In this chapter, we present a formal framework for DC PSE operators.
This enables us to derive expressions for their overall approximation er-
rors. We perform a full stability analysis based on the dispersive and
diffusive properties of the operators and show the convergence rates and
computational efficiencies of the operators on several test problems. Point-
ing out similarities and differences between DC and UC operators in all
cases shows that a separate analysis of the DC operators is valuable. Ac-
commodating Lagrangian particle methods with and without remeshing,
our analysis considers particles distributed both irregularly and on uniform
Cartesian grids. We also discuss boundary effects. Providing helpful infor-
mation for the potential user, the influences of the free operator parameters
(ratio c = h/ε, cutoff radius rc, and order of accuracy r) on the computa-
tional efficiency and the operators’ numerical properties are discussed in
all cases. We address the critical point of computational efficiency when
solving advection-diffusion problems of various Péclet numbers with La-
grangian schemes using DC PSE operators, Lagrangian schemes using UC
PSE operators, Lagrangian FD schemes, and Eulerian FD schemes. We
discuss the consistency of DC PSE operators in multiresolution methods
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and methods based on strong formulations. Finally, we highlight how the
discretization correction of a DC PSE operator can be reused for the ap-
proximation of other types of derivatives or functions. We show how to
modify these function approximation such that they are interpolating.

2.2 Discretization Correction

Using the PSE operator (1.10) to evaluate the derivative Dβf(x) involves
two approximations: the mollification error Qβf(x) − Dβf(x) and the
discretization error Qβ

hf(x)−Qβf(x). These two error terms are usually
treated separately. Here, we establish the idea of discretization correction
by directly considering the overall error ε(x) = Qβ

hf(x) − Dβf(x). An
expression for this error can be derived by expanding the field f in the
operator definition (1.10) into a Taylor series around x and subtracting
Dβf(x):

ε(x) =
(

(−1)|β|

β!
Zβ

h (x)− 1
)
Dβf(x)

+
∞∑

|α|=1
α 6=β

(−1)|α|

α!
ε|α|−|β|Zα

h (x)Dαf(x) + ε0 , (2.1)

with

ε0 =

{
2ε−|β|Z0

h(x)f(x) , |β| odd ,
0 , |β| even ,

(2.2)

and the discrete moments Zα
h defined as

Zα
h (x) =

1
εn

∑
p∈N (x)

vp

(
x− xp

ε

)α

ηβ

(
x− xp

ε

)
. (2.3)

Note that the definition of the discrete moments Zα
h corresponds to the

definition (1.5) of the continuous ones Zα; the term
∫

Rn dz is replaced by∑
p∈N (x)vp.

Directly considering the overall error enables deriving a consistent discretization-
correction framework in which the kernel function ηβ is designed such that
all error terms of order s < r vanish. This can be done by requiring the
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discrete moments Zβ
h to satisfy the conditions

Zα
h =

{
(−1)|β|β! , α = β ,

0 , α 6= β , αmin ≤ |α| ≤ |β|+ r − 1 ,
(2.4)

with αmin as defined in equation (1.9). These conditions for the discrete
moments are analogous to the conditions (1.8) for the continuous ones.
The requirement for the modified (r+ |β|)th moment to be finite is super-
fluous for the discrete moments as their support is finite and the kernel
function bounded by the other conditions. If the kernel function ηβ fulfills
the discrete conditions (2.4), we call it (and the corresponding operator)
discretization-corrected.
An UC kernel ηβ that satisfies the continuous moment conditions (1.8)
fulfills the discrete moment conditions only in the limit c → 0, where the
difference between the discrete moments and the continuous ones vanishes.
Depending on the desired accuracy, UC kernels may still be satisfactory
for small enough c. Error terms proportional to εs with s < r do, however,
exist and can become dominant for high resolutions when c = h/ε is kept
constant.
We restrict the number of possible DC PSE kernels by constructing them
according to the template

ηβ(z,x) =

 |β|+r−1∑
|γ|=αmin

aγ(x)zγ

 exp
(
−|z|2

)
= K(z,x) exp

(
−|z|2

)
(2.5)

with a polynomial correction function K(z,x), where x is the position
where the operator is evaluated and z is a location in a local coordinate
system with origin at x. We choose this template for its simplicity and
similarity to the kernel functions proposed for UC PSE operators [31].
Generally, kernels with a small number of sign changes have better accu-
racy and robustness [37, 59]. Moreover, the nonvanishing discrete moments
Zα

h , |α| = |β|+ r, should be as small as possible in order to minimize the
leading error term.
The unknown coefficients aγ(x) in the kernel (2.5) are determined by solv-
ing a linear system of equations. This is obtained by substituting the
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Chapter 2. Discretization Correction of PSE Operators

discrete moments of the kernel template (2.5) into the conditions (2.4):

|β|+r−1∑
|γ|=αmin

aγ(x)wα,γ(x)

=

{
(−1)|β|β!, α = β,

0, α 6= β,
∀α, αmin ≤ α ≤ |β|+ r − 1, (2.6)

with the weights

wα,γ(x) =
1

ε|α+γ|+n

∑
p∈N (x)

vp (x− xp)
α+γ exp

(
−|x− xp

ε
|2
)
. (2.7)

This linear system consists of m equations for m unknowns, where

m =
(
|β|+ r − 1 + n

n

)
− αmin. (2.8)

The multiindices α identify the equations (rows), and the multiindices γ
identify the unknown coefficients (columns). While the continuous moment
conditions are often redundant [31], this is not the case for the discrete ones
and the full set of m equations must be considered. The condition number
of this linear system is determined by the particle distribution and the
choice of the kernel function template [32].
For uniform particle distributions, the coefficients aγ are independent of
xp. The linear system (2.6) then needs to be solved only once, and the
same kernel can be used at all particle positions. Moreover, for symmetric
particle distributions all odd moments of even function terms and even
moments of odd function terms vanish. All coefficients aγ for which γ +β
contains odd elements can therefore be set to zero a priori. The system of
equations can then be reduced to size

msymm =
( |β|−nodd

2 + d r
2e − 1 + n

n

)
− δ0,nodd (2.9)

by removing all rows and columns where α + β or γ + β contain odd ele-
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2.2. Discretization Correction

ments.1 Here, nodd is the number of odd elements of β and δ is Kronecker’s
delta.
For nonuniform particle distributions, the weights (2.7) are functions of x.
In this case, a different linear system has to be solved at every particle po-
sition xp. The coefficients aγ(x) of DC PSE kernels may thus be different
on different particles and have to be recomputed whenever particles have
moved. For small m (low-order kernels for derivatives of small degree in
low-dimensional spaces), this can efficiently be done using a closed-form
expression for the coefficients aγ(x) as a function of the weights wγ,α(x).
In addition, the matrix of weights is symmetric if the moment conditions
are properly ordered, and it typically contains several identical entries since
wi,j(x) = wk,l(x)∀x if i + j = k + l.
Since DC PSE operators on nonuniformly distributed particles depend on
the particle position, particle-particle interactions are not necessarily sym-
metric any more. This increases the computational cost of a simulation
by up to a factor of two and impairs the exact conservativeness of the
UC full-space PSE operators [68]. For first-order accurate operators, this
can be remedied by using different correction functions for each pair of
particles [52–54]. These correction functions are averages of the kernel
correction functions at the two particle positions. Preserving symmetry
for higher-order DC PSE operators is, to our knowledge, an open problem.
A possible workaround is the use of a “midpoint derivative” for the quan-
tification of the strength exchange between two particles p and q: instead
of approximating the derivatives at both particle positions, xp and xq, we
approximate it at position xp,q = xq,p = (xp + xq)/2 and use this estima-
tion for the exchange between these two particles. Note that, since we do
not know the value of f(xp,q), we cannot approximate the derivative with
a PSE operator as defined in equation (1.10). Alternatively, we can use

1 Equation (2.9) is derived by first finding the number mi of weak n-combinations of
i ∈ N, i + |β| even, with nodd odd parts at the locations of the odd elements of β. The
number mi is equal to the number of (strong) n-combinations of j = 2n+ i−nodd with
only even parts. One can rewrite j as a sum of j/2 twos. Thus, mi can be regarded as
the number of permutations of a set consisting of (n − 1) commas and (j/2 − n) plus
signs to be placed between the j/2 twos:

mi =
“j/2− 1

n− 1

”
.

Summing mi over all even (odd) i, αmin ≤ i ≤ |β| + r − 1, for even (odd) |β| yields
msymm.
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Chapter 2. Discretization Correction of PSE Operators

the operator Qβ
h,midpoint defined by

Qβ
h,midpointf(x) =

1
ε|β|

∑
p∈N (x)

vpf(xp)ηβ
ε (x− xp),

and kernels ηβ satisfying conditions (2.4) with αmin = 0. The drawback
of this procedure is the requirement to solve kN/2 instead of N linear
systems of equations, where k is the average number of neighbors in N (x)
and N is the number of particles.

2.3 Theoretical Analysis

In this section, we study the properties of DC PSE operators in theory.
We focus on accuracy and convergence in §2.3.1, on numerical dispersion
and numerical diffusion in §2.3.2, and on stability of explicit time stepping
in §2.3.3.

2.3.1 Accuracy and Convergence

The error made when approximating the derivative Dβf(x) by Qβ
hf(x) is

given in equation (2.1). Using Taylor’s theorem, this error can be rewritten
with a remainder term instead of an infinite series. Additionally assuming
that the conditions (2.4) are perfectly satisfied, the overall error reduces
to

ε(x) = εr
∑

|α|=r+|β|

(−1)|α|

α!

∑
p∈N (x)

vp

(
x− xp

ε

)α

ηβ
ε (x− xp)Rα

f (x,xp),

where
Rα

f (x,xp) = (Dαf)(x + t(xp − x)), t ∈ [0, 1].

The error ε(x) can thus be bounded as

|ε(x)| ≤ εrC max
|α|=r+|β|
y∈Brc [x]

|Dαf(y)|,
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2.3. Theoretical Analysis

where

C =
∑

|α|=r+|β|

1
α!

∑
p∈N (x)

vp

∣∣∣∣(x− xp

ε

)α

ηβ
ε (x− xp)

∣∣∣∣ .
Convergence of order r is therefore guaranteed for any particle distribution
for which the moment conditions (2.4) can be met, that is, for which the
linear system of equations (2.6) does not become singular. Thus, there
have to be enough neighboring particles within the cutoff radius rc around
the position under consideration. There is, however, no condition on the
relationship between the kernel width ε and the particle spacing h.
The accuracy of the approximation depends on three things: the spatial
resolution given by the kernel width ε, the nature of the field f , and the
combination of particle distribution, cutoff radius, and kernel function η.

2.3.2 Wavenumber Modification

We quantify the wavenumber modifications introduced by the operators.
Wavenumber modifications manifest themselves as numerical dispersion
and numerical diffusion. We analyze the wavenumber modifications of
DC PSE operators in three one-dimensional test cases: the linear wave
equation, the convection equation, and the diffusion equation.

2.3.2.1 Linear Wave Equation and Convection Equation

We derive the wavenumber modification relations kmod(k) of DC PSE op-
erators for the one-dimensional linear wave equation

∂2f

∂t2
− u2 ∂

2f

∂x2
= 0 (2.10)

and the one-dimensional convection equation

∂f

∂t
+ u

∂f

∂x
= 0 (2.11)

for speeds u > 0.
In order to derive expressions for the wavenumber modification, we com-
pare the dispersion relation ω(k) of a traveling wave exp [̂ı(kx− ωt)] obey-
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Chapter 2. Discretization Correction of PSE Operators

ing the original equation (2.10) or (2.11), respectively, with the dispersion
relation obtained when the spatial derivatives are approximated by a PSE
operator (1.10). If the wave exp [̂ı(kx− ωt)] is a solution of the original
problem, then exp [̂ı(kmod(k)x− ωt)] solves the spatially discretized equa-
tion. For irregular particle distributions, the wavenumber modification
depends on the position x.
For the wave equation (2.10), we find the following relation between the
original wavenumbers and the modified ones:

kmod(k) =
1
ε

√
Z0

h(x)− η̂(2)
x (kε), (2.12)

where η̂β
x (kε) is defined as a nonuniform analog of the discrete Fourier

transform of the kernel ηβ centered at x, hence,

η̂β
x (kε) =

∑
p∈N (x)

vp exp [−ı̂k(x− xp)] ηβ
ε (x− xp, x).

Z0
h is the zeroth discrete moment of the kernel η(2) as defined in equa-

tion (2.3). Taylor-expanding η̂
(2)
x around kε = 0 and substituting into

equation (2.12) yields

kmod(k) = k

[ ∞∑
α=1

(−ı̂kε)α−2

α!
Zα

h (x)

]1/2

. (2.13)

For the one-dimensional convection equation (2.11), the modified wave-
number is

kmod(k) = − ı̂
ε

[
Z0

h(x) + η̂(1)
x (kε)

]
.

After Taylor-expanding around kε = 0, this becomes

kmod(k) = k

[
−

∞∑
α=0

(δα0 + 1)
(−ı̂kε)α−1

α!
Zα

h (x)

]
, (2.14)

where δij is the Kronecker delta, and the Zα
h are the αth discrete moments

of the kernel η(1).
For symmetric particle distributions with even kernel functions ηβ and
even β, or with odd kernel functions ηβ and odd β, the discrete moments
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Zα
h are zero for all odd α − β. The effect of the wavenumber modifica-

tion is thus purely dispersive in these cases. For nonsymmetric particle
distributions, there may be nonzero moments Zα

h for odd α− β, introduc-
ing diffusive terms. The modified wavenumbers then contain imaginary
parts that indicate position-dependent amplitude changes. This changes
the shape of the original wave, analogously to a diffusion process. For even
β, the diffusive terms are typically small compared to the dispersive terms.
This is because the first discrete moments Zα

h that are nonzero by design
are the moments Zβ

h and Zβ+r
h .

Uniform Cartesian Particle Distributions On Cartesian particle
distributions, the uniform interparticle spacing h limits the spectrum to
k ≤ π/h (Nyquist-Shannon sampling theorem). We therefore restrict our
analysis to the interval k ∈ [0, π/h].
Figure 2.2 shows the wavenumber modification for the wave equation (2.10)
and the convection equation (2.11), both for UC and DC PSE operators for
c = 0.5, c = 0.9, and r = 2, 4, 6, 8. For the DC PSE operators, the kernel
template (2.24) is used. For second-order operators (r = 2), the curves for
UC and DC operators are indistinguishable. For higher orders of accuracy,
the DC operators have smaller modifications of the wavenumbers than the
UC ones. DC operators thus have lower numerical dispersion than UC PSE
operators over the entire range of wavenumbers. Also, the wavenumber
modifications decrease with increasing order of accuracy and increasing c,
both for DC and UC operators.
The effect of numerical dispersion is illustrated for a two-dimensional ad-
vection problem in §2.4.2.1. As expected from the one-dimensional case
discussed above, both the order of accuracy r and the ratio c influence
the dispersive properties of the operators. Since dispersion decreases with
increasing c, DC operators can be made much less dispersive than UC
operators, as they allow larger values of c at full rate of convergence (see
§2.4.1.1).

Irregular Particle Distributions On asymmetric particle distri-
butions, the modified wavenumbers contain imaginary parts that lead to
numerical diffusion. Figures 2.3 and 2.4 show the real and imaginary parts
of the modified wavenumbers for the wave equation (2.10) and the con-
vection equation (2.11), respectively. We compare UC and DC (using
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Figure 2.2: Wavenumber modification on uniform Cartesian particle dis-
tributions. The modified wavenumbers kmod of the solutions of the one-
dimensional wave equation (top) and the one-dimensional convection equa-
tion (bottom) are shown for DC (solid lines) and UC (dotted lines) PSE
operators of orders r = 2, 4, 6, 8 with c = 0.5 (left) and c = 0.9 (right).
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Figure 2.3: Wavenumber modification for the wave equation on random
particle distributions. The real and imaginary parts of the modified wave-
numbers kmod are shown for DC and UC PSE operators of order r = 2 and
r = 4 for c = 0.5 (left) and c = 0.9 (right). Each experiment is repeated
for 10 000 random particle distributions. The lines report the median and
the shaded areas the central 68.2% of the resulting curves.
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Figure 2.4: Wavenumber modification for the convection equation on ran-
dom particle distributions. The real and imaginary parts of the modified
wavenumbers kmod are shown for DC and UC PSE operators of order
r = 2 and r = 4 for c = 0.5 (left) and c = 0.9 (right). Each experiment
is repeated for 10 000 random particle distributions. The lines report the
median and the shaded areas the central 68.2% of the resulting curves.
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the kernel template (2.5)) PSE operators evaluated on the center particle
of 10 000 random particle distributions for c = 0.5 and c = 0.9. We re-
port the medians (lines) and the areas covered by the central 68.2% of all
curves kmod(k) (shaded bands). The particle distributions are generated
as follows: We subdivide the operator support [−rc, rc] into equisized cells
of width h and place one particle per cell. The position of each particle
inside its cell is sampled from a uniform probability distribution. Parti-
cle distributions that lead to linear systems of equations with condition
numbers above a certain threshold are resampled. According to the gener-
alized sampling theorem for nonuniform sampling [61], we use the average
interparticle spacing as the characteristic h, again limiting the spectrum
of wavenumbers to k ≤ π/h.
As in the uniform case, the modification of the real part decreases with
increasing r and c. For the wave equation (figure 2.3), the UC operators
lead to smaller modifications in Re(k) than the DC operators. For the
convection equation (figure 2.4), however, DC operators show comparable
or lower numerical dispersion than UC ones. The imaginary parts (leading
to numerical diffusion) are always smaller for DC operators than for UC
ones for wavenumbers k . cπ/h.
For c = 0.5 and r = 2 for the wave equation (figure 2.3, left), Re(kmod(k))
of DC operators splits into two curves. The upper curve results from all
operators with strictly nonnegative kernel functions (83% of the random
distributions tested). In this case, the nonnegative kernels lead to reduced
numerical dispersion. The effect on numerical diffusion is, however, negli-
gible.

2.3.2.2 Diffusion Equation

For the one-dimensional diffusion equation

∂f

∂t
− ν ∂

2f

∂x2
= 0 , (2.15)

the dispersion relation is ω(k) = −ı̂νk2, where ν > 0 is the viscosity (or dif-
fusion constant). The modified dispersion relation ωmod(k) = −ı̂νkmod(k)2

leads to the same modified wavenumber (2.13) as for the wave equation.
Alternatively, the modification can also be absorbed into the viscosity as
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Figure 2.5: Viscosity modification for the diffusion equation on uniform
Cartesian particle distributions. The ratio of the modified viscosity to the
true viscosity νmod/ν is shown for DC and UC PSE operators of order
r = 2, 4, 6, 8 for c = 0.5 (left) and c = 0.9 (right).

ωmod(k) = −ı̂νmod(k)k2. This leads to the modified viscosity

νmod(k) =
ν

(kε)2
[
Z0

h(x)− η̂(2)
x (kε)

]
= ν

∞∑
α=1

(−ı̂kε)α−2

α!
Zα

h (x) .

The modified viscosity for nonuniform particle distributions depends on the
position x. Re(νmod)/ν > 1 results in overdiffusion and Re(νmod)/ν < 1 in
underdiffusion. The effect of the imaginary part of the modified viscosity
is both dispersive and diffusive.

Uniform Cartesian Particle Distributions Figure 2.5 shows
νmod/ν versus kh/π for operators with c = 0.5 and c = 0.9 on uniform
Cartesian particle distributions. All operators lead to increasing under-
diffusion for increasing wavenumbers. For DC operators (using the kernel
template (2.24)), however, the modified viscosity νmod is closer to the true
viscosity ν than for UC operators. Also, increasing r or c leads to less
underdiffusion for DC operators. For UC operators, high r and c lead to
underdiffusion even for kh→ 0 due to the constant discretization error.

Random Particle Distributions On nonuniform particle distribu-
tions, the modified viscosity is complex. Figure 2.6 shows its real and
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imaginary parts for DC (using the kernel template (2.5)) and UC opera-
tors. We show the medians and the areas covered by the central 68.2% of
all curves νmod(k)/ν for 10 000 random particle distributions as described
in §2.3.2.1.
While UC operators show less underdiffusion for larger wavenumbers, they
do not reproduce the correct viscosity in the limit kh→ 0; their imaginary
part approaches infinity and there is a bias in the real part. This in-
consistency results from the nonvanishing discretization error. The effect
becomes worse with increasing r and c.

2.3.3 Stability

Numerical stability requires that small perturbations, such as round-off
errors, decay over time. If the effect δf(t) of an error δf0 introduced at time
t0 can be bounded by |δf(t)| ≤ exp[λ(t− t0)]|δf0| with exponent λ < 0,
the system is called exponentially stable. Typically, the amplification of
each Fourier mode of δf0 can be bounded separately by a wavenumber-
dependent exponent λk. Stability is then determined by λ = maxk λk.
We consider the stability of numerical solutions of partial differential equa-
tions of order |β| in space and a in time,

∂af

∂ta
= bDβf , (2.16)

with periodic boundary conditions. We distinguish two cases:

(I) the continuous-time case where the spatial derivative Dβf is replaced
by the PSE approximation Qβ

hf , and

(II) the discrete-time case, where in addition the time derivative is ap-
proximated by finite differences.

For the continuous-time case we derive the exponents λk in terms of the
modified wavenumbers. For the discrete-time case we provide CFL condi-
tions for different time-stepping schemes.
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2.3.3.1 Continuous Time

The modified wave exp[̂ı(kmod · x− ωt)], satisfying equation (2.16) when
Dβf is replaced with Qβ

hf , can be rewritten as

exp [̂ı(kmod · x− ωt)] = exp
{

Re
[(
b(̂ıkmod)β

)1/a
]
t

}
× exp

{
ı̂
{

k · x− Im
[(
b(̂ıkmod)β

)1/a
]
t
}}

.

Thus, kmod is a function of k and the amplitude of the modified wave is
exp(λkt) with

λk = Re
{[
b(̂ıkmod(k))β

]1/a
}

=



Re


 b

ε|β|

∞∑
|α|=1

(−ı̂εk)α

α!
Zα

h (x)

1/a
 , |β| even,

Re


 b

ε|β|

∞∑
|α|=0

(1 + δ|α|0)
(−ı̂εk)α

α!
Zα

h (x)

1/a
 , |β| odd.

Of the a roots of the term (·)1/a, the one with maximum real part is chosen.
On a particle distribution of resolution h, the maximum exponent λ is the
maximum over all λk with |k|h ∈ ]0,

√
nπ]. For the one-dimensional wave

equation (2.10), convection equation (2.11), and diffusion equation (2.15),
the wavenumber-dependent exponents are

λwave
k = u|Im(kmod(k))|, (2.17)
λconv

k = uIm(kmod(k)), (2.18)

and λdiff
k = ν

[
Im(kmod(k))2 − Re(kmod(k))2

]
, (2.19)

respectively.
Using the expressions for the modified wavenumbers presented above, these
exponents imply that on uniform Cartesian particle distributions all opera-
tors are exponentially stable for the diffusion equation and neutrally stable
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(λk = 0, neither error amplification nor decay) for the wave equation and
the convection equation. Neutral stability is all that can be achieved us-
ing centered operators on the hyperbolic wave and convection equations.
Exponential stability on these equations would require upwind schemes.
On irregular particle distributions, all operators lead to instabilities for
the wave equation, due to the imaginary part of the modified wavenum-
ber. For the convection equation, most operators result in Im(kmod) > 0
for some kh ∈]0, π] and are thus unstable. For the diffusion equation,
UC operators are exponentially stable on all, and DC operators on 98%,
of the 10 000 randomly generated particle distributions. On 2% of the
particle distributions, DC operators led to instabilities. Our results, how-
ever, suggest that this is the case only for c > cmax, where the critical
value cmax depends on the degree of Lagrangian grid distortion. We test
this by considering particle distributions that are perturbations of uni-
form Cartesian distributions. Regularly placed particles with spacing h
are perturbed by adding uniform random numbers in [−ξ/2, ξ/2] to their
positions. This mimics Lagrangian grid distortion in simulations where the
particles are periodically remeshed. The parameter ξ quantifies the degree
of distortion. Table 2.1 lists the critical cmax for different ξ for kernels with
three different additional conditions on the zeroth-order moment. For each
ξ ∈ {0.1, 0.2, . . . , 1.5}, we report the maximum c for which no instabilities
occurred over 107 random particle distributions. The results reflect the
tradeoff between stability and numerical diffusion. Operators that intro-
duce more numerical diffusion (low c) are more robust against Lagrangian
grid distortion. We find cmax to be zero for all values of ξ tested if no con-
dition is imposed on the zeroth moment. Of all conditions on the zeroth
moment tested, the conditions Z0

h = {3, 4, 5} result in the largest values
for cmax.

2.3.3.2 Discrete Time

Discrete-time stability depends on the time-discretization scheme. The
maximum CFL numbers guaranteeing stable time integration depend on
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Chapter 2. Discretization Correction of PSE Operators

the largest wavenumber-dependent exponents

λ∗conv = 2max
k

λconv
k

uh|kmod|2
, λ∗diff = 2 max

k

λdiff
k

νh2|kmod|4
,

λ∗wave = 2max
k

λwave
k

uh|kmod|2
. (2.20)

Table 2.2 shows the resulting time-step limits for three time-stepping
schemes:

(i) first-order forward in time,

(ii) second-order centered in time, and

(iii) first-order backward in time.

In case (i) we approximate ∂f/∂t using first-order FT (forward in time)
finite differences (explicit Euler scheme)2. Von Neumann stability analysis
shows that this scheme with time step size ∆t is exponentially stable for
|1 + ∆tb(̂ıkmod)β | < 1, ∀ kh ∈ ]0, π]. For the convection equation on sym-
metric particle distributions, λconv

k = 0 (see §2.3.3.1). Any ∆t > 0 thus
leads to instabilities. This is because FTCS (forward in time, central in
space) schemes are unstable for hyperbolic partial differential equations.
On irregular particle distributions, however, a finite value for λ∗conv is ob-
tained. The more upwind particles are contained in the kernel support,
the more likely λ∗conv is negative, leading to exponentially stable explicit
Euler time stepping. For the diffusion equation, exponential stability is
guaranteed in all cases for ∆t < −λ∗diffh

2/ν. Figure 2.7 shows the depen-
dence of λ∗diff on the ratio c and the order of accuracy r for UC and DC
PSE operators. It can be seen that the underdiffusion introduced for low
c and r improves stability. For random particle distributions, a positive
upper bound for the time step, i.e. λ∗diff < 0, is found for all UC operators
and for DC operators with c < cmax (limited Lagrangian grid distortion)
and fixed zeroth-order moment (see §2.3.3.1).

2We do not consider first-order FT schemes for the wave equation since they would
involve two unknown values at future time points.
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2.3. Theoretical Analysis

Table 2.2: Wavenumber-based stability conditions for different time
discretization schemes and equations. We write mink /maxk for
mink∈]0,π/h] /maxk∈]0,π/h].

exponential stability with first-order FT time discretization
convection eq. ∆t < mink −2Im(kmod)/(u|kmod|2)

= −λ∗convh/u

diffusion eq. ∆t < mink 2[Re(kmod)2 − Im(kmod)2]/(ν|kmod|4)
= −λ∗diffh

2/ν

neutral stability with second-order CT time discretization
wave eq. Im(kmod) = 0 and ∆t ≤ mink 2/(u|kmod|)
convection eq. Im(kmod) = 0 and ∆t ≤ mink 1/(u|kmod|)
diffusion eq. |Re(kmod)| = |Im(kmod)| and ∆t ≤ mink 1/(ν|kmod|2)
exponential stability with first-order BT time discretization
wave eq. ∆t > maxk 2|Im(kmod)|/(u|kmod|2)

= λ∗waveh/u

convection eq. ∆t > maxk 2Im(kmod)/(u|kmod|2)
= λ∗convh/u

diffusion eq. ∆t > maxk 2[Im(kmod)2 − Re(kmod)2]/(ν|kmod|4)
= λ∗diffh

2/ν
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for uniform Cartesian particle distributions for UC and DC PSE operators.
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2.3. Theoretical Analysis

In case (ii) we consider the second-order CT (central in time) leapfrog
scheme (a = 1)

f(x, t+ ∆t) = f(x, t−∆t) + 2∆tQβ
hf(x, t) (2.21)

and the second-order CT scheme (a = 2)

f(x, t+ ∆t) = 2f(x, t)− f(x, t−∆t) + ∆t2Q2
hf(x, t) . (2.22)

The conditions guaranteeing neutral stability for the one-dimensional
wave, convection, and diffusion equations are listed in table 2.2. On uni-
form Cartesian particle distributions neutrally stable solutions of the wave
and convection equations can be obtained with all operators. Highly dis-
persive operators again lead to less restrictive conditions. On random
particle distributions, however, none of the tested operators yields stable
solutions. For the diffusion equation, none of the operators tested is stable,
neither on regular nor on random particle distributions. This is because
the first condition in table 2.2 is never satisfied for CT schemes.
In case (iii) we use first-order BT (backward in time) differences, lead-
ing to an implicit time integration scheme. Such schemes have a lower
bound for the time step required for exponential stability. This limits the
accuracy that can be achieved since the time step can not be lowered ar-
bitrarily in order to reduce the approximation error. This is because the
BT scheme introduces additional numerical diffusion or dispersion. The
neutral stability of the continuous-time case can thus be turned into ex-
ponential stability by taking large enough time steps. These lower bounds
are listed in table 2.2. As expected, they are complementary to the up-
per bounds of FT schemes: Instead of an upper bound ∆t < −λ∗h/u,
we now have a lower bound ∆t > λ∗h/u. On uniform Cartesian particle
distributions, λ∗wave is zero and exponential stability is guaranteed for all
positive time steps. On irregular particle distributions, λ∗wave is positive.
From equations (2.20), (2.17), and (2.13) we see that for operators with
nonzero Z1

h, λ∗wave grows as h−1/2 when h tends to zero. This implies that
the time step ∆t can not be decreased at the same rate as the interparticle
spacing h. In addition, λ∗wave grows with decreasing c for UC operators.
For the convection equation on irregular particle distributions, the lower
bound for the time step can be positive or negative, depending on the
sign of Z0

h. As Z0
h approaches zero, |λ∗conv| grows. Solving the diffusion
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Chapter 2. Discretization Correction of PSE Operators

equation with a BT scheme on uniform Cartesian particle distributions is
unconditionally stable (λ∗diff ≤ 0) for all operators. On irregular particle
distributions the same is the case for all UC operators and for all DC
operators with c < cmax (limited Lagrangian grid distortion) and fixed
zeroth-order moment (see §2.3.3.1).

2.4 Numerical Experiments

2.4.1 Fundamental Tests

We present numerical experiments that illustrate the rate of convergence,
overall error, and computational efficiency of DC PSE operators. We com-
pare DC PSE operators to UC PSE operators and to classical FD stencils.
This section comprises four parts: In §2.4.1.1, convergence and compu-
tational efficiency are tested on uniform Cartesian particle distributions.
The test problems are taken from Eldredge and coworkers [31] in order to
demonstrate the fundamental characteristics of the operators. In §2.4.1.2
convergence is tested on irregular particle distributions and in §2.4.1.3 we
assess boundary effects on finite-sized domains. §2.4.2.2 presents the oper-
ators’ efficiencies in practical applications by studying a two-dimensional
Lagrangian advection-diffusion benchmark.

2.4.1.1 Uniform Cartesian Particle Distributions

We present numerical experiments that demonstrate the rate of conver-
gence and computational efficiency of DC PSE operators on uniform Car-
tesian particle distributions, and we compare the DC PSE operators to
the corresponding limit FD stencils.

Rate of Convergence We consider the test case of evaluating the
second derivative of the one-dimensional function

f(x) =
1√
πσ2

exp
(
−x

2

σ2

)
, σ = 0.05, (2.23)

at the locations of all particles in the domain [−0.5, 0.5]. The particles are
arranged with equidistant spacing h and the ratio c = h/ε is kept constant
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2.4. Numerical Experiments

as the resolution is increased. We use the kernel function template

ηβ(z) = z(β mod 2)

(
msymm−1∑

γ=0

aγ |z|γ
)

exp
(
−|z|2

)
, (2.24)

which typically yields higher accuracy for one-dimensional operators on
symmetric particle distributions than the more general template (2.5).
Figure 2.8 shows the L2 norm of the relative3 error in the approxima-
tion (1.10) of the derivative for different c and orders r = 2 (top row) and
r = 4 (bottom row). The cutoff radii are rc = 3.5ε (r = 2) and rc = 5.5ε
(r = 4) for the UC operators, and rc = 2ε (r = 2) and rc = 3ε (r = 4)
for the DC operators. The error of order s = −2 for very high resolutions
is due to limited machine precision and numerical extinction. It is not a
feature of the operators.
The UC operators yield the desired rate of convergence over a wide range
of resolutions if the ratio c is small (e.g. c = 0.5, which is the ratio used by
Eldredge and coworkers). For larger values of c (curves for c = 0.9, c = 1.0,
and c = 1.4), the error reaches a constant plateau at lower resolutions.
This is due to the constant discretization error of the quadrature. For
small c, the density of quadrature points is higher and the discrete moment
conditions are hence closer to the continuous ones. The minimum error
level Emin for the UC operators is given by the error term (2.1) that
contains the discrete moment Z2

h. This moment increases with increasing
c, as shown in the right-most panels of figure 2.8. The minimum error
level decreases exponentially with c. This is due to the discretization
error decreasing exponentially for an integrand following the template (2.5)
or (2.24) [11]. The discontinuities in Emin for small c and r = 2 are a
result of the cutoff radius being fixed in terms of the kernel width ε: At
the discontinuities, the number of particles in the kernel support changes,
leading to a jump in Z2

h and, therefore, in Emin. This effect becomes
negligible for larger c and larger rc. We also observe that Emin of the UC
operators increases with increasing order r. This is confirmed by results for
order r = 6 (not shown). The DC operators theoretically yield the desired
rate of convergence for all orders and resolutions. The condition number

3 We normalize the error with the L∞ norm of the exact solution in the domain of
interest. We do not show the L∞ norm of the relative errors since it shows the same
behavior as the L2 norm.
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Figure 2.8: Convergence of the DC PSE operator approximating the sec-
ond derivative of equation (2.23) on uniform Cartesian particle distribu-
tions. We show the convergence of the relative error for DC (left) and UC
(center) PSE operators of orders r = 2 (top) and r = 4 (bottom). The
panels on the right show the dependence of the minimum error level Emin

of the UC operators on the ratio c = h/ε.
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2.4. Numerical Experiments

of the linear system of equations (2.6), however, increases with increasing
c and r. For r = 6 and c = 1.4, Gauss elimination with partial pivoting is
not sufficient any more and pre-conditioning might become necessary.
We also compare the DC PSE operators to the corresponding limiting FD
stencils (solid lines in figure 2.8). For r = 2, these are obtained for c→∞
(see chapter 3) and for r = 4 for rc = 2h and c = 1. The error of the FD
stencils mostly coincides with that of the DC PSE operators for c = 1.4,
where the DC PSE operators effectively have the same support as the FD
stencils.

Computational Efficiency We quantify the computational efficiency
of the operators through the computational cost needed to reach a cer-
tain error level. Table 2.3 reports the computational costs of the two-
dimensional advection case described in §2.4.2.1. We report the CPU time
required for a single evaluation of the operators on all particles (t1) and
the total time needed to reach an L2 error of < 1% of the initial pulse
height in the whole domain at final time T = 0.5 (tall). All timings were
done using MATLAB 7.6.0.324 (R2008a) on a 2 GHz Intel Core Duo pro-
cessor with 1 GB RAM. For all operators, we convolve the square matrix of
precomputed kernel weights with the square matrix of field values f at the
particle locations. As an implementation- and machine-independent mea-
sure, we also list the ratio N = k/h2, where k is the number of neighboring
particles (nonzero entries in the stencil). The time t1(N) is expected to
be in O(N).
For UC operators with c = 0.55, tall decreases considerably with increasing
order r, as already reported by Eldredge and coworkers [31]. This is true
despite the fact that the cutoff radius increases from rc = 3.5ε to 5.5ε
when going from r = 2 to r = 4. Increasing c to 0.9 for UC operators leads
to higher efficiency since the number of neighbors within the fixed cutoff
radius rc = 3.5ε decreases. As shown in figure 2.8, however, convergence
of such operators is impaired.
It can be seen from table 2.3 that the computational efficiency of DC
PSE operators is always higher than that of the corresponding UC opera-
tors. Furthermore, increasing c for DC operators improves their efficiency
(through reducing k) without hampering convergence. In the limit c→∞,
we recover the classical compact FD stencil as the most efficient operator.
Compact FD stencils involve the least number of neighbors k at full accu-
racy and rate of convergence. They do, however, also provide the lowest
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Chapter 2. Discretization Correction of PSE Operators

Table 2.3: CPU time needed for solving the two-dimensional test case
of §2.4.2.1 on uniform Cartesian particle distributions to an final error of
1%. The time t1 is required for a single evaluation of the operator on all
particles, whereas tall is the time needed to reach the target error level.
The computational cost is governed by the implementation-independent
ratio N = k/h2, where k is the number of particles within the kernel
support (nonzero entries in the stencil) and h the interparticle spacing.

kernel type c r rc N t1 in ms tall in s
UC operator 0.55 2 3.5ε 6 611 570 329. 82.5
UC operator 0.90 2 3.5ε 840 145 37.7 5.77
DC operator 0.55 2 2ε 1 974 145 86.2 20.2
DC operator 0.90 2 2ε 165 035 15.3 1.98
DC operator 1.40 2 2ε 68 787 4.32 0.445
FD stencil 2 29 210 3.79 0.360
UC operator 0.55 4 5.5ε 1 211 890 66.5 16.3
UC operator 0.90 4 5.5ε 219 074 12.9 1.50
DC operator 0.55 4 3ε 304 978 15.6 3.10
DC operator 0.90 4 3ε 50 013 3.61 0.321
DC operator 1.40 4 3ε 11 464 1.50 0.0932
FD stencil 4 7643 1.51 0.0937
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2.4. Numerical Experiments

amount of regularization on noisy or discontinuous fields.

2.4.1.2 Irregular Particle Distributions

We assess the rate of convergence and the computational efficiency of DC
PSE operators on irregular particle distributions. In order for the linear
system (2.6) to be fully determined, each particle must have at least kmin

neighbors, where kmin = m is the number of different multiindices α ∈ Nn

with |α| = αmin, . . . , |β| + r − 1. All results presented in this section are
obtained using the kernel function template (2.5).

Rate of Convergence We consider the convergence of the relative er-
ror when approximating the first derivative along x of the two-dimensional
Gaussian pulse

f(x, y) =
1
πσ2

exp
[
− (x− x0)2 + (y − y0)2

σ2

]
, σ = 0.1, (2.25)

at position x = (x0 + σ, y0) using DC PSE operators of orders r = 2, 4, 6
on four different irregular particle distributions. The ratio c = h/ε is
kept constant at c = {0.5, 0.9, 1.4}, while the particle arrangements are
scaled according to the desired resolution. All particle volumes are set to
the average volume h2. In real-world applications, where particle volumes
evolve according to the flow field, better estimates can be used.
The results are summarized in figure 2.9. It can be seen that the UC
operators diverge due to the discretization errors, whereas the DC PSE
operators yield the desired rate of convergence in all cases. For r = 6, the
error term of order s = −1 in equation (2.2) dominates at high resolutions,
due to numerical inaccuracies when computing the coefficients aγ(x). This
underlines the importance of satisfying the discrete moment conditions as
accurately as possible.

Computational Efficiency On irregular particle distributions, the
DC kernel function ηβ(z) becomes a field of kernel functions, ηβ(z,x),
thus requiring the solution of a different linear system of equations for each
position x where the operator is to be evaluated (see §2.2). Moreover,
the kernels have to be recomputed whenever the particles have moved.
The computational cost then becomes comparable to that of the vorticity
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Figure 2.9: Convergence of DC PSE operators (solid lines) and of UC PSE
operators (dashed lines) of order r = 2, 4, 6 (top to bottom) on random
particle distributions. The right panels show the maximum of the relative
error when approximating the first derivative of the Gaussian pulse (2.25)
at the center particles of four random particle distributions for c = 0.5
(©), c = 0.9 (♦), and c = 1.4 (�). The considered particle distributions,
with center particles at positions x = (x0 + σ, y0), are shown in the four
panels on the left. The circles show the supports of the operators for the
different values of c. The cutoff radii are rc = 3.5ε, 5.5ε, 7.5ε for r = 2, 4, 6,
respectively.
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redistribution method [80], see section 3.5, or the discrete PSE scheme
for the diffusion step in vortex methods proposed by Poncet [70]. For
a detailed discussion of the computational cost of DC PSE operators on
moving particles, we refer to §2.4.2.2.
If the particle distribution is not arbitrary, but the result of a known con-
vective velocity field, the kernels need not necessarily be recomputed at
every time step, but can be adapted based on the known velocity. Starting
from the initial particle distribution and the corresponding DC PSE oper-
ators, one can define a mapping from the old to the new particle positions.
The operators can then be adapted in analogy to the variable vortex blob
method [25, 44]. For nonlinear mappings, however, additional error terms
appear. For high orders of accuracy, we thus expect velocity-based oper-
ator adaptation to be computationally more expensive than reinitializing
the particles at every time step.

2.4.1.3 Boundary Effects

The accuracy of UC full-space PSE operators usually deteriorates near
boundaries of the computational domain. Eldredge and coworkers [31]
therefore derived one-sided integral operators with significantly improved
accuracy near boundaries. Such a special treatment is not necessary when
using DC PSE operators since they do not rely on regularity or symme-
try of the particle distribution. The skewed particle distributions near
boundaries are simply treated as irregular particle distributions, and the
corresponding DC PSE operators are constructed by solving the resulting
linear systems of equations.
We demonstrate that the presence of boundaries does not affect the order
of accuracy of DC PSE operators by considering a two-dimensional Gaus-
sian pulse (2.25) leaving the computational domain through an absorbing
boundary, see figure 2.10. Convergence of the resulting relative errors is
shown in figure 2.11 for UC full-space, UC one-sided, and DC PSE op-
erators approximating the directional derivative d · ∇f of the Gaussian
pulse centered at (x0, y0) = (0.35, 0.45) in a computational domain of size
[0, 0.5]2. For the one-sided UC operators we only consider particles in the
upwind direction of d. It can be seen from figure 2.11 that the UC full-
space operators diverge in all cases (dominating error of order s = −1)
and should not be used near boundaries. The UC one-sided operators
show constant L∞ errors (bottom row of panels) for orders r = 1 to r = 3
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Figure 2.11: Convergence of the UC full-space, UC one-sided, and DC PSE
operators approximating the directional derivative of the Gaussian pulse
shown in figure 2.10. We show convergence of both the L2 (top row of
panels) and L∞ norms of the relative errors for operators of design orders
r = 1, 2, 3, 4 (left to right) and different c. UC full-space operators are
shown for even orders r only.
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Figure 2.12: Visual comparison of the results obtained with UC one-sided
operators and DC PSE operators for the test case in figure 2.10. We
show contour lines of the numerically computed approximations of the
directional derivative of the Gaussian pulse for r = 1 (left) and r = 3
(right). Both cases use h = 0.01 and c is c = 0.55. The + marks the
center of the pulse.

and diverge for r = 4. The DC PSE operators yield the desired rates of
convergence in both the L2 (upper panels) and the L∞ norms until nu-
merical inaccuracies in the determination of the kernel coefficients start to
dominate the error (r = 4 with c = 1.4, solid line with square symbols).
Figure 2.12 visually compares the solutions obtained using UC one-sided
and DC PSE operators of orders r = 1 and r = 3. The example shown
is computed using h = 0.01 and c = 0.55. It can be seen that the UC
operators lead to distortions and kinks in the iso-lines near boundaries,
preventing convergence of the L∞ error.

2.4.2 The Operators in Simulations

2.4.2.1 On the Dispersive Wavenumber Modification: A
Two-Dimensional Advection Simulation with an

Eulerian Frame of Reference

As done by Eldredge and coworkers [31], we demonstrate the numerical
dispersion induced by the wavenumber modification of the operators by
simulating the advection of a two-dimensional Gaussian pulse (2.25) in
direction d = (0.588, 0.809) with unit speed, thus,

∂f

∂t
+ d · ∇f = 0 .
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We approximate d · ∇f using both UC and DC PSE operators, as well
as classical FD stencils. For the DC operators we use the kernel function
template (2.5).
Figures 2.13 and 2.14 show the simulation results for second order (r = 2)
and fourth-order (r = 4) operators, respectively, on uniform Cartesian
particle distributions (h = 0.02). The panels show the pulse at times t = 0
and t = 0.5 in the domain [−0.1, 1]2 with homogeneous Dirichlet boundary
conditions. Time integration is done using the leapfrog scheme (2.21) with
a time step of ∆t = 0.5h for the simulations of order r = 2, and ∆t = 20h2

for the simulations of order r = 4.
The results visually illustrate that the order of accuracy r and the ratio
c both influence the dispersive properties of the operators. Dispersion
decreases with increasing r and c. Since DC PSE operators allow larger
values of c at full rate of convergence, their numerical dispersion can be
reduced down to the level of the FD stencils. This is not possible for UC
operators, where the solution gradually deteriorates for increasing c. For
low c, PSE operators introduce distortion along direction d, whereas the
distortion introduced by FD is oriented along the coordinate axes. This is
particularly evident for r = 2.

2.4.2.2 On Computational Efficiency: A Lagrangian
Advection-Diffusion Test Case

We demonstrate the value of DC PSE operators in a more complex test case
with moving particles: a two-dimensional Lagrangian advection-diffusion
simulation. Again, we compare DC PSE operators to UC PSE opera-
tors and finite differences. Details of the test case and the numerical
schemes are described in appendix A.1. We assess the computational cost
of DC PSE operators by measuring the CPU times of simulations for the
Péclet numbers Pe = {1, 10, 100, 1000} to final relative errors of less than
{0.1%,0.05%,0.05%,0.1%}, respectively. These error levels are chosen such
that they can be reached also with UC operators (see §2.4.1.1). We only
test second-order accurate operators. The particles are either remeshed to
regular Cartesian positions at every time step, or they are never remeshed.
The latter is possible because the velocity field does not lead to holes in
the particle distribution. FD stencils are evaluated using the connectivity
information of the mesh, whereas the PSE simulations use neighbor lists
(we use Verlet lists [83]) even if remeshing is done at every time step. In

44



2.4. Numerical Experiments

FD stencilDC op. c=0.55 DC op. c=0.90

uncorr. op. c=0.90uncorr. op. c=0.55

DC op. c=1.4

uncorr. op. c=1.4

r = 2

x

y

 

 

00.20.40.60.8
0

0.2

0.4

0.6

0.8

x

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

!10

0

10

20

30

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0
0      0.2    0.4    0.6    0.8 0      0.2    0.4    0.6    0.8 0      0.2    0.4    0.6    0.8

0      0.2    0.4    0.6    0.8

xxx

x

y
y

Figure 2.13: Effect of numerical dispersion for second-order operators. The
contour lines of an advected Gaussian pulse (2.25) are shown at times t = 0
and t = 0.5. At t = 0, the pulse is centered at x = (0.15, 0.15). For t > 0,
it is propagated along the direction d = (0.588, 0.809) at unit speed. The
+ marks the center of the pulse in the exact solution at time t = 0.5.
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Figure 2.14: Effect of numerical dispersion for fourth-order operators. The
contour lines of an advected Gaussian pulse (2.25) are shown at times t = 0
and t = 0.5. At t = 0, the pulse is centered at x = (0.15, 0.15). For t > 0,
it is propagated along the direction d = (0.588, 0.809) at unit speed. The
+ marks the center of the pulse in the exact solution at time t = 0.5.
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remeshing, while filled markers denote simulations without remeshing. The
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all cases, the Verlet lists are recomputed at every time step.
We show the convergence plots for Péclet numbers 1 and 1000 in fig-
ure 2.15. All results are summarized in table 2.4. As expected, Eulerian
FD show the best computational efficiency for low Péclet numbers. For
high Péclet numbers (100 and 1000), Lagrangian methods are more effi-
cient. In all cases, DC PSE operators are more efficient than UC ones. DC
PSE operators can also outperform Lagrangian FD (see appendix A.1.3.3)
at high Péclet numbers (100 and 1000), since they do not require remesh-
ing. If remeshing is done at every time step, FD stencils are preferable.
The larger the Péclet number, however, the more the remeshing error dom-
inates over the error introduced by the diffusion operator. This can be seen
by comparing the resolution h that is required to reach the target error
level.
On irregular particle distributions (i.e., without remeshing), DC operators
require that the correction function is recomputed for each particle at every
time step. This additional computational cost accounts for 85 to 90% of
the total CPU time. It is, however, amortized by the gain in accuracy
of DC operators in all cases except Pe = 1: the target error level can
be reached with coarser resolution. This coarser resolution also allows
larger time steps. In cases where the advection error dominates, higher
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2.5. DC PSE Operators in Multiresolution Simulations

resolution might therefore again be required, making DC PSE operators
less efficient.

2.5 DC PSE Operators in Multiresolution
Simulations

DC PSE operators can straightforwardly be used in simulations with par-
ticles of different sizes. In this case, the operator as defined in equation
(1.10) has to be based on a position-dependent kernel width ε(x) instead
of a globally constant kernel width ε, hence,

Qβ
hf(x) =

1
ε(x)|β|

∑
p∈N (x)

vp (f(xp)± f(x)) ηβ
ε(x)(x− xp,x).

Taylor-expanding around x and subtracting the exact derivative Dβf(x)
yields the error

ε(x) = Qβ
hf(x)−Dβf(x)

≤ ε(x)r‖f‖r+|β|,∞,Brc(x)[x]

∑
|α|=r+|β|

1
α!

×
∑

p∈N (x)

vp

∣∣∣∣(x− xp

ε(x)

)α

ηβ
ε(x)(x− xp,x)

∣∣∣∣ ,
given that the discrete moments

Zα
h (x) =

1
ε(x)n

∑
p∈N (x)

vp

(
x− xp

ε(x)

)α

ηβ

(
x− xp

ε(x)
,x

)

fulfill the moment conditions (2.4). Thus, if the cutoff radius rc(x) grows
as ε(x), the approximation is consistent with an error of order O(ε(x)r).

2.6 DC PSE Operators in Strong Formulations

DC PSE operators can be constructed in a straightforward way for function
approximations in strong formulations, as in equation (4). The difference
between the particle-based approximations in weak and strong descriptions
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is the existence of a particle volume for the former case. Thus, in the latter
case, particles can also be seen as (moving) data points.
Strong descriptions are usually less robust towards discontinuities. For the
construction of a DC PSE operator, however, the absence of volumes is
inconsequential: omitting the volumes in definition (2.3) of the discrete
moments leads to DC PSE operators for strong formulations.

2.7 Versatility of DC PSE Operators

As discussed in §2.2 and §2.4.1, the use of DC operators on changing,
nonuniform particle distributions is costly due to the solution of the linear
system of equations (2.6) for each particle and each time step. If the
evaluation of several different differential operators is required, e.g. the
gradient and the Laplacian, the total cost can be significantly reduced by
reusing the solutions of the linear systems of equations. The possibility of
doing so becomes obvious by rewriting the kernel function template (2.5)
and the moment conditions (2.4). For simplicity, we omit the volumes
vp in the following. They are implicitly contained in the resulting kernel
function through the discretization correction. The DC PSE operator then
reads

Qβ
hf(x) =

1
ε(x)|β|

∑
p∈N (x)

(f(xp)± f(x)) ηβ
ε (x− xp,x).

With the kernel function template (2.5) expressed as

ηβ
ε (z,x) =

[
p

(
z

ε(x)

)
aT(x)

]
exp

(
− |z|

2

ε(x)2

)
, (2.26)

where the row vector p(z/ε) ∈ Rm contains the m monomials
{(z/ε)γ}αmin≤|γ|≤|β|+r−1 and aT(x) ∈ Rm is the column vector of un-
known coefficients, the discrete moment conditions (2.4) can be expressed
as

A(x)aT(x) = bT (2.27)
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with

A(x) = BT(x)B(x) ∈ Rm×m,

B(x) = E(x)V (x) ∈ Rk×m,

b = (−1)|β|Dβp(x)
∣∣
x=0
∈ Rm,

where V (x) is the Vandermonde matrix associated with the set of mono-
mials p((x − xp)/ε(x)) and the set of points {xp}p∈N (x), and E(x) is a
diagonal matrix determined by the kernel’s window function:

V (x) =


p1(z1/ε) p2(z1/ε) · · · pm(z1/ε)
p1(z2/ε) p2(z2/ε) · · · pm(z2/ε)

...
...

. . .
...

p1(zk/ε) p2(zk/ε) · · · pm(zk/ε)

 ∈ Rk×m, (2.28)

E(x) = diag
({

exp
(
−|zi|2/(2ε2)

)}k

i=1

)
∈ Rk×k,

where {zi}ki=1 = {x − xp}p∈N (x) is the set of vectors pointing from all
particles within the neighborhood of x to x.
The matrix A(x) contains information about the spatial distribution of
the particles {xp} around x, while the right-hand side b determines the
approximation properties of the kernels. Because the diagonal elements of
E(x) are strictly positive, the invertibility of A depends only on that of
the Vandermonde matrix V . If V is not invertible, the issue can usually
be solved by inserting or displacing some particles. If V is invertible, A
is symmetric and positive definite (as the product of a real matrix and
its transpose) and can efficiently be inverted using, for example, Cholesky
decomposition. Nevertheless, this operation represents most of the com-
putational cost of solving the linear system of equations (2.27) for the
unknown kernel coefficients a(x). Solving this system for multiple right-
hand sides b in order to compute derivatives of different orders, however,
comes at little additional cost.4

If both even and odd derivatives are to be computed, setting αmin to zero

4 Note that the order of accuracy r of the operators depends both on the number of
moment conditions m and on the order |β| of the derivative that is approximated. If
the moments up to order αmax satisfy the moment conditions, the order of accuracy of
an operator approximating a |β|th derivative is r|β| = αmax − |β|.
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for both cases is beneficial because then both systems (2.27) have the same
left-hand side. Setting αmin to zero is unnecessary for the even derivative
and, since there is one additional moment condition to be satisfied, the
minimum number of neighbors grows by one. The increase in computa-
tional cost due to the larger number of neighbors, however, is typically
small compared to the cost reduction of finding [A(x)]−1 once instead of
twice. The value of b0, the value imposed on the zeroth moment, can be
chosen freely for the approximation of the even derivative. It cancels out
because of the difference term in the definition of the operator. This extra
degree of freedom of DC PSE operators can be useful in practice as it en-
ables enlarging the stability region of the operator in diffusion problems,
see §2.3.3.
Setting b0 to zero has the advantage that the operator can also be evaluated
at off-particle locations. The operator then becomes equivalent to

Qβ
hf(x) =

1
ε(x)|β|

∑
p∈N (x)

f(xp)ηβ
ε (x− xp,x). (2.29)

In fact, setting the zeroth-order moment to zero and evaluating the opera-
tors at off-particle locations makes DC PSE a particle-analog of derivative-
reproducing kernel (DRK) Galerkin collocation methods [14, 84, 88], which
are conceptually related to Moving Least-Squares (MLS) schemes [7, 51].

2.8 A DC Operator for Interpolation between
Two Scattered Sets of Particles

Using above operators (2.29) that can be evaluated at off-particle locations,
it is also possible to approximate the function f itself at arbitrary locations
between particles. We can thus construct particle-particle interpolation
schemes where the linear system of equations that has the same left-hand
side as the one for the derivative approximations, see §2.7 for details.
Interpolating fp from one set of irregularly distributed particles to another,
however, in addition requires the kernel to satisfy the Kronecker delta
property at the particle locations. Otherwise, the interpolated field f is a
smoothed version of the original one.
For a noninterpolating approximation of f at any collocation point x,
one can use the kernel function η0ε as in equation (2.26) whose unknown
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coefficients a(x) are to be determined by solving the linear system of
equations (2.27) with b = p(0), αmin = 0. Interpolating kernel functions
that fulfill the Kronecker delta property, that is, kernel functions ζ for
which

fh(xp) =
∑

q

fqζε(xp − xq,xp) = fp for all p,

can also be constructed by reusing the same matrix A and its Cholesky
decomposition (or inverse). Following the idea introduced by Chen and
coworkers [14], we obtain interpolating kernels by expressing ζ as the sum
of the noninterpolating kernel ζ̄ and a correction function ζ̂, thus:

ζε(z,x) = ζ̄ε(z,x) + ζ̂a(z,x).

The noninterpolating kernels ζ̄ε(z,x), based on a template as in equation
(2.26), are obtained by solving the system (2.27) with the right-hand side

b̄T (x) = p(0)−
∑

p

p

(
x− xp

ε (x)

)
ζ̂a(x− xp,x)

with smooth correction functions

ζ̂a(z,x) = ζ̂

(
z

a(x)
,x

)
satisfying ζ̂a (xp − xq,xp) = δpq, where δpq is the Kronecker delta. The
resulting kernels ζε satisfy the moment conditions for bT = p(0), which
ensures that the approximation is consistent, as well as the Kronecker delta
property ζε(xp − xq,xp) = δpq, which ensures that the approximation is
interpolating. This can be seen by expressing ζε as

ζε(z,x) = p

(
z

ε(x)

)
aT(x) exp

(
− |z|

2

ε(x)2

)
+ ζ̂a(z,x)

= p

(
z

ε(x)

)
[A(x)]−1b̄T (x) exp

(
− |z|

2

ε(x)2

)
+ ζ̂a(z,x)
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= p

(
z

ε(x)

)
[A(x)]−1

(
p(0)−

∑
r

p

(
x− xr

ε (x)

)
ζ̂a(x− xr,x)

)

× exp
(
− |z|

2

ε(x)2

)
+ ζ̂a(z,x).

For z = xp − xq and x = xp, ζε(z,x) becomes

ζε(xp − xq,xp) = p

(
xp − xq

ε(xp)

)
[A(xp)]−1

(
p(0)−

∑
r

p

(
xp − xr

ε (xp)

)
δpr

)

× exp
(
−|xp − xq|2

ε(xp)2

)
+ δpq

= δpq.

A simple choice for the correction functions ζ̂ is a smooth function of
finite support in the unit ball. Setting a(x) to a value smaller than the
distance to the nearest neighbor of x yields ζ̂a(x − xp,x) = 0, x 6= xp.
Normalization assures that ζ̂a(0,x) = 1.5 With some assumptions about
the smoothness of f and the regularity of the particle distribution, bounds
for the local approximation errors can be expressed in terms of the local
interparticle spacing hp, and the magnitude of the derivatives of f . Chen
and coworkers [14] report the following error estimate for the interpolant
fh(x) =

∑
p f(xp)ζε(x− xp,x):∣∣f − fh

∣∣
x=xp

≤ Chr
p |f |r,∞,Brc(xp)

(2.30)

with the semi-norm |f |r,∞,Ω = max|α|=r ‖Dαf‖L∞(Ω).

2.9 Conclusions

We have presented and analyzed a systematic framework for discretiza-
tion correction of general integral PSE operators [31] for approximating
n-dimensional spatial derivatives of any degree. This was made possible
by considering the total approximation error, thus combining the mollifica-

5 As Wang and coworkers [84], we take ζ̂ to be the quartic spline with cutoff radius
1 for the simulations presented in §5.3. We choose a(x) = 0.9minp |x− xp|, x 6= xp.
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tion and discretization errors. The discrete moments of the kernel function
then naturally appeared in the error expansion, and DC operators could
be constructed based on the corresponding discrete moment conditions.
We have analyzed DC PSE operators with respect to their accuracy, com-
putational efficiency, rate of convergence, and stability on regular and ir-
regular particle distributions as well as near boundaries. We have demon-
strated that DC PSE operators achieve the desired rate of convergence in
all cases, whereas the convergence of UC operators is hampered by the
constant discretization error. The computational efficiency is mainly de-
termined by the cutoff radius of the operators and the ratio c. DC PSE
operators are more efficient than UC ones since they reach the same level
of accuracy with smaller cutoff radii. Moreover, the relaxed overlap condi-
tion of DC PSE operators allows higher values of c, reducing the number
of particles within the operator support. For advection-dominated prob-
lems, the efficiency of DC PSE operators can exceed that of Lagrangian
FD schemes because they require less frequent remeshing and hence are
more accurate (less remeshing error). In these cases, the computational
cost of determining the position-dependent correction functions is amor-
tized by this gain in accuracy. If remeshing is done at every time step,
the remeshing error dominates the error of the diffusion operator and FD
schemes are more efficient.
DC operators introduce less numerical diffusion and dispersion into the so-
lution than UC ones. In addition, the numerical diffusion and dispersion
of DC PSE operators can be further reduced by increasing c, without af-
fecting the rate of convergence. We have derived analytical expressions for
the modified wavenumbers of the one-dimensional wave, convection, and
diffusion equations both for uniform Cartesian and random particle dis-
tributions. Based on these wavenumbers, we presented CFL-like stability
conditions for different time stepping schemes.
The main practical limitation of the presented DC PSE operators lies in
determining the DC kernel. The coefficients of the DC kernel have to be
determined by solving a linear system of equations. We found the approxi-
mation error to be sensitive to numerical inaccuracies in the coefficients of
the DC kernel. These numerical inaccuracies typically grow with increas-
ing order of convergence, limiting the practical use of high-order operators.
Also, the exact conservativeness of UC full-space PSE operators is lost for
DC PSE operators on nonuniform particle distributions and near bound-
aries for r > 1. Finally, the computational cost of computing the DC
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kernel functions on irregular particle distributions is significant, since the
correction function has to be determined for each particle individually.
The possibility of reusing the solution of the linear system of equations to
construct DC kernels that approximate also other derivatives or interpo-
late between sets of scattered particles, though, may lessen the significance
of this additional cost on more complex problems.
Taken together, our results provide a framework for discretization cor-
rection of PSE-type operators. As opposed to UC PSE operators, DC
operators yield the design rate of convergence over the entire range of res-
olutions as well as on irregular particle distributions and near boundaries.
Moreover, they offer more freedom in choosing optimal kernel parame-
ters due to the relaxed overlap condition. This can lead to accuracy and
efficiency exceeding those of Lagrangian FD schemes.
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CHAPTER

THREE

Relatives of DC PSE Operators

The discretization correction framework introduced in the previous chap-
ter enables us to show the relationships between DC PSE operators and
other operators used to approximate derivatives. We particularly high-
light the connections to FD stencils, corrected SPH [10, 46, 52–54, 68, 71],
operators used in reproducing kernel particle methods (RKPM) [56, 57],
differential reproducing kernel (DRK) [84, 88] and moving least squares
(MLS)[6, 51, 67] approximations, and operators used in vorticity redistri-
bution methods [38, 80].
For certain parameter choices, DC PSE operators become equivalent or
similar to operators used in other numerical methods. We prove that
certain classical FD stencils are limit cases of DC PSE operators for c→∞.

3.1 Finite Differences

For uniform Cartesian particle distributions with spacing h and a finite
operator support of radius rc, the discrete integral operator (1.10) can be
written as

Qβ
hf(x) =

cn

ε|β|

br2
c/h2c∑

|k|2=0

(f(x + kh)± f(x)) ηβ(−ck), k ∈ Zn . (3.1)
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Using the kernel template (2.5), the value of the DC kernel function at
−ck is

ηβ(−ck) =

 |β|+r−1∑
|γ|=αmin
β+γ even

aγ(−ck)γ

 exp
(
−c2|k|2

)
(3.2)

and the discrete moments become

Zα
h = cn

br2
c/h2c∑

|k|2=0

|β|+r−1∑
|γ|=αmin
β+γ even

aγ(ck)α+γ exp
(
−c2|k|2

)
. (3.3)

Here, “β + γ even” stands for all multiindices γ for which β + γ con-
tains only even elements. All other γ need not be considered since the
corresponding coefficients aγ can priorly be set to zero (see §2.2).
The DC PSE operators for c → ∞ can be derived from equations (3.1)
to (3.3) and the moment conditions (2.4): the unknown coefficients aγ of
the kernel function (3.2) are determined by inserting the discrete moments
(3.3) into the conditions (2.4) and solving the resulting linear system of
equations. The resulting kernel function is then used in definition (3.1)
and the limit c→∞ is taken.
For the second-order accurate DC PSE operator approximating the first
derivative along dimension i (r = 2, β = ei), for example, the only un-
known coefficient aei

is determined by the equation

cn
br2

c/h2c∑
|k|2=0

aei
c2k2

i exp
(
−c2|k|2

)
= −1 (α = β = ei).

The equations for α = 0, α = ej , j 6= i, and |α| = 2 vanish since they are
automatically satisfied by the symmetry of the particle distribution. The
DC kernel function can thus be written as

ηei(−ck) =
ki exp

(
−c2|k|2

)
cn+1

∑br2
c/h2c

|l|2=0 l2i exp (−c2|l|2)
. (3.4)
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Using this kernel, the operator (3.1) becomes

Qei

h f(x) =

∑br2
c/h2c

|k|2=0 (f(x + kh) + f(x)) ki exp
(
−c2|k|2

)
h
∑br2

c/h2c
|k|2=0 k2

i exp (−c2|k|2)
. (3.5)

This is a FD stencil with extent and weights that can be adjusted by the
choice of the cutoff radius rc and the ratio c. Letting c→∞ yields

lim
c→∞

Qei

h f(x) =
f(x + hi)− f(x− hi)

2h
, hi = hei , (3.6)

for any value of rc ≥ h. This is the classical centered difference stencil for
the first derivative of f .
Following the same procedure, the second-order DC PSE operator approx-
imating the Laplacian ∇2f(x) becomes

lim
c→∞

QLap
h f(x) = lim

c→∞

n∑
i=1

Q2ei

h f(x)

=
∑n

i=1 [f(x + hi)− 2f(x) + f(x− hi)]
h2

(3.7)

and the fourth-order DC PSE approximation of the first derivative along
ei yields

lim
c→∞

Qei

h f(x) =
−f(x + 2hi) + 8f(x + hi)− 8f(x− hi) + f(x− 2hi)

12h
.

(3.8)
The limit FD stencil of the n-dimensional anisotropic diffusion operator
of order r = 2, introduced by Degond and Mas-Gallic [27] to approxi-
mate ∇ · (L(x)∇f(x)), can be found in appendix B. All these classical
compact FD stencils can hence be interpreted as DC PSE operators on
uniform Cartesian particle distributions with a kernel width ε tending to
zero (particles become grid points).
For irregular particle distributions, the DC PSE operators can be made
equivalent to FD stencils for irregular meshes. Demkowicz and cowork-
ers [29] proposed simple FD stencils approximating the two-dimensional
Laplacian on irregular meshes by solving a linear system of equations con-
sisting of moment conditions analogous to the ones used here for DC PSE
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operators. The value ηβ(x− xp,x) of the DC PSE kernel is equivalent to
the FD stencil weight αp for particle (mesh node) p.
Wright and Fornberg [87] used radial basis functions to generate compact
FD stencils on irregularly distributed nodes. For Cartesian node distri-
butions, they recover the classical one- and two-dimensional FD stencils
for first and second derivatives. These stencils were obtained in the limit
of the radial basis function becoming flat, thus c → 0. This was possible
because the support of the stencils was chosen and fixed beforehand. The
DC PSE operator (3.1) becomes equal to the respective FD stencil, equa-
tions (3.6) to (3.8), if one fixes rc to the radius of the stencil. The limit
c → ∞ in our case, however, makes it unnecessary to fix rc beforehand.
Instead, compact FD stencils naturally emerge.

3.2 (Corrected) Smoothed Particle
Hydrodynamics

In PSE operators, the kernel is weighted by a sum or difference of field
values, which guarantees conservativeness of DC PSE operators on uniform
symmetric particle distributions. The operators used in SPH lack this
symmetry. Rather, the kernel is weighted only by the field values evaluated
at the particle locations:

Qβ
h,SPHf(x) =

1
ε|β|

∑
p∈N (x)

vpf(xp)η
β
ε,SPH(x− xp) . (3.9)

Thus, the operator is equivalent to a PSE operator with a kernel func-
tion that has a zeroth moment of zero. This operator achieves rth-order
convergence for all kernels ηβ

ε,SPH that satisfy the discrete moment condi-
tions (2.4) for αmin = 0. In classical SPH, however, like for the UC PSE
operators, the kernel is designed to satisfy continuous moment conditions,
and the above ones are not automatically fulfilled.
Johnson and Beissel [46] therefore introduced normalized smoothing func-
tions for SPH. There, ηβ

ε,SPH is normalized with a scalar factor that depends
on x such that the first of the conditions (2.4) is met. This is reminiscent
of the corrected kernel function (3.4), in which the normalization factor is
equal to the discrete moment Zei

h . Normalized SPH kernels were shown
to lead to more accurate derivative estimations than unnormalized ones,
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Squares Approximations

especially near boundaries and on nonuniformly distributed particles [46].
Randles and Libersky [71] have extended the normalization idea to the
estimation of the divergence of general tensor fields.
Bonet and Kulasegaram [10] derived second-order accurate SPH kernels for
approximating a field, and first-order accurate kernels for approximating
its Laplacian. These operators involve a linear correction function for
the kernel, similar to the polynomial correction function proposed in §2.2.
The coefficients of the correction function are chosen such as to satisfy the
conditions (2.4) for |α| ≤ |β|, hence r = 1 [10].
Lanson and Vila [52–54] proposed an altered normalization that leads to
a conservative scheme for approximating first derivatives. This correction
involves the PSE-like idea of replacing f(xp) in equation (3.9) by the
difference f(xp) − f(x), such that the condition for Z0

h vanishes. The
average of the renormalization matrices at x and xp is used as an additional
weight. The resulting operators are first-order accurate and resemble DC
PSE operators for even |β|. There is, however, no trivial conservative
generalization of these operators to higher derivatives or higher orders of
accuracy.

3.3 Reproducing Kernel Particle Methods &
Moving Least Squares Approximations

In RKPM [56, 57], a field f(x) is represented using the particle function
approximation

Q0
h,RKPMf(x) =

∑
p∈N (x)

vpf(xp)ηε,RKPM(x− xp,x) .

The order of accuracy is given by the largest integer r for which the inter-
polation kernel ηε,RKPM fulfills the moment conditions (2.4) with β = 0.
This is achieved by multiplying a window function by a polynomial correc-
tion function, thus forming the kernel ηRKPM similarly to the kernel (2.5).
Just as corrected SPH operators, RKPM operators are not symmetric, ren-
dering them generally nonconservative. The βth derivative of the field is
evaluated with an order of accuracy of r−|β| by taking the βth derivative
of the continuously differentiable kernel function ηε,RKPM.
When setting all particle volumes to vp ≡ 1 (that is, volumes are dis-
regarded), RKPM become equivalent to moving least squares (MLS) ap-
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proximations [6, 7, 35, 51, 67]. In MLS, nonuniform particle distributions
(holes and clusters) are thus implicitly accounted for in the kernel function
(shape function), in the same manner as they are accounted for by the DC
PSE kernel when applied in the strong formulation.

3.4 Differential Reproducing Kernels

DRK [84, 88], designed for problems in computational mechanics, are used
to approximate a derivative of a field f(x) by

Qβ
h,DRKf(x) =

∑
p∈N (x)

f(xp)ηε,DRK(x− xp,x),

where the kernel fulfills the discrete moment conditions (2.4) of the DC
PSE kernels with αmin = 0 and vp ≡ 1. They are thus equivalent to DC
PSE operators in the strong formulation and a zeroth moment fixed to
zero.
Opposed to differentiation in MLS methods or RKPM, the DRK are not
built by differentiating the kernels used for the function approximation,
but are derived independently via the reproducing conditions.

3.5 Vorticity Redistribution Schemes

Shankar and van Dommelen [80] introduced a DC vorticity redistribution
method to approximate the diffusion term in vortex methods for two-
dimensional incompressible flows. The diffusion of the vorticity field f ,
Df/Dt = ν∇2f , is approximated by changing the field values

fn(x) =
∑

p

Fn
p φε(x− xp) (3.10)

at time step n to

fn+1(x) =
∑
p,q

wn
pqF

n
p φε(x− xq) (3.11)
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at time step n+ 1. The weights wn
pq are chosen such that

∑
q

(
xq − xp

hν

)α

wn
pq =


1, α = 0,
2, α = 2ei,

0, |α| ≤ r + 2 (except cases above)
(3.12)

is true at each particle p. Here, hν =
√
ν∆t is half the characteristic

diffusion length. This is equivalent to the diffusion operator Qh(·) defined
by

Qhf(x) =
(
fn+1(x)− fn(x)

)
/∆t

when assuming explicit Euler time stepping. Substituting equations (3.10)
and (3.11), expanding φ(x− xq) around x− xp, and taking into account
conditions (3.12), one can rewrite the definition of the operator as

Qhf(x) =
∑
p,q

wn
pqF

n
p

r+1∑
|α|=0

Dαφε(x− xp)(xp − xq)α

α!∆t

+
∑
p,q

wn
pqF

n
p

∑
|α|=r+2

Rφε
α (xp)(xp − xq)α

α!∆t
−
∑

p

Fn
p

φε(x− xp)
∆t

= ν
∑

p

Fn
p ∇2φε(x− xp) +

∑
|α|=r+2

∑
p,q

wn
pq(xp − xq)αFn

p

Rφ
α(xp)
α!∆t

= ν∇2f(x) + νhr
ν

∑
|α|=r+2

∑
p

Fn
p R

φε
α (xp)
α!

∑
q

wn
pq

(
xp − xq

hν

)α

,

where Rφε
α (xp) = Dαφε(ζ), ζ ∈ [0, |x − xp|], for radially symmetric blob

shapes φε. Thus, choosing h proportional to hν , the operator Qh(·) con-
verges to L(·) as h tends to zero, meaning that the operator is DC. It is
interesting to note that the conditions (3.12) were originally derived by re-
quiring all finite wavenumbers of the Fourier transform of f to be correctly
damped. Shankar and van Dommelen remark that these conditions “are
similar to the equations obtained when a Taylor series expansion of the ex-
act solution is substituted into a finite difference formula, or to the moment
conditions in the particle methods. In fact, consistency of a finite differ-
ence scheme requires the same agreement for finite wavenumbers (e.g., [82],
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(10.1.3)). For uniform point spacing and [weights wn
pq], the redistribution

method is equivalent to an explicit finite difference scheme” [80].
An important difference to the DC PSE operators is that in the vortic-
ity redistribution scheme the linear system of equations for the unknown
weights wn

pq is generally not square: the number of unknowns is the num-
ber of neighbors of the particle under consideration and the number of
equations in (3.12) is determined by the order of accuracy r. Therefore,
the system is typically underdetermined. For stability of the redistribution
method it is desirable that wn

pq ≥ 0. In order to find a nonnegative solution
to the underdetermined system, Shankar and van Dommelen apply a least
maximum solution procedure, and in cases where no acceptable solution
exists they insert additional particles until a solution exists. While their
method leads to a strictly positive solution, solving the problem using a
linear programming approach leads to redistribution only among the min-
imum number of particles (some weights wn

pq are set to zero). Shankar and
van Dommelen argue that “the least maximum procedure tends to spread
out the vorticity somewhat better.”
While Shankar and van Dommelen formulated the redistribution scheme
for arbitrarily high-order accuracy, they tested only the first-order accurate
version. Gharakhani [38] introduced and tested a vorticity redistribution
scheme of third order. The scheme designed and tested by Gharakhani
corresponds to a fourth-order centered finite-difference approximation of
the Laplacian and a second-order Runge-Kutta (modified Euler) time in-
tegration if applied on a uniform Cartesian particle distribution.

64



CHAPTER

FOUR

Objective Rating of Operator Properties

4.1 Introduction

Frequently, many different numerical methods exist for the solution of a
given computational problem. Their design mostly aims at objectives like
ease of implementation, high accuracy, robustness, or low computational
cost. Typically, a compromise between different desirable method prop-
erties must be found. This results in a pool of methods designed to do
essentially the same, but with different strengths and weaknesses. Usually,
the goal is to select – potentially under certain constraints – the computa-
tionally most efficient method for the task at hand. In order to compare
the methods, their performance needs to be quantified. The quantifica-
tion is usually based on specific test cases. This renders the quantification
problem-dependent. In this chapter, we explore the properties of diffusion
operators used in particle methods and demonstrate a way to model their
performance in a problem-independent way.
The (approximate) evaluation of the diffusion operator L(·) = ∇ · (ν∇(·))
is commonly required in particle methods. In viscous vortex methods,
for example, the method of random walks [17] or of deterministic dis-
placements [28] for representing the diffusion of vorticity is now mostly
superseded by more accurate methods where vorticity is exchanged or re-
distributed among particles. These methods, such as resampling methods
[23, 72], redistribution methods [1, 38, 75, 80], or methods of particle
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strength exchange (PSE) [26, 27, 33, 62], estimate the diffusion operator
deterministically based on the field derivatives. Also in smoothed particle
hydrodynamics, deterministic diffusion operators predominate [65]. Due
to differing design criteria of the aforementioned methods, many differ-
ent diffusion operators exist. Some operators have free parameters which
have been shown to have a big influence on their properties, see §2.3, §2.4
and [16, 31, 69].
We introduce three problem-independent measures to quantify an opera-
tor’s accuracy, computational cost, and stability in explicit time stepping.
These measures enable comparing different operators and ranking their
properties. They also allow for parameter studies to assess the influence
of tunable operator parameters on the operator performance. We show
examples of how these quality measures can be used to predict the com-
putational efficiency of an operator in a simulation. The quality measures
are applicable to different types of diffusion operators, as we demonstrate
for the examples of PSE and Fishelov diffusion operators, and diffusion
operators used in a resampling method and in smoothed particle hydrody-
namics. This renders different types of diffusion operators comparable in
an objective way without relying on empirical comparisons and provides a
tool for both operator choice and operator design.

4.2 The Quality Measures

We introduce problem-independent quality measures such that different
operator types or operators with different parameter settings can be ob-
jectively compared and the operator performance in specific test cases
predicted. We define the important qualities of a diffusion operator as

(i) its accuracy,

(ii) its stability in explicit time-stepping, and

(iii) its computational cost.

In the following, we define three measures reflecting these qualities.
We call the measures introduced here problem-independent because they
do not depend on test-case-specific parameters such as the viscosity field
ν or the field f the operator is applied to. Also, they do not depend on
numerical parameters including spatial and temporal resolution.

66



4.2. The Quality Measures

4.2.1 Quantifying Accuracy

We define the problem-independent accuracy measures As, s ≤ r, such
that the overall error

ε(x) = Qhf(x)− Lf(x) (4.1)

is bounded by

|ε(x)| ≤
r∑

s=−2

hs

As(x)
‖f‖s+2,∞,Brc [x]‖ν‖s+1,∞,Brc [x]. (4.2)

The Sobolev norms ‖·‖m,∞,Ω are defined as

‖·‖m,∞,Ω = max
0≤|α|≤m

y∈Ω

|Dα(·(y))|.

For the anisotropic case, we substitute the norm ‖ν‖m,∞,Ω in error bound
(4.2) by

max
0≤|α|≤m

y∈Ω

‖Dαν(y)‖F,

where ‖·‖F denotes the Frobenius norm.
The accuracies As(x), s < r, should be large compared to Ar, such that
the error terms of order O(hs) are negligible even for small h. Typically,
a larger Ar(x) implies a smaller error at position x.
Closed-form expressions for the measures As are given in appendix C.

4.2.2 Quantifying Stability

In order to quantify the stability of a diffusion operator, we define a
problem-independent stability measure S such that the time-step limit
in explicit Euler time stepping for solving

∂f(x, t)
∂t

= Qhf(x, t) (4.3)
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is given by

∆t < S
h2

ν
. (4.4)

That is, the CFL number αCFL = ∆tν/h2 must be smaller than S if
the corresponding operator is used in explicit Euler time stepping. The
stability S also indicates trends of the time-step limit when using other
explicit methods for time integration. When using Heun’s method, for
example, the time-step limit is increasing with increasing S (for S > 0),
but the relationship is not linear and depends on additional characteristics
of the operator.
Closed-form expressions for the stability measure S for different diffusion
operators are given in appendix C. They are derived assuming constant
viscosity.

4.2.3 Quantifying Computational Cost

We define

C = Vn

(rc
h

)n

as a problem-independent measure of the computational cost of the oper-
ator. Here, Vn is the volume of the n-dimensional unit sphere and rc is
the radius of the operator support. Thus, the measure C merely approxi-
mates the number of neighbors of each particle. We do not account for the
cost of computing the weights needed for the operator evaluation because
lookup-tables are commonly used to avoid function evaluations. Also, the
construction of the operator is not taken into account because in some
applications it is done just once in the beginning of the computations.

4.3 The Operator Choice

How to choose a suitable operator for a specific problem? Or, given a
certain operator type, to which values should the parameters be fixed? In
this section, we provide some insight into the influence of the parameters
of operators. We first present a parameter study for UC and DC PSE
operators. Then, in §4.3.2, we present two examples of operator choices
for test problems based on the quality measures introduced above.
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4.3.1 Parameter Study: How do the Free Operator
Parameters Influence the Quality of the PSE

operators?

The PSE diffusion operator Qh(·) defined in equation (1.3) is determined
by the choice of the kernel function η, of the cutoff radius rc, and of
the ratio c = h/ε. One objective here is to demonstrate the effect of
these parameters on the operator properties, providing a guideline for their
choice. Based on the quality measures introduced in §4.2, we therefore
assess the diffusion operators as defined by different parameter sets. The
parameters are described in §4.3.1.1 and the results of the parameter study
are presented in §4.3.1.2.
The quality measures as presented in §4.2 depend on the underlying spatial
distribution of particles. For simplicity, we restrict the present study to
uniform Cartesian particle distributions. Also, we only consider operators
used for three-dimensional simulations with isotropic viscosity. The qual-
ity measures introduced are, however, designed for the general case (any
particle distribution, any number of dimensions n).

4.3.1.1 Parameters

In the following, we describe the free parameters and state the ranges
within which these parameters are varied in the parameter study.

The Kernel Function η We restrict our study to kernel functions of
the form

η(z) = Ki(z)φj(z), z = |z| =

[
n∑

k=1

z2
k

]1/2

, (4.5)

where Ki is called the correction function and φj the window function. In
the present study, we consider φj and Ki as parameters of the diffusion
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operator and test the following options:

φ1(z) = exp
(
−z2

)
, φ2(z) =

1
z10 + 1

,

φ3(z) =
1

(1 + z2)5
, φ4(z) = sech(z),

φ5(z) = z cosech(z), φ6(z) = exp
(
−z2

)
cos(
√

2z),

φ7(z) =
1
π

sin(πz)/ sinh(z), φ8(z) =

{
exp

(
1

z2−R2 + 1
R2

)
, z < R,

0, else,

φ9(z) =

{
1, z < R,

0, else,
φ10(z) =

{
(R− z)/R, z < R,

0, else,
(4.6)

and

K1(z) =
m−1∑
k=0

akz
k, K2(z) =

m−1∑
k=0

akz
2k,

K3(z) =
m−1∑
k=0

ak cos(kz), K4(z) = a0 +
m−1∑
k=1

ak sin(kz). (4.7)

Via the coefficients ak, the correction functions Ki have m degrees of
freedom. The number m corresponds to the number of moment condi-
tions (1.4) or (2.4), respectively, that are not fulfilled automatically by
symmetry. The coefficients ak are fixed such that the respective moment
conditions are satisfied. For UC operators, we only consider the correction
function K2.
Since the number of moment conditions depends on the desired order of
accuracy r, the number m of coefficients ak in a correction function Ki

also depends on r. The choice of the kernel functions thus incorporates
the choice of the order of accuracy r.
We remark that for second-order operators (r = 2), m = 1. In this case, the
correction functionsKi, i = 1, . . . , 4, are identical. The selection of window
functions φj is motivated by the kernel functions used or proposed by
Cottet and Koumoutsakos [22] (j = 1, . . . , 3) and Maz’ya and Schmidt [63]
(j = 4, . . . , 7). The window functions φ8, . . . , φ10 are included for their
simplicity and compact support. We always use R = 3. The ten window

70



4.3. The Operator Choice

functions are plotted in figure 4.1.

The Cutoff Radius rc The cutoff radius rc defines the size of the
closed ball Brc [x] = {y ∈ Rn : |y − x| ≤ rc} that defines the neighbor-
hood of a particle at position x. Reducing the cutoff radius reduces the
cost of operator evaluation as fewer particles are considered neighbors and
the sum over neighboring particles in equation (1.3) is shorter. For UC
operators, however, reducing the cutoff radius increases the discretization
error, because the approximated integral is truncated. A large cutoff ra-
dius is expected to increase operator stability and decrease its sensitivity
to perturbations in the particle positions. The minimum cutoff radii are
rc,min = h for order r = 2 and rc,min = 2h for order r = 4. A smaller cutoff
radius cannot be used since the number of particles contained in the ball
Brc

[x] would be too small to yield an rth-order approximation. We test a
set Rc = {rc,1 = rc,min, rc,2, . . . , rc,k = rc,max}, rc,i < rc,i+1 of cutoff radii,
where the differences rc,i+1− rc,i are minimized under the constraint that
the number of particles in Brc,i

[x] is different from the number of particles
in Brc,i+1 [x]. The maximum cutoff radii rc,max considered here depend on
the order of accuracy r and on the window function φj , as listed in table
4.1.

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

r = 2 5ε 10ε 10ε 10ε 10ε 10ε 5ε 3ε 3ε 3ε
r = 4 7ε 12ε 12ε 12ε 12ε 12ε 7ε 3ε 3ε 3ε

Table 4.1: The maximum cutoff radii rc,max considered for the different
window functions in the present parameter study.

The Ratio c = h/ε A small ratio c = h/ε reduces the difference between
the discrete moments (2.3) and the continuous moments (1.4). It therefore
typically improves the accuracy of an UC operator. The cost of operator
evaluation, however, is large for small values of c since more particles are
located in the closed ball Brc

[x] defining the neighborhood of a particle
at position x. The accuracy of a DC operator is expected to be higher
for larger c: the influence of the direct neighbors relative to the influence
of more distant particles is typically higher because the window function
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Figure 4.1: The ten window functions of equations (4.6).
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is more peaked. Less smoothing occurs. The values of c tested here are
{0.25, 0.3, 0.35, . . . , 1.4}.

4.3.1.2 Results

In our parameter study, we evaluated the presented quality measures for
both DC and UC PSE diffusion operators on uniform Cartesian particle
distributions. We visited 443 956 points in parameter space, on the grid
described in the previous section. We summarize the results schematically
and point out potential conflicts of interest in the parameter choice.
The cost measure C is by definition independent of Ki and φj and hence
depends only on the cutoff radius rc relative to the interparticle spacing
h. A sketch of this dependence is shown in figure 4.2. Since it does not

high

not enough
neighbors

r c
/ε

c = h/ε

cost C

medium

low

Figure 4.2: Cost measure C depending on the cutoff radius rc and the
ratio c.

depend on Ki, this sketch is identical for both UC and DC operators. In
the region where rc/ε < c or rc/ε < 2c for r = 2 or r = 4, respectively,
there are not enough particles in the closed ball Brc

[x]. The number of
neighbors around x is then too small and there is not enough information
to approximate Lf(x) with the desired order of accuracy. The minimum
possible cost is C = V3 for r = 2 and C = 8V3 for r = 4 on the lines
rc/ε = c and rc/ε = 2c, respectively.
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For the other quality measures, typical landscapes over rc/ε and c for UC
and for DC operators are sketched in figures 4.3 and 4.4. In practice, UC
operators can only be used in the parameter ranges for rc and c where the
accuracy As, s < r, is medium to high, because convergence is otherwise
not observed. This can be understood from the error bound (4.2). The
threshold for As, s < r, depends on the accuracy requirements. Given this
restriction on the choice of rc and c, the user can still choose an operator
with a reasonable time-step limit (stability). However, the cost of operator
evaluation is high and the accuracy Ar low.
For DC operators, the accuracy measures As, s < r, are by definition in-
finitely large whenever enough neighbor particles are present. In practice,
where numerical errors are introduced when constructing the operators,
they are finite but still very high compared to Ar, such that they usually
do not influence the choice of rc and c. If accuracy is the only criterion for
operator design, the choice of rc and c is simple: for decreasing rc/(cε),
the accuracy Ar typically increases and the cost C decreases such that rc
and c should be chosen on the line rc/ε = c or rc/ε = 2c for r = 2 or
r = 4, respectively. For second-order accurate operators, the choice of c is
arbitrary, because all operators on rc/ε = c (for any window function φj)
reduce to the classical FD stencil

Qhf(x) =
ν

h2

n∑
i=1

[f(x + hi)− 2f(x) + f(x− hi)]

if ν is constant, or

Qhf(x) =
1

2h2

n∑
i=1

{[f(x + hi)− f(x)][ν(x) + ν(x + hi)]

+ [f(x− hi)− f(x)][ν(x) + ν(x− hi)]} (4.8)

else, where hi is a vector of length h pointing along dimension i. The
fourth-order accurate operators on the line rc/ε = 2c generally vary with
c and are different for different choices of the window function φi and the
correction function Kj . Therefore, the choices of φj , Ki, and c influence
Ar. If accuracy is not the only important criterion, the choices of φj , Ki,
rc, and c are more difficult. As can be seen from figure 4.4, highly accurate
operators typically require small time-step limits for stable explicit time
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Figure 4.3: Typical quality measure landscapes for UC diffusion operators.
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Figure 4.4: Typical quality measure landscapes for DC diffusion operators.
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stepping. On the other hand, a larger stability measure S requires a more
costly operator of comparably low accuracy. A trade-off must hence be
found.

4.3.2 Real-World Applicability and Interplay of the
Quality Measures: a Case Study

In practice, the most interesting property of an operator is probably the
computational time needed in order to solve a given problem with a cer-
tain maximum error. Unfortunately, this property may depend on all
three quality measures introduced above and their influence depends on
the problem to be solved.
In this section, we show the utility of the introduced quality measures for
choosing an operator and comparing its performance to the performance
of operators that are typically used in the cases considered. In order to
do so, we develop a rough estimate of the operator performance based on
the quality measures such that their interplay and individual importance
become apparent. A suitable operator is then chosen from all operators
analyzed in the parameter study presented in §4.3.1.
As a test case we use the three-dimensional advection-diffusion problem
described in appendix A.2. First, we consider simulations where the par-
ticles are remeshed at every time step, such that the particle distribution
is always uniform Cartesian when the diffusion operator is applied. Sec-
ond, we consider simulations where the intervals between the remeshing
processes are large.

4.3.2.1 Advection-diffusion simulation with remeshing at
every time step

We consider an advection-diffusion problem that we solve with remeshing
at every time step. For remeshing, we use the third-order accurate M ′

4-
kernel given in equation (A.2). From a few simple timing experiments
shown in figure 4.5, we estimate that the CPU time needed for one time
step of the simulation is proportional to

CUC = CDC ∼ 57 + C
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Figure 4.5: Timing experiments. Relationship between the cost measure
C and the CPU time tCPU for h = 0.217 and ∆t = 0.0125 when remeshing
at every time step (UC/DC: �) or remeshing at large time intervals (UC: ◦,
DC: ∗). We approximate tCPU/s with the functions CUC(C) and CDC(C),
respectively, using linear regression.
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where C is the cost measure of the diffusion operator used. Assuming
that we use the largest time step possible (for efficiency), the CPU time
needed for the complete simulation is proportional to CUC/DC/S. Thus,
an efficient operator for this simulation should have a low ratio

F =
57 + C

S

under the constraint that it has a zeroth-order accuracy A0 of more than
107 and a positive stability measure S.1 We do not account for the ac-
curacy measures As, s > 0, because we expect that the remeshing error
dominates the error introduced by the diffusion operator.
The operator in our parameter study that meets the constraints with the
lowest ratio F is the DC PSE operator with r = 2, φ7, c = 0.6, and
rc/ε = 1.47. We will call it the appointed operator in the following. We
compare its performance to six other operators with typical parameter
configurations. Two of these operators are the FD stencils of equation
(4.8) and

Qhf(x) =
1

24h2

n∑
i=1

{[ν(x− 2hi) + ν(x)][f(x)− f(x− 2hi)]

+16[ν(x− hi) + ν(x)][f(x− hi)− f(x)]
+16[ν(x + hi) + ν(x)][f(x + hi)− f(x)]
+[ν(x + 2hi) + ν(x)][f(x)− f(x + 2hi)]} (4.9)

of orders r = 2 and r = 4, respectively. The other four operators are
second- and fourth-order DC and UC PSE operators with large2 cut-
off radii and medium c. For each operator, we adjust h and ∆t semi-
automatically such that the CPU time is low and the maximum error does

1 The value of 107 is chosen arbitrarily and any value in [0.6, 1015] leads to the same
result. This can be explained by the typical quality measure landscapes depicted in
figures 4.2, 4.3, and 4.4: medium values of A0 are associated with large costs C and low
or medium values of S, such that operators with A0 ∈ [0.6, 1015] correspond to large F .

The stability measure S is required to be positive such that the time integration is
stable.

2 The cutoff radii of rc = 3.5 and rc = 5.5 for the second- and fourth-order ac-
curate operators, respectively, are large compared to those of the FD stencils and the
appointed operator. They correspond to values recommended as best practice for UC
PSE operators.
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not exceed a certain target error level E∗max at simulation time T = 0.25.
We remark that all simulations take advantage of the consistently uniform
Cartesian distribution of particles: particles are identified by mesh indices
and no neighbor lists are used. The results are given in table 4.2. As
expected, the appointed operator performs best. In fact, the simulation
completes more than twice as fast as the fastest simulation using any of
the other operators. Note that the DC and UC operators of the same
parameters lead to the same results here. This is because rc/ε is large
enough and c is small enough for the UC operators to be able to reach the
target error level.
The fourth-order accurate operators perform worst. This can be explained
by the fact that the remeshing procedure is of lower order and the advan-
tage of the high-order accuracy is not exploited in these simulations. Yet,
the operator evaluation is more costly due to the larger cutoff radii re-
quired.
For the target error level E∗max = 0.05, the second-order FD operator
outperforms the two PSE operators listed first. This is not surprising since
its cost C is much lower (4.19 vs. 246.).3 The cost C of the appointed
operator, however, is higher than the cost of the FD operator (61.6 vs.
4.19). The stability S of the appointed operator is much higher, though,
such that a larger time step can be chosen. This is enough to compensate
for the higher cost of the operator evaluation.
For the target error level E∗max = 0.01, the second-order FD operator is
outperformed by all listed second-order PSE operators. The reason is the
low time stepping stability of the FD operator, which is more apparent
at higher resolutions. Again, the high stability of the appointed operator
(combined with its lower cost) renders it more efficient than the other
operators.

4.3.2.2 Advection-diffusion simulation with remeshing at
large intervals

If remeshing is performed at large time intervals only, we expect the dif-
fusion error introduced at each time step to be dominant. We therefore
modify the objective function F to represent the influence of the oper-

3 Also, from the parameter study presented in §4.3.1 we see that its accuracy is the
highest of all operators tested. We do, however, consider the effect to be marginal due
to the dominance of the remeshing error.
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Table 4.2: Advection-diffusion simulations with remeshing at every time
step. We report the shortesta CPU times for solving the test case to
a target error level E∗max. We show the results for six typical diffusion
operators and for the appointed operator (last entry).

E∗max = 0.05
r c rc/ε h ∆t tCPU in s

UC, φ1 2 0.9 3.5 0.331 0.0625 0.0421
DC, φ1 2 0.9 3.5 0.331 0.0625 0.0442
2nd-order FD (4.8) 0.349 0.0417 0.0223
UC, φ1, K2 4 0.9 5.5 0.370 0.0417 0.207
DC, φ1, K2 4 0.9 5.5 0.370 0.0417 0.208
4th-order FD (4.9) 0.349 0.0278 0.0555
DC, φ7 2 0.6 1.47 0.370 0.125 0.00950

E∗max = 0.01
r c rc/ε h ∆t tCPU/s

UC, φ1 2 0.9 3.5 0.273 0.0208 0.257
DC, φ1 2 0.9 3.5 0.273 0.0208 0.264
2nd-order FD (4.8) 0.242 0.00417 0.637
UC, φ1, K2 4 0.9 5.5 0.185 0.00556 13.2
DC, φ1, K2 4 0.9 5.5 0.185 0.00556 13.0
4th-order FD (4.9) 0.185 0.00287 3.55
DC, φ7 2 0.6 1.47 0.251 0.0417 0.113

a Considering the CPU time as a function of h and ∆t, we report the minimum
CPU time and the corresponding values of h and ∆t under the constraint of
staying below the target error level.
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ator accuracy Ar on the CPU time required to solve the given problem
to the target error level E∗max: we assume a maximum simulation error
Emax ∼ hr/Ar. In this case, an interparticle spacing h proportional to A1/r

r

is required. Since the number of particles is proportional to h−n, n = 3,
and the number of time steps to h−2, the factor A−5/r

r is introduced into F .
Thus, including the results of the timing experiments shown in figure 4.5,

F =
C − 6.1 + IDC(81 + 1.2C)

SA
5/r
r

,

where IDC = 1 for DC operators and IDC = 0 for UC ones. Note that the
influence of the discretization correction on the simulation cost is signifi-
cant when remeshing is done at large intervals only since the kernels have
to be recomputed at every time step due to particle movement.
We use the same constraints on As, s < r, and S as in §4.3.2.1. Addition-
ally, we impose a lower bound on the cutoff radii such that all operator
neighborhoods contain enough particles at all times: rc/h > 2.14 for r = 2
and rc/h > 2.52 for r = 4. The cutoff radius rc = h or rc = 2h, leading
to compact FD stencils, is thus not included. From the parameter study
presented in §4.3.1, the second-order DC operator with window function
φ2, ratio c = 1.4, and cutoff radius rc/ε = 3.2 is then expected to perform
best. We remark, however, that the parameter study was based on uni-
form Cartesian particle distributions, we deal with irregular distributions
since remeshing is not done at every time step. It is therefore interesting
to see how the performance measures generalize to this case.
Table 4.3 lists the resolutions and CPU times required to solve the given
problem using the different operators.We do not use fourth-order operators
in this test case because the simulation costs are expected to be much
higher than those for the second-order operators: the timing experiments
shown in figure 4.5 are done using second-order accurate operators; for
fourth-order operators the runtime tCPU is already 696s for C = 100,
due to the higher costs in setting up and solving the linear systems of
equations. We thus show the results for two typical second-order accurate
PSE operators and the appointed PSE operator.
The appointed operator outperforms the other two operators tested. Thus,
the prediction of the operator efficiencies based on the measures for uniform
Cartesian particle distributions is valuable also for irregularly distributed
particles. Interestingly, the DC operator is less accurate than the UC
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Table 4.3: Advection-diffusion simulation with remeshing at large inter-
vals. We report the shortesta CPU times for solving the test case to a
target error level E∗max. We show the results for two typical PSE diffusion
operators and for the appointed operator (last entry).

E∗max = 0.05
r c rc/ε h ∆t tCPU in s

UC, φ1 2 0.9 3.5 0.628 0.125 0.104
DC, φ1 2 0.9 3.5 0.571 0.125 0.340
DC, φ2 2 1.4 3.2 1.05 0.125 0.0196

E∗max = 0.01
r c rc/ε h ∆t tCPU in s

UC, φ1 2 0.9 3.5 0.349 0.050 1.32
DC, φ1 2 0.9 3.5 0.331 0.0625 3.44
DC, φ2 2 1.4 3.2 0.628 0.0625 0.157

a Considering the CPU time as a function of h and ∆t, we report the
minimum CPU time and the corresponding values of h and ∆t under
the constraint of staying below the target error level.
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operator with the same parameters; a slightly higher resolution is required
to reach the target error level. The simulation runtime using these DC
operators is almost three times as long due to the computational cost of
the discretization correction. With the appointed operator, however, this
extra cost is amortized by the gain in accuracy and the cost reduction due
to the smaller neighborhood. In our example, the gain in speed is five to
eightfold.
Note that the runtimes of the simulations with remeshing at large time
intervals (table 4.3) are longer than those of the simulations where re-
meshing is done at every time step (table 4.2). For the simulations using
the UC operators, the main reason for this is the different implementation:
while Verlet lists [83] are used when particles are irregularly distributed,
the particles’ mesh-like arrangement is exploited for looking up neighbors
in the remeshed case. When using the DC operators, the discretization
correction further doubles the computational cost per particle and time
step, see figure 4.5. Rare remeshing is, however, expected to be faster for
larger Péclet numbers, see §2.4.2.2.

4.3.3 Conclusions

We proposed three problem-independent quality measures for diffusion op-
erators in particle methods. The measures model the respective operator’s
accuracy, computational cost, and stability in explicit time stepping. A
parameter study has shown how the free operator parameters that have
to be chosen by the user influence the operator properties as quantified by
the introduced measures. For many tasks there are trade-offs when choos-
ing a “good” operator. The problem-dependent interplay of the operator
properties is then important.
Using the example of a three-dimensional Lagrangian advection-diffusion
simulation, we demonstrated how simple objective functions of the qual-
ity measures can help in choosing efficient operators. Both frequent and
occasional remeshing was tested. We were able to demonstrate that an
operator’s computational efficiency might depend on all three measures.
The specific dependence, however, depends on the problem to be solved:
for problems that are limited in the time step size by advection rather than
by diffusion, the stability measure of the diffusion operator loses its im-
portance. Similarly, the accuracy measure of the diffusion operator might
lose importance if frequent remeshing is performed because the remeshing
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error dominates the error introduced by the operator. If remeshing is a
comparably rare event, the operator’s accuracy is not negligible. At the
same time, however, the most accurate operators typically require small
time-step limits and choosing a higher spatial resolution and an operator
of lower accuracy might be beneficial.
The performance model introduced allowed to select simulation-specific
operators that were two to eight times faster than the next best of the
tested diffusion operators.
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CHAPTER

FIVE

Adaptive Multiresolution Simulations

using Self-Organizing Lagrangian

Particles

5.1 Introduction

Lagrangian particle methods are inherently adaptive with respect to the
flow map. Advection, however, may lead to the formation of holes or
clusters in the distribution of particles, jeopardizing the accuracy of the
method. This issue is commonly addressed by periodical remeshing onto
a Cartesian mesh [47]. Lagrangian particle methods are usually straight-
forward to implement and to parallelize. As such, they have been suc-
cessfully used for large-scale simulations on supercomputers [13] and an
efficient middleware for their parallel implementation exists [4, 77]. Yet,
for systems with large spatial inhomogeneities, they have to be combined
with multiresolution refinement techniques in order to remain computa-
tionally efficient. These techniques invariably introduce extra layers of
complexity that may detract from the elegant simplicity of Lagrangian
particle methods and complicate their implementation on (parallel) com-
puters. A number of multiresolution frameworks have been proposed for
particle methods; we briefly summarize them below. An in-depth review in
the context of flow simulations has been presented by Koumoutsakos [48].
Smooth particle methods with spatially varying kernel widths were first
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introduced by Cottet and coworkers [25] for vortex methods. This has
enabled simulations of incompressible flows with vortex particles whose
sizes are locally adapted to the scales of the flow field. The physical space,
where particle sizes are locally adapted, is mapped to a reference space
with uniform resolution. All operators, including remeshing, are applied
in the uniform reference space. Particles living in low-resolution areas are
therefore not allowed travel too far into any high-resolution area between
two remeshing steps. Also, the mapping function from the physical to the
reference space needs to be explicitly known. This limits the method to
problems with static geometries or resolution requirements that are known
beforehand. Bergdorf and coworkers later introduced the Adaptive Global
Mapping (AGM) [9] by numerically approximating the mapping function
on the particles, and numerically evaluating the Jacobian of the map-
ping in order to map differential operators between the physical and the
reference space. This concept is related to r-adaptive finite element meth-
ods or moving meshes, in which the computational elements are dynami-
cally moved to areas where increased resolution is needed. The number of
computational elements and their topology, however, are preserved. The
problem is typically formulated as equidistribution of the error onto the
computational elements by means of a monitor function [12]. The mon-
itor function may also carry other information: in AGM, for example, it
depends on the spatial scales in the solution. AGM evaluates this monitor
function at each particle location. The global mapping from the physical
solution space to the reference space is then computed by inverting a large
matrix with the number of rows and columns equal to the total number
of particles in the simulation. This matrix inversion, or the corresponding
FFTs if done spectrally, limits the scalability of the method on distributed-
memory computers. Moreover, it does not allow for creation or removal
of particles during adaptation. Dynamic adaptation of the number of par-
ticles, however, can be valuable when flow structures (interfaces, shocks,
singularities, changes of phase, or regions of high vorticity) significantly
evolve over time.
Another class of adaptive refinement schemes for particle methods are mul-
tilevel methods, such as wavelet particle methods (WPM) [8], adaptive
mesh refinement (AMR) as applied to particle methods [9], and adaptive
tree codes [66]. Wavelet particle methods provide a very sparse repre-
sentation of multiscale data and a Lagrangian adaptation mechanism [8].
Due to the global nature of the involved data structures and transforms,
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however, they are hard to parallelize on distributed-memory computers.
AMR-type particle methods employ hierarchies of partially (or completely)
overlapping mesh patches onto which the particles are remeshed at every
time step. This also requires additional data structures, whose distribution
onto a parallel machine is not trivial. Adaptive tree codes have for example
been used for node refinement in 2D using radial basis functions [66]. The
global tree data structure, however, again hampers efficient implementa-
tion on distributed-memory computers.
We propose an adaptive multiresolution Lagrangian particle method that
does not require hierarchical data structures or mapping functions. This al-
lows easy and efficient implementation on distributed-memory computers.
The method relies on moving the particles to areas where high resolution
is needed and on dynamic insertion and removal of particles in under- and
over-resolved regions. The movement of the particles is guided by the flow
and by pseudo forces that lead to the desired resolution and guarantee a
well-organized particle distribution. This amounts to a self-organizing con-
figuration of particles representing the solution fields in an adaptive man-
ner. Pseudo forces have previously been used in moving-mesh methods [2].
There, the mesh nodes interact with each other through pseudo forces that
depend on a measure of the local truncation error. Dynamic insertion and
removal of particles was previously considered in the context of hybrid
particle-mesh methods for convection-reaction-diffusion problems [81].
Approximate equidistribution of the error by means of a monitor function
defines the desired resolution everywhere. DC PSE operators as described
in chapter 2 are used to compute field derivatives. We take advantage of
their flexibiliy (see §2.7) by reusing the discretization correction for evalu-
ating derivatives of different degrees in order to reduce the computational
cost. The same discretization correction is also reused for consistent inter-
polation.

5.2 Method

We introduce the concept of the presented method in §5.2.1 and discuss
its details in §5.2.2.
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5.2.1 Method Concept

We start from the concept of Lagrangian particle methods for transport
problems in the strong formulation and introduce self-organizing particles
as described in §5.2.1.2. The resulting method is outlined in §5.2.1.3. For
details, we refer to §5.2.2.

5.2.1.1 Lagrangian Particle Methods for Transport
Problems – Strong Formulation

We focus on transport problems of the form

∂f

∂t
+∇ · (uf) = L (f) , (5.1)

where L is an elliptic differential operator, u an advection velocity field
(i.e., the flow map), and f : Rd → R a continuous scalar field represent-
ing the concentration of the transported quantity. We disregard particle
volumes such that the function approximation, as in generalized finite-
difference methods, is given by

f(x) ≈ fh (x) =
N∑

p=1

fpζε (x− xp,x) . (5.2)

The kernel functions ζ are assumed to have compact support of radius
rc(x) and are rescaled to the characteristic width ε(x). The kernel widths
εp = ε(xp) and cutoff radii rc,p = rc(xp) are scaling parameters that define
the local spatial resolution of the method in the neighborhood of particle
p. Note that they can be different on each particle, depending on the
local resolution required. However, εp and rc,p are of the same order of
magnitude.
The evolution of the particles follows the system of ordinary differential
equations

dxp

dt
= u(xp, t) = up(t), (5.3a)

dfp

dt
= Lh(fp, t)− fp∇h · u , (5.3b)
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where Lh and ∇h are discrete approximations of the differential operators
L and ∇.
During a simulation, the initially well-ordered particle distribution is dis-
torted by the advection of the flow. Therefore, particles are commonly
remeshed [47], that is, they are periodically reinitialized onto a mesh.

5.2.1.2 Self-Organizing Particles

The self-organization of particles in the present method comprises (i) the
self-assembly of the particles due to pairwise particle interactions as in
atomic, molecular, and supramolecular systems [86] and (ii) the dynamic
insertion and removal of particles.
Figure 5.1 shows a two-dimensional example of self-assembling particles
interacting via the Lennard-Jones potential. In this example, the particles
equilibrate to form the nodes of a triangular or isometric grid. Other types
of equilibrium configurations are observed for other interaction potentials.
Finding an interaction potential that leads to self-assembly in specific tar-
get configurations is an inverse problem tackled both experimentally and
theoretically [30, 74]. The most prominent target structures that could be
valuable for numerical particle methods are isometric grids (triangular lat-
tices), hexagonal grids (honeycomb lattices), and Cartesian grids (square
lattices). For the method presented here, we concentrate on triangular lat-
tices, which can usually be robustly obtained from self-assembly. We are,
however, interested in multiresolution configurations. A straightforward
way to realize multiresolution structures is to let the pairwise interaction
potential depend on the position of the particles involved. Where high
resolutions are required, the preferred interparticle distance (that is, the
position of the well in the example of the Lennard-Jones potential) is set
to a small value. Where coarse resolutions are sufficient, the preferred
interparticle distance is increased. The equilibrium configuration shown
in figure 5.2, for example, is obtained by letting the position of the well
of the Lennard-Jones potential vary with the mean y-position of the two
interacting particles. The triangular arrangement of the particles is still
apparent, but there are more lattice defects resulting from the varying
resolution.
The concept of the Lagrangian particle method presented in this chapter
is to first let the particles move with the flow and then “correct” their
positions by letting them self-assemble to a multiresolution configuration
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Figure 5.1: Self-assembly starting from an initially unstructured set of
particles to a regular triangular lattice. We show a time series of self-
assembling particles interacting via the pairwise Lennard-Jones potential
sketched in the bottom right panel. The dotted line indicates the posi-
tion of the potential well, the preferred distance between two interacting
particles.
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Figure 5.2: Self-assembled multiresolution configuration resulting from a
position-dependent Lennard-Jones potential.

with resolutions defined by a monitor function. Typically, the monitor
function is also carried by the flow, as it depends on the current solution
of the problem. The corrections are therefore usually small.
In addition to the process of self-assembly, the self-organization of the par-
ticles includes dynamic insertion and removal of particles. This is beneficial
when certain target error levels have to be met and structures like shocks
or regions of high vorticity emerge or dissolve during a simulation. With
constant numbers of particles, the user accepts the loss of small scales or
additional computational cost. Another reason for insertion and removal
of particles is the gain in computational efficiency in cases where the mon-
itor functions varies rapidly over time. If, for example, the necessity of a
very fine resolution vanishes in one region and manifests itself in another
region, correction of the particle positions via self-assembly alone would
need many iterations. The insertion/removal strategy offers an effective
solution to this problem. A positive side-effect of the subsequent self-
assembly is that the exact position of a newly inserted particle is of minor
importance. In the present method, particles are inserted if not enough
neighbors are found within the cutoff radii defined. Since the cutoff radii
are linked to the preferred interparticle distance, a lack of neighbors usu-
ally corresponds to underresolution. A particle is removed if it gets too
close to another one – they naturally merge if the interaction potential is
chosen to be attractive for very short interparticle distances.
The solution carried by the particles then needs to be interpolated then
from the particle positions before self-assembly to the positions after self-
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rc,p

xold

x

Figure 5.3: Interpolation of function values from the old set of particles
(circles) to the current set of particles (crosses). After interpolation, the
differential operators can be approximated either by using the values on the
old particles (left circle, black arrows), or the values on the new particles
(right circle, gray arrows). While the two ways are algebraically equivalent,
they differ in computational cost when using DC PSE operators.

assembly. This corresponds to a remeshing procedure with an unstructured
multiresolution target mesh. We use DC (PSE) operators both for particle-
particle interpolation and for derivative approximation. We therefore do
not need to evolve or determine the particle volumes because they are not
required for consistent results. This also simplifies particle insertion and
removal as the redistribution of the particle volumes does not need to be
considered when particles vanish or appear.

5.2.1.3 A Self-Organizing Lagrangian Particle Method

We substitute the remeshing step by self-organization of the particles, as
described in §5.2.1.2, followed by interpolation of the field values from
the original to the reorganized particle set. We thus temporarily use two
sets of particles, as depicted in figure 5.3. For the interpolation from the
old to the new set of particles, we use DC interpolation kernels with the
Kronecker delta property as described in §2.8. The particles self-organize
at every time step. This ensures that the average nearest neighbor dis-
tance between particles of the original and the reorganized set is smaller
than the average distance between particles and mesh nodes in the case of
remeshing (see figure 5.4), thus reducing interpolation errors. Particles fur-
ther self-organize into configurations that are nondegenerate with respect
to the interpolation scheme used, ensuring that the field is well sampled
everywhere.
After particle self-organization, we evolve the field values according to
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remesh

a)

remesh

b)

moving mesh, same h

c)

Figure 5.4: Remeshing onto a fixed mesh versus interpolation onto self-
organized particles. a) Initial particle distribution. b) Particles have
moved. The distances of the particles to the mesh nodes are displayed
as thick black lines. c) Particles have moved. The distances between the
old set of particles and the self-organized one (displayed as mesh nodes)
are smaller than for case b). The interpolation is comparable to remeshing
onto a moving mesh.
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equation (5.3b). We use DC PSE operators for approximating the spatial
derivatives. There are two ways the DC PSE operators can be used to
compute the right-hand side of equation (5.3b) in a collocation setting:

(i) using the new set of particles as both source and collocation points
(gray arrows in figure 5.3), or

(ii) using the old set of particles as source points, but the new set as
collocation points (black arrows in figure 5.3).1

The two ways are algebraically equivalent for corresponding kernel choices.
In fact, in both ways the two kernels (interpolation kernel and derivative
approximation kernel) could be combined into one, as has been done for
the case where L is the Laplacian and the particles are remeshed onto a
uniform Cartesian mesh [85] . The two ways, however, differ with respect
to their computational cost when using DC operators: variant (i) uses two
kernels with different sets of source particles, hence requiring two different
linear systems of equations to be solved on each particle. In variant (ii)
both kernels use the same set of source particles and their weights can
hence be determined from the same linear system of equations. Since
solving the linear systems of equations at each particle accounts for the
greatest part of the computational cost of a simulation the second variant
is about twice as fast as the first variant. We therefore choose the variant
(ii). We do, however, choose not to combine the two kernels into one for
the sake of clarity of the presentation. Whenever possible we reuse the
matrix inverse of the linear system of equations that needs to solved for
the discretization correction, as described in §2.7.

5.2.2 Method Details

We consider the key elements of the present method in greater detail. We
discuss the monitor function in §5.2.2.1, the choice of the cutoff radii in
§5.2.2.2, the properties of the neighbor lists in §5.2.2.3, the particle-particle
interaction potential in §5.2.2.4, the particle insertion and removal strat-
egy in §5.2.2.5, the minimization of the potential energy in §5.2.2.6, the
initialization procedure in §5.2.2.7, and boundary conditions in §5.2.2.8.

1 In this case, the DC operator needs to be defined as in equation (2.29), that is,
the zeroth moment must be set to zero.
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5.2.2.1 Resolution Field (Monitor Function)

The pointwise error bounds for the approximation of the derivatives and
the interpolation motivate a spatially adapted resolution. Ideally, the error
would be equidistributed across all particles. This would then result in
the minimum number of particles needed for the approximations to reach
below a certain error level everywhere in the domain. The self-organization
of the particles thus follows a target resolution that is determined by a
monitor function that is based on properties of the current solution.
We denote by D̃(x) the desired local target resolution of the spatial dis-
cretization. It defines the smallest scales that ought to be resolved by the
numerical approximation in the neighborhood of x.
In order to be able to determine the locally required resolution at every
point in the computational domain, D̃(x) needs to be expressed as a func-
tion of known or computable properties of f . The choice of the target
resolution field “appropriate to the accurate solution of a PDE is difficult,
problem-dependent, and the subject of much research” [12]. Among many
possible choices, we choose the simple arclength-based2 form

D̃(x) =
D0√

1 + |∇f (x)|2
, (5.4)

which is often used in multiresolution methods, including moving-mesh
methods. D0 is a user-defined parameter that sets the coarsest resolution
in the computational domain and hence an upper bound on the interpar-
ticle spacing h. We refer to §2.5 for a discussion of how the resolution
influences the accuracy of DC PSE operators.
Each particle p is assigned the minimum value of D̃ over its neighbors
within a certain cutoff radius:

Dp = min
|xq−xp|≤Dpr∗

D̃ (xq) . (5.5)

This smoothes the resolution field and assures that the norms of the field f
in the pointwise error bounds are comparable to the corresponding deriva-
tives of the field f at that point. Without this smoothing procedure, an

2D0 is then the uniform target spacing of the points (xp, fp) in (n + 1)-dimensional
space.
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equidistribution of the error could not be obtained if the monitor function
only included point information. The values of Dp can be determined as
outlined in algorithm 1. The particle kernel widths then adapt to the new
cutoff radii as εp = rc,p = Dpr

∗.

Dp ← D̃ (xp)
Create (transient) neighbor lists.
foreach particle p do

foreach particle q ∈ Np do
Dq ← min(Dq, D̃ (xp))

Algorithm 1: Computing Dp as defined in equation (5.5).

5.2.2.2 Choice of the Cutoff Radii

The particle-specific cutoff radii rc,p are determined by the target resolu-
tions Dp and a global dimensionless cutoff radius r∗ as rc,p = r∗Dp. The
parameter r∗ is chosen such that |Np| ≈ N ∗ if the particles were arranged
on a regular triangular lattice with spacing Dp. Here, Np is the index set
of neighbors of particle p, |Np| the actual number of neighbors of particle
p, and N ∗ is the minimum number of neighbors required for a consis-
tent discretization. For a two-dimensional triangular lattice, for exam-
ple, r∗ = {1,

√
3, 2,
√

7, 3} leads to |Np| = {6, 12, 18, 30, 36}, respectively.
In three dimensions, r∗ = {1,

√
2,
√

3, 2} leads to |Np| = {12, 18, 42, 54}.
While this provides a good value for r∗, the particles generally do not
form a regular triangular lattice and the particle insertion/removal strat-
egy outlined in §5.2.2.5 becomes important.

5.2.2.3 Neighbor Lists

In the present method the cutoff radius rc is a function of space. Defining
the neighbors of particle p, denoted by the index set Np, as those particles
within a ball of radius rc,p around xp could hence lead to the situation
where particle p is a neighbor of particle q, but not vice versa. This could
lead to prohibitively high computational costs because particles in coarsely
resolved regions (rc large) would interact with potentially large clusters of
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Figure 5.5: Illustration of the present definition of neighborhood. Particles
that are neighbors are grouped together by shaded links.

particles in nearby finely resolved regions (rc small). As illustrated in
figure 5.5, we therefore consider as neighbors of particle p all particles q
at a distance less than min(rc,p, rc,q) from particle p. This ensures that
q ∈ Np ⇔ p ∈ Nq. Using such symmetric neighbor lists enables the method
to handle arbitrarily large ranges of resolutions. Moreover, ghost layers
in parallel implementations using symmetric neighbor lists are generally
smaller leading to a better scalability.

5.2.2.4 Interaction Potential

Particle self-organize to the target resolution by pseudo forces resulting
from pairwise interaction potentials between the particles. The interaction
potential between particles p and q is of the form

Vpq = D2
pqV (|xp − xq| /Dpq), (5.6)

where Dpq = min(Dp, Dq) and V (r) is a user-defined pair potential. This
form ensures that the adaptation pseudo forces scale with Dpq and that
the length scale of the potential corresponds to the local resolution re-
quirement. Two possible choices for V (r) are shown in figure 5.6. The
potential in figure 5.6a is attractive/repulsive and well suited for problems
with free-space boundary conditions. It leads to a particle distribution
with a characteristic local spacing of Dpq. The potential in figure 5.6b is
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Figure 5.6: Examples of normalized pairwise interaction potentials. (a)
V (r) = (1 − 1/r)2, (b) V (r) = r−2/2 + r−6/6. The lines with symbols
denote the modified potentials with strong short-range attraction to induce
particle fusion in over-resolved regions.
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purely repulsive, which is advantageous on finite domains. In this case,
the potential ensures that the ratio of the distance between two particles
and their kernel widths reflects the local resolution requirement. The ab-
solute value of the interparticle distance is adjusted by changing the total
number of particles in the computational domain. In practice, both po-
tentials are modified to linearly decay below Dpq/2 (circles in figure 5.6),
which ensures that particles that are too close to each other fuse, see also
§5.2.2.5.
Locally minimizing the total potential energy

W (x1, . . . ,xN ) ≡
∑

p

∑
q

Vpq (5.7)

with respect to the particle positions (x1, . . . ,xN ) leads to a distribution
of particles that provides a spatial resolution close to the target resolution
D̃(x), such that the characteristic interparticle spacing hp near a particle
at xp is smaller than or equal to D̃(xp). Finding the global minimum of
the potential energy of a large collection of interacting particles is rarely
feasible and always computationally expensive. Finding a particle dis-
tribution of “reasonably low” energy is comparatively much easier. For
sufficiently smooth pairwise potentials, simple gradient descent algorithms
are able to robustly find local minima of the potential energy, which turns
out to be sufficient for the purpose of the present method. We find a
“reaonsably low” W using the method of steepest descent as described
in §5.2.2.6. Figure 5.7 shows a two-dimensional example of a resulting
particle distribution.

5.2.2.5 Insertion/Removal of Particles

The number of iterations required by the gradient descent algorithm for
minimizing the potential energy W closely depends on how far the initial
condition is from the local minimum where the algorithm terminates. If
the initial particle distribution is very different from the adapted one,
the number of iterations required can be prohibitively large. This may
happen, for example, when an initially uniform solution field develops
steep gradients in a small area of the computational domain. In order
to resolve these gradients, many particles distributed across the entire
computational domain need to move to the region where refinement is
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Figure 5.7: (a) Self-organized particles for the resolution field (5.4) and
f = tanh

((
x2 + y2 − 0.4

)
/0.02

)
; circles represent Dp (dashed) and rc,p

(solid) for a sample set of particles. (b) Corresponding profile of D̃ along
y = 0.
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Dp

rc,p

xp

Figure 5.8: Insertion and removal of particles. Particles that are too close
to others are removed and new particles are inserted at distance Dp if there
are too few particles in the neighborhood.

needed. This major particle rearrangement would quickly become the
bottleneck in large simulations. Moreover, if fine scales in the solution
develop or disappear over time, not only the distribution of particles but
also their total number has to adapt.
We achieve high adaptation efficiency and adaptive particle numbers by
dynamically removing particles from overresolved regions and inserting
new ones in underresolved regions. We do this by fusing particles that are
too close to each other and by generating new particles in regions where
the already existing ones have fewer neighbors than a critical number, see
figure 5.8.
We want that near any particle p the neighboring particles locally adapt to
a distribution with characteristic spacing Dp. The first requirement that
needs to be fulfilled is that each particle must have a minimum number of
N ∗ neighbors within its cutoff radius rc,p in order for the discretization to
be consistent. This number is equal to the number of moment conditions
that need to be fulfilled by the discretized operators and depends on the
order of accuracy of the spatial discretization of the elliptic operator L
in equation (5.1), see §2.2. For fourth-order interpolation and second-
order approximation of the Laplacian, for example, N ∗ = 10 in 2D and
N ∗ = 20 in 3D. The actual number of neighbors of any particle is ideally
identical to N ∗ as any additional neighbors increase the computational
cost. We thus take N ∗ as the critical number of neighbors for the particle
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insertion/removal strategy.
As described in §5.2.2.2, the cutoff radius rc,p is fixed by the target spacing
Dp and the parameter r∗. In order to assure that the actual number of
neighbors is at least N ∗ and that the actual particle spacing is close to the
target spacing, the local particle density is adapted during gradient descent
by inserting particles in regions where Np < N ∗ and fusing particles that
are closer to each other than Dp/2. The inserted particles are placed
randomly at distance Dp from particle position xp. The total number of
particles N in a simulation is hence not a free parameter of the method,
but is determined adaptively by the algorithm at runtime.
We find that this insertion/removal strategy is effective in dealing with
global changes in the required resolution, allowing the gradient descent
minimizer to reach a local minimum within few iterations (typically less
than ten).
If necessary, N can be bounded from above by imposing a minimum thresh-
old value on the resolution field D̃ (x). This is necessary, for example,
when the solution develops infinitely steep gradients. We therefore impose
a minimum threshold on the resolution field:

D̃ (x)← max
(
D̃ (x) , Dmin

)
.

This guarantees that N does not exceed Nmax ≈ |Ω| /Dn
min, where Ω is the

n-dimensional computational domain. It also means, however, that the
field f will be underresolved in regions where D̃ < Dmin and the desired
accuracy level cannot be reached.

5.2.2.6 Steepest Descent on the Potential Energy

The self-organization of the particle positions and kernel widths is driven
by pseudo forces such as to locally minimize the total potential energy
W given in equation (5.7). After fusing particles that are too close to
each other and inserting new particles where needed, a single step of a
gradient descent is performed. This displaces each particle a step wp in
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the direction of the gradient of the interaction potential W :

wp = −α∂W (x1, . . . ,xN ) /∂xp,

= −α

∑
q∈Np

∂Vpq/∂xp +
∑

q=1...N, s.t. p∈Nq

∂Vqp/∂xp

 ,
where the step size α is determined by a line search.3 Since both the
pairwise interaction potential V and the neighborhood relations are sym-
metric, see equation (5.6) and §5.2.2.3, the gradient descent flow simplifies
to

wp = −2α
∑

q∈Np

∂Vpq/∂xp. (5.8)

The chain rule leads to

wp = −2α
∑

q∈Np

Dpq

[
V ′(r)epq + (2V (r)− rV ′(r))∇xp

Dpq

]
r=

|xp−xq|
Dpq

,

(5.9)

where epq is the unit vector pointing from particle p to particle q. Note
that once the field f is properly resolved (that is, the total number of
particles N is sufficiently large) then ∇xpDpq � 1 and the second term in
equation (5.9) can be neglected.
During particle self-organization, the insertion/removal and steepest de-
scent algorithms are iterated until all particles have at least N ∗ neighbors
and the stopping criterion minp minq∈Np

(|xp − xq|/Dpq) ≥ dc is met. This
criterion ensures that no two particles are too close to each other. We find
that a value of dc = 0.4 leads to a small number of iterations (typically less
than ten) while ensuring a suitable distribution of particles where the local
density of particles matches the desired resolution field. Choosing a larger
value for dc leads to more regular particle distributions at the expense of
a larger number of iterations.

3 We use the quadratic fit line search method: for each step, we find a three-
point bracket 0 = α1 < α2 < α3 such that W (X2) < min[W (X1), W (X3)],
Xi = X−αi∇W (X), X = (x1, . . . , xN ) ∈ RnN . We fit a (one-dimensional) quadratic
polynomial to W using the values at X1, X2, and X3. We set α to the step size going
to the minimum of the quadratic fit.
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We set wp = 0 in the special case where D̃(xp) > 2Dp. This ensures that
the self-organization remains stable and accurate even when the gradient
of the resolution field D̃ is very large, in other words, when fine scales and
coarse scales in the solution are not separated by a layer of intermediate
scales. In this case, particles p that are in a coarse region where D̃(xp) is
large, but are neighbors of particles located in a fine region, have a small
Dp, see equation (5.5). If they were allowed to move, the discrepancy
between D̃ and Dp would cause them to be pushed away from the fine
region and deteriorate the overall accuracy.

5.2.2.7 Initialization

There are several possibilities of how to place the particles at the beginning
of a simulation: Particles can be initialized on a Cartesian mesh, placed
uniformly random in the computational domain, or sampled from a prob-
ability density function that depends on the initial condition f(x, t = 0).
In practice, we find that uniformly random placement of a fixed number
of particles and subsequent adaptation to the initial condition is sufficient.
This leads to a very simple and robust initialization strategy as the number
of particles required to represent the initial condition to below a certain
error bound is determined by the adaptation algorithm and does not need
to be known beforehand. We illustrate this initialization procedure for
the example of a Gaussian pulse (see §5.3.3 below). We initially randomly
place a fixed number of 800 particles with uniform kernel widths as shown
in figure 5.9. We then iterate the adaptation algorithm (loop in line 10 of
algorithm 2 below) until it terminates. Figure 5.10 shows the two different
resulting particle distributions for D0 = 0.2 and D0 = 0.05, respectively.
The total resulting number of particles is 3027 in the first case and 27631
in the second. Note that this is found by the adaptation algorithm itself
and does not need to be imposed by the user.
This resulting particle distribution is then used to represent the initial
condition of the problem before entering time stepping.

5.2.2.8 Boundary Conditions

In the numerical experiments and benchmarks presented below, all bound-
aries are periodic. Other types of boundary conditions, however, can be
treated in the standard ways.
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Figure 5.9: Initial set of 800 uniformly randomly placed particles. Circles
represent Dp (dashed) and rc,p (solid) for a sample set of particles.

Homogeneous Neumann or Dirichlet boundary conditions can be imposed
using mirror particles in a small neighborhood outside the computational
domain (method of images). These mirror particles are only used to eval-
uate the right-hand side of equation (5.3b). They are not considered for
the self-organization, nor for particle-particle interpolation. Instead, they
are regenerated after self-organization of the particles is complete. During
self-organization, the boundaries of the domain (if not periodic) are treated
as rigid walls that confine the particles to the computational domain.
Inhomogeneous or mixed boundary conditions can be enforced by locally
modifying the intensities of the particles in the neighborhood of the bound-
ary [49].

5.3 Numerical experiments and benchmarks

We present an array of numerical experiments and benchmarks that are
designed to demonstrate the capabilities and limitations of the present
method. The first benchmark in §5.3.1 demonstrates the consistency of
the operator approximation and particle-particle interpolation schemes in-
troduced in §2.5, §2.7, and §2.8. The second benchmark considers a pure
advection problem with a passive scalar. This is the same test case as
was considered by Bergdorf and Koumoutsakos [8], which allows compar-
ing the present method to the multiresolution wavelet particle method
presented there. The third test case, in §5.3.3, adds diffusion and consid-
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Figure 5.10: Particle distribution after adaptation to the initial condition
(5.14). We use the repulsive interaction potential shown in figure 5.6b). a)
D0 = 0.2 (N = 3027 particles, 7 gradient-descent iterations); b) D0 = 0.05
(N = 27631 particles, 21 gradient-descent iterations). Circles represent Dp

(dashed) and rc,p (solid) for a sample set of particles.
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ers an advection-diffusion problem with known analytical solution. It also
compares the behavior of the present method in two and three dimensions.
The fourth test case, in §5.3.4, is the two-dimensional unsteady Burgers
equation, which serves as a benchmark for nonlinear transport problems.
The fifth test case demonstrates the efficiency and accuracy of the present
method for the real-world application of the nonlinear two-dimensional
Buckeley-Leverett problem.
All benchmarks are done in finite domains with periodic boundaries using
the purely repulsive self-organization potential shown in figure 5.6b. Any
time-stepping scheme can be used to solve the system of ordinary differ-
ential equations (5.3) until final time t = T . The time-stepping schemes
used for the numerical experiments and benchmarks presented below are
indicated for each test case separately.
We implemented the method as summarized in algorithm 2 in Fortran 90
using the PPM library [4, 77].

5.3.1 Consistency of Interpolation and Derivative
Approximation

We assess the convergence of the interpolation kernels and of the dis-
cretized Laplacian operator on the test function

f(x, y) = tanh
(
x2 + y2 − 0.22

0.01

)
(5.10)

in the domain Ω = [−1, 1]2. This test function has a steep sigmoidal tran-
sition of tunable slope. Successively reducing the global scale parameter
D0, we measure the errors as follows: For each value of D(n)

0 , particles
are assumed to be adapted to the field f with this D(n)

0 and the function
values on the particles are set to the exact values:

f (n)
p = f

(
x(n)

p

)
.

The particles then self-organize to a finer resolution D(n+1)
0 = 0.95D(n)

0 as
described in §5.2.1.2 and the new function values f (n+1)

p are interpolated
from the old values f (n)

p . The matrices that have to be inverted for each
particle to compute the interpolation kernels are reused to compute an
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input : field f0(x) = f(x, t = 0)
output: field fh(x, t = T )

1 Initialize xp and fp.
2 while t < T do

3 Choose ∆t based on the globally smallest value of the interparticle
distance.

4 Advect particles with velocity u between t and t + ∆t.

5 Create neighbor lists.

6 Solve equations (2.27) for DC PSE operators (source points = collocation
points).

7 Compute the field derivatives for D̃ (xp).

8 Compute D (xp) using equation (5.5).

9 xold
p ← xp, fold

p ← fp

10 repeat

11 Fuse particles where |xq − xp| < Dpq/2.

12 Insert particles in the neighborhood of particles that have fewer than
N ∗ neighbors.

13 Update the neighbor lists (both within xnew
p and between xp and

xold
p ).

14 Compute D(xp) by 1st-order interpolation from D(xold
p ).

15 Adapt the cutoff radii rc,p and kernel widths εp.

16 Compute the total energy of the adaptation potential and its
gradient.

17 Perform a line search for the gradient descent step size and move the
particles by one step along the energy gradient. Do not move
particles for which D̃(xp) > 2Dp.

18 until stopping criterion of the gradient descent is met and every particle
has more than N ∗ neighbors.

19 Create cross-neighbor lists: find neighbors of the collocation points in the
set of source points.

20 Solve equations (2.27) for the interpolation kernels and the kernels for

evaluating the RHS of equation (5.3b). Use {xold
p } as source points and

{xp} as collocation points.

21 Interpolate the field values fold
p from xold

p to xp, obtaining fp.

22 Evaluate the RHS of equation (5.3b) and update fp.

23 t← t + ∆t

Algorithm 2: Adaptive multiresolution method using self-organizing La-
grangian particles
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approximation (∇2)h of the Laplacian operator ∇2 using the old particles
{x(n)

p , f
(n)
p } as source points, as described in §5.2.1.3. The pointwise errors

are defined as the differences

E0
p =

∣∣∣f (n+1)
p − f

(
x(n+1)

p

)∣∣∣ , E∇
2

p =
∣∣(∇2)hf (xp)−∇2f (xp)

∣∣ .
for the interpolation and the approximation of the Laplacian, respectively.
All kernels satisfy the corresponding moment conditions up to (and in-
cluding) the fourth moments, leading to fourth-order convergence of the
interpolation functions and second-order convergence of the Laplacian op-
erator, as verified in figure 5.11. As D0 decreases from 0.4 to 0.006, the
number of particles increases from 102 to 2 × 105, approximately. Due
to the self-organizaton, each value D(n)

0 corresponds to a different set of
particles to represent the test function f . The ruggedness of the conver-
gence plot in figure 5.11 for low resolutions can thus be interpreted as the
sensitivity of the error norm to the underlying particle distribution. This
is not specific to the present method. The same effect in the L∞-norm of
the error also occurs, for instance, in Cartesian finite-difference schemes
when rotating the mesh.

5.3.2 Advection

In order to illustrate the adaptivity of the present method, we consider
two-dimensional advection of a passive scalar f by a given velocity field
w:

∂f

∂t
+ w · ∇f = 0.

For direct comparison with the Lagrangian wavelet-particle method of
Bergdorf and Koumoutsakos [8], we consider the same test problem. This
comprises the advection of an initial “blob”

f (x, y, 0) =
i=1∑

i=−1

j=1∑
j=−1

√
2

2
erf
(
c1

(
c2 −

√
(x− x0 + i)2 + (y − y0 + j)2

)
+ 1
)
,

(5.11)
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Figure 5.11: Maximum errors in function approximation, maxpE
0
p (lower

curve), and in the approximation of the Laplacian, maxpE
∇2

p (upper
curve), for the test function (5.10), plotted against the average interparti-
cle spacing h =

√
|Ω| /N . Dashed lines indicate second- and fourth-order

convergence, respectively.
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with (x0, y0) = (0.5, 0, 75), c1 = 21.269446, and c2 = 0.16811704 by the
divergence-free velocity field

w = 2 cos (πt/T )

(
− sin2 (πx) sin (πy) cos (πy)
sin2 (πy) sin (πx) cos (πx)

)
(5.12)

in the computational domain Ω = [0, 1]2 with doubly periodic boundary
conditions. We simulate the time evolution of the advected field f up to
final time T = 2.5. The analytical solution at this final time is identical to
the initial condition (5.11). The maximum distortion of the field f occurs
at t = T/2 and is shown in figure 5.12.
As Bergdorf and Koumoutsakos [8], we use a fourth-order Runge-Kutta
time-stepping scheme with a time step of ∆t = 0.025. Interpolation is
performed using fourth-order kernels and the error is defined as

E (x) =
(
fh (x, T )− f (x, T )

)
‖f (x, T )‖−1

∞ . (5.13)

Figure 5.13 shows the L∞ norm of E (x) as a function of the the average
interparticle spacing h = 1/

√
N . The convergence is fourth-order, as ex-

pected. Quantitatively, the errors are lower than or comparable to those
published for the wavelet-particle method [8] for the same test case.

5.3.3 Solid-Body Rotation with Diffusion in 2D and 3D

As an advection-diffusion problem with known analytical solutions in both
2D and 3D, we consider the n-dimensional Gaussian pulse

f (x, 0) = exp

(
−Pe
|x− x0|2

4

)
, (5.14)

initially centered at x0, diffusing and being advected by solid-body rotation
about the center of the computational domain Ω = [−L,L]n. This is
described by the equation

∂f

∂t
+ w · ∇f =

1
Pe
∇2f, (5.15)
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Figure 5.12: Passive advection of a scalar by the velocity field (5.12). The
figure shows the particles at the time of maximum distortion, t = T/2.
Color codes the function values fp.
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Figure 5.13: L∞-error in the passive advection of the function (5.11) versus
the average interparticle spacing h = 1/
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N . The dashed line indicates

fourth-order convergence.
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where Pe is the dimensionless Péclet number and w is the velocity field of
the solid-body rotation. After one revolution, at t = 1, the exact solution
is given by

f (x, 1) = 2−n/2 exp

(
−Pe
|x− x0|2

8

)
. (5.16)

All kernels satisfy the corresponding moment conditions up to (and in-
cluding) the fourth moments. The characteristic width of the initial pulse,
(2/Pe)1/2, and the halfwidth L of the computational domain are such that
f is negligible near the boundaries of Ω at all times t ≤ 1. The method
converges with the expected second-order accuracy, the error being domi-
nated by the diffusion term (the advection term is, in this case, computed
exactly). The results are compared with those obtained using a remeshed
Lagrangian particle method. There, advection is also computed exactly
and diffusion is performed using second-order centered finite differences
after particles have been interpolated onto a uniform Cartesian mesh of
resolution h using the third-order M ′

4 interpolation kernel [22] first in-
troduced by Monaghan [64]. Time-stepping is done in both cases using
a forward Euler scheme with step size ∆t = h2

min/4, where hmin is the
smallest distance between any two particles. Trivially, hmin = h for the
remeshed Lagrangian particle method.
We first consider the two-dimensional case with the domain Ω = [−1, 1]2,
the center of the pulse x0 = (0.58, 0.02), and the velocity field w =
2π(y,−x). An example particle distribution after adaptation to the initial
condition (5.14) is shown in figure 5.14 for Pe = 104. The steep gradients
of the Gaussian pulse are well resolved by the self-organizing particles. Fig-
ure 5.15a shows the maximum pointwise error (5.13) at t = 1 for different
resolutions and for Pe = 1000. The method converges with the expected
second-order accuracy of the diffusion operator.
We illustrate the behavior of the present method in three dimensions by
considering the case with Ω = [−1.5, 1.5]3, x0 = (0.58, 0.02, 0.02), and
w = 2π (y,−x, 0). Also for three dimensions, the method converges with
the expected accuracy, as shown in figure 5.15b for Pe = 100. We do not
show the maximum pointwise errors for the remeshed Lagrangian particle
method because the computations performed in the range of h shown in
the plot are not yet in the region of convergence. More particles would be
necessary.
For solutions with large gradients, the finest scales that are resolved by
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Figure 5.14: Example particle distribution {xp, yp, f(xp, yp, 0)} after adap-
tation to the initial condition of the advected Gaussian pulse problem
(Eq. (5.14)) for Pe = 104. (a) entire computational domain Ω; (b)/(c)
successive close-ups on the Gaussian pulse.
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Figure 5.15: Maximum pointwise error versus average interparticle spacing
h in the advection-diffusion problem (5.15) after one revolution of the
Gaussian pulse at t = 1. (a) Two-dimensional case with Pe = 1000 and
h = 2/

√
N ; filled circles: remeshed Lagrangian particle method, open

circles: present method. (b) Three-dimensional case with Pe = 100 and
h = 3/N1/3. Both dashed lines indicate second-order convergence.
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the present method are of length D0/max |∇f |, which in this test case
decreases as Pe−1/2. This length is approximately 0.23D0 for Pe = 100.
In the three-dimensional case we find that the corresponding number of
particles required to achieve the same resolution on a uniform Cartesian
mesh is about 50 times larger than when using the present multiresolution
method.

5.3.4 2D Burgers equation

In order to demonstrate the performance of the present method on a non-
linear problem, we consider the two-dimensional unsteady Burgers equa-
tion

∂u

∂t
+ Re u · ∇u = ∇2u, (5.17)

where Re is the Reynolds number and u = (u, u). We solve equation (5.17)
subject to the initial condition u(x, y, t = 0) = sin (2πx) cos (2πy) and
doubly periodic boundary conditions in the computational domain Ω =
[0, 1]2. For large Re, the Burgers equation behaves as a hyperbolic partial
differential equation and the solution develops steep wave fronts over time,
requiring an increasingly high resolution.
The solution as computed by the present method is shown in figure 5.16
at t = 0.17/Re for Re = 1000 and D0 = 0.15. The steep gradients in
figure 5.16a correspond to the dense regions in figure 5.16b. The ratio of
scales between fine and coarse regions is approximately 12 in this case and
depends mostly on the gradient of the solution u and not on the user-
defined resolution limit D0. This indicates that all scales in the solution
are properly resolved.
For comparison, we also solve the Burgers equation (5.17) using a remeshed
Lagrangian particle method in the weak formulation where particles have
a volume and carry an extensive strength. We use the fact that equa-
tion (5.17) can be rewritten in conservative form as a transport equation
for the quantity u with a flow of velocity Re u/2:

∂u

∂t
+∇ ·

(
Re u

2
u

)
= ∇2u. (5.18)

The particles are initialized on the nodes of a uniform Cartesian mesh
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Figure 5.16: Numerical solution of the 2D Burgers equation for Re = 1000
at t = 0.17/Re using the present method. (a) Values of u(x, y) interpolated
onto a Cartesian mesh for visualization purposes; color codes function
value u. (b) Particle positions and sizes; color codes log10(Dp).

120



5.3. Numerical experiments and benchmarks

covering Ω with a resolution of h. Advection with the velocity Re u/2 is
performed using forward Euler with a time step of ∆t = h2/4. After each
time step, the particles are remeshed using the M ′

4 interpolation kernel
with width ε = h [64]. The diffusion term is computed on the mesh using
centered second-order finite differences.
Since no analytical solution is available for this problem, we use a numerical
reference solution computed on a 2048 × 2048 mesh using the remeshed
Lagrangian particle method. A second-order interpolation of this reference
solution is used to compute pointwise errors at all particle locations. The
maximum of these pointwise errors as a function of h = 1/

√
N is shown

in figure 5.17 at t = 0.1/Re for Re = 100. Convergence with the average
interparticle spacing h is second order in both cases. We use fourth-order
interpolation kernels and second-order kernels for the approximation of the
Laplacian. Time integration is done using forward Euler with a time step
∆t = h2

min/4, where hmin is the smallest distance between any two particles
in the domain. We do not show a convergence plot for the simulation
at Re = 1000, the solution shown in figure 5.16 because our numerical
reference solution that we obtained with the remeshed Lagrangian particle
method is not accurate enough.
The maximum number of particles used by the present method to achieve
any given error level in this case (Re = 100) is about eight times smaller
than that of the remeshed Lagrangian particle method, independent of the
target error level. This ratio, however, depends on the solution itself and
increases as finer scales and steeper gradients develop.

5.3.5 The five-spot problem: 2D Buckeley-Leverett
equation

As a real-world application we consider another two-dimensional nonlinear
problem, known as the five-spot problem or the waterflooding problem.
This popular test case for oil reservoir modeling describes the injection of
a wetting fluid (water) at the center of a porous medium initially saturated
with a nonwetting fluid (oil). The oil is flushed away by the pressurized
water and sucked out from the four corners of the reservoir. Details of this
test case are described by Iske and Käser [45]. When neglecting gravity
and capillary effects, the problem reduces to the viscous Buckeley-Leverett
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N of the 2D Burgers equation at t = 0.1/Re for Re = 100;

filled circles: remeshed Lagrangian particle method, open circles: present
method. The dashed line indicates second-order convergence.
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equation
∂u

∂t
+ v · ∇f (u) = ν∇2u (5.19)

for the water saturation u. Here, the flux function f is of the form

f(u) =
u2

u2 + µ (1− u)2
,

where µ > 0 is the ratio of the two fluids’ viscosities. The artificial diffusion
term on the right-hand side of equation (5.19), with ν > 0, is a standard
regularization technique to render the equation parabolic and guarantee
the existence of smooth solutions.
The oil is pumped out at the four corners of the domain Ω = [−0.5, 0.5]2

and water is injected at the origin x = 0. Using the same simplifications
as Iske and Käser [45], we assume that the velocity field is stationary and
given by v = −∇p with

p =
4∑

i=1

log (‖x− ci‖)− log (‖x‖) ,

where ci are the positions of the four corners, as plotted in figure 5.18a.
At t = 0, u ≡ 1 inside a disk of radius 0.02 centered at the injection well
x = 0. Equation (5.19) is then solved using the present method. Time
integration is done using forward Euler with a step size of ∆t = h2

min/4.
Particle distributions and saturation fields at different times are shown
in figure 5.19. The particles mostly adapt to concentrate near the steep
water/oil front. The number of particles in the simulation grows from
373 to 7300 as the front elongates and propagates across the reservoir, see
figure 5.18b.

5.4 Conclusions and Discussion

We presented an adaptive multiresolution Lagrangian particle method
where the particles self-organize according to adaptation pseudo forces
such as to smooth the numerical approximation error. This reduces the
total number of particles required to represent the solution field with a
given accuracy everywhere. In contrast to previous multiresolution parti-
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Figure 5.18: (a) Velocity field for the five-spot problem. The injection
well is in the center of the domain and the fluid is pumped out from the
four corners. (b) Adaptive evolution of the number of particles N during
a simulation using the present method.
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Figure 5.19: Visualization of the particle distribution (left column) and
water saturation field (right column) for the five-spot problem at different
times: (a)/(b) t = 0; (c)/(d) t = 0.056; (e)/(f) t = 0.09.
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cle methods, the present approach does not require any implicit or explicit
mapping functions into a reference space of uniform resolution, nor does
it require global transforms or data structures. This makes it particu-
larly well suited for the implementation on large-scale distributed-memory
computers and for problems in complex geometries or where the resolution
requirements are not priorly known.
The present method relies on pairwise interaction potentials according to
which the particles self-organize in an energy minimization process. To-
gether with dynamic insertion and removal of particles, this leads to a ro-
bust and efficient adaptation of the particle density to the features of the
field functions to be represented. Remeshing is replaced by interpolation
from the old set of particles before self-organization to the new, adapted set
of particles. The adaptation potential hereby guarantees that the solution
field is always well sampled and that no holes or clusters develop in the
particle distribution. The method relies on DC approximations of differen-
tial operators on scattered sets of particles with varying kernel widths, as
well as on DC particle-particle interpolation schemes with the Kronecker
delta property. Computing the DC operators and the interpolation ker-
nels requires inverting a small linear system of equations for each particle.
These systems, however, only need to be solved once and all operator and
interpolation kernels can be computed from the same inverse.
Compared to state-of-the-art multiresolution methods, the errors of the
present method are competitive, as demonstrated by comparing them to
those of the wavelet-particle method [8]. Compared to nonadaptive meth-
ods, the present method is beneficial whenever the solution has multi-scale
features. In these cases, the present method requires much fewer particles.
We have shown that the truncation errors of the discretization schemes
correspond to those predicted by theory, both for particle-particle inter-
polation and for the DC PSE operators. We have validated the present
method in two- and three-dimensional advection-diffusion problems where
analytical solutions are available and have shown that the method can be
used to address also more complex, nonlinear problems.
In its current form, however, the present method has a couple of limita-
tions. A main limitation is that it is not conservative. Exact conservation
of mass could be enforced by symmetric DC PSE operators. Constructing
such operators, however, is an open problem for convergence orders larger
than one, see also §2.2. Another limitation of the present formulation is
that in global time-stepping schemes, such as Euler or Runge-Kutta, the
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time step size is dictated by the CFL condition in the highest-resolution
region. In applications where most of the particles are located in coarsely
resolved regions, this is clearly inefficient. Multiresolution time-stepping
schemes, such as the multirate Runge-Kutta scheme [78], are available to
alleviate this. In most applications of multiresolution methods, however,
the majority of the particles is located in high-resolution regions.
Current and future work is concerned with generalizing the presented
method to also discretize the weak form of the governing equations. This
requires particles with a nonzero physical volume that carry the exten-
sive quantity associated with the field f . Weak formulations are favorable
if f is discontinuous. It should then also be interesting to compare the
present DC method to its UC counterpart. This will be possible once the
particle volumes are evolved during the simulation. Since the particle dis-
tribution is well-ordered due to the self-organization, UC operators may
be compatible for reasonable target errors, even though the neighbor lists
will need to be larger. Another topic of future work is benchmarking the
parallel scalability and efficiency of the present method as implemented
based on the PPM library [4, 77], and coupling of the present method
with multiresolution Poisson solvers for far-field interactions.
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CHAPTER

SIX

Conclusions and Outlook

This thesis examined and discussed discretization correction of particle
strength exchange (PSE) operators and introduced a novel multiresolution
particle method using self-organizing particles. In particular, we studied
the operators’ numerical properties, their relations to other operator types,
and their performance in practice. We summarize the key contributions of
this thesis below and discuss opportunities for future work.

Discretization Correction of PSE operators We have presented
a general framework for discretization correction of PSE operators. We
have studied and discussed the properties of DC PSE operators both the-
oretically and empirically. As expected, we found significant differences to
the properties of uncorrected (UC) PSE operators.
DC PSE operators were found more accurate than their UC counterparts.
Particularly near boundaries and on irregular particle distributions, the
discretization correction was found to be crucial for converging approxi-
mation errors. The higher accuracy of the DC PSE operators goes along
with lower numerical diffusion and dispersion, which results in more re-
strictive time-step limits. One of the main advantages of the DC PSE
operators is that they allow to significantly reduce the number of parti-
cles needed to evaluate the operator while maintaining or even increasing
its accuracy. However, discretization correction is computationally expen-
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sive because a small1 linear system of equations has to be solved for each
particle. The overall benefit of the discretization correction was therefore
assessed in numerical experiments.
As expected, the discretization correction accounts for the largest part of
the computational cost of the operator evaluation. This is particularly pro-
nounced for moving particles because the operators need to be recomputed
whenever the particle distribution changes. For fixed particle distributions
the correction has to be performed only once, at the beginning of a simu-
lation, and the use of DC operators is always worthwhile. This is true also
when remeshing is done at every time step. The computational efficiency
of the DC PSE operators thus depends on the type of simulation. We
therefore tested it in different benchmarks and compared it to standard
finite difference (FD) stencils and to UC PSE operators. We found that,
if the particles are remeshed at every time step, the remeshing error domi-
nates the overall error. Lagrangian FD schemes are then the most efficient
choice because the standard finite-difference stencils are the most compact
operators on uniform Cartesian meshes. In problems where frequent re-
meshing is not required, DC PSE operators can outperform both UC PSE
operators and FD stencils. While UC PSE operators require a finer resolu-
tion and more neighbors to reach the same accuracy, FD stencils can only
be employed if remeshing is done at every time step, in which case the
remeshing error also demands a finer resolution. We therefore conclude
that the computational cost of discretization correction is amortized by
the gain in accuracy for advection-dominated problems with remeshing at
large time intervals. If advection plays a minor role, Eulerian methods are
more efficient.
We showed how DC PSE operators are formulated consistently for mul-
tiresolution particle distributions. We also highlighted how a single dis-
cretization correction can be (re)used to approximate derivatives of differ-
ent degrees as well as to interpolate a field between two sets of scattered
particles. This greatly improves the computational efficiency of simula-
tions where different types of differential operators or interpolations are
required.

1 The number of equations and unknowns depends on the order of accuracy, the
order of the approximated derivative, and the number of spatial dimensions. For a
two-dimensional second-order operator approximating a first derivative, for example,
there are six equations and unknowns; in three dimensions, there are ten.
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A main limitation of discretization correction as presented in this thesis
is that the exact conservativeness of the PSE operators is lost. More pre-
cisely, the symmetry in the particle-specific contributions to the derivative
approximations is broken. A possible solution to this problem could in-
volve approximating derivatives at off-particle locations for determining
the pairwise strength exchange between two particles. This, however, is
costly because kN/2 instead of N discretization corrections are required,
where N is the number of particles and k is the average number of neigh-
bors per particle. Future work dedicated to the restoration of conserva-
tiveness would be a valuable contribution.

Relatives of DC PSE Operators Several types of operators are
available for approximating field derivatives on discrete (scattered) data
points. The discretization correction framework presented in this thesis
allowed us to investigate the relation between DC PSE operators and four
other operator types. This helped to position DC PSE operators in the
family of differential operators used in numerical methods and allowed a
unifying view on method descriptions.
We have shown that DC PSE operators are directly related to FD stencils.
For uniform Cartesian particle distributions and an infinitely peaked win-
dow function, DC PSE operators reduce to standard, classical FD stencils.
Furthermore, we highlighted the relation to between DC PSE operators
and the operators used in corrected SPH, RKPM, MLS, DRK, and re-
distribution schemes. Unlike all these operators, DC PSE operators for
approximating derivatives of even order do not impose any condition on
the zeroth moment of the kernel function. We found that this freedom
to adjust the zeroth moment can lead to better stability in explicit time
stepping. DC PSE operators thus provide more flexibility than the other
operators. Nevertheless, DC PSE operators become equivalent to other
operators in special cases: if

(i) the zeroth moment of a DC PSE operator is set to zero,

the DC PSE operator is equivalent to the operators used in corrected
smoothed particle dynamics or reproducing kernel particle methods. If
additionally

(ii) the volumes of the particles are all set to one,

it is equivalent to the operators used in moving least squares methods or
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differential reproducing kernel methods. If in addition to (i) also

(iii) the number of neighbors of each particle is the identical to the num-
ber of moment conditions and

(iv) the explicit Euler time stepping scheme or the explicit second-order
Runge-Kutta time stepping scheme is used

the DC PSE operator for diffusion is equivalent to the diffusion operator of
the redistribution methods by Shankar and van Dommelen or Gharakhani,
respectively. If (iii) is not true, the diffusion operator of the redistribution
method can be seen as a DC PSE operator based on a specific window func-
tion. In summary, the operator types considered here can be interpreted
as special cases of DC PSE operators.
Future research could study how the value of the zeroth moment influences
the properties of DC PSE operators. The operators’ flexibility could then
be exploited for improved operator designs. We are, however, not sure
that general correlations can be found.

Objective Rating of Operator Properties There are many possi-
ble choices for differential operators in particle methods. The repertoire of
diffusion operators is particularly large due to their widespread occurance.
Usually, comparing different operators is either done on a conceptual level
or based specific benchmark problems. While the former approach is usu-
ally not helpful in practice, the latter requires transferring the benchmark
results to a possibly different type of application. We therefore introduced
three problem-independent measures that quantify the accuracy, the sta-
bility in explicit time-stepping schemes, and the computational cost of dis-
cretized diffusion operators. These measures are designed for an objective
comparison of different operators. We have shown in two test problems
that they can be used to select efficient operators from a pool of given
operators. In fact, we could demonstrate that the simulations using the
predicted best2 operators are more than twice as fast as the ones using a
compact FD stencil. While the compact FD stencil was the most accu-
rate operator in our pool, and the one with the lowest computational cost,
the appointed operator still “won” because it allowed larger time steps.
As this outcome is not obvious, we conclude that the presented quality
measures were successful in the two cases considered.

2appointed by the presented objective rating framework.
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Furthermore, we used the three quality measures in a parameter study for
UC and DC PSE operators. We found the operator properties to form
characteristic landscapes in parameter space. These results help develop
a deeper understanding of the correlations between the free operator pa-
rameters and the operator properties. They are expected to be useful for
operator tuning and operator design.
Even though we demonstrated that the three quality measures can rate
operators of different types, we only considered PSE operators in the pa-
rameter study. It should be interesting to evaluate the measures also for
collections of different operators in order to enable comparisons across
numerical methods.

Adaptive Multiresolution Simulations using Self-Organizing
Lagrangian Particles We introduced a novel numerical method for
the solution of multiresolution transport problems. It uses Lagrangian
particles that self-organize into well-ordered multiresolution configurations
according to particle-particle interaction potentials. The self-organiza-
tion includes a particle insertion and removal strategy, leading to dynamic
adaptation of the number of particles to the resolution requirements. The
method neither involves a mapping function, nor multiresolution meshes,
but is inherently adaptive to the current solution. This simplifies its im-
plementation and parallelization and renders it well suited for problems in-
volving complex geometries or resolution requirements that are not known
in advance. As the method is based on the strong formulation of the equa-
tions to be solved, it requires discretization correction both for differential
operators and interpolation. We demonstrated that DC PSE operators
are a suitable choice. We further demonstrated that the method outper-
forms nonadaptive methods if the solution has multiple scales, and that
it is competitive with the particle-wavelet method, a state-of-the-art mul-
tiresolution particle method.
Future work is concerned with generalizing the method to the weak for-
mulation, which is beneficial for discontinuous solutions. The main issue
there is the evolution of the particle volumes in combination with dynamic
particle insertion and removal. The next step is to couple the method with
multiresolution Poisson solvers for far-field interactions.
In the weak formulation it could also be interesting to use UC PSE oper-
ators. Since the particle configuration is well ordered due to self-organi-
zation, there is a good chance that UC operators will perform reasonably
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well. Their reduced computational cost would then render the method
more attractive whenever intermediate accuracy is sufficient.
The self-organization of the particles relies on a robust ground state of the
interaction potential. As potentials can be designed to have specific ground
states, a thorough comparison of different particle configurations could be
interesting. We suggest comparing different interaction potentials for self-
organization using the three quality measures introduced in this thesis. As
the operator properties depend on the particle distribution, their rating
could provide a means of selecting good interaction potentials.
Finally, future work should include benchmarking the parallel scalability
of the method.
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APPENDIX

A

Test Cases

A.1 A Two-Dimensional Advection-Diffusion Test
Case

We describe the two-dimensional advection-diffusion problem that is used
as a test case in §2.4.2.2 and provide details about the numerical methods
used.

A.1.1 Test Case Description

We solve the dimensionless advection-diffusion equation

∂f(x, t)
∂t

+∇ · (f(x, t)u(x)) =
∇2f(x, t)

Pe
, x ∈ Ω, t ∈ [0, T ],

for the unknown field f(x) = f(x, y) in the unit square Ω = [0, 1]2. The
Péclet number Pe represents the ratio between advection and diffusion.
Higher Péclet numbers thus characterize more advection-dominated prob-
lems. The advection velocity field u(x) = (y, 0) is that of a Couette flow
between two parallel flat walls (neglecting pressure gradients). The wall
at y = 0 is fixed whereas the one at y = 1 moves with unit speed. Both
walls are subject to homogeneous Neumann boundary conditions, and we
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assume periodicity along x. The initial condition is given by

f0(x) = f(x, t = 0) = K +
3∑

k=0

(−1)k cos(2(2k + 1)πx)
2k + 1

, K = const.,

which defines a smooth (regularized) approximation to a rectangular pulse.
We consider four different Péclet numbers: Pe ∈ {1, 10, 100, 1000}.

A.1.2 Reference Solution

We compare the numerical results obtained with UC and DC PSE opera-
tors to a reference solution at final time

T =
Pe + 2− 2

√
Pe + 1

Pe
.

This is the time at which the mass diffusion length
√

4T/Pe, added to the
maximum distance traveled by a particle due to advection, is one. The
reference solution is computed using a Lagrangian finite difference method
(see §A.1.3.3) on a high-resolution grid of 1000× 1000 nodes for Pe = {1,
10, 100} and 1600 × 1600 for Pe = 1000. The L∞ norm of the relative
error — normalized by the concentration range

max
i,j

f
T/∆t
i,j −min

i,j
f

T/∆t
i,j

of the reference solution — is computed after interpolating the reference
solution from the grid to the particle locations. The interpolation is linear.
The interpolation error is considered insignificant compared to the errors
from the comparably low resolved simulations.

A.1.3 Method Details

We implement the numerical methods described in the following in Fortran
90, compiled with the Intel Fortran Compiler v11 with optimization flag
-O3, and run the simulations on Intel Xeon QuadCore 2.8GHz processors
with 2GB RAM per core (4 simulations per processor, no multithreading).
The linear systems of equations of the discretization correction are solved
using the LU factorization provided by LAPACK [3].
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A.1.3.1 PSE Operators

All simulations start from a Cartesian particle distribution of resolution
h and use explicit Euler time stepping with ∆t . 0.15h2Pe. Since the
advection velocity field is divergence-free, the particles retain equal and
constant volumes v = h2. Their strengths are initialized to Fp(t = 0) =
vf0(xp(t = 0)). The time evolution of the particle positions and strengths
is given by:

xp(t+ ∆t) = xp(t) + ∆tu(xp(t)) ,

Fp(t+ ∆t) = Fp(t) +
∆t
Pe

[
Q

(2,0)
h +Q

(0,2)
h

]
Fp(t) ,

where the subscript p = 1, . . . , N is the particle index. The operators Qβ
h

are chosen as either DC or UC PSE operators with varying c and rc (see
§2.4.2.2). The discretization correction is recomputed at each time step
unless the particles are remeshed. For irregular particle distributions, the
zeroth-order moment of the DC kernels is fixed to Z0

h = 5. The homoge-
neous Neumann boundary conditions are imposed using mirror particles
in a band of width rc outside the domain (method of images).
Remeshing is done by interpolating the particle strengths to a new set of
particles with uniform Cartesian positions xp as

F (xp) =
N∑

q=1

F̃ (x̃q)M ′
4

(
xp − x̃q

h

)
M ′

4

(
yp − ỹq

h

)
, (A.1)

with the third-order accurate M ′
4 interpolation kernel, introduced as the

W4-function by Monaghan [64]:

M ′
4(z) =


0, |z| > 2,
1
2 (2− |z|)2(1− |z|), 1 ≤ |z| ≤ 2,
1− 5

2z
2 + 3

2 |z|
3, |z| ≤ 1.

(A.2)
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A.1.3.2 Eulerian Finite Differences

The solution f(x, t) is approximated on a uniform Cartesian grid of resolu-
tion h. The values fn

i,j at all grid nodes {i, j} are evolved in time (t = n∆t)
as

fn+1
i,j = fn

i,j +
∆t
h2

[
1

Pe′j
(fn

i+1,j − 2fn
i,j + fn

i−1,j)

+
1
Pe

(fn
i,j+1 − 2fn

i,j + fn
i,j−1)− yjh(fn

i,j − fn
i−1,j)

]
,

where Pe′j = 2Pe/(2 − yjhPe) if Pe ≤ 2/h, and Pe′j = ∞ else. We use
a time step of ∆t . min[0.15h2Pe, 0.30h]. The scheme is second-order
accurate for Pe ≤ 2/h and first order otherwise. The Neumann boundary
conditions are again imposed using the method of images.

A.1.3.3 Lagrangian Finite Differences

The solution is approximated on a uniform Cartesian grid, but advection
and diffusion are treated using a time-splitting scheme. In each time step,
the grid nodes are advected with the flow and remeshed using the M ′

4

kernel. Afterward, diffusion is computed using the FD scheme

fn+1
i,j = fn

i,j +
∆t
h2Pe

[
fn

i+1,j + fn
i−1,j + fn

i,j+1 + fn
i,j−1 − 4fn

i,j

]
with a time step of ∆t . 0.15h2Pe. The method of images is applied at
the Neumann boundaries, and periodicity is used along x.

A.2 A Three-Dimensional Advection-Diffusion
Test Case

The test case consists of solving the advection-diffusion equation

∂f

∂t
+∇ · (fv) = ∇ · (ν∇f) in R3 × [0, T ]
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Case

with the flow field, the viscosity field, and the initial concentration given
by

v(x) = [cosx sin y sin z, sinx cos y sin z, sinx sin y cos z]T,
ν(x) = sinx sin y sin z + 1, and
f0(x) = f(x, t = 0) = sinx sin y sin z,

respectively. The analytical solution is

f(x, t) = sinx sin y sin z exp (−3t) .

The problem is computed in a cube of side length L = 2π with periodic
boundary conditions, thus no boundary effects affect the numerical solu-
tion.
Explicit Euler time stepping is used for time integration, hence,

fp(t+ ∆t) =
Vp(t)

Vp(t+ ∆t)
[fp(t) + ∆tQhfp(t)],

xp(t+ ∆t) = xp(t) + ∆tv(xp(t)),
Vp(t+ ∆t) = Vp(t)[1 + ∆t∇ · v(xp(t))],

where the subscript p indicates properties of particle p. For remeshing, the
concentration field f is interpolated from the current particle positions x̃p

to the positions xp of the remeshed particles using the M ′
4-kernel given in

equation (A.2):

fp(t) =
1
h3

∑
q

ṽq(t)f̃q(t)
3∏

i=1

M ′
4

[
(xp − x̃q(t))i

h

]
.
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APPENDIX

B

Limiting FD Stencil of the Second-Order

n-Dimensional Anisotropic Diffusion

Operator

The anisotropic diffusion operator

Df(x) = ∇ · (L(x)∇f(x)) =
n∑

i,j=1

∂

∂xi

(
Lij(x)

∂f(x)
∂xj

)

can be approximated with second-order accuracy by the PSE operator [26]

Qf(x) =
1
ε2

∫
Rn

n∑
i,j=1

Mij(x,y)ψε
ij(y − x)(f(y)− f(x))dy . (B.1)

In order for the operator to be symmetric (and hence conservative), the
matrix M(x,y) is chosen as [26]

M(x,y) =
m(x) + m(y)

2
, with m(x) = L− 1

n+ 2
Tr(L)I . (B.2)

The continuous moment conditions for the kernel function ψij(z) are

Zα
ij = 0 for 1 ≤ |α| ≤ 3 and |α| 6= 2, and
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n∑
i,j=1

mij(x)Zek+el
ij = 2Lkl(x) ∀k, l ∈ [1, n], with Zα

ij =
∫

Rn

ψij(z)zαdz.

With a kernel function of the form ψij(z) = zizj(a0 + a1|z|) exp
(
−z2

)
,

i, j = 1, . . . , n, and equation (B.2), this translates into the moment condi-
tions

Z
ei+ej

ij = 1 if i 6= j, and

Z2ei
ii = 3 . (B.3)

The integral operator (B.1) is discretized as

Qhf(x) =
1
ε2

∑
p

vp

n∑
i,j=1

Mij(x,xp)ψε
ij(xp − x)(f(xp)− f(x)) (B.4)

and for symmetric particle distributions the discrete moment conditions
are analogous to the continuous conditions (B.3). The operator for a uni-
form Cartesian particle distribution is hence given by

Qhf(x) =
cn+2

2ε2

l∑
|k|2=0

n∑
i,j=1

(mij(x) +mij(x + kcε))(f(x + kcε)− f(x))

× (a0 + a1c|k|)kikj exp
(
−c2|k|2

)
, k ∈ Zn, (B.5)

where k is a vector of integers, l = brc/hc2, and rc is arbitrary, but large
enough to contain the resulting FD stencil. The coefficients a0 and a1 are
obtained by solving the system of equations that results from substituting
the kernel into conditions (B.3), thus:

cn+4
l∑

|k|2=0

(a0 + a1c|k|)k2
pk

2
q exp

(
−c2|k|2

)
= 1 , p 6= q,

cn+4
l∑

|k|2=0

(a0 + a1c|k|)k4
p exp

(
−c2|k|2

)
= 3.

This system can be solved analytically and the coefficients a0 and a1 are
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found as

a0 =
3B −D

cn+4(BC −AD)
, a1 =

C − 3A
cn+5(BC −AD)

, where (B.6)

A =
l∑

|k|2=0

k2
pk

2
q exp

(
−c2|k|2

)
, B =

l∑
|k|2=0

|k|k2
pk

2
q exp

(
−c2|k|2

)
, p 6= q,

C =
l∑

|k|2=0

k4
p exp

(
−c2|k|2

)
, D =

l∑
|k|2=0

|k|k4
p exp

(
−c2|k|2

)
.

Substituting these coefficients into equation (B.5) yields

Qhf(x) =
1

2h2U

l∑
|k|2=0

n∑
i,j=1

(mij(x)+mij(x+kcε))(f(x+kcε)− f(x)),

× (V +W |k|)kikj exp
(
−c2|k|2

)
where

U = BC −AD,V = 3B −D,W = C − 3A.

This can be rewritten as

Qhf(x) =
∑
|k|2=1

n∑
i,j=1

(mij(x) +mij(x + kcε))(f(x + kcε)− f(x))

× V2 +W2

2h2U3
kikj exp

(
−c2(|k|2 − 1)

)
+
∑
|k|2=2

n∑
i,j=1

(mij(x) +mij(x + kcε))(f(x + kcε)− f(x))

× V1 +
√

2W1

2h2U3
kikj exp

(
−c2(|k|2 − 2)

)
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+
l∑

|k|2=3

n∑
i,j=1

(mij(x) +mij(x + kcε))(f(x + kcε)− f(x))

× V1 +W1|k|
2h2U3

kikj exp
(
−c2(|k|2 − 2)

)
,

where

U3 = U exp
(
3c2
)
, V1 = V exp

(
c2
)
, V2 = V exp

(
2c2
)
,

W1 = W exp
(
c2
)
, W2 = W exp

(
2c2
)
.

In the limit c→∞,

lim
c→∞

U3 = 8(
√

2− 1), lim
c→∞

V1 = −2, lim
c→∞

W1 = 2, and

lim
c→∞

(V2 +W2) = 4(
√

2− 1)(4− n) .

Hence, we find the operator

lim
c→∞

Qhf(x) =
4− n
4h2

∑
|k|2=1

n∑
i,j=1

(mij(x) +mij(x + kcε))

× (f(x + kcε)− f(x))kikj

+
1

8h2

∑
|k|2=2

n∑
i,j=1

(mij(x) +mij(x + kcε))

× (f(x + kcε)− f(x))kikj . (B.7)

Using the vectors hi = hei, i = 1, . . . , n, where ei is the unit vector along
dimension i, this operator can be rewritten as

lim
c→∞

Qhf(x) =
4− n
4h2

n∑
i=1

{
(mii(x) +mii(x + hi))(f(x + hi)− f(x))

+(mii(x) +mii(x− hi))(f(x− hi)− f(x))
}
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+
1

8h2

n∑
i,k=1
i 6=k

{
(mii(x) +mii(x + hi + hk))(f(x + hi + hk)− f(x))

+(mii(x) +mii(x + hi − hk))(f(x + hi − hk)− f(x))
+(mii(x) +mii(x− hi + hk))(f(x− hi + hk)− f(x))

+(mii(x) +mii(x− hi − hk))(f(x− hi − hk)− f(x))
}

+
1

8h2

n∑
i,j=1
i 6=j

{
(mij(x) +mij(x + hi + hj))(f(x + hi + hj)− f(x))
−(mij(x) +mij(x + hi − hj))(f(x + hi − hj)− f(x))
−(mij(x) +mij(x− hi + hj))(f(x− hi + hj)− f(x))

+(mij(x) +mij(x− hi − hj))(f(x− hi − hj)− f(x))
}

=
4− n

2

n∑
i=1

[
mii(x)

∂2f

∂x2
i

+
∂mii

∂xi
· ∂f
∂xi

]

+
1
2

n∑
i,k=1
i 6=k

[
mii(x)

(
∂2f

∂x2
i

+
∂2f

∂x2
k

)
+
∂mii

∂xi
· ∂f
∂xi

+
∂mii

∂xk
· ∂f
∂xk

]

+
n∑

i,j=1
i 6=j

[
mij(x)

∂2f

∂xixj
+

1
2
∂mij

∂xi

∂f

∂xj
+

1
2
∂mij

∂xj

∂f

∂xi

]
+O(h2)

=
n∑

i,j=1

∂

∂xi

[
Lij(x)

∂f

∂xj

]
+O(h2) = Df(x) +O(h2) .

Expressing this in terms of the matrix L, instead of the matrix m, we find
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the compact second-order FD stencil for anisotropic diffusion

lim
c→∞

Qhf(x) =
4− n
4h2

n∑
i=1

{
(Lii(x) + Lii(x + hi))(f(x + hi)− f(x))

+(Lii(x) + Lii(x− hi))(f(x− hi)− f(x))

− 1
n+ 2

n∑
k=1

[
(Lkk(x) + Lkk(x + hi))(f(x + hi)− f(x))+

(Lkk(x) + Lkk(x− hi))(f(x− hi)− f(x))
]}

+
1

8h2

n∑
i,j=1
i 6=j

{
(Lii(x) + Lii(x + hi + hj))(f(x + hi + hj)− f(x))

+(Lii(x) + Lii(x + hi − hj))(f(x + hi − hj)− f(x))
+(Lii(x) + Lii(x− hi + hj))(f(x− hi + hj)− f(x))
+(Lii(x) + Lii(x− hi − hj))(f(x− hi − hj)− f(x))
+(Lij(x) + Lij(x + hi + hj))(f(x + hi + hj)− f(x))
−(Lij(x) + Lij(x + hi − hj))(f(x + hi − hj)− f(x))
−(Lij(x) + Lij(x− hi + hj))(f(x− hi + hj)− f(x))
+(Lij(x) + Lij(x− hi − hj))(f(x− hi − hj)− f(x))

− 1
n+ 2

n∑
k=1

[
(Lkk(x) + Lkk(x + hi + hj))(f(x + hi + hj)− f(x))

+(Lkk(x) + Lkk(x + hi − hj))(f(x + hi − hj)− f(x))
+(Lkk(x) + Lkk(x− hi + hj))(f(x− hi + hj)− f(x))

+(Lkk(x) + Lkk(x− hi − hj))(f(x− hi − hj)− f(x))
]}
.
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C

Evaluating the Quality Measures for

Different Diffusion Operators

Closed-form expressions for the quality measures introduced in §4.2 can
be derived for different types of diffusion operators. We exemplify this
by deriving the measures As and S for four different operators: PSE dif-
fusion operators, Fishelov diffusion operators, the diffusion operator of a
resampling method, and a diffusion operator used in smoothed particle hy-
drodynamics. The cost measure C is universal as it simply approximates
the number of particles used for evaluating Qhf(x).

C.1 PSE Diffusion Operators

Particle strength exchange (PSE) diffusion operators, briefly described in
§1.3, were introduced by Degond and Mas-Gallic for the cases of isotropic
and anisotropic viscosity, [26, 27]. In the following, we give their accuracy
measures As and their stability measure S.
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Diffusion Operators

C.1.1 The Case of Isotropic Viscosity

For the PSE operators defined in equation (1.3), the accuracy measures
are A−2(x) =∞ and

As(x) =

[
s+2∑
|α|=1

∑
|β|=s+2−|α|

1 + δ0,|β|

2csα!β!

∣∣∣Zα+β
h (x)− Y α+β

∣∣∣ ]−1

,−1 ≤ s < r,

Ar(x) =

[
r+2∑
|α|=1

∑
|β|=r+2−|α|

1 + δ0,|β|

2crα!β!

×
∑

p∈N (x)

∣∣∣∣∣vp

(
x− xp

ε

)α+β

ηε(x− xp)

∣∣∣∣∣
]−1

. (C.1)

These expressions are derived by Taylor-expanding f and ν in equation
(1.3) around x and finding a bound for the overall error (4.1), separating
problem-dependent and problem-independent terms.
For DC operators, by construction As(x) = ∞, s < r. In this case the
only relevant accuracy measure is Ar(x).
In order to express the stability measure S of a PSE diffusion operator,
such that the time step limit in explicit Euler time stepping is given by
equation (4.4), we consider the semi-discrete equation (4.3). Discretizing
the time derivative by a forward difference results in the explicit Euler
scheme

f(x, t+ ∆t) = f(x, t) + ∆tQhf(x, t).

A von Neumann stability analysis reveals that the limit on the time step
guaranteeing exponential stability is

∆t <
−2Im(ω(hk))
|ω(hk)|2

∀hk s.t. |hk| ∈ ]0,
√
nπ],

where

ω(hk) =
ı̂ν

ε2

∑
p∈N (x)

vp

[
exp

(
ı̂hk · xp − x

cε

)
− 1
]
ηε(x− xp)
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C.1. PSE Diffusion Operators

is obtained as the dispersion relation for a wave g(x, t) = exp (̂ı(k · x− ωt))
that satisfies the original equation (4.3). The problem-independent stabil-
ity measure S then is

S = min
|hk|∈]0,

√
nπ2]

{
−2νIm(ωmod(hk))
c2ε2|ωmod(hk)|2

}
, (C.2)

thus a quantitative measure for the admissible time-step size.

C.1.2 The Case of Anisotropic Viscosity

The accuracy measures for the case of anisotropic viscosity are A−2(x) =
∞ and

As(x) =

[
s+2∑
|α|=1

∑
|β|=s+2−|α|

(
1 + 3δ0,|β|

)
n

2α!β!

(
|tr(U)|
n

+
λU

max − λU
min

2

+
∣∣∣∣ tr(U)

n
− λU

max + λU
min

2

∣∣∣∣ )
]−1

, −1 ≤ s < r,

Ar(x) =

[
r+2∑
|α|=1

∑
|β|=r+2−|α|

1 + δ|β|,0

4α!β!

×
∑
p∈N

tr(Xp)

∣∣∣∣∣vpηε(x− xp)
(

x− xp

ε

)α+β
∣∣∣∣∣
]−1

.

The elements of the matrices Xp, U ∈ Rn×n are

(U)ij = Z
α+β+ei+ej

h − Y α+β+ei+ej , (Xp)ij =
(

x− xp

ε

)ei+ej

,

and λU
min and λU

max denote the minimum and maximum eigenvalues of U .
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The stability measure S is derived as in the isotropic case, resulting in

S = min
|hk|∈]0,

√
nπ2] −2αh2Im(Ω)

min

max(αh2Re(Ω)
min

2
, α

h2Re(Ω)
max

2
) + max(αh2Im(Ω)

min

2
, α

h2Im(Ω)
max

2
)

 ,
αX

min = λX
min −

tr(X)
n+ 2

, αX
max = λX

max −
tr(X)
n+ 2

,

where the elements of the matrix Ω are defined as

Ωij =
ı̂

ε4

∑
p∈N (x)

vp (exp(̂ık · (xp − x))− 1) ηε(x− xp)(x− xp)ei+ej .

The viscosity ν in condition (4.4) has to be replaced by tr(ν) in the
anisotropic case. We remark that condition (4.4) is then sufficient, but
not necessary.

C.2 A Fishelov Diffusion Operator

We consider a diffusion operator following the Fishelov scheme [33],

Qhf(x) = νh3
∑

p

f(xp)ηε(x− xp),

where

ηε(z) = ∇2W (z, ε) , W (z, ε) =
1

π
√
πε3

exp(−z2/ε2) , z = |z| .

Thus,

ηε(z) =
1

π
√
πε5

(
4
z2

ε2
− 6
)

exp(−z2/ε2)

for constant isotropic viscosity ν.
A Taylor expansion of f around x enables bounding the overall error ε(x),
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C.3. The Diffusion Operator of a Resampling Method

as in equation (4.1), with the accuracy measures

As =

[ ∑
|α|=s+2

c3−s

π
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∣∣∣∣∑
p
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4
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, −2 ≤ s ≤ 1,
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,

where Y α = 1 if α = 2ei and Y α = 0 else. The stability measure S is
obtained by substituting the dispersion relation

ωmod(hk) =
ı̂νc3

π
√
πε2

∑
p

eı̂hk·xp−x

cε

(
4
∣∣∣∣xp − x

ε

∣∣∣∣2 − 6

)

× exp

(
−
∣∣∣∣xp − x

ε

∣∣∣∣2
)

into equation (C.2).

C.3 The Diffusion Operator of a Resampling
Method

We derive the accuracy and stability measures for a resampling method [24]
with constant viscosity ν. From the evolution equation

f(xq, t+ ∆t) =
∑

p

vp(t)f(xp, t)G(xq − xp, ν∆t),

G(z, ν∆t) =
1

(4πν∆t)3/2
exp

(
− z2

4ν∆t

)
,
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one can construct the equivalent diffusion operator for explicit Euler time
stepping as

Qhf(x) =
∑

p

vp(t)f(xp, t)
G(x− xp, ν∆t)

∆t
− f(x, t)

∆t
. (C.3)

Fixing the CFL number αCFL = ∆tν/h2, the accuracy measures are

As =

[ ∑
|α|=s+2

∣∣∣∣ 1
8π
√
α5

CFLπc
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(
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− Y α
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]−1

, −2 ≤ s ≤ 1,

A2 = 8π
√
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4αCFLc2
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, (C.4)

where Y α = 1 if α = 0 or α = 2ei and Y α = 0 else. The stability measure
S can not be given in closed form, but should be defined as the maximum
CFL number αCFL such that∣∣∣∣∣∣∣∣

∑
p

exp
(
ı̂hk · xp−x

cε − 1
4αCFL

∣∣∣xp−x
cε

∣∣∣2)
√

4παCFL
3

∣∣∣∣∣∣∣∣ < 1 ∀ |hk| ∈ ]0,
√
nπ]. (C.5)

Numerical exploration of equation (C.5), however, reveals that there is a
lower bound rather than an upper bound on the CFL number. The left
panel of figure C.1 shows the dependence of the numerical amplification on
the CFL number for uniform Cartesian particle distributions and rc/h = 6.
The dashed line marks the CFL number where the amplification is one.
The CFL number hence has to be chosen larger than this minimum value
(αCFL)min. The minimum value (αCFL)min depends on the cutoff radius.
This dependence is shown in the right panel of figure C.1. Note that in this
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Figure C.1: Numerical stability of the resampling method. Left panel:
Amplification versus CFL number αCFL for rc/h = 6. The dashed line
marks the CFL number (αCFL)min where the amplification is one. Right
panel: Dependence of the minimum CFL number on the cutoff radius.
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method the highest amplifications occur for the smallest wavenumbers.
This is because the amplification is simply the numerical quadrature of
the heat kernel G using the rectangular rule. Hence, it is an artifact of the
discretization error of the method.
As we did not find an upper bound for the CFL number, a stability measure
as it exists for the other diffusion operators cannot be defined. Instabilities
here thus occur for small time steps rather than for large ones.

C.4 A Robust Diffusion Operator in Smoothed
Particle Hydrodynamics

Cleary and Monaghan [18] introduced a robust (towards particle disor-
der and jumps in the viscosity) diffusion operator for smoothed particle
hydrodynamics:

Qhf(x) =
∑

p

mp

ρp
(f(xp)− f(x))µ(x,xp)ηε(x− xp), (C.6)

where the ratio of mass mp and density ρp can be replaced by the particle
volume vp,

µ(x,xp) =
4ν(x)ν(xp)
ν(x) + ν(xp)

, zηε(z) = −∇W (z, ε) ,

and W (z, ε) is as in equation (C.2). Thus,

ηε(z) =
2

π
√
πε5

exp
(
−z

2

ε2

)
.

Due to the nonlinear mean µ(x,xp), we did not find a bound for the overall
error of the form given in equation (4.2). However, using the multivariate
version of Faá di Bruno’s formula [19, 42], one can evaluate Dβµ(x,x),
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where the derivative is applied with respect to the second argument, as

Dβµ(x,y) =
∂|β|

∂β1y1 . . . ∂βnyn
µ(x,y)

=
∑

1≤λ≤|β|

µ(λ)
ν (νp)

λ∑
s=1

∑
ps(β,λ)

(β!)
s∏

j=1

[Dljνp]kj

(kj !)[lj !]kj
,

where µν(νp) = 4ννp

ν+νp
, ν = ν(x), νp = ν(y), li ∈ Nn,

ps(β, λ) ={(k1, . . . , ks; l1, . . . , ls) : ki > 0,

0 ≺ l1 ≺ . . . ≺ ls,

s∑
i=1

ki = λ and
s∑

i=1

kili = β}.

For a, b ∈ Nn, a ≺ b means that one of the following holds:

(i) |a| < |b|,

(ii) |a| = |b| and a1 < b1, or

(iii) |a| = |b|, a1 = b1, . . . , ak = bk and ak+1 < bk+1 for some k,
1 ≤ k ≤ n.

In words: the vectors li are the partitions of β, the scalars ki their multi-
plicities. The variable λ counts the number of partitions while the variable
s counts the number of different partitions. For example,

β = (3, 0, 0)︸ ︷︷ ︸
l1=(3,0,0),s=1,

λ=1,k1=1

= (2, 0, 0) + (1, 0, 0)︸ ︷︷ ︸
l1=(1,0,0),l2=(2,0,0),
s=2,λ=2,k1=1,k2=1

= (1, 0, 0) + (1, 0, 0) + (1, 0, 0)︸ ︷︷ ︸
l1=(1,0,0),s=1,

λ=3,k1=3

.

Please note that ps(β, λ) may be empty. With

µ(λ)
ν (νp) =

4(−1)λ+1(λ!)ν2

(ν + νp)λ+1
, λ > 0,

one obtains

Dβµ(x,y) =
∑

1≤λ≤|β|

4(−1)λ+1(λ!)ν(x)2

(ν(x) + ν(y))λ+1

λ∑
s=1

∑
ps(β,λ)

(β!)
s∏

j=1

[Dljν(y)]kj

(kj !)[lj !]kj
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for |β| > 0. Taylor-expanding µ(x,xp) around x and computing the re-
mainder term according to Taylor’s theorem, we can thus write

µ(x,xp) =
n∑

|β|=0

(xp − x)β

β!
Dβµ(x,x) +

∑
|β|=n+1

(xp − x)β

β!
Rµ

β(xp),

where

Rν
β(xp) = |β|

∫ 1

0

(1− t)|β|−1Dβµ(x,x + t(xp − x))dt.

This means that

|ε(x)| =

∣∣∣∣∣
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Dαf(x)Dβµ(x,x)

×

[
1

α!β!

∑
p

vp(xp − x)α+βηε(x− xp)− Y α+β

]

+
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∑
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Dαf(x)

× 1
α!β!

∑
p

vpR
µ
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+
∑
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1
α!

∑
p

vpR
f
α(xp)µ(x,xp)(xp − x)αηε(x− xp)

∣∣∣∣∣
≤
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+
r−1∑
s=1

εs‖f‖s+2,∞,Brc [xp]‖µ‖s+1,∞,Brc [xp]
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vp
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+ εr‖f‖r+2,∞,Brc [xp]‖µ‖r+1,∞,Brc [xp]

r+2∑
|α|=1

∑
|β|=r+2−|α|

× ε2
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ηε(x− xp)

∣∣∣∣∣, (C.7)

where Rf
α(xp) = |α|

∫ 1

0
(1−t)|α|−1Dαf(x+t(xp−x))dt, Y γ = 1 if γ = 2ei,

and Y γ = 0 else. We are thus able to define an upper bound on the overall
error ε(x) as

|ε(x)| ≤
0∑

s=−2

hs

As(x)
‖f‖s+2,∞,Brc [x]‖ν‖s+1,∞,Brc [x]

+
2∑

s=1

hs

A∗s(x)
‖f‖s+2,∞,Brc [x]‖µ‖s+1,∞,Brc [x],

where

As(x) =∞, s = −2,

As(x) =

[
s+2∑
|α|=1

∑
|β|=s+2−|α|

ε2

α!β!

×

∣∣∣∣∣∑
p

vp

(
xp − x

ε

)α+β

ηε(x− xp)− Y α+β

∣∣∣∣∣
]−1

, −1 ≤ s ≤ 1,

157



Appendix C. Evaluating the Quality Measures for Different
Diffusion Operators

A∗s(x) =

[
4∑

|α|=1

∑
|β|=4−|α|

ε2

α!β!

×
∑

p

∣∣∣∣∣vp

(
xp − x

ε

)α+β

ηε(x− xp)

∣∣∣∣∣
]−1

, s = 2.

The stability measure S is obtained by substituting the dispersion relation

ωmod(hk) = 2ı̂ν
∑

p

vp

[
exp

(
ı̂hk · xp − x

cε

)
− 1
]
ηε(x− xp)

into equation (C.2).
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