
Diss. ETH No. 18270

Multi–Level Change Awareness
for Collaborative Authoring

Applications

A dissertation submitted to the
ETH ZURICH

for the degree of
Doctor of Sciences

presented by

Stavroula Papadopoulou

Dipl. Ing. Aristotle University of Thessaloniki, Greece
born November 22, 1980

citizen of Greece

accepted on the recommendation of

Prof. Dr. Moira C. Norrie, examiner
Prof. Dr. Wolfgang Prinz, co-examiner

Prof. Dr. Chengzheng Sun, co-examiner

2009

Copyright c© 2009 by Stavroula Papadopoulou

To my husband,
Ioannis

Abstract

Awareness has been identified as one of the key issues of collaborative
work. Maintaining knowledge about the status and activities of their
collaborators can help people to achieve better coordination and efficient
collaboration. Many types of awareness have been defined for a range of
collaborative activities and change awareness has been identified as an
important element of collaborative authoring.

Identifying the importance of change awareness, many applications
have been designed and developed which aim to help users maintain
change awareness by enriching the knowledge that they have about the
editing activity of collaborators. User studies conducted throughout the
years show that users appreciate the awareness features provided by cur-
rent applications. However, they also report that they are not provided
with all of the change awareness information that they require.

A brief look at the currently implemented collaborative tools is suf-
ficient to realise that there is no common approach followed by devel-
opers, with respect to the change awareness mechanisms that the tools
offer. Systems from different domains offer different awareness informa-
tion and fulfil different requirements. Very few approaches are reusable
for other document types or all three collaboration modes – synchronous,
asynchronous and semi-synchronous. Finally, the most important draw-
back of current collaborative tools is that different document models are
used for different document types. Even though hierarchically structured
documents are widely used in various systems, there is no commonly ac-
cepted document model in the CSCW community and only a few systems
exploit the document structure.

We propose a generic mechanism for the computation and visualisa-
tion of multi-level awareness in applications that enable the co-authoring
of documents. This mechanism addresses all the above issues. It uses
the structured model of the co-authored documents to provide awareness
at different granularity levels. The modifications made to a document
are recorded and their “severity” is computed based on various metrics

i

ii

defined in the framework. This information is collected for all document
parts at the different document levels and then presented to the users
through appropriate visualisation tools, for instance, an edit profile. The
definitions of the basic concepts included in our awareness mechanism
and the framework resulting from it are kept general to enable the frame-
work’s extensibility and applicability to existing collaborative authoring
tools, independently of the type of the co-authored documents or the
working code of the collaborators.

The framework’s applicability has been tested through its integration
into an asynchronous text application. We used the implemented pro-
totype of the application enriched with multi-level change awareness, to
conduct user studies. User reports show that the awareness-enabled ap-
plication successfully provides multi-level awareness to the users and that
users are able to correctly interpret the information provided to them.

The framework’s generality and extensibility is shown through its in-
tegration into a set of collaborative editors that support the co-authoring
of different document types in different working modes. In detail, we used
the framework to extend an asynchronous text editor with change aware-
ness in real time and to develop a shared workspace that provides, in real
time, change awareness information for various documents. The use of
shadow document sets additionally enables the monitoring and computa-
tion of awareness information about concurrent committed and uncom-
mitted changes. Finally, we show how our awareness mechanism could
be used to enrich existing applications that support the co-authoring of
graphical documents and webpages or the co-authoring of documents in
cases where privacy issues arise. The integration of the framework into
the above applications required a set of various metrics and visualisation
tools that could be defined based on the applications’ functionalities and
the users’ needs and collaborating tasks.

We believe that our awareness mechanism provides a platform for
experimentation to be used by developers of awareness-enabled colla-
borative authoring tools. The mechanism’s main components and the
metamodel describing it are expected to assist developers in experiment-
ing with various metrics and visualisation tools for the computation and
visualisation of the appropriate change awareness information for each
application. The functionalities offered by each application, as well as
the needs of the users should be considered for the above procedure.

Zusammenfassung

Bewusstsein oder
”
Awareness” hat sich als eines der wichtigsten Themen

der Zusammenarbeit entwickelt. Das Wissen über den Status und die Ak-
tivitäten ihrer Mitarbeiter kann den Menschen helfen, Koordinierter und
effizienter Zusammenarbeit zu schaffen. Mehrere Typen von Awareness
wurden definiert, um die unterschiedlichen kollaborativen Aktivitäten zu
unterstützen. So hat sich Change Awareness als ein wichtiges Element
des Co-Authoring entwickelt.

Nachdem die Wichtigkeit der Change Awareness identifiziert wor-
den war, sind viele Anwendungen entwickelt worden. Sie haben als
gemeinsames Ziel, Benutzern dabei zu helfen, ihre Change Awareness
zu schärfen, d.h. die Kenntnisse zu erweitern, die sie über das Verhalten
ihrer Mitarbeiter beim Editieren von Dokumenten haben. User-Studien
der letzten Jahre zeigen, dass Benutzer die durch die gegenwärtigen An-
wendungen zur Verfügung gestellten Awareness-Eigenschaften schätzen.
Jedoch berichten sie, dass sie nicht mit der ganzen erforderlichen Info-
rmation über die Change Awareness versorgt werden.

Ein kurzer Blick auf die zurzeit aktuellen Co-Authoring-Werkzeuge
genügt, um zu erkennen, dass es keine allgemein gültige Methode in
Bezug auf Change Awareness-Mechanismen gibt. Systeme aus verschiede-
nen Forschungsgebiete bieten verschiedene Awareness-Informationen an
und erfüllen verschiedene Anforderungen. Sehr wenige Methoden sind
zum Beispiel für andere Dokumenten-Typen oder alle drei Kollabora-
tionsarten – gleichzeitig, asynchron und semi-synchron – wiederverwend-
bar. Schließlich ist der wichtigste Nachteil der derzeitigen kollabora-
tiven Anwendungen, dass verschiedene Dokumenten-Modelle für die ver-
schiedenen Dokumenten-Typen verwendet werden. Obwohl die hier-
archisch strukturierten Dokumente häufig in verschiedenen Anwendun-
gen verwendet werden, gibt es kein allgemein akzeptiertes Dokumenten-
Modell im CSCW Forschungsgebiet, und nur wenige Systeme nutzen die
Struktur des Dokuments aus.

iii

iv

Wir zeigen einen allgemeinen Mechanismus auf für die Berechnung
und Visualisierung der Multi-Level Awareness in Anwendungen, die das
Co-Authoring von Dokumenten ermöglichen. Dieser Mechanismus ver-
wendet das strukturierte Modell der Co-Authored Dokumente, um Awa-
reness mit verschiedenen Granularitäten zu ermöglichen. Die Änder-
ungen an einem Dokument werden erfasst, und ihre

”
Severity” wird

beruhend auf den verschiedenen, im Framework definierten Metriken
geschätzt. Diese Information wird für alle Dokumententeile an den ver-
schiedenen Strukturebenen der Dokumente gesammelt und dann den Be-
nutzern durch passende Visualisierungs-Werkzeuge, wie zum Beispiel ein

”
Editing Profile” präsentiert. Die Definition der grundlegenden Konzepte

zusammen mit unserem Awareness-Mechanismus und dem Framework,
das sich daraus ergibt, wird allgemein präsentiert, um die Erweiterbarkeit
und Anwendbarkeit des Frameworks auf vorhandene Co-Authoring Werk-
zeuge unabhängig vom Typ der Co-Authored Dokumente oder des Arbeit-
smodus der Mitarbeiter zu ermöglichen.

Die Anwendbarkeit des Frameworks wird durch dessen Integration
in eine asynchrone Textanwendung geprüft. Wir verwenden den imple-
mentierten Prototypen einer Anwendung, die um Multi-Level Change
Awareness erweitert wurde, um Benutzerstudien durchzuführen. Unsere
Studien zeigen, dass die um Awareness erweiterte Anwendung den Be-
nutzern erfolgreich Multi-Level Change Awareness bietet, und dass die
Benutzer in der Lage sind, die ihnen gegebenen Informationen richtig zu
interpretieren.

Außerdem wird die Allgemeingültigkeit und Erweiterbarkeit unseres
Frameworks durch dessen Integration in eine Reihe von kollaborativen
Anwendungen gezeigt, wobei das Co-Authoring von verschiedenen Doku-
mententypen in verschiedenen Arbeitsmodus unterstützt wird. Insbeson-
dere verwenden wir das Framework, um eine asynchrone Textanwendung
um Change Awareness in Echtzeit zu erweitern, und um einen Shared
Workspace zu entwickeln, der Change-Awareness Informationen für ver-
schiedene Dokumente in Echtzeit zur Verfügung stellt.

Der Gebrauch von
”
Shadow-Dokumenten” ermöglicht zusätzlich die

Überwachung und Verarbeitung der Awareness-Information über
”
con-

current committed” und
”
uncommitted” Änderungen. Schließlich zeigen

wir, wie unser Awareness-Mechanismus verwendet werden könnte, um
vorhandene Anwendungen zu erweitern, damit sie das Co-Authoring von
graphischen Dokumenten und Webseiten oder das Co-Authoring von
solchen Dokumenten unterstützen, bei denen die Privatsphäre gewahrt
werden muss. Um die Integration des Frameworks in die obengenannten

v

Anwendungen durchzuführen, benötigen wir eine Reihe verschiedener
Metriken und Visualisierungs-Werkzeuge. Diese konnten wir auf Basis
der Anwendungs-Features und der Bedürfnisse der Benutzer und ihrer
kollaborativen Aufgaben definieren.

Wir glauben, dass unser Awareness-Mechanismus eine Plattform zur
Verfügung stellt, die von Entwicklern von Awareness-fähigen Co-Author-
ing Werkzeuge zum Experimentieren verwendet werden kann. Wir er-
warten, dass die grundlegenden Konzepte des Mechanismus den Ent-
wicklern helfen werden, mit verschiedenen Metriken und Visualisierungs-
Werkzeuge zu experimentieren, um die Berechnung und Visualisierung
der optimalen Change-Awareness Information für jede Anwendung un-
terstützen zu können. In jedem Fall sollten dann die Funktionalitäten, die
durch die individuelle Anwendung angeboten werden, und die Bedürfnisse
der Benutzer für das obengenannte Verfahren berücksichtigt werden.

Acknowledgements

I would like to thank everybody who directly or indirectly contributed
to the outcome of this thesis.

First and foremost, I would like to thank Prof. Dr. Moira C. Norrie for
giving me the opportunity of pursuing my doctoral studies in her group
and the freedom of choosing the content of my work. I am grateful for her
constant support and the fact that she was always there, to encourage
but also challenge new ideas. I believe that through our discussions I
learnt a lot about research but also life in general and I am grateful to
her about this.

I would like to specially thank Prof. Dr. Wolfgang Prinz and Prof. Dr.
Chengzheng Sun for accepting the co-supervision of my work. Their con-
stant interest in my work and the discussions we had at various stages
of the thesis have helped better shape the direction of my research. Fi-
nally, their comments during the last stages of this work have been most
helpful and constructive. Dear Professors, it has been an honour and my
pleasure working with you.

Special thanks go to my collaborators and friends Claudia-Lavinia
Ignat and Gérald Oster. Through their unconventional point of view,
they have often challenged my ideas and helped to polish and strengthen
the fundamental concepts of my work. I would like to thank them very
much for sharing with me their experience and knowledge of the CSCW
research area. I feel very lucky to have collaborated with them at both
ETH Zurich and INRIA Nancy.

I would also like to thank all my colleagues from the Global Informa-
tion Systems research group for their direct and indirect support. Their
interest in my work helped me retain my motivation for quality work
through both the pleasant as well as the difficult stages of my research.
I would like to specially thank Alexandre de Spindler for his help in the
implementation of the BeAware shared workspace, Fabrice Matulic for
thoroughly proof-reading this thesis, Michael Nebeling for his help in the

vii

viii

German translation of the abstract of this thesis and Beat Signer for the
fruitful discussions on the metamodel of the awareness framework. Fi-
nally, I thank everyone for making the GlobIS group such a great place
to be.

What I have achieved until now in my life I largely owe to my family.
I consider myself very privileged to have grown up in such a caring and
loving family. My parents Dimitris and Eleni and my brother Kostas
have constantly supported me throughout all my life stages. I especially
would like to thank my parents for helping me build self-confidence and
teaching me that dreams are meant to be fulfilled. Mom, Dad, Kostas, I
deeply thank you for everything.

However, the person who mostly supported me regarding this thesis
and gives meaning to it is my cherished husband Ioannis. I thank him
for being always there, to share the happy moments but also to offer
support and understanding when difficulties arose. In the journey of our
life, Ioannis has always acted as a catalyst, making my dreams come true.
Ioannis, it is to you that I would like to dedicate this thesis and I deeply
thank you for everything.

Table of Contents

1 Introduction 1
1.1 Computer-supported cooperative work 1
1.2 Awareness . 4
1.3 Motivation and context of our work 8
1.4 Thesis goals and contribution 14
1.5 Thesis overview . 16

2 Collaborative applications 21
2.1 Requirements for collaborative authoring tools 21
2.2 Document comparison tools 22
2.3 Version control systems 27
2.4 Collaborative authoring of text documents 29
2.5 Collaborative authoring of graphical documents 37
2.6 Collaborative authoring of web documents 41
2.7 Collaborative development of software 47
2.8 Shared workspaces . 57
2.9 Summary . 63

3 General awareness framework 67
3.1 Concepts . 68

3.1.1 Structured document model 68
3.1.2 Operations . 69
3.1.3 Operations versus diff algorithms 71

3.2 Framework’s architecture 72

ix

x Table of Contents

3.3 Framework’s metamodel 74
3.3.1 Document and node 75
3.3.2 Operation . 75
3.3.3 Operation value and node value 77
3.3.4 Metric . 78
3.3.5 Visualisation tool 79
3.3.6 User . 79

3.4 Summary . 80

4 Awareness enhanced asynchronous text application 81
4.1 Asynchronous text editor 81

4.1.1 Editor’s initial functionality 82
4.1.2 Document model and operations 82

4.2 Framework’s extension for the text application 83
4.2.1 Document model and operations 83
4.2.2 Definition of metrics 85

4.3 Visualisation of awareness 88
4.3.1 Filtering procedure 88
4.3.2 Edit profile . 93
4.3.3 Advanced awareness features 96

4.4 Integration process . 97
4.5 Summary . 98

5 Qualitative user study 101
5.1 Research questions . 101
5.2 Study design and methods 103
5.3 Results . 105
5.4 Discussion . 111
5.5 Extensions based on users feedback 114
5.6 Summary . 115

6 Semi-synchronous collaboration 117
6.1 Motivation and requirements 118
6.2 Shadow documents . 122

Table of Contents xi

6.3 Implementation of shadow documents 125

6.4 BeAware . 128

6.5 Discussion . 135

6.6 Summary . 137

7 Multi-level change awareness in privacy-sensitive environ-
ments 139
7.1 Awareness in the light of privacy issues 140

7.2 Architecture . 141

7.3 Ghost operations . 141

7.4 Privacy levels . 144

7.5 Visualising ghost operations through edit profiles 146

7.6 Awareness computation for ghost operations 150

7.7 Summary . 151

8 Further applications 153
8.1 Introduction on collaborative authoring of websites . . . 154

8.1.1 Motivating example 155

8.1.2 Special issues in co-authoring of web documents 157

8.1.3 Tracking of modifications and computation of awa-
reness . 161

8.1.4 Intra-document awareness 163

8.1.5 Inter-document awareness 163

8.1.6 Visualisation of intra/inter-document awareness . 164

8.1.7 Discussion on co-authoring of websites 168

8.2 Introduction on collaborative authoring of graphical do-
cuments . 168

8.2.1 Issues related to graphical applications 169

8.2.2 Extension of the awareness framework for a gra-
phical application 170

8.2.3 Discussion on co-authoring of graphical docu-
ments . 176

xii Table of Contents

9 Conclusion 177
9.1 Discussion . 178
9.2 Outlook . 180

A User study questionnaires 183

B Publications 195

List of Figures

1.1 The CSCW Matrix . 3

1.2 Categorisation of awareness types 5

1.3 Evolution of the awareness mechanism presented in the

thesis . 17

2.1 Screenshot of WinMerge, a document comparison tool . . 24

2.2 Screenshot of the conflict editor of TortoiseSVN an inter-

face of SVN . 28

2.3 Edit Wear and Read Wear visualise editing and reading

activity through multiple scroll bars with integrated wear

marks . 30

2.4 Different levels of pinpointing changes using the PREP

Editor . 32

2.5 The gestalt view of SASSE 33

2.6 The observation view of SASSE 34

2.7 TeNDaX . 35

2.8 The graphical history by chimera presents a document’s

evolution between two different states 38

2.9 Iconic representations of changes in PastDraw 40

2.10 Revision history of the Wikipedia webpage on the term

CSCW . 43

2.11 Difference between two revisions of the Wikipedia webpage

on the term CSCW . 44

xiii

xiv LIST OF FIGURES

2.12 History flow visualisation for the modifications of three

users over four versions of a document 45

2.13 Jazz Band, the key visualisation tool of Jazz 48

2.14 The explorer view, a visualisation tool of Palantir 50

2.15 The hierarchical view, a visualisation tool of Palantir . . 51

2.16 Tukan uses weather symbols to denote the existence of

direct and indirect conflicts in concurrent changes made

by collaborators . 52

2.17 Modification-coupling graph for SoftChange 53

2.18 The Evolution Matrix visualisation 55

2.19 Visualisation of Polymetric Views 56

2.20 The BSCW shared workspace 59

2.21 The Time-Object-Activity diagram 60

2.22 State Treemap . 62

3.1 The hierarchical document model 69

3.2 Basic components of the awareness framework 73

3.3 Main concepts of the awareness framework 76

4.1 Extension of the framework’s core concepts for a text asyn-

chronous editor . 84

4.2 Example of a tree-structured document with a set of ope-

rations applied to it . 89

4.3 The metric “number of characters” is used for the compu-

tation of the nodeValues 89

4.4 The metric “number of words” is used for the computation

of the nodeValues . 89

4.5 Access to nodes of a given level 91

4.6 Access to children nodes of a given node 91

4.7 Awareness enhanced GUI 94

4.8 GUI snippet presenting the radio buttons of the edit profile 95

4.9 GUI snippet presenting the users table of the edit profile 95

4.10 GUI snippet presenting the histogram of the edit profile . 95

LIST OF FIGURES xv

4.11 Editor’s functionality before and after the integration of

the awareness framework 97

5.1 Example of a user interacting with the awareness enhanced

editor in the frame of a user study 105

5.2 Captured screen during the user study 106

5.3 Users’ feedback on Likert scale questions from the post-

questionnaire . 109

6.1 The current status of the document is composed by the

sum of all users’ changes 120

6.2 Content of shadow documents in a typical scenario of asyn-

chronous collaboration 123

6.3 Example of a typical versioning system 124

6.4 Visualisation of two proposed implementations for shadow

documents . 126

6.5 The view on documents and users defined by an asynchro-

nous collaborative editor and BeAware 130

6.6 The BeAware workspace. (a) Files Panel when the user

first logs in. (b) Users Panel when the user first logs in . 131

6.7 The BeAware workspace. (a) Files Panel with concurrent

uncommitted changes. (b) Users Panel with concurrent

uncommitted changes . 132

6.8 The BeAware workspace. (a) Files Panel with concurrent

committed changes. (b) Users Panel with concurrent com-

mitted changes . 133

7.1 Generation of ghost operations, transmission through the

network and computation of awareness after the opera-

tions’ receipt . 142

7.2 Concurrent changes generated by Mary, Bob and Tom . . 146

7.3 Edit profiles in the presence of ghost operations 148

8.1 Structure of a group website 156

xvi LIST OF FIGURES

8.2 Extension of the framework’s core concepts for co-authoring

of websites . 159

8.3 Process for computing intra- and inter-document awareness 162

8.4 Visualisation of intra- and inter-document changes made

to the main page . 165

8.5 Visualisation of intra-document changes made to the project

page . 167

8.6 A hierarchically structured graphical document 170

8.7 Extension of the framework’s core concepts for a graphical

editor . 171

8.8 Example of a 2D edit profile as a visualisation tool for

modifications over graphical documents 174

List of Tables

2.1 Summary of existing awareness-enabled collaborative sys-

tems . 64

xvii

1
Introduction

Many of the activities individuals do in their everyday life are collabora-
tive. Either at work, at home, in education, or for entertainment, people
collaborate all the time. When collaborating, people form groups and
work on a common task. They may collaborate during different phases
of a collaborative task, sometimes more tightly than others. To support
people in collaborative tasks, a wide variety of tools have been devel-
oped. Examples are video conferencing facilities, decision rooms, group
calendars, shared screens, email clients and version control systems. In
this chapter, we discuss about Computer-Supported Cooperative Work
(CSCW), a field of research that aims at supporting people when in-
volved in collaborative tasks. We present some of the dimensions, used
to categorise collaborative systems as well as some of the key issues of
CSCW, including awareness. We then go on to provide the context and
motivation of our work by presenting some of the most common draw-
backs of current collaborative authoring systems before presenting the
goals of the thesis.

1.1 Computer-supported cooperative work

Collaborative work is not a recent phenomenon. Already in 1985, user
studies showed that most of the work in business and academia was per-
formed by groups of people [24]. It is no coincidence that around the same
time, the term Computer-supported collaborative work (CSCW) first ap-

1

2 Chapter 1. Introduction

peared. It was introduced by Irene Greif and Paul M. Cashman at a
workshop organised by “people from various disciplines who shared an
interest in how people work, with an eye to understanding how technol-
ogy could support them” [55]. Carstensen and Schmidt later reported
that CSCW addresses “how collaborative activities and their coordina-
tion can be supported by means of computer systems” [29]. Around the
same time, Ellis et al. defined groupware as “computer-based systems
that support groups of people engaged in a common task (or goal) and
that provide an interface to a shared environment” [41]. Many authors
consider the terms CSCW and groupware as synonyms, while in real-
ity, CSCW is a broader term than groupware. While groupware refers
to real computer-based systems, CSCW focuses on the study of tools
and techniques of groupware as well as their psychological, social and
organisational effects. The definition of CSCW provided by Wilson [118]
clarifies the difference between the two terms.

Definition 1. CSCW (is) a generic term which combines the under-
standing of the way people work in groups with the enabling technologies
of computer networking, and associated hardware, software, services and
techniques.

The classification of collaborative activities and systems into different
categories is made based on two characteristics; the time when the acti-
vity occurs and the place where the collaborators are situated. Collabo-
rators can be at the same place (collocated) or at different places (remote)
and their activity may take place at the same time (synchronous), or at
different times (asynchronous). The time/space matrix [23, 70], known
also as the CSCW matrix, has often been used to categorise systems in
CSCW as shown in Figure 1.1. Examples of collaborative situations for
each category are shown in the same figure.

Since 1988, when the CSCW matrix was first introduced, an increas-
ing amount of research has been devoted to systems that support colla-
borative work. The modes of collaboration as well as the system require-
ments and characteristics have changed, making the matrix out-dated
with respect to the time distinction of systems and the mapping of sys-
tem properties to specific user interactions. As systems evolve, they are
often used for tasks other than the ones for which they were designed.
The most common examples of such interactions is the use of instant
messaging between groups of co-located people, or the use of emails for
synchronous communication. To better understand the time distinction

1.1. Computer-supported cooperative work 3

Figure 1.1: The CSCW Matrix

of current collaborative systems, empirical studies have been conducted
to identify how people collaborate.

Posner and Baecker [96], for instance, looked into the way people col-
laborate in writing and identified a number of different writing strategies
used in different phases when authoring a document. They conclude that
both synchronous and asynchronous strategies are used and that a sys-
tem should provide both of them as well as a smooth transition between
them. Semi-synchronous collaboration was then introduced, as an at-
tempt to fill the gap between asynchronous and synchronous modes [84].

The fact that different situations demand different working styles has
been acknowledged by other authors as well. Dourish and Bellotti call
for an editing model which supports both synchronous and asynchronous
work and a smooth transition between them [35]. Haake and Wilson
introduced SEPIA, a hypertext authoring system, that supports both
individual, loosely coupled and tightly coupled modes and also switching
between them [60]. Finally, Molli et al. introduced the notion of multi-
synchronous environments where users freely modify documents which
continuously go through divergence and convergence phases. While all of
these newly introduced working modes have a slightly different definition,
they all serve one common objective, namely, being the description of a
working mode that lies between synchronous and asynchronous modes.

4 Chapter 1. Introduction

We will refer to this working mode using the term semi-synchronous
collaboration.

Finally, some of the key issues of CSCW identified by [30] are “aware-
ness, multi-user interfaces, concurrency control, communication and co-
ordination within the group, shared information space and the support
of a heterogeneous, open environment which integrates existing single-
user applications”. In the next section we discuss awareness, which is
the central issue of this thesis.

1.2 Awareness

Awareness is a natural phenomenon that people rarely need to think
about. It is generally defined in terms of two notions: knowledge and
consciousness. Awareness as knowledge means that there is some piece
of information in a person’s memory, while awareness as consciousness
means that the person is conscious of this information. In the context of
this thesis, we concentrate on the first notion and think of awareness as
the outcome of an agent’s interaction with its environment. In this sense,
awareness can be simply defined as “knowing what is going on” [42].

Some of the basic characteristics of awareness identified by Gutwin [59]
are:

• Awareness is knowledge about the state of some environment, a
setting bounded in time and space.

• Environments change over time, so awareness is knowledge that
must be maintained and kept up-to-date.

• People interact with the environment and the maintenance of awa-
reness is accomplished through this interaction.

• Awareness is almost always part of another activity. This means
that awareness is usually a secondary activity that accompanies
a primary activity which involves the completion of a task in an
environment.

Awareness as presented above, has been identified as situation awa-
reness [50]. Situation awareness research usually involves complex en-
vironments such as aircrafts and power plants and the interaction of an
expert with such systems. Spatial awareness and mode awareness are two
of the specialisations of situation awareness. Spatial awareness is, for in-
stance, a pilot’s understanding of their location in an aircraft [44], while

1.2. Awareness 5

mode awareness is “the ability of a supervisor to track and anticipate the
behaviour of (mode-based) automated systems” [106].

However, awareness can be maintained about the activity of other per-
sons or groups as well. When people work together they need to maintain
awareness about their collaborators to facilitate the coordination of users
and effective collaboration. In CSCW research, many awareness types
have been identified and formally defined. As shown in Figure 1.2, all of
them can be seen as subtypes of situation awareness.

Situation Situation
Awareness

Spatial
Awareness

Mode
Awareness

Group
Awareness …Awareness Awareness Awareness

Workspace
Awareness

Social /
Conversational

Awareness

Structural
Awareness

Informal
Awareness

Peripheral
Awareness

Change
Awareness

Awareness

Anticipative
Awareness

Figure 1.2: Categorisation of awareness types

The main awareness type defined in CSCW is group awareness. It
was first introduced by Dourish and Bellotti [35] as the “understand-
ing of the activities of others, which provides a context for your own
activity”. Group awareness is useful for coordinating actions, manag-
ing coupling, discussing tasks, anticipating others actions, and finding
help [56]. Group awareness is made up of several kinds of knowledge
about what is happening in a collaborative environment, each of them
forming a new type of awareness.

Informal awareness in a collaborative community is the knowledge of
who is around, what they are doing and whether they are available [36].
This knowledge is usually acquired as a side effect of other activities,
for instance, a person walking down a corridor to the water cooler could
be informally informed about the status or the current activity of other
people.

Social or conversational awareness is the implicit knowledge someone
acquires when involved in a conversation. This involves facial expression
of conversational partners, eye contact, gestures, intonation or the use of
particular words. The mechanisms of social awareness have been exten-

6 Chapter 1. Introduction

sively studied by linguistics researchers(e.g. [33, 104]). CSCW research
in this area focuses on how technology can enable conversations made
over distance by using, for instance, teleconferencing systems that take
into account social rules and protocols.

Structural awareness is the knowledge of a group’s organisation, in-
cluding user roles, responsibilities and working relationships between
group members. Various groupware systems are built in an effort to
support structural awareness. Such systems use formalisations such as
floor control [51] where the user that has the floor is allowed to speak.
Other systems assign user roles to people to define the views of a docu-
ment available to individuals and the degree of access individuals have
to the document as in the Quilt editor [79].

Peripheral awareness is the ability of a person to capture snapshots
of the activities of other people while focusing on a different task. A
study conducted at the London Underground Line Control Rooms [62,
63] showed the important role of peripheral awareness in a collaborative
environment.

Workspace awareness (WA) is the knowledge about how others inter-
act with a shared workspace. It has been defined as the “up-to-the minute
knowledge a person requires about another group member’s interaction
with a shared workspace if they are to collaborate effectively” [53, 59].
Such a general definition results in a great amount of information that
could be delivered to users as WA. To ease the design and development
of collaborative applications, Gutwin constructed a conceptual frame-
work that “operationalises different aspects of workspace awareness”.
The framework has three parts: the elements of knowledge that make
up WA, the process and mechanisms by which it is maintained, and the
uses of workspace awareness in collaboration. These parts correspond to
the designer’s tasks of determining “what information to present in the
interface, how to present the information, and in what situations the info-
rmation will be useful” [59]. The above framework was first introduced
to describe workspace awareness in synchronous collaborative situations.
A new version of it appeared later to describe workspace awareness in
asynchronous collaborative situations as well.

Tam later introduced change awareness as “the ability of a person to
track the changes that other collaborators have made to a group project”
referring to past activities, thus asynchronous collaboration [114, 115,
116]. He also developed a framework to describe the information elements
that construct change awareness. These elements are: “knowing who
changed the artefact, what those changes involve, where changes occur,

1.2. Awareness 7

when changes were made, how things have changed and why people made
the changes”.

We believe that describing the changes made by collaborators on arte-
facts that belong to a shared workspace, which is what change awareness
does, is only part of the knowledge that workspace awareness describes.
For example, it also includes information about which users are cur-
rently logged in the workspace and what they are currently doing in
terms of where they are looking at as well as the changes they are mak-
ing. Therefore we decided to insert change awareness as a specialisation
of workspace awareness in the awareness hierarchy shown in Figure 1.2.

Workspace awareness, as described above, is the knowledge about col-
laborators interacting with a shared artefact in the past, or in the present.
Anticipative (or expectation) awareness complements that knowledge by
offering information about activities that will or will not happen in the
future. Expectation awareness offers the above information by enabling
users to “specify their anticipation of future activities on a certain arte-
fact or a group of artefacts in a shared workspace. The users are informed
at a chosen point in time if the expected activities happened or not” [97].

Although there already seems to be an immense number of aware-
ness types and definitions, they surprisingly do not fully describe all
collaborative activities. Multi-level change awareness, defined later in
Section 1.3 as a specialisation of change awareness, is an example of an
awareness type that has not yet been addressed. It describes the need of
users to be informed on different granularity levels about the modifica-
tions of their collaborators. A further example, is the partial definition of
change awareness that describes only asynchronous activities. However,
collaborative activities typically involve synchronous, asynchronous and
semi-synchronous collaboration and users need to be informed about the
changes made by their collaborators to the shared elements independently
of the collaboration mode. Therefore, we redefine change awareness to
include all of the above collaborative situations.

Definition 2. Change awareness is the ability of a person to track the
changes that other collaborators make to a group project at any time
while interacting with it.

Finally, for each of the awareness types, we define awareness info-
rmation as below.

Definition 3. Awareness information is the value of information ele-
ments that need to be collected and presented to users, to preserve their
awareness.

8 Chapter 1. Introduction

In the next section we give the motivation and the exact context of
this thesis.

1.3 Motivation and context of our work

Since awareness has been identified from the CSCW community as an
important feature of collaborative applications, change awareness has
been investigated by many research teams dealing with collaborative ap-
plications for text [64, 91], graphical [116], or software engineering ap-
plications [38]. However, user studies [58, 95] have shown that, although
users appreciate the new features offered by the increasing number of
awareness-enabled collaborative applications, many features users would
like to have are still not supported.

These studies highlight a number of issues with respect to change
awareness provided in current tools. For instance, Pankoke-Babatz et al.
reported that “the time people are willing to spend for consumption of
awareness information before starting their action is limited” [95]. Users
reported “they missed the opportunity to get an overview first, before
taking a closer look” and that they would have preferred to move to
locations of interest, directly from an overview. Gutwin et al. reported
that participants of their user study embraced the idea of overviews, and
preferred to use features, namely the “miniature view” and the “radar
view” that informed them about changes made in the whole document
as well as about the part where each user was working [58].

The main goal of the research conducted in the frame of this the-
sis is to increase the level of change awareness delivered by collaborative
authoring systems where the collaborators are distributed in time and
space while taking into consideration user needs and preferences emerg-
ing from studies like the ones described above. We focus on collaborative
applications that manage the authoring of various types of documents,
examples of which are text, graphical, software and web documents. The
working mode of the collaborators can be synchronous, asynchronous
or semi-synchronous collaboration. To achieve such a goal, we need to
investigate the problems that the awareness mechanisms of current colla-
borative authoring tools have and build a list of finer goals that address
each of the problems that appear. In the rest of this section, we report on
the problems of current tools by presenting some of these tools and briefly
discussing their main disadvantages. More details on a complete set of
related work on collaborative authoring tools can be found in Chapter 2.

1.3. Motivation and context of our work 9

Most of the currently available systems display the changes made to
a document either as explanatory notes pointing to the changed parts of
the documents (“annotations or markups” technique) or in the document
itself, by directly changing the appearance of the document contents
(“highlighting” technique). Both techniques impose restrictions on the
information returned to users about the changes made to the document,
as they do not provide any awareness information associated with the
structure of the document, such as an overview of the document parts
that changed significantly. For instance, in both Microsoft Word [4] and
PREP Editor [91], users need to scroll through the document to detect
the parts that have changed. Therefore, there is a need for a less detailed
representation alongside the main document, showing the changes made
to a document in such a way that users are aware of the parts that have
been heavily changed as well as the level of user activity throughout the
whole document.

The need for awareness information associated with the structure of
the authored document goes beyond the use of an overview which is
related to the visualisation of awareness information. It influences the
computation of awareness information as well. Knowing the document
part where a change was made has been rated by users as the most im-
portant information element of workspace awareness [100]. Therefore,
awareness information computed about a whole document that would
inform the users about whether the document has changed or not is not
sufficient. Rather, the computation of awareness information about cha-
nges made to the various parts of a document is required. The advantage
of computing awareness information about a document part, is that it
can later be provided separately from information computed about other
document parts and be visualised upon request.

What is a document though and how is a document part defined? The
document engineering community defines documents as well-structured
entities that consist of document parts of various syntactic document lev-
els. A text document, for instance a book, consists of chapters, chapters
consist of sections, sections of paragraphs etc. down to the character
level. In a similar manner, graphical documents can be described as a
set of pages, each of them being a set of layers. Layers include graphi-
cal objects and groups of graphical objects. Similarly, XML documents
consist of elements which build up a hierarchy.

However, research conducted in the CSCW community has mainly
represented documents as arrays of characters and document parts as
blocks with a specific number of characters [64, 65]. We believe that

10 Chapter 1. Introduction

adopting such an approach is highly restrictive for the semantics of the
computed awareness information as well as for its use by users with dif-
ferent roles, involved in different tasks. People are used to assigning tasks
or ownerships in the range of syntactic document parts. Therefore, info-
rmation about user activity on document parts with a syntactic meaning
holds much more information for the owners of these parts, i.e. the users
mainly responsible for these parts, or other collaborators with tasks re-
lated to the corresponding parts.

To satisfy this requirement, the document parts we address above
should be defined on different granularity levels. For instance, it should
be possible for a collaborative application to return awareness informa-
tion about all the sections of a document, or all of its paragraphs, or
only the paragraphs of a specific section, or the sentences of a paragraph
etc. Consider, for instance, a collaborative situation where a group of
authors and an editor are responsible for the authoring of a book. While
the editor might need to have an overview of the document in terms of
its chapters and how much each one has changed, or how it evolves, the
authors might also need to see each chapter separately, possibly with an
overview of each chapter in terms of its sections. This detailed informa-
tion would help them compare different parts of the document on a level
required by their current task and easily spot document parts that have
undergone many changes, or parts where several authors have worked on,
etc. Certainly, defining document parts of only one pre-specified docu-
ment level is not enough. A mechanism that can address document parts
of various syntactic levels is needed.

The awareness information people require when collaboratively author-
ing a document is highly related to their roles as well. Some users may
need to be informed about every last detail of changes made to a docu-
ment while others may be satisfied with information showing only major
revisions. Examples of the first category of user roles are lawyers collab-
oratively doing contract work, or authors in a publishing company that
have their articles corrected by proofreaders. Users in collaborative situ-
ations like these might need information about each single word edited in
a document or each spelling mistake corrected. Examples of the second
category are publishing editors who need to know the current stage of
an article, or professors who want to see the progress of scientific papers
authored by students.

There exist approaches [78, 102, 105] that structure program docu-
ments in terms of software packages and provide awareness information
for classes of a package and how changes on one class may affect “related”

1.3. Motivation and context of our work 11

classes. Although this effort is a move towards adopting a structured do-
cument model and computing awareness information on different struc-
tural levels, they currently only concentrate on awareness at the level
of a document (class). In a similar way, the collaborative workspaces
Groove [13] and BSCW [20] provide information about folders contain-
ing collaboratively authored documents, but do not give any awareness
information about intra-document changes.

Building a system that computes awareness information satisfying
the above requirements can already be a very demanding task. However,
tracking the changes made to a document or a document part may not
be enough. Consider, for instance, three users working on the same
section of a document and making one change each. The first user notices
a spelling mistake and corrects it by adding a character. The second
clarifies an existing concept by adding a new sentence and the third
realises that a concept is missing from the section and corrects this by
adding a new paragraph. Although the modification of each user was
different, they can all be described as an insertion of a single document
node to the modified section. Therefore, the information that each user
added a document node is not enough to infer the “importance” of the
modifications. We believe that information about the level of the affected
(deleted, inserted, modified, etc.) document node should be provided as
well.

However, even modifications of the same level do not always have the
same importance. Consider an example of two students, each inserting
a section to a scientific publication they are co-authoring. The first stu-
dent adds a section of two paragraphs while the second student adds a
section of 10 paragraphs. For the professor supervising them, this could
be an indication of the importance of their modifications and their con-
tribution to the publication. It could be argued that the length of each
paragraph could also then play a role. And even more importantly, the
conceptual value of the modifications should not be undermined. Al-
though the definition of the “semantic” value of a modification would be
a very interesting issue, it is out of the scope of this thesis. However, we
do consider the “syntactic” value of a modification. For the rest of this
thesis, we will refer to this value as the “severity” of a modification and
we define it as follows.

Definition 4. The severity of a modification is a value describing how
much a document is affected when the modification is made to it.

As explained in the examples above, the severity of a modification

12 Chapter 1. Introduction

varies based on the criteria, i.e. metrics used to compute it. These criteria
depend on the collaborative task, the user roles involved and the current
focus of interest for each user.

The concept of a modification’s severity is not new in the CSCW re-
search. In a similar way, Lanza and Ducasse [78], Robbes and Lanza [102]
and Sarma et al. [105] provide mechanisms for computing a severity mea-
sure for changes made through software engineering environments. How-
ever, the computation of awareness information in these approaches is
based on changes made to lines rather than structural elements. Our
definition of the severity concept is more general and it can be computed
based on various metrics. The work of “computational wear” [64] is very
close to our proposal as well. Actions of reading and authoring lines of
a text document are graphically depicted. This is achieved by counting
how many times a line is read or updated, and presenting this informa-
tion to the user as bar charts drawn in the editor scrollbars. The lack of
a structured document model restricts considerably the accuracy of the
information provided. No flexible way is provided for filtering the above
information according to user preferences and presenting it on different
granularity levels. Finally, Molli et al. [86] proposed a metric to mea-
sure divergence between copies of the same document. Informing users
how their copies diverge from each other, and presenting a measure of
the conflicts that the changes will cause when published, is expected to
generate auto-coordination in a group working collaboratively. Although
this approach seems to be promising, the unit for computing the diver-
gence is the document, rather than structural elements of the document.
Therefore, it is not possible to provide users with a detailed view of the
modifications performed on document parts.

The problem of reusability of existing awareness mechanisms also mo-
tivated the research conducted in the frame of this thesis. An examina-
tion of the CSCW literature, shows that research relative to the com-
putation and presentation of awareness information in currently avail-
able collaborative authoring tools follows no common strategy. Various
approaches exist for the different document types and the different col-
laboration modes. There is a need to provide an awareness mechanism
applicable to any existing collaborative authoring application, indepen-
dently of the document type authored or the collaborative working mode
chosen by the users.

A plethora of visualisation tools have been designed to show changes
made to documents. Document comparison tools have been created for
text files [2, 3, 9], software [5] or webpages [1, 6, 7]. Unfortunately, all

1.3. Motivation and context of our work 13

of them can only be used for asynchronous collaboration. They usually
implement the copy-modify-merge paradigm and a state-based diff algo-
rithm which can result in a loss of information since some changes made
between two versions of a document may not be taken into account ei-
ther in the computation of the difference, or during the merging process.
Additionally, the difference is computed on a line-based approach, where
lines with no syntactic meaning in a document are compared. We believe
that the use of an operation-based-comparison mechanism and a struc-
tured document model can ensure that no information loss will occur and
awareness information can be computed for syntactic document parts.

Visualisation tools have also been designed for applications that sup-
port synchronous collaboration, with miniatures and radar views [57]
being the most commonly used. While they both succeed in providing
an overview of the changes made to text or graphical documents [115],
they fail to provide awareness on syntactic levels other than the docu-
ment level. Microsoft Word [4], PREP Editor [91] and TeNDaX [65]
manage to show the changes superimposed on the document but do not
provide any overview of them. Users need to scroll through the whole
document to visualise the parts that have been modified. This requires
explicit actions on behalf of the user and will be tiresome in the case of
large documents. Finally, “history flow visualisations” [117] provide an
overview of a document’s evolution, but unfortunately they also rely on
a state based approach and the document’s evolution, is computed only
on the document level.

Summarising, we conclude that the awareness mechanisms provided
by current collaborative systems do not sufficiently assist users in main-
taining change awareness. The framework introduced by Tam success-
fully addresses some of the information elements included in change awa-
reness, however, we believe that some information elements are missing.
Below we present the complete list of elements, with the newly introduced
elements in bold font.

• who changed the artefact,

• what those changes involve,

• where changes occur,

• when changes were made,

• how things have changed,

14 Chapter 1. Introduction

• why people made the changes,

• how much an artefact has changed,

• which part of the artefact changed and

• if the change of one artefact influences another artefact.

Finally, the discussion in this section indicated the need for change
awareness at different granularity levels. We believe, therefore, that new
flexible awareness mechanisms are needed that would provide multi-level
awareness. We define multi-level awareness as follows.

Definition 5. Multi-level (change) awareness is the ability of a person
to have a view, at different levels of detail, of all changes made by other
collaborators to a shared artefact.

Our approach aims at providing a mechanism to compute awareness
information about document changes at all available syntactic document
levels as well as at levels higher than the document level, such as docu-
ments in a workspace. That is to provide a mechanism that preserves
the multi-level change awareness of users in collaborative authoring ap-
plications. In the next section we discuss in detail our goals.

1.4 Thesis goals and contribution

In the previous sections, we identified the main drawbacks of existing
approaches for the computation and visualisation of awareness informa-
tion in collaborative authoring applications and set the main goal of our
research which is to increase the level of multi-level change awareness pro-
vided by current collaborative authoring tools. Here we present a detailed
list of the goals of this thesis and a summary of its contributions.

Prior to developing a new awareness mechanism, we believe that it
is important to know what the current mechanisms provide, what their
drawbacks are and whether they meet user requirements. For this reason,
extensive research is conducted to investigate whether it is beneficial for
users to be provided with awareness information at different granularity
levels and what kind of information do users need. This is achieved by
collecting feedback from user studies testing current collaborative author-
ing tools.

Additionally, we investigate the granularity of the levels in which users
need to be informed and the possible relation of these levels to the users’

1.4. Thesis goals and contribution 15

roles or collaborative tasks. For instance, users can be assigned tasks
based on the existing syntactic levels of a document, i.e. user Mary is
responsible for the second section. We investigate whether the structure
of a document can also be used in the computation of awareness.

As discussed in the previous section, the severity of a modification can
be essential for a user to distinguish the interesting changes. For that,
appropriate metrics are defined, that compute a modification’s severity
based on the needs of users. However, the way that the computed info-
rmation is visualised is equally important. As described in the previous
section, users favour the idea of overviews, therefore, we investigate ways
of appropriately informing users about document modifications.

Finally, we investigate the possibility of a generic solution that pro-
vides the above-mentioned awareness information and is applied to exist-
ing collaborative authoring applications independently of the document
type or the mode of collaboration. The definition of a general model is
investigated, to successfully describe and implement a general awareness
framework.

Summarising all of the above, the work in the frame of this thesis
aims to provide answers to the above mentioned research questions and
has the following list of goals:

• provide a list of requirements about the multi-level awareness re-
quired by users,

• investigate different metrics and visualisation tools that compute
the required detail of information and present it in an appropriate
way depending on users’ roles and tasks,

• investigate the creation of a generic framework that provides the
required information independently of the types of the co-authored
documents and the working modes.

In this thesis, we derive a set of requirements about the multi-level
awareness that users need when co-authoring documents. We then de-
sign and develop an awareness mechanism that satisfies the requirements.
The mechanism uses the document’s structure and the concept of ope-
rations applied to documents to model the changes made to them. The
mechanism includes the concepts of users, document parts, metrics, ope-
rations and visualisation tools and can compute the required awareness
information and present it to the users at different granularity levels.
We show that the mechanism is general enough to be easily applied to

16 Chapter 1. Introduction

various collaborative applications. A framework is also developed based
on the above mechanism.

We also show the framework’s generality by using it to enhance exist-
ing collaborative authoring tools that handle different types of documents
and support different working modes. We apply the above framework in
an asynchronous collaborative text editor by materialising the model’s
general concepts to describe the editor’s specific characteristics. In a
similar manner, we apply the framework in a semi-synchronous shared
workspace. To efficiently collect and compute the required awareness
information in semi-synchronous environments, as well as present it to the
users without distracting them, we define the notion of shadow document
sets. This approach aims at keeping users that work in asynchronous or
semi-synchronous environments, aware of document modifications made
by their collaborators in real time. This thesis also provides a prototype
of a shared workspace that implements both the notion of the shadow
documents and the previously mentioned awareness framework.

The results of our research on appropriate metrics and visualisation
tools, based on the roles of users and the characteristics of applications,
are presented through a set of metrics and variations of a visualisation
tool for graphical authoring applications and applications for the author-
ing of websites.

Finally, the results of our user study, testing the prototype of the
asynchronous text editor are presented in this thesis. We show how
multi-level awareness, the available metrics and a visualisation tool were
appreciated by users, how users interpret the information they are pro-
vided with and which are their additional requirements when working in
semi-synchronous collaboration.

1.5 Thesis overview

This section gives an overview of the thesis by presenting its evolution
and structure. The evolution of this thesis is shown in Figure 1.3. We
started by collecting requirements for multi-level change awareness. We
analysed the results of user studies testing existing awareness-enhanced
systems. Our analysis offered a list of requirements and an assessment
of existing systems with regard to the change awareness they provide.

We then concentrated on the core of this thesis, being the definition
of an awareness mechanism that provides the required change awareness
information independently of the types of the co-authored documents

1.5. Thesis overview 17

C
ol

le
ct

R

eq
ui

re
m

en
ts

D
es

ig
n

Fr
am

ew
or

k
–

D
ef

in
e

B
as

ic

C
on

ce
pt

s

B
ui

ld
 B

eA
w

ar
e

D
ef

in
e

S
ha

do
w

D

oc
um

en
ts

D
ef

in
e

In
te

r-
D

oc
um

en
t L

in
ks

 –
E

xt
en

d
M

et
ric

s
an

d
V

is
ua

lis
at

io
n

D
ef

in
e

ne
w

 M
et

ric
s

an
d

Vi
su

al
is

at
io

n
–

E
xt

en
d

Fr
am

ew
or

k
B

ui
ld

 F
ra

m
ew

or
k

A
pp

ly
 F

ra
m

ew
or

k
to

 P
ro

to
ty

pe
 –

D
ef

in
e

M
et

ric
s

&

V
is

ua
lis

at
io

n

Te
st

 P
ro

to
ty

pe

C
ol

le
ct

 F
ee

db
ac

k

U
se

 G
ho

st

O
pe

ra
tio

ns
–

E
xt

en
d

Fr
am

ew
or

k

W
or

ks
pa

ce
G

ra
ph

ic
al

D

oc
um

en
ts

Te
xt

D

oc
um

en
ts

W
eb

pa
ge

s

S
em

i-
sy

nc
hr

on
ou

s
w

ith
 p

riv
ac

y
is

su
es

S
em

i-
sy

nc
hr

on
ou

s
w

/o
 p

riv
ac

y
is

su
es

A
sy

nc
hr

on
ou

s

F
ig

u
re

1.
3:

E
vo

lu
ti
on

of
th

e
aw

ar
en

es
s

m
ec

h
an

is
m

p
re

se
n
te

d
in

th
e

th
es

is

18 Chapter 1. Introduction

and the working modes of the collaborators. The awareness mechanism
was described in terms of its key concepts and their relations, the com-
bination of which resulted in the metamodel describing the mechanism.
The definition of the main concepts was kept general to enable the ap-
plicability of the mechanism to various collaborative applications. An
awareness framework, which materialised the mechanism’s key concepts,
was later developed.

To prove the generality of the framework, we tested its applicabil-
ity to existing collaborative systems and the extensibility of its concepts
to describe a large scope of applications. To test the applicability of
the framework to existing collaborative authoring systems, we used it
to enhance an asynchronous text editor. For this, the framework’s ba-
sic concepts were extended to describe the editor’s document model and
its functionalities. The resulting prototype was tested through a user
study and the users’ feedback was collected. To test the generality of
the framework’s concepts we extended the framework for different colla-
borative situations in terms of the users’ working modes and the types
of co-authored documents. The collaborative applications on which we
concentrated are shown in the table included in Figure 1.3. With each
application we advanced in at least one of the table’s two dimensions,
i.e. the users’ working mode and the documents’ type.

We first concentrated on semi-synchronous collaboration over a set
of documents. We then investigated the collaborative authoring of text
documents and the applicability of our mechanism to semi-synchronous
collaboration where privacy issues affect the detail of available informa-
tion about a user’s modifications. Finally, we studied the extensibility
of our mechanism for asynchronous authoring of webpages and graphical
documents.

In the rest of this section we present the structure of this thesis by
giving an overview of the content of the chapters.

Chapter 2 discusses the related work of this thesis and its require-
ments in detail. Applications that enable people to collaboratively author
documents are presented in this chapter. They are grouped into cate-
gories according to the collaborative activity that they intend to support
and the document types that they handle. We look into applications
with integrated awareness mechanisms and test their compliance to a set
of requirements for multi-level awareness. An overview of all applications
is presented at the end of the chapter, where their main drawbacks are
highlighted and the need for a new solution that fulfils all requirements
for multi-level awareness becomes apparent.

1.5. Thesis overview 19

Chapter 3 presents our solution, i.e. the metamodel of our multi-
level awareness framework. Our framework uses the underlying docu-
ment structure of existing collaborative applications to enrich them with
multi-level awareness information. We start the chapter with a discussion
of why an underlying structured model is needed and how it can be used.
Then, we give some background information about structured documents
and how the basic concepts of a document node, an operation and a struc-
tured document are defined. We then introduce the concepts included in
our metamodel, i.e. the “document”, “node”, “operation”, “user”, “op-
erationValue”, “nodeValue”, “metric” and “visualisation tool”, how they
are defined and what are the relationships between them. The solution
we propose, described by the metamodel, is intentionally kept general
to enable the framework’s application to various collaborative tools, in-
dependently of the type of the co-authored document and the working
mode of the collaborators. The ease of the framework’s applicability is
shown in the next chapters.

In Chapter 4 we describe how we applied our awareness framework
to an asynchronous collaborative text editor. We detail how the frame-
work’s concepts were materialised to describe the concepts included in
the text editor. We propose a number of metrics to compute the re-
quired information and a flexible visualisation tool, called “edit profile”
to present the computed information to the users. While this chapter ad-
dresses the specifics of the text editor used, it also shows the procedure
that needs to be followed for the integration of any other editor.

In Chapter 5 we present the design and the results of a user study
we conducted to test the functionality of the enhanced text editor we
described in the previous chapter. In the first part of the study, we
present the feedback collected from users testing the editor. This includes
their evaluation of all the editor’s functionalities and the way that users
interpreted the presented information. In the second part, we present
user requirements that we collected for the design of an asynchronous
editor with synchronously updated awareness information.

The framework’s extensibility with regard to various working modes
is shown in Chapter 6 where, using the feedback from the user studies, we
describe how an asynchronous editor was enhanced with real-time awa-
reness. The notion of “shadow documents” is defined and used to ensure
that users working in privacy are informed in real-time about modifica-
tions made from their collaborators. While this newly introduced concept
ensures that users are aware of their collaborators’ modifications, it also
ensures that they continue working on their local copy undisrupted, be-

20 Chapter 1. Introduction

cause the remote modifications are not integrated in their local document
copy. The editor implementing the concept of shadow documents is in-
tegrated in a shared workspace, the BeAware workspace, which is also
presented in the same chapter.

While the BeAware workspace and its integrated editor successfully
provide real-time awareness in situations where users are working pri-
vately, it does not consider any privacy issues. These issues are addressed
in Chapter 7 where the notion of “ghost” operations and flexible filters
that create the ghost operations from real operations are presented. The
notion of ghost operations aims to enable users, working in asynchronous
or semi-synchronous environments, to set their preferred level of privacy
when they inform their collaborators in real-time about their modifica-
tions. The way that ghost operations are integrated in our awareness
framework and a comparison of the concept of ghost operations and the
notion of shadow document sets are also provided in the same chapter.

To prove the extensibility of our framework and its applicability to
collaborative editors with document types other than text, Chapter 8
presents how the proposed framework could be used to enhance the awa-
reness information provided by an editor for websites and a graphical
editor. In a similar manner to that of Chapter 4, where the framework
was integrated into a text editor, in this chapter, we extend the frame-
work’s basic concepts based on the specifics of the two editors. However,
the structure of websites is not similar to that of conventional text docu-
ments because links between documents of the same level, i.e. between
webpages, exist. Therefore, in this chapter a new extended version of
the awareness framework is presented, where “html” and “transclusion”
links between webpages are taken into consideration when computing
and visualising multi-level awareness.

We summarise the results of the work conducted in the frame of this
thesis and discuss about future work in Chapter 9.

2
Collaborative
applications

We start this chapter by giving a set of requirements that a collabora-
tive authoring application should fulfil in order for it to provide ade-
quate change awareness information. We then present some of the best
known collaborative applications grouped according to the collaborative
activity they intend to support and the document types that they han-
dle. For each application we discuss its main features and investigate
whether the awareness offered by the systems satisfies the proposed re-
quirements. The applications we present belong to one of the follow-
ing domains: Document comparison tools (DCT), version control sys-
tems (VCS), collaborative authoring of text (CAT), graphical (CAG)
and web documents (CAW), collaborative software development (CSD)
and shared workspaces (CSW). Finally, we revisit the set of requirements
and formulate our hypothesis as to how a general awareness framework
for multi-level change awareness could be built.

2.1 Requirements for collaborative authoring tools

In this section we present a set of features that collaborative authoring
tools should have to increase the awareness of users about the changes
made by their collaborators. Following the discussion in the previous

21

22 Chapter 2. Collaborative applications

chapter, we specifically address the features needed to increase multi-level
change awareness. The list of requirements presented here summarises
the issues which were discussed in the user studies and the examples of
collaborative situations presented in the previous chapter. This list is
by no means exhaustive. However, we believe that it includes the most
important elements that need to be considered.

The requirements we consider are:

• computation of awareness at different structural levels,

• computation of awareness relative to user roles and tasks, i.e. the
detail of information handled by the application should be variable,

• visualisation of the computed information at different granularity
levels including an overview of all changes throughout the authored
document.

Finally, to allow for reusability of collaborative applications, two more
requirements can be added to the list, namely,

• the computation and visualisation of awareness information inde-
pendently of the mode of collaboration

• the computation and visualisation of awareness information inde-
pendently of the document type.

2.2 Document comparison tools

When many people work on the same document without the use of col-
laborative editors, or when a person accesses a document from different
computers, it often occurs that the users end up with different versions
of the document. Inspecting the differences between two versions of a
document is a very difficult process to perform manually. To solve that
problem, many document comparison tools have been developed.

The procedure followed is that the user chooses the documents to be
compared, and the system presents the documents with the differences
highlighted. To collect information about the changes made to a do-
cument and compute the difference between the two document states,
two different approaches have been developed – the state-based and
operation-based approaches. In the first one, given two different states of
a document, the application computes the difference between them. In
the second approach, the actual changes that transformed a document

2.2. Document comparison tools 23

from one state to another are tracked and later used to compute the dif-
ference. Most of the document comparison tools adopt the state-based-
approach. In order to produce the most accurate “difference” between
the two document states, many “diff” algorithms have been introduced
for both linear [27] and hierarchical [19, 91] documents. The same ap-
proach is used also by version control systems as presented in Section 2.3.

In the rest of this section we present in details three very popular
comparison tools, WinMerge [9], DiffDoc [2] and DiffDog [3] .

WinMerge

WinMerge is an open source visual file differencing and merging tool
for asynchronous collaboration. It handles text files and changes made
to them including insertion, deletion or move of lines or parts of lines.
The compared files can be visualised side-by-side with the differences
highlighted as seen in Figure 2.1. Some features offered by WinMerge
are the detection of the exact changes inside a line, the possibility to
edit a document inside the application and a visualisation mechanism.
In what follows we briefly discuss each of these in turn.

Detecting the exact part of a line that has been altered between two
document versions is certainly helpful, since otherwise the user would
need to manually scan the line and detect the changes. However, the
amount of information delivered to the users is still very much restricted.
Knowing that a line has been changed might, for instance, be useful for
software developers, where each line of code has a meaning on its own.
However this is not the case with other semantically richer documents,
where for instance a concept or an idea may span many lines, or even
paragraphs, sections, etc. In such documents, information about changes
made to elements with higher syntactic value is more valuable. This
applies even to lines of code. Although, syntactically, a line of code
can exist by itself, most of the times it is interdependent with other
lines to create elements of higher syntactic value such as methods and
classes. To enable the support of multi-level awareness, i.e. to compute
awareness information about document elements of different document
levels, elements of a richer syntactic value should be taken into account
when comparing two documents. Unfortunately this is a feature currently
not supported by WinMerge.

When a user chooses to edit a document with WinMerge, the ope-
rations that transform the document from one version to another are
generated by the tool. Unfortunately, the operations are discarded when

24 Chapter 2. Collaborative applications

Figure 2.1: Screenshot of WinMerge, a document comparison tool

the new version is created and are not used for the computation of the
difference. Using the state-based approach instead of the operation-
based-approach generates a difference that is computed based only on
the two document states and can differ from the actual changes made
to the document. Consider, for instance, a user that inserts some con-
tent into a document, but decides to delete it before committing his
version. Computing the difference with a state-based approach will pre-
vent their collaborators from being informed about that content. In a
similar way, users comparing two non-continuous versions would not be
informed about content that was inserted to the document in a version
and deleted from the document at a later version. As a result, important
information about the evolution of a document might be lost.

Finally, an important feature offered by WinMerge, is a bar serving
as an overview of the changes applied to the document, indicating the
places where the changes occurred. If a line is changed, the part of the
visualisation tool representing this line is coloured accordingly. The bars
can be seen on the left side of Figure 2.1. The users can click on the
bar and navigate through the differences of the two documents. At the
same time, they are informed about the parts of the documents where
the differences occur. Although the information is presented only on the

2.2. Document comparison tools 25

level of lines, this is a very interesting feature that allows the users to
be instantly informed about all the changes made to a document and
the places where they occur. The visualisation of this information on
different document levels, as well as a mechanism that would compute
the severity of each change are unfortunately missing. Currently, a one-
character-change in a line is depicted in the same way as a change of a
whole line.

DiffDoc

DiffDoc handles a richer set of documents, including MS Word and Ex-
cel, PDF, RTF, Text, HTML and XML documents. The level of the
document elements checked for changes can be the word or the charac-
ter. Thus, the granularity of the computation can vary according to the
desired level of detail. However, any other higher document levels are
missing. The reason for this is the fact that DiffDoc treats a document
as an array of characters, with only the notions of word and line defined.
The attempt from the developers to refer to document paragraphs, shows
the need for a document representation via higher syntactic elements.
However, the “paragraph” element is currently only a set of sentences
written on the same “line” element that can span multiple lines in the
interface. The approach of DiffDoc seems promising. An extension to
include elements of various levels would be beneficial for the computa-
tion of multi-level awareness. Finally, a proper visualisation tool and a
mechanism for the computation of the severity of changes based on user
needs would also be beneficial.

DiffDog

DiffDog seems to be one of the most complete document comparison
tools, with comparison and merging of directories and a more complete
set of document types. It offers many comparison modes, including the
“XML-aware” mode that compares XML documents taking into account
their structure. The user can choose whether to include in the compar-
ison comments, attributes, elements, etc. from the XML file. Simple
text comparison is still offered for XML files if required. The differences
can be seen in text or a grid view and there is support for XML editing
and validation. Although DiffDog seems to be a fully functional editor
and document comparison tool, it lacks a proper awareness mechanism.
The comparison of documents seems to be based on comparison of lines

26 Chapter 2. Collaborative applications

where the mechanism can recognise or ignore, if needed, presentational
and structural mark-up. However, no information is gathered, for in-
stance, about the number of changes made to document elements, or the
effect of these changes to elements of other document levels, etc. Fi-
nally, the existing visualisation tool neither gives an overview of changes
throughout the document, nor reports changes at different document lev-
els.

Summary of document comparison tools

A problem common to all of the above tools is that they implement the
state-based-approach, only taking into account the initial and final states
of the document and lose information about the process of transforming
one state into another [101]. A drawback of this approach, apart from
not supporting merging and conflict resolution in the way that operation-
based approaches do [81], is that some of the changes made to a document
might be omitted from the information offered by the tool as explained
above.

Another disadvantage of document comparison tools is that there is
almost no semantic comparison between the documents. Text is treated
as an array of characters, without creating any semantic units in the
documents. Even in cases where paragraph, sentence and word separators
are specially treated so changes to them will not generate differences
between the documents, the units are still based on lines and have no
semantic value. This is also true in cases where words can be merged to
generate a line and lines can be merged to generate a paragraph. The
disadvantage arising from this approach is that no information is, for
instance, returned to the user about differences detected at the paragraph
level between the documents under comparison.

Another drawback of document comparison tools is the fact that most
of them are used only to visualise the differences between documents and
not to edit the documents. Even in the tools that offer editing features,
the operations performed are not stored by the editor to be further used
to compute the difference between the documents. The difference is
recomputed, if needed, based only on the initial and final states.

A further disadvantage of document comparison tools is the complete
absence of a mechanism that computes the effect of a change. The mech-
anism for handling and presenting a change of a character and a change
of a line in a text document is exactly the same. Similarly, there is no
distinction between a change of an element’s attribute and an insertion

2.3. Version control systems 27

of a new element in an XML document. Both are simply marked as
changes.

Finally, most of the document comparison tools have neither a flexible
visualisation tool to display information on the different document levels
(which is expected since there are no syntactic document levels defined in
the document models handled by the tools), nor an overview of changes
made to the document to help users be instantly informed about changes
throughout the whole document and identify heavily changed parts of
the document.

2.3 Version control systems

Version control systems are used for the management of multiple revi-
sions of the same unit of information. They are most commonly used in
engineering and software development to manage ongoing development
of digital documents such as application source code and other projects
that may be worked on by a team of people. Version control systems
are used for asynchronous collaboration and they implement the copy-
modify-merge paradigm. Users work in privacy on their local copy of,
usually, the latest version of the co-authored unit. When they finish mod-
ifying it and decide to publish their work, they can commit their changes,
which are identified as a new version of the unit. If multiple users modify
the same unit in parallel, more than one version is created. These need
to be merged to one resulting version that includes the modifications of
all users.

Version control systems implement either the distributed or the client-
server model. In the first approach, each user has a local repository of the
co-authored units, and modifications are shared between the repositories.
In the second approach, users share a common repository. They keep
locally only a copy of a unit’s version and changes made by all users
are sent to the central repository. In the rest of this section, we will
discuss the awareness mechanisms present in Concurrent Versions System
(CVS) [27] and Subversion (SVN) [5], two of the best known version
control systems that implement the client-server model.

CVS and SVN

CVS and SVN are version control systems that notify users about the
status of a set of documents co-authored by many collaborators. SVN
was built as a successor to the widely used CVS and includes a richer set

28 Chapter 2. Collaborative applications

of features. However, both systems provide to the users only basic info-
rmation about the changes made by their collaborators. Therefore, we
decided to introduce the two systems together and detail the awareness
features that they provide.

Figure 2.2: Screenshot of the conflict editor of TortoiseSVN an interface
of SVN

Both systems allow the users to choose two revisions of a file and
display their changes. Conflicting modifications from more than one
user on the same file are automatically detected and displayed through
a visualisation tool, as shown in Figure 2.2. A colour code is used to
display the different types of changes, i.e. insertions and deletions as
well as the conflicts. The version from the repository, the local copy as
well as the merged copy are visualised together as seen in Figure 2.2. An
overview of all changes and conflicts throughout the whole file is given
on the left hand side of the interface. It consists of three bars, one for
each of the above mentioned versions. On the top, the local and remote
versions are visualised and their differences are displayed by means of a
colour code and the + / - signs in the beginning of each line of code.

2.4. Collaborative authoring of text documents 29

Although version control systems offer many advanced functionalities
in comparison to document comparison tools, they do not offer increased
awareness information. The changes made to the documents concern
lines rather than meaningful structural elements such as sentences in
text, elements in XML, or methods in programs. Additionally, the lack
of metrics and operations defined at the various syntactic document levels
renders the applications incapable of computing and presenting awareness
information at different levels of granularity as required by users based
on their current role and situation.

2.4 Collaborative authoring of text documents

The list of collaborative applications for the authoring of text documents
is by far greater than the one for document comparison tools, or version
control systems. Since awareness has been identified as one of the key
issues of collaborative applications, a considerable amount of research
has been devoted to enriching, with awareness information, existing ap-
plications that support the collaborative authoring of text documents, or
developing new applications that would help users maintain awareness of
other users’ activities.

Some of the early systems, concentrated mainly on providing sup-
port for workspace awareness in terms of the users that were active on
a document during a certain period, where they focused and what they
were doing. Telepointers [61], radar views [22, 57], fisheye views [54]
and multi-user scrollbars [21, 22, 103] are examples of tools that con-
centrate on presenting information about where in a document users are
concurrently working. Other examples of early collaborative systems are
Quilt [43, 79], Grove [40, 41], ShrEdit [35, 83] and REDUCE [99, 111].
Unfortunately they offer no support for change awareness information.
Therefore, we will not discuss these systems in detail and choose instead
to present collaborative applications that provide richer mechanisms in
terms of change awareness.

Edit Wear and Read Wear

Hill et al. introduced in 1992 the notion of “physical wear” as a metaphor
for the editing activity of users in a collaborative environment [64]. The
metaphor of a document that wears out as it is used was presented to de-
scribe the reading and editing activities of users. This concept was intro-
duced for asynchronous collaborative editing of text documents. “Edit

30 Chapter 2. Collaborative applications

wear” recorded editing activity in document lines, while “read wear”
recorded the time that a line was displayed on the user’s screen. Edit
wear and read wear aim to display an “edit-by-edit history of a document
in progress”.

Figure 2.3: Edit Wear and Read Wear visualise editing and reading acti-
vity through multiple scroll bars with integrated wear marks

When document files are saved, the editing and reading activity
recorded is also saved. Users are informed about the recorded activity
through a flexible visualisation tool, which takes the form of a scroll bar
with integrated “wear marks” as seen in Figure 2.3. Graphs, showing
how often each line in the document has been read or edited by a user,
are created and added to the editor scrollbar. From left to right, the
scrollbars in Figure 2.3 show a normal scrollbar, a scrollbar with inte-
grated edit wear activity of one user, the edit wear activity of two users,
a scrollbar with the total read wear activity of all active users in a docu-
ment and a scrollbar with the read wear activity of each one of the three
active users. Note that the left part of the third scrollbar is a compressed
version of the second scrollbar and the sum of the read activity of the
three users in the last scrollbar results in the total read activity shown
in the firth scrollbar. In this way, users are able to compare document

2.4. Collaborative authoring of text documents 31

sections to find the most stable ones, find the edits made during the last
editing activity, who did them and where in the document.

However, the above procedure is very much restricted by the assump-
tion that a document is a set of lines. The tracking of activity as well
as the information displayed through the visualisation tool is relative to
document lines. The lack of a structured document model renders it
impossible to deliver information relative to a syntactic document ele-
ment, for instance a section or a paragraph. Finally, edits of elements of
different structural level inside a line are treated in the same way. For
instance, an edit of a character or an edit of a whole sentence in a line
are both treated as an edit at a line. There is no mechanism that dif-
ferentiates the above modifications or a mechanism that computes their
severity. However, users have different needs based on their roles and
the tasks assigned to them, which also determine the granularity of the
modifications they want to be informed about. Therefore, the above
mechanism fails to deliver adequate information to the users.

PREP Editor

The PREP Editor, or “work in preparation” editor, was introduced in
1990 as an asynchronous text editor that aims to help users during the
co-authoring and commenting process. At the structural level, PREP
Editor is more flexible than the wear metaphor, since it defines blocks
of text, called “chunks”. Chunks roughly correspond to the notion of
“ideas” used by Neuwirth et al. and contain text, grids, trees or arbitrary
images [90]. The system also defines “links” between chunks so that
networks of concepts can be built. Authors are allowed to build a “draft”
of a document as a grid of chunks where the grid also includes annotations
and guiding instructions on the content.

The system also provides an approach for communicating the changes
made by users to their collaborators. The changes between two versions
of the document are first computed via a “flexible diff” algorithm and
then displayed through a visualisation mechanism.

The diff algorithm computes the differences on specific document lev-
els. Various parameters such as “coarseness” and “maximum distance
to look for commonalities” can be set by the user when pinpointing the
changes [91]. By combining the parameters users can set the granularity
of the changes that will be pinpointed by the diff algorithm. Figure 2.4c,
for instance, shows the differences between the original and revised ver-
sion of a document when users select to be informed about changes of

32 Chapter 2. Collaborative applications

words and require them to be reported as modifications on words. Fig-
ure 2.4d shows the differences, when modifications on words are tracked
and reported as modifications of short phrases and Figure 2.4e shows
how changes of words are reported as modifications of longer phrases.
This could be a promising approach if applied on top of a structured
document model. Currently, the user can set the above parameters to
values that would return changes on phrases or words but no other syn-
tactic elements are available. However, even in an extended version of
this approach where more document levels are included, the flexibility of
this approach seems to be heavily dependent on, and restricted by, the
diff algorithm, since it is impossible to visualise information that is not
computed during the differencing process. Combining this approach with
a structured document and an operation-based diff algorithm would add
much more flexibility.

Figure 2.4: Different levels of pinpointing changes using the PREP Editor

2.4. Collaborative authoring of text documents 33

SASE and SASSE

SASE was the first of two prototypes presented by Baecker et al. [22]. It
is a synchronous text editor that provides support for “focused collabora-
tion and independent work”. Changes made by a user are synchronously
integrated in the local copies of other users. Users can point to text us-
ing telepointers, while colour-coded selections indicate where people are
working. Finally, multiple read-only scrollbars inform users about the
focus of each user.

SASSE, an extension of SASE, provides support for additional activ-
ities, such as annotation, outlining and reviewing [22]. It also provides
support for both synchronous and asynchronous collaboration. However,
in the context of this thesis, we concentrate on two aspects of SASSE –
the document model and the visualisation mechanism.

Apparently, SASSE treats documents as arrays of characters. The
combination of this with a locking algorithm used to enable synchronous
collaboration, resulted in unacceptable delays [22]. Unfortunately, the
lack of a document structure restricts the reviewing and collaborating
activities, since the user can only be informed about changes made in a
range of characters.

Figure 2.5: The gestalt view of SASSE

34 Chapter 2. Collaborative applications

Figure 2.6: The observation view of SASSE

SASSE offers two views of user activities in a document. The first one,
called “gestalt view”, presents a condensed image of the entire document
as well as the positions of all collaborators and the part of the document
currently selected by each of them. The position of users is mapped
to small coloured circles, while the selection of text in the document
also uses the colour code. In the example of Figure 2.5, there are three
active users in the document, two of them active in the beginning of the
document and one in the second half where they have also selected part
of the text. The second view, called “observation view” allows users to
“look over the shoulder” of a collaborator and see exactly what they are
seeing and doing as presented in the lower part of Figure 2.6. The colour
coded multi scrollbars are visible in the upper half of both figures.

The two views presented by SASSE are the two extremes of a docu-
ment’s spectrum. Information with regard to other levels between the
existing ones would be very useful. However, the most important disad-
vantage of SASSE is that users can only be informed about the location
of other users’ changes. No information is provided about the type of
changes, or their effect on the document.

2.4. Collaborative authoring of text documents 35

TeNDaX

TeNDax, is a synchronous text editor supported by database technolo-
gies. The document is represented as a linked list of character objects
that are stored in a database. Editing commands for operations of in-
sertion and deletion of characters are mapped to database transactions.
TeNDaX presents the changes made to a document superimposed on the
text using a colour code that conveys information about the user who did
the change. Additionally, it provides an overview of the document, the
black circle at the lower half of Figure 2.7. In this tool, the edits of each
user are mapped to a coloured circle. The colour conveys the identity of
the user and the circle’s diameter is related to the amount of edits that
the specific user did. Small circles indicate few changes, while big circles
indicate many changes. Finally, the positioning of the small circles in the
circular document overview conveys information about the frequency of
the changes (distance from centre) and the place in the document where
the changes are made.

Figure 2.7: TeNDaX

The idea of blocks of text, called “zones” were added to TeNDaX
to enable users to specify regions of interest in the document. They
have a variable length of character sequences and can include any docu-
ment part. Since this approach does not include any syntactic structural

36 Chapter 2. Collaborative applications

elements, the associated awareness information is also not available in
different granularity levels. Finally, TeNDaX integrates a layout man-
ager, which associates layout data with a document’s content. If this
approach that takes into consideration a document’s structure, is also
adopted by the mechanisms for computing and visualising awareness,
and an overview of the changes throughout the document is added, TeN-
DaX could provide increased change awareness.

CoWord and CoPowerPoint

CoWord and CoPowerPoint are the collaborative versions of Microsoft
Word and PowerPoint. They implement the transparent adaptation ap-
proach, by which existing single user applications can be transformed
into collaborative applications[112, 121]. Both collaborative tools are
well known to the CSCW community, because they successfully provide
users with a rich pallet of modifications to be made to the authored do-
cuments and due to the large number of users already using the single
user versions of the applications. Multi-user telepointers and radar views
are used to enhance the applications by providing workspace awareness.
However, no multi-level change awareness is yet provided.

Divergence metric

Molli et al. proposed a metric to measure divergence between copies
of the same document [86]. By informing users about how their copies
are diverging from each other, and presenting a measure of the conflicts
that the changes will cause when published, it is expected to generate
auto-coordination in a group working collaboratively.

This approach aims to enhance the collaboration of users in multi-
synchronous collaboration [85], where people work either online or offline
on shared objects. A user’s local copy is continuously compared with the
copies that their collaborators keep in their local workspaces and with
the latest committed document version. When two versions are found
with changes from two different users which, if committed, will generate
conflicts, users are informed about the (potential) conflicting situation.
Since changes made on a document alter its size, and conflicts are marked
as a set of conflicting changes, the divergence is expressed in number of
bytes.

Although this approach seems to be promising, the unit for comput-
ing the divergence is the document, rather than structural units of the

2.5. Collaborative authoring of graphical documents 37

document. Therefore, it is not possible to provide users with a detailed
view of the modifications performed on document parts. Additionally,
users may be erroneously informed about conflicts. Since changes are
defined on a document level, two changes modifying different document
parts, and therefore not creating any conflicts, will be translated as two
edits on the same document and therefore as conflicting changes.

2.5 Collaborative authoring of graphical documents

Graphical documents are also often edited collaboratively. Although the
content of the documents differs from that of text documents, the colla-
borative activity is the same, in terms of need for awareness. However,
there are far fewer collaborative graphical authoring systems available.
Additionally, the research conducted until now in this area is far less de-
tailed than in the case of text editors. Most of the existing systems offer
only basic support for change awareness and do not satisfy most of the
requirements presented at the beginning of this chapter. However, we de-
cided to present some of the existing change awareness approaches in the
domain of graphical editing to offer a complete overview of collaborative
systems.

MS Word

Microsoft Word [4] offers rich awareness support for text editing, while
awareness about modifications of images is very limited. The model used
for the representation of documents is a linear one, i.e. the document is
seen as a sequence of characters and images. Although characters inserted
or deleted are tracked, modifications of images are unfortunately ignored.

Rational Rose

Rational Rose [15], from IBM, provides a UML editor for software engi-
neering design and is an example of a two dimensional scene of objects.
Even though this UML editor is a two dimensional application, changes
performed on the design are not marked on the graphical view. Objects
are displayed within a hierarchical class browser, and items that have
changed are marked by special symbols positioned next to the items. A
text representation is also available showing the differences between the
class hierarchies of two versions of the design.

38 Chapter 2. Collaborative applications

Chimera

Another mechanism for change awareness is the replaying of changes over
time by showing the actions that represent the evolution of the document
between two states such as in the Chimera system [75, 76]. The system’s
visualisation includes a sequence of panels, each of which illustrates an
important moment in a story. The result is an editable graphical history
that is generated automatically as the user interacts with the graphical
editor. For instance, in Figure 2.8 the evolution of a document from its
creation (upper-left rectangle) to its current status (lower-right rectangle)
is shown. Unfortunately, such a mechanism is time-inefficient for users,
since it requires them to go through the entire sequence of panels and
search for the information they need. It also lacks an overall presentation
of the document modifications.

Figure 2.8: The graphical history by chimera presents a document’s evo-
lution between two different states

Bitmap-based graphics

In [80], a multi-level coding method has been proposed as an awareness
mechanism. The approach is applicable to collaborative authoring of
bitmap-based graphics where different collaborators can receive different
data streams in different granularities based on their network connectiv-
ity and bandwidth. An “awareness strength” function is defined between
each pair of users to return a value reflecting how strongly users may be
aware of each other. Each editing operation is encoded into n granular-
ity levels. For instance, the levels to encode a graphics editing operation
might be the text representation of the operation, a simple outline of the
operation effects in black/white colour and degrading colour intensities
of the operation effects. Depending on the awareness strength between a

2.5. Collaborative authoring of graphical documents 39

user and their collaborators, an operation performed by that user is sent
to the collaborators in the corresponding encoded form.

While the idea of awareness in multiple granularity levels in this sys-
tem is appealing, it originates from a completely different problem of
collaborative work, user needs in terms of network availability, rather
than user needs in terms of user roles and current task. This approach
neither returns information about the severity of their collaborators’ cha-
nges nor provides an overview of changes throughout a document.

PastDraw

PastDraw [114, 115] is a two dimensional structured drawing application
for asynchronous collaboration. It is augmented with various techniques
for displaying change awareness information about a scene of objects:
animated replays, storyboards, iconic displays and documentation meth-
ods. Animated replays employ playback animations of changes referring
to a certain part of the scene of objects. The storyboard technique il-
lustrates the changes that took place by capturing them with a series
of still frames (similar to the Chimera system), while the iconic display
technique consists of attaching various icons corresponding to different
types of changes as shown in Figure 2.9. A colour code is used to denote
whether (object coloured in red) and how much (intensity of red colour)
an object has changed. Additional information about the type of the
change and the user that initiated the change is given in a text-callout
if a user clicks on the modified object as shown in Figure 2.9 for the
“Client” class. Finally, the documentation technique describes textually
the changes that took place. PastDraw offers an overview intended to
communicate at a glance all of the changes made to a graphical docu-
ment. In this approach, various colour intensities are associated with
objects to illustrate the number of changes.

However, this method was applied only to documents where objects
do not have a background colour and could not be used for a general
approach where objects have an associated colour. Furthermore, this
approach is not suitable for large-sized documents. The scene of ob-
jects would need to be mapped to an overview and objects would have a
very small size. Additionally, the intensity of an object’s colour would no
longer be an efficient way to convey information about the number of cha-
nges made to objects. Moreover, the difference in intensity of the colour
of two objects is not always easily distinguishable, especially when the
objects are not close to each other in the scene of objects. Finally, Past-

40 Chapter 2. Collaborative applications

Figure 2.9: Iconic representations of changes in PastDraw

Draw does not consider object groups or any other inheritance hierarchy
that may exist in a graphical document, for instance layers. Therefore,
this approach can not be applied to an editor that handles documents
with more complex structures and cannot capture and display informa-
tion on different granularity levels.

Summary of collaborative graphical tools

Summarising the above, we see that current collaborative graphical edi-
tors offer far less functionality and detailed change awareness information
than text editors. However, the need of users for detailed information re-
garding the changes made to a document is independent of the document
type.

Undoubtedly, an overview of the changes made to a document is re-
quired in graphical editors as in text editors. However, as the above
examples show, this is not enough. While an overview could help users
be instantly informed about changes made throughout the document, it
can also be easily overloaded with information and therefore become un-
usable. Only if the proper amount of information is presented through an
overview, will this visualisation be useful to the users. To do so, proper
mechanisms should exist to “filter” the available information and show
only the part currently needed by the user. A way to do this would be to

2.6. Collaborative authoring of web documents 41

visualise the available awareness information at different levels of detail,
for instance, visualise part of the document, or visualise separately ob-
jects that belong on different layers or group of objects, etc., all of them
corresponding to levels that are related with the document’s underlying
structure. Finally, the available information should also be filtered based
on the severity of the changes and their effect on the document at its
different levels.

2.6 Collaborative authoring of web documents

Until recently, the World Wide Web was used mainly as a read-only
medium where authors publish to many readers. Now the trend is to-
wards multiple interacting authors as seen in the collaborative author-
ing of websites and webpages. Authors often perform their tasks in a
distributed way, with regard to time and space, which can make the
coordination of their work difficult.

Changes to a webpage may affect other parts of the page or pages
linked to it and hence lead to semantic inconsistencies within or between
pages. Keeping users aware of changes made by other users can help to
resolve such inconsistencies or even prevent them. While many popular
tools for the collaborative authoring of webpages such as Wikis, blogs and
WebDAV applications succeed in enabling collaboration between users,
they unfortunately provide little awareness to users about the changes
made by their collaborators, and therefore do not prevent semantic in-
consistencies. In this section we present in detail some systems that
were built to inform users when a webpage is edited, i.e. notification
tools, as well as more advanced systems that provide information about
a document’s modifications between different document versions.

Wiki systems

Two of the definitions given for a wiki are the following. The Oxford
English Dictionary [12] defines wiki as:

“A type of webpage designed so that its content can be
edited by anyone who accesses it, using a simplified markup
language.”

Encyclopedia Britannica [10] defines wiki as:

42 Chapter 2. Collaborative applications

“World Wide Web (WWW) site that can be modified or
contributed to by users. Wikis can be dated to 1995, when
American computer programmer Ward Cunningham created
a new collaborative technology for organizing information on
Web sites.”

Wiki pages or wiki sites are essentially databases of knowledge where
authorised users can search, insert or edit their contents. For instance,
wikis are very often used by companies as a replacement of intranets
to easily manage and make any information among colleagues widely
available. They are often also used for management of projects, because
they enable the project members to easily access, edit and share any
project-related information. However, the most common use of wikis is
on the Internet, where wikis are available to a larger set of users that
can contribute to the authoring of a webpage. A web browser is the only
requirement for users to access a wiki and editing its content is fairly easy.
Most of the wikis use a markup language to format the content and link
pages to each other. The possibility of linking pages is a useful feature of
wikis, since it enables users to also navigate between semantically related
pages. WikiWikiWeb [18], written by Ward Cunningham, is the first wiki
application to have been written, but Wikipedia [8] is one of the most
well-known and widely used wiki sites.

In terms of change awareness, Wikipedia provides users with the pos-
sibility of tracking changes performed in a wiki page by means of a re-
vision history attached to the page. It consists of the old versions and a
record of the date and time when each version was created, as well as the
user who created it as shown in Figure 2.10. The users can then choose
to see a specific revision, or can choose two revisions and be informed
about the differences between them.

Upon selection of two revisions, a diff algorithm is used to calculate
the differences between them. This means that a state-based-approach
is used to compute the differences, and part of the actual modifications
might be ignored. The differences are shown as indicated in Figure 2.11.
The old version is presented on the left side and the new on the right.
Inserted and deleted text is highlighted in red. The user is required
to scroll through the document to be informed about all modifications.
Although all modifications are depicted through this visualisation, un-
fortunately there is almost no means of quantifying them. As shown in
Figure 2.10 the only information offered to users about the number and
the severity of modifications is a number representing the length of each

2.6. Collaborative authoring of web documents 43

Figure 2.10: Revision history of the Wikipedia webpage on the term
CSCW

page in number of bytes for every revision. By comparing the length of
the revisions, the user is expected to have an estimation of the severity
of modifications. However, as a webpage evolves through the different
revisions, the length of a document can not always provide enough info-
rmation about the modifications between two non-successive revisions.
For instance, the fact that revision number 3 has a similar length to re-
vision number 10, does not necessarily mean that there were very small
modifications in the in-between revisions. There might have been a large
amount of content inserted, and an equal quantity deleted.

Wikipedia tags small changes, like corrections of spellings, as “minor”
changes. It also specially tags revisions that include changes to only
one section, which corresponds to the level of the paragraph for usual
text documents. However, no other information is collected about the
exact document parts where modifications are made, or the importance
of the changes based on the syntactic level of the modified elements
and their importance in the webpage. Moreover, no overview of the
modifications throughout the page is given. The users are required to
search for modifications inside the document.

Wikipedia also offers the “watch pages” feature by which users re-
ceive email notifications when specified pages change. The notification
mechanism provides, for each page, the number of added or deleted bytes

44 Chapter 2. Collaborative applications

Figure 2.11: Difference between two revisions of the Wikipedia webpage
on the term CSCW

to the page. This notification algorithm, however, does not provide de-
tailed information about the exact location and the importance of the
modifications. Additionally, it does not provide any information at all
about modification made on webpages that are related to the “watched”
pages. As described before, the possibility of navigation and linking be-
tween pages of a wiki is a very important feature. The content of a
webpage is very often related to that of the linked pages. For instance,
when a concept is defined in page A using other terms that are described
in other pages, for instance page B. As a result, a modification in page
B might also affect semantically the content of page A. Unfortunately, a
Wikipedia user would not be informed about such situations.

History Flow Visualisation

Although the idea of presenting an overview of a project’s evolution has
not yet been adopted by Wikipedia, overviews are present in other sys-

2.6. Collaborative authoring of web documents 45

tems. By analysing differences between multiple revisions of a webpage,
history flow visualisations [117] provide an overview of the page’s evolu-
tion. They provide information about how a group has contributed to a
webpage in terms of the amount of text that was altered. The visuali-
sation mechanism shown in Figure 2.12 works as follows. Every revision
of a webpage is represented by a “version” vertical line. The length of
the line corresponds to the length of the page and the colour of the line
corresponds to the user that added the page, or the page part. In Fig-
ure 2.12 user Mary created the first revision of the webpage, and users
Andrew and Suzanne made modifications to it by inserting and deleting
document parts. The amount of modifications can be extracted by the
relative length of the document subparts to the document length.

Wikipedia provides a method of viewing differences,
similar to that found in source control systems such Visual
Source Safe [17]. This interface suffers from two drawbacks:
First, it only shows differences between two versions at once.
Second, it records differences only on a paragraph level (a
change in a comma might cause a two-page paragraph to be
marked as deleted). Both problems made examination of
version histories extremely cumbersome. Since no
commercial tools were available that solved both problems,
we created a new technique, a simple but effective
visualization tool, dubbed history flow.
The goal of history flow is to make broad trends in revision
histories immediately visible, while preserving details for
closer examination. We found this method invaluable in
analyzing the Wikipedia data set, but we believe it is of
independent interest and may be applicable in many other
collaborative situations. One particularly promising avenue is
investigating patterns in large-scale software development.
To explain the technique, we consider a hypothetical
scenario where three people—Mary, Suzanne, and Andrew
—collaborate in writing a document. Each version of the
document is represented by a vertical “revision line” with
length proportional to the length of its text. The
contributors are each assigned a different color in the
visualization, and sections of each revision line are colored
according to who originally authored them [Fig. 2A].
In our scenario Mary creates the page and thus the first
revision line [Fig. 2A, at left] is entirely black, Mary’s
author color. Now imagine that Suzanne adds text to the
end of what Mary wrote. In the revision line for the second
version [second line from left, Fig. 2A], this addition shows
up in Suzanne’s author color as an appended line at the
bottom of Mary’s original line. The overall length of the
document grows in the second version. On “version 3”
Andrew deletes a portion of Mary’s original text and
introduces a small contribution between Mary’s and
Suzanne’s texts. Finally, in “version 4” Suzanne inserts
some text towards the top of the page, in the middle of what
has survived of Mary’s original text [Fig. 2A, right].
The sequence of revision lines shown in Fig. 2A makes up
the skeleton of the visualization, but these lines alone omit
critical information. In particular, it is hard to see how the
different versions relate. The key step in a history flow
diagram is to visually link sections of text that have been
kept the same between consecutive versions. To do so, we
draw shaded connections between corresponding segments
on adjacent revision lines [Fig. 2B]. Pieces of text that do not
have correspondence in the next (or previous) version are not
connected and the user sees a resulting gap in the
visualization, clearly highlighting deletions and insertions.
One helpful variation on the history flow method is to use
the spacing of revision lines to indicate the passage of time.
Instead of the regular spacing shown in Figs. 2A and 2B,
we let the space between successive revision lines be

Fig 2: explanation of history flow’s visualization mechanism

proportional to the time between the revision dates [Fig.
2C]. This alternative view which we call space by date, de-
emphasizes revisions that come in rapid succession and, as
discussed later, can be quite revealing of the rhythms of
collaboration among authors.
When applied to complex version histories, history flow can
produce striking results. Figure 3, for example, shows a view
of the version history for the Wikipedia entry for Microsoft.

User interface
The interface of the visualization tool is relatively simple.
The bulk of the screen is devoted to the history flow
visualization itself [Fig. 3]. Above it are buttons that let the
user change the color scheme in the visualization, for
example, highlighting only contributions by a given author.
To the side of it is a text panel closely linked with the
visualization, so that if the user moves a set of crosshairs to
a location on the visualization, the text view shows the text for
the corresponding version and position within that version.
Conversely, scrolling the text view will move the marker on the
visualization. This tight linking of overview and detail was
critical for effective analysis.
When the user selects a revision line, we provide additional
annotations to help understand its context. The author’s
comment is displayed at the top of the revision line, and the
date of the selected version (down to the nearest minute) is
displayed at the bottom. Additionally, all other versions by that
author are highlighted.

Implementation notes and related work
Finding matching sections of two document revisions is a
well-studied problem in computer science, with many

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

577

Figure 2.12: History flow visualisation for the modifications of three users
over four versions of a document

Unfortunately, the granularity of modifications that are extracted is
the sentence level, where sentence is defined as “pieces of text delimited
by periods or html tags” [117]. Although this granularity of pinpointing
modifications is more flexible than the one provided by Wikipedia, which
is the paragraph level, it is still not flexible enough. The fact that only a
specific level is provided and that there is no possibility for the users to be
informed in different ways and on different granularity levels, depending
on their preferences and current needs, is very restrictive.

46 Chapter 2. Collaborative applications

Watch That Page, ChangeDetect, Website Watcher

Notification tools, such as Watch That Page [6], ChangeDetect [1] and
Website Watcher [7], exist to track changes performed on specified web-
pages. These tools require the user to set up a list of “interesting pages”
and some personal preferences as to the detail and frequency of the up-
dates they will receive. The tools monitor the selected pages and notify
users, usually through emails, about the modified pages and the actual
modifications. Web notification tools are based on the same principles
as the document comparison tools presented at the beginning of this
chapter. As a result, they also have the same disadvantages concerning
the detailed change awareness they provide to the users. The compared
documents or webpages are considered to be a list of characters. No
structure is identified in the documents, making it impossible to moni-
tor modifications on document parts, or to monitor modifications that
altered document parts of specific syntactic levels. Moreover, there is no
mechanism that provides information about the severity of modifications
on a document or classifies modifications according to their importance.
Finally, the state-based-approach is employed here as well, which might
lead to loss of some modifications and therefore decreased level of awa-
reness.

Concerning the links between webpages, some notification tools, for
instance Website Watcher [7], go one step further and allow the possibility
to automatically add the pages linked to the main webpage to the list
of monitored pages. Users are then notified if changes are performed
on one of the monitored pages including the linked ones. However, no
information is provided about the relation between the monitored pages,
the severity of modifications in the linked pages and how these changes
might influence the changes in the main webpage.

Notification mechanism for bitmap-modelled webpages

In [52], a notification mechanism is proposed for tracking changes per-
formed on webpages. Users can mark regions of interest on a webpage
that are stored as bitmaps. The system periodically checks if the selected
regions visually differ from the stored ones with a certain severity index
fixed by the user. If a region of interest is modified, the user is notified
by the system. This approach is image-based and assumes the webpage
retains its spatial layout. The system consists of a “notification editor”
and a “notification viewer”. The first provides users with an environment

2.7. Collaborative development of software 47

where users select interesting 2D areas inside webpages and specify the
layout of the notification they would like to receive, while the second is
the environment in which modified document parts can be visualised.

Summary of collaborative systems for websites

Summarising, there are not many available collaborative web applica-
tions in comparison to other collaborative applications. With the excep-
tion of some wiki systems, web applications provide almost no change
awareness to users since they only inform users whether a webpage has
been modified or not. No detailed awareness information is computed by
them. Some wiki systems provide change awareness by means of docu-
ment overviews, or modification logs, but, unfortunately, they consider
webpages only as a set of lines and almost ignore the underlying do-
cument structure. Finally, none of the above systems provide detailed
information about modifications made on pages linked to other pages
and how the changes of one may affect the rest.

2.7 Collaborative development of software

Software development is an area with collaborative tasks where large
groups of people are involved. The collaboration may span a large period
of time and a large set of documents. People involved in such projects
usually work asynchronously to ensure that the project will always com-
pile without errors. Collaborating over such a large set of documents
with strong dependencies in code inside or between documents requires a
considerable effort for coordination and awareness. Being aware of cha-
nges made by other users to any of the documents involved is a difficult
task if done manually.

Flexible awareness mechanisms are needed, to collect and compute
the required information on a granularity level depending on the user
needs and current task to be accomplished. Additionally, visualisation
mechanisms are required to show the current status of the project and
the editing activity of people over time. These views of the project should
have a variable level of detail.

Various research groups in the CSCW domain acknowledge the need
for awareness in software development. Their research resulted in the de-
velopment of various awareness mechanisms. Some of them are Jazz [31,
66], Seesoft [38], Tukan [107, 108], Advizor [37], Polymetric Views [78],

48 Chapter 2. Collaborative applications

Spyware [102], CollabVS [34], Xia/Creole [120], Palant̀ır [105], Soft-
Change [48, 49], Augur [45], Spectograph [119] and Evolution Matrix [77].
In this section, we describe some of the most popular tools.

Jazz

Jazz is a collaborative development environment “designed to support
small, informal teams; anyone can create a team and add or remove
members” [66]. Jazz is implemented as an extension of the Eclipse Java
Development Tools (JDT) [11]. The system extracts activities from the
environment’s user interface and the local history to monitor how the
source code is manipulated and to provide a useful knowledge base and
context for communication. Several features are available in Jazz to sup-
port awareness of team member activities in addition to screen sharing.

Figure 2.13: Jazz Band, the key visualisation tool of Jazz

The key visual feature of Jazz is the “Jazz band”, shown in Fig-
ure 2.13, which provides peripheral awareness of the status and activities
of other team members. Members are represented by images, decorated
by status icons at the bottom right indicating whether the person is
online, away, or busy (a). A menu offering communication options with

2.7. Collaborative development of software 49

users (b) and their status message is also offered (f). Files in the explorer
are enhanced using colour and icons to show the status of the resources
(what are users currently doing with the files). Hovering over the re-
source brings up a tooltip displaying who is responsible for the changes
(c). Finally, a chat can be initiated and stored for a specific part of the
code (d) and a modifications’ indicator (e) for a piece of code that was
modified in the local version of a remote user offers a view of the remote
copy of the code. Summarising, Jazz offers advanced mechanisms for
workspace and presence awareness, but information about change awa-
reness is restricted to whether an artefact was modified and by which
users. No details about the modifications are available to the users.

Palantı̀r

Palant̀ır [105] provides awareness information about concurrent modifica-
tions performed in isolation in the context of configuration management
systems. It extracts information from version control tools and computes
the difference between files by comparing the number of lines changed.
Palant̀ır captures a number of events, for instance, “added”, “removed”,
“changes in progress”, “changes committed”, etc. The effect of the cha-
nges is computed and presented to the users by means of two metrics
– the severity and impact metrics. The severity metric measures how
much a component in a user’s workspace has changed when compared to
its latest checked version in the repository, or its version on the collab-
orators’ workspaces. It can be binary, indicating that a change of any
kind occurred, or a number indicating the percentage of lines of code
that were modified in any way. The impact measure takes into consider-
ation the code dependencies and computes how much a component in a
local workspace is affected by changes to related components in remote
workspaces.

Palant̀ır offers different ways of visualising the computed changes, for
instance the tabular, the explorer and the fully graphical visualisation.
The explorer visualisation is shown in Figure 2.14. On the left hand side
is an expandable tree view. Colour annotations on file names are used
to show the user currently editing the files. The tree view is enhanced
with horizontal bars indicating the severity of ongoing and committed
changes. The longer the bar, the higher the severity of the changes.

Another view is the hierarchical view of Figure 2.15, which shows a
view of a user’s workspace and the artefacts included in every artefact.
For every artefact, the local user is informed of which other users have a

50 Chapter 2. Collaborative applications

Figure 2.14: The explorer view, a visualisation tool of Palantir

copy of the artefact on their local workspace. For instance, three users,
Ellen, Pete and Mike have a local copy of the “spell” artefact. Pete and
Mike each have version 1.0 in their workspace, and their changes are still
in progress as indicated by the question mark. Ellen, on the other hand,
already has checked in a new version of the artefact, as indicated by the
exclamation mark, resulting in her having version 1.1 in her workspace.
Finally, the severity of a user’s changes on an artefact is indicated by a
progress bar: the fuller the bar, the higher the severity.

While the severity and impact metrics were conceived to detect po-
tential direct and indirect conflicts in concurrent changes made by the
users, the information they deliver is unfortunately insufficient to de-
termine whether there exist potential conflicts. The percentage of lines
changed in a document is not an indicator of conflicting changes in the
document. Concurrent changes of users on one and only line of code could
be a potential conflict if changes are committed, while numerous changes
of various users in different parts of the same artefact would not lead
to a conflicting situation and therefore should not be presented as such.
Although we favour the idea of metrics, the granularity of information
provided by Palant̀ır is still at the document level, and documents are
treated simply as a set of lines ignoring the semantics inside a document.

2.7. Collaborative development of software 51

Figure 2.15: The hierarchical view, a visualisation tool of Palantir

Tukan

In asynchronous collaboration over a big set of documents, it is often
the case that users are not aware of work made in parallel by their col-
laborators. This results in conflicting and diverging work, which needs
extra effort to be handled. Tukan suggests a different way of working,
by introducing different collaboration modes, ranging from users work-
ing in offline mode, to users working very tightly in synchronous mode.
Constraints and specific transition paths are defined for and between the
collaboration modes. For instance, users need to relinquish part of their
privacy if they need to work with other users in a tightly-coupled mode.

An evaluation of the system has shown that users worked mainly with
only two collaboration modes; the “presence aware” and the “tightly-
coupled” mode. This shows that although users do need support in both
asynchronous and synchronous collaboration, a very detailed hierarchy
of collaboration modes can be too complicated and not useful for users.
However, there is another feature of Tukan that makes it useful for users.

52 Chapter 2. Collaborative applications

Figure 2.16: Tukan uses weather symbols to denote the existence of direct
and indirect conflicts in concurrent changes made by collaborators

Tukan provides orientation and activity awareness. It is particularly
useful at helping developers find knowledgeable people to work with and
at avoiding conflicts. Tukan analyses the artefacts in a software project
and determines which artefacts are semantically related. Additionally,
it considers the foci and nimbi of the users that work on the project,
aggregates all of the above information and determines the severity of
potential conflicts between artefacts. This information is visualised as
shown in Figure 2.16. A graph of artefacts and weighted relationships
between them (e.g. composition, inheritance) is presented to the users.
The graph is annotated with weather symbols showing where direct and
indirect conflicts between artefacts occur. Figure 2.16 shows some arte-
facts of a project. A user has created a new version of the method
“day:” resulting in the heavy lightning symbol being displayed under the
method. All other displayed methods are related to “day:”, which causes
other bad weather conflict icons to appear in front of their names. If
there is no near conflict, a sun is shown to indicate that everything is
up-to-date [107].

SoftChange

SoftChange is a tool that “retrieves the history of a project, analyses
and enhances it by finding new relationships in it, and allows users to

2.7. Collaborative development of software 53

navigate and visualise this information” [48]. It was designed to help
developers understand how a software project has evolved since its con-
ception. SoftChange extracts metadata and the different revisions of each
of the project’s files from a version control system (CVS) and analyses
the data. It then classifies changes based on the available information.

Figure 2.17: Modification-coupling graph for SoftChange

The visualisation mechanism of SoftChange is composed of two main
parts: a hypertext browser and a graphical viewer. The hypertext brow-
ser allows the user to navigate and visualise who made a given change,
when they made it, the modified files and why the change occurred. The
graphical viewer is also composed of two parts. The first generates static
plots of modifications of the software, where modifications are defined
on the level of lines, made by users to specific files. For instance, the
number of files that are part of the project at a given point in time or
the frequency with which a file is modified can be computed and pre-
sented in histograms as an overview of the evolution of the project. The
second part of the graphical viewer provides graphs that show files, users

54 Chapter 2. Collaborative applications

and their interrelationships, for instance, which files have been modified
together, or which authors modify which files, as shown in Figure 2.17.

Evolution Matrix, Polymetric Views and Spyware

The idea of metrics defined to calculate how many changes have been
made to a document is also known in reverse engineering. Lanza and
Ducasse [78] and Robbes and Lanza [102] have defined various metrics
in order to inform users about the evolution of programming code.

CodeCrawler is a single-user tool within which various visualisation
tools are implemented to show software evolution. The evolution Ma-
trix [77] and the Polymetric Views [78] are examples of them. They aim
to help users understand the structure and detect problems of software
systems in the early stages of reverse engineering [32]. They combine the
concepts of software visualisation and software metrics, where the latter
defines the information to be collected and the former the way to visu-
alise the information. Lanza and Ducasse introduced a set of software
metrics at different granularity levels, i.e. class metrics, method metrics
and attribute metrics [78].

The evolution matrix displays the evolution of the classes of a soft-
ware system. Each column of the matrix represents a version of the
software, while each row represents the different versions of the same
class. The columns are sorted alphabetically. A schematic evolution ma-
trix is shown in Figure 2.18. The “height”, “width” and “colour metric”
of each rectangle can be used to display the number of specific types of
modifications. The type of modification displayed by each of the metrics
can vary based on user preferences. The evolution matrix enables users
to make statements on the evolution of an object-oriented system at two
granularity levels – the system level and the class level. At the system
level, the metrics used are: “size of the system”, “addition and removal of
classes” and “growth and stagnation phases”. At the class level examples
of metrics are the “number of methods” and the “number of variables”.

Polymetric views could be seen as more efficient views of the evolu-
tion matrix, since they also consider the project’s hierarchical structure.
An example view is the “system hotspots view” shown in Figure 2.19a.
The nodes represent the classes, while the size of the nodes represents
the number of methods they define. The gray nodes represent meta-
classes. A second example, is the “inheritance classification view” shown
in Figure 2.19b. The width and height of the class nodes represent the
number of added methods and the number of overridden methods, while

2.7. Collaborative development of software 55

Figure 2.18: The Evolution Matrix visualisation

the colour represents the number of extended methods. The “system
complexity view” shown in Figure 2.19c is a third example, where the
nodes represent the classes, while the edges represent inheritance rela-
tionships. The metrics used are the number of attributes for the width,
the number of methods for the height, and the number of lines of code
for the colour. Finally, The “inheritance career view” is shown in Fig-
ure 2.19d. The width and the colour of the class nodes represent the
number of descendants, while the height represents the number of meth-
ods.

While all of the above tools present information calculated from var-
ious metrics, they unfortunately concentrate on presenting the status of
the project at specific versions and not the changes themselves. Addition-
ally, they do not provide any information about the severity of changes
made to a project and they visualise the available information solely on
the project and class level. No detailed information is given about where
in a class the changes have been made.

Spyware, a system for forward and reverse engineering of software

56 Chapter 2. Collaborative applications

Figure 2.19: Visualisation of Polymetric Views

projects, concentrates on the actual changes made to the project. Con-
trary to the two systems above that implement a state-based approach,
Spyware implements an operation-based approach. Therefore, it presents
more accurate information about the evolution of a project [102]. The
actual changes made to elements of different levels, for instance pack-
ages, classes, methods and variables are tracked. However, this approach
concentrates on the project’s current status and evolution. Therefore the
information presented through the available visualisation tool does not
concentrate on the modifications made to the project, for instance “two
method names were modified in class foo”, but rather on the current
status of the project, for instance “class foo contains four methods”.

CollabVS

CollabVS is an extension of the interface of Visual Studio software de-
velopment environment. It provides real-time awareness information to
users working asynchronously[34]. The approach is adapted for collabo-
rative software development and provides developers with warning mes-

2.8. Shared workspaces 57

sages concerning concurrent activity on shared program elements. The
users can choose the granularity of program elements for which the de-
pendency checking is done and therefore the granularity of the possible
conflicts as well. The identified possible conflicts are presented to the user
through a notification mechanism and also in a separate list of conflicts.
For a selected conflict, if the user cannot act appropriately to immediately
resolve the conflict, there is the possibility to switch to communication
sessions, or to set watches for the concurrently edited element. When
the collaborator has finished editing the element, the users are notified
and can resolve any conflicts. This approach is very promising because
it provides information on different granularity levels. Users can choose
the required level of information based on their tasks. However, a quan-
titative measure for concurrent operations or for conflicts is still missing.

2.8 Shared workspaces

The collaborative editors presented until now have a common feature.
They aim to help users collaboratively authoring a document, or docu-
ments related to each other by providing information about other users’
modifications. However groups frequently collaborate over different do-
cuments, possibly with different groups, and need to be informed about
the status of all of them. To assist users involved in such collaborative
activities, a number of shared workspaces have been developed. Their
common feature is that they enable users to be aware of the status of a set
of documents and their collaborators activity over all documents. There
are many shared workspaces available, such as SubEthaEdit [17] and MS-
SharePoint [16], but only a few provide at least some basic change aware-
ness information. Here we report on some of them – BSCW [20, 25, 26],
Stories [95], Groove [13] and GroupDesk [46]. We also report on State-
Treemap [85], a visualisation mechanism for awareness information in
shared workspaces.

BSCW

The BSCW (Basic Support for Cooperative Work) Shared Workspace
system was developed to support the work of widely-dispersed work-
groups, particularly those involved in large research and development
projects. The system integrates simple facilities such as the storage and
retrieval of documents, with more sophisticated features such as group

58 Chapter 2. Collaborative applications

and member administration, check-in/-out facilities and access to meta-
information regarding documents and members. The system aims to
support collaborative information sharing, therefore, it provides a simple,
event-based awareness service to inform users, at-a-glance, of the current
status and past changes to information held in the workspace.

The objects supported by BSCW are documents, links (to normal
W3 pages and other workspaces), folders, groups and members. Modifi-
cations made on objects are marked as events, the most important ones
being the “read”, “re-named”, “moved”, “touched” and “deleted” events.
Events can be tracked at different levels, from individual objects to com-
plete workspace folder hierarchies. For instance, the “touch” event on
a container shows that something has happened to an object inside the
container. The events, once collected, are delivered to users through a
notification mechanism. Users are kept aware of events, either through
email notifications, or an icon based mechanism that assigns event-icons
next to the modified objects according to the type of modifications, as
shown in the column “Events” of Figure 2.20. For instance, the file “Cal-
endar CeBIT” has been read (glasses icon), the file “Product description
[1.2]” has been edited (pen icon) and changes were made somewhere in
the folder “CeBIT review” (footstep icon). Users are hence, instantly
notified about changes made to the objects of a workspace.

Although BSCW successfully delivers information about the changes
made by various users to many documents, it provides neither any info-
rmation about changes made to a document by different users in parallel
(i.e. it focuses only on asynchronous collaboration) nor any information
about in-document changes. Although it is necessary to offer informa-
tion about the modified documents and the type of modification, this is
only the first step that a user would take when investigating what has
happened in a shared workspace. After finding the documents with “in-
teresting changes”, users very often need information about the severity
of changes and the exact part in the document where they are made.
BSCW does not offer any information about in-document changes, their
severity, or the location of them in the document. Therefore, when users
are informed through BSCW that a document has been modified, they
need to open the document and manually compute the changes.

Stories for NESSIE

“Stories” have been introduced by Pankoke-Babatz et al. as an awareness
mechanism to visualise the activities of users. This approach is based on

2.8. Shared workspaces 59

Figure 2.20: The BSCW shared workspace

NESSIE, the awareNESS envIronmEnt with an underlying event and
notification infrastructure (ENI). User actions, such as create, read or
modify operations on a shared document, result in events, which are
stored in a database. This information can later be filtered and the events
of a specific time-frame can be visualised through different visualisation
tools. The proposed visualisation mechanisms are the Daily Activity
Report, the Time-Object-Activity (TOA) diagram and the DocuDrama
Conversation.

The Daily Activity Report presents activity information in a textual
form and chronological order. It is realised as an HTML-formatted email
that is sent daily to all collaborators and is a tool used also in the BSCW
workspace. The Docudrama Conversation aims to present the interac-
tion between team members which took place while collaborating on
documents in a shared workspace. It displays the sequence of activities,
which have been performed on a document. The events are played out
by avatars, which perform symbolic actions. Finally, the TOA diagram
is a two dimensional representation to present user actions on objects as
shown in Figure 2.21. The x-axis denotes the time. The y-axis is used to

60 Chapter 2. Collaborative applications

Figure 2.21: The Time-Object-Activity diagram

indicate the folders in which the actions occurred. For each user action,
an icon is added to the diagram. The icon itself indicates the type of the
action, and the colour is determined by the user’s name. If more than
one action occurred on the same object on the same day, then the icons
are positioned on a single line.

The TOA diagram can be seen as an overview of the changes on
documents in a workspace. However, users can only be informed about
the types of other users’ actions, but not their effect and importance.
Moreover, the user actions, as in the case of BSCW workspace, are only at
document-level, which prohibits the computation of multi-level awareness
information.

Groove

Groove is another popular application for shared workspaces. Users have
the possibility to create a new workspace at will and invite other users
to share documents published in it. The workspace can include files,
discussions or calendar items. Users can work on the items and modify
them in both offline and online modes. Modifications made by a user on
the workspace items are sent to their collaborators automatically by a
mechanism that synchronises the workspaces of all users. Users are kept
aware of changes made to the workspace items through a text notification
mechanism that generates a message for every modification. Built-in
communication tools are also offered to assist users. No other advanced

2.8. Shared workspaces 61

mechanism for computation and visualisation of awareness information
at various levels of granularity is offered by Groove.

GroupDesk

A system very similar to the BSCW system is GroupDesk. The system
provides a simple environment for the coordination of cooperative docu-
ment production. Support for awareness is achieved by visualising the
event information using the desktop metaphor. A user, upon selecting
a workspace, is presented with a graph of icons representing the objects
in the workspace and the users working on them. Relations are drawn
between users and the objects currently modified by them. Two types of
events are defined in GroupDesk, “modifications” and “activities”. Mod-
ification events are generated by the system, each time the state of an
object changes due to some action of a user. Activities describe synchro-
nous events, related to the users in the system. Their creation marks the
starting point and their deletion the end point of the corresponding ac-
tion. GroupDesk offers awareness information for both asynchronous and
synchronous collaboration. Events are distributed to the users through
an event notification mechanism. They are visualised by changing the
colour of the modified objects according to a colour code.

GroupDesk, similarly to BSCW and most shared workspaces, pro-
vides information only at the document level. Although changes inside
documents are tracked, the information stored in the system is still at the
document level. For instance, a change that corrects a spelling mistake,
and a change that deletes a paragraph, are both marked as a “modifica-
tion” of the document. No detailed information about the severity of the
modifications, or the exact place in the document where they were made
is stored in the system. As a result, GroupDesk cannot offer multi-level
awareness information.

State Treemap

State Treemap was introduced as a mechanism that displays private
workspace objects as a treemap where rectangles are decorated with
colours indicating the state of the objects. Objects being modified by
more than one user are marked as objects where potential conflicts may
arise. When users publish their changes, their collaborators are informed
that their local copy is in conflict with the latest published version. This
approach visualises the status of objects in a workspace, using the inher-

62 Chapter 2. Collaborative applications

ent hierarchical structure of the workspace. The workspace is represented
by a rectangle vertically split into subrectangles equal in number to the
child elements of the workspace root. Each of the subrectangles is then
further horizontally split in subsubrectangles if the corresponding object
in the workspace includes other objects, etc., as shown in Figure 2.22. A
rectangle’s area is determined by the size of the corresponding objects in
the workspace.

Figure 2.22: State Treemap

The treemap is an efficient way of visualising changes made in work-
spaces with a lot of objects. It offers a way to quickly locate whether
changes have been made to the workspace objects while delivering info-
rmation about the objects’ size as well as their place in the hierarchy.
However, the continuous splitting of rectangles into subrectangles can
lead to a complicated scene, where neither the hierarchy of the work-
space can be easily inferred by the visualisation tool, nor the place of a
modified object in that hierarchy. This limits the use of treemap exactly
to the situations for which it was initially designed.

We favour the idea of a visualisation tool that takes into account the
structure of a shared workspace or object. However, we feel there is the
need for a simpler tool that conveys the same information faster to the
users. Additionally, a mechanism that would show how much an object
has changed would be needed. Currently, treemaps show the objects that
have been modified and the ones where (possible) conflicts arise. How-
ever, no comparison is made between the objects based on the number
of modifications. A document heavily modified is not differentiated from
one with slight modifications. This is mainly due to the fact that modifi-
cations are tracked only at the document level. Intra-document changes
are not monitored and a document can only be in either the “modified”
status or the “not modified” status. Thus, no multi-level awareness can
be computed for workspaces implementing the treemap approach.

2.9. Summary 63

Summary of shared workspaces

All of the above systems aim to assist users in situations where many peo-
ple collaborate over many documents and they need to share information
about the status of the documents. They succeed in providing a large
amount of information about which user modified which document, but
fail to provide information about in-document changes. Modifications
inside a document are all treated in the same way, without distinguish-
ing their level or evaluating their effect on the document part that they
alter. Therefore, it is not possible to compute awareness information on
different granularity levels based on the needs of individual users and
applications. Since awareness information is computed only at the docu-
ment level, it is not possible to present an overview of the document with
all the changes made to it. Therefore, if a user needs to be informed in
detail about changes made to a document, they need to manually search
for the changes inside it.

2.9 Summary

In this section, we revisit the requirements introduced at the beginning
of this chapter. Using them, we have created Table 2.1 where all of
the above-presented systems are listed and the degree of their compli-
ance to each of the requirements is presented. We now describe each of
the columns in turns. The “Domain” column describes where the sys-
tem belongs according to the domains introduced at the beginning of
the chapter. The system’s name is given in the “Tool” column. The
“ML” (Multi-Level) column contains information on whether the sys-
tem offers computation of awareness information at various structural
document levels. The “Vis” column contains information on whether the
system offers an overview as a visualisation tool for awareness informa-
tion and whether information is visualised at different levels. The next
column is the “Met” column that refers to the computation of awareness
information and whether it is done for different metrics. Finally, the
“Mode” column contains information about the collaboration mode the
system is designed for, asynchronous (asynch), synchronous (synch) or
semi-synchronous (semi), and “Reuse” tells whether the system has been
reused for a different domain, or a different type of documents.

A brief look at the currently implemented collaborative applications
is sufficient to realise that there is no common approach, followed by
developers, with respect to the change awareness mechanisms that the

64 Chapter 2. Collaborative applications

Domain Tool ML Vis. Met. Mode Reuse
overview levels asynch synch semi

DCT WinMerge - + - - + - - -
DCT DiffDoc - - - - + - - +
DCT DiffDog - - - - + - - +
VCS CVS - + - - + - - -
VCS SVN - + - - + - - -
CAT Edit Wear - + - - + - - -
CAT PREP Editor - - - + + - - -
CAT SASE - + - - - + - -
CAT SASSE - + - - + + - -
CAT TeNDaX - + - + - + - -
CAT CoWord - - - - - + - +
CAT Divergence - - + - - - + -
CAG MSWord - - - - + - - -
CAG RationalRose - + - - + - - -
CAG Chimera - - - - + - - -
CAG Bitmap-based + - - - - + - -
CAG PastDraw - + - - + - - -
CAW Wikipedia - - - - + - - +
CAW HistoryFlow - + - - + - - -
CAW Bitmaps - + - - + - - -
CAW WatchThatPage - - - - + - - -
CAW ChangeDetect - - - - + - - -
CAW WebsiteWatcher - - - - + - - -
DCD Jazz - + - - - + - -
DCD Palant̀ır - + - + - + - -
DCD Tukan - - - - + + + -
DCD SoftChange - + - - + - - -
DCD EvolutionMatrix - + - + + - - -
DCD PolymetricViews - + + + + - - -
DCD Spyware - + + + + - - -
DCD CollabVS - - + - - - + -
DCW BSCW - + + - + - - -
DCW Stories - + - - + - - -
DCW Groove - - - - + + - -
DCW GroupDesk - + - - + + - -
DCW StateTreemap + + + - + - - +

Table 2.1: Summary of existing awareness-enabled collaborative systems

2.9. Summary 65

applications offer. Systems from different domains offer different awa-
reness information and fulfil different requirements. This was expected,
since each of the systems presented in this chapter was built to satisfy
very specific user needs, which were different from (or only a subset of)
the user and system requirements we address in the frame of this thesis.
However, users’ feedback from studies that tested some of the systems
presented in this chapter, show that the users’ expectations, with regard
to the change awareness information a system should offer, are much
higher. Additionally, users’ needs on change awareness appear to be the
same independently of the type of the authored documents, or the users’
working modes. Unfortunately, the currently implemented systems con-
centrate only on a small set of features and therefore, fail to offer the
advanced information that users need.

For instance, very few approaches are reusable for other document
types or document modes and almost none can be applied to all of the
domains, or all three collaboration modes. Many of the systems offer
overviews of changes made to the documents, but only a few consider
the severity of the changes and compute awareness information using
different metrics, i.e. considering the current user’s interest, role, or
needs.

Finally, the most important drawback of current collaborative appli-
cations is that different document models are used for different document
types. Even though hierarchically structured documents are widely used
in various applications, there is no commonly accepted document model
in the CSCW community and only a few systems exploit the document
structure. As presented in this chapter, there are still many approaches
in the CSCW community that simply consider the documents as an array
of characters or lines and provide awareness either on the whole docu-
ment, or, if applicable, on various document parts that have no semantic
meaning since they are defined as blocks with a specified range of charac-
ters. Unfortunately, this allows almost no flexibility for the computation
and presentation of awareness information.

We believe that a collaborative editing system should monitor user
activity and record all changes made to various parts of the document.
A summary of all edits would then form a global editing profile. The
scale for the representation of changes should be flexible, allowing it to
be adapted according to various document levels, for instance sections,
paragraphs, sentences, etc. Users should also be allowed to use the global
editing profile to select parts of the document and visualise the changes
made there. In the next chapter we show how all the above can be

66 Chapter 2. Collaborative applications

materialised. We present the metamodel of an awareness framework that
uses an underlying structured document model to enable the computation
and presentation of enriched change awareness information.

3
General awareness

framework

In this chapter we describe an awareness framework that fulfils all the
requirements presented in Chapter 2. The proposed mechanism com-
putes and visualises, at different granularity levels, the severity of the
changes made to a co-authored document. To achieve this, the modifica-
tions made to the document are collected and their severity is measured.
Since modifications can be made to different document parts at different
syntactic document levels, the notions of a document part and various do-
cument levels are defined. Finally, to achieve generality of the approach,
the process of the computation of the awareness information is designed
so as to be independent of the document type and mode of collaboration.

We begin with an introduction to the structured document model
used to represent the co-authored documents and the concept of opera-
tions used to describe the modifications made on document parts. Then
we introduce the awareness framework in terms of the main components
of its layered architecture and finally we detail the metamodel on which
the framework is based.

67

68 Chapter 3. General awareness framework

3.1 Concepts

In this section, we present the general concepts of a structured document
model and an operation, as well as some background required to explain
the awareness framework introduced in the following section.

3.1.1 Structured document model

For an awareness mechanism to deliver the awareness information men-
tioned above, a flexible document model is required that gives access to
document parts of various syntactic document levels. Furuta et al. [47]
presented the concept of a logically structured document model a long
time ago. The components introduced in this approach were related
either hierarchically or through cross-references. Such a flexible model
allowed the creation of document “fragments” to enable different users
to access different parts of a document through the assignment of access
rights on the fragments. Additionally, different views of the document
were created and presented, based on the granularity of the fragments
chosen.

Ignat and Norrie [67] have also used a hierarchical document model
allowing collaboratively edited text documents to be accessed on different
levels. We adopt this hierarchical structure and extend it to represent
other kinds of documents with multiple levels as well. The reason for
adopting this structure is its generality, as it encompasses a large class
of documents such as textual and XML documents. For instance, a book
contains chapters composed of sections. Each section is composed of
paragraphs, each paragraph of sentences, each sentence of words and
each word of characters. In this case, the granularity levels associated
with the hierarchical model would be book, chapter, section, paragraph,
sentence, word and character.

In Figure 3.1, an example of a document with 5 levels of granularity
– document (level 0), paragraph (level 1), sentence (level 2), word (level
3) and character (level 4) – is illustrated. A history is assigned to each
node, containing the modifications referring to children of that node.
For example, the log of modifications associated with a paragraph will
include insertions and deletions of sentences in that paragraph.

We represent the node of a document as described in [67].

Definition 6. A node N of a document is a structure of the form
N =<level, children, history, content>, where

3.1. Concepts 69

…

…

Document

Pa1 Pa2

Se2.3 Se2.4

W2.3.1 W2.3.2

C2.3.2.3
“g”

Doc. Hist.

Se2.3 Hist.

…

W2.3.3

C2.3.2.4
“o”

History for operations
at paragraph level

History for operations on
sentences in paragraph Pa2

C2.3.2.1
“a”

C2.3.2.2
“l”

Levels

Document

Paragraph

Sentence

Word

Character

Pa1 Hist. Pa2 Hist.

Se2.4 Hist.

W2.3.1 Hist. W2.3.2 Hist.

…

C2.3.2.5
“r”

W2.3.3 Hist.

Se2.1 Se2.1 Hist. Se2.2 Se2.1 Hist.

… …

W2.3.4 W2.3.4 Hist.

C2.3.2.6
“i”

C2.3.2.7
“t”

C2.3.2.8
“h”

C2.3.2.9
“m”

Figure 3.1: The hierarchical document model

• level is the structured document level, level ∈ {0, 1, · · · , n} corre-
sponding to node N ,

• children is an ordered list {N1, ..., Nm} of child nodes,

• history is an ordered list of operations referring to child nodes,

• content=

{
object stored in node, if N is a leaf node∑m

i=1 content(childi), otherwise

Note that a distributed history is not a requirement for the definition
of a node. A document modification log where all operations are stored
can be used as well.

3.1.2 Operations

We define operations representing changes made to the hierarchical struc-
ture in a similar way to that described in [67].

Definition 7. An operation is a structure of the form op= <type, level,
position, content, length, user>, where

• type is the type of the operation, for instance insert, delete or move,

• level is the level of the operation’s content,

70 Chapter 3. General awareness framework

• position is a vector of positions specifying the path from the root
to the node where the operation is applied,

• content is a node representing the content of the operation,

• length is a vector with the number of units of each document level
inserted, deleted, moved, etc. by the operation,

• user is the user who generated the operation.

The vector position specifies the indexes that compose the path in
the tree where the operation is applied. For instance, the operation that
inserts the word “algorithm”, an insert operation of word level, to the
text document of Figure 3.1 has a position vector equal to < 2, 3, 2 >
since it inserts the word in the second position of the third sentence of the
second paragraph, i.e. information about the paragraph and the sentence
in which the word is located, as well as the position of the word inside the
sentence, are included in the position parameter. Finally, if the sentence
“CSCW stands for Computer Supported Cooperative Work.” is inserted
in the document, the insert operation will have a length vector equal
to < 0, 1, 7, 45 > since the inserted text can be described as 0 units of
paragraph level, 1 unit of sentence level, 7 units of word level or 45 units
of character level. Note that the inserted text is a node of a fixed level,
i.e. sentence level. However, its length varies and can be equal to any of
the numbers provided by the length vector, depending on the level of the
units we are interested in. For instance, the operation’s length, it terms
of the number of words inserted in the document, will be equal to 4.

We realise that there might not be any obvious reason to include the
length vector in the definition of the operation. This information can be
easily computed using the content of the operation. However, there ex-
ist collaborative situations where privacy concerns are raised concerning
the amount of data exchanged between users. In such an environment,
including the length of an operation in the operation while hiding its con-
tent might reveal enough information about users’ modifications without
showing the actual modifications. A more extended discussion on colla-
boration in privacy-sensitive environments is provided in Chapter 8. To
keep the definition of an operation universal, we choose to include the
length vector in it.

Our awareness mechanism can be adopted by existing collaborative
authoring applications to increase the change awareness of users. Nodes
and operations are defined in a generic way, in order to facilitate the
adoption of the mechanism by a wide range of applications.

3.1. Concepts 71

It can be argued that the use of a structured document model con-
strains the framework’s generality, since there exist collaborative appli-
cations that still use a linear document model. A linear document model
could also be mapped to the structured document model presented above,
where only one document level exists. However, the awareness informa-
tion computed for such a document would be less valuable for users, since
they require multi-level awareness. Additionally, a large amount of re-
search in the CSCW community has already moved towards structured
document models as a result of research conducted by the document engi-
neering community, which we believe supports our choice of a structured
document model.

3.1.3 Operations versus diff algorithms

To collect information about the changes made to a document, two differ-
ent approaches have been developed – the state-based and operation-based
approaches. While we briefly mentioned them in the previous chapter,
here we discuss them in detail.

In the state-based approach, given two different states of a document,
the application computes the difference between them. This approach is
used by many document comparison tools, for example [2, 3, 5, 9], CSCW
editors [91] and also document engineering approaches [98]. In order
to produce the most accurate “difference” between the two document
states, many “diff” algorithms have been introduced for both linear [27]
and hierarchical [19, 91] documents.

The operation-based approach keeps track of the actual modifications
made to a document, i.e. operations applied to the document, at the
moment of their creation. In this way, the set of operations that trans-
formed a document from one state to another is stored and can be reused
to rebuild a document state from its preceding state when needed. Ex-
amples of existing awareness mechanisms that adopt an operation-based
approach are the work by Pankoke-Babatz et al. [95] and by Mangano
et al. [82] where users’ modifications are recorded and replayed at will.

A disadvantage of the state-based approach is that it only takes into
account the initial and final states of the document and loses informa-
tion about the process of transforming one state into another [101]. Ad-
ditionally, the state-based approach has the disadvantage of not sup-
porting merging and conflict resolution in the way that operation-based
approaches do [81]. However, the operation-based approach comes with
shortcomings as well, since access to the actual modifications is assumed.

72 Chapter 3. General awareness framework

Unfortunately, this requires that collaborators use the same or compati-
ble authoring applications and no strict privacy rules apply, so that access
to the document’s history, i.e. modification logs, is granted.

Being aware of the above issues we favour and adopt an operation-
based approach for computing and storing awareness information in col-
laborative authoring. This implies that the awareness framework we
propose provides the most accurate awareness information since all the
changes that transform the document from one state to another are cap-
tured and that the mechanism can be used as an extension of existing
collaborative editors. It does not impose any further requirements on
many of the currently available collaborative editors since the operations
that transform a document from one version to another are already cre-
ated by the tools and therefore can easily be recorded and used for the
computation of awareness information. However, we are aware that, in
cases where the authoring procedure cannot be monitored, the state-
based approach should be used instead. Examples of such situations are
described in Chapter 8 where being able to offer awareness information,
even if operations do not capture the exact changes, is far more beneficial
than not delivering any information at all.

At this point we would like to note that the choice of either of the two
approaches described above does not influence the process of computing
and visualising awareness information in the proposed framework. The
awareness mechanism uses a set of modifications, described by a set of
operations, independently of the approach that is used to extract this set.
However, the exact values of the computed awareness information might
vary and developers using the awareness mechanism that we propose
should be aware of this issue.

3.2 Framework’s architecture

The layered architecture shown in Figure 3.2 presents the main com-
ponents of the proposed awareness framework. In order to apply our
awareness mechanism to an existing collaborative application some pre-
requisites need to be satisfied, in terms of components that need to be
present in the application. These are shown in the lower half of the ar-
chitecture. If these components are present, the awareness mechanism
can be applied on top of them as shown in the upper half of Figure 3.2.
We now briefly discuss each component in turn.

The component that can be considered as the first requirement is

3.2. Framework’s architecture 73

Figure 3.2: Basic components of the awareness framework

the existence of an underlying structured document model. As already
described, in order to provide multi-level awareness, access to the do-
cument’s parts of different syntactic document levels is required. This
information should be made available by the collaborative application.

A second component of the framework which can also be considered
as a requirement to maximise awareness information is the existence of
operations modelling the modifications made by users to specific docu-
ment parts. Therefore, operations should refer to the structure of the
document. As already discussed, operations can either be created by the
collaborative application, or by a diff algorithm.

In the next layer, the consistency algorithm is considered. This com-
ponent includes any algorithms used to handle operations applied by
different users when they collaborate. Such an algorithm could be a
turn-taking protocol, a locking algorithm, an operation transformation
algorithm, a merging algorithm or a conflict resolution algorithm. We
assume that this component is part of the existing collaborative applica-
tion.

The second half of the architecture concerns the computation and vi-

74 Chapter 3. General awareness framework

sualisation of awareness through our awareness mechanism. Local1 and
remote2 operations are used in this layer. When an operation is applied
to a specific document node, its severity is computed using different met-
rics and it is added to the awareness information of the corresponding
node. The same procedure is followed for all local and remote operations,
independently of the collaboration mode.

While local operations are instantly applied to the user’s local copy
of the document, remote operations are first managed by the consistency
algorithm and then applied to the document. To correctly compute the
severity of changes made on a user’s local document copy, we consider
local changes as they are created and applied in the local copy and remote
changes only after they have been through the consistency algorithm.
Since the consistency algorithm does not interfere with the awareness
computation, any algorithm can be used.

In a similar manner, the computation of awareness information is
independent of the collaboration mode. We consider operations at the
time they are applied to a document copy. These can be changes just
made by the local user, or changes made by remote users at any time.

The information computed in the computation layer is further filtered
according to the application needs and user preferences and presented in
the next layer through a visualisation tool. The visualisation tool can
vary according to the collaborative tool. An editing profile is an example
of a flexible interactive visualisation tool for collaborative editors. We
used this in the integration of the awareness framework and a collabora-
tive text editor, as described in Chapter 4. However, it is important to
note that other visualisation tools could be used.

3.3 Framework’s metamodel

The core of the metamodel on which the framework is based is shown in
the UML model in Figure 3.3. The main concepts included in the meta-
model are the document, the node, the operation, the value, the metric
and the visualisation tool. The definition of the core concepts is inten-
tionally generic, to enable the extensibility of the framework and its use
with collaborative applications that handle various types of documents.
After the basic core is set, the main concepts can be more specifically
defined based on the requirements of the application and the document

1operation created by users and applied to their local copies of the co-authored document
2operation created by remote users at their local copies, sent via some network, received and applied

by the rest of the users at their local copy

3.3. Framework’s metamodel 75

types handled by it. In this section, we describe the framework’s main
concepts and the associations between them. In the next chapters we
present example applications where the framework can be used with ex-
isting collaborative authoring tools of various document types, to enhance
the awareness provided by the applications to the users.

3.3.1 Document and node

A document of any document type is modelled as a document object. It
consists of a root element modelled as a node object. A node represents
a document part of any syntactic document level. Nodes are related to
each other with the hasChildren and hasParent associations and build
hierarchies of nodes. The fact that a document’s root is a node, allows
the representation of documents of different levels. A research paper,
for instance, is modelled as a document with a root node of “article”
level. As such, it contains nodes of “section” level, which contain nodes
of “paragraph” level, etc. A document with a deeper hierarchy though,
for instance a book, is represented as a document object with a root
element of “book” level. This allows for the correct representation of a
book that contains chapters, which contain sections, etc.

Note that a document’s type affects the available node types and
syntactic levels. For instance, a text document, as in the above exam-
ples, consists of nodes that include text and are of level book, chapter,
section, paragraph, sentence, word and character. However, a graphi-
cal document has different nodes in terms of their type and syntactic
level. For instance, “graphical objects”, “groups” of graphical objects,
and different “pages” and “layers” can be the document parts of a gra-
phical document and the document levels are relative to the document
structure. Generally, the types and levels of the node objects are defined
based on the characteristics of the collaborative application where the
awareness mechanism is applied.

3.3.2 Operation

To include all editing operations in the framework, we consider all pos-
sible ways users interact with a document. Examples of interactions are
the insertion or move of a document part in a document, the change of an
object’s colour, etc. Due to the large number of possible operations, we
separate them into groups. For instance, we group together operations
that result in modifications of the document structure, such as deleting,

76 Chapter 3. General awareness framework A
w

areness
fram

ew
ork

A
w

areness fram
ew

ork
D

etailed m
etam

odel
C

oncepts: entity, operation, value, m
etric (system

 specific)

R
elationships

p

Individual

+add(U
ser)

+rem
ove(U

ser)

+users:C
ollection<U

ser>

G
roup

D
ocum

ent

+getValue()
+getM

etric()

+m
etric: M

etric

Value

+getP
references()

+id:int U
ser

rem
ove(U

ser)
+getM

em
bers()

1…
*

1

0…
*

1…
*

hasM
em

bers

1

hasR
oot

hasParent
hasC

hildren

M
etric

+node:N
ode

O
peration

+type:Type
+ID

:U
ID

N
ode

0…
*

1…
*

li
dT

1…
*

1
hasO

pV
alue

1…

1

hasN
odeValue

1

0…
*

createdBy

1 1…
*

hasM
etric

1…
*

1…
*

visualisedThroughVisualisationTool

1
0…

1
0…

*

13 N
ovem

ber 2007
S

tavroula P
apadopoulou / E

TH
 Zurich / papadops@

inf.ethz.ch
8

M
etric

+appliedTo()
+ID

:U
ID

appliedTo
VisualisationTool

D
ocum

ent’s U
nderlying S

tructure
C

om
putation

Visualisation

F
igu

re
3.3:

M
ain

con
cep

ts
of

th
e

aw
aren

ess
fram

ew
ork

3.3. Framework’s metamodel 77

inserting or moving document parts and refer to them as structural ope-
rations. Similarly, we model modifications that change the format of a
document part as formatting operations, etc.

We model the above types of operations as specialisations of the gen-
eral operation concept. The model can easily be extended to add other
types of operations as well. Since the possible modifications that a user
can make to a document are defined and also restricted solely by the
authoring tool and the types of the documents handled by the applica-
tion, the different operation types included in the metamodel vary. We
choose to present only the concept of an operation at this time. For this
reason, the different types for operations are not included in Figure 3.3.
We describe them in detail in the next chapters, when the framework is
used to enhance existing collaborative editors with awareness function-
alities.

Every operation is related through the association appliedTo to a set
of nodes where it is applied. The operation is stored in the modification
log kept for the document or the specific node. Finally, the value of
the operation is computed, as described below, and it is added to the
corresponding nodeValue.

3.3.3 Operation value and node value

In our framework, each node and each operation is related to one or more
value objects. The value of an operation reflects the severity of the ope-
ration when it is applied to a node, while the value of a node reflects
the total severity of the changes made to the node and its children. We
model them under the same concept of a value but will refer to them
as opValue and nodeValue and have therefore introduced the associa-
tions hasOpValue and hasNodeValue respectively. In the next section,
we describe how these are computed based on the metrics selected for a
collaborative text editor.

The computation and storage of the value objects associated with a
node varies, since it depends on the application. In asynchronous colla-
boration, the computation of the value objects is usually done every time
a user updates their copy, i.e. receives a newer version of the document.
Since the operations are applied on the document only once, it is sensible
to perform the awareness computation only after an update and keep the
computed values stored for further filtering and presentation.

However, in synchronous and semi-synchronous collaboration, opera-
tions are received continuously and it is time consuming and inefficient

78 Chapter 3. General awareness framework

to store all the computed values for every operation, local or remote,
when it is applied to the document. Therefore, in these working modes,
it is advisable to only compute the current awareness values on-the-fly
for presentation to the user rather than storing them. However, on-the-
fly computation of awareness can be too restrictive in specific situations.
For example, assume we want to offer the user the possibility of viewing
awareness information for previous document states. Since the aware-
ness values would be updated every time a new operation is applied, the
previously computed values would be lost and it would not be possible to
support such a requirement. To resolve such problems, we propose storing
the status of the document and the current awareness values from time
to time and recomputing the awareness information at any point in the
future by reapplying the operations to the document. With the method
getValue in the class Value, we indicate the aforementioned application-
specific procedures that can be used to retrieve the corresponding value
objects.

3.3.4 Metric

The existence of multiple value objects associated with both operation
and node objects is due to the various metrics used. The severity of an
operation can vary depending on the desired granularity of awareness. If a
user is interested in recording all of the changes made to a text document,
including even the spelling mistakes, this implies that all operations have
to be recorded. The values associated with an operation will then be
computed based on the total number of characters inserted or deleted.
However, if an editor in a publishing company wants to check whether
a document is still undergoing major changes or approaching its final
version, they probably want to be informed only about those changes that
include insertions and deletions of whole paragraphs. In this case, the
awareness information would be based only on operations that inserted
or deleted nodes of at least paragraph level, i.e. paragraphs or sections.

To enable this functionality, we support the existence of various met-
rics, each of which defines the level of detail that needs to be recorded for
each modification and the exact information that needs to be extracted
and delivered to the user. For a text document, an operation that inserts
a sentence with content “Supporting Group Work.” has a value equal
to 1 if the metric defined was “sentences”, which means that users are
interested in the number of whole sentences inserted, a value of 3 if the
metric was “words”, a value of 19 if the metric was “characters” and

3.3. Framework’s metamodel 79

a value of 0 if the metric was “paragraphs”. The various value objects
associated with the operation objects applied to a node are then summed
up to compute the corresponding value objects for the node. The detailed
procedure of the above computations can be found in Section 4.2.2 where
a set of example metrics is introduced for a specific text application.

3.3.5 Visualisation tool

We model the different ways in which the value objects can be presented
to the user under the concept of a visualisation tool. The tools used
for visualisation can vary depending on the application, the document
type and the users’ needs. In order to satisfy all the requirements set
in Chapter 2, we favour the use of tools that present an overview of
modifications throughout the whole document. However, overviews can
also vary based on the type of the co-authored document. For instance,
an overview of the modifications made in a text document is expected to
be different from an overview of modifications made on a 2-dimensional
scene of objects or an overview of changes made on a set of related
documents.

The common characteristic, though, of all the above, is that they
present a subset of the computed nodeValues. To retrieve this set of
values, a filtering mechanism is needed, that takes into consideration the
users current need for awareness, filters the available information and
retrieves and presents to users only the relevant information. In the next
chapters we propose several visualisation tools, for different document
types. The filtering mechanism we used when applying the framework
to a collaborative text editor is also presented in the next chapter.

3.3.6 User

Finally, we also include the notion of a user in our model. A user can
either be an individual or a group. Each user has some preferences,
such as a colour used for the visualisation of the awareness information.
Additionally, we define that each operation has a specific individual as a
creator. We use this information to select the operation objects according
to their creator and compute the awareness based on this criterion as
well. For instance, we might want to only present information about the
changes made by a specific user. The model can easily be extended so
that access rights between user objects and node objects are set, but
since we are not currently interested in this information, we omit it from

80 Chapter 3. General awareness framework

Figure 3.3.

3.4 Summary

We presented in this chapter all the concepts included in the metamodel
of an awareness mechanism that computes and presents multi-level awa-
reness information to users. The definition of the concepts was kept
general, to make the framework applicable in a large number of existing
collaborative applications. In order to apply the framework to a given ap-
plication, the application-specific document nodes, document levels, ope-
rations, metrics and visualisation tools need to be defined and modelled
as specifications of the framework’s general concepts. For an existing
collaborative application where a hierarchical representation of the co-
authored model is available, the application of the awareness mechanism
is expected to be a straightforward procedure.

To prove the generality of the awareness mechanism, we applied it to
an asynchronous collaborative text editor and a semi-synchronous colla-
borative text editor as presented in Chapters 4 and 6 respectively. We
also conducted user studies with the asynchronous editor to test whether
the concepts included in the awareness mechanism were well accepted and
correctly interpreted by the users. The results are presented in Chapter 5.
Finally, we considered ways to apply the framework to a graphical editor
and an editor of webpages. We present our proposition in Chapter 8.

4
Awareness enhanced

asynchronous text
application

To validate the awareness framework presented in the previous chap-
ter, we tested it with an existing collaborative editor developed in our
group [67]. In this chapter we present the basic functionality of the
editor, its underlying document structure, the realisation of the frame-
work’s core concepts for the specific editor and the procedure followed
to integrate the computation and visualisation of awareness information
into the editor. At the end of this chapter, we present the enriched ed-
itor along with the selected visualisation tool and comment on its new
functionalities.

4.1 Asynchronous text editor

We start this section with a brief presentation of the existing functionality
of the text editor that we used. We present its underlying document
structure and the operations defined for it.

81

82 Chapter 4. Awareness enhanced asynchronous text application

4.1.1 Editor’s initial functionality

The first application into which we integrated our awareness framework
is a collaborative text editor. It supports users that collaboratively au-
thor text documents in asynchronous mode. The editor implements the
copy-modify-merge paradigm. A repository is maintained to store the
different versions of the co-authored document. Users can download the
latest version of the document and make their modifications on their
local document copy. Upon completion of the modifications, the users
can upload their local version to the repository by sending their mod-
ifications. The new version of the document is stored as an XML file
containing all the operations that transformed the document from one
version to another. After the new document version is successfully up-
loaded, it becomes available to the rest of the users. If more than one
user downloads the same version of a document, modifies it and tries to
upload their modifications, a merge algorithm is employed to merge the
modifications of all users and store a version of the document containing
all the alterations into the repository.

4.1.2 Document model and operations

Documents edited in this application are modelled according to the hi-
erarchical document structure presented in Section 3.1.1. There are only
5 document levels available in the application, the “document”, “para-
graph”, “sentence”, “word” and “character” levels. When users make
a modification, this is translated by the application into the creation of
an operation applied to a document mode. Two types of operations are
supported – the “creation” and “deletion” of document parts. Opera-
tions are also defined in a similar way to this in Section 3.1.1. Following
the notation introduced in that section, the operation op = {create, 3,
{2,3,4}, awareness, {0,0,1,9}, Bob} inserts the word “awareness”, i.e. a
document node of word level (3), at position 4 of the third sentence of the
second paragraph. The modification is made by user “Bob”. The vector
{0,0,1,9} represents the number of parts of the different document levels
that are created by this operation. Hence, 0 paragraphs, 0 sentences, 1
word or 9 characters are created by this operation.

Note that the above representation of operations is the one that fol-
lows the notation introduced in the previous chapter. The representation
of operations in the text application that we used was slightly different.
The length vector including the number of parts inserted by the operation

4.2. Framework’s extension for the text application 83

was not present in the definition of an operation for the text application.
The computation of this information was introduced into the editor dur-
ing the integration of the awareness mechanism into the editor. As we
explained in the previous chapter, the computation of multi-level aware-
ness for the above editor is not affected by the existence (or not) of the
length vector in an operation, since this information is available to all
users and can easily be computed by the content of an operation. How-
ever, in privacy-sensitive environments, where the content of an operation
might not be visible by all users, the length vector would give additional
helpful information. For the sake of consistency throughout this thesis,
we assume that operations in this chapter contain the length vector and
we present them as above.

4.2 Framework’s extension for the text application

4.2.1 Document model and operations

We use the metamodel presented in the previous chapter to describe the
concepts included in the collaborative editor. For this, we extend the core
concepts of the framework’s metamodel and introduce the application-
specific concepts as specialisations of the general concepts. Details can
be seen in Figure 4.1.

The available nodes are the ones that correspond to the document
levels introduced above, for instance document, paragraph, sentence, etc.
They are all modelled as specialisations of the node concept. Since only
the deletion and creation of document nodes are supported by the appli-
cation, example operations are createWord, deleteWord, createSentence,
deleteSentence, etc. Note that since operations are applied to nodes
of different levels, we define create and delete operations for each node
level. The above operations are grouped under the notion of a structural
operation, since they modify the structure of a document. A structural
operation is a specialisation of the general operation concept.

Having explained how the part of the metamodel referring to the
underlying document structure is materialised for the text application
that we used, we will go on to present in detail how the rest of the
framework’s concepts were materialised in the application.

84 Chapter 4. Awareness enhanced asynchronous text application

13 N
ovem

ber 2007
S

tavroula P
apadopoulou / E

TH
 Zurich / papadops@

inf.ethz.ch
13

F
igu

re
4.1:

E
x
ten

sion
of

th
e

fram
ew

ork
’s

core
con

cep
ts

for
a

tex
t

asy
n
ch

ron
ou

s
ed

itor

4.2. Framework’s extension for the text application 85

4.2.2 Definition of metrics

The definition of metrics for a given application aims at specifying the
kind of information that users are interested in and the level of detail
with which the information is collected. The severity of an operation is
then computed for each of the metrics. However, the definition of metrics
is not only user-related. It is also application-related, since the available
information depends on the features of the application, the collaborative
activity supported by the application and the details of the underlying
document model.

The collaborative application we use is a text editor, which means
that all operations refer to some piece of text. The supported operations
are the creation and deletion of a textual document part. Although there
exist different syntactic levels for the document parts, all operations can
be seen as a creation / deletion of a piece of text in / from a document.
To classify operations according to their severity, we need to closely look
at the details of operations that distinguish one from the other. These are
the “level” and the “length” of an operation as described in Chapter 3.
Both attributes need to be taken into consideration, since they reflect
the severity of an operation.

For instance, the creation of a new paragraph in a document section,
might possibly reflect the addition of a new concept. The deletion of a
sentence in a paragraph, might reflect some repetition in the description
of a concept, or some useless comment, while the deletion of a character
would probably be a spelling correction. The level of the above operations
indirectly gives information about the severity of a modification.

Similarly, the length of an operation might also affect our percep-
tion about the severity of the operation. Has an operation that adds a
paragraph of 2 sentences the same severity as an operation that adds
20 sentences? Finally, two operations could be compared based on both
their level and their length. For instance, which operation has the high-
est severity? The creation of a new section of two paragraphs, or the
addition of 4 paragraphs in an existing section?

Unfortunately there is no clear answer to the above questions. The
answers vary depending on the collaborative task and the users’ roles and
preferences. For instance, spelling mistakes might be more interesting
for an author who received a co-authored document from a proofreader,
than modifications that alter a whole section. However that would not
apply to users who need an overview of a document’s status to decide
whether a document could be delivered before a deadline. Taking the

86 Chapter 4. Awareness enhanced asynchronous text application

above concerns into consideration, we decided to provide the users with
a flexible mechanism that offers the required level of awareness based on
their current preferences. Therefore, we consider both the “level” and
the “length” of an operation in our computations.

As a result, the severity of an operation, described by the concept of
the opValue, is computed based on the number (reflecting the “length”) of
units of different syntactic document levels that are created or deleted by
the operation. The metrics are shown in Figure 4.1 as specialisations of
the core metric concept. In detail, they are the “number of characters”,
the “number of words”, the “number of sentences” and the “number
of paragraphs”, i.e. the number of syntactic document units of a specific
level ulevel, inserted or deleted by an operation. As a result, an operation
that creates a new sentence in a paragraph has a different opValue if users
are interested in the number of sentences inserted, or in the number of
words. We define the opV alue as follows.

Definition 8. The opV alue of an operation op is the number of units of
level ulevel that are inserted or deleted by the operation.

opV alue(op, ulevel) =
0 if level(op) > ulevel
1 if level(op) = ulevel

Count(unitj) unitj ∈ content(op)&
level(unitj) = ulevel

if level(op) < ulevel

If the operation level is the same as the level ulevel of the units
that we count, the opV alue of the operation is 1. For example, if the
operation op is of level sentence, it means that it inserts or deletes a
whole sentence. If ulevel is also the sentence level, we are interested in
counting the insertions or deletions of whole sentences, which means that
the opV alue is equal to 1. If ulevel is the word level, then the opV alue
of a sentence level operation will be equal to the number of words that
belong to the sentence inserted or deleted by the operation. If ulevel
is the paragraph level, the opV alue of a sentence level operation is not
defined. We will use the value of 0 to denote such an opV alue.

Note that the computation done above is the same as the one required
to produce the length vector of an operation when the general notation of
an operation is used. Therefore, if an operation’s length is also available,
the opValue could be defined using the information kept in the vector as
below.

4.2. Framework’s extension for the text application 87

Definition 9. The opV alue of an operation op is given by the element
in the length vector that corresponds to level ulevel.

opV alue(op, ulevel) = length(op, ulevel)

The opV alue shows the severity of only one operation when this is
applied to a document part. To compute how much a document part has
changed, all operations applied to it need to be taken into account. We
introduce the nodeV alue to represent the severity of all modifications
made on a node. This includes the values of all the operations applied to
the node or its children. Due to the fact that the editor we extend keeps
a distributed history of operations, operations concerning changes to a
node are kept in the node’s history and operations concerning the node’s
children are kept in the children’s history. For that reason, we add a
second factor to the nodeV alue metric, defined below, representing the
changes made to each of the node’s children.

Definition 10. We define nodeV alue of a node N to be the sum of two
components: the sum of the opV alue of all the operations applied to the
node and the sum of the nodeV alue of all the node’s children.

nodeV alue(N, ulevel) =
∑

opi∈history(N)

opV alue(opi, ulevel)

+
∑

Nj∈children(N)

nodeV alue(Nj, ulevel)

NodeV alue of a node at the character level is equal to zero, since
its history and children are empty sets. For every node, we additionally
define a createNodeV alue and a deleteNodeV alue as the nodeV alue
computed for only the create and delete operations, respectively. The
createNodeV alue and deleteNodeV alue are the values to be later pre-
sented through the visualisation tool.

In the rest of this section we describe, with the help of a simple
example, how the above values are computed. Assume a user is working
on a document where the first sentence of the third paragraph has the
content “We assign a valu every document node”. The user edits the
sentence so that its final content becomes “We assign a value to every
document node”. The modifications made by the users are the insertion
of the character “e” at the end of the word “valu” and the insertion of
the word “to” after the word “valu”. In terms of operations, they can be
written as:

op1 = {create, 4, {3, 1, 4, 5}, e, {0, 0, 0, 1}, userName}

88 Chapter 4. Awareness enhanced asynchronous text application

op2 = {create, 3, {3, 1, 5}, to, {0, 0, 1, 2}, userName}
The first operation will be applied to the word “valu” and therefore

will be stored in its history and the second operation will be applied to
the sentence “We assign a valu every document node” and will be stored
in its history. The tree structure representing the document can be seen
in Figure 4.2. Next to the document nodes each node’s history is shown
with the operations that are applied to the node.

Depending on the selected metric, the createNodeValue computed for
every document node varies. If the metric “number of characters” is used,
then the computed values are the ones shown in Figure 4.3. If the metric
“number of words” is used then the values are shown in Figure 4.4. For
any other metric, all values remain equal to zero. Note that the values
of all “affected” nodes are updated in the figures, including the parent
nodes of the nodes where the operations are applied.

4.3 Visualisation of awareness

A novelty of our approach is the flexibility of presenting awareness for
the various structural document levels and document parts. For that
reason, a visualisation tool that allows the users to define the granularity
of awareness that they want to view was built.

4.3.1 Filtering procedure

The visualisation tool, through its graphical user interface, allows users
to define in detail the information that they need. This, in terms of the
preceding definitions, can be translated to users filtering the exact node-
Values that need to be presented through the visualisation tool. For this,
a filtering mechanism is used, that traverses the structured document and
the nodeValues computed for each node and feeds the visualisation tool
with the correct set of nodeValues based on user requirements.

The filtering mechanism provides two ways to traverse the document
nodes. One is at a document level and one for a document node. To il-
lustrate the need to provide awareness information for a specific level or
document node, let us consider the following examples: when a user re-
ceives a new version of a document, they need to see what has happened
in the document since the last version they were aware of. For a docu-
ment handled by the given text application, this means how much each
paragraph has changed, since this is the next level after the document
level. To get this information, users only need to specify the document

4.3. Visualisation of awareness 89

Figure 4.2: Example of a tree-structured document with a set of opera-
tions applied to it

Figure 4.3: The metric “number of characters” is used for the computa-
tion of the nodeValues

Figure 4.4: The metric “number of words” is used for the computation
of the nodeValues

90 Chapter 4. Awareness enhanced asynchronous text application

level in which they are interested, in this example the paragraph level.
However, if a user is responsible for a specific paragraph they might be
interested in changes made to that paragraph only. For instance, they
might be interested in changes made on sentences of the first paragraph.
Filtering the computed information on the sentence level would provide
the user with the nodeValues of all sentences in the document. To avoid
this, we allow the user to filter the computed information by specifying
only a certain document node. The nodeValues computed for the node’s
children are then presented through the visualisation tool. We modelled
this behaviour with two functions, the awarenessOnLevel function and
the awarenessOnNode function.

In Figure 4.5 and Figure 4.6 we present a graphical representation
of the filtering mechanism. Then, we also present the formal definitions
of the functions. In the document of the previous example with the
operations op1 and op2, the filtering of the computed information on
different document levels can be graphically represented as in Figure 4.5.
A request of all modifications made on the paragraph level would traverse
the structured document and return only the paragraph nodes and their
nodeValues, as highlighted with the upper shaded group of nodes. A
request for the modifications through all the document sentences would
return the lower shaded group of nodes. However, if information about
a specific document part is required, for instance paragraph three, then
only the sentence level nodes that are direct children of the specified
paragraph will be returned as shown in the upper shaded group of nodes
in Figure 4.6. The rest of the document sentences will not be returned.
In a similar manner, if the modifications made to the first sentence of
the third paragraph are requested, the lower shaded group of nodes will
be returned.

We now present the formal definitions of the awarenessOnLevel and
the awarenessOnNode functions. As can be seen, the information re-
turned from the functions can be narrowed down if users provide a com-
plete set of requirements instead of only a document level or a document
node. An example of such a request could be to search for the severity of
the deletions of whole sentences that user Bob did throughout all para-
graphs. In this request, apart from the document level we also specify
the type of the operation, the metric, as well as the user that made the
modifications.

4.3. Visualisation of awareness 91

Figure 4.5: Access to nodes of a given level

Figure 4.6: Access to children nodes of a given node

92 Chapter 4. Awareness enhanced asynchronous text application

Definition 11. We define the function
awarenessOnLevel(opType, level, userList, metric), where

• opType ∈ {creation, deletion, both} is the type of the operations
that the user wants to visualise,

• level ∈ {0, 1, 2, 3} is the level of the nodes, in the tree document,
whose changes should be visualised,

• usersList is a list of users whose modifications should be visualised,

• metric is the metric used for the computation of the nodeValues.

This function retrieves the nodeValues of the nodes on the given level
and returns the nodeValues corresponding to users in usersList and ope-
rations with type opType.

Definition 12. In a similar manner we define the function
awarenessOnNode(opType, node, userList,metric), where

• opType, metric and usersList are defined as in the function
awarenessOnLevel,

• node is the document node whose changes should be visualised.

This function filters the nodeValues of the node’s children and returns
the ones computed with the given metric and corresponding to users in
usersList and operations with type opType.

The functions defined above can be used to extract information about
users or roles in collaborative situations. The information extracted di-
rectly is the modifications that a specific user has made. However, the
information extracted alongside is equally important. Consider a collabo-
rative situation, where each user has to write one section of the document
and review another. It could be interesting to recognise users or user roles
based on the parts of the document that they are editing, or based on
the patterns that the users use when authoring or reviewing a document.
An extensive discussion on this issue is presented in the next chapter,
where the editor’s awareness features are tested and users’ feedback is
collected.

The above computed information is more direct and can be extracted
more easily in the case that the computation of nodeValues is applied
in a synchronous editor where the nodeValues are continuously updated

4.3. Visualisation of awareness 93

and presented to the user in real-time. Noticing, for instance, that the
nodeValues of the second section are increasing, the user becomes aware
that another user is working on that part of the document. If the node-
Values of all the sections are slightly increasing one after the other, it
may mean that a reviewer is going through the whole document making
small changes everywhere. We realise that the potential use of the awa-
reness information that we compute is greater than the one presented
in this chapter, especially concerning synchronous and semi-synchronous
collaboration. For that reason, we have investigated the possibility of
applying the framework on a semi-synchronous collaborative editor and
to applications that handle different document types. More on that is
presented in the next chapters.

4.3.2 Edit profile

Using the above functions, a group of nodeValues is selected and visu-
alised through the visualisation tool. To satisfy the users’ requirement
of an overview, we created a visualisation tool that provides an edit-
ing overview throughout the whole document, for the different document
levels, or across different document parts. That tool is called Edit Pro-
file and a screenshot of it integrated into the text editor is shown in
Figure 4.7. The graphical user interface of the edit profile consists of
a group of radio buttons, a table and a histogram shown in details in
Figures 4.8, 4.9 and 4.10 respectively. By setting the value of the radio
buttons, users specify the exact information that they need. In essence,
they set the input parameters opType, level and metric for the filtering
functions. The parameter usersList is set through the table.

With the leftmost group of radio buttons, we provide the user with
the possibility of being aware of changes at different document levels.
They can choose between “paragraph”, “sentence” and “word” levels,
i.e. visualise the total number of changes that were made on document
nodes of the corresponding levels. If, for instance, the “paragraph” level
is selected, then the values computed for each of the document para-
graphs will be chosen and presented through the edit profile. These
values picture the severity of all the changes made to each paragraph
and its children nodes. The computed values are presented in the his-
togram, shown in Figures 4.10 and 4.7. We decided against adding the
“document level”, since for this editor it would return only one value at
a time. We believe the information on a document level is needed in col-
laborative situations where users are working with multiple documents

94 Chapter 4. Awareness enhanced asynchronous text application

Edit Profile
Bar = Syntactic
document unit

Color code for
Users

Syntactic
document
levels

Type of Changes Metrics to be used

Clicking on a bar
highlights the
corresponding node
in the document

Figure 4.7: Awareness enhanced GUI

to inform them whether they need to open a document and further check
it. We discuss examples of such collaborative situations in Chapter 6.
However, for the current editor, we believe that this functionality would
not offer any additional information to the user.

The next two radio buttons enable the selection of each node’s node-
Values that are required by the users. The buttons refer to the type of
the operations and the metric. We provide a selection of three metrics at
this edit profile, namely “sentences”, “words” and “characters”. If, for
instance, the metric “sentences” is chosen, then the values are computed
based on the number of entire sentences inserted or deleted. Since the
document level is not visualised in this edit profile, the “number of para-
graphs” metric is also not offered to the users. Note that not all metrics
are available for every document level. For instance, if information on
the sentence level is visualised, which means that all the modifications
for each sentence are presented, the paragraph metric is not available.
This results from the fact that there cannot be any operation inserting
or deleting a whole paragraph inside a sentence. Further, referring to
the type of changes to be visualised, insertions, deletions or both can be
chosen. Finally, we also provide the table shown in Figure 4.9 with an
entry for every user who has made changes to the document. Users are
assigned colours to distinguish changes made by different users. The set
of users to be visualised can be selected dynamically.

4.3. Visualisation of awareness 95

Figure 4.8: GUI snippet presenting the radio buttons of the edit profile

Figure 4.9: GUI snippet presenting the users table of the edit profile

Figure 4.10: GUI snippet presenting the histogram of the edit profile

96 Chapter 4. Awareness enhanced asynchronous text application

After specifying the document level, operation type, metric and list
of users through the GUI, the awareness values computed throughout the
entire hierarchical document are filtered, and the results are presented in
the profile. A bar is drawn for every node showing the number of changes
made to that node and its children. If only insertions or only deletions
are selected, each bar shows the number of insertions or deletions, re-
spectively, made to the corresponding node. Each bar is coloured with
the colour of the user who made the changes. If more than one user
is selected, each bar is horizontally split into subbars to represent the
different users.

The height of a subbar is relative to the proportion of the total number
of changes made to the corresponding node. Each subbar is coloured
with the corresponding user colour. If both insertions and deletions are
selected, each bar is vertically separated into two subbars to present the
insertions and deletions separately. The left subbar shows the number of
insertions and the right subbar the number of deletions. If more than one
user is selected, the subbars are further horizontally split and coloured
as presented in Figures 4.10 and 4.7.

In the example of Figure 4.7, awareness is provided at the paragraph
level, for both insertions and deletions, and “characters” is the selected
metric. As a result, the edit profile (shown also in Figure 4.10 shows
10 bars, corresponding to the 10 paragraphs of the document. Each
of them is vertically split into two subbars, since information for both
insertions and deletions is required. The left subbars reflect insertions
on a paragraph, while the right reflect deletions. Since “characters” is
selected, a bar’s height reflects the total number of characters inserted or
deleted to / from each paragraph. Users Alex, Bob and Tom are selected
from the users table. Therefore, the modifications of all three users are
presented.

Note that the above procedure uses the filter awarenessOnLevel.
The procedure to activate the filter awarenessOnNode is similar to that
described above, with the only difference being that, except for the case
of document level, a document node needs to be selected by the user. We
refer to this as the zoom-in functionality and discuss it in the following
subsection.

4.3.3 Advanced awareness features

One expedient feature of edit profiles is that they are not separated from
the main document. On the contrary, a user can be directed from the edit

4.4. Integration process 97

profile to the document with a single left click on the node of interest. If,
for instance, the paragraph level is selected and a user clicks on the bar
corresponding to the last paragraph, that paragraph will be highlighted
as shown in Figure 4.7. The same applies to all nodes, at all document
levels.

Finally, the edit profile is enhanced with a feature that returns info-
rmation about a specific document part. Consider, for example, the case
where a user notes that a specific paragraph seems to have undergone
major changes and wants to see how the total number of changes in the
paragraph is distributed to the sentences of that paragraph. By double
clicking on the corresponding bar in the histogram, the user zooms in
one level and sees the total number of changes computed for the direct
children i.e. the sentence-level children nodes. This action activates the
awarenessOnNode function.

4.4 Integration process

In this section, we present the integration process of the awareness mech-
anism into the asynchronous text editor. The upper half of Figure 4.11
presents the editor before applying our awareness framework and the
lower half after applying the framework. Below, we discuss in detail the
state of the editor before applying the awareness framework followed by
the changes made to the editor to enable the framework’s integration and
the editor’s functionality after applying the framework.

GUI

OpListener
ConsController

Document DocumentView

EditProfileAwareManager

updateDocView
apply(op’)trans(op)

apply(op)

computeAw(op) updateValues

refreshEditProfile

op
OpManager apply(op)

EXISTING EDITOR

AWARENESS FRAMEWORK

DocumentNode

apply(op)

getPreferences

retrieveValue

(1)

(2)

(3)

(3)
(4)

(5)

(6)

(7) (8) retrieveValues

update Value
(9) (12)

(10)

(11)

(13)

Figure 4.11: Editor’s functionality before and after the integration of the
awareness framework

98 Chapter 4. Awareness enhanced asynchronous text application

Editor’s functionality before applying the framework: Cha-
nges are made to the document both from the local and remote sites. A
listener, OpListener, registers itself to listen for all the operations cre-
ated (1). Local operations are applied to the Document (4) through the
OpManager (3), while the remote operations are initially transmitted to
the consistency controller (2), where they may be transformed according
to the consistency algorithm used and finally are sent to the OpManager
(3) to be applied to the Document (4). The Document component pre-
sented in Figure 4.11 represents the root of the hierarchical document.
For an operation to be applied to a document, the hierarchical document
needs to be scanned to find the Document Node where the operation
should be applied (5). Once the Document is updated and the severity
of the operation(s) included into it, the Document View in the GUI is
also updated (6).

Changes made to the editor to allow the framework’s integra-
tion: To include the computation of the enriched awareness information,
the Document Node objects were extended to include the value objects
introduced in the previous section. Further, an awareness visualisation
tool, namely the Edit Profile, was added to the GUI. To have the editor
communicate with the awareness framework as seen in Figure 4.11, Op-
Manager holds a reference to the AwareManager and the AwareManager
holds a reference to the Document object.

Editor’s functionality after applying the framework: In the
extended collaborative editor, the computation of awareness is triggered
by the OpManager for each new operation received (7). The severity of
the operation is computed for all available metrics, and the value objects
of the changed Document Nodes are updated by the AwareManager (8,
9). Finally, the AwareManager updates the EditProfile (13) to present
the values retrieved (11, 12) from the DocumentNodes according to user
preferences (10).

4.5 Summary

In this chapter, the integration of our awareness framework into an ex-
isting collaborative editor is described. To enable this integration, the
selected editor satisfied the requirement corresponding to the underlying
document structure. The documents handled by the editor are repre-
sented by a structured document model and modifications made to them
are modelled as operations applied to the document parts.

4.5. Summary 99

Based on the editor’s available functionality and our expectations
about user preferences and needs, we extended the core concepts of the
framework metamodel. That included the materialisation of the node,
operation, metric and visualisation tool concepts. Of course the metrics
and the visualisation tool proposed in this chapter need to be tested to
see whether they can easily be used by the users, whether they present
the expected information and whether this information is interpreted in
the expected way by the users. We used the resulting editor, presented
in this chapter, to conduct a qualitative user study testing all the above.
The set of our research questions, details on the study, as well as the
users’ feedback are presented in the following chapter.

5
Qualitative user study

In the previous chapter, we presented a prototype of an asynchronous
collaborative editor enhanced with awareness, through the integration of
our awareness mechanism. An edit profile was introduced as the visuali-
sation tool used for the prototype. We expect that the resulting enhanced
editor will provide multi-level change awareness to users working with it.
To test this assumption, we used the editor to conduct a qualitative user
study. We begin this chapter with a presentation of the research ques-
tions to which we wanted to provide an answer through the user study.
Then we present the study design and finally the study results and a
discussion on them.

5.1 Research questions

We start with a summary of the new features offered by the editor. The
enhanced collaborative editor

• presents information about, not only the location of a change, but
also its severity to a specific document part and to the document
as a whole,

• presents an overview of all changes made to the document using an
edit profile,

101

102 Chapter 5. Qualitative user study

• presents information about different types of changes, on various
document levels and document parts,

• presents information about who made the changes,

• provides an interactive graph for the user to easily access “problem-
atic” document parts, or zoom into different levels and document
parts, and

• allows different metrics to be defined and used according to appli-
cation requirements and user needs.

We believe that such an editor provides users with more awareness
information than existing editors. In the user study, we investigated the
following issues.

• Does the presence of an edit profile increase the awareness provided
to the users? More specifically, we investigated whether the pres-
ence of an edit profile assists users to quickly be informed about
the modifications in a document, and whether it helps them to spot
“problematic” document parts, i.e. document parts that have un-
dergone many modifications and therefore may need to be checked.

• Do users find it useful to be informed about changes made to the
document on different document levels? In detail, we investigated
whether awareness about changes at different document levels in-
creases the awareness of users about the details of modifications and
whether it helps them track modifications through the different do-
cument levels. In addition, we investigated whether information on
all different levels is needed.

• Do users find it useful to be informed about changes made to the
different document parts? Similarly, we tested the reaction of users
on receiving awareness information about different document parts,
whether they believed that they needed this detailed information
and how it could be used.

• Do users find it useful to decide on the granularity of the changes
that will be reported through the overview? We investigated how
users interpret the information returned by the edit profile for the
various metrics. Are all metrics needed by users? In which colla-
borative situations would users use each metric?

5.2. Study design and methods 103

• Could the information presented through the edit profile be used to
judge a document’s evolution and quality, the quality of a person’s
writing skills, or any writing patterns?

Given the restricted functionality of the editor prototype and the
nature of research questions to be answered, we decided to conduct a
qualitative rather than quantitative user study. Our aim was to get
some initial feedback from users working with the enhanced editor and
use it to redesign, if needed, the awareness framework and the prototype.

Additionally, we decided against conducting a user study where the
awareness features of the prototype would be compared to the awareness
features of existing awareness-enhanced systems. In such a study, users
could be questioned about the level of another user’s involvement in
the authoring of a document’s session using our prototype and another
system. The correctness of their answer as well as the time needed to
extract this information from each system could then be compared. We
believe that such user studies are beyond the scope of our work at this
point. However, once the concepts of the framework are accepted by the
users and the implementation of our systems is beyond the level of initial
prototypes, such comparative user studies would be very interesting.

5.2 Study design and methods

We carried out a qualitative user study based on a usability test. We
defined as target user group for the asynchronous editor, people who
were familiar with collaborative authoring in a scientific working context.
Ten persons volunteered to participate in our study. All of them had an
academic background in the field of engineering, sciences or economics.

The number of participants required for a qualitative user study is an
issue that attracts much attention from researchers conducting usability
studies [28, 92, 93]. While researchers agree that the number of subjects
required for a qualitative user study is much lower than for a quantitative
user study, there is no number of participants accepted by all researchers
as generally adequate for such a study. We believe that this is reasonable
since different user studies can have different requirements with regard
to the research questions to be answered and the detail of the required
results. Therefore, the number of participants required for user studies
with different requirements will also differ.

It was not the intention of the user study presented in this chapter
to collect statistical data, but rather to obtain the initial users’ feedback

104 Chapter 5. Qualitative user study

and the level at which they understand, accept and correctly interpret the
core concepts included in the prototype and the awareness framework.
We therefore believed that the testing of ten participants would return
adequate feedback.

Each session of the user study began with an introduction to the
test procedure and a brief verbal tutorial to the editor since none of
the participants had worked with it before. After filling in a short pre-
questionnaire, each participant worked on five tasks that included the
use of all of the editor’s features. No time limit was set for completing
this part and it lasted, on average, around 20 minutes. Participants were
asked to speak aloud their intentions and any remarks they had while
performing the tasks. After the task completion, participants filled in a
post-questionnaire. The questions in all of the questionnaires had one of
the following formats:

• statements to be ranked on a five point Likert scale

• binary (yes/no) questions

• multiple choice questions

• open-end questions

In some of the binary or multiple choice questions, the users were
also asked to give reasons for their answer. The open end questions were
mainly used to ensure that the participants interpreted correctly the
information displayed through the edit profile. For instance, they were
asked to assign roles to the users shown on the profile or decide on the
document parts each user owns based on their editing activity, or to find
hot spots in the document. After the task part and the questionnaires,
there followed a brief informal and unstructured interview to discuss
specific results from the observations and questionnaires.

Each session took about one hour and was guided by an experimenter
who observed the test and answered the participants’ questions. The
whole session was recorded on video and, during the task part, the screen
was captured as well, as shown in Figures 5.1 and 5.2. The results from
the questionnaires, observations and informal interviews were later tran-
scribed into a detailed report.

During the task part, the participants were presented with a typical
situation where three persons, i.e. two students and their professor, col-
laboratively write a document using the asynchronous text editor. Par-
ticipants were asked to assume that they had joined the group as students

5.3. Results 105

Figure 5.1: Example of a user interacting with the awareness enhanced
editor in the frame of a user study

in order to help write the paper. The given tasks included interaction
with the editor to explore different parts of the document and to inter-
pret the overview in order to catch up on the document’s evolution from
its creation to the current version.

One pilot test with one out of the ten participants was performed. As
the pilot revealed no inadequacies of the test setup, we decided to also
take these results into account. The questionnaires used for this study
can be found in Appendix A.

5.3 Results

The study considered the research questions presented in the beginning
of this chapter. In summary, we checked whether the users could quickly
and easily be informed, through the document overview, about the cha-
nges that each user made, as well as the role of each user and what
parts of a document were “owned” by each user. Additionally, we inves-
tigated how users interpreted the information computed based on each of
the metrics and which metrics they found more useful. Furthermore, we
checked whether they liked the idea of an interactive visualisation tool as
a means of navigating through the modifications made to the document

106 Chapter 5. Qualitative user study

Figure 5.2: Captured screen during the user study

and zooming into different parts of it. The results that we gathered are
organised based on these issues and presented below.

Participants’ previous experience

In the pre-questionnaire, we asked participants to list the different tools
they had used when involved in collaborative authoring tasks. They
reported to have used MSWord (n=7), various editors for Latex files
(n=4), SVN (n=3), CVS (n=2) and Excel (n=2). We observed that
similar results were presented in previous studies as well [72, 94, 109]. We
have chosen not to report the editors used by only one user. During the
past five years, all participants had worked on five or more collaborative
authoring tasks. Most of the participants (n=9) assessed their computer
literacy to be good and one assessed it to be average.

5.3. Results 107

Edit profile

All participants liked the idea of an overview and had no problem inter-
acting with it. A characteristic reaction was: “It is really easy to use. If
you have the basic knowledge of a word processor, this is an interactive
kind of it.”

The participants reported that they would like such a feature in a
collaborative editor, “to get a first feeling” about the changes made to
the document. As presented in Figure 5.3, most of the users (n=9) either
agreed or strongly agreed on the statement that it was useful to present
the changes made to the document through the overview. Only one
participant said that he disagreed, but later in the discussion, he specified
that he meant that he did not like the way in which the visualisation tool
was built in the GUI. When he was asked whether he would like to be
informed about the changes made to a document through the overview,
he said: “Yes. That would be ok. The overview is nice at the beginning
. . . when you get the newest version (from the repository or from another
user).” This remark was made by other users as well. One of them said:
“I would use it when I log in to notice where someone has worked.”

One participant reported: “(The overview) was really useful because
you can see the changes in a matter of seconds and you can eliminate
any user you want.” Another user said: “Overall, I would say the graph
gives me a good sense to quickly locate, if I am in a hurry . . . , where the
changes are made.” A third user, when asked if he would like to have the
awareness information displayed in the overview, compared the editor
with the one he used most and said: “In general it is much more useful
than when you use . . . (he mentioned the other editor) which has all these
balloons . . . it is really a mess. This . . . (our editor) is much friendlier.
You can see on a more abstract level . . . not just focusing on every small
detail.”

All of them reported that they would not be able to get the same
information without the use of the overview and that the overview of-
fered sufficient information on the exact place in the document where the
changes were made. However, 4 of them said that the information about
the amount of the changes was not enough. This was mainly due to the
fact that there was no information provided by the tool about the actual
changes on the text document itself. This confirms our expectation that
the edit profile provides the needed overview of all changes made to a
document, before checking them into detail. In a second step, if the user
wants to check the changes in more detail, a tool that shows the changes

108 Chapter 5. Qualitative user study

on the text is required.

Document levels

A novel characteristic of our approach is the fact that awareness informa-
tion is computed not only for the document as a whole [86], but also for
document parts which correspond to meaningful syntactic units and not
just lines [64]. We tested the above argument in our study. The partici-
pants were asked to visualise the changes made to the document at the
different document levels and try to find the parts of the document that
had undergone major changes by zooming in on the different document
levels. As presented in Figure 5.3, five participants disagreed and five
strongly disagreed with the statement that it was not useful to present
awareness information on different document levels.

Document parts

Another expedient characteristic of our approach is that, in addition to
the information computed and presented on different document levels,
we provide the user with information about different document parts as
well. In our study, we asked the participants to find the paragraph where
insertions but no deletions were made, to zoom in, see how the total
amount of changes in the paragraph were distributed in the paragraph’s
sentences and interpret the information displayed.

All of them found the correct paragraph, zoomed in successfully and
commented on the changes presented on the sentence level. In the exam-
ple paragraph used for this task, the users saw that the increased amount
of changes presented for the specific paragraph was due to changes that
modified only a specific part of it. The corresponding sentences at the
specific paragraph part were heavily changed by all users. The rest of the
sentences were edited by only one user. The participants reported that
this could mean that either the other users had not read that part or they
agreed with what was written. When asked whether they liked the zoom
in functionality, they all answered affirmatively. Figure 5.3 additionally
shows how much they liked the zoom in feature.

Metrics

To test whether our approach delivers more information in comparison
to other approaches due to the use of multiple metrics, we required that
the participants locate, with the help of the overview, the paragraph with

5.3. Results 109

0
1
2
3
4
5
6
7

strongly disagree disagree neither disagree
nor agree

agree strongly agree

It was useful that changes made to a document were presented through an overview
It was not useful that changes made to a document were presented on different document levels
It was useful to locate changed document parts by single clicking on the overview
It was useful to zoom into different document levels of a specific document part
It was not useful to present changes based on the total number of characters inserted or deleted
It was useful to present changes based on the total number of semantic units inserted or deleted

Figure 5.3: Users’ feedback on Likert scale questions from the post-
questionnaire

the most changes in terms of complete sentences inserted or deleted and
the one with the most changes in terms of the total number of characters
inserted or deleted. All participants navigated easily between the profile
views for the two metrics.

After successfully locating the required paragraphs, they were asked
to comment on the results. They reported that: “the paragraph with the
most complete sentences inserted was not accurate in a higher level of
understanding” while the second one “was not accurate in orthography”.
Another user mentioned: “on a structural level, it makes me assume that
the changes on the second paragraph were minor, whereas in the first
paragraph they were major and probably had to do with its structure.”
This verifies our hypothesis that depending on the metric chosen, the
information presented can be interpreted in different ways and lead to
different conclusions.

One of the questions we included in the post-questionnaire was whe-
ther the participants would like to be informed about changes made to a
document based on the total number of characters, or based on the total
number of syntactic units of a higher level, i.e. words and sentences, or
based on both. We observed that, although all of them were able to
see the difference in the results returned from the different metrics, only

110 Chapter 5. Qualitative user study

three of them chose to be informed in both ways. Six participants would
prefer to be informed only based on the numbers of higher level syntactic
units and only one chose the characters only. This answer justifies the
results in Figure 5.3 on how useful they found the fact that awareness
information was computed according to the number of characters and
according to other syntactic document units.

A user said that he would find the information delivered for the para-
graph with the most complete sentences inserted or deleted “much more
useful semantically, because when you write a paper, you want to see if
some additional information has been delivered in that paragraph. If you
have just more characters inserted it probably meant you have used dif-
ferent terminology.” Another participant pointed out: “If I see changes
on the sentence level it means I should read the paragraph again because
the meaning has changed. If I see it on the character level, it means it
changed slightly.”

We conclude that the users, for the specific task given, would prefer to
get information about “major” changes made to a document, i.e. changes
that had to do with insertions and deletions of units on a higher level
than the character level. However, they were aware that their decision
was based on the specific task given and they mentioned: “If somebody
has to do a proofreading or spell check it would be interesting to have
(the information computed on) characters.”

Working patterns, user roles

In addition, we were interested in investigating whether information
about user roles, the quality of a document or a user’s writing skills could
be extracted through the edit profile. We believe that if a user study were
to supply detailed information on these queries, it should be constructed
with relevant tasks. Although our study was not built on such a concept,
we obtained some important feedback from the participants and there-
fore report on it. When the participants were introduced to the tasks,
they were not informed about the other users’ roles. However, only by
being aware:

• of the number of participants with each role,

• what each role included in terms of changes made to the document
or ownership of document parts and

• by checking the overview,

5.4. Discussion 111

they were all able to judge successfully the role of each of the users and
also the owner of each document part. For instance, they all reported
that Tom, as shown in Figure 5.2, was the professor because “he made
few changes to all paragraphs” and although “he was not responsible for
a specific paragraph, he edited all.” Here, the users demonstrated that
they were able to assign roles to users based on their editing activity given
that the roles and each role’s tasks were specified. It would be interesting
to further investigate whether a user’s editing activity observed through
an edit profile can deliver additional information about users and their
working patterns.

Usability Results

Alongside the results relevant to our research queries, the user study
provided us with usability results as well. Here we report some of our
observations. None of the users showed difficulty in using the available
GUI features. They navigated easily between the document levels and
easily visualised the changes of different users computed with all of the
available metrics. In addition to that, they also liked the fact that dif-
ferent types of changes, i.e. insertions and deletions, could be visualised
separately. We observed that they made heavy use of this feature in
an attempt to see, for instance, the insertions without being distracted
by the bars corresponding to the deletions. Additionally, as reported in
Figure 5.3, they rated the single click functionality as very useful.

However, we observed that in certain cases, the users were not able
to easily interpret the information given by the overview. This was due
to the fact that there was no labelling and no absolute values on the
x-axis of the overview. The problem arose when users navigated between
different document levels or when they zoomed in on different document
parts. For instance, they could not compare the values visualised in the
overview on the paragraph level with those on the sentence level. In
addition to that, some users lost orientation when they zoomed in and
had to go back to a higher level and zoom in again to ensure that they
zoomed in on the desired document area.

5.4 Discussion

In what follows we discuss our study results presented in the previous
section.

112 Chapter 5. Qualitative user study

Edit profile

As shown by our user study and also reported by Gutwin et al. [58], users
like the idea of a document profile that presents the sum of changes made
to a document. It provides a simple means of making users aware of “hot
areas” and also who is or has been active in various parts of the document.
Our hypothesis that the overview would help users to get information
quickly and on an abstract level before going on to check changes in
detail was confirmed by the users. All of them were able to spot the
paragraph or the sentence with the most changes and report successfully
on the document parts that each user had worked on. Additionally, we
observed that they interacted with it and got all the information needed
in a very intuitive way. That is reasonable if we consider that the overview
is just a linear representation of a document.

Document levels

We observed that the feature of presenting awareness information on dif-
ferent document levels received positive feedback from the users. They
demonstrated no difficulty in navigating between levels. We estimate
that the reason for this is the fact that the document levels defined in
our approach correspond to the syntactic elements used in natural lan-
guage. However, the different levels available are application-dependent.
For instance, when asked how useful it is to display the awareness info-
rmation at both the paragraph and the sentence levels, one participant
answered: “neither disagree nor agree for the sentence level and strongly
agree for the paragraph level”. This raises another point, also mentioned
by another user: “I don’t know how (the overview) would be in a do-
cument with more paragraphs.” The same could occur even in a small
document, when trying to visualise the changes at the word level. This is
a proof that, as with any feature, the overview should be used with care
and the developers of a system should be careful not to load the system
and the user with too much information. Under this precondition, the
awareness information provided by a system can be heavily ameliorated
by the use of an overview.

In order to be able to provide all the information computed by the
metrics without overloading the user with meaningless information, we
believe that some improvements could be made to the system. For in-
stance, it is necessary to extend the document model and the editor to
include also “higher” document levels, i.e. section or chapter levels, to ef-

5.4. Discussion 113

ficiently compute and present changes made to longer documents as well.
If information on lower levels, for instance the word level, is still needed,
then the overview could be filled with information only about the nodes
that had changed. In such a case, the position of a bar in the overview
may not reflect the position of the node in the text, but this information
could additionally be delivered by extending the visualisation tool.

Document parts

An advantage of our approach over existing ones such as TenDaX [65]
is that the document parts correspond to syntactic parts of a document
defined as in natural language, and not in document regions of no syntac-
tic meaning. For example, a user can request information about changes
made on all the paragraphs of a section or all the sentences of a para-
graph and so on. This information is provided to the users of our system
by allowing them to zoom in on different parts of a document. It was
shown that, by zooming in, the participants could extract more detailed
information about the changes made to the document part under inspec-
tion, which means that the users were given the possibility to easily be
informed, at different levels of detail, about the way document parts were
changed.

Metrics

We believe that our approach delivers more information in comparison to
other approaches since the user decides on the granularity of the informa-
tion to be computed and presented according to application needs as well
as user roles or circumstances. For instance, if, in a publishing company,
an author is looking for spelling mistakes corrected by a proofreader,
they should choose to compute the awareness values based on the total
number of characters and then visualise the results at the word docu-
ment level. On the contrary, if a professor of a research group wanted to
check whether a research paper is still under major reconstruction, they
would probably choose to monitor the number of complete paragraphs
or sentences inserted or deleted.

The flexibility of our approach in computing awareness by monitoring
and counting changes on units of different syntactic levels was appreciated
by all participants. It was reported that each of the metrics defined could
be used for specific tasks and user roles. This shows that depending
on the metric chosen, the information presented can be interpreted in

114 Chapter 5. Qualitative user study

different ways and lead to different conclusions.

Working patterns, user roles

Evaluating the study’s results, we conclude that, according to users, the
overview could be used to judge the quality of a document and also indi-
vidual authors. It would be interesting to further investigate this and find
ways to present this information according to application requirements.

Usability Results

The usability test showed that users had no difficulties when using the
editor. This suggests that the tool is intuitive and easy to use. Addition-
ally, users rated the single-click functionality as very useful because they
could easily navigate through the edit profile to “interesting document
parts”. That was expected since such a feature was reported as miss-
ing by participants of the study conducted by Gutwin et al. [58]. The
fact that some users lost their orientation while zooming in on the dif-
ferent document levels could be solved by providing the user with some
additional information through the edit profile to help them orientate
themselves.

5.5 Extensions based on users feedback

In addition to the possible extensions of our editor to address the issues
that arose from the usability results, we intend to extend our approach
by providing even more functionality. Since we were interested in inves-
tigating how the users would react to some of the extensions that we
have already planned, we included some relevant questions in the post-
questionnaire. Here we concentrate on the results collected about two
possible extensions. The first concerned the computation and visuali-
sation of awareness information on different versions of the document
and the second on enhancing the asynchronous collaborative editor with
synchronously updated information about changes made by other users.
Here we report on the first one. Details on user feedback about the second
extension are given in the next chapter, since they were used as part of
the requirements set defined for the definition of the “shadow document
sets” and the “BeAware” workspace.

The information presented by the overview in its current form rep-
resents all of the changes made to the document from the moment of

5.6. Summary 115

its creation up to the current version. We asked the users whether they
would like to “be informed through the overview about how the document
evolved from one version to another”. They all answered affirmatively.
Most of them had even noticed before completing the post-questionnaire
that this functionality was missing and reported that they would find it
very helpful.

5.6 Summary

Based on the users’ feedback through questionnaires and discussions, we
have reported our comments and observations with regard to the research
questions introduced in the beginning of this chapter. The users appreci-
ated and highly rated all of the features proposed by our approach. They
gave positive feedback about the use of an overview that presents the sum
of the changes made on a document. They appreciated the possibility of
quickly accessing all of the “important”, i.e. heavily changed, document
parts as well as being able to be informed about the changes made on a
document at a more abstract level before going into details.

The presentation of the changes made to a document at different do-
cument levels and document parts was also highly rated, as well as the
zoom in functionality. By combining all of the above features, the users
could filter the computed awareness information and visualise the part
of it that was appropriate to the current situation. Additionally, we ob-
served that the users benefited from the various metrics available. They
realised that, depending on the application and their roles, they could
specify the granularity of the changes to be monitored and presented
through the edit profile.

The above results suggest that edit profiles and in general our aware-
ness framework can successfully provide multi-level awareness. However,
by no means do they show that the current implementation and the fea-
tures provided by the prototype are enough for users. We believe that
the awareness information computed by the prototype can be increased
if the awareness features included in the prototype are combined with
features of other existing awareness mechanisms. User studies where our
prototype is combined with other awareness-enhanced applications would
then be required to identify the advantages for the users deriving from
the combined features.

6
Semi-synchronous

collaboration

In the implementation of the asynchronous editor presented in Chap-
ter 4, users work in isolation and are not informed about changes being
made concurrently on the local copies of other users. The only way users
can be informed about changes from other users is by updating their
copies against the newest (if any) committed version of the document.
However, this means that if more than one user has worked on the same
document part, possible conflicts to be resolved may arise. In the worst
case, the changes of one user might have to be discarded, which could be
disappointing and time-consuming for the users.

To prevent these issues from arising, we propose a new feature that
asynchronous editors could provide. While the users work on their local
copy, in privacy, each user’s overview is updated synchronously to include
the severity of the changes made by other users on their local copies.
However, the remote changes are not applied on the local copy of the
main document since the users have chosen to work asynchronously on
a document version that reflects only their changes.

In this chapter we introduce the concept of “shadow document sets”
that allows for synchronously-updated awareness in asynchronous envi-
ronments. We present our approach in detail, along with a prototype of a
shared workspace for asynchronous collaboration based on “shadow do-
cument sets”, the “BeAware” workspace. We start with an example of a

117

118 Chapter 6. Semi-synchronous collaboration

collaborative activity that motivates the need for synchronously-updated
awareness information in asynchronous collaboration and presents in de-
tail the information that users often need. Using the example, as well
as users’ feedback from a user study we conducted, we collect the full
set of requirements in terms of awareness features an application should
provide to successfully address the above problems. We continue with
the introduction of shadow document sets, the implementation of the
BeAware workspace and a presentation of its advanced features.

6.1 Motivation and requirements

To further motivate our work and establish a set of requirements, we use
an example of three users, Mary, Bob and Tom collaboratively authoring
a document using the enhanced asynchronous editor of Chapter 4. The
users work in privacy but are connected to a network. We assume the
existence of a central repository where the document versions are kept,
available for download by all users. The application implements the
copy-modify-merge paradigm. As a result, when users want to edit a
document, they download the latest version from the repository, make
the changes and finally publish the changes to the repository. If more
than one user is working in parallel, when a user publishes their changes,
the application searches for any recent published versions of which the
user is not informed and performs a merge of the user’s changes with the
changes of other users reflected in the version already published. Only
after the merge has been performed will the user changes be published.
Every time a user downloads a version from the repository, or updates
their local version, they are informed through the edit profile about the
changes made to the document by other users.

As explained in the previous section, we want to support users work-
ing in parallel by providing awareness information in real-time. We as-
sume that all three users work in privacy, modifying their local copy of
version Vn downloaded from the repository. While Mary works on her
copy, Tom and Bob also make changes and Tom publishes his changes.
Mary needs to be informed about the following:

• Changes that were made to the document since the last time she
logged in. This is information that needs to be presented when
Mary logs in and should be available at any time throughout the
current authoring session. If version Vn−k was the last version that
Mary is aware of, the awareness information presented to her when

6.1. Motivation and requirements 119

she logs in has to include all the changes made on the last k docu-
ment versions.

• Changes (not yet committed) made by Tom and Bob at their local
copy of version Vn, while Mary is working on her copy of the same
version, i.e. concurrent uncommitted changes.

• Any new version published on the repository which Mary’s docu-
ment copy is not informed of, i.e. concurrent committed changes.

The three different kinds of changes are presented in Figure 6.1. There
are concurrent uncommitted changes made by Bob, concurrent commit-
ted changes made by Tom and the changes that transformed the do-
cument from version Vn−k to version Vn. When Mary downloads the
document version Vn she can be informed about the changes made to
the document since her last login through an edit profile as already pre-
sented in Chapter 4. To inform Mary about changes made by Bob and
Tom after her login, we need to allow changes made by a user to be
sent in real-time to all other users. Such a requirement can be easily
fulfilled and is already implemented for synchronous collaborative tools.
However, tracking all the changes and applying them to Mary’s copy
is not desired, since the advantages of asynchronous work will be lost.
Since Mary chooses to work in privacy, her document copy should not be
modified. Similarly, since Bob and Tom choose to work in privacy, their
changes should not be published to Mary unless they explicitly choose to
do so. The solution is to make Mary aware of the severity of the changes
of other users without visualising the actual changes in the document.

This could be implemented by computing the severity of each ope-
ration, and informing the awareness mechanism about the operation ap-
plied to a specific part of the document, without actually applying the
operation, i.e. without modifying the document. Unfortunately, such an
approach would not be satisfactory since it could lead to a corrupted
document. If, for instance, Bob inserted a whole new paragraph in the
document and made further changes to it, the awareness information
computed for these operations could not be assigned to any document
part in Mary’s document copy, since the new paragraph would not exist.
In addition, such an approach would create a document copy including
all changes, as presented in Figure 6.1, and would make it difficult to
present them separately through the awareness mechanism.

As a result, different kinds of changes need to be handled separately
and kept in different document instances. Additionally, special care needs

120 Chapter 6. Semi-synchronous collaboration

Concurrent Committed
(Tom’s changes)

Concurrent Uncommitted
(Bob’s Changes)

Since Last
Log in

Total Changes

Figure 6.1: The current status of the document is composed by the sum
of all users’ changes

to be taken to ensure that the awareness mechanism will inform Mary
about all the changes made by other users, without modifying her own
copy of the document.

The importance of awareness information provided by an asynchro-
nous collaborative tool was also highlighted by the users of the user study
presented in the previous chapter. The asynchronous collaborative editor
used in the study included the computation and visualisation of aware-
ness information based on the notion of edit profiles. The awareness
information presented to the users concerned only changes that users
made to the document in the past, while transforming it from its initial
to its final version. The users were not informed about changes made to
the document by other users in real-time. In the post questionnaire, we
described to users how we envisioned a synchronously-aware asynchro-
nous editor, asked for their feedback and collected any new requirements
set by them.

In response to the question of whether they would like to be provided
with real-time awareness information about changes made by other users
to their document copies, most of the users (7 out of 10) said they would

6.1. Motivation and requirements 121

like to have such functionality in an asynchronous editor. They added
that if they were informed that some other users were working on a
document, or some specific areas of it, they would probably not interfere
“to avoid conflicts and therefore decrease the time necessary to edit that
part”. This confirms our initial assumptions that such an approach would
support users working asynchronously and gave us a strong motivation
for the work presented in this chapter.

Further requirements were formulated from the discussion with those
participants who were sceptical about the proposed feature. The partic-
ipants reported that although they would like such a feature, they were
worried what it could cause confusion or disturbance. If, for instance,
a user was informed that many other users were simultaneously editing
the same document, they might be frustrated and stop working. Other
participants mentioned that they would not like to be informed about
changes that other users had made and were not yet committed.

We examined all of these issues and formulated our approach. Our
goal is to enable asynchronous collaborative editors to additionally:

• offer the computation and visualisation of awareness information
about changes being made to a document in real-time,

• inform a user about the severity of other users’ changes without
modifying the user’s document copy,

• present information concerning changes currently made but not
yet published separately from those currently made and already
published,

• inform the users without causing disruption or loading them with
too much information.

All the above should be combined with the more general requirements
which we presented in Chapter 2 and can be summarised under

• offer all of the above information on a level of granularity specified
by the users.

In the following section, we describe our approach by introducing the
notion of shadow documents.

122 Chapter 6. Semi-synchronous collaboration

6.2 Shadow documents

When users asynchronously edit a document, parallel copies of it are
created for the users to work on. In our example, when user Mary logs
into an asynchronous application, she downloads a copy of the latest
version of the document published in the repository. This local document
copy presented in Figure 6.2a is the view of the document presented to
Mary and will be used when Mary makes any further changes to the
document.

Awareness information about changes made to the document by other
users is provided through an edit profile, the visualisation tool used by
the application. The awareness information provided by existing collabo-
rative applications concentrates on published changes which have been
made to the document since the user last logged in. In our example,
these are the changes that transformed version Vn−k, the last version
Mary is aware of, to version Vn. The awareness information computed
from these changes will be presented as indicated in the left profile of
Figure 6.2b, called Since Last Login (SLL) profile. However, Mary also
wants to be informed about changes, committed or uncommitted, made
by other users, while she is working on her local copy. We propose the use
of two more edit profiles, the Current Uncommitted (CU) profile and the
Current Committed (CC) profile presented in Figure 6.2b, to visualise
this information.

The existence of three different edit profiles results from the existence
of three different types of changes. For the information presented in an
edit profile to be computed, a structured document is needed. Therefore,
three structured documents are required to hold the changes. These are
not visible to Mary. We therefore call them shadow documents. When
Mary logs in, the Since Last Login (SLL) shadow document is updated to
hold all the changes Mary is not aware of. At this moment, this shadow
document is Mary’s local document copy. Later, it will additionally
hold the changes made by her during the current session. While she is
working on her document copy, the Current Uncommitted (CU) and the
Current Committed (CC) shadow documents will be updated according
to changes made by Bob and Tom as presented in Figure 6.2d,e,f.

When Bob and Tom start editing the document, Mary is instantly
informed. The changes created by Bob and Tom are sent to Mary’s
site where they are applied to the CU shadow document as presented
in Figure 6.2e. This shadow document will always present information
about changes made concurrently by other users while Mary is working on

6.2. Shadow documents 123

To
m

M
ar

y

B
ob

N
et

w
or

k

C
ur

re
nt

U
nc

om
m

itt
ed

S
in

ce

La
st

 L
og

 in
C

ur
re

nt

C
om

m
itt

ed

d)
 M

ar
y

lo
gs

 in
 a

nd
 s

ee
s

ch
an

ge
s

m
ad

e
si

nc
e

la
st

 lo
gi

n
e)

 T
om

 a
nd

 B
ob

 m
ak

e
ch

an
ge

s,
 M

ar
y

is
 in

fo
rm

ed
f)

To
m

 p
ub

lis
he

s
ch

an
ge

s,
 M

ar
y

is
 in

fo
rm

ed

(d
)

(e
)

(f)

(f)
(e

)

(e
)

(d
)

(e
)

(f)

S
in

ce
 L

as
t

Lo
g

in

P
ro

fil
e

C
ur

re
nt

U

nc
om

m
itt

ed

P
ro

fil
e

C
ur

re
nt

C

om
m

itt
ed

P
ro

fil
e

M
ar

y’
s

Lo
ca

l C
op

y
(a

)

(b
)

(c
)

S
ha

do
w

D

oc
um

en
ts

A
w

ar
en

es
s

In
fo

rm
at

io
n

M
ar

y’
s

Vi
ew

C
ur

re
nt

U
nc

om
m

itt
ed

S
in

ce

La
st

 L
og

 in
C

ur
re

nt

C
om

m
itt

ed

F
ig

u
re

6.
2:

C
on

te
n
t

of
sh

ad
ow

d
o
cu

m
en

ts
in

a
ty

p
ic

al
sc

en
ar

io
of

as
y
n
ch

ro
n
ou

s
co

ll
ab

or
at

io
n

124 Chapter 6. Semi-synchronous collaboration

V1 V1.1.1 V1.1.2 V1.1.3

V1.2.1 V1.2.2

V2

mergecreate
branch

Figure 6.3: Example of a typical versioning system

her copy and which are not yet published. If some changes are published
to the repository, Mary is informed and the CC shadow document holds
this information as shown in Figure 6.2f. Changes that are published
by other users and are committed have to be “extracted” from the CU
shadow document and applied to the CC shadow document so that the
CU shadow document will constantly present only uncommitted changes.
Propositions on how this can be done are given in Section 6.5.

Classical document versioning approaches were our inspiration for the
approach presented above. Versions are used extensively in database ap-
plications, computer-aided engineering [71] and software development [5,
27]. In all of these applications, a version is created every time a user
makes a set of changes to the document being authored. The most up-to-
date information is delivered by the most current version. If a document
is being edited concurrently by more than one user or application, then
branches can be created to trace the parallel editing as shown in Fig-
ure 6.3. When the parallel editing is finished, if only one final version is
required to describe the current status of the document, the branches are
merged. If the existence of multiple document variants is allowed, then
the latest version of every branch is used to describe the document.

In a similar way, different types of changes are applied in our approach
to different instances of a document, i.e. the various shadow documents.
The main difference between our approach and document versioning ap-
proaches is that the current status of a document copy being worked
on by a specific user is not described by only one version at a time but
rather by a set of three shadow documents, which we refer to as the
shadow document set associated with a document copy.

6.3. Implementation of shadow documents 125

An advantage of our approach in comparison to versioning systems
is that there is no need to merge or save any of the shadow documents,
which would put some extra load to any application implementing the
concept. The information they present is needed only for the current
session and has no value for another session. The committed changes
are already stored in the repository, i.e. Tom’s changes, and those not
committed are discarded when Mary logs off, since the user that created
them, i.e. Bob, chose not to publish them. This approach satisfies the
second and third requirements from the list presented in Section 6.1.

6.3 Implementation of shadow documents

In this section we propose two possible implementations of the concept
of shadow documents using the previous example to illustrate them. For
both implementations, we assume that a structured document model is
used for the development of the collaborative editor. Under this assump-
tion, the fifth requirement set in Section 6.1 will also be satisfied because
the idea of edit profiles can be adopted.

We assume again that Mary, Bob and Tom work in parallel. The
hierarchical structure of the document being authored is presented on the
left side of Figure 6.4a. For the sake of simplicity, we additionally assume
that Bob makes only one change to the document, which is the deletion
of the second sentence of the second paragraph, i.e. sentence sen2.2. The
operation is received at Mary’s site and needs to be integrated into the
shadow documents.

Create a new document by copying the whole document hi-
erarchy. The first implementation we propose is to copy the whole
document hierarchy. The SSL shadow document is created when Mary
logs in. At the moment when the first operation created in parallel ar-
rives at Mary’s site, a shadow document is created. The operation can
be committed or non-committed and the copy created will be used as the
CC shadow document or the CU shadow document, respectively. Once
the document hierarchy is copied and the required shadow document
is created, the operation that arrived can be applied to this document.
Simultaneously, the severity of the operation will be computed and pre-
sented through the awareness visualisation tool which comes with the
collaborative application. The shadow document representing the latest
document copy at the moment of its download is the one on the left side
of Figure 6.4a and the shadow document where all the operations created

126 Chapter 6. Semi-synchronous collaboration

Figure 6.4: Visualisation of two proposed implementations for shadow
documents

in parallel by other users will be applied is represented by the document
on the right side of the same figure. One such document will be created
for each of the two shadow documents.

While extending an asynchronous editor to develop a shared work-
space, we implemented the notion of shadow documents by copying the
whole document hierarchy. Such an implementation is easy, since it only
requires the creation of a copy of the document’s instance, but can be
proved memory inefficient when working with large documents. There-
fore, in what follows, we propose a second variation for the implementa-
tion.

Create a new document by copying document nodes on de-
mand. An alternative implementation is to copy only some document
nodes, i.e. parts of the hierarchy. This implementation is less likely to
cause memory problems, but requires a more sophisticated mechanism
for the copying and handling of documents and document parts. We
propose to copy only the document part affected by the operation to
be applied. In our example, the deletion of sentence sen2.2 will affect
its parent node, i.e. the paragraph par2 since it will change its set of
children nodes. As a result, only paragraph par2 will be copied. The

6.3. Implementation of shadow documents 127

resulting document is presented in Figure 6.4b. For a hierarchical docu-
ment model, a node consists of its children. For instance, a paragraph
consists of sentence-level document nodes. As a result, copying a docu-
ment node in a hierarchical document can be translated to a creation of
a new set of children nodes. For the first shadow document, the children
of paragraph par2 will be the set {sen2.1, sen2.2} while for the shadow
document holding the concurrent uncommitted changes it will be the set
{sen2.1}.

The existence of three shadow documents results in the existence of
three different sets of children for every document node being edited.
The definition of a document node, as presented in Chapter 3:

Definition 13. A node N is a structure of the form

N =< level, children, history, content >

is now extended to:

Definition 14. An extended node Ne is a structure of the form

Ne =< level, childrene, historye, contente >

where

• childrene is an ordered list {children1, children2, children3} of chil-
dren elements,

• historye is an ordered list {history1, history2, history3} of history
elements,

• contente is an ordered list {content1, content2, content3} of content
elements.

• The elements children1, history1, content1 describe the SSL sha-
dow document, the elements children2, history2, content2 describe
the CC shadow document and the children3, history3, content3
describe the CU shadow document.

The element level is still the syntactic level of the node, while the
rest of the elements have been extended to hold three instances each,
corresponding to the three shadow documents. For instance, history2
will hold the set of uncommitted operations applied to the node and the
node’s content will be computed in the same way as previously, but based

128 Chapter 6. Semi-synchronous collaboration

on the set children2 and not children1. Therefore, the content2 of a node
will be the sum of the content elements of all the children nodes in the
set children2.

Additionally, the path in the document’s tree hierarchy where an ope-
ration is applied will also depend on the particular shadow document to
which the operation is to be applied. If, in our example, the deletion
of sentence sen2.2 was made by the operation op = deleteSentence(2.2)
and the operation is committed, then the notation will change to op =
deleteSentence(2.2c) meaning that the second child in the set of children3
of the second paragraph will be deleted. This notation can be extended
and be a lot more complicated in the case of longer documents to which
many operations are applied.

The complexity of the above methods that implement the shadow
documents might increase depending on the consistency maintenance al-
gorithm that is used to maintain the shadow documents that hold the
concurrent edits. Therefore, when implementing the notion of shadow
documents, the issues to consider are the length and the type of a do-
cument, as well as the complexity of the algorithms employed to enable
the maintenance of the shadow documents, for instance, a consistency
algorithm or an undo algorithm. A lot of effort is currently devoted by
the CSCW research community to improve the correctness and reduce
the complexity of consistency and undo algorithms. We believe that the
above issues and implementation methods of shadow documents should
be re-evaluated in the light of more efficient algorithms. A detailed dis-
cussion on consistency algorithms and how they are expected to affect
the usability and value of shadow documents is presented in Section 6.5.

6.4 BeAware

We implemented the notion of shadow document sets in the context of
a shared workspace for asynchronous collaboration. In order to provide
maximum awareness information to users, we also adopted and imple-
mented the notion of edit profiles presented in Chapter 4. Therefore,
our prototype of the asynchronous shared workspace provides awareness
information for changes made to various documents, by various users,
and at different granularity levels depending on a document’s structure
and the users’ needs.

We provide a repository where all versions of all documents being col-
laboratively authored are stored. We filter this information once from the

6.4. BeAware 129

document point of view and once from the user point of view. Therefore,
when a user logs into the application, they are provided with informa-
tion about all the documents they are authoring and all other users they
are collaborating with. Awareness information is computed based on all
the changes made to the documents by all users either in the past or in
real-time.

The difference between an asynchronous shared workspace and an
asynchronous authoring tool is presented in Figure 6.5. While an asyn-
chronous authoring tool provides information about only one document
at a time, a workspace provides a view on more than one document.
Consider, for instance, an authoring tool that monitors changes made
to a document and provides awareness information through a visuali-
sation tool as shown in Figure 6.5a,b. If a user is using this tool to
work on more than one document, they need to separately open each of
them (Figure 6.5a,b) using the authoring tool to get information about
all documents. In addition, if a user works together with another user on
more than one project, they cannot directly be informed about that user’s
activities across projects. Consider, for instance, that User2 of Figure6.5
is authoring Document1 in collaboration with User1. When User2 needs
to check if and where in Document1 User1 has worked, User2 must open
the document and search for changes made by User1. If the two users
collaborate in more documents, the procedure of finding where User1 has
worked will be more complicated, since User2 needs to open separately
all the co-authored documents, to locate changes from User1 as shown
in Figure 6.5a,b. There is no flexible way to inform User2 whether a
document has changed, or at which document a collaborator has worked
without opening the documents.

However, the workspace we implemented provides simultaneously a
view on all the documents that a user works on. The users can easily
navigate from one document to another. They are provided with aware-
ness information even without opening the documents and can see all of
the document changes and the users that worked on each document as
shown in Figure 6.5c. Consider, for instance, User1 who is working on
all three documents of Figure 6.5c. When User1 logs in the framework,
they are presented with an edit profile for each of the three documents
without opening the documents. In this way, User1 is instantly informed
about the amount of changes made at each of the documents and which
user worked on which document. Similarly, since the repository also
holds information for the users, the awareness information can also be
presented based on a user perspective. In this case, when users log in,

130 Chapter 6. Semi-synchronous collaboration

Document 2 Document 3

User 1 User 3User 2

beAware

Document 1 Document 2 Document 3

User 1 User 3User 2

beAware

Document 1Document 2

User 1 User 2User 2

AsynchEditor

Document 1

User 1

(a) (b) (c) (d)

Figure 6.5: The view on documents and users defined by an asynchronous
collaborative editor and BeAware

they are presented with a list of their collaborators. If the name of a
user is chosen, then a list with the documents on which the user worked
is presented. If requested, the detailed changes made on every document
can also be presented through the visualisation tool (Figure 6.5d).

In the rest of this section, we present in detail the features imple-
mented in our prototype with the help of Figures 6.6, 6.7 and 6.8. The
awareness information presented by the application corresponds to our
example with users Mary, Bob and Tom.

Detailed awareness information about changes made to a document
on any of its three shadow documents are presented through edit profiles.
This visualisation tool gives detailed information at different granularity
levels, without the need to visualise the document itself. The user obtains
a first impression of the amount of changes made to a document, the part
of the document where they were made and by which users. If the user
wants to visualise the changes superimposed on the document or make
further changes to it, this is possible since an asynchronous collaborative
editor is integrated into the application and the user can open any of the
documents directly for editing.

We show the two panels provided by the application GUI. The first,
shown in Figures 6.6a, 6.7a and 6.8a, returns awareness information fil-
tered from the document view. The second, shown in Figures 6.6b, 6.7b
and 6.8b is filtered from the user view. The numbers in the figures cor-
respond to the numbers in the list provided below.

6.4. BeAware 131

(4)
(a)

(1)

(2)

(3)

(4)
(b)

Figure 6.6: The BeAware workspace. (a) Files Panel when the user first
logs in. (b) Users Panel when the user first logs in

132 Chapter 6. Semi-synchronous collaboration

(5)

(6)

(7)

(a)

(b)

(7)

Figure 6.7: The BeAware workspace. (a) Files Panel with concurrent
uncommitted changes. (b) Users Panel with concurrent uncommitted
changes

6.4. BeAware 133

(6)

(8)

(9)

(a)

(b)

(9)

(9)

Figure 6.8: The BeAware workspace. (a) Files Panel with concurrent
committed changes. (b) Users Panel with concurrent committed changes

134 Chapter 6. Semi-synchronous collaboration

When users log into the application they are provided with:

1. A list of all the documents in the repository for which the
user has a task. Assuming that Mary is the first user that logs in,
she is presented, as shown in Figure 6.6a, with a list of documents
on which she is working, namely “Document 1” and “Document
2”. Clicking on any of them returns through the edit profile, all
the changes that all other users, i.e. Bob and Tom, made since the
last time Mary logged in (see item 4 as well).

2. A list of all the collaborators. The users panel shows all the
users that are collaboratively working on documents present in the
repository (Figure 6.6b).

3. A list of the documents each user has worked on since the
user’s last login. By selecting one user in the users panel, Mary
is informed about the documents this user has worked on since her
last login. In this example, Tom has worked on both documents,
while Bob only on “Document 1”.

4. Detailed awareness information about the changes made to
every document since the user’s last login. This information
corresponds to the first of the shadow documents and is provided
by both panels as an edit profile. Mary can further select to visu-
alise the changes from any user separately by selecting the user’s
name from the “Users List” in either of the two panels. In Fig-
ure 6.6b, Bob is selected and his changes throughout “Document
1” are presented in the edit profile.

5. A list of the documents currently being authored by other
users. We assume that Bob and Tom log into the application and
both open the file: “Document 1” to work on it. To open a file, a
user can select it in the files panel and then press the button “Open
File”. Immediately, Mary is informed about the intention of both
users, through the list “Active Users”. The list presents the names
of the users currently working on the selected document.

6. A list of the documents currently being authored by each
user. The information presented in item 5, can also be presented
from the users point of view. Mary, in this case, can select a user
and be informed about the documents on which the user is currently
working.

6.5. Discussion 135

7. Detailed awareness information about all the changes cur-
rently made to a document by other users. The changes
made in real-time by Bob and Tom are presented through the edit
profile in both panels. This information represents the second of
the shadow documents. Mary is informed that Bob is working at
the beginning and at the end of the document, while Tom only at
the end of the document. Please note that for changes currently
being made to be visible, Mary needs to set the “Awareness About”
radio button in the GUI to “Current Changes”. The default selec-
tion is “Since Last Login”. In this way, Mary is not distracted by
concurrent changes while working. Only if she chooses to do so,
will she be informed about all the details of the changes. In this
way, the fourth requirement presented in Section 6.1 is satisfied.

8. A notification for every document when a new committed
version is available in the repository. When Tom commits
his changes, a new version is created in the repository and Mary is
informed about it through a change of an icon. This icon reflects the
status of Mary’s copy for the selected document (as specified in the
files panel). We decided to inform users in this way to ensure they
are not distracted from their work. Of course any other notification
mechanism could be used.

9. Detailed awareness information about all the changes re-
flected in a newly committed version on the repository. Fi-
nally, Mary is informed about the committed changes for the given
document by selecting “Committed Changes” in the “Awareness
About” radio button in either of the two panels. The information
presented is the one computed for the third of the set of shadow
documents.

We presented in detail all the features provided by BeAware, a proto-
type of a shared workspace. BeAware implements the notions of shadow
document sets and edit profiles. Therefore, it provides the computation
and visualisation of changes made to many documents, by various users
working in privacy, in the past and in real-time.

6.5 Discussion

At this point we would like to differentiate BeAware from existing shared
workspaces. BSCW [20] and GROOVE [13] are two of the most widely

136 Chapter 6. Semi-synchronous collaboration

used. Both systems successfully deliver information about changes made
by various users to many documents. However, they do not provide any
information about either changes made to a document by different users
in parallel or in-document changes. On the contrary, BeAware informs
the user about changes made in real-time by other users while they are
asynchronously working on their local copy, as well as about the severity
of these changes on the various document parts.

In the rest of this section we report on some issues related to the ap-
proach we have presented as well as possible extensions. An important
issue that may arise is how to ensure consistency of the shadow docu-
ments regarding the concurrent committed and uncommitted changes.
Changes to be applied to the CC shadow document are always sent from
the repository and consist of all changes made by a user to modify the
document from one version to another. Since a precondition for publish-
ing one’s changes is that the user’s copy is informed about the latest copy
in the repository, and the CC shadow document always reflects the latest
version on the repository, applying the current committed changes will
not cause any conflict with the corresponding shadow document. The
use of any algorithm used for consistency maintenance in asynchronous
collaboration is allowed.

The current uncommitted changes also need to be applied to a sha-
dow document. Since they are made from various users and are applied
in real-time, the use of an algorithm that supports synchronous collabo-
ration is needed. Although we currently handle operations from various
users, there are situations where we cannot guarantee consistency. Con-
currency and consistency maintenance issues are not within the scope
of this thesis. However, we realise that the use of a sophisticated con-
sistency maintenance algorithm would support the correct maintenance
of the shadow documents [110, 112, 113]. If consistency maintenance
algorithms are not used in combination with the notion of shadow docu-
ments, or if algorithms that fail to always support the correct integration
of real-time editing operations are used, the correct maintenance of the
shadow documents can not always be guaranteed.

This shows the dependence of our approach on the correctness of
the existing maintenance algorithms. This is inherent from the layered
architecture of our approach which was presented in Chapter 3. As al-
ready discussed, the computation of awareness information follows the
integration of the editing operations in the document, which follows the
handling of the operations by the maintenance algorithm. As a result,
an incorrect consistency maintenance algorithm will create inconsistent

6.6. Summary 137

documents, which would diminish the value of awareness information to
the user.

A further issue arises from the fact that some of the concurrent un-
committed changes may at some point be published. This results in a set
of operations applied in the CC shadow document and the same set of
operations being “undone” from the CU shadow document. We propose
two different approaches to handle this issue. One is the development of
a new, or adoption of an existing, algorithm that supports the “undo” of
operations. A second solution is to clear the document that holds the un-
committed changes, extract all published operations from the log file and
reapply the remaining changes to the initial copy that was downloaded
by the user while logging in.

Finally, every time Mary updates her copy of the document by down-
loading a new version from the repository, all three shadow documents
need to be cleared and recomputed. This issue requires special attention
since there may exist changes created on a previous document version,
i.e. the changes made by Bob that are sent to Mary’s updated copy and
need to be integrated. Further investigation of this issue is required as
well.

6.6 Summary

In this chapter we presented an approach that addresses the problems
resulting from modifications made to a document by various users in par-
allel when working asynchronously. We introduced shadow document sets
to represent changes made by other users to a document being edited.
The shadow document set associated with a local document copy can be
considered as an awareness preview of concurrent changes. Depending
on the required information, the changes stored in each of the shadow
documents can be presented separately. We adopted this notion in the
development of BeAware, a shared workspace for asynchronous collabo-
ration. We provide the users with information about changes made by
their collaborators since their last login and, additionally, information
about changes made to the document in parallel by other users working
on their own local copies. Changes are separately stored and presented
depending on whether they have already been published to the repository
or not.

Although we provide users with all the above information, the local
copies of the users are not modified to ensure that they continue work-

138 Chapter 6. Semi-synchronous collaboration

ing in privacy. Additionally, only the severity of each user’s changes is
presented to other users, keeping the actual changes hidden until they
are published to the repository. The awareness information computed
in BeAware is visualised through edit profiles as an overview of the cha-
nges made to each of the shadow documents. If the need arises, users
can open any document with an asynchronous editor also provided by
BeAware and visualise the changes in the document itself, or even make
new changes.

Finally, we would like to note, that the work presented in this chapter
could also be classified as awareness on semi-synchronous collaboration,
since part of the information about users modifications is revealed to
the users in real time. However, note that almost no privacy issues are
taken into consideration. We did consider ways to inform users without
disrupting them, but we did not consider whether any issues exist con-
cerning their modifications log that is sent to their collaborators. Such
issues are investigated in the next chapter, where another approach is
proposed for privacy-sensitive collaborative environments.

7
Multi-level change

awareness in
privacy-sensitive

environments

When involved in collaborative tasks, people often choose to use semi-
synchronous applications in order to concurrently work in isolation. Hen-
ce, privacy of their changes is maintained until they decide to publish
their contributions. Not being aware of changes made by their collabo-
rators, they often create concurrent modifications which might generate
conflicts or redundancies. In this chapter, we propose an awareness mech-
anism that solves this problem by computing and providing awareness in
semi-synchronous collaboration. The characteristic that mainly differen-
tiates this approach from the one presented in the previous chapter is that
this approach allows users to specify the level of detail of their uncom-
mitted modifications that will be made available to their collaborators,
i.e. it takes privacy issues into consideration. A detailed discussion on
this is presented at the end of the chapter.

139

140 Chapter 7. Multi-level change awareness in privacy-sensitive environments

7.1 Awareness in the light of privacy issues

People very often decide to work using a semi-synchronous environment
because they wish to work in privacy and review their work before pub-
lishing it. Although providing awareness about modifications made by
other users in real-time can be advantageous and therefore required by
users, as explained in the previous chapter, it can also be problematic if
privacy-sensitive information is exchanged between collaborators. There-
fore, there is the need for an advanced mechanism that keeps users aware
of other users’ modifications, while respecting their privacy concerns.

However, which data is considered private cannot be uniquely de-
fined. It depends on the users, their collaborators, their roles, the colla-
borative situation and the task to be accomplished. Therefore, the level
of privacy that each user desires should be set by the users themselves
depending on their current needs and situation. The computation of awa-
reness information in privacy-sensitive environments should respect any
private uncommitted data and compute awareness information based on
the available information only.

Ghost operations, introduced by Ignat et al. [69], is a concept that can
be applied to the above collaborative situations. Ghost operations rep-
resent filtered operations according to the settings of a user with respect
to other users. Instead of transmitting the actual (from now on referred
to as real operations) operations created by a user, the operations are
filtered and only part of the information that they contain is transmitted
to other users.

The awareness mechanism described in Chapter 3 is general enough
to be applied to any kind of collaborative application with a structured
document model, independently of the document type or the mode of
collaboration. However, it assumes that all the required information
for the computation of awareness is sent by users to their collaborators.
This is described by the definition of the operation concept, where all
information is included. Therefore, it might be problematic to apply
such a mechanism to privacy-sensitive collaborative situations.

In this chapter we concentrate on extending this awareness mech-
anism to compute the maximum available information in the light of
privacy issues. We decided to adopt the concept of ghost operations and
investigate whether it can be handled by our awareness mechanism. The
results, being a small modification of the awareness computation and the
edit profile GUI, are presented in this chapter.

In what follows, we describe an overview of the general procedure

7.2. Architecture 141

for the creation and receipt of ghost operations and the computation of
the awareness information provided by ghost operations. To analyse in
detail the generation of ghost operations, we first give their definition by
means of the possible filters applied to the attributes of a real operation.
Then, we present some of the masks that can be created by combining
the various filters. We also discuss example situations where each mask
can be used. We continue by presenting the extended version of our
framework’s metamodel that includes the notion of ghost operations. Fi-
nally, by means of edit profiles, we show how the information concerning
the ghost operations is presented to the users in the case of an example
situation and discuss in detail the computation of the values presented
in the visualisation tool.

7.2 Architecture

The architecture shown in Figure 7.1 presents the procedure followed
from the creation of an operation at a user’s local site to the receipt of
it by another user and the computation of awareness information. The
steps followed are:

• Generation of a real operation at a user’s site.

• Filtering of the operation attributes by using various masks to gen-
erate a ghost operation.

• Transmission of the ghost operation through the network to all
collaborators.

• Receipt of an operation from a collaborator and extraction of the
available information. The document node where the operation will
be applied is found, the appropriate opValues are computed and
the corresponding nodeValues are updated.

In what follows we analyse in more detail the second and fourth steps
of the above procedure, i.e. the ghost operation generator and the awa-
reness computation.

7.3 Ghost operations

In [69], a ghost operation was defined as g(operation) = < filter(type),
filter(parameter)∗ > following the definition of the real operation given
by a type and a list of parameters operation =< type, parameter∗ >.

142 Chapter 7. Multi-level change awareness in privacy-sensitive environments

U
se

r

op

R
em

ot
e

U

Ghost operation
Generator

p

gOp

masks

g p

O

N
et

w
or

k

metricsAwareness
computation

gOp

oc
al

 U
se

r

opValues

Lo

Figure 7.1: Generation of ghost operations, transmission through the
network and computation of awareness after the operations’ receipt

Hence, the ghost operation is the operation obtained by filtering the
type and the parameters of the original operation according to user pri-
vacy preferences.

The definition of ghost operations for the structured documents we
consider, where a real operation is defined as op =< type, level, position,
content, length, user >, results as well from the application of filters to
the attributes of the real operation. Therefore, we define ghost operations
as below.

Definition 15. We define a ghost operation g(op) as
g(op) =< filter(type), f ilter(level), f ilter(position), f ilter(content),
filter(length), f ilter(user) >, where

• filter(type)=

insert, if op is an insert and
its type is not masked

delete, if op is a delete and
its type is not masked

edit, if op is a delete or insert
and its type is masked

7.3. Ghost operations 143

• filter(level)=

{
level, if the level of op is not masked
null, if the level of op is masked

• filter(position=[V0, V1, · · ·Vn])= [V0, · · ·Vi], where 0 ≤ i ≤ n

• filter(content)=

{
content, if the content of op is not masked
null, if the content of op is masked

• filter(length)=

{
length, if the length of op is not masked
null, if the length of op is masked

• filter(user)=

{
user, if the user identity of op is not masked
null, if the user identity of op is masked

The set of available types presented in the definition above are only
indicative. The set of types of ghost operations is only restricted by the
available types of real operations. The vector of positions of the original
operation can be filtered by providing the positions of the higher level
of granularity of the node, but hiding the positions of the lowest level of
granularity. For instance, for an original operation of insertion of a word,
only the position of the paragraph where the word is to be inserted can
be provided and the sentence and word level positions can be hidden.

Since the difference between a ghost and a real operation is not the set
of their attributes, but rather the values of their attributes, both kinds of
operations are fundamentally the same. Therefore, the general definition
of an operation included in the metamodel of Chapter 3 can be used to
model the concept of ghost operations as well. This shows that the core
concepts of the awareness mechanism can be used in privacy-sensitive
environments as well.

Note that if none of an operation’s attributes is masked, then the
ghost operation will be identical with the real operation and all info-
rmation will be transmitted between collaborators. If, on the contrary,
all filters are applied, then no information is transmitted between users.
A semi-synchronous collaborative environment using the fully masked
ghost operations would offer as much awareness as an asynchronous en-
vironment. The above are the two extreme situations. There exist others
where only a subset of the attributes is masked. The set of masked at-
tributes is then defined by the desired level of privacy. In the next section
we present example situations where combinations of the above filters are
used depending on the information users need to keep private.

144 Chapter 7. Multi-level change awareness in privacy-sensitive environments

7.4 Privacy levels

As discussed above, the level of privacy requested from users may be task
or user specific. Therefore, we decided to make the filtering/masking
mechanism that creates the ghost operations quite flexible by offering
various levels of privacy. Here we present the most important ones in
terms of the operation attributes that get masked in each level. We
also give examples of collaborative situations where each level could be
selected. We realise that the possible masks to be used are equal to
the maximum number of combination of the filters presented above and
therefore there are more combinations possible than the ones presented
here. We believe that some of them would not make any sense and
possibly would not be used at all, while others could be used frequently.
Therefore we decided to introduce the ones we expect to be needed most
often by users.

No privacy: We start from the first level where no privacy issues
arise, and therefore no information is masked. These ghost operations
hold the maximum information and the computation of awareness is not
restricted at all. All the opValues are computed and the nodeValues of
the document nodes affected by the operation are updated.

Mask the user and/or type: Here the type or the user, or both of these
attributes can be filtered to produce the ghost operation. This level of
ghost operations will be created in collaborative situations where the
users want to keep their anonymity until they commit their changes, or
when they want to inform their collaborators that the document is being
edited without specifying the type of changes. The exact document part
that is modified is available to the collaborators and information about
the extent of the changes as well. Users receiving such ghost operations
will be notified about the document parts being edited and as a result are
likely to avoid working on the same document areas. We believe it would
also be reasonable to mask the content as well if the type is masked. An
example of such a ghost operation is:
gOp1 = < edit, 3, [2, 3, 4], null, [0, 0, 1, 4], null >.

Independently of the type and/or user being filtered, the next levels
concentrate on the filtering of other attributes.

Mask the changes: This level holds operations where the content is
filtered. Such ghost operations might be produced in collaborative situ-
ations where the users allow the exact document part being edited and
the extent of the changes to be available to their collaborators, but do
not publish the actual changes. An example of such a ghost operation is:

7.4. Privacy levels 145

gOp2 = < insert, 3, [2, 3, 4], null, [0, 0, 1, 4], null >.

Mask the changes and their severity: Ghost operations that conform
to this level of privacy have the content and the length masked. Users
who intend to make changes to a specific paragraph in a document but do
not yet know what exactly to write, often produce a lot of changes which
they later discard. To mask such phenomena but at the same time inform
their collaborators where they are currently active, ghost operations of
this level could be used. The remaining unmasked attributes, i.e. the
level and position can be used to inform other users about the document
part being edited without showing the actual modifications. These two
attributes can also be used by the user who receives the ghost operation
to check if the position is also filtered and distinguish this case from the
next one. For instance, an operation of word level, where the position
is not masked, should have a position attribute, where a complete path
from the document level to the word level is given. An example of such
a ghost operation is:
gOp3 = < edit, 3, [2, 3, 4], null, null, null >.

Mask the changes, their severity and part of the position: Finally,
we consider collaborative situations where the user also wants to keep
information about the exact document part where the changes are made
private. This can be achieved either by hiding the position attribute
(part of it or all of it), or by hiding the level attribute, or both. Filtering
the level attribute will make it impossible to verify whether the position
is incomplete and hence the position will also be considered masked.
Filtering part of the position means making available only part of the
path in a structured document where the operation will be applied. For
instance, a proofreader might want to inform their collaborators about
the document part they are working on, without giving details about the
exact sentences or words being edited. Such information could be enough
to inform collaborators about their activity but at the same time respect
their privacy. Finally, masking all the position attributes would deliver
similar information to a mechanism showing that a user is present in a
document. If additional information is given, for instance the level or the
length, the severity of user changes could be computed for the document
level. Although such an operation is correctly handled by the proposed
mechanism, it requires that at least a part of the position attribute is
provided to render the computed information interesting for the users.
Examples of ghost operations of this privacy level are:
gOp4 = < edit, null, [2], null, null, null >.
gOp5 = < edit, 3, null, null, null, null >.

146 Chapter 7. Multi-level change awareness in privacy-sensitive environments

Figure 7.2: Concurrent changes generated by Mary, Bob and Tom

gOp6 = < edit, null, null, null, null, user1 >.

7.5 Visualising ghost operations through edit pro-
files

Here we show by means of an example, how various types of ghost ope-
rations are visualised. For that, we use edit profiles with a modified GUI
that presents the “maximum available” nodeValues. Afterward, we pro-
vide more details about the computation of the awareness information.

Consider the case of some researchers authoring a research paper.
For simplicity, we consider that the document being edited contains 4
paragraphs. Consider that users Mary, Bob and Tom work on the same
version of the document and they concurrently generate the changes il-
lustrated in Figure 7.2.

Mary wants to let the others know about the changes she did in
the second paragraph (the title of the section is considered as a para-
graph itself), but does not want at this point to reveal her identity for
those changes. She therefore generates 8 ghost operations gOp1Mary,
. . . , gOp8Mary corresponding to the insertion of words ‘of’, ‘individu-

7.5. Visualising ghost operations through edit profiles 147

als’, ‘of’, ‘interest’, ‘(Computer’, ‘Supported’, ‘Cooperative’, ‘Work)’.
For instance, the ghost operation for the insertion of the first word ‘of’
is gOp1Mary =< insert, 3, [2, 1, 7], ‘of ′, [0, 0, 1, 2], null >. Note that the
characters “(” and “)” could be considered as part of a word or word sep-
arators in the implementation of such an editor. Here we consider them
as part of a word. Concerning the changes Mary did on paragraph 4,
she wants to let the other users know that she is editing that paragraph
but still needs some time to review what she has edited. She chooses
to send her changes with a masked content, masked type and partially
masked position (only the paragraph level node is given). However, she
does not filter the length of her changes, providing in this way a mea-
sure of the changes that she made. She generates 17 ghost operations
gOp9Mary, . . . , gOp25Mary corresponding to the insertion of character ‘,’,
insertion of word ‘SubEthaEdit’, deletion of words ‘or’, ‘software’ and ‘de-
velopment’, insertion of words ‘synchronous’, ‘pair-programming’, dele-
tion of word ‘However’ and insertion of words ‘Although’, ‘real-time’,
‘applications’, ‘appear’, ‘to’, ‘be’, ‘rather’, ‘promising’. For instance,
gOp9Mary =< edit, 4, [4], null, [0, 0, 0, 1], Mary >.

Bob decides to send to the other users the changes that he made in
paragraph 2 of the document unmasked. He therefore generates 6 ghost
operations gOp1Bob, . . . , gOp6Bob corresponding to the insertion of words
‘business’, ‘and’, ‘Not’, ‘surprisingly,’, deletion of character ‘T’ and in-
sertion of character ‘t’. For instance, gOp1Bob =< insert, 3, [2, 1, 4],
′business′, [0, 0, 1, 8], Bob >. As he wants to review the changes he did in
paragraph 3, he will mask their content, but send all the other informa-
tion required. He generates two ghost operations gOp7Bob and gOp8Bob

corresponding to the insertion of sentences ‘Synchronous authoring tools,
also referred to as real-time collaborative authoring systems, imply that
changes made by one user are immediately transmitted to other group
members.’ and ‘Asynchronous authoring tools allow users to work in
isolation and synchronise their changes at some later point in time’. For
instance, gOp7Bob =< insert, 2, [3, 2], null, {0, 1, 25, 184}, Bob >.

Tom just started working on the document; he did just a small cha-
nge. He just wants to let the others know that he has started work-
ing on the document and therefore he masks all information about his
changes except his identity. He therefore generates the ghost operation
gOp1Tom =< edit, null, null, null, null, Tom >.

Figure 7.3 represents the edit profiles in the presence of the above
described masked concurrent changes as seen by a fourth researcher who
just opened the document containing the paper. The researcher wants to

148 Chapter 7. Multi-level change awareness in privacy-sensitive environments

be informed about the uncommitted changes of his colleagues presented
by means of a profile chart (left side of the figure) that gives him a quick
overview of the changes along with the changes themselves in the docu-
ment. He therefore selects the ProfileChart and Changes options. He
selects to see all types of changes, i.e. insertions, deletions and edits pre-
sented at the level of paragraph, changes being measured in characters.
The profile chart includes three bars for each paragraph, showing in a
top-to-down order the number of insertions, deletions and edits made on
that paragraph. Changes by one user are identified by a unique colour,
in the lower left side a legend of users with their associated colours is
presented.

Figure 7.3: Edit profiles in the presence of ghost operations

From the profile chart, we can deduce that no changes were made in
the first paragraph, that the changes in the second paragraph were made
by Bob (insertions and deletions) and an anonymous user (insertions),
that Bob contributed also by inserting content in the third paragraph and

7.5. Visualising ghost operations through edit profiles 149

that Mary edited the last paragraph. We can also see that another user
Tom is active in the document, but no information about the changes
he made is provided. Inside the document, changes made by users are
included if their content and position were not masked. If the content of
changes was masked but their positions and lengths were specified, the
changes are blurred.

Visualising the changes superimposed on the document could be an
optional feature and be deactivated by the users if needed. This feature
could be offered by adopting and implementing the concept of shadow
document sets. Additionally, if users decide to work in privacy they can
deselect the ProfileChart and Changes options.

The above awareness mechanism offers users the possibility to work
in privacy as in the case of traditional semi-synchronous communication
or to view in real-time the changes made in the system. Moreover, it
offers users the flexibility of filtering, according to their privacy prefer-
ences, the information about their changes that are transmitted to their
collaborators. If none of the users filters the transmitted changes and
all users select the Changes option to integrate user changes as soon as
they occur, the system simulates the functionality of a real-time system
enhanced with edit profiles.

In the collaborative example presented in this section, the users de-
fined their preferred level of privacy for each of the edited paragraphs.
We believe that it is unlikely that users would like to define their privacy
levels in such fine grained granularity. However, we presented such a col-
laborative situation to illustrate many possible alternatives with regard
to the privacy levels that a user could use when privacy concerns are
raised. We expect that a system offering the above functionality would
offer an automatic or semi-automatic process of defining the above lev-
els. For instance, default privacy levels could be set by the system. An
alternative would be to have project- or document-specific privacy lev-
els set for each user through a configuration menu. A user might then
select one privacy level for a co-authored document and another privacy
level for a second document. It would also be interesting to investigate
whether privacy levels could be set automatically by the system based
on predefined user roles and tasks.

150 Chapter 7. Multi-level change awareness in privacy-sensitive environments

7.6 Awareness computation for ghost operations

We now consider the above examples of ghost operations and explain how
our mechanism computes awareness information. We assume that the
operations arrive at a collaborator’s site and are about to be evaluated.

Operations such as gOp1Bob =< insert, 3, [2, 1, 4],′business′,[0, 0, 1, 8],
Bob >, belong to the first level that we introduced, where no privacy is-
sues are taken into consideration. For the computation of awareness, the
document node where the operation will be applied is found first. An
opValue is then computed for each of the defined metrics and its value,
together with information about the type of the operation and the user
who created it, is attached to the node by being added to the correspond-
ing nodeValue. The resulting nodeValues are visualised through the edit
profile. The changes are also superimposed on the text. The colours
used in the chart and in the text respectively show the user who made
the change.

A procedure similar to the above one is followed when the ghost
operation has the user attribute masked as in operation
gOp1Mary = < insert, 3, [2, 1, 7],′ of ′, [0, 0, 1, 2],null >. It only differs
at the step where the computed values are attached to the node. Since
the user is not known, the values are attached to the node and marked
as being made by user “Anonymous”. This “new” user is introduced to
hold all the changes made from users who want to keep their anonymity.

If the ghost operation arriving at a site provides no content, then it is
impossible to annotate the document. If, however, adequate information
is given about the severity of the operation and the position where it is
applied, then our mechanism informs the user about these details of the
change. For instance, the severity of operation
gOp7Bob = < insert, 2, [3, 2], null, [0, 1, 25, 184], Bob > can easily be com-
puted since the length is provided. Additionally, the level can be used to
check whether the position is partially masked or not. In this operation,
the position is not masked, since the operation refers to a new sentence
inserted at the third paragraph in position 2. This means that the exact
node where the operation will be applied is given. All of the above info-
rmation will be provided through the edit profile, but the document will
not be annotated with the correct text, since the content is not given.
To illustrate, however, that the position and the length of the change is
known, the document will be annotated with blurred text.

If the content is masked and the combination of level and position
show that the position is partially masked, then the exact node where

7.7. Summary 151

the operation is applied cannot be found. Using the given part of the
position, an approximation of the exact position can be found, i.e. the
closest ancestor of the changed node is found. For instance, the operation
gOp9Mary =< edit, 4, [4], null, [0, 0, 0, 1], Mary > is of level character,
but only the paragraph is given in the position element. Paragraph 4
is the deepest we can reach in the hierarchical document and hence we
assign all the computed information to this node. Since we do not know
exactly where the changes are made in the paragraph, the document is
not annotated at all. This helps the user to distinguish this case from
the previous one.

7.7 Summary

We have presented an awareness mechanism which, in the light of privacy
issues, computes real-time awareness in semi-synchronous collaboration.
Users can choose through a set of privacy levels the one that best fits
their role, collaborative task, current needs and situation. The detail
of information sent to other users about their uncommitted changes is
defined by these levels. Based on the privacy level, various filters are ap-
plied to the original operations to mask some of the operation attributes
and create ghost operations. Upon reception at a remote site, ghost ope-
rations are specially handled by our awareness mechanism to extract the
maximum available information. The computed awareness information
is finally visualised by means of edit profiles which give users a quick
overview of the hot areas that contain concurrent changes made by their
collaborators.

We believe that the examples used in this chapter constitute a repre-
sentative, but by no means exhaustive, list of the most common activi-
ties and privacy concerns that users have when involved in collaborative
tasks. User studies would be needed on a fully implemented version
of the above, to analyse whether our awareness approach achieves im-
provements over traditional semi-synchronous collaborative applications.
Additionally, we need to investigate whether there exist other privacy
levels that need to be taken into consideration to extend the awareness
mechanism towards satisfying more users in various collaborative situ-
ations. Finally, the users’ ability to correctly interpret the information
presented through the new edit profiles and the process of masking the
attributes of an operation need to be investigated.

We would like to differentiate the concept of ghost operations and

152 Chapter 7. Multi-level change awareness in privacy-sensitive environments

the work presented in this chapter with the work presented in the pre-
vious chapter and the notion of shadow document sets. Although both
approaches aim to enhance semi-synchronous collaborative environments
with the computation of real-time awareness, they concentrate on differ-
ent aspects of these collaborative situations.

The introduction of ghost operations and the masking mechanism pre-
sented in this chapter address privacy issues raised by users when working
with semi-synchronous environments. Therefore, it deals with the “en-
cryption” of the information stored in real operations and the “decryp-
tion” of the information stored in ghost operations. All the operations
handled by this approach are concurrent uncommitted modifications.

However, shadow document sets address a different issue. They con-
centrate on the correct handling of operations, when received at a user
site, based on whether it is urgent for a user to be informed about the
specific operations, i.e. based on whether the operations are committed
or uncommitted.

Concluding, we would like to mention that both techniques could be
merged and applied as one in existing semi-synchronous or asynchronous
collaborative applications to enable them to provide awareness for both
committed and uncommitted modifications while respecting any privacy
issues that could arise concerning uncommitted work.

8
Further applications

The generality, in terms of working modes, of the awareness framework
presented in Chapter 3 has been shown in the previous chapters, where
the awareness mechanism was applied to a collaborative text editor for
the enhancement of both asynchronous and semi-synchronous collabora-
tion. In this chapter we show that the computation of awareness in our
mechanism is not only independent of the collaboration mode, but also
of the document type handled by the collaborative application. For that,
we investigate if and how the awareness mechanism could be used to en-
hance collaborative applications that handle documents other than text.
We chose a graphical editor and an editor of webpages, because although
there is a lot of collaborative activity concerning these document types,
there is a lack of awareness-enabled collaborative applications.

In the first part of this chapter, we consider the collaborative author-
ing of a website and investigate how our awareness mechanism could be
extended to support change awareness about both intra-document and
inter-document modifications. Although intra-document changes were
successfully addressed in the previous chapters, this was not the case
for inter-document modifications, i.e. modifications on one webpage that
may affect a page linked to it. We propose a change awareness mechanism
that monitors intra- and inter-document edits, taking into account cha-
nges made to a page and pages connected to it through html or transclu-
sion links. The severity of all the changes is computed based on various
metrics and on different semantic levels according to user preferences. A

153

154 Chapter 8. Further applications

visualisation tool indicates how much a document and documents linked
to it have changed. An edit profile allows users to easily spot parts with
“interesting” changes within webpages.

In the second part of this chapter, we consider a graphical collabora-
tive editor and how the awareness framework could be extended based
on the operations supported by the application, as well as proper metrics
and visualisation tools to compute the severity of modifications made to
a graphical document and the presentation of this information to the
user within a graphical editor.

8.1 Introduction on collaborative authoring of web-
sites

Systems that support the co-authoring of websites often allow users to
freely edit pages. Changes to a webpage may affect other parts of the page
or pages linked to it and hence lead to semantic inconsistencies within
or between pages. Keeping users aware of changes made by other users
can help to resolve such inconsistencies or even prevent them. While
many popular tools for the collaborative authoring of webpages such as
Wikis, blogs and WebDAV applications succeed in enabling collabora-
tion between users, they unfortunately provide almost no awareness to
users about the changes done by their collaborators, and therefore do not
prevent semantic inconsistencies.

We address the need of users to track changes made over time to
co-authored webpages. We identify two categories of changes that may
appear: intra-document changes and inter-document changes. The first
category includes changes made to a single webpage. Users need to be
informed in detail about the type of changes, which part of the page is
affected, in which way and how much. An overview of the changes should
be provided to the users so that they are aware of the group activity and
can react quickly to changes that might affect their work. Webpages often
contain links to other pages and the target pages may be semantically
connected. Additionally, parts of webpages are often reused in other
webpages resulting in “transcluded” webpages [89] indirectly linked to
“compound” webpages [74] that include the reused information. In both
cases, changes to a target/transcluded page may directly or indirectly
influence the content of the source/compound page resulting in inter-
document changes. In the process of collaborative authoring of a website,
it is therefore important that a user is also notified about concurrent

8.1. Introduction on collaborative authoring of websites 155

changes made to linked documents.
In Chapter 3, we proposed a mechanism that computes awareness

information about intra-document changes made to structured docu-
ments. In this chapter, we show how we applied the same mechanism
to collaborative situations where websites are authored. We also show
how we extended our awareness mechanism to deal with links between
webpages.

We propose a mechanism that based on html and transclusion links,
informs authors of source/compound webpages about changes made to
the target/transcluded webpages. The mechanism additionally computes
and visualises change awareness about intra-document changes at the dif-
ferent syntactic document levels of one or more webpages. We begin with
a motivating example to show the kinds of information that would be use-
ful for users when co-authoring webpages. We then present our approach
to computing change awareness for intra- and inter-document modifica-
tions and finally introduce a visualisation tool to show the computed
awareness information.

8.1.1 Motivating example

We use an example to motivate the need for users to be informed about
intra-document and inter-document changes to a website. Consider the
case of a research group that maintains a website about their activity.
The structure of the website is shown in Figure 8.1.

The group is involved in several projects (Project 1, Project 2, Project
3) with a subset of group members participating in each. The group
website is composed of a main page and a set of project pages. The main
page contains a description of the group research topics, a list of the
group members, a summary of the group projects together with links to
the internal webpages describing the projects, and links to an external
webpage of Project 1 maintained by a collaborating research group. We
assume that the summaries of the group projects are transclusions of the
short descriptions of the projects found on the associated webpages.

Figure 8.1 shows the html and transclusion links from the group main
page to the projects’ internal and external pages. To keep the group
website consistent, users working on the main page would like to be
continuously informed about changes made to:

• The main page itself. Users need to be informed in detail about the
type and location of changes, as well as their severity on the parts
of the page where they were made and the page as a whole.

156 Chapter 8. Further applications

Group Main Page

Project 1
External Page

Project 3
Internal Page

Project 2
Internal Page

Project 1
Internal Page

Items reused
from Project

pages

Html Link
Transclusion Link

Figure 8.1: Structure of a group website

• The transcluded parts. Any change made to the source document of
a transcluded part must be tracked and the compound document
must be notified. After refreshing the transcluded part to show
its latest status, awareness information about the detailed changes
made to it needs to be given as well.

• The linked pages. Users editing the main page should be informed
about changes made to the linked webpages as these changes might
produce inconsistencies in the main page. For instance, if a new
project member is added to an internal project, the complete list
of participants on the group main site should be updated. In the
same way, if a new software release is announced on the external
page of Project 1, this information could be used to update the
group main page.

8.1. Introduction on collaborative authoring of websites 157

The visualisation mechanism that presents change information to the
users should provide an overview of changes as well as details at a selected
document level such as a section or paragraph, the transcluded parts and
the linked pages.

Some tracking tools allow the possibility to follow links from a source
page, but they do not relate changes made to the linked pages with the
source page. Therefore, a user working on the source page is not aware
about changes made to the linked pages. In the following sections we
present our awareness mechanism for intra and inter-document changes.
Users working on a webpage are informed about changes made to the
main page and linked pages without visiting those webpages.

8.1.2 Special issues in co-authoring of web documents

In this section, we take a closer look at the co-authoring of websites
and search for any special characteristics that this collaborative activity
or the authored documents may have. To do so, we compare the co-
authoring of a website to the co-authoring of a text document. After
highlighting any differences and special issues that arise when users are
collaborating over websites, we describe how an awareness mechanism
could be used for this collaborative activity and whether any extensions
to the mechanism previously proposed would be required. We consider
the following issues.

• What are the document parts of a webpage? How are webpages
linked to each other?

• What are the possible modifications a user should be aware of when
co-authoring webpages?

• How are modifications generated and how can they be modelled?

• Are there any privacy issues we need to take into consideration?

For the sake of simplicity, we will consider webpages that consist
only of text. Therefore, the document parts included in a webpage are
identical to the ones included in a text document. Additionally, each
webpage is viewed as a structured document. Through the structured
document model, we can address different parts of a webpage at various
syntactic document levels and compute awareness information about how
much they have changed at different granularity levels. We adopt the
definition of a document node introduced in Chapter 3.

158 Chapter 8. Further applications

The modifications that can be made to webpages are the insertion or
deletion of text and the creation or deletion of links. They are mapped to
operations applied to specific parts of the page. Examples of operations
are the insertion/deletion of a new paragraph to/from a section or of a
sentence to/from a paragraph or of a word to/from a sentence etc. Ope-
rations are also defined as in Chapter 3. These modifications alter either
the structure of a webpage, i.e. structural operations or the structure of
a website, i.e. linking operations. They are presented in Figure 8.2 as
specialisations of the operation concept.

Following the document’s structure, the severity of changes made to
document parts at lower syntactic levels, such as word or sentence in
the case of text, are aggregated to show the total changes made to the
document at a higher syntactic level such as a paragraph. Monitoring
changes made to different parts of the document and evaluating their
severity returns the required intra-document change awareness. Until
now, everything is identical to the collaborative authoring of text docu-
ments, with the existence of links being the only exception.

Links added to, or removed from, a webpage are important actions of
website authoring. It determines the interdependence of webpages and
therefore the structure of a website. The structure of the authored sites is
a graph and not a tree as in the case of text editing. Since the awareness
mechanism presented in Chapter 3 considers only hierarchical documents,
it cannot be applied in its current form to the co-authoring of more
complex structures. Therefore, we extend the metamodel describing the
awareness mechanism as shown in Figure 8.2 to include the notion of html
links and transclusion links. This is modelled through the associations
HtmlTo, HtmlFrom, TransTo, TransFrom that relate node objects to each
other.

An alternative way to model links between webpages would be to
model links as a separate notion. Node objects would be connected to
each other with links to form a graph. Links could then be separated into
intra and inter links. The hasParent and hasChildren presented in Fig-
ure 8.2 would then be examples of intra links and the HtmlTo, HtmlFrom,
TransTo and TransFrom examples of the inter links. Such a metamodel
is more general than the one presented in Figure 8.2 since it enables the
creation of more complex graphs. Additionally, since links are modelled
as separate concepts, they can hold additional information. We present
some details of such an extended model in Section 9.2. We realise that
the potential of extending our framework towards this direction is great,
since our awareness mechanism could be applied to more applications

8.1. Introduction on collaborative authoring of websites 159

F
ig

u
re

8.
2:

E
x
te

n
si

on
of

th
e

fr
am

ew
or

k
’s

co
re

co
n
ce

p
ts

fo
r

co
-a

u
th

or
in

g
of

w
eb

si
te

s

160 Chapter 8. Further applications

that support collaborative or single user editing tasks. However, build-
ing a framework that could be integrated into as many applications as
possible is not the goal of this thesis. Before extending the framework
into this direction, research would need to be conducted to investigate in
detail the needs of users of these applications and the need for multi-level
awareness on documents with a more complex structure.

Note as well, that in the model we use, there is no distinction between
internal and external pages to a website. Therefore, a webpage that be-
longs to a website where a user has authoring access might be linked
to external webpages that are not authored by the user. This means
that, although users need to be informed about modifications made to
the external pages, there is no way to track the changes made to them.
This raises again the issue of the operation-based approach versus the
state-based approach to compute the changes between two versions of a
document. With the first approach, the operations that transform a web-
page from one version to another can be created by using a special web
application when authoring the page that captures the changes. With
the second approach, they can be computed by using a diff algorithm [88]
between the two versions.

When an application that captures user changes is used by all users,
for instance when working with internal pages, the captured operations
reflect the actual changes made to the page. When a diff algorithm is
used, a set of operations that transform the initial state of the webpage
to its final state is created. Unfortunately, this set may not be identi-
cal to the set of actual changes made by users, resulting in loss of some
information. The advantage, though, of a diff algorithm is that it can
be used to compute the difference between two versions of any webpage
without monitoring the authoring procedure, which applies to the situa-
tion described above with the external pages.

Being aware of these issues, we chose to use a diff algorithm in this
chapter to enable the computation of awareness information for both in-
ternal and external pages. When addressing such problems, we believe
that being able to offer awareness information, even if operations do not
capture the exact changes, is far more beneficial than not delivering any
information at all. Of course, in situations where only internal pages are
authored and the accuracy of computed awareness is crucial, an author-
ing application that captures user changes can be used instead of a diff
algorithm.

8.1. Introduction on collaborative authoring of websites 161

8.1.3 Tracking of modifications and computation of awa-
reness

The procedure followed to compute intra- and inter-document changes
and the corresponding awareness information is shown in Figure 8.3. A
PageCache is maintained locally for each user, including a copy of each
of the webpages of interest to the user, as well as a copy of all the pages
linked to them. We refer to all of these as monitoredPages. Additional
information is kept in each monitoredPage showing how much each part
has changed. A background process periodically calls the method up-
dateValues for each monitoredPage to check whether any intra- or inter-
document changes occurred and compute their severity.

To compute awareness information for the intra-document changes,
we call the method getIntraValues for the currently monitored page. get-
IntraValues takes the cached (old) version of the page and the online
(current) version from the web and compares them. If they are not iden-
tical, the procedure in the block “condition”, shown in Figure 8.3, is
followed. Initially, a diff algorithm is used to compute the changes that
transform the old version of the page into the current one in terms of
operations denoted as changes. The changes are used by the method
computeIntraValues to compute the intraValues attached to the changed
parts of the page. This procedure is detailed in Subsection 8.1.4. Finally,
these values are stored in the monitoredPage, the new version of the page
is stored in PageCache and getIntraValues returns the computed intra
values associated with parts of the document.

To compute the awareness information for the inter-document cha-
nges, the linked pages need to be accessed. Therefore, the list listOfLinks
with all links of the monitoredPage is retrieved. Note that both html and
transclusion links are included in the list and listOfLinks is accessed after
the current version of the monitoredPage has been stored locally. There-
fore the list contains the links included in the current version of the page.
Any link that was present in the old version but removed in the current
version is not included. Similarly, any link that was not present in the
old version but was added in the current version is included. We believe
it is reasonable to search for changes only in pages currently linked to the
monitoredPage as the removal of a link is already depicted as a change
in the monitoredPage.

In the loop that follows, we handle each of the links separately. We ini-
tially retrieve the linkedPage and compute the intra-document awareness
for it by calling the method getIntraValues as for the monitoredPage. As

162 Chapter 8. Further applications

monitoredPage :
MonitoredPage

updateValues() getIntraValues()

:HTTP

getPage(this.url)
currentVersion

:PageCache

getPage(this.url)
oldVersion
[oldVersion == null] oldVersion:=currentVersion

condition [currentVersion!=oldVersion]

:ChangeEngine

computeDifferences(oldVersion, currentVersion)
changes

 computeIntraValues()

 intraValues

storePage(this.url, currentVersion)

getLinks()

 listOfLinks
loop *[for each link in listOfLinks]

linkedPage :
MonitoredPage

getIntraValues()
someIntraValues

alternate [type of link == HTML]
attachHTMLValues(link,someIntraValues)

[type of link == TRANSCLUDED]
attachTransclusionValues(link,someIntraValues)

 getPageFromLink(link)

 linkedPage

 storeIntraValues(intraValues)

 intraValues

Figure 8.3: Process for computing intra- and inter-document awareness

8.1. Introduction on collaborative authoring of websites 163

explained before, any new version of the linkedPage is detected and the
changes made to it as well as the corresponding awareness information
are computed. Finally, the object someIntraValues is returned, includ-
ing the computed awareness information. someIntraValues may be null
if the current version of the linkedPage is identical to the old version
and different than null if the versions differ. Note that if the link was
added to the current version of monitoredPage, the linkedPage is inserted
in the pageCache. The old version of the linkedPage is identical to the
current one, so the someIntraValues will be null. Changes made to the
new linked document will be monitored and reported starting from the
moment the link is added. This part of the loop is executed for both
html and transclusion links. The intra-awareness information computed
for the linkedPages is then attached to the structure of the monitored-
Page based on the type of the link. The procedures attachHTMLValues
and attachTransclusionValues are described in Section 8.1.5.

It is obvious from the procedure described here that we compute inter-
document awareness information based on first level links only, i.e. we
consider changes made only to pages directly linked to the current page.
Although the procedure can easily be adapted for other levels, i.e. links
included in linked pages, we believe that the information delivered in this
case would not be of additional value to the collaborative situations we
address in our current work.

8.1.4 Intra-document awareness

As described in Section 8.1.2, the document model and the operations de-
fined for the editing of webpages are similar to the ones defined for text
editing. Therefore, the computation for awareness information about
intra-document modifications is identical to the one described in Chap-
ter 4. The metrics and the visualisation tools used are also the same, as
shown in Figure 8.2.

8.1.5 Inter-document awareness

We now describe the procedure followed to attach to a monitoredPage
the awareness information computed for a linkedPage. As described in
Section 8.1.3, the awareness information is computed in the same way
for all linkedPages linked through either an html or a transclusion link
to a monitoredPage. This awareness information comprises a set of node-
Values computed for each of the parts of the monitoredPage. To keep the

164 Chapter 8. Further applications

awareness information delivered through the monitoredPage up-to-date,
we need to attach the computed values to the parts of the monitoredPage
that are affected.

If the link to the linkedPage is an html link, the part of the moni-
toredPage where the link is included needs to be updated. We decided
to attach to this part all the awareness information computed for the
linkedPage. In this way, we provide the user with the possibility while
browsing through the monitoredPage and watching intra-document cha-
nges, to also be informed about the changes made to the linkedPage
without loading the page. Our aim is to deliver to the user an edit pro-
file with the quantity of the changes in the linkedPage, as well as the
parts of the page that changed. In this way, the user can decide whether
they need to revisit the linked page and update the information included
in the monitoredPage. The way the awareness information is presented
to the user is shown in Section 8.1.6.

If the link to the linkedPage is a transclusion link then only part
of the awareness information computed for the linkedPage needs to be
transferred to the monitoredPage. Through the transclusion mechanism,
the part of the monitoredPage that is transcluded from a linkedPage is
updated to include the latest changes made to it. However, updating
the transcluded part in the monitoredPage is not enough. Awareness
information that is attached to this part, needs to be transferred to the
monitoredPage as well so that users are informed about the amount of
changes. To do so, the awareness information computed for the linked-
Page is scanned and only the values computed for the transcluded part
are kept. This mechanism is heavily dependent on the transclusion mech-
anism and the metadata that is created during the authoring process of
the transclusion link. This metadata is usually new tags inserted in the
transcluded or the composed pages, or other anchors that can be used
to define the beginning and end of the transcluded part [73]. Using this
data, we identify the transcluded part in the linkedPage, extract the awa-
reness information computed for it and copy it to the corresponding part
of the monitoredPage.

8.1.6 Visualisation of intra/inter-document awareness

We revisit our motivating example to present the tools used to visualise
the computed awareness information. We use only a representative sam-
ple of changes made to two of the example pages to demonstrate how
the visualisation tool informs users about different kinds of changes. We

8.1. Introduction on collaborative authoring of websites 165

assume there are some intra-document changes (annotated with “A” in
Figures 8.4 and 8.5) made to the main page and the internal page of
project 1 (interactive paper project). The main page has an html link
to the project page through the phrase “interactive paper” in the first
paragraph (B) and the paragraph about the interactive paper project is
a transcluded paragraph (C) from the project page. The changes made
to the main page are insertions of text in the paragraph about group re-
search. The changes made on the project page are an insertion of a word
in the first paragraph (the transcluded paragraph), the insertion of two
new paragraphs (the sixth and seventh paragraphs) and the insertion of
a new member in the list of group members (paragraph number nine).
Note that titles are handled as paragraphs of one sentence and changes of
the project page are considered as inter-document changes for the main
page. Finally note that an external page linked through the main page
could also be used instead of the internal project page and the computed
awareness information would be visualised in the same way.

AB

AChanges

Visible part of
the document.
Each bar
corresponds to

hMiniature of the profile A
made to
sentences
that belong
to the first 6
paragraphs

a paragraphp
created for the linked page

paragraphs
Changes made
to parts of the
document
currently
not visible

C
not visible

Figure 8.4: Visualisation of intra- and inter-document changes made to
the main page

We assume that the main page contains 10 paragraphs. The window
in Figure 8.4 presents the first 6 paragraphs. In this figure, we also show
how we visualise the intra-document changes of the main page. Two
edit profiles are introduced on the sides of the page. The profile on the
right side shows an overview of all changes made throughout the page,
while the profile on the left shows all changes made to the portion of the
page currently shown. In order to construct the profile on the right side

166 Chapter 8. Further applications

presented in Figure 8.4, the awareness information computed for each
paragraph is used. By using the profile, the user can instantly spot that
there have been many changes on the second and the last paragraph and
some changes in the sixth and eighth paragraph. The left profile can
be thought of as a zoomed version of the right profile. The information
provided by the left profile corresponds to the first six paragraphs, which
is the part of the right profile marked by the scrollbar.

The reason for the existence of the left profile, is that the information
provided by it can be at a different syntactic level. In Figure 8.4, for
instance, the left profile shows changes made to each of the sentences of
the first six paragraphs. In this way, a user that would notice the large
amount of changes made to the second paragraph, could further filter
the awareness information and find how the changes in the paragraph
are distributed to the paragraph sentences. The height of the bar corre-
sponding to each sentence is adjusted to the length of the sentences for
the left profile, to ease the mapping of changes to document parts. The
width of a bar in each profile represents the normalised number of words
inserted or deleted in the corresponding document part. Note that users
are able to configure the syntactic levels used in the profiles as well as
the detail of the information provided through them to visualise informa-
tion about changes of various types on a user-defined granularity. The
intra-document changes made to the project page are also visualised in
the same way, as shown in Figure 8.5.

Since the first paragraph of the main page includes an html link to
the project page, changes made to the project page might influence the
content of the main page. For instance, the introduction of a new proto-
type (iGesture) in the project page might need to be included in group
research summary (first paragraph) in the main page. Hence, when a
user points with the mouse on the html link, an overview pops up that
shows the changes made in the project page. We expect this feature to
give the user a rough idea of the amount of changes made to the project
page as well as the parts of the page that changed the most to help the
user decide whether they need to visit the project page to see the changes
in detail and whether the content of the main page should be modified
as well. With the “*” symbol on the profiles we inform users if there are
changes made to pages linked through html links.

The changes made to transcluded parts are presented as intra-docu-
ment changes through the edit profiles. The sixth paragraph of the main
page is a transcluded paragraph. The changes made to it are presented
through the two profiles in the main page, exactly in the same way as

8.1. Introduction on collaborative authoring of websites 167

A

C

A

A

Figure 8.5: Visualisation of intra-document changes made to the project
page

they are presented in the project page. The distinction between the
transcluded and compound page is made through the “!” symbol added
to the compound page at the parts of the profiles that correspond to the
transcluded parts.

Our awareness mechanism and the visualisation tool introduced above
aim to increase the amount of awareness information presented to users
about changes made to a page and the pages linked to it. In the absence
of adequate awareness information, a number of problems could appear.
For instance, a user editing the main page would not be informed about
changes made to the linked page (interactive paper project). They would
not know that the list of members in the interactive paper project has
been updated since a new member was added. As a result, the list
of members in the main page would not be updated to include the new
member. Additionally, users would not be informed about the new proto-
type that is released in the interactive project and therefore, information
about the released frameworks on the main page would remain obsolete.
Our awareness mechanism supports the users to avoid all of the above
situations.

168 Chapter 8. Further applications

8.1.7 Discussion on co-authoring of websites

We have presented a change awareness mechanism that tracks intra- and
inter-document edits in the co-authoring of webpages. We described how
metrics are computed to quantify the changes made inside a document
as well as on transcluded parts of the document and linked documents.
Moreover, we have described a visualisation tool based on edit profiles
that enable users to have an overview of changes done on a webpage
and any pages linked to it. This allows users to easily spot “interesting”
changes done on document parts and browse these changes at finer levels
of granularity.

It would be interesting to test the usability of our approach by con-
ducting user studies on the prototype that implements the ideas described
in this section. The extensibility of our approach would also enable the
experimentation with various visualisations. Finally, it would be possi-
ble to extend our awareness mechanism to take into account not only
physically linked documents, but also semantically linked documents in
the context of semantic wikis or more general semantic web.

8.2 Introduction on collaborative authoring of gra-
phical documents

Although change awareness is an important factor in collaboration, there
has been relatively little work to date on ways to compute and visualise
summaries of changes made using graphical authoring tools. In this
section, we address change awareness in graphical applications. Since we
concentrate on co-authoring activities, the basic user needs for change
awareness remain the same. Therefore, the set of requirements presented
in Chapter 2 applies in co-authoring of graphical documents as well.

This implies that the awareness framework presented in Chapter 3
can be used to model the computation and visualisation of awareness
information in collaborative graphical applications. For this, the only
requirements that the application should fulfil, is to provide a structured
document model and the notion of operations to model the authored
document and the modifications made to it respectively.

For the applications that fulfil the requirements, the integration of the
awareness framework into them should be a straightforward task. In the
rest of this section, we describe how the awareness mechanism could be
integrated into a collaborative graphical editor. To do this we revisit the
metamodel of the framework and define the form that its core concepts

8.2. Introduction on collaborative authoring of graphical documents 169

would need to take for a graphical application.

8.2.1 Issues related to graphical applications

A first issue that arises when trying to integrate the awareness framework
into a graphical application is that an underlying structured document
model is required. This might not seem straightforward in the beginning,
since there is no direct resemblance to a structured document as in the
case of a text document. For a text document, it is clear that a section
consists of paragraphs and a paragraph consists of sentences, since this
hierarchy resembles the syntactic levels with which users are already
familiar. Does this apply to graphical documents as well? If we take a
closer look at graphical documents and the way they are authored, very
few graphical documents have no structure. On the contrary, many of
them include graphs that span many pages and may include graphs split
into layers, each of them including graphical objects, or groups of objects,
or templates of objects, etc. This proves that although a hierarchical
structure may not be instantly noticeable in a graphical document, it is
still there.

Note, however, that while a hierarchy can be defined in both text
and graphical documents, in the case of text documents, the children
of a node are ordered. Therefore, any node can be uniquely identified
by a path in the document hierarchy. However, in graphical documents,
nodes are not ordered. For instance, there is no order between objects
that belong to the same group of objects. Objects are therefore identified
by unique identifiers. Additionally, the place where a graphical object
will be drawn in the scene of objects is not related to its place in the
hierarchy representing the document. This is specified explicitly by the
users, by setting the object position attribute.

The visualisation tool is the next issue and is also related to the
position of objects in a document. Since objects are drawn in a 2 dimen-
sional (or 3D) scene of objects, an overview presenting the modifications
throughout the document cannot be linear, i.e. of one dimension, as in
the case of a text document. The lack of order between objects is another
reason that renders the edit profiles unusable in the form they were al-
ready presented. Therefore, an appropriate visualisation tool must take
these issues into consideration. In the next sections we present a mock
up of such a visualisation tool and the functionalities we envision that it
will have.

In the next section, we start with a presentation of the extended

170 Chapter 8. Further applications

Figure 8.6: A hierarchically structured graphical document

framework metamodel describing the computation and visualisation of
awareness information in collaborative graphical authoring tools. We
detail how its general concepts have been specialised for the case of gra-
phical applications.

8.2.2 Extension of the awareness framework for a graphi-
cal application

We chose to work with Draw-Together [68], a collaborative graphical
editor developed in our group. Draw-Together has the hierarchical do-
cument structure shown in Figure 8.6. Documents handled by the ap-
plication consist of nodes of different document levels, i.e. pages, layers,
groups and objects. The application also supports the concept of opera-
tions modelling modifications made to the document.

In the rest of this section, we present the extension of the metamodel
that describes our awareness mechanism. The metamodel is shown in
Figure 8.7. It is composed of the core model shown in the upper half of the
figure, which is the one introduced in Chapter 3, and the specialisation of
its concepts for graphical authoring tools shown in the lower half of the
figure. Alongside our description of how the main concepts are extended
for graphical tools, we also discuss the similarities and differences between
text and graphical authoring tools and some issues that emerge when
working in these environments.

The concept of a node is further specialised for graphical documents

8.2. Introduction on collaborative authoring of graphical documents 171

F
ig

u
re

8.
7:

E
x
te

n
si

on
of

th
e

fr
am

ew
or

k
’s

co
re

co
n
ce

p
ts

fo
r

a
gr

ap
h
ic

al
ed

it
or

172 Chapter 8. Further applications

as shown in Figure 8.7. The notions of a page, a layer and a graph-
icalObject are defined as specialisations of a node. A graphicalObject can
either be a simpleObject or a group. As simpleObjects, we define any of
the objects that a graphical collaborative authoring tool supports, for
instance an ellipse, a rectangle or a textbox. A group consists of a set of
any graphicalObjects, as specified by the association consistsOf, thereby
also allowing the creation of subgroups. Through the hasChildren and
hasParent associations, the hierarchy of Figure 8.6 is created in a sim-
ilar manner to the hierarchy of paragraphs-sentences-words-characters
defined in text documents. Finally, attributes are assigned to each sim-
pleObject as an attributeSet through the association hasAttributeSet. For
example, an attribute can be the object’s colour, text in case of a textbox,
annotation, angle representing the rotation angle of an object, or the ob-
ject’s xy position in the 2D scene of objects, denoted as position.

We classified the operations applied to document nodes in graphi-
cal applications into structural and formatting operations. Structural
operations modify the document structure. The creation or deletion of
a node are typical examples of structural operations. Other structural
operations could also be defined. Formatting operations modify a node’s
attributes. Move, changeColour, rotate, setAnnotation and setText are
only some of many formatting operations defined in our model to de-
scribe collaborative activity in graphical authoring tools. The set of
operations used in the text authoring tool of Chapter 4 consists only of
structural operations that create and remove nodes. The much richer
set of operations defined for graphical documents in comparison to the
set of operations defined for text documents, renders the computation
and visualisation of awareness information more complex in graphical
applications.

Since modifications are made to nodes through operations applied to
them in both text and graphical documents, the concept of metrics is
defined for both document types in a similar manner. An operation’s
value depends on the metric used. In text editors, for instance, a delete-
Sentence operation delivers different information, i.e. has different value,
when a user is interested in the total number of deleted sentences or the
total number of deleted characters in a document. Our proposition of
metrics and visualisation tools for graphical documents is influenced by
the issues presented in the previous section.

Our proposal of an example metric would be to count the number of
modifications made at each xy position of the 2D scene. Since modifi-
cations to a document or document part are made in the form of opera-

8.2. Introduction on collaborative authoring of graphical documents 173

tions applied to graphical objects and not to xy positions, the number of
modifications at a specific xy position is identical to the number of mod-
ifications made to the graphical objects that occupy the corresponding
position. Therefore, the metric is defined as the number of modifications
made to a graphical object. This justifies the metric NoModifications
shown in Figure 8.7. Note, however, that there exist various types of
operations applied to graphical objects. To compute and present aware-
ness information as required according to users’ focus and granularity, we
allow the computation of node values for each of the operation types. As
a result, a user interested in only a specific type of changes could visualise
the corresponding values, without being distracted by node values that
reflect other types of changes.

Definition 16. Based on the metric presented above, the value opV alue
of an operation op of any type, is simply defined to be equal to 1 since it
represents one modification. opV alue(op) = 1

Definition 17. In a similar manner, the value nodeV alue of a node N for
a given type of operation opType is defined as the sum of the opV alues
of the set of operations, denoted as operations(N) applied to the node,
all of them being of type opType.

nodeV alue(N, opType) =

∑
opi∈operations(N)

opV alue(opi)

where opi(type) = opType

The definition of appropriate metrics is a very demanding task due to
its dependence on user preferences. The proposed metrics would need to
be further enriched possibly by conducting user studies and collecting the
users’ feedback. Examples of new possible metrics could be the number
of objects affected by an operation, as well as the area in the 2D scene
that will be modified. Both are shown in Figure 8.7 as NoObjects and
2DArea. It would also be interesting to investigate ways of combining
the two metrics and their effectiveness.

Finally, we present our proposition of a visualisation tool for aware-
ness in graphical authoring tools. It is presented in Figure 8.8 and in
Figure 8.7 as 2DEditProfile. The proposed tool is based on the concepts
of heat maps [39] to provide a highlighting mechanism suitable for large
documents. We consider a 2D layer drawn upon the 2D scene of objects.
The area around each graphical object is coloured according to its node-
Value computed for a specific type of operation applied to it. If the user
wishes to visualise the severity of many different kinds of modifications,

174 Chapter 8. Further applications

IWCES

Obj.1

Obj.2 Obj.3

Obj.4

Obj.5

Obj.6
Obj.3

Many Changes

Few Changes

Figure 8.8: Example of a 2D edit profile as a visualisation tool for mod-
ifications over graphical documents

i.e. different types of operations, then the sum of the object’s nodeValues
is computed and the area around the object is coloured based on this
value. Since an object’s colour is one of its attributes and can be mod-
ified by users, the area inside a graphical object is not affected by the
visualisation tool. The greater the number of modifications of each type
made to the object, the greater the corresponding object’s nodeValue and
the darker the colour used to highlight the area around the object. The
tone of the colour is more intense around the border of the object, while
it gets less intense further away from it.

Consider, for instance, the example of Figure 8.8. Objects 1 and 6
have a different number of modifications made to them. Object 1 has
fewer modifications, hence the colour around it is lighter than the one
around object 6. Group objects are specially handled. If all objects in
a group have undergone the same number of modifications, the colour
around them is uniform as with objects 4 and 5. On the contrary, if
the number of modifications of each of the group’s objects differs, then
different colours are used to highlight the areas around the objects. At
the intersection of these areas, the colour is a combination of both colours.

8.2. Introduction on collaborative authoring of graphical documents 175

In this example, object 3 has undergone more modifications than object 2.
The above visualisation tool offers an overview of modifications made

to a 2D scene of graphical objects. Most of the time, such a scene repre-
sents a page of a graphical document. It would be interesting to investi-
gate how such a tool could be extended to present awareness information
about modifications made to objects at various layers, or to present more
than one page at a time or zoom into a specific document part and present
information about it. Additionally, it would be interesting to experiment
with a slight change in the use of colours in the visualisation tool by
assigning specific colours to specific kinds of changes. This would help
users easily distinguish the type of a change only based on the colour
used for highlighting the modified object.

A further issue to investigate could be the granularity of awareness
information required by users with different roles and collaborative tasks.
We expect that visualising the available information at the different docu-
ment levels will be useful for users, however, we believe that information
would be required at different document levels depending on the users’
roles and collaborative tasks. Note that this issue was already raised for
the text editor, by the users of the user study presented in Chapter 5.

The next example illustrates the above issue. Consider a co-authored
graphical document that describes the plan of a building that has mul-
tiple floors and multiple apartments pro floor. We assume that there is
a document page for every floor. A user that is working on the whole
document, would most probably need to have an overview of all the
document, to see where in the document modifications were made by
the collaborators. The document parts, for instance the pages, where
“many” changes have been made could be located from the overview.
As a next step the users could zoom in on the specific pages and be in-
formed about the modifications made to each apartment, or the rooms of
the apartments. However, in other collaborative situations, a user might
not need to have an overview over the whole document. If for instance
a user is responsible for the design of a specific apartment, or floor, then
they might need to directly zoom in and check for changes at the desired
document level or document part. We believe that user studies could be
a means of analysing and understanding the users’ needs for each of the
above collaborative situations and therefore guide the extension of the
concepts included in the metamodel of Figure 8.7.

Finally, considering the implementation of the awareness framework
that we proposed, we believe it is necessary to offer users the possibility
of filtering the computed awareness information by selecting the type of

176 Chapter 8. Further applications

modifications they wish to visualise. In a similar way to the implemen-
tation of this awareness mechanism for text documents, a flexible GUI
that will enable users to select any combination of operation types to be
visualised, at any granularity level could be built. Then a user would be
able to visualise, for instance, only deletions of objects that belong to a
specific layer of a specific page, or all of the rotated objects of a given
set of pages.

8.2.3 Discussion on co-authoring of graphical documents

In this section, we have described ways in which our awareness mechanism
could be applied to the co-authoring of graphical documents. We pro-
posed an extension of our framework metamodel to enable the computa-
tion and presentation of an overview of changes in collaborative graphical
authoring tools. A collaborative application implementing this approach
would offer customised awareness information according to user prefer-
ences. It could compute and present awareness information at different
levels of granularity such as pages, layers, group of objects and objects
and it could filter the information according to operation types and users.

9
Conclusion

In this thesis, we have motivated the need for multi-level change awa-
reness emerging from users’ feedback from a number of previous user
studies. We looked at collaborative applications built to support colla-
borative authoring in different domains and pointed out their strengths
and weaknesses with respect to the amount of awareness information that
they provide to users. The findings of this survey were summarised in
the Table 2.1 where the features offered by the applications were com-
pared to the list of features which users reported that they need. From
this process, we concluded that most of the awareness features that users
wish for are not offered by current systems. Finally, the need for a uni-
versal approach that would compute and provide the required awareness
information independently of the collaborative application domain was
highlighted.

The work conducted in the frame of this thesis aims at providing a
generic mechanism for the computation and visualisation of multi-level
awareness in applications that enable the co-authoring of documents.
This mechanism uses the structured model of the co-authored documents
to provide awareness at different granularity levels. We described the
basic concepts included in our awareness mechanism and the framework
resulting from it. To test the framework’s applicability, we integrated it
into an asynchronous text editor, implemented a prototype and used it
to conduct user studies. Based on users’ feedback, we extended the awa-
reness mechanism to compute real-time awareness information into asyn-

177

178 Chapter 9. Conclusion

chronous environments. We also implemented a prototype of a shared
workspace that provides flexible awareness information for a set of do-
cuments and investigated ways to adjust the computation of awareness
information in situations where privacy issues arise.

Further, we have shown how the awareness mechanism could be used
to enhance the awareness information provided by collaborative applica-
tions that handle different types of documents. For that, we examined the
editing activity of graphical documents and of websites and investigated
whether the framework could be applied to such collaborative applica-
tions. We showed that for the case of graphical editing, the framework
can be applied as it is, by only materialising its core concepts based on
the information handled by the editor. In the co-authoring of websites,
a small extension to the model was needed to include the notion of links
between webpages.

To conclude this thesis, we critically evaluate our awareness mecha-
nism and the metamodel that describes it in the next section. Since we
have already commented in detail on possible extensions to the work pre-
sented in each chapter, we choose to address here only the main issues.
Then we provide an outlook on possible future research ideas emerging
from the work presented in this thesis.

9.1 Discussion

Combination of the awareness framework with other approaches.
Throughout this thesis we discussed extensively on the detailed informa-
tion our awareness mechanism computes and the way that it satisfies the
list of awareness requirements introduced in the beginning of Chapter 3.
However, this by no means implies that an application implementing the
above framework would provide all the awareness information that might
be required. The framework that we propose should be combined with
other mechanisms that help users preserve other types of awareness info-
rmation. Additionally, the framework itself needs to be further extended
to provide additional functionalities for change awareness. The way of
visualising the computed awareness is one example. While the current
version of the framework includes visualisation tools that provide edit-
ing overviews, the implemented prototypes do not present the changes
superimposed on the document. This is a feature that users in our user
study also reported as missing and should be provided.

9.1. Discussion 179

Application-specific extensions of the metamodel. While the core
model of our awareness mechanism stays the same for different applica-
tions and document types, the way that each of the concepts in the core
model is materialised depends on the document type and the application.
For instance, a document node can be defined for both text and graphical
collaborative applications, but what exactly that node describes differs.
In this sense, our framework could be seen as a template that can be used
to compute and visualise application-specific awareness information. To
integrate our framework into an application, a matching of the frame-
work’s concepts to the application’s concepts needs to be made. While
the matching of the document nodes and operations might be a straight-
forward procedure, the definition of the application-relevant metrics and
visualisation tools might require more effort.

Reusability. Although the definition of metrics and the design of visu-
alisation tools might be demanding, they offer the advantage that the de-
fined concepts and their implementation can be reused by other applica-
tions that offer similar features and have similar needs. We already made
use of this framework’s advantage, when investigating the co-authoring
of websites. The metrics and the visualisation tool used for the intra-
document modifications were the ones defined for the authoring of text
documents. We envision that the use of the framework to enhance the
awareness information provided by some editors, could lead to the cre-
ation of a rich set of metrics and visualisation tools that could be applied
to other applications as well.

User studies. The prototypes we implemented in the framework of this
thesis were designed to enable us to experiment with additional metrics
and visualisation tools by testing them with users. The study we con-
ducted aimed at collecting a first feedback on the way users interpret the
information provided through edit profiles and whether the concepts be-
ing implemented are reasonable for users. The feedback that we collected,
showed us that the main concepts included in our framework were rea-
sonable and that the information provided by the prototype helped the
users maintain multi-level awareness of their collaborators’ editing acti-
vity. We then tested the generality and applicability of our approach by
extending the framework’s metamodel for different collaborative editors
with regard to the type of the co-authored documents and the working
mode of the collaborators. Through the above, this thesis reached its set
of goals.

180 Chapter 9. Conclusion

It is clear that for each of the collaborative applications that we ad-
dressed in this thesis there is a set of interesting issues for discussion. For
instance, user studies could be conducted to investigate the applications
in more detail and try to provide a richer set of application specific awa-
reness requirements, metrics and appropriate visualisation tools. Users’
feedback could then be compared to feedback collected from studies on
other awareness-enabled applications to find which of the features are
mostly preferred by the users. However, all the above, are well beyond
the scope of a single thesis.

9.2 Outlook

Apply the framework to broadly used applications. The editors
used in this thesis were prototypical implementations of collaborative
applications to allow for experimentation of our concepts and user test-
ing. The functionalities they provide are by inferior to the ones provided
by the authoring applications that people often use when they work.
Therefore, the awareness information that can be computed for docu-
ments being authored with these applications is restricted. Applying the
awareness mechanism to an editor like Open Office [14] or CoWord [121]
would be a very interesting next step, since the need of new metrics and
visualisation tools may arise due to the rich set of available modifications.
When trying to enrich the above applications with awareness informa-
tion, various issues might arise. Here we discuss some of them. Consider,
an application that in addition to the deleteNode and createNode opera-
tions offers also the moveNode, colourNode, renameNode, mergeNodes,
etc. Visualising the changes of each of the document types separately
might overload the visualisation tool. Another interesting issue would be
to define the severity of the new types of operations in terms of the met-
rics that will be used to compute the severity. For instance, how would
the severity of a move operation be defined? Maybe by using the level of
the moved document part? Or by using the distance between the initial
and final positions? How would then such a distance be defined in text
documents? Additionally, the notation used in the visualisation tool to
show a move operation would also be an interesting issue to investigate.

Awareness for more complex document types. Integrating our
awareness mechanism into systems like Open Office might also be chal-
lenging due to the complexity of the document types. A simple example

9.2. Outlook 181

could be a document that includes more than one type of document
nodes, such as text, graphs, tables, etc. To compute and present aware-
ness information for such a document, we would need to define the struc-
tural document model that includes all the types of document nodes and
the way they relate to each other and then try to combine the different
metrics and visualisation tools that are available for each document type.
We discuss here some of the issues that would have to be taken under
consideration. For instance, would it be reasonable to define a table or a
figure as a child element of a section, or a paragraph in a text document?
We next present another issue. Consider that in a co-authored document
there is a graph that is a child element of a section. If a graphical ob-
ject is deleted from the graph, or if the colour of an object in the graph
is changed, would it be reasonable to present this information through
the visualisation tool at the level of the node’s parent elements? For
instance would it be reasonable to sum the opValue of the “deleteTextN-
ode” operation with the “deleteGraphicalObject” operation and present
the result as the deleteNodeValue of a section? Or would it be reason-
able to compute the “changeColourValue” of a section? Issues such as
the above would be very interesting for further investigation.

Awareness in single-user applications. Although our awareness fra-
mework is described as a mechanism that provides people with knowledge
about the status and the actions of their collaborators, another possible
application for it would be in single-user applications. People who are
involved in long-lasting tasks often need to keep an overview of their own
progress and actions over time. For instance, an author writing a book,
or a student writing a thesis, would usually author such documents for
a long period of time and often go through iterations of correcting and
rewriting various document parts. Being aware of all the modifications
of the different revisions is a very complicated task to be done manually.
In such authoring situations, it might be useful for a user to easily find
the document part that was heavily edited at a specific day, for instance
after the meeting of the student with their supervisor. Similarly, it would
be interesting to find what modifications were made after a new docu-
ment part was inserted. A system implementing our approach could help
users of single-user applications easily collect information about their do-
cuments in above situations.

Additionally, it might also be interesting to investigate whether peo-
ple follow specific working patterns when authoring documents, whether
they keep these patterns over many documents and if they depend on

182 Chapter 9. Conclusion

user roles, document types and the specific tasks to be accomplished.
For that, the editing activity of various people would need to be recorded
and the resulting editing profiles could be compared to find similarities
in the authoring process followed by each of the users. If such patterns
are found, this information could be used to automatically recognise the
users and their roles by their working patterns and configure the author-
ing applications to better serve the users’ needs.

Awareness for more complex document structures. Finally, a ve-
ry interesting and challenging extension of our mechanism would be its
use for more complex document structures. We briefly mentioned this
idea in Chapter 8 while presenting the computation of awareness for
inter-document modifications. The idea of links between documents was
modelled through the introduction of new associations between the node
objects. An alternative would be to introduce the concept of a link and
the associations hasLinkTo and hasLinkFrom relating node objects with
link objects. As explained in Chapter 8 intra-links and inter-links would
be modelled as specialisations of the link concept and would include all
the possible links between node objects, including parent-child relation-
ships and html or transclusion links. New types of links could be defined
to allow for more flexible structures of documents. For instance, the con-
tent of a document could vary depending on the user that works on it.
Finally, modelling the links as separate entities would enable the stor-
ing of additional information for link objects. For instance, it would
be possible to search for patterns of following links between documents.
Associations between link objects could enable the above. An example
of such an association could be a followedAfter association, relating two
links when one is usually followed right after the other. We believe that
the extension of our awareness mechanism towards this direction would
be very promising.

A
User study

questionnaires

Global Information Systems Group, ETH Zurich
Professor Moira Norrie
Stavroula Papadopoulou
Elke Reuss

Asynchronous Collaborative Editor 0.0.1: User Test

A. Introduction to the test.
B. Pre-Questionnaire.
C. Brief introduction to the asynchronous editor.
D. Task part with introduction, tasks and questions.
E. Post-Questionnaire.

183

184 Appendix A. User study questionnaires

B. Pre-Questionnaire

1. How do you assess your computer literacy:

� inexperienced

� average

� well experienced

2. How often have you been involved in a collaborative authoring task
during the last five years?
Answer: I have done it for about times

3. What kind of software did you use when involved in such tasks?
Answer: .

4. What is your profession?
Answer: .

D. Task part with introduction, tasks and questions

Introduction
Three users are already collaboratively authoring a document of 10

paragraphs. They are a professor and two students. Each student is
mainly responsible to author specific paragraphs of the document, but
can also make changes to the rest of the document. The professor has to
ensure that the whole document is well written. Therefore, he can make
changes to all the paragraphs.

You are a student joining the group in order to help writing the paper.
You log into the asynchronous text editor used and see the last version
of the paper. The information displayed in the graph concerns the total
number of changes made to the document from the time that it was first
created until the currently available version.

185

Tasks: Please process the following 5 tasks.

1. Study the graph presenting an overview of the changes made to the
document and answer the next questions:

(a) How many users made changes to the document?
Answer: .

(b) Which are the paragraphs of the document that each student
is mainly responsible for? Fill the following table accordingly,
using the appropriate paragraph numbers. (More than 1 para-
graph number can be entered in each table cell)

student’s name paragraph numbers

(c) Which user is the professor?
Answer: .

(d) How did you reach that conclusion?
Answer: .
. .

(e) Please indicate in the following scale how much you agree with
the statement:

The information displayed in the graph was useful.

strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

186 Appendix A. User study questionnaires

2. Studying the information displayed in the graph answer the follow-
ing questions:

(a) From all the sentences of the document, which is the sentence
with the most insertions? Locate it in the text and write down
the first and last word of it.
Answer: .

(b) Which is the paragraph with the most insertions? Locate it
in the text and write down the first and last word of it.
Answer: .

(c) Which paragraph had the least deletions? Locate it in the
text and write down the first and last word of it.
Answer: .

(d) Please indicate in the following scale how much you agree with
the statement:

It was useful that information about changes made to the
document was displayed on both sentence and paragraph level.

strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

187

3. Zooming

(a) For the paragraph with the most insertions, zoom in one level
so that you visualise the changes made to each one of the
paragraph’s sentences.

In terms of amount of changes as well as of the place where
the changes were made, how do you interpret the information
displayed?
Answer: .
. .
. .
. .
. .

(b) For the paragraph with the least deletions, zoom in one level
so that you visualise the changes made to each one of the
paragraph’s sentences. At which part of the paragraph were
the most changes done? Please mark one:

� Beginning

� Middle

� End

(c) Did you like the functionality of locating modified parts of the
document by zooming in through the graph?

� Yes

� No

(d) Was it easy to locate the part with the most changes within
each paragraph?

� Yes

� No

If no, please specify why : .
. .
. .
. .
. .
. .

188 Appendix A. User study questionnaires

4. Find the 3rd paragraph in the document. Zoom in and choose its
3rd sentence. Zoom in again to see the changes on the word level.

(a) Locate and write down the words that had spelling mistakes.
Answer: .
. .
. .
. .
. .

(b) Was the procedure to locate spelling mistakes easy?

� Yes

� No

If no, please specify what you found difficult:
. .
. .
. .
. .

189

5. Semantic levels.

(a) Return on the paragraph level. Set the unit to “Sentences” so
that you see in the graph how many complete sentences were
inserted and deleted from the paragraphs. Find the paragraph
with the most complete sentences inserted, locate it in the text
and write down the first and last word of it.
Answer: .

(b) Set the unit to “Characters” again and locate the paragraph
with the most insertions. Is this paragraph the same with the
one returned in step 5i?

� Yes

� No

(c) Does this result give you any additional information about the
changes done on the two paragraphs?

� Yes

� No

If yes, please specify what information you get.
. .
. .
. .
. .

190 Appendix A. User study questionnaires

E. Post-Questionnaire

Please answer the following questions 6) to 9). If you don’t under-
stand a question, please let us know so that we can clarify it.

6. You have used until now two different ways to evaluate the changes
made on the document. The first one takes into consideration the
total number of characters deleted or inserted and the second one
takes into consideration the total number of semantic units (words
or sentences) deleted or inserted.

(a) Which of the two ways would you choose to be informed about
the changes that other users have made on the document?

� Characters

� Semantic units

� Both

i. If you have answered “Both” in the previous question,
please specify in which cases, in terms of kinds of changes
that you would like to visualise, you would use each way.
Answer: .
. .

ii. If you have answered “Characters”, please specify why
you wouldn’t like to be informed about the total number
of semantic units (words or sentences) deleted or inserted.
Answer: .
. .

iii. If you have answered “Semantic Units”, please specify
why you wouldn’t like to be informed about the total num-
ber of characters deleted or inserted.
Answer: .
. .

(b) Would you like any additional information to be displayed to
you to inform you about the changes made on the document?

� Yes

� No

If yes, please specify that kind of information:
. .
. .

191

7. Considering the visualisation tool (graph) used, please answer the
following questions:

(a) Does this visualisation tool give you sufficient information
about where in the document have changes been made?

� Yes

� No

(b) Does this visualisation tool give you sufficient information
about the amount of changes made to the document?

� Yes

� No

(c) Do you believe you could get the same information without
the visualisation tool?

� Yes

� No

If yes, please specify how else you believe you would get this
information: .
. .
. .

(d) Did you get additional information about the changes made
on the document by the fact that deletions were presented in
the visualisation tool separately from the insertions?

� Yes

� No

192 Appendix A. User study questionnaires

8. For the following questions, please indicate using the scales, how
much you agree with each of the statements.

(a) It was useful that changes made to a document were presented
through an overview (graph).

strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

(b) It was not useful that changes made to a document were pre-
sented on different document levels.
strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

(c) It was useful to locate changed document parts by single-
clicking on the overview.

strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

(d) It was useful to zoom into different document levels of a spe-
cific document part.

strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

(e) It was not useful to present changes based on the total number
of characters inserted or deleted.
strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

(f) It was useful to present changes based on the total number of
semantic units inserted or deleted.
strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

193

9. Considering possible extensions of the current asynchronous text
editor:

(a) While working on your local copy, would you like to have the
overview synchronously updated according to the changes that
other users are making to the document?

� Yes

� No

If no, why? .
. .
. .

If yes, please answer to the two following questions.

i. Please indicate in the following scale how much you agree
with the statement:
It would be useful to be synchronously informed about
changes made to the document by other users.
strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

ii. If you were informed through the overview that another
user was working at a specific part of the document would
you start working at the same part?

� Yes

� No

For either answer, please specify why:
. .
. .

(b) The information presented to you on the overview concerns
the total changes made to the document from the moment of
its creation until the currently available latest version.

Would you like to be informed through the overview about
the way the document evolved from one version to the other?

� Yes

� No

(c) Please indicate in the following scale how much you agree with
the statement:

194 Appendix A. User study questionnaires

It would be useful to present, through the overview, all the
words that had spelling mistakes throughout the whole docu-
ment.
strongly
disagree

disagree neither
disagree
nor agree

agree strongly
agree

1 2 3 4 5

B
Publications

The work presented in the frame of this thesis was also presented to the
scientific community through the following list of publications.

1. “Providing Awareness in Multi-synchronous Collaboration Without
Compromising Privacy”

C. L. Ignat, S. Papadopoulou, G. Oster and M. C. Norrie, In
Proceedings of CSCW 2008, Conference on Computer Supported
Cooperative Work, San Diego, California, USA, November 2008

2. “Intra/Inter-document Change Awareness for Co-authoring of Web
Sites”

S. Papadopoulou, C. L. Ignat, G. Oster and M. C. Norrie, In
Proceedings of WISE 2008, The Ninth International Conference on
Web Information Systems Engineering, Auckland, New Zealand,
September 2008

3. “User Study of Edit Profiles in Collaborative Authoring Systems”

S. Papadopoulou, E. Reuss and M. C. Norrie, In Proceedings
of CTS 2008, The 2008 International Symposium on Collabora-
tive Technologies and Systems, Irvine, California, USA, May 2008,
(Nominated for Best Paper Award)

4. “How a structured Document Model Can Support Awareness in Col-
laborative Authoring”

195

196 Appendix B. Publications

S. Papadopoulou and M. C. Norrie, In Proceedings of Collabo-
rateCom 2007, The 3rd International IEEE Conference on Colla-
borative Computing: Networking, Applications and Worksharing,
New York, USA, November 2007

5. “Shadow Document Sets for Synchronously-Aware Asynchronous
Collaboration”

S. Papadopoulou and M.C. Norrie, In Proceedings of Collabo-
rateCom 2007, The 3rd International IEEE Conference on Colla-
borative Computing: Networking, Applications and Worksharing,
New York, USA, November 2007

6. “Awareness Model to Overview Modifications in Collaborative Gra-
phical Authoring Tools”

S. Papadopoulou, C. L. Ignat and M. C. Norrie, In IWCES 2007,
The Ninth International Workshop on Collaborative Editing Sys-
tems, GROUP 2007, International ACM SIGGROUP conference on
Supporting group work, Sanibel Island, Florida, USA, November
2007

7. “Document Profiling to Enhance Collaboration”

S. Papadopoulou and M. C. Norrie, In IWCES 2006, The Eighth
International Workshop on Collaborative Editing Systems, CSCW
2006, Conference on Computer Supported Cooperative Work, Banff,
Canada, November 2006

8. “Increasing Awareness in Collaborative Authoring through Edit Pro-
filing”

S. Papadopoulou, C. L. Ignat, G. Oster and M. C. Norrie, In
Proceedings of CollaborateCom 2006, the 2nd International IEEE
Conference on Collaborative Computing: Networking, Applications
and Worksharing, Atlanta, USA, November 2006

Bibliography

[1] Changedetect - be the first to know.
http://www.changedetect.com.

[2] Diff doc - the comprehensive document comparison tool.
http://www.softinterface.com/MD/Document-Comparison-
Software.htm.

[3] Altova diffdog - xml-aware differencing and merge tool.
http://www.altova.com/diffdog.

[4] Microsoft word. http://office.microsoft.com/word.

[5] Subversion - an open source version control system.
http://subversion.tigris.org.

[6] Watchthatpage - your monitor for changes on the web.
http://www.watchthatpage.com.

[7] Website-watcher - save time, stay informed. http://aignes.com.

[8] Wikipedia - the free encyclopedia that anyone can edit.
http://www.wikipedia.org.

[9] Winmerge - an open source visual text file differencing and merging
tool. http://winmerge.sourceforge.net.

[10] Britannica online encyclopedia. http://www.britannica.com.

[11] Eclipse - an open development platform. http://www.eclipse.org.

[12] English oxford dictionary. http://dictionary.oed.com.

[13] Groove virtual office. http://www.groove.net.

197

198 Bibliography

[14] Openoffice - the free and open productivity suite.
http://www.openoffice.org.

[15] Rational rose. http://www-306.ibm.com/software/awdtools/
developer/rose/index.html.

[16] Microsoft office sharepoint server.
http://www.microsoft.com/sharepoint/default.mspx.

[17] Subethaedit. http://www.codingmonkeys.de/subethaedit.

[18] Wikiwikiweb. http://c2.com/cgi/wiki.

[19] R. Al-Ekram, A. Adma, and O. Baysal. DiffX: an algorithm to
detect changes in multi-version XML documents. In CASCON ’05:
Proceedings of the 2005 conference of the Centre for Advanced Stud-
ies on Collaborative research, pages 1–11. IBM Press, 2005.

[20] W. Appelt. WWW based collaboration with the BSCW system.
In SOFSEM ’99: Proceedings of the 26th Conference on Current
Trends in Theory and Practice of Informatics on Theory and Prac-
tice of Informatics, pages 66–78, London, UK, 1999. Springer-
Verlag.

[21] R. M. Baecker. Readings in Groupware and Computer-supported
Cooperative Work: Facilitating Human-Human Collaboration.
Mor-gan Kaufmann, 1993.

[22] R. M. Baecker, D. Nastos, I. R. Posner, and K. L. Mawby. The
user-centered iterative design of collaborative writing software. In
CHI’93: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 399–405, New York, NY, USA, 1993.
ACM Press.

[23] R. M. Baecker, J. Grudin, W. Buxton, and S. Greenberg. Readings
in Human Computer Interaction: Toward the Year 2000. Morgan
Kaufmann Publishers, 1995.

[24] J. Bair. The need for collaboration tools in offices. In Proceedings
of the 1985 Office Automation Conference-AFIPS, February 1985.

[25] R. Bentley, T. Horstmann, K. Sikkel, and J. Trevor. Supporting col-
laborative information sharing with the WWW: The BSCW shared

Bibliography 199

workspace system. In Proceedings of the 4th International WWW
Conference, pages 63–74, Boston, MA, USA, December 1995.

[26] R. Bentley, T. C. Horstmann, and J. Trevor. The World Wide Web
as enabling technology for CSCW: The case of BSCW. Computer
Supported Cooperative Work, 6(2/3):111–134, 1997.

[27] B. Berliner. CVS II: parallelizing software development. In Pro-
ceedings of the USENIX Winter 1990 Technical Conference, pages
341–352, Berkeley, CA, USA, 1990. USENIX Association.

[28] N. Bevan, C. Barnum, G. Cockton, J. Nielsen, J. Spool, and
D. Wixon. The ”magic number 5”: is it enough for web testing? In
CHI’03: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems - CHI ’03 extended abstracts on Human Fac-
tors in Computing Systems, pages 698–699, Fort Lauderdale, FL,
USA, 2003. ACM.

[29] P. H. Carstensen and K. Schmidt. Computer supported cooperative
work: New challenges to systems design. In Handbook of Human
Factors, pages 619–636, 1999.

[30] S. Chan, M. Wong, and V. Ng. Collaborative solid modeling on
the WWW. In SAC ’99: Proceedings of the 1999 ACM symposium
on Applied computing, pages 598–602, New York, NY, USA, 1999.
ACM.

[31] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing up
eclipse with collaborative tools. In eclipse ’03: Proceedings of the
2003 OOPSLA workshop on eclipse technology eXchange, pages
45–49, New York, NY, USA, 2003. ACM.

[32] E. J. Chikofsky and J. H. C. II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[33] H. H. Clark and S. E. Brennan. Grounding in Communication.
APA Books, Washington, 1991.

[34] P. Dewan and R. Hegde. Semi-synchronous conflict detection and
resolution in asynchronous software development. In ECSCW’07:
Proceedings of the tenth European Conference on Computer Sup-
ported Cooperative Work, Limerick, Ireland, September 2007.

200 Bibliography

[35] P. Dourish and V. Bellotti. Awareness and coordination in shared
workspaces. In CSCW’92: Proceedings of the 1992 ACM Con-
ference on Computer Supported Cooperative Work, pages 107–114,
New York, NY, USA, 1992. ACM Press.

[36] P. Dourish and S. Bly. Portholes: supporting awareness in a dis-
tributed work group. In CHI’92: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 541–547,
New York, NY, USA, 1992. ACM.

[37] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster. Visualiz-
ing software changes. IEEE Transactions on Software Engineering,
28(4):396–412, April 2002.

[38] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner. Seesoft-a tool for
visualizing line oriented software statistics. IEEE Transactions on
Software Engineering, 18(11):957–968, 1992.

[39] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Clus-
ter analysis and display of genome-wide expression patterns. Pro-
ceedings of the National Academy of Sciences of the USA, 95(25):
14863V–14868, 1998.

[40] C. Ellis, S. Gibbs, and G. Rein. Design and Use of a Group Edi-
tor. Engineering for Human-Computer Interaction. North-Holland,
1990.

[41] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some issues and
experiences. Communications of the ACM, 34(1):39–58, 1991.

[42] M. R. Endsley. Measurement of situation awareness in dynamic
systems. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 37(1):65–84, March 1995.

[43] R. S. Fish, R. E. Kraut, and M. D. P. Leland. Quilt: a collaborative
tool for cooperative writing. In Proceedings of the ACM SIGOIS
and IEEECS TC-OA 1988 conference on Office information sys-
tems, pages 30–37, New York, NY, USA, 1988. ACM.

[44] M. Fracker. Attention allocation in situation awareness. In Proceed-
ings of the Human Factors Society 33rd Annual Meeting (Visual
Performance: Spatial Awareness), pages 1396–1400, 1989.

Bibliography 201

[45] J. Froehlich and P. Dourish. Unifying artifacts and activities in a
visual tool for distributed software development teams. In ICSE
’04: Proceedings of the 26th International Conference on Software
Engineering, pages 387–396, Washington, DC, USA, 2004. IEEE
Computer Society.

[46] L. Fuchs, U. Pankoke-Babatz, and W. Prinz. Supporting coopera-
tive awareness with local event mechanisms: the groupdesk system.
In ECSCW’95: Proceedings of the fourth European Conference on
Computer Supported Cooperative Work, pages 247–262, Norwell,
MA, USA, 1995. Kluwer Academic Publishers.

[47] R. Furuta, V. Quint, and J. André. Interactively editing structured
documents. Electronic Publishing Origination, Dissemination, and
Design, 1(1):19–44, 1988.

[48] D. German, A. Hindle, and N. Jordan. Visualizing the evolution
of software using softChange. In SEKE’04: Proceedings of Inter-
national Conference on Software Engineering & Knowledge Engi-
neering, pages 336–341, New York NY, 2004. ACM Press.

[49] D. M. German. An empirical study of fine-grained software modifi-
cations. In ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 316–325, Washington,
DC, USA, 2004. IEEE Computer Society.

[50] R. D. Gilson. Introduction to the special issue on situation aware-
ness. Human Factors, 37(1), 1995.

[51] S. Greenberg. Sharing views and interactions with single-user ap-
plications. In Proceedings of the ACM SIGOIS and IEEE CS TC-
OA conference on Office information systems, pages 227–237, New
York, NY, USA, 1990. ACM.

[52] S. Greenberg and M. Boyle. Generating custom notification his-
tories by tracking visual differences between web page visits. In
GI ’06: Proceedings of the Conference on Graphics Interface 2006,
pages 227–234, Quebec, Canada, 2006. Canadian Information Pro-
cessing Society.

[53] S. Greenberg, C. Gutwin, and A. Cockburn. Using distortion-
oriented displays to support workspace awareness. In A. Sasse,

202 Bibliography

R. J. Cunningham, and R. Winder, editors, Proceedings of HCI
People and Computers XI, pages 299–314. Springer-Verlag, 20–23
1996.

[54] S. Greenberg, C. Gutwin, and A. Cockburn. Awareness through
fisheye views in relaxed-wysiwis groupware. In GI ’96: Proceedings
of the Conference on Graphics Interface ’96, pages 28–38, Toronto,
Ontario, Canada, 1996. Canadian Information Processing Society.

[55] J. Grudin. Computer-supported cooperative work: Its history and
participation. IEEE Computer, 27(5):19–26, 1994.

[56] C. Gutwin and S. Greenberg. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Coopera-
tive Work, 11(3):411–446, 2002.

[57] C. Gutwin, S. Greenberg, and M. Roseman. Workspace awareness
support with radar views. In CHI’96: Companion Proceedings of
the ACM SIGCHI Conference on Human Factors in Computing
Systems, pages 210–211, New York, NY, USA, 1996. ACM Press.

[58] C. Gutwin, M. Roseman, and S. Greenberg. A usability study of
awareness widgets in a shared workspace groupware system. In
CSCW’96: Proceedings of the 1996 ACM Conference on Computer
Supported Cooperative Work, pages 258–267, New York, NY, USA,
1996. ACM Press.

[59] C. A. Gutwin. Workspace awareness in real-time distributed group-
ware. PhD thesis, Calgary, Canada, 1998.

[60] J. M. Haake and B. Wilson. Supporting collaborative writing of
hyperdocuments in SEPIA. In CSCW’92: Proceedings of the 1992
ACM Conference on Computer Supported Cooperative Work, pages
138–146, New York, NY, USA, 1992. ACM Press.

[61] S. Hayne, M. Pendergast, and S. Greenberg. Gesturing through
cursors: Implementing multiple pointers in group support systems.
In HICSS’93: Proceeding of the Hawaii International Conference
on System Sciences, pages 4–12, Maui, Hawaii, January 1993. IEEE
Press.

[62] C. Heath and P. Luff. Collaborative activity and technological
design: task coordination in london underground control rooms.

Bibliography 203

In ECSCW’91: Proceedings of the second European Conference on
Computer-Supported Cooperative Work, pages 65–80, Norwell, MA,
USA, 1991. Kluwer Academic Publishers.

[63] C. Heath, P. Luff, and G. Cambridge. Collaboration and control:
Crisis management and multimedia technology in london under-
ground line control rooms. Computer Supported Cooperative Work,
1:69–94, 1992.

[64] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless. Edit
wear and read wear. In CHI’92: Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, pages 3–9,
Monterey, California, USA, May 1992. ACM Press.

[65] T. B. Hodel-Widmer and K. R. Dittrich. Concept and prototype
of a collaborative business process environment for document pro-
cessing. Data & Knowledge Engineering, 52:61–120, 2005.

[66] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson. Introducing
collaboration into an application development environment. In
CSCW’04: Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work, pages 21–24, New York, NY, USA,
2004. ACM.

[67] C. L. Ignat and M. C. Norrie. Customizable collaborative editor
relying on treeOPT algorithm. In ECSCW’03: Proceedings of the
eighth European Conference on Computer Supported Cooperative
Work, pages 315–334, Helsinki, Finland, September 2003. Kluwer
Academic Publishers.

[68] C.-L. Ignat and M. C. Norrie. Draw-together: graphical editor for
collaborative drawing. In CSCW’06: Proceedings of the 2006 20th
anniversary Conference on Computer Supported Cooperative Work,
pages 269–278, New York, NY, USA, 2006. ACM Press.

[69] C.-L. Ignat, G. Oster, P. Molli, and H. Skaf-Molli. Gasper: A col-
laborative writing mode for avoiding blind modifications. Research
Report RR-6204, LORIA – INRIA Lorraine, May 2007.

[70] R. Johansen. Groupware: Computer Support for Business Teams.
The Free Press, 1988.

204 Bibliography

[71] R. H. Katz. Toward a unified framework for version modeling in
engineering databases. ACM Computing Surveys (CSUR), 22(4):
375–409, 1990.

[72] H.-C. Kim and K. S. Eklundh. How academics co-ordinate their
documentation work and communicate about reviewing in col-
laborative writing. Technical Report TRITA-NA-P9815, IPLab-
151,KTH-Sweden., 1998. Interaction and Presentation Laboratory,
Department of Numerical Analysis and Computing Science, Royal
Institute of Technology, Stockholm University.

[73] J. Kolbitsch and H. Maurer. Transclusions in an html-based en-
vironment. Journal of Computing and Information Technology
(CIT), 14:161–174, 2006.

[74] H. Krottmaier and D. Helic. Issues of transclusions. In E-Learn’02:
Proceedings of World Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education, pages 1730–1733,
Montreal, Canada, 2002. AACE.

[75] D. Kurlander. Graphical editing by example. In CHI’93: Proceed-
ings of the INTERACT ’93 and CHI ’93 ACM SIGCHI Conference
on Human Factors in Computing Systems, page 529, New York,
NY, USA, 1993. ACM Press.

[76] D. Kurlander and S. Feiner. Editable graphical histories. IEEE
Workshop on Visual Languages, pages 127–134, October 1988.

[77] M. Lanza. The evolution matrix: recovering software evolution
using software visualization techniques. In IWPSE ’01: Proceed-
ings of the 4th International Workshop on Principles of Software
Evolution, pages 37–42, New York, NY, USA, 2001. ACM.

[78] M. Lanza and S. Ducasse. Polymetric views - a lightweight visual
approach to reverse engineering. IEEE Transactions on Software
Engineering, 29:782– 795, 2003.

[79] M. D. P. Leland, R. S. Fish, and R. E. Kraut. Collaborative do-
cument production using Quilt. In CSCW’88: Proceedings of the
1988 ACM Conference on Computer Supported Cooperative Work,
pages 206–215, New York, NY, USA, 1988.

Bibliography 205

[80] Y. Li, J.-J. Bu, C. Chen, and X.-H. Xu. Research on aware-
ness model on real-time collaborative graphics editing system. In
ICMLC’03: Proceedings of International Conference on Machine
Learning and Cybernetics, pages 2944– 2949, 2003.

[81] E. Lippe and N. van Oosterom. Operation-based merging. In CDE-
5: Proceedings of the fifth ACM SIGSOFT Symposium on Software
Development Environments, pages 78–87, Tyson’s Corner, Virginia,
USA, December 1992. ACM Press.

[82] N. Mangano, A. Baker, and A. van der Hoek. Calico: A prototype
sketching tool for modeling in early design. In Second International
Workshop on Modeling in Software Engineering, May 2008.

[83] L. McGuffin and G. Olson. ShrEdit: A shared electronic work-
space. Csmil, Cognitive Science and Machine Intelligence Labora-
tory, University of Michigan, 1992.

[84] S. Minör and B. Magnusson. A model for semi-(a)synchronous col-
laborative editing. In ECSCW’93: Proceedings of the third Euro-
pean Conference on Computer Supported Cooperative Work, pages
219–231, Milan, Italy, September 2003.

[85] P. Molli, H. Skaf-molli, and C. Bouthier. State treemap: an awa-
reness widget for multi-synchronous groupware. In CRIWG’01:
Seventh International Workshop on Groupware, 2001.

[86] P. Molli, H. Skaf-Molli, and G. Oster. Divergence awareness for
virtual team through the web. In IDPT 2002: Proceedings of
world conference on the Integrated Design and Process Technol-
ogy, Pasadena, California, USA, June 2002. Society for Design and
Process Science.

[87] P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain. SAMS:
Synchronous, asynchronous, multi–synchronous environments. In
CSCWD’02: Proceedings of the Conference on Computer Supported
Cooperative Work in Design, pages 80–85, Rio de Janeiro, Brazil,
September 2002. Society for Design and Process Science.

[88] E. W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1:251–266, 1986.

[89] T. Nelson. Literary Machines. Mindful Press, 1982.

206 Bibliography

[90] C. M. Neuwirth, D. S. Kaufer, R. Chandhok, and J. H. Morris.
Issues in the design of computer support for co-authoring and com-
menting. In CSCW’90: Proceedings of the 1990 ACM Conference
on Computer Supported Cooperative Work, pages 183–195, New
York, NY, USA, 1990. ACM.

[91] C. M. Neuwirth, R. Chandhok, D. S. Kaufer, P. Erion, J. Morris,
and D. Miller. Flexible Diff-ing in a collaborative writing system. In
CSCW’92: Proceedings of the 1992 ACM Conference on Computer
Supported Cooperative Work, pages 147–154, New York, NY, USA,
1992. ACM.

[92] J. Nielsen. Why you only need to test with 5 users. Alertbox, June
2000.

[93] J. Nielsen. Quantitative studies: How many users to test? Alert-
box, June 2006.

[94] S. Noël and J.-M. Robert. Empirical study on collaborative writ-
ing: What do co-authors do, use, and like? Computer Supported
Cooperative Work - CSCW, 13(1):63–89, 2004.

[95] U. Pankoke-Babatz, W. Prinz, and L. Schäfer. Stories about asyn-
chronous awareness. In Cooperative Systems Design-COOP 2004,
pages 23–38, 2004.

[96] I. R. Posner and R. M. Baecker. How people write together. vol-
ume 4, pages 127–138, 1992. ISBN 0-8186-2420-5.

[97] W. Prinz, E. Hinrichs, and I. Kireyev. Anticipative awareness in a
groupware system. In COOP’08: Proceedings of the 8th Interna-
tional Conference on the Design of Cooperative Systems, 2008.

[98] V. Quint and I. Vatton. Making structured documents active. Elec-
tronic Publishing Origination, Dissemination, and Design, 7(2):
55–74, 1994.

[99] G. K. Raikundalia and H. L. Zhang. Newly-discovered group awa-
reness mechanisms for supporting real-time collaborative author-
ing. In AUIC ’05: Proceedings of the Sixth Australasian conference
on User interface, pages 127–136, Darlinghurst, Australia, 2005.
Australian Computer Society, Inc.

Bibliography 207

[100] G. K. Raikundalia and H. L. Zhang. Document-related aware-
ness elements in synchronous collaborative authoring. Australian
Journal of Intelligent Information Processing Systems, 9(2):41–48,
December 2006. Special issue based on the Eleventh Australian
Document Computing Symposium, Queensland University of Tech-
nology.

[101] R. Robbes and M. Lanza. Versioning systems for evolution research.
In IWPSE ’05: Proceedings of the Eighth International Workshop
on Principles of Software Evolution, pages 155–164, Washington,
DC, USA, 2005. IEEE Computer Society.

[102] R. Robbes and M. Lanza. A change-based approach to soft-
ware evolution. Electronic Notes in Theoretical Computer Science
(ENTCS), 166:93–109, 2007.

[103] M. Roseman and S. Greenberg. Building real-time groupware with
GroupKit, a groupware toolkit. ACM Transactions on Computer-
Human Interaction (TOCHI), 3(1):66–106, 1996.

[104] H. Sacks, E. Schegloff, and G. Jefferson. A simplest systematics
for the organization of turn-taking for conversation. Language, 50:
696–735, 1974.

[105] A. Sarma, Z. Noroozi, and A. V. D. Hoek. Palantir: raising awa-
reness among configuration management workspaces. In Software
Engineering, 2003. Proceedings of the 25th International Confer-
ence on Software Engineering, pages 444–454, 2003.

[106] N. Sarter and D. Woods. How in the world did we ever get into that
mode? Mode error and awareness in supervisory control. Human
Factors, 37(1):5–19, 1995.

[107] T. Schümmer. Lost and found in software space. In HICSS ’01:
Proceedings of the 34th Annual Hawaii International Conference
on System Sciences, volume 9, page 9066, Washington, DC, USA,
2001. IEEE Computer Society.

[108] T. Schümmer and J. M. Haake. Supporting distributed software
development by modes of collaboration. In ECSCW’01: Proceed-
ings of the seventh European Conference on Computer Supported
Cooperative Work, pages 79–98, Norwell, MA, USA, 2001. Kluwer
Academic Publishers.

208 Bibliography

[109] M. Sharples. Adding a little structure to collaborative writing.
CSCW in Practice: An Introduction and Case Studies, pages 51–
67, 1993.

[110] C. Sun and C. Ellis. Operational transformation in real-time group
editors: issues, algorithms, and achievements. In CSCW’98: Pro-
ceedings of the 1998 ACM conference on Computer supported coop-
erative work, pages 59–68, New York, NY, USA, 1998. ACM. ISBN
1-58113-009-0.

[111] C. Sun, X. Jia, Y. Yang, and Y. Zhang. REDUCE: A prototypical
cooperative editing system. In HCI International ’97: Proceed-
ings of the Seventh International Conference on Human-Computer
Interaction-Volume 1, pages 89–92, New York, NY, USA, 1997.
Elsevier Science Inc.

[112] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai. Transparent
adaptation of single-user applications for multi-user real-time col-
laboration. ACM Transactions on Computer-Human Interaction
(TOCHI), 13(4):531–582, 2006.

[113] D. Sun and C. Sun. Operation context and context-based opera-
tional transformation. In CSCW ’06: Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work,
pages 279–288, New York, NY, USA, 2006. ACM. ISBN 1-59593-
249-6. doi: http://doi.acm.org/10.1145/1180875.1180918.

[114] J. Tam and S. Greenberg. A framework for asynchronous change
awareness in collaborative documents and workspaces. Interna-
tional Journal of Human-Computer Studies, 64(7):583–598, 2006.

[115] J. Tam, L. McCaffrey, F. Maurer, and S. Greenberg. Change aware-
ness in software engineering using two dimensional graphical design
and development tools. Research Report 2000-670-22, Department
of Computer Science, University of Calgary, Alberta, Canada, Oc-
tober 2000.

[116] J. R. Tam. Supporting change awareness in visual workspaces.
Master’s thesis, Department of Computer Science, University of
Calgary, Alberta, 2002.

[117] F. B. Viégas, M. Wattenberg, and K. Dave. Studying cooperation
and conflict between authors with history flow visualizations. In

Bibliography 209

CHI’04: Companion Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems, pages 575–582, Vienna,
Austria, April 2004. ACM Press.

[118] P. Wilson. Computer Supported Cooperative Work: An Introduc-
tion. Kluwer Academic Publishers, 1991.

[119] J. Wu, R. C. Holt, and A. E. Hassan. Exploring software evolution
using spectrographs. In WCRE ’04: Proceedings of the 11th Work-
ing Conference on Reverse Engineering, pages 80–89, Washington,
DC, USA, 2004. IEEE Computer Society.

[120] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse en-
gineering approach to support software maintenance: Version con-
trol knowledge extraction. In WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering, pages 90–99, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[121] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leveraging single-
user applications for multi-user collaboration: The CoWord ap-
proach. In CSCW’04: Proceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 162–171, Chicago,
Illinois, USA, November 2004. ACM Press.

Curriculum Vitae

Particulars

Name Stavroula Papadopoulou

Date of Birth November 22, 1980

Citizenship Greek

Education

2004-2009 ETH Zurich, Switzerland
Global Information Systems Group
Doctor of Sciences ETH Zurich

1999–2004 Aristotle University of Thessaloniki, Greece
Diploma in Electrical and Computer Engineering
(top 8% of class)

1995–1998 5th Lyceum of Kavala, Greece
National High School Degree (ranked 1st in class)

Work Experience

2004–2009 Research and Teaching Assistant, supervised by
Prof. Dr. Moira C. Norrie, Global Information
Systems Group, ETH Zurich

2008 Invited Researcher, LORIA-INRIA Nancy-
Grand Est, Nancy, France

211

	Introduction
	Computer-supported cooperative work
	Awareness
	Motivation and context of our work
	Thesis goals and contribution
	Thesis overview

	Collaborative applications
	Requirements for collaborative authoring tools
	Document comparison tools
	Version control systems
	Collaborative authoring of text documents
	Collaborative authoring of graphical documents
	Collaborative authoring of web documents
	Collaborative development of software
	Shared workspaces
	Summary

	General awareness framework
	Concepts
	Structured document model
	Operations
	Operations versus diff algorithms

	Framework's architecture
	Framework's metamodel
	Document and node
	Operation
	Operation value and node value
	Metric
	Visualisation tool
	User

	Summary

	Awareness enhanced asynchronous text application
	Asynchronous text editor
	Editor's initial functionality
	Document model and operations

	Framework's extension for the text application
	Document model and operations
	Definition of metrics

	Visualisation of awareness
	Filtering procedure
	Edit profile
	Advanced awareness features

	Integration process
	Summary

	Qualitative user study
	Research questions
	Study design and methods
	Results
	Discussion
	Extensions based on users feedback
	Summary

	Semi-synchronous collaboration
	Motivation and requirements
	Shadow documents
	Implementation of shadow documents
	BeAware
	Discussion
	Summary

	Multi-level change awareness in privacy-sensitive environments
	Awareness in the light of privacy issues
	Architecture
	Ghost operations
	Privacy levels
	Visualising ghost operations through edit profiles
	Awareness computation for ghost operations
	Summary

	Further applications
	Introduction on collaborative authoring of websites
	Motivating example
	Special issues in co-authoring of web documents
	Tracking of modifications and computation of awareness
	Intra-document awareness
	Inter-document awareness
	Visualisation of intra/inter-document awareness
	Discussion on co-authoring of websites

	Introduction on collaborative authoring of graphical documents
	Issues related to graphical applications
	Extension of the awareness framework for a graphical application
	Discussion on co-authoring of graphical documents

	Conclusion
	Discussion
	Outlook

	User study questionnaires
	Publications

