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Abstract An elastic and highly available data store is a key
component of many cloud applications. Existing data stores
with strong consistency guarantees are designed and opti-
mized for small updates, key-value access, and (if supported)
small range queries over a predefined key column. This
raises performance and availability problems for applications
which inherently require large updates, non-key access, and
large range queries. This paper presents a solution to these
problems: Crescando/RB; a distributed, scan-based, main
memory, relational data store (single table) with robust per-
formance and high availability. The system addresses a real,
large-scale industry use case: the Amadeus travel manage-
ment system. This paper focuses on the distribution layer of
Crescando/RB, the problem and theory behind it, the ratio-
nale underlying key design decisions, and the novel multi-
cast protocol and replication framework it is composed of.
Highlighting the key features of the distribution layer, we
present experimental results showing that even under perma-
nent node failures and large-scale data repartitioning, Cres-
cando/RB remains fully available and capable of sustaining
a heavy query and update load.
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1 Introduction

The popularity of the cloud as a deployment platform and the
extreme requirements of some enterprise and cloud appli-
cations have sparked a proliferation of so-called NoSQL
systems. Members of this broad class of systems com-
promise on some of the functionality of traditional rela-
tional databases—typically the relational model and ACID
transactions—in favor of scalability, elasticity, and perfor-
mance for a target workload class. Earlier examples of
NoSQL systems, notably Amazon Dynamo [27], abandon
strong (external) consistency in favor of eventual (internal)
consistency. Over the last few years, however, several NoSQL
systems have implemented strong consistency guarantees
[8,24,39,60,66,68,77,78], targeting OLTP and Web work-
loads which traditionally relied on a standard relational data-
base.

What all these systems have in common is that they are
designed for small updates, key-value access, or (if sup-
ported) small range queries over some predefined key column
[72]. Conflicts are assumed to be rare and are detected and
resolved either by distributed locking or by optimistic concur-
rency control techniques. At the end of transactions, atomic
commit protocols such as Two-phase Commit [9] or Paxos
Commit [42] are used to ensure consistency and durability.
Fundamentally, these techniques couple synchronization and
execution of operations, which leads to poor performance and
availability when operations are long running and/or gener-
ate many consistency conflicts. This makes existing systems
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628 P. Unterbrunner et al.

ill-suited for workloads which require large updates, non-key
lookups, and/or large range queries.

Addressing precisely such workloads, we present a data
store for the cloud, Crescando/RB, which is able to retain high
availability under a heavy load (parallel, full-table scans and
concurrent updates), even during large-scale system recon-
figurations (multi-gigabyte data repartitioning).1

Crescando/RB is fully functional and addresses a real
industry use case: the Amadeus travel reservation system.
The use case, described in Sect. 2, requires range queries
over key and non-key columns, atomic range updates, and
also features stringent consistency, data freshness, and avail-
ability requirements.

The system consists of three components: Crescando,
E-Cast, and Rubberband. Crescando is a scan-based, main
memory, relational engine. Data are accessed exclusively via
massively parallel, shared scans. The present paper focuses
on the distribution layer on top of Crescando, namely the
multicast protocol (E-Cast) and the replication framework
(Rubberband) that compose it.

Crescando/RB is not a key-value store. It is also not a
relational database, at least not by itself. Like Crescando,
one instance of Crescando/RB implements a single relational
table. This is the layer where availability, elasticity, and con-
sistency matter and are difficult to implement. That said,
we have in fact built a full SQL query processor on top of
Crescando called SharedDB, which is published elsewhere
[36,37].

The scan-only execution model of Crescando allows it
to atomically perform relational queries and updates (arbi-
trary conjunctions of Boolean predicates), where key-value
stores or semi-relational stores (BigTable [20], Spanner [24],
Percolator [60]) provide data access only through a few key
columns. As shown in a previous paper [74], Crescando is
also much less sensitive to the combination and selectivity
of selection predicates than a conventional relational data-
base. This makes the engine especially suited for real-time
business intelligence workloads such as our use case, where
key-value stores are too restrictive in their consistency and/or
data model, and relational databases lack the required per-
formance, elasticity, availability, and robustness.

The distribution layer of Crescando/RB preserves the full
data and consistency model of Crescando. This generality
raises a serious problem for distributed execution: transac-
tions may frequently span many or all replicas. The Rubber-
band replication framework and E-Cast multicast protocol

1 We are not referring to formal availability as in the CAP Theorem
[13] and related impossibility results [38]. We are concerned with prac-
tical availability: a system being responsive even under challenging
conditions, i.e., full-table scans or data repartitioning. A system can be
formally available but unusable if response times go beyond a certain
level.

are thus specifically designed for global, long-running, and
conflict-heavy operations.

For performance reasons, Crescando/RB does not imple-
ment classic transactions (serializable sequences of reads and
writes). Instead, the system offers atomic execution of arbi-
trary multi-record reads and writes (formally, sequential con-
sistency [33]). The key technique to this effect is to handle
events in two separate but pipelined stages. First, E-Cast is
used to establish uniform agreement on the event order. At
some later point, in the second stage, all affected nodes deter-
ministically handle their (partition of the) events in the pre-
viously agreed order. This enforces strong consistency and
durability. Our implementation aggressively pipelines the
two stages across all architectural layers and protocols, over-
lapping the execution of thousands of queries and updates.
This unusual design enables high throughput despite scan-
based execution, without compromising consistency.

The two-stage execution approach has previously been
explored by Thomson et al. in the context of statically par-
titioned databases [71,72]. In this paper, we show how to
extend the two-stage approach to system reconfiguration
events (membership changes, data repartitioning). By over-
lapping the execution of reads and writes with the handling
of reconfiguration events, Crescando/RB implements asyn-
chronous reconfiguration, thus providing high availability
and elasticity.

In summary, Crescando/RB’s scan-only, two-stage execu-
tion model enables arbitrary, relational queries and updates,
where key-value stores provide atomic access only for indi-
vidual keys or (small) key ranges. As a consequence, transac-
tions in Crescando/RB may span many replicas. Our exper-
imental results show that, in practice, Crescando/RB is able
to scale well enough, despite potential global-ordering bot-
tlenecks. We further show that even under node failures and
large-scale repartitioning, the system remains available and
can sustain a heavy read and write load.

1.1 Contributions

This paper makes the following contributions.

– A novel interpretation and formalization of dynamic par-
tial replication as a stateful routing problem.

– A solution for said routing problem: E-Cast. Formally
speaking, E-Cast is a dynamic, uniform, causal total order
multicast protocol for asynchronous networks with unre-
liable failure detectors. It handles both message ordering
and dynamic membership in a single, wait-free (asyn-
chronous and pipelining) protocol. By plugging differ-
ent routing functions into E-Cast, applications built on
E-Cast can implement complex system membership and
data replication schemes in a straight-forward manner.
This novel design makes E-Cast as easy to use as a clas-
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High availability, elasticity, and strong consistency 629

sic atomic broadcast protocol, while also providing much
of the elasticity and performance benefits of a more gen-
eral group communication toolkit.

– Rubberband, a framework for highly available, elastic
data stores built on E-Cast. Rubberband supports atomic
queries and updates with and—in contrast to existing
systems—without key predicates.

– Crescando/RB, a relational data store that combines Rub-
berband and the Crescando engine into a specialized
system for real-time business intelligence workloads.
Crescando/RB addresses a real industry use case, the
Amadeus travel reservation system.

1.2 Outline

The remainder of this paper is organized as follows. We first
present the industry use case (Sect. 2) and an architectural
overview of Crescando/RB (Sect. 3). We then set our work in
scientific context (Sect. 4). Next, we explain the two compo-
nents of the distribution layer in detail: E-Cast (Sect. 5) and
Rubberband (Sect. 6). Finally, we present the results of an
experimental evaluation of Crescando/RB (Sect. 7) and con-
clude (Sect. 8). A formalization and a proof of correctness
of E-Cast are provided in the “Appendix.”

2 Use case

Amadeus is a world-leading service provider for manag-
ing travel-related bookings (flights, hotels, rental cars, etc.).
Its core service is the global distribution system (GDS), an
electronic marketplace that forms the backbone of the travel
industry. The world’s largest airline carriers and many thou-
sand travel agencies use the GDS to integrate their data. The
main database in the GDS contains hundreds of millions of
flight bookings. Just for the “hot” bookings, this results in a
fact table of several hundred gigabytes in size.

The most important view of this fact table contains one
record for every person on a plane. This is the schema used
for the performance evaluation in this paper, and we will refer
to it as the Ticket table. A ticket record is approximately 350
byte in size and consists of 47 columns, many of which are
flags with high selectivity (e.g., seat class, wheelchair, dietary
preferences).

The Amadeus GDS is a prime example of the growing
need in industry for large, in-memory decision support and
operational business intelligence systems [61]. The Ticket
table is used in a large number of critical data services: report-
ing passenger lists, analyzing customer profiles of different
airlines and airports, but also real-time operational decisions,
e.g., flight cancelation in case of severe weather conditions.
This requires range queries and, occasionally, range updates
over both key and non-key columns. Examples are “give me

the list of first-class passengers in a wheel chair departing
from SFO next week,” or “cancel all tickets departing from
LHR to the United States tonight.”

The original implementation of the Ticket table in a rela-
tional database system had reached a level of complexity
where adding views and indices was no longer feasible let
alone economical. As an alternative, we have developed Cres-
cando, a main memory, scan-based engine designed for high
throughput and robustness to evolving workloads with unpre-
dictable, multi-dimensional predicates. The engine, pub-
lished in an earlier paper [74], is now in production use at
Amadeus, providing data services that were previously infea-
sible.

Encouraged by the performance and robustness of Cres-
cando, Amadeus seeks to apply the engine to use cases
well beyond the capacity and availability limits of a single
machine. These new use cases include ticket pricing, flight
availability, and log auditing.

What is required is a highly available distribution layer,
which partitions and replicates the data in a manner that pre-
serves the full data model and the unique performance prop-
erties of Crescando. In some use cases, the primary copy of
data must reside in Crescando, so the distribution layer must
also arbitrate (i.e., order) conflicting write requests. That is,
the distribution layer must provide strong consistency.

To the best of our knowledge, no existing solution meets all
the requirements in terms of query and update model, perfor-
mance, availability, and consistency. We have thus developed
our own distribution framework, Rubberband. Crescando/RB
combines Crescando and Rubberband into an elastic, highly
available, highly robust, relational data store for the cloud.

3 System overview

In this section, we provide an overview of the Crescando stor-
age engine and its salient properties, followed by an outline
of the distributed system, Crescando/RB.

3.1 Crescando

Crescando is a special-purpose relational storage engine. Its
unusual design makes it well-suited for real-time business
intelligence workloads such as our industry use case, but
also creates some hard technical challenges for distributed
execution.

Figure 1 shows a sketch of Crescando. Crescando is a
push-based engine. Queries and updates are pushed in, exe-
cuted in parallel via dedicated scan threads, and any gener-
ated results are pushed out asynchronously in an interleaved
stream. All table data are horizontally partitioned and stored
in main memory. Threads communicate exclusively through
message queues.
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Fig. 1 Crescando engine architecture (from [74])

Scan threads perform heavy batching of pending opera-
tions. Short-lived, read-optimized, cache-resident indices are
built over the predicates of queries and updates that share a
scan cursor. For example, when a scan thread finds a large
fraction of pending queries features an equality predicate
on a common attribute, say Q1: airport = ‘LHR’, Q2:
airport = ‘LAX’, etc., it builds a hash index over the pred-
icate constants (‘LHR’, ‘LAX’). During execution, the set of
queries forms the inner side of an index-join between the data
table and the (virtual) query table. Crescando indexes not just
queries, but also update and delete operations. Because pred-
icate indices are short-lived (one scan cycle), Crescando can
rapidly adapt to changing workloads.

Owing to this unusual design, a single Crescando instance
on a commodity machine can handle thousands of ad hoc,
non-key queries and updates per second [74]. The downside
is that the turn-around time for individual operations is in the
order of seconds, regardless of how few or how many records
are touched.

This raises serious problems with respect to distributed
concurrency control. Holding distributed locks for several
seconds in the face of thousands of large, concurrent reads
and writes is a recipe for disaster [41]. As an alternative to
distributed locking, optimistic snapshot isolation in various
flavors has become a popular choice. But it too becomes
expensive for long-running, distributed transactions, espe-
cially write transactions. Besides the danger of live lock, read
and write sets of all potentially conflicting distributed trans-
actions need to be exchanged and intersected before a trans-
action commits. This creates a compute-heavy serialization
bottleneck with many workload-specific design trade-offs,
see Hildenbrand [48].

Existing NoSQL data stores sidestep the problem by
restricting the query and update model in various ways (see
Sect. 4.1), such as requiring update transactions to not cross
data partitions, or aborting queries that select too many
records. But our main requirement for Crescando/RB is to
preserve Crescando’s key features: robust performance for
arbitrary relational predicates. In other words, the goal of
our work is to maximize system availability, elasticity, and
performance—without sacrificing robustness, non-key data
access, or strong consistency.

Fig. 2 Crescando/RB system overview

3.2 Crescando/RB

A Crescando/RB deployment is a dynamic set of processes,
communicating via message-passing over an unreliable net-
work (a private or public cloud). Figure 2 shows the four
types of processes: client, super, storage, and router. Client
processes issue read and write requests (w1 through w4

in Fig. 2). Super processes issue reconfiguration requests
(e.g. rebalance in Fig. 2). And each storage process runs
an instance of Crescando to hold application data and serve
incoming requests. Router processes are discussed momen-
tarily.

To avoid the loss of data and/or availability in case of
process failures, Crescando/RB replicates each data object.
For scalability and performance, the data are partitioned in a
way such that each storage process holds some overlapping
fraction of the complete data set (i.e., partial replication). The
precise mapping of data to storage processes is determined
by the configuration of the system, which may be altered at
runtime through reconfiguration requests. A key feature of
Crescando/RB in this respect is that it can be reconfigured
at any point, without compromising data consistency, and
without stopping read and write processing. Crescando/RB
performs repartitioning and fail-over (partial live migration)
in a novel manner optimized for high availability under long-
running operations.

Client, super, and storage processes are all called applica-
tion processes in the context of E-Cast. Application processes
do not communicate directly with one another. (The only
exceptions are low-isolation reads, read results, and data
shuffling during repartitioning.) Instead, requests are mul-
ticasted through the replicated set of router processes. These
routers give a number of crucial guarantees regarding mes-
sage ordering and delivery. Most importantly, they guarantee
that any message delivered by any two application processes
is delivered in the same order by the two processes. This
guarantee is called uniform total order delivery and allows
Crescando/RB to give strong consistency guarantees.
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Table 1 Summary of key problems and their respective solutions in Crescando/RB

Problem Solution Advantage

Unpredictable workload Scan-only query processing No index maintenance, robust performance

High access latency End-to-end pipelining and batching Throughput independent of latency

Large range queries Read-one-write-all successor replication No duplicate matching, minimal overhead

Non-key queries and updates Up-front, total order of operations No deadlocks, no livelocks, robust performance

System membership changes Stateful routing, partial live migration No blocking, continuous availability

To be precise, E-Cast delivers operations in uniform total
causal order. This order is established in a wholly asynchro-
nous, pipelined fashion, and Crescando preserves the order
during batched execution of operations inside individual scan
threads. Thus, clients never have to wait for confirmations,
allowing for high throughput, even under high network or
execution latency.

Table 1 provides a final summary of the key problems and
their solution in Crescando/RB.

4 Background and related work

Crescando/RB draws on a wide range of database and dis-
tributed systems literature. We focus on the five areas most
germane to the paper: NoSQL data stores, push-based query
processing, scan-only query processing, state-machine repli-
cation, group communication.

4.1 NoSQL data stores

The emergence of large-scale, cloud-based services has cre-
ated a need for elastic, highly available data stores. Over the
past years, a number of systems have been developed which
radically simplify the programming model (query language,
data model, consistency model) to enable a higher degree of
parallelism, fault tolerance, and performance. Crescando/RB
is an example of this class of systems referred to as “NoSQL”
data stores [15].

Some NoSQL data stores abandon strong consistency in
favor of weak or eventual consistency. Examples of even-
tually consistent data stores are PNUTs [23], Dynamo [27],
SimpleDB [44], and Cassandra [53]. In many use cases, how-
ever, including ours, eventual consistency is not acceptable.
Strong consistency is required.

A common solution is to extend a distributed hash table
with agreement and atomic commit protocols such as Paxos
[54] and Two-phase Commit [9]. Example systems include
MegaStore [8], PNUTs [23], ElasTraS [25], G-Store [26],
Scatter [39], and Spinnaker [65]. For scalability, the afore-
mentioned systems shard the data into strictly disjunct key or
entity groups. Consequently, consistent transactions cannot

cross entity groups. In contrast, Crescando/RB imposes no
such restrictions.

Other data stores with support for consistent multi-key or
range operations do exist. We know of Spanner [24], Per-
colator [60], P-Store [66], Scalaris [68], ecStore [77], and
CloudTPS [78]. Technically, MegaStore also offers trans-
actions over multiple groups, but these are intended to be
an exceptional case [24]. Commercial data store services
with consistent multi-key operations include DynamoDB and
Windows Azure Table Storage.

In contrast to Crescando/RB, some of these systems sup-
port read-modify-write transactions, not just atomic opera-
tions. However, all of these systems require updates (and
often queries too) to carry a key predicate. In addition, com-
mercial services enforce various tight restrictions on the
number of objects and replication groups touched by oper-
ations, as well as on the maximum runtime of queries. As
explained in the introduction, these restrictions cannot easily
be removed from existing systems, since their concurrency
control and atomic commit protocols rely on conflicts to be,
if not known in advance, at least rare and easily detectable.

To the best of our knowledge, Crescando/RB is the
only consistent data store—short of a full-blown relational
database—which supports reads and writes with arbitrary
conjunctions of Boolean selection predicates, key or non-key.
And because the Crescando engine accesses data exclusively
via massively parallel, shared scans, Crescando/RB is much
less sensitive to the combination and selectivity of selection
predicates than a conventional relational database.

The price to be paid is a lack of read-modify-write trans-
actions (though conditional writes are obviously possible
via predicates). This is not a fundamental limitation of our
architecture however. It is a concession of the Crescando
engine made in the interest of predictable performance. As
shown by Thomson et al. [71,72], it is possible to over-
lap the execution of arbitrarily complex, conditional trans-
actions given a pre-agreed serialization order. As long as
the execution is deterministic, consistency can be preserved.
Thomson et al. report significant throughput benefits in the
context of small, static sets of nodes. With Crescando/RB,
we extend the idea to a fully dynamic, fault-tolerant (fail-
crash) set of nodes and show its additional merits for this
case.
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4.2 Push-based query processing

To answer a given SQL query, relational database systems
rewrite the query as a tree of relational operators (join, pro-
jection, etc.). This tree defines a data flow, from the leaves
(base relations) to the root (the client). In traditional sys-
tems, execution starts at the root, recursively pulling tuples
up through calls tonext() or some equivalent iterator inter-
face to each operator [40].

Crescando is an example of a more recent line of sys-
tems that separate control flow from data flow. Rather than
recursively pulling tuples up through the operator tree, these
systems connect operators via buffered queues. That is, each
operator forms an independent “mini engine.” This design
has a few advantages. First, it naturally enables both hor-
izontal parallelism (e.g., parallel join) and vertical paral-
lelism (pipelining) [18,74]. Second, individual operators
run in tight loops, which leads to high instruction local-
ity [46]. And third, push-based processing makes it easier
to share operators across queries (multi-query optimization
[69]) [6,14,36,46,74].

Notable examples of push-based systems are DataPath [6],
TelegraphCQ [18], and QPipe [46]. In contrast to Crescando,
these systems support full SQL, but have not been designed
for unpredictable and update heavy workloads. We too have
recently implemented multi-table SQL processing on top of
Crescando. This system, SharedDB [36,37], extends the per-
formance benefits of Crescando to a much wider range of
applications. SharedDB has not been ported to Crescando/RB
yet, but we expect no major obstacles since Crescando/RB
retains the data model, consistency model, and basic interface
of a stand-alone Crescando instance.

4.3 Scan-only query processing

Crescando is a scan-only engine; that is, data are accessed
exclusively through scans, even for updates. To increase
throughput, Crescando lets queries and updates share scan
cursors. Shared scans have been implemented in the con-
text of disk-based systems such as Red Brick DW [34], DB2
UDB [57], and MonetDB/X100 [79]. Shortly before Cres-
cando, Raman et al. [63,64] had demonstrated that shared
scans in main memory can provide predictable, low (“con-
stant”) access latency.

In contrast to these systems, Crescando has been designed
for large numbers of non-grouping, fairly selective queries
over live, concurrently updated data. Consequently, the cost
of queries in Crescando is dominated by predicate evalu-
ation, not aggregation or disk access. To speed up execu-
tion, Crescando builds indices over potentially thousands of
queries and updates sharing a scan cursor. Predicate index-
ing is a technique that originates in the stream-processing
domain [19,32].

4.4 State-machine replication

A deterministic, event-driven system can be made fault-
tolerant by replicating the (initial) system state over inde-
pendent processes (replicas), and ensuring that every replica
handles the same state-changing events in the same order.
This simple and well-known idea is called the state-machine
approach [67]. In Crescando/RB, it is the set of E-Cast router
processes, which forms a replicated state machine. The repli-
cated state is the set of routed messages, their order, and their
delivery status.

A replicated state machine implementation must ensure
that every replica handles the same events in the same order,
regardless of process and network failures. This problem is
equivalent to a sequence of distributed consensus instances
on an event and its predecessor event [43,45]. Paxos [54]
and Multi-Paxos [62] are the most popular consensus proto-
cols in practice, and they are found in many of the systems
mentioned in Sect. 4.1.

Since consensus requires a majority of replicas to be live
[38], a long-running system must either rely on replicas to
eventually recover after they fail, or must be able to change
the set of replicas dynamically. The former is typically imple-
mented via write-ahead-logging to local disks. The latter
constitutes a reconfigurable state machine. We argue that
a reconfigurable state machine is to be preferred over disk-
based recovery in a cloud environment, where machines may
fail frequently and permanently, and local disks may not be
reliable.

Lamport et al. [55,56] describe Paxos variants that can
dynamically change the set of replicas. Other algorithms used
to the same effect are RAMBO [58], RDS [21], and Zab [51]
(the protocol behind ZooKeeper [49]). While conceptually
simple, the implementation details of these algorithms are
difficult to get right [2,16]. As a result, reconfigurable state
machine implementations are rare. Indeed, all the related,
strongly consistent data stores mentioned in Sect. 4.1 rely on
disks for recovery.

Crescando/RB uses a disk-less, wait-free (asynchronous
and pipelining), reconfigurable variant of Multi-Paxos. The
system requires no disks,2 real-time clocks, or perfect failure
detectors, so it can run in any cloud environment.

4.5 Group communication

As outlined in the introduction, Crescando/RB does not inter-
leave a distributed concurrency control protocol with the
execution of queries and updates. Instead, operations are

2 This does not mean one cannot add disks to Crescando/RB for pur-
poses of disaster tolerance (e.g., general power outage), see Zab [51]. It
just means that disks are not a requirement and not in the critical path
of our protocols.
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pre-ordered and routed by E-Cast. This can be seen as an
application of group communication.

A group communication toolkit is a combination of a com-
munication service (more-or-less reliable, ordered multicast
primitives) and a membership service [22]. The member-
ship service establishes distributed consensus on a sequence
of system views, each of which defines a configuration that
consists of one or more process groups. Applications can
send messages within and across process groups and views,
and the communication service gives ordering and delivery
guarantees.

Chockler et al. [22] provide an overview of the theory of
group communication; Defago et al. give a survey of the many
known protocols and their respective guarantees [28]; and
Birman [10] provides a historical account. Notable examples
of group communication toolkits are Spread [3], Totem [4],
JGroups [30], Isis [12], Isis2 [11], Transis [31], QuickSilver
[59], and Horus [75].

The E-Cast protocol used by Crescando/RB has been
specifically designed for very strong message delivery and
ordering guarantees across large numbers of overlapping
replication groups with frequent membership changes. In
contrast to existing protocols and toolkits, E-Cast does not
explicitly maintain groups. Instead, E-Cast models reliable
multicast as a stateful routing problem. This novel design
makes E-Cast as easy to use as a plain atomic broadcast pro-
tocol, while also providing much of the flexibility and per-
formance benefits of a general group communication toolkit.

5 E-cast

This section describes E-Cast, the multicast protocol that
forms the heart of Crescando/RB.

5.1 Motivation

Consider an abstract data store consisting of 3 processes:
A, B, C (Fig. 3). The system stores 3 data objects: x, y, z.
For fault tolerance, 2 copies of each object exist. Each process
contains the primary copy of one data object, and a sec-
ondary copy of another data object (partial replication). Now,
consider the following 3 independently submitted multi-key
writes: W1 = {x ← 1, y ← 1}, W2 = {y ← 2, z ←
2}, W3 = {z← 3}.

Fig. 3 Dynamic partial
replication x z

y xz y

A

BC

To be strongly consistent, the system must behave as if
there was a single copy of each data object, and as if the
writes were executed strictly in some serial order. If each
process could independently choose the order in which to
execute writes, the processes may disagree on the final values
of x, y, and z. Formally, the system must agree on a partial
order relation which determines the order of execution for
every pair of conflicting operations [33]. (Here, W1 and W2,
as well as W2 and W3 conflict directly, so W1 and W3 conflict
transitively.)

If each write could only update a single data object or some
disjunct group of data objects, one could just let the primary
replica of each data object or group independently choose
a serialization order for writes of the respective data object
or group. (This is, in essence, how Spinnaker [65], G-Store
[26], and many other consistent key-value stores work.) But
with unrestricted multi-key and non-key writes, as required
by our use case, the transitivity of the conflict relation means
the system generally has to agree on a total order of opera-
tions. In the example, W1, W2, and W3 conflict transitively,
so agreement on a total order is required.

Apart from agreeing on an order relation, processes must
also uniformly execute the writes that concern them. If the
mapping of data objects to processes is static, clients can
cache the mapping and send writes directly to the affected
processes. But if the mapping can change concurrently (for
elasticity or fault tolerance), writes may be lost or received
by the wrong processes, leading to loss of uniformity and
thus inconsistent data.

We call the resulting problem dynamic partial replication.
Rubberband, our data store framework described in Sect. 6,
solves dynamic partial replication by modeling it as a stateful
routing problem. E-Cast in turn implements stateful routing.

5.2 System model

We present only a semi-formal system model and problem
statement here. A proper formalization and a proof of cor-
rectness are provided in the “Appendix.”

The system consists of a set of processes, which communi-
cate via messages passed over an asynchronous network. To
simplify our protocols, we assume processes communicate
through quasi-reliable FIFO channels, as defined by Aguilera
et al. [1]. That is, if a correct process p sends a message m to
a correct process p′, then p′ eventually receives m, in send
order. This guarantee is easily implemented via sequence
numbers, as in TCP for example, so it is not an unrealistic
simplification.

Processes may crash silently, but otherwise behave as
specified (no Byzantine failures). We assume processes have
access to inaccurate but complete failure detectors. That is, a
process may suspect another, correct process of being faulty
(i.e., false positive), but every faulty process is eventually
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suspected of being faulty by every correct process. Such fail-
ure detectors are easy to implement with periodic heartbeat
messages, so, again, this is not an unrealistic simplification.

It is known that eventual weak accuracy (eventually not
suspecting a correct process of being faulty) is formally
required for liveness of uniform atomic broadcast and thus
E-Cast [17]. As is common practice in such protocols, we
assume failure detectors are accurate enough to ensure live-
ness in practice.

5.3 Protocol overview

E-Cast is a dynamic, uniform, causal total order multicast
protocol. As such, it has no notion of reads, writes, or data
objects. It just transmits messages. The protocol is specified
in terms of two roles: application and router processes. Appli-
cation processes submit and deliver messages;3 routers act as
message sequencers and intermediaries between application
processes.

Applications (such as Rubberband) define a routing func-
tion that is plugged into the routers at system bootstrap. The
existence of this function distinguishes E-Cast from exist-
ing group communication toolkits and is key to its usability.
Given a history, i.e., sequence of previously routed messages
and a new message to be routed, that function returns a set
of processes (the destination set) to deliver the message to.

That is, application processes do not explicitly tell E-Cast
which processes to deliver a message to. Instead, they put
just enough information into the message, so that the routing
function can compute the destination set. Because the routing
function sees the system configuration at the point in global
history where the message will be delivered, it becomes easy
to implement complex system membership and data place-
ment schemes.

To agree on a global history of messages, and to ensure
uniform delivery in case of router crashes, the routers atom-
ically broadcast incoming messages among each other (but
not the application processes). A single router, called the
leader, then forwards the messages in the agreed-upon order
to their destination set.

We have implemented our own atomic broadcast protocol
using an asynchronous (heavily pipelined), reconfigurable
variant of Multi-Paxos [62], a well-known protocol for solv-
ing a sequence of consensus problems. E-Cast is more effi-
cient and scalable than atomic broadcast by itself, because it
confines the unavoidable consensus problem to the (small)
set of routers. Application processes do not participate in
consensus.

3 We write “submit” and “deliver” rather than “send” and “receive” to
distinguish between the interface of E-Cast and that of the lower-level
network protocol.

Algorithm 1: Application Process

state variables1
tmax ←−1 ; /* max ts of any delivered msg */2
W ← 〈〉 ; /* send window (queue of unstable msgs) */3

4 /* submit/deliver/acknowledge are external events */
/* send/receive means quasi-reliable FIFO unicast */

upon submit msg m do5
append m to W6

upon receive 〈“stable”,id(m)〉 do7
remove m from W8
acknowledge m to user9

upon receive 〈“deliver”, m, t〉 from router r do10
if t > tmax then11

tmax ← t12
deliver m to user13

send 〈“confirm”,id(m)〉 to r14

periodically15
choose some router r believed to be correct16
foreach msg m ∈ W , in order do17

send 〈“route”, m〉 to r18

Also, membership of router processes is separate from
that of application processes. Router membership is solved
as part of atomic broadcast. Application processes in contrast
announce process failures and other membership changes by
submitting messages to E-Cast. The ability of applications to
run custom failure detection protocols and announce failures
through regular messages is an important feature. It obviates
the need for a complex membership protocol between E-Cast
and the application.

5.4 Application process algorithm

Pseudo-code for application processes is given in Algo-
rithm 1. We write [[X]] to refer to line number X.

When a user submits a message m [[5]] to an application
process a, that message is first buffered in a’s send win-
dow W [[6]]. Periodically, the contents of that window are
sent—in submission order—to some router (any router is
safe) [[16–18]]. Eventually, the routers will forward m to all
its destination processes, which will eventually deliver and
confirm the message [[14]], or fail.

By definition, a message becomes stable once it has been
delivered by all correct (non-failed) destination processes.
Routers collect confirmations to detect when the message m
is stable. Once m is stable, the routers inform the submitter of
m, process a, by sending it a protocol message 〈“stable,” m〉.
Upon receiving the latter [[7]], a acknowledges successful
delivery to the user and removes m from the send window
[[8–9]].

Every message m has a unique timestamp t , representing
its position in the global history of messages, as decided by
the routers. Application processes deliver messages strictly
in timestamp order [[11–13]]. Any incoming message is
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Algorithm 2: Router Process
state variables1

Q ← 〈〉 ; /* learned m-seq */2
W ← 〈〉 ; /* send window (queue of learned, unstable3
msgs) */
C ← 〈〉 ; /* map of msgs to destination procs that have not4
yet confirmed and are not suspects */

5 /* send/receive means quasi-reliable FIFO unicast */
/* propose/learn means FIFO atomic broadcast */

upon receive 〈“route”, m〉 do6
if m not stable then7

propose 〈“route”, m〉 to all routers8
else9

send 〈“stable”,id(m)〉 to submitter(m)10

upon receive 〈“confirm”,id(m)〉 from app. proc. a do11
if C[m] exists then C[m] ← C[m]\{a}12

upon learn 〈“route”, m〉 from some router do13
if m not in Q then append m to Q and W14

upon learn 〈“stable”,id(m)〉 from some router do15
remove m from W and remember m as stable16

periodically if self is leader then17
foreach m ∈ W , in order, where C[m] not exists do18

C[m] ← destsetpfx(Q,m) \ suspects(Q)19
t ← the position of m in Q20
foreach a ∈ C[m] do21

send 〈“deliver”, m, t〉 to a22

periodically foreach m where C[m] exists do23
C[m] ← C[m] \ suspects(Q)24
if C[m] = {} then25

propose 〈“stable”,id(m)〉 to all routers26
destroy C[m]27

either delivered or discarded immediately. Nonetheless, E-
Cast guarantees gap-free (loss-less) message delivery.

The reason is that when a message with timestamp t
is received, the receiver is guaranteed to have previously
received any message with timestamp t ′ < t . This holds
because of the following rule obeyed by all processes: when
sending a message to some process, first send any preceding,
unstable message. And since the network channels are quasi-
reliable FIFO channels, application processes do not have to
wait for messages to become stable before sending subse-
quent messages. This feature is critical for high throughput.

Some important optimizations are missing from the
pseudo-code for simplicity. Notably, an application process
a need not resend any message m to a router r , if a had sent
m to r before. So to avoid wasting bandwidth, an application
process should keep track of which messages have been sent
and only choose a new router if it believes that its current
router has failed.

5.5 Router process algorithm

Pseudo-code for router processes is given in Algorithm 2. We
write “m-seq” as an abbreviation for “sequence” or “queue

of messages.” It is the main task of routers to ensure that
messages are delivered in some global, total order. To this
end, each router maintains an active replica of an m-seq Q,
which represents the global history of messages and their
order.

When a router receives a message m which is not known
to be stable, it proposes the message. That is, it atomically
broadcasts m to all routers, including itself [[8]]. When the
router later learns m [[13]], it appends m to its m-seq Q and
send window W . By the definition of atomic broadcast, all
routers learn the same messages in the same order, regardless
of failures. Hence, there is agreement on Q and a global
timestamp for each message in Q [[20]].

Routers not only order messages, but also ensure uniform
delivery. That is, every correct (non-failed) process in the
destination set of a message m shall deliver m. To this end,
the lead router (see below) periodically sends all messages in
its send window to their respective destination sets [[22]], as
determined by the application-defined destination function:
destsetpfx [[19]].

Once all application processes in the destination set of
a message m have confirmed m [[12]] or have become sus-
pects (failed) [[24]], m is proposed stable via atomic broad-
cast [[26]]. Eventually, every router learns that the message
m is stable, and m is removed from everyone’s send window
[[15]]. Like application processes, routers can handle an arbi-
trary number of pending (unstable) messages. As a result,
E-Cast can achieve very high throughput, independent of the
network latency.

One aspect that may be surprising is that routers treat mes-
sages as stable even if every destination is a suspect [[25]].
The idea is that if this is relevant to the submitter of a mes-
sage, the application can easily inform it by defining the rout-
ing function in a way that delivers it (or some management
process) the previous message(s) that caused all destinations
to be suspects.

To keep the pseudo-code concise, we do not show how
routers remember and later identify messages as stable [[16]].
Our implementation uses per-sender sequence numbers (not
to be confused with the global timestamps). Routers main-
tain a high watermark of sequence numbers for the stable
messages of each unsuspected application process. To check
whether a message is stable, a router simply compares the
message’s sequence number to the sender’s watermark.

For efficiency, only one router (the leader) forwards
each message to its destination set. Given an atomic broad-
cast protocol between routers, leader election is easy to
implement. However, leader election is purely an optimiza-
tion. Any router may safely consider itself a leader at any
time.

The pseudo-code omits some other optimizations. For
instance, a router need not repropose a message m which is
already in Q when m is received. Further, to avoid applica-
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tion processes having to repeat “route”-messages in order to
receive a “stable”-message, a router process can safely send
a message 〈“stable,” id(m)〉 to the application process that
submitted m, as soon as the router learns 〈“stable,” id(m)〉.

A complete proof of correctness of E-Cast is provided in
the “Appendix.”

5.6 Implementation

E-Cast has been implemented in roughly 10,000 lines of
Erlang [5]. The Erlang process and distribution model
matches our formal model, so Erlang was a natural choice.
The codebase of the implementation is substantially larger
than the pseudo-code might suggest, because the implemen-
tation has to deal with many real-world issues such as fail-
ure detection, congestion control, and distributed garbage
collection. We can only provide a high-level overview
here. A much more detailed account is available elsewhere
[73].

Figure 4 visualizes the implementation stack. Proceed-
ing bottom-up in the stack, TCP is abstracted away by
the Erlang process and channel model. Erlang nodes com-
municate through asynchronous FIFO channels. We added
sequence numbers where necessary to make these channels
fully reliable. Using reliable FIFO channels, we have imple-
mented an asynchronous (heavily pipelined), reconfigurable
variant of Multi-Paxos [62], a protocol for solving a sequence
of consensus problems.

This Multi-Paxos variant is used for uniform FIFO atomic
broadcast (ufabcast). Ufabcast in turn is used to replicate
router processes; more precisely, ufabcast is used to repli-
cate a common sequence of routed messages, i.e., m-seq,
between router processes, see Algorithm 2. Conceptually, the
destination function takes this m-seq as input at every step.
Implementing this directly would require unbounded mem-
ory and would be very inefficient, however. So, instead, in our
implementation, applications (such as Rubberband) plug a
user-defined Configmodule into the routers. The Config
module defines apply, destset, and suspects func-
tions over config objects and messages. Routers maintain a
sequence of config objects, created by successively applying
learned messages to the latest config.

TCP

Erlang Channels

Heartbeat

ufabcast

Multi-Paxos

ConfigE-Cast

Fig. 4 E-cast implementation stack

Config objects can be seen as checkpoints of the routing
configuration, as determined by the m-seq they represent.
Routers only ever store distinct Config objects, so there
is no space overhead if the configuration does not change.
Config objects are garbage-collected when all messages that
rely on them for routing have become stable. For a concrete
Config module, see Sect. 6.3.

Dynamic router membership is implemented in a man-
ner roughly similar to Zab [51]. Routers can join and leave
the system at any time. They form a reconfigurable state
machine, see Sect. 4.3. To detect router failures and also
for garbage collection of stable Paxos instances, ufabcast
uses a simple heartbeat protocol. A crashed router can be
replaced in a matter of seconds, as demonstrated in the
experimental evaluation. This is a very useful property when
building highly available, long-running systems in a cloud
environment.

So, while router membership is implemented on the level
of ufabcast, application membership is determined by the
sequence of messages routed through E-Cast. The two are
wholly independent. But in both cases, there is no static con-
figuration and no disk-based recovery (though this could be
added for disaster tolerance).

6 Rubberband

In this section, we present Rubberband, a novel framework
for elastic data stores with strong consistency. Rubberband
relies on E-Cast for reliable, ordered message transfer. In
doing so, it can offer atomic queries and updates with arbi-
trary combinations of key and non-key predicates. In con-
trast to related systems (cf. Sect. 4.1), Rubberband even
allows updates without key predicates. This enables Cres-
cando/RB to scale to a large set of storage processes without
restricting the query and data model of Crescando. In brief,
Rubberband

– delivers writes uniformly, in causal total order (yields
sequential consistency [33]);

– is completely wait-free (clients can safely submit a high-
rate stream of reads and writes without waiting for con-
firmations);

– elastically scales to many storage processes;
– allows data stores to be continuously available, even dur-

ing reconfiguration (data repartitioning);
– tolerates permanent, silent failure of any process;
– does not require stable storage (disks), perfect failure

detectors, or real-time clocks.

In this paper, we present the results of Rubberband over
Crescando (forming Crescando/RB), but we have also built
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a prototype of Rubberband over Memcached, a popular key-
value engine [35].

6.1 Process types

Rubberband defines and implements the following three
types of processes, each of which is also an E-Cast appli-
cation process.

Client Processes submit read and write messages.
Depending on the type of message and the chosen isola-
tion level (cf. Sect. 6.7), an individual read or write may
be transmitted through E-Cast, or sent directly to one or
more storage processes.
Storage Processes each store a partition of application
data, as explained below. Delivered read and write mes-
sages are forwarded to the storage engine (Crescando)
in an order that preserves consistency. Conversely, result
tuples emitted by the storage engine are streamed back
directly to the respective client process, which in turn
delivers them to the user.
Super Processes submit configuration messages on behalf
of users. Configuration messages change the mapping
of keys to storage processes, as explained in Sect. 6.4.
Super processes maintain a replica of the latest system
configuration (set of processes and mapping of keyspace
partitions to storage processes). Super processes are also
responsible for failure detection of client, storage, and
super processes.

Recall Fig. 2 on page 4 for an exemplary instantiation of
Rubberband that shows all types of processes.

6.2 Data placement

Rubberband dynamically partitions the data along a user-
defined key domain, using a consistent hashing scheme pop-
ularized by Chord [70]. Unlike in Chord, however, mes-
sages are not dynamically routed along the ring. Instead,
(most) messages are transmitted through the E-Cast router
processes.

Storage processes are arranged in a logical ring. Each stor-
age process is assigned a unique key called its identifier (ID).
The ID determines a process’ position on the ring. If a process
s is assigned the ID k and its (in key order) successor s′ is
assigned the ID k′, then s holds the primary replica of all data
objects with key greater-or-equal k and less-than k′. We call
this range of keys the primary partition of s.

In order to tolerate permanent process failures, Rubber-
band uses successor replication [52]. This scheme is widely
used in other NoSQL data stores, including Dynamo [27] and
Cassandra [53].

Fig. 5 Successor replication

A replication factor of f means the f − −1 successors
of a process s on the ring hold a replica of every object in
s’s primary partition. The resulting union of key ranges is
called the partition of a process. Because partitions of suc-
cessive processes overlap, it requires the correlated failure of
f successive processes for data loss to occur. An example
for replication factors f = 1 and f = 3 is shown in Fig. 5.
Users can choose an arbitrary replication factor at system ini-
tialization. The replication factor becomes fixed and applies
to the entire system, though this could easily be generalized.

Rubberband performs read-one-write-all (ROWA) repli-
cation. Thus, for a replication factor of f , a point read is
served by 1 storage process, and a point write is served by f
storage processes. In general, every range read is processed
by a minimal set of storage processes whose union of par-
titions fully covers the queried range. Every range write is
processed by every storage process whose partition overlaps
with the written range.

To extract the target key or key range(s) from a given
read or write message, Rubberband calls a user-defined call-
back function. By providing a function that does hashing,
applications can perform hash partitioning instead of range
partitioning when desired.

The combination of successor replication and ROWA is
unusual; symmetric replication [52] and quorum reads being
more common in related systems. Successor replication was
chosen over symmetric replication, because every process
here covers a single, consecutive range of keys (with wrap-
around at key 0). Thus, even a large range query in Cres-
cando/RB can usually be mapped to a single range query
in the Crescando engine of every target process. And as
explained in Sect. 6.5, quorum reads perform poorly for range
queries due to the necessary duplicate matching.

6.3 Message routing with E-cast

Rubberband defines a variety of message types. The two main
types of messages are data messages and configuration mes-
sages. Every data message is either a read message or a write
message.

A configuration message is either a membership message
or a keyspace message. A membership message changes the
set of client, storage, or super processes that are consid-
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Algorithm 3: Rubberband Config Module Sketch

function apply(m, c) begin
if m is a configuration message and sender of m is an
unsuspected process then

update (side-effect free) the config c and return the
new config

else
return the original config c

end
function destset(m, c) begin

if sender of m is an unsuspected process then
if m is a data message then

p← the set of key ranges (partition) read or
written by m
if m is a read message then

(deterministically) find and return a set of
unparted, unsuspected storage processes
in c whose union of partitions fully covers p

else m is a write message
find and return the set of all unparted,
unsuspected storage processes in c whose
partitions overlap with p

else m is a configuration message
return the union of the set of all super
processes in c, and the set of all unsuspected
client and storage processes in c that are
affected by m

else
return {}

end
function suspects(m) begin

if sender of m is an unsuspected process then
return the set of all processes suspected by m

else
return {}

end

ered part of the system, while keyspace messages change
the mapping of keyspace IDs to storage processes. The dif-
ferent membership and keyspace messages and their effects
are explained in Sect. 6.4.

With the exception of low-isolation reads (cf. Sect. 6.7), all
messages are transmitted through E-Cast. As explained pre-
viously, each router process maintains a local m-seq object.
Whenever a router process learns a new message, it appends
it to its local m-seq object. An m-seq object internally main-
tains a sequence of config objects, created by successively
applying the appended messages to the latest config. When
all messages pertaining to a specific config have become sta-
ble, that config is no longer needed and is garbage-collected.

In the case of Rubberband, a config object consists of a
set of client process references, super process references,
and a mapping of keyspace identifiers to storage process
references. E-Cast requires Config modules to define
the following callback functions: destset, apply, and
suspects. The Rubberband Config module and the
implementation of these callback functions are sketched in
Algorithm 3.

The destset function computes the destination set of
data messages in read-one-write-all (ROWA) manner. The
destination set of a configuration message is simply the set
of all affected processes, which always includes the set of
super processes, since these must maintain a replica of the
current system configuration.

The apply function works as follows. Whenever a data
message is applied to a config object, it returns the original
config (reads and writes do not change the system config-
uration). But when a configuration message is applied, it
returns a new config which reflects the effect of the mes-
sage and may change the routing of subsequent messages.
For example, when a suspect message m is applied such
that suspects(m) = {s} where s is some storage process in
the keyspace, then Rubberband will stop routing subsequent
read messages to s and instead use the neighbors of s on the
keyspace, which hold replicas of the data partition assigned
to s.

The suspects function informs E-Cast of failed appli-
cation processes. Messages sent by suspected processes have
no effect, which ensures that suspected processes cannot
corrupt the system state. The concrete implementation of
the config module does not remember which processes are
suspected (there may be many in a long-lived system), but
instead remembers which unsuspected processes are cur-
rently part of the system.

Note that the destset function must be deterministic to
ensure agreement on the destination set of a message across
multiple router processes. In the case of read messages, there
are typically many possible, correct destination sets due to
multiple replicas being available for each data object. A naïve
solution is to always choose the replica with the lowest iden-
tifier, but this would lead to poor load balance. As a better
solution, Rubberband client processes tag every read mes-
sage with a random replica offset. This offset determines
which storage process to choose in every replication group.

6.4 Asynchronous reconfiguration

There are two types of configuration messages: membership
and keyspace messages. Membership messages change the
set of application processes that are considered part of the
system; for example, a storage join message adds a (standby)
storage process to the system. Keyspace messages change the
assignment of identifiers to processes, and thereby the place-
ment of the data. Rubberband defines four types of keyspace
messages:

Expand Assign an ID to a standby storage process, which
upon delivery of the message becomes active.
Contract Contract the keyspace by removing an active
storage process from it.
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Fig. 6 System reconfiguration: keyspace expansion

Replace Replace an active storage process with a standby
storage process, assigning the same ID to it.
Rebalance Assign a different ID to an active storage
process, thereby rebalancing the keyspace.

Expand and contract messages alone would be sufficient to
perform any keyspace transformation. Replace and rebalance
messages have been added to lower the number of reconfig-
uration steps and thus the amount of data shuffling for these
frequent transformations.

Keyspace messages contain a list of instructions, each of
which tells a specific storage process to copy, receive, or
delete some partition of data. These instruction lists are cre-
ated by the super process which submits the configuration
message. This is because for a given keyspace transforma-
tion, there can be multiple correct instruction lists, and choos-
ing the “best” of these is a non-trivial optimization problem,
discussed in Sect. 6.5.

Consider Fig. 6 for an example with replication factor
f = 3. On the left, a part of a larger (irrelevant) keyspace is
shown, containing 4 storage processes a, b, c, and d, which
have been assigned the IDs 20, 30, 40, and 50, respectively.
A user has requested to expand the keyspace (elastic scale-
out), assigning ID 35 to storage process e. On the right, the
keyspace after the transformation is shown. Process e now
holds the partition {[20, 40)}, and the partitions of b, c, and
d have shrunk. Consequently, e needs to receive copies of all
data objects in the partition {[20, 40)}, and b, c, and d need
to delete part of their data. One possible list of instructions to
that effect is this (the notation should be self-explanatory):

〈copy, b, e, {[20, 40)}〉
〈delete, b, {[35, 40)}〉
〈delete, c, {[20, 30)}〉
〈delete, d, {[30, 35)}〉

When a storage process receives a keyspace message, it
projects out the instructions which concern itself and passes
them on to the storage engine (Crescando) for execution.
In the example, storage process b passes 〈〈send, e, {[20,

40)}〉, 〈delete, {[35, 40)}〉〉 to its storage engine. Process e
passes 〈receive, b, {[20, 40)}〉. The engines of b and e then

shuffle the data through direct connections (not E-Cast). We
call the act of shuffling data in this manner partial live migra-
tion [7].

Data consistency relies on every storage engine executing
its instructions atomically, in the same total order, also with
respect to read and write messages that are delivered before
and after partial live migration. We emphasize that it is not
necessary to stop the system during reconfiguration. Cres-
cando/RB never waits. Messages (reads, writes, reconfigu-
rations) can be submitted at any point and will be promptly
delivered and executed. An arbitrarily long sequence of con-
figuration messages can be submitted before even the first
reconfiguration has been completed.4

The fact that E-Cast and Rubberband do not wait dur-
ing reconfiguration (messages keep being delivered) enables
asynchronous reconfiguration; that is, processes not involved
in partial live migration are not impacted by it. As long
as there is at least one available process for each key in
the keyspace, the entire keyspace can be read and written.
This allows Crescando/RB to scale elastically and to provide
continuous availability, despite its very strong consistency
model.

6.5 Reconfiguration as an optimization problem

The downside of this approach is that there is no safety net
in the case that partial live migration fails. If the sender of
a data partition crashes before the transmission is complete,
the receiver is left in an incomplete state. All other replicas
may have already been updated, so the receiver must declare
itself failed as well.

In principle, this problem can be mitigated by giving stor-
age processes the ability to time travel; that is, the ability to
recover to a previous state. But time travel is an expensive
feature that is not supported by all storage engines, includ-
ing Crescando. So instead, we treat reconfiguration as an
optimization problem where the optimization metric is the
probability of data loss.

While there is a wide range of literature on data and load
balancing in NoSQL data stores, we are not aware of any prior
work which treats shuffling a large amount of data atomically
as an optimization problem by itself. We believe this is due to
two main facts. First, most systems hash partition data over
virtual processes (assigning many different, virtual IDs to a

4 There is one small caveat. Since the instruction list is created by
the super process submitting a keyspace message, correctness relies on
the fact that the configuration does not change concurrently, from the
point where the super process submits a keyspace message to the point
where the message is delivered. Rubberband solves the problem by
timestamping every keyspace message with the configuration version
at the point where the message is created. In the (rare) case where the
configuration has changed concurrently, a conflict is detected and the
keyspace message has no effect.

123



640 P. Unterbrunner et al.

single physical machine [27,70]). Consequently, adding or
removing a physical machine generates less of a hot spot than
in range repartitioning. Second, most NoSQL data stores are
not designed for large range queries or multi-key updates. A
solution to data shuffling based on multi-version read quo-
rums and anti-entropy is more appropriate in that context
[27,29,53].

Generally speaking, the problem of atomically shuffling
large partitions of data among a small set of processes man-
ifests in the context of elastic range partitioning with strong
consistency. Besides Crescando/RB, only Scalaris [68] and
ecStore [77] even support this combination to the best of our
knowledge.

We are not aware of any data on Scalaris’ or ecStore’s
availability and performance during repartitioning. However,
both systems use multi-version quorum reads and writes.
Thus, they remain available only as long as there is a quo-
rum (majority) of processes available in every replication
group. (Available here means “able to serve requests,” not
just “responds to ping.”) Multi-version quorum reads also
become very expensive for large reads, due to the neces-
sary duplicate matching. In contrast, Crescando/RB remains
available with only a single process in each replication group;
there is no need for duplicate matching, and the Crescando
engine is specifically designed for large reads and writes.

Returning to Rubberband, every keyspace message con-
tains a list of instructions for the affected storage processes.
But depending on the replication factor, many different
instruction lists are possible. Let us revisit the reconfigu-
ration example discussed previously (Fig. 6). Assume now
that at the point the transformation is requested, process d
has been declared failed (through an earlier message). It is
still in the keyspace, but is unable to participate in partial live
migration. Figure 7 shows two of the remaining solutions.

In Solution 1, process c is chosen to send partition
{[20, 30)} to the new process e. Failure of c during trans-
mission would then leave c, d, and e in a failed state. As

Fig. 7 Transitive failures during partial live migration

explained previously, for a replication factor of f , the fail-
ure of f successive storage processes causes data loss. In
the example, b may already have deleted {[35, 40)} to reflect
the new data placement, so the data objects in {[35, 40)} are
lost. In contrast, if process b is chosen to copy {[20, 30)}
to e (Solution 2), then the additional failure of any single
process cannot cause data loss. For any failure case, at least
one process is live in every replication group. Solution 2 is
thus preferable.

The example is relatively simple, but things get compli-
cated for higher replication factors and particularly for con-
tract messages, where multiple storage processes need to
receive data. There can be chains of dependencies between
processes, so the failure of a single process can cause a whole
chain of processes to fail transitively.

Rubberband models each possible solution as a directed
graph, with an edge connecting every pair of 〈sender,
receiver〉 processes involved in partial live migration. When
a super process is asked to issue a keyspace message, it first
enumerates all minimal5 solutions that achieve the desired
keyspace transformation. For practical replication factors
( f ≤ 5), the number of minimal solutions is small enough
for full enumeration.

The super process then simulates all possible single
process failures by flooding the different solution graphs.
Based on this simulation, the solutions are ranked. Put sim-
ply, the optimizer picks the solution which for any addi-
tional single process failure leaves the smallest number of
(transitively) failed processes in any group of f successive
processes. That is, a solution that has 3 groups with 2 failed
processes each is preferred over a solution with 1 group with
3 failed processes.

The ranking favors solutions that involve the smallest
number of processes of any individual replication group.
In particular, it avoids solutions that involve all storage
processes of a replication group. Besides improved fault tol-
erance, this has another positive effect. Whenever possible,
there is at least one storage process per replication group that
is not busy with partial live migration. That process is able to
execute reads and writes, leaving the system fully available.

6.6 Consistency versus robustness versus scalability

As explained in Sect. 5.1, strong consistency requires agree-
ment on a partial execution order covering every pair of con-
flicting operations [33].

The related NoSQL data stores discussed in Sect. 4 create
the partial order on demand, during execution of queries and
updates, by distributed locking or by optimistic concurrency

5 A non-minimal solution is a super-graph of another solution. Such
solutions are not considered, because they are more susceptible to tran-
sitive process failures and thus more at risk of data loss.
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control schemes. This approach allows throughput to scale
linearly with the number of processes in the ideal case. How-
ever, throughput is also very sensitive to conflicts. The rea-
son is that the approach couples transaction execution with
conflict resolution, which results in multi-phase protocols
(atomic commit), high concurrency control overhead, and
consequently low per-process parallelism and throughput.

Crescando is a scan-only engine. Both queries and updates
are performed by parallel, heavily shared scans. While a
Crescando instance can serve thousands of operations per
second, individual operations have a turn-around time of one
or more seconds. This design excels on workloads with an
inherently large number of conflicts and need for full-table
scans, such as the flight reservation workload of our use case
(Sect. 2).

However, the “on-demand” approach to concurrency con-
trol followed by related systems is poised to fail in the context
of full-table scans with many conflicts. So, instead, in Cres-
cando/RB, we rely on E-Cast to deliver read and write mes-
sages uniformly, in causal total order. The individual storage
processes then only have to execute operations in (the equiv-
alent of) delivery order to make the resulting system sequen-
tially consistent. The E-Cast protocol makes no attempt to
detect conflicts and construct a minimal partial order. Instead,
consistency is derived from the fact that all operations—
conflicting or not—are brought into a total order. The down-
side of this approach is an upper limit on write throughput;
the E-Cast protocol forms a so-called consensus bottleneck.

This design for the worst case wastes resources if the
overwhelming majority of operations would not need to be
ordered. But it is consistent with the design of the Crescando
storage engine; in that, users are given strong, clear, and pre-
dictable performance guarantees. In fact, our experimental
results show that Crescando/RB can reach 20,000 consis-
tent reads and writes per second. This is 10× the load on
the Wikipedia back-end [68], and about 20× the load of our
heaviest use case. In short, for many applications, E-Cast is
not a bottleneck.

That being said, there is a way to scale our approach with
the number of processes for workloads that predominantly
consist of single-key operations. The idea is to categorize
reads and writes into single-key and multi-key operations.
For sequential consistency, it is then sufficient to reach agree-
ment on (i) a global execution order of all multi-key oper-
ations, (ii) one execution order for every set of single-key
operations with the same key, and (iii) an interleaving of
every individual single-key order with the global multi-key
order.

Single-key operations need not go through E-Cast to
achieve this, but can be sent directly to the affected replica-
tion groups, which order them locally. We propose a variant
of chain replication for this [76]. The resulting system can be
expected to scale linearly with the single-key load. Because

performance of E-Cast is sufficient as-is, we have not yet
implemented this extension, but a protocol sketch along with
proofs of the central theorems is given in Unterbrunner [73].

6.7 Read isolation levels

Rubberband allows clients to trade read consistency for per-
formance and scalability. This is useful; for example, for
analytic queries which tolerate approximate answers. Such
queries are common in our use case and other operational
business intelligence workloads. We have currently imple-
mented three levels of read isolation, which users can choose
from for every individual read.

Sequential Read Every sequential read sees a globally
consistent snapshot, which is more recent than any snap-
shot seen by any preceding sequential read by the same
client, and reflects the effects of any preceding write by
the client, but not the effects of any successive write by
the client. This guarantees sequential consistency [33]
with respect to sequential reads, hence the name.
Snapshot Read Snapshot reads are brought into total
order with respect to writes. Thus, snapshot reads see
a globally consistent snapshot of the data. No guarantees
concerning the specific snapshot version with respect to
operations submitted before and after are given though
(i.e., no causal order).
Basic Read Basic reads scale linearly with the number of
storage processes. However, multi-key basic reads may
see partial effects of concurrent writes.

Sequential reads are sent through E-Cast like any other
message. In contrast, snapshot reads use a protocol shortcut.
Every snapshot read is sent to (what the client believes is)
the current lead router, which timestamps and injects it into
the sequence of writes it forwards, but without atomically
broadcasting the read to other routers. Delivery is not guar-
anteed (no uniformity) in case if the router crashes or is not
the lead router, but the timestamp is used to guarantee that a
consistent snapshot is returned if successful.

Basic reads are sent directly to the destination processes,
so there is no protocol bottleneck. Clients attach the configu-
ration (version) they expect every destination to be in. When
a process receives a basic read, it checks whether the con-
figuration matches (i.e., there has been no concurrent recon-
figuration). In this case, it executes the read; otherwise, it
rejects it. Thus, any successful basic read is executed by a
“correct” set of processes according to a single configuration.
A multi-key basic read that is executed by multiple storage
processes may see partial effects of concurrent writes, how-
ever, since individual storage processes may have executed
slightly different prefixes of the global write sequence at the
point where they execute the basic read.
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7 Experimental evaluation

In this section, we provide comprehensive experimental evi-
dence of the scalability, elasticity, and fault tolerance of Cres-
cando/RB.

We decided not to include a comparison with a baseline
system for the following reasons. Crescando/RB’s support
for arbitrary conjunctions of Boolean query and update pred-
icates (specifically, lack of key predicates) sets it functionally
apart from key-value stores and semi-relational data stores.
These systems simply cannot execute the queries and updates
we are interested in. Conversely, Crescando/RB, by design,
cannot match the latency and extreme scalability of these sys-
tems when simple key-value access is sufficient. Relational
database management systems on the other hand can execute
the queries and updates that Crescando/RB was designed for.
But, as we have shown before [74], performance is poor and
highly unpredictable.

7.1 Platform

Except for some experiments on Amazon EC2, all experi-
ments were conducted on a private cluster of 30 dual Intel
Xeon L5520 2.26 GHz (i.e., 2×4-core) machines with 24
GB RAM, connected through 1 Gbit Ethernet. The machines
were running Linux, kernel version 2.6.32. Crescando/RB
was running on Erlang/OTP6 R14B02. Crescando/RB and
the OTP libraries were compiled to native code, using the
High-Performance Erlang Compiler (HiPE) [50]. The Cres-
cando storage engine, written in C++, was compiled into a
stand-alone executable using GCC 4.6.1. Crescando/RB stor-
age processes communicated with their Crescando engine
instances via Unix pipes (called ports in Erlang parlance).

7.2 Workload and configuration

Storage processes were loaded with Amadeus Ticket data
from our main use case (cf. Sect. 2). A Ticket table contains
flight booking information, one record per passenger on a
plane. Each record is about 350 Byte.

Unless otherwise indicated, experiments were run with 3
routers, 1 client, 1 super, and 16 storage processes. The data
were hash partitioned by rloc, a 6-character alphanumeric
string which uniquely identifies a travel booking (but there
are generally multiple Ticket records associated with one
rloc). For most of the experiments, each read or write mes-
sage contained a relational query (or update, respectively)
with a single equality predicate on rloc. Storage process iden-
tifiers were uniformly distributed over the rloc domain. Thus,
for a replication factor f , each read was delivered to 1 storage

6 OTP is the reference collection of Erlang virtual machine, standard
libraries, and tools.

process, and each write was delivered to f storage processes.
We also present results for range operations and range parti-
tioning.

Note that whenever we write transaction in this section,
we mean the system activity from the point where a client
submits a read or write message, to the point where the client
receives the confirmation that the operation has been exe-
cuted by all affected (and non-failed) storage processes. This
definition is not to be confused with ACID transactions in a
relational database.

7.3 Write scalability

First, we investigated how write throughput changes with
an increasing number of storage process. Each Crescando
engine instance was running a single scan thread and was
bulk-loaded with 2 GB of Ticket data. We measured write
throughput for 1 to 32 storage processes and replication fac-
tors f = 1, 3, 5, and n, where n is the number of storage
processes. In the case of f = n (full replication), every stor-
age process had to execute every single write, so E-Cast had
to atomically broadcast every write message. Figure 8 shows
the results. Each data point was averaged over 5 runs of at
least 3 min each. Error bars show the standard deviation.

For cases where n ≤ f , the data and workload was fully
replicated across all storage processes, so write throughput
was limited to that of a single storage process: 5,500 TPS.
For n > f , however, Rubberband was able to partition
the workload over the storage processes (multicasting every
write operation to exactly f processes). Since every storage
process contained a fixed amount of data, but had to handle a
reciprocally decreasing amount of transactions, throughput
increased linearly with the number of storage processes, up
to the point where the E-Cast routers became a bottleneck.
For f = 3, throughput plateaued at about 20,000 TPS and
12 storage processes.

The full-replication case ( f = n) is equivalent to the case
where write operations do not have predicates on the parti-
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tioning attribute, so that every storage process must execute
every write. It shows the throughput of Crescando/RB for
global write transactions under any replication factor. It also
shows the expected behavior of any naïve, broadcast-based
solution to replication (and thus the benefits of selective rout-
ing by E-Cast).

Global write throughput was hovering around 5,000 TPS
between 1 and 16 storage processes. For 32 processes, it
was still around 2,500 TPS. Note that in realistic workloads,
the majority of writes have a key predicate and need not be
broadcasted.

In summary, Crescando/RB easily meets our (write)
throughput requirements. For reference, the live Crescando
instance deployed by Amadeus currently sustains around
1,000 Write TPS. Should it ever become necessary, it is pos-
sible to scale throughput further, by treating single-key writes
differently, see Sect. 6.6.

7.4 Read scalability

We repeated the previous scalability experiment for a repli-
cation factor f = 3, measuring read throughput (instead of
write throughput) for each of the three isolation levels offered
by Crescando/RB: sequential, snapshot, and basic read. In
addition to hash partitioning the data by rloc (the default
used throughout the experiments section), we also investi-
gated random partitioning. Random partitioning represents
the “worst case” for any workload, where no operation car-
ries a predicate that matches the data partitioning.

7.4.1 Hash partitioning

Crescando/RB performs read-one-write-all replication
(ROWA). Consequently, for hash partitioning (Fig. 9, left
chart), throughput increased linearly with the number of
processes, up to the point where a protocol limit was hit. A
single storage process could handle 4,500 to 5,500 read trans-
actions per second (TPS). The system was able to scale up to
25,000 sequential read TPS or 110,000 snapshot read TPS.
Basic read throughput scaled linearly without hitting any bot-

tlenecks, since client processes send basic reads directly to
the destination storage processes.

7.4.2 Random partitioning

Under random partitioning, every read is necessarily global
and has to be executed by �n/ f 	 storage processes, where
n is the number of processes. In an ideal system (with no
networking cost), throughput would plateau at f ∗ t for n ≥
f , where t is the throughput per storage process. Figure 9
shows that Crescando/RB remains close to this upper limit
(the dashed line) for basic and snapshot reads. For sequential
reads, throughput begins to drop off noticeably for n ≥ 21.

7.5 Range reads and range writes

A key feature of Crescando/RB is its support for range oper-
ations. Under range partitioning, Rubberband ensures that
range operations are multicasted to a minimal set of storage
processes. We verified this as follows.

We range partitioned the data by dateOut (departure date).
To avoid load imbalance and keep the results interpretable,
we replaced the original dateOut column with one that is
uniformly distributed. In addition to an equality predicate on
rloc (which is useless for purposes of restricting the desti-
nation set of messages), we gave every read or write opera-
tion a range predicate on dateOut. We then loaded 32 storage
processes with 2 GB Ticket data each and measured through-
put for a varying range predicate coverage c; that is, fraction
of the dateOut domain covered by each predicate.

Figure 10 shows the results for range writes and range
reads at all three isolation levels. For c = 0, each read is exe-
cuted by exactly 1 storage process, and each write is executed
by exactly f = 3 storage processes. Consequently, perfor-
mance is similar to that of hash partitioning with matching
equality predicates (Fig. 9, left chart). Conversely, for c = 1,
each read is executed by �n/ f 	 = �32/3	 = 11 storage
processes, and each write is executed by all n = 32 storage
processes. Performance is similar to that of random parti-
tioning (Fig. 9, right chart). For any 0 < c < 1, Rubberband
ensures that E-Cast routes each read or write message to the

Fig. 9 Read throughput: f = 3,
3 router, 16 client, vary storage,
vary isolation, vary partitioning
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minimal set of storage processes to cover the range predicate,
and throughput indeed degrades gracefully.

Note that for real workloads, range predicates typically
cover a small fraction of the domain. Thus, Crescando/RB
can provide good performance in the common case, without
falling off a performance cliff when operations occasionally
have large range predicates or do not match the chosen par-
titioning at all.

7.6 Elasticity

Another key feature of Crescando/RB is its ability to scale
elastically; that is, the ability to change the mapping of identi-
fiers to storage processes (and thus the data placement) with-
out loss of consistency or availability. To test this, we loaded
a single Crescando/RB storage process with 16 GB of data.
We then added another storage process every 5 min, always
expanding the keyspace, up to a total of 16 processes, each
running on a separate machine. The replication factor was set
to f = 3. (Thus, for 16 storage processes, each process was
holding roughly 3 GB data.) We then removed one storage
process every 5 min, always contracting the keyspace, until
the system was scaled back to just 1 storage process holding
all the data.

7.6.1 Throughput

The experiment was repeated four times while measuring
throughput at a 1-s sampling interval; one iteration using a

pure write workload, and one more iteration for each read
isolation level. We used 16 client processes spread over 4
machines to make sure the system was saturated. Figure 11
shows the resulting traces.

The step shape of the traces is an artifact of (the lack of)
load balancing. To keep the experiment simple, we had cho-
sen not to rebalance the keyspace after each process addition
or removal. Only in case of 1, 2, 4, 8, and 16 processes was
the load perfectly balanced.

Throughput scaled elastically as storage processes were
added or removed. For each type of workload or isolation
level, the corresponding trace shows the same throughput
limits reported previously. Note that in contrast to the read
and write scalability experiments, each Crescando instance
here was given all 8 cores of the respective machine to run on.
Therefore, the throughput for 1 storage process was similar
to the previous experiments, despite the larger data volume
(16 GB on 8 cores as opposed to 2 GB on 1 core).

In all four traces, one can see a brief dip in throughput
every 5 min, at the point where the keyspace was expanded
or contracted. The longest dips appear where the system was
scaled from 1 to 2 storage processes. At this point, the first
storage process had to copy all 16 GB of data to the sec-
ond process. Copying 16 GB required roughly 160 s (i.e.,
the 1 Gbit network was saturated). As more processes were
added, less data had to be shuffled each time, and the dips in
throughput became less pronounced.

7.6.2 Transaction duration

We repeated the experiment a few more times, but measur-
ing transaction duration (“latency”) for a fixed background
workload of 2,000 write TPS. Figures 12 and 13 show latency
scatter-plots for writes and snapshot reads, respectively (sam-
pling interval 10 s). In each figure, the left chart shows the
range between 0 and 180 s of latency, while the right chart
zooms in on the range between 0 and 4 s. The data underlying
each pair of charts are identical. We performed the experi-
ment also for sequential reads and basic reads, but the results
did not differ much from those of snapshot reads. We thus
omit those charts.
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The vast majority of transactions completed within 1.75 s
for 1 storage process, down to 0.75 s for 16 storage processes.
E-Cast needs only a few milliseconds to reliably deliver mes-
sages, see Sect. 7.9. Latency was thus dominated by the time
required by Crescando to scan the data. Note that a through-
put of 2,000 write TPS and a transaction duration of 0.75–
1.75 s means that up to 3,500 write operations were being
processed in parallel at any given moment.

During reconfiguration, some transactions were active for
significantly longer periods of time (up to 160 s), because
processes were busy with partial live migration. In the case
of snapshot reads (or any other read), transactions were very
rarely delayed. The reason is that for f = 3, there was almost
always one replica that was not busy, and Rubberband auto-
matically forwards reads to non-busy replicas whenever pos-
sible.

In all our experiments, we considered a transaction com-
plete only after every affected process had executed it. Con-
sequently, the measured write duration became very long
during reconfiguration. But as explained in Sect. 6.4, it is
quite irrelevant when the last storage process executes a given
write. As soon as E-Cast acknowledges that a write message
is stable (which requires just a few milliseconds), the write
is guaranteed to be durable.

Moreover, the effects of a write can be seen much sooner
than when the last storage process executes it. It is sufficient
that a single (non-busy) storage process executes the write,
since Rubberband forwards subsequent reads to non-busy
processes. It follows that Crescando/RB is able to remain

fully available during reconfiguration, provided a sufficient
degree of replication.

7.6.3 Elasticity on EC2

We repeated the elasticity experiments on 20 Amazon EC2
instances of type cc1.4xlarge. Each of these instances
had 23 GB of memory, 2 Intel Xeon X5570 2.93 GHz, quad-
core CPUs with hyper-threading, and a 10 Gbit Ethernet
interface. 1 EC2 instance was running the client process, and
3 EC2 instances were each running 1 router process. The
remaining 16 EC2 instances were each running 1 storage
process.

The throughput trace did not differ much from that pro-
duced by our lab cluster, so we omit it here. Despite the
higher clock rate of the EC2 machines (2.93 GHz as opposed
to 2.26 GHz), throughput per storage process was identical
to our lab cluster. This can be attributed to the overhead of
virtualization on EC2. Peak system throughput on EC2 was
lower, however, at 15,000 write TPS as opposed to 20,000
write TPS. Again, much of that may be due to virtualization,
but part of it can also be attributed to the increased network
latency and variance, which resulted in a larger number of
in-transit messages, which in turn put slightly more load on
the (compute-bound) router processes.

The latency trace (also omitted) was also very similar
to that produced by our lab cluster. The additional network
latency and variance on EC2 were unnoticeable, since trans-
action duration was dominated by Crescando’s data scans.
However, copying all 16 GB of data to a newly launched
storage process required just over 100 s on EC2 as opposed
to 160 s on our lab cluster. On EC2, Crescando engines were
shuffling data at a rate of around 160 MB/s. The reason is that
the EC2 instances had 10 Gbit network interfaces as opposed
to our 1 Gbit lab network.

In summary, Crescando/RB shuffles data at a rate that sat-
urates a 1 Gbit network. The system remains available during
this period, assuming a sufficient replication factor. Through-
put and latency promptly stabilize after each reconfiguration.
The system also works well in a public cloud. Increased net-
work latency and variance do not have a serious effect on
performance.

7.7 Tolerance to storage process failures

Next, we investigated how Crescando/RB behaves in case
of storage process failures. To this end, we started 6 storage
processes and loaded them with 12 GB of data in total. The
replication factor was again set to f = 3, so each storage
process was holding about 6 GB of data.

We first measured how snapshot read throughput changed
under different failure scenarios. As Fig. 14 shows, the
system originally sustained just over 40,000 TPS. After
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10 min, one storage process was killed. Some partition of
the keyspace was now covered by just 2 rather than 3 repli-
cas. Consequently, throughput dropped to just under 30,000
TPS.

The failed storage process was replaced 5 min later. While
the replacement storage process was receiving data, through-
put dropped some more. However, the system remained avail-
able, and after just 1 min (required to copy 6 GB of data),
throughput went back to the original 40,000 TPS.

Twenty minutes into the experiment, 2 storage processes
were killed at the same time. Throughput dropped to about
25,000 TPS. After 25 mins, one of the failed processes was
replaced. At that point, all storage processes of one of the
replication groups had either failed or were busy with par-
tial live migration. As a result, throughput briefly dropped to
zero. After 1 min, one of the failed storage processes was suc-
cessfully replaced, and throughput increased back to 30,000
TPS. Finally, after 30 min, the second failed process was
replaced, and throughput returned to the original 40,000 TPS.

Note that throughput was briefly higher after each recon-
figuration. This is because a number of pending operations
had queued up at the previously busy storage processes. The
corresponding Crescando engines could then operate at max-
imum efficiency while catching up with the rest of the system.

The experiment was repeated for a fixed background
workload of 8,000 Write TPS, while snapshot read latency
was being measured (5 s sampling interval). The results are
shown in Fig. 15. As before, the right chart merely zooms in

on the range between 0 and 4 s of latency. Both charts show
the same data.

The vast majority of reads was completed within 1 s.
Process failures had no visible effect on latency. The rea-
son is that the write load per process does not change as
long as the keyspace is not modified. The only latency spike
at minutes 25 to 26 shows that part of the keyspace was
briefly not available when the system was recovering from
the double-process failure.

In summary, throughput degrades gracefully when storage
processes fail. Crescando/RB remains available, even during
process replacement, assuming a sufficient replication fac-
tor. After process replacement, the system quickly stabilizes,
both in terms of throughput, and in terms of latency.

7.8 Tolerance to router process failures

An important remaining question is how well E-Cast can
tolerate router failures. Figure 16 shows a write throughput
trace ( f = 3) for various failure scenarios.

The trace starts with 3 router processes. After 30 s, the lead
router was crashed. By design, all client processes talk to the
lead router, so throughput immediately dropped to zero. The
heartbeat protocol used by routers was configured to declare
routers faulty after 3 s. Since there was uniform agreement
on the sequence of messages, and every router at any point
was ready to send those messages, there was no state to be
transferred after the router crash. Accordingly, E-Cast elected
a new lead router and resumed normal operation after exactly
3 s. Note that throughput after the failure was slightly higher
than before. The reason is that router replication becomes
cheaper for lower numbers of routers.

Sixty seconds into the experiment, the crashed router was
replaced and throughput went back to the original number,
and 90 s into the experiment, a follower router (i.e., not the
leader) was crashed. Shortly thereafter, E-Cast stopped trans-
mitting messages. This is because E-Cast ensures that no
router falls behind too far in processing messages. After 3 s
however, the routers reached agreement on the new member-
ship, the failed router was removed from the system, and the
remaining routers resumed normal operation, and 120 s into

Fig. 15 Snapshot read
duration: f = 3, 8,000
background write TPS, 3 router,
4 background client, 1 latency
client, 6 storage
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Fig. 16 Write throughput: f = 3, 3 router, 1 client, 16 storage

the experiment, a third router joined again, and the system
quickly stabilized at the original throughput.

In summary, E-Cast rapidly recovers from router failures,
even at peak load. Together with the fact that E-Cast has
higher throughput in “degraded” mode than under normal
operation, this means that Crescando/RB will not become
overloaded as a result of router failures.

7.9 Other results

The following is a list of other interesting results, which we
present only in summarized form for space reasons.

Crescando/RB scales well with the number of clients,
owing to E-Cast’s built-in congestion control. Throughput
remained unchanged for up to 1,024 clients, at which point
it began to drop logarithmically. E-Cast throughput also
remained unchanged for payload sizes up to 1,024 Byte.
For larger payloads, the 1 Gbit network interface of the lead
router became a throughput bottleneck. Since write messages
in Crescando/RB are compact, relational updates, and read
results are transmitted through direct connections, outside of
E-Cast, bandwidth is not an issue in Crescando/RB, however.

In terms of protocol latency, we found that on average, E-
Cast uniformly delivered and acknowledged messages within
2 ms at around 10,000 TPS. At peak throughput, latency
reached over 30 ms, but it stayed below 10 ms for up to 95 %
of peak load. Unlike most protocols with similarly strong
ordering and delivery guarantees, E-Cast does not require
write-ahead-logging on stable storage (disks). Consequently,
the transmission delay of E-Cast is very low.

8 Conclusions

We have presented Crescando/RB, a scan-based data store,
which combines strong consistency guarantees with high
availability, elasticity, and very high throughput. Cres-
cando/RB is the first data store, short of a full-blown rela-
tional database, with support for atomic queries and updates
with arbitrary conjunctions of Boolean selection predicates
(key or non-key).

The key to this combination of features lies in Cres-
cando/RB’s distribution and execution models. In the first
stage of input processing, an efficient multicast protocol
called E-Cast establishes uniform agreement on the input
order. At some later point, in the second stage, the affected
processes deterministically execute their (partition of the)
input in the previously agreed order, using massively parallel,
shared scans. Crescando/RB aggressively pipelines the two
stages of processing, resulting in high throughput and con-
tinuous availability during process failures and large-scale
system reconfigurations.

The presented system is fully functional. It addresses a
large-scale industry use case in the context of the Amadeus
travel reservation system, and we hope the techniques we
have developed will enable and inspire many more exciting
systems and services for the cloud.
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9 Appendix 1: Formalization

9.1 Stateful routing (SR)

9.1.1 System model

The system consists of a set of processes P , which are
sequences of discrete events. Submitting or delivering a mes-
sage is an event. Let M be the universe of messages. Define
M� ⊆ M as the set of submitted messages, and M� ⊆ M as
the set of delivered messages. Every process p ∈ P submits
a set of messages M�

p ⊆ M� and delivers a set of messages
M�

p ⊆ M�. By definition, a process p is faulty iff p crashes,
or a process p′ successfully submits a message declaring p
faulty.

Every message m ∈ M� is submitted exactly once.7

Let sub(m) denote the submission event for m ∈ M� , and
Dlv(m, p) denote the set8 of delivery events for p ∈ P and

7 One can use unique message IDs to this effect.
8 Dlv(m, p) is a set, since an (incorrect) protocol may deliver a message
m multiple times to some process p.
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m ∈ M�
p . The causal order relation e→ e′ over events e, e′

is defined as the minimal, transitive relation where both e
and e′ are events of some process p and e precedes e′ in the
execution of p, or e = sub(m) and e′ ∈ Dlv(m, p) for some
p ∈ P and some m ∈ M .

We refer to a sequence of messages as an m-seq. Let Q be
the universe of possible m-seqs over M . An m-seq Q ∈ Q is a
pair Q = 〈MQ,�Q〉, where MQ ⊆ M is a set of messages,
and �Q is a strict total order relation over MQ . A function
prefix(Q, m) is defined, where Q is an m-seq, and m is a
message. If m ∈ MQ , the function yields the prefix of Q up
to but excluding m. If m /∈ MQ , then prefix(Q, m) = Q.

A user-defined function destset(Q, m) is assumed, which
maps every pair of m-seq Q and message m to a finite
set of processes destset(Q, m) ⊆ P called the destina-
tion set of m according to Q. We define the shorthand

destsetpfx(Q, m)
def= destset(prefix(Q, m), m)

The user-defined destset function sets our model apart
from related work in the area of group communication. This
function allows one to express arbitrary data models and
replication schemes without the use of explicit groups.

9.1.2 Predicates over message sequences

In order to give a succinct formal problem statement, we
define the following predicates over m-seqs.

valid(Q) Every message in MQ is submitted, and no mes-
sage is delivered that is not in MQ.

minimal(Q) Every process that delivers a message m is in
the destination set of m according to Q.

complete(Q) For every m ∈ MQ, every correct process in
the destination set of m according to Q delivers m.

gap-free(Q) For every message m ∈ MQ submitted by a
process p, every message m′ submitted previously by p is
also in MQ.

submit-ordered(Q) �Q is an extension of the order rela-
tion→ over the submission events of MQ ∩ M� .

delivery-ordered(Q) �Q is an extension of the order rela-
tion→ over the delivery events of MQ ∩ M�.

terminated(Q) Every message m submitted by a correct
process p is in MQ.

9.1.3 Problem statement

Correct routing There is a valid, minimal, complete, gap-
free, submit-ordered, delivery-ordered, terminated m-seq Q.

A protocol is a correct solution for Stateful Routing iff it
transfers messages between processes in a manner that Cor-
rect Routing holds. This requires that any message m is deliv-
ered, in the right order, to the processes which the application
considers destinations of m. The following (generalizations
of) familiar properties follow directly from Correct Routing.

Validity Every delivered message has been submitted.

Uniform causal order delivery If the submission of m ∈
M� causally precedes the submission of m′ ∈ M� then no
process p ∈ P delivers m′ before m.

Uniform total order delivery For any pair of messages
m, m′ ∈ M�, if some process p ∈ P delivers both m and
m′, and delivers m before m′, then any process p′ ∈ P that
delivers m and m′ delivers m before m′.

Uniform agreement Any message m delivered by any
process is delivered by every correct process in the desti-
nation set of m, in accordance with some m-seq Q.

Termination Any message m submitted by a correct process
is delivered to every correct process in the destination set of
m, in accordance with some m-seq Q.

Uniform agreement states that if any process p delivers
a message m, every process (that is supposed to) will even-
tually deliver m, even if process p and/or the submitter of
m fail immediately after p delivers m. The combination of
uniform total order delivery, uniform causal order delivery,
and uniform agreement yields sequential consistency [33],
the distributed system equivalent of linearizability [47].

If destset(Q, m)
def= P for any Q and m, then the problem

is identical to uniform atomic broadcast with causal order
delivery [28]. Stateful Routing is thus a proper generalization
of uniform atomic broadcast.

9.2 Dynamic partial replication as stateful routing

We show how an algorithm that solves Stateful Routing (SR)
can be used as a solution for dynamic partial replication
(DPR). Let W be the universe of writes. Let every client
process c ∈ C submit writes Wc in the form of messages.
Let every client process submit each write exactly once. Let
every storage process s ∈ S execute delivered writes Ws

exactly once, in delivery order. Then, the global execution
order corresponds to the global delivery order.

Let us further refer to the set of data objects stored by a
storage process s as a table Ts . We write T 0

s to refer to the
initial table of s (before s executes any writes). We write T Q

s

to refer to the table of s after the sequence of writes (m-seq
of messages) Q has been applied to T 0

s .
A correct solution for Dynamic Partial Replication exe-

cutes writes in a manner that the following guarantees hold.
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Integrity No storage process s ever holds a table that cannot
be reached by applying some sequence consisting only of
submitted writes to T 0

s .

Strong consistency An order relation over W , call it <,
exists, which is an extension of the write submission order of
every client process, and the execution order of every storage
process.

The < relation is exactly the serialization order discussed
in Sect. 5.1. For practical reasons, we further require that the
serialization order is compatible with the write order of every
client.

Atomicity If a storage process s ∈ S executes a write w ∈
W , at some point the table of every correct storage process
s′ ∈ S is in a state T Q

s that is reached by applying a sequence
of writes Q which includes w.

A process is defined correct iff it is not faulty. In this work,
we only consider crash failures (no Byzantine failures), but
the problem statement is independent.

Durability For any write w ∈ Wc of a correct client process
c ∈ C, at some point the table of every correct storage
process s ∈ S is in a state T Q

s that is reached by applying a
sequence of writes Q which includes w.

If every write w is delivered to every correct storage
process s, then Atomicity and Durability follow immediately
from Correct Routing. However, this broadcast-based solu-
tion does not scale with the number of storage processes.
Instead, we want every write to be delivered only to those
processes whose table is actually affected by the write. Let
us write Q ◦ w to express the extension of write sequence
Q by w. The following is a formal definition of a destset
function that avoids broadcast.

Definition 1 (perfect destset) destset(Q, w)
def=

{
s ∈ S | T Q

s �= T Q◦w
s

}

We call the above destset function perfect in that it routes
writes exactly to the set of storage processes whose tables are
affected. While appealing in theory, a perfect destset func-
tion is impractical. Fortunately, perfect destset functions are
not required. A destset function may return more storage
processes than affected, since writes to these additional stor-
age process have no effect (other than overhead). We call a
destset function correct iff it always returns some superset
of storage processes of a perfect destset function.

In an implementation of a correct destset function, there
is thus a trade-off between the amount of routing state and
the number of writes that are delivered unnecessarily. As a
concrete example, Rubberband routers map a range of data
object keys to each storage process (range partitioning). The

destset function of Rubberband routes each write to exactly
those storage processes whose key range overlaps with the
key range(s) of the write, see Algorithm 3. This avoids broad-
cast of messages in most cases, but obviously, a specific write
may not have an effect if no object for the given key exists.

Theorem 1 Under the described reduction, a solution for
Stateful Routing (SR) is a solution for Dynamic Partial Repli-
cation (DPR).

Proof Correct Routing guarantees the existence of an m-
seq Q = 〈W,<〉. Validity implies that ∀ s ∈ S : Ws ⊆⋃

c∈C (Wc). Integrity follows immediately. Strong Consis-
tency follows from Uniform Total Order Delivery and Uni-
form Causal Order Delivery. By definition of destset, Atom-
icity follows from Uniform Agreement, and Durability fol-
lows from Termination. ��

SR in fact makes stronger guarantees than required for
DPR. For instance, DPR only requires total FIFO order deliv-
ery, while SR guarantees total causal order delivery. Also,
SR guarantees that m-seqs are gap-free and complete, which
together is a stronger uniformity guarantee than required by
DPR. DPR “only” requires that the effects of a given update
are applied to all or none of the processes’ tables. But SR
additionally guarantees that for any write that is applied,
every write previously submitted by the same client is also
applied.

These guarantees may not seem very interesting from a
formal point of view, but they are very useful in practice. For
instance, gap-freeness allows applications to pipeline a large
number of writes in order to maximize throughput over high
latency network links, while still, in the event a client process
crashes, having the guarantee that some prefix (and not an
arbitrary subset) of the pending writes will be applied.

10 Appendix 2: Proof of correctness of E-cast

Our goal is to prove the following theorem:

Theorem 2 E-Cast is a correct solution for Stateful Routing.

Router processes propose and learn messages via uniform
atomic broadcast with FIFO delivery (ufabcast). It is easy to
see that by definition of uniform atomic broadcast [28], all
router processes maintain agreement on an ever-growing m-
seq Q. Our implementation of ufabcast (cf. Sect. 5.6) upholds
that guarantee even when routers join or leave the system.

To prove that E-Cast solves Stateful Routing, we need to
prove that Correct Routing holds. That is, we prove that the
m-seq Q that the dynamic set of routers agree on is valid, min-
imal, complete, gap-free, submit-ordered, delivery-ordered,
and terminated. In what follows, we write [[AX]] to refer to
line X of the application process algorithm, and [[RY]] to
refer to line Y of the router process algorithm, respectively.
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Lemma 1 Q is valid.

Proof To appear in Q, a message m must be learned by some
router r [[R13]]. To be learned by r, m must previously be
proposed by some router r ′ [[R8]]. For m to be proposed by
r ′, r ′ must previously receive a message 〈“route,” m〉 [[R6]].
Assuming no Byzantine failures, an application process a
must previously send the message 〈“route,” m〉 to r ′ [[A18]],
which in turn implies that m must previously be submitted
[[A5]]. ��
Lemma 2 Q is minimal.

Proof No application process ever delivers a message m for
which it did not receive a 〈“deliver,” m, t〉 message [[A10]].
No router process ever sends a message 〈“deliver,” m, t〉
to any application process that is not in destsetpfx(Q, m)

[[R19]], [[R22]]. Minimality of Q follows immediately. ��
Lemma 3 Q is submit-ordered.

Proof It is to show that for any pair of messages m, m′ ∈ MQ

where sub(m)→ sub(m′), it holds that m �Q m′. We first
prove that this holds if a single application process submits
both m and m′ (Case 1, FIFO Order). We then prove the
general case (Case 2, Causal Order).

Case 1: Assume m, m′ ∈ M�
a for some application

process a. For the message m′ to be learned by any router
process [[R13]], it must first have been proposed by some
router process [[R8]]. Let r be the first router process to pro-
pose m′ (according to the order enforced by atomic broad-
cast). To propose m′, r must first have received 〈“route,” m′〉
from a [[R6]]. At that point, either m was already learned or
not.

If m was already learned, then m must be in Q at that
point, so clearly m �Q m′. If m was not already learned,
then m can also not have been acknowledged [[R10]]. Since
application processes send messages in submit order [[A6]],
[[A18]]; and since processes communicate through quasi-
reliable FIFO channels; r must have received 〈“route,” m〉
before it received 〈“route,” m′〉 [[R6]]. Therefore, r must have
proposed m before m′ [[R8]]. Since the atomic broadcast pro-
tocol guarantees FIFO order delivery, every router must learn
m before m′ [[R13]]. It follows that m �Q m′.

Case 2: Assume m and m′ were submitted by two differ-
ent application processes. Without restriction of generality,
say m was submitted by application process a, and m′ was
submitted by application process a′. For sub(m)→ sub(m′)
to hold, there must be a message m′′ submitted by a, such
that sub(m) → sub(m′′) or m = m′′, and m′′ is delivered
to at least one application process. Otherwise there could be
no chain of causality between sub(m) and sub(m′). But to
be delivered to any application process [[A13]], m′′ must first
be sent by some router [[R22]], which implies that m′′ must
first be learned by some router [[R13]]. Therefore, m′′ must

precede m′ in Q [[R14]]; that is, m′′ �Q m′. If m = m′′, then
obviously m �Q m′. If m �= m′′, then Case 1 applies and
m �Q m′′. By transitivity of �Q , it holds that m �Q m′.

In both Case 1 and Case 2, m �Q m′. ��
Lemma 4 Q is delivery-ordered.

Proof It is to show that for any pair of messages m, m′ ∈ MQ ,
where the delivery of m, call the event e, precedes the delivery
of m′, call the event e′; i.e., e → e′, it holds that m �Q

m′. We first prove that this holds for any single application
process that delivers both m and m′ (Case 1). We then prove
the general case (Case 2).

Case 1: The timestamp t of any message 〈“deliver,” m, t〉,
sent by any router process, is the position of m in Q [[R20]].
Application processes deliver messages strictly in timestamp
order [[A11]]. It follows that for any application process a,
for any pair of messages m, m′ ∈ M�

a where a delivers m
before m′, it holds that m �Q m′.

Case 2: For e → e′ to hold, there must be a message m′′
submitted by a, such that e→ sub(m′′)→ e′. By analogous
argument to the proof of submit-orderedness, it must hold
that m �Q m′′, and m′′ �Q m′. By transitivity of �Q , it
holds that m �Q m′. ��
Lemma 5 Q is gap-free.

Proof Choose any pair of messages m, m′ submitted by an
application process a, where sub(m) → sub(m′), and m′ is
in MQ . It is to show that m is also in MQ . We assume that m
is not in MQ and prove by contradiction.

Since m is not in MQ , no router could have sent a “deliver”-
message for it [[R22]], and m could not have been acknowl-
edged [[A9]]. Application processes send “route”-messages
in submission order [[A6]], [[A18]]. Thus, for any router r to
which a sends a message 〈“route,” m′〉, a must first send a
message 〈“route,” m〉.

Processes communicate through quasi-reliable FIFO chan-
nels. Thus, any router that receives a message 〈“route,” m′〉
must first receive a message 〈“route,” m〉 [[R10]]. Since m is
not in MQ and thus obviously not stable, any router process
that receives and proposes m′ must also, previously, receive
and propose m [[R8]]. Since the atomic broadcast algorithm
preserves FIFO order, for m′ to be learned, m must be learned
first [[R13]] and appended to Q [[R14]]. Since m′ is in MQ ,
m must be in MQ as well; a contradiction. ��
Lemma 6 Q is complete.

Proof We prove by contradiction. Assume Q is not com-
plete; i.e., there is some message m ∈ MQ that is
not delivered by some correct application process a ∈
destsetpfx(Q, m).

Assuming at least one correct router process that even-
tually considers itself a leader, every message m ∈ MQ is
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eventually sent to and received by every correct application
process, including a [[R22]]. To be precise, a must receive a
message 〈“deliver,” m, t〉 [[A10]]. Consider the first time a
receives this message. For a not to deliver m, a must have
previously received another message 〈“deliver,” m′, t ′〉where
t ′ > t [[A11]].

Router processes send “deliver”-messages in order of Q,
that is timestamp order [[R20]], [[R22]]. Since a had not
received and confirmed m yet [[A14]], and a is a correct
process, the router process that sent 〈“deliver,” m′, t ′〉 could
not have removed a from the pending destinations of m
[[R11]], [[R12]]. Thus, r must previously have sent 〈“deliver,”
m, t〉 to a as well. Processes communicate through quasi-
reliable FIFO channels, so a cannot have received 〈“deliver,”
m′, t ′〉 before 〈“deliver,” m, t〉. A contradiction. ��

Note that as a generalization of Lemma 6, E-Cast even
guarantees that faulty application processes see some prefix
of Q, i.e. gap-free delivery to faulty processes. This guarantee
is useful in practice, because it means that processes that are
incorrectly suspected by others will not see an inconsistent
system state.

This guarantee holds, because for every pair of messages
m, m′ ∈ M�

p for some process p (faulty or correct), where m
precedes m′ in Q, any router r will always send 〈“deliver,”
m, t〉 to p before sending 〈“deliver,” m′, t ′〉. This is because
the set of suspected processes can only grow, not shrink. If
p becomes a suspect in the destination set of m, it certainly
becomes a suspect in the destination set of m′. Thus, if a
router stops sending 〈“deliver,” m, t〉 to p even though m is
unconfirmed, it also stops sending 〈“deliver,” m′, t ′〉 to p.

Lemma 7 Q is terminated.

Proof Any correct application process p will repeatedly send
any submitted message m ∈ M�

p to some router until m is
known to be stable and is acknowledged to the user [[A18]],
[[A8]]. Assuming p eventually sends m to a correct router r ,
m is eventually received by r [[R6]]. Assuming liveness of
the atomic broadcast algorithm, m is eventually proposed by
r [[R8]] and learned by every correct router process [[R13]].
Thus, m is in Q. ��
Proof Theorem 2 follows by definition from Lemmas 1–7.
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