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Abstract

In three interdependent parts, the geometry of N -extended superspaces is studied, the symme-
tries of a novel type of Wilson loop on full N = 4 superspace are inspected and an additional
symmetry generator residing outside of the hidden Yangian symmetry algebra Y[psu(2, 2|4)] of
the planar tree-level scattering amplitudes of N = 4 super Yang-Mills theory is identified and
put into context. In the first part, the geometry of flag manifolds is used to illustrate correspon-
dences between theories on different types of superspaces—most importantly, N = 4 SYM on
Minkowski superspace and holomorphic Chern-Simons theory on twistor space as well as N = 3
SYM on full Minkowski space and complex-real Chern-Simons-theory on N = 3 harmonic su-
perspace. The second part develops a treatment of Wilson loops on null polygonal contours in
full N = 4 superspace and ambitwistor space A3|4 and inspects the symmetries of observables
constructed from the one-loop expectation value 〈Wn〉(1). The final part proves the existence
of an additional symmetry generator called bonus symmetry B̂ of the tree-level amplitudes and
leading singularities in planar limit N = 4 SYM.

Zusammenfassung

In drei voneinander abhängigen Teilen werden die Geometrie von N -erweiterten Superräumen
untersucht, die Konstruktion und Symmetrien von Wilsonschleifen auf lichtartigen polygonalen
Integrationskonturen betrachtet und eine neuartige Symmetrie – welche nicht Teil der Yangschen
Symmetriealgebra Y[psu(2, 2|4)] ist – der Baumdiagramme planarer N = 4 Super-Yang-Mills
Theorie, wird identifiziert und untersucht. Im ersten Teil wird die Geometrie von Flaggen-
manigfaltigkeiten verwendet um Korrespondenzen zwischen Eichtheorien auf verschiedenen Su-
perräumen deutlich zu machen; insbesondere zwischen N = 4 SYM über dem vierdimension-
alen N = 4 Minkowski-Superraum und holomorpher Chern-Simons-Theorie über dem Twistor-
raum und zwischen N = 3 SYM über dem vierdimensionalen N = 3 Minkowski-Superraum
und komplex-reeller Chern-Simons-Theorie über dem harmonischen N = 3 Superraum. Der
zweite Teil behandelt Wilsonschleifen auf lichtartigen polygonalen Integrationskonturen auf
dem nichtchiralen N = 4 Minkowski-Superraum und dem Ambitwistorraum A3|4 und unter-
sucht das Verhalten von Observablen, die aus dem Einschleifenerwartungswert 〈Wn〉(1) gebildet
wurden, unter Symmetrieoperationen der Yangschen Symmetriealgebra. Im letzten Teil wird
die Existenz eines zusätzlichen Symmetriegenerators der Baumdiagramme und der führenden
Singularitäten planarer N = 4 SYM-Theorie bewiesen. Dieser zusätzliche Generator trägt den
Namen Bonussymmetrie B̂.
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Thoughts

When I began to work as a researcher, I did not know what research was—how hard it can be.
But I learned. I learned that there are things one can do and others one might be able to do,
but not yet, and things that one will never do, at least not alone. We learn to become better,
to move forward, to do the things we could not do before. Being a researcher is a process of
becoming more than what one started with.

This work represents a slice of the research I have done during the four years of my doctoral
studies in Potsdam and Zurich. In these four years, times came when I wanted to sit down and
give up but I always pushed myself forward and went on. I brooded over problems, I wrote and
rend apart, I spotted inadequacies and I strove to overcome them.

Such is the way we walk in our life: Stepping forward, stumbling, falling, failing, and standing
up again. Those of us who willingly choose to go through these ordeals shall come out better
than they were before—in spirit, in knowledge, in will—or must perish along the way. And
perish they will if they don’t walk on, or find others that might hold out a hand for them when
they fall.

For all those coming after me, this is the hand I hold out: Fight on, the fruits are sparse, but
their nectar is heavenly.
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1
Introduction





The last 100 years have seen an immense growth in our understanding of the world, and yet,
whenever we lift one of the veils that hid the supposed beauty of nature, we tend to be first
presented with another veil or find that things have been lurking under it that we wouldn’t have
wished for to be presented with. This is especially true in physics, which had been declared a
closed chapter a number of times already—once by the ancient Greeks, once by our scientific
forebears of the late 19th century. Luckily, our universe is much stranger than we thought, in
fact it is much stranger than we can suppose at any given point—if you allow the pun—in time.
The two theoretical pillars of modern physics—quantum theory and general relativity—stand
witness to this.

The advent of quantum mechanics took away our firm belief in the clockwork predictability of
the universe while the formulation of General Relativity managed to literally take the firmness
out of the fabric of time and space. And despite—or because of—their inherent strangeness to
human perception, both theories stand strong now after a hundred years of rigorous testing.
At the same time, they also present the theoretical researcher with a wealth of mathematical
beauty.

The theory of the small things, quantum theory, proved especially resilient against falsification
much to the despair of some physicists and many non-physicists alike. The fact that it does
so is fortunate though for all natural sciences, despite the occasional attempt of experimental
physicists to shatter our world view by using faulty cables. General relativity on the other hand
gave us a much better understanding—compared to Newtonian mechanics—of the workings of
the universe. Every new test is only showing how good a theory GR really is, although some
predictions like gravitational waves have proven resistant against experimental verification.

Given that we seem to have a very good notion of the natural world with these theories (so
good in fact that some researchers are once again declaring our models to be universally true)
we were also able to make huge technological progress in the last 100 years. Quantum theory
brought us the computer and GR brought us GPS to name a bare minimum for each.

However, for a long time now, the “holy grail” of physics—as some believe it to be—the uni-
fication of the big and the small, of quantum field theory and general relativity, evaded even
the most dexterous minds. Famously, the quantum theory of Einstein gravity does not exist,
we encounter new divergences on every loop level rendering the theory infertile for predictions.
The search for a unifying theory led to many failed attempts and culminated in a shift of our
point of view from the theoretical concept of particles as point-like structures towards particles
as the excitations of extended one-dimensional objects—the so called strings. A musical model
of the universe in all its extremes—big and small—was born.

The advent of string theory addressed the non-renormalizability of gravity and seemed to bring
new hope to this dark vale of tears (of graduate students) by presenting us with a theory that
unified gauge degrees of freedom, matter and a theory of quantum gravity. For string theory to
work, that is to describe the particle content of the world with bosons and fermions, interactions
and matter, amazing steps forward had to be taken: String theory needs supersymmetry to
describe fermions, a rather crucial part of a theory of everything. It requires compactification
of extra dimensions—the study of the emerging Calabi-Yau-manifolds even started to interest
mathematicians. Famously, Maxim Kontsevich first talked about the mathematical background
of mirror symmetry in Zurich.

Superstring theory split into five different descriptions type I, type IIA, type IIB and the two
heterotic string theories with SO(32) and E8 × E8 gauge groups respectively. A matter of
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confusion in itself—after all, theorists thought they were facing one unifying theory not five very
different looking ones. Thanks to Edward Witten, we know nowadays that these five theories
are very interconnected by dualities and possibly the five shadows of an enigmatic M-theory
residing in 11 dimensions. However, except for eleven-dimensional supergravity, something that
is best described as the “Fermi model” of M-theory, we don’t know how to write down M-theory.
This situation compares well with the early days of quantum theory when a lot of calculations
could be done long before a full theory of quantum physics was formulated.

Sadly, string theory did not bring the expected break-
through. The world is still waiting for the theory of
everything. But we should not be too unhappy about
this fact. What string theory brought us was a way
to understand the world from a completely different
point of view. So different that we probably still haven’t
grasped the full extent of it—or at least, we definitely
haven’t mined it to its full potential. This is referring to
the fact that certain string theories are very intimately
connected to certain gauge theories: a very old rela-
tion dating back to the first days of string theory—but
most famously demonstrated in the AdS5/CFT4 corre-
spondence between type IIB string theory on (the highly
symmetrical) AdS5×S5 background pictured above1 and maximally supersymmetric Yang-Mills
theory on four-dimensional flat Minkowski spacetime (N = 4 SYM). This was conjectured by
Juan Maldacena—via strong-weak dualities.

This duality allows—via the identifications2

λ =
R4

α′2
,

1

Nc
=

4πgs
λ

the calculation of results for non-perturbative free quantum strings by perturbative, planar
gauge theory calculations and, conversely, predictions about non-perturbative gauge theory by
free classical string observations in its easiest form. Recent years have seen many iterations of
the same idea in different settings, a sign that this duality is more than a lucky coincidence or
that we spotted a pattern where there is none. In particular Maldacena’s conjecture has proven
to be a very fruitful hunting ground for string theorists and field theorists alike.

More recently, we witnessed a revolution inN = 4 super Yang-Mills theory when the integrability
of the spectrum of the theory in the planar limit was conjectured by Lev Lipatov in [2]. This
was shown to be the case at first in the so(6) (scalar) sector of the theory [3] and subsequently
extended to the full psu(2, 2|4) sector at one-loop by Niklas Beisert [4]. Further confirmations
exist now at ever higher loop orders. We saw structures emerging—the Bethe Ansatz, the
Yangian symmetry algebra—known from integrable two-dimensional field theories, but rather
unheard of in a four-dimensional gauge theory.

It was found that the planar limit also holds surprises when it comes to the scattering amplitudes
of N = 4. Their modern history can be found in a condensed form in the review [5]. Let us have

1The lack of dimensions forces us to draw an AdS2 and a S2 and the product in a highly simplified manner.
2Here we have λ = g2YMNc the ’t Hooft coupling, Nc the number of colors, gs the string interaction coupling,
α′ the inverse string tension and R the AdS radius. The planar limit is Nc →∞ while λ fixed.
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a glance at the most important pieces of the development of this topic relevant for this thesis.
The n-point tree level amplitudes of N = 4 SYM were found to be of an exceptionally beautiful
structure when written in a supersymmetric setting, for example all n-leg amplitudes with n−2
positive helicity particles and 2 negative helicity particles—so called MHV amplitudes can be
written in the supersymmetric Parke-Taylor form [6]

AMHV
n =

δ4(P )δ(0|8)(Q)∏n
i=1〈i, i+ 1〉

.

An

On-shell construction methods—most notably CSW [7], and the BCFW
recursion relations [8, 9]—allow amongst other applications for a most
economic way of calculating n-leg amplitudes from lower point ampli-
tudes. This simplicity of scattering amplitudes made many researchers
wonder whether there was a more fundamental description of amplitudes
that would make their easy structure manifest when they were formulated
as graphs—not necessarily as Feynman graphs.

Twistor theory provides one way of thinking about amplitudes in N = 4
in a novel way that makes their marvelous simplicity clearer. A clear step forward was achieved
when tree-level NkMHV amplitudes could be shown to be all assembled from R-invariants

[i, j, k, l,m] =

∫
CP1

D4c

c1c2c3c4c5
δ4|4
(
c1Zi + c2Zj + c3Zk + c4Zl + c5Zm

)
,

i.e., from a single twistorial object—and the factor An [10]. Twistor theory led also to the
formulation of N = 4 SYM as a holomorphic Chern-Simons theory [11]. This we will explore in
more detail in the main body of this text.

J

Ĵ

̂̂
J

...

Y[psu(2, 2|4)] as an infinite
stack of generators

The simplicity of scattering amplitudes in
N = 4 SYM can also be traced back to the
existence of a dual superconformal symmetry
[12] along with the already known supercon-
formal symmetry of the Lagrangian. The form
of these additional symmetries are such that
they do not render the S-matrix trivial as one
would expect from the Coleman-Mandula the-
orem. However, the additional symmetries
do constrain the form of the scattering am-
plitudes more than the ordinary Lagrangian
superconformal symmetry alone would.

Interestingly, these two symmetries are not
independent of one another, but rather they
conspire to form a bigger, infinite algebra [13]: This is the famous Yangian algebra Y[psu(2, 2|4)]
of N = 4 SYM—depicted above as an infinite stack of generators of ever higher level. In parts,
this thesis will be concerned with the structure of this Yangian. For a symmetry algebra,
psu(2, 2|4) is quite unusual: As a projective real form of sl(4|4) it belongs to the A(n|n) family
of superalgebras (n ≥ 1) in Kac’s classification. These have a degenerate Killing form.

This also makes the structure of the associated Yangian interesting and uncommon. For example,
the way Yangian generators act on amplitudes is by construction dependent on the (arbitrary)
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cyclic labeling of the external legs of amplitudes. Especially, this dependence a priori breaks the
cyclic symmetry of the amplitudes. However, the degenerate Killing form of psu(2, 2|4) saves
the Yangian structure here and in fact imposes compatibility with cyclicity. This is a veritable
miracle.

This curious form of the Yangian holds other mysteries: in this thesis we will show that there is an
additional Yangian generator inaccessible from commutation relations of the known generators.
A structure like this is known in the literature [14] as a secret symmetry. In this special case,
we prefer the name bonus symmetry [15].

Wn

A Wilson loop

The discovery of dual superconformal symmetry was accompa-
nied by the discovery of the remarkable weak-weak duality be-
tween scattering amplitudes An and Wilson loops Wn on null
polygonal contours in chiral superspace [16]. At first, the du-
ality was established between MHV gluon scattering amplitudes
and bosonic Wilson loops on null polygonal integration contours
by direct calculation using various identifications of the param-
eters defining the two objects. To capture the supersymmetry
of N = 4 SYM and establish a duality for all tree-level scatter-
ing amplitudes, supersymmetric Wilson loop generalizations were
proposed [17, 10]. Most important for this thesis was the discov-
ery that these supersymmetric generalizations did not actually

produce the desired duality [18]. Rather it was discovered that super-Wilson loops notice the
chirality of the superspace and the calculated results break the supersymmetry generator Q̄.

Here, we present a workaround for this problem by considering the theory and the Wilson loops
on non-chiral superspace [1]. The immediate benefit of this approach is that the troublesome
Q̄-anomaly does not occur in this setting. Furthermore, at the one-loop level the non-chiral loop
contains three sectors, two of which are the chiral Wilson loop and its antichiral conjugate and
one is a mixed loop made from chiral as well as antichiral pieces—see also the figure below. The
drawback is that our particular Wilson loop is not dual to the scattering amplitudes of N = 4
SYM anymore—at least not as directly as the chiral Wilson loops were meant to be. While we
present a one-loop calculation, we also examine the behavior of the Wilson loop expectation
value under Yangian transformations. We can establish that the non-chiral Wilson loop is
indeed a Yangian invariant up to ultraviolet divergences, which break the Yangian generators
indiscriminately. By choosing ad-hoc regularization methods, we can however salvage some of
the superconformal symmetries.

In work related to an attempt at generalizing the methods used in the calculation of the non-
chiral Wilson loop [1], we made use of some interesting geometrical ideas related to the definition
of twistor variables [19]. Our ability to calculate Wilson loops on light-like contours with a
certain ease is directly linked to the fact that the constraints governing supersymmetric Yang-
Mills theories are flat when pulled back to such lines. Even better, any such simplification—the
flatness of the defining constraints of SYM—can be traced back to a mathematical concept
known as double fibrations. This has been known for quite some time, we will present the
fundamentals in the first part, where we also present some original work connected to the
extraction of local operators on spacetime from twistor fields and fields in twistor-like theories.
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Wn

A non-chiral Wilson loop

WnWn

mixed part antichiral partchiral part

Outline.—To conclude this introduction, let us outline the structure of the text. In the first
part following this introduction we will give a very short, rather non-technical introduction to
planar N = 4 SYM and its hallmark features.

The following part will be concerned with the development of a mathematical toolbox for Yang-
Mills theories which will include the concepts of flag manifolds and double fibrations. We will
also be concerned with the connection between these more general concepts and the harmonic
approach to Yang-Mills theories. We will use these tools to understand the correspondence
between N = 4 super-Yang-Mills theories and twistor holomorphic Chern-Simons theory (hCS)
as a proof of concept and then show that N = 3 SYM has a formulation as a holomorphic
Chern-Simons theory on harmonic superspace, too. Furthermore, we will give an extension
of the familiar Penrose transformation that will let us extract local operators on Minkowski
superspace from gauge fields in twistor-like theories. The approach is in principle generalizable
to any two theories that are in correspondence.

The fourth part contains the formulation and calculation of the expectation value of the proposed
non-chiral Wilson loop to first loop order. We begin by deriving the light-like lines in full
N = 4 Minkowski superspace M4|16 and make use of the equivalence of these submanifolds
of superspace with points in ambitwistor space A3|4. This is a classical example of a double
fibration. Subsequently, we formulate the Wilson loop and show the calculation of the first
loop correction of the expectation value in the case where no ultraviolet divergences occur.
We proceed with the treatment of divergences and give three distinct (ad-hoc) regularization
methods to treat the divergences. Each of the presented regularizations has advantages and
disadvantages and we will point them out.

In the last part, the behavior of the regularized Wilson loop expectation values under symmetry
transformations is studied. All regularizations break some generators of the superconformal
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symmetries and destroy Yangian symmetry. After these considerations we finally show the
existence of an additional generator on the first level of the Yangian symmetry algebra.

The attached appendices give background material that was considered necessary but too exten-
sive to be incorporated into the main text. The reader will find a short treatment on propagators
in quantum field theories, an introduction to the features of the algebra psu(2, 2|4) and some
of its realizations, the definition of the Yangian as given by Drinfel’d, and a lighting review of
coset spaces and CR structures as well as the conventions.

This thesis is based on the published articles [19, 1, 15].
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2
N = 4 SYM: Overview





CHAPTER I

Preliminaries

In this chapter we will introduce the reader to some of the features of maximally supersymmetric
Yang-Mills theory. We usually tend to shorten this name and call the theory “N = 4 SYM”.
N = 4 SYM has taken a very important place in modern theoretical high energy physics. Not
only is maximally supersymmetric Yang-Mills theory unique, i.e., there is no other theory in four
flat dimensions with so much supersymmetry, it is also superconformal even on the quantum
level and finite.

These ingredients make N = 4 SYM an ideal playground for theoretical physicists: Specific
results that have been obtained through N = 4—especially in connection with the scattering
amplitudes of the theory—are universal enough to be applied in other theories. This is most
notably true of the gluon scattering amplitudes of N = 4 SYM, which match exactly with the
gluon amplitudes of QCD.

Moreover, N = 4 SYM takes a special position also for string theory. The conjectured strong-
weak duality between N = 4 SYM and type IIB string theory on the AdS5 × S5 background
make predictions of non-perturbative results possible. The integrability of type IIB string theory
in the regime where it is conjectured to be dual to weakly coupled planar N = 4 SYM allows
us to exploit many of the tools that have been invented and explored for the study of integrable
systems. Let us proceed to inspect some of the features of this model.

I.1 N = 4 multiplet and Lagrangian

The field content of N = 4 SYM consists of a gauge field Aµ, four Weyl spinors Ψa and Ψ̄a,
and six real scalars Φi transforming in the adjoint representation of the gauge group G which
will be taken to be SU(Nc) throughout this work. The supersymmetric Lagrangian of the
theory has been known in components for a long time [20]. Introducing a covariant derivative
Dµ = ∂µ − iAµ it is given by

L =
2

g2
YM

tr

(
−1

4
FµνF

µν + iΨ̄a
α̇σ

α̇β
µ DµΨβa +

1

2
DµΦiDµΦi −

1

4
[Φi,Φj ][Φi,Φj ]

−1

2
iΨaαγ

ab
i ε

αβ[Φi,Ψβb]−
1

2
iΨ̄a

α̇γ
i
abε

α̇β̇[Φi, Ψ̄
b
β̇
]

)
. (I.1)
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In the Lagrangian above, the field strength

Fµν = i[Dµ, Dν ] (I.2)

was introduced. The Lagrangian was derived by a dimensional reduction of ten-dimensional
Yang-Mills theory with N = 1 supersymmetry. In this process the ten-dimensional Γ matrices
get split into a four- and a six-dimensional Clifford algebra. Hence, the four-dimensional σµ and
the six-dimensional γi obey

{σµ, σν} = 2ηµν , {γi, γj} = 2ηij . (I.3)

N = 4 SYM does not allow an off-shell formulation with linearly realized supersymmetry [21].
However, for N = 3 such a formulation exists. On-shell, the two theories are equivalent. In
chapter VI the problem of off-shell formulations of N = 3 SYM will be revisited.

I.2 Gauge symmetry

All the fields in the N = 4 multiplet transform in the adjoint representation of the gauge group,
which we take to be SU(Nc). Nc denotes the number of colors, that is, the number of distinct
color charges1. The difference between the linearized (Abelian) theory and the non-Abelian
theory will be important in part 4, so we give a short explanation about the action of the gauge
group.

In SU(Nc) Yang-Mills theory, the covariant derivative Dµ transforms in the adjoint representa-
tion of the gauge group, that is, under a gauge transformation g(x) we find that

Dµ 7→ Dg
µ = g−1Dµg = g−1(∂µ − iAµ)g. (I.4)

So the gauge field Aµ(x) = Aaµ(x)Eα itself transforms under a gauge transformation g(x) like a
connection

Aµ 7→ Agµ = g−1Aµg + ig−1∂µg. (I.5)

Ea is one of the generators of the gauge algebra su(Nc), satisfying the Lie algebra property

[Ea,Eb] = ifabcE
c (I.6)

with fabc the structure constants of su(Nc). The structure constants also define the adjoint
representation AdjNc via (I.6) and the homomorphism

[Ea,Eb] = (fa)bcE
c. (I.7)

The adjoint representation is the representation of the algebra on itself as a vector space i.e.,
(fa)bc represents Ea.

When specializing to a linearized description, one essentially restricts Yang-Mills theory to a
Maxwell-like theory with gauge group U(1)N

2
c−1, i.e., all gluons are turned into photons. In this

case the gauge transformation is given by

Alin
µ → Alin

µ − ∂µα (I.8)

1And as an easy physical corollary of representation theory: It is also the number of partons necessary to form
a colorless composite (baryonic) particle.
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where α = α(x) is the gauge parameter.

While the gauge field and the covariant derivative Dµ = ∂µ−iAµ transform in the way described
above, the field strength of Yang-Mills theory

Fµν = F aµνE
a = i[Dµ, Dν ] (I.9)

transforms in the adjoint representation

Fµν → g−1Fµνg. (I.10)

In the Abelian theory Fµν is therefore gauge-invariant. In the supersymmetric gauge field
theories (N = 1, 2, 3, 4), this transformation behavior translates to the other fields Ψ, Ψ̄, and Φ.

I.3 Spinor-Helicity variables

Spinor-helicity variables have been invaluable for the development of our understanding of scat-
tering amplitudes in gauge theories [22, 23]. All particles in N = 4 SYM are massless, hence
their momenta pµ have to square to zero

p2 = 0. (I.11)

Using the extended Pauli matrices σµαα̇ = (1, σi)αα̇ and σ̄µα̇α = (1,−σi)α̇α it is possible to map
flat Minkowski spacetime R3,1 into the space of linear transformations of C2 by (α, α̇ = 1, 2)

xµ 7→ xαα̇ = ηµνx
µσναα̇. (I.12)

Similarly, we can transform the momenta pµ obtained by Fourier transformation to this language

pαα̇ = ηµνp
µσναα̇ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
. (I.13)

This allows us to express the equation p2 = 0 in terms of the determinant

det(pαα̇) = p2 = 0. (I.14)

Hence, the 2× 2 matrix pα̇α has rank r < 2 and can be expressed as a product of two complex
vectors (bosonic spinors) λ, κ ∈ C2

pαα̇ = ±λακα̇. (I.15)

p2 = 0 is a quadratic equation so there are two solutions as indicated by ±. These two solutions
can be interpreted as a positive or negative energy condition. The appropriate reality condition
for Minkowski space2 p† = p implies that

(λκ)† = κ†λ† ⇒ (λα)† = κα̇ ≡ λ̄α̇ (I.16)

such that
pα̇α = ±λαλ̄α̇. (I.17)

2Here, p† denotes hermitian conjugation, that is the combined action of complex conjugation and transposition
of the matrix p 7→ p† = p̄t. Note that hermitian conjugation exchanges the 2 and 2̄ of su(2) thus dotted
indices become undotted indices and vice versa.
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Often one compresses the sign factor ± and λ̄ by defining λ̃ = ±λ̄. For N -extended supersym-
metric theories the spinor variables have to be complemented by complex Grassmann valued
numbers ηa, a = 1, . . . ,N .

Due to the definition of the spinor variables there is a freedom in scaling λ ∼ zλ and κ ∼ z−1κ
by a complex number z. Under the appropriate reality condition p† = p this redundancy in the
description of the spinor variables gets reduced to the choice of a phase z 7→ eiφ.

It is possible to build scalars 〈λ, µ〉 by contracting the indices α with the antisymmetric symbol
of rank 2 εαβ e.g.,

〈λ, µ〉 = εαβλ
αµβ, [λ̄, µ̄] = εα̇β̇λ̄

α̇µ̄β̇. (I.18)

We can also raise and lower indices with the ε-symbols

λα = εαβλ
β, λ̄α̇ = εα̇β̇λ̄

β̇. (I.19)

This will be the convention throughout.

µ ∝ αλ

λ

Notice that the definition of the spinor products implies that

〈λ, λ〉 = 0, [λ̄, λ̄] = 0 (I.20)

i.e., orthogonality of spinors under this product implies collinearity. We
indicated this on the picture to the left. We can see this easily by using
the projectivity of the spinor variables when using complex momentum or

(2, 2)-signature. Concentrating on the complex case, we can restrict to a patch3 where λ1 6= 0.
Then we can define λ2/λ1 = z and

λα =

(
1
z

)
, µα =

(
1
z′

)
. (I.21)

Thus 〈λ, µ〉 = z′ − z. Setting this to zero implies z = z′ and so λ ∝ µ. This property is very
important in the study of scattering amplitudes.

The name spinor-helicity is apt since the spinors λ not only encode momentum but also the
helicity information of a particle. As is known from textbook quantum field theory, a gauge field
Aµ has two polarization states on-shell. Helicity then corresponds to the two possible circular
polarization states of the particle. The two polarizations states are encoded in the polarization
vector εµ satisfying εµpµ = 0. Let the momentum of a particle in spinor language be pα̇α = λαλ̄α̇

and take some arbitrary reference spinors µα and µ̄α̇. Then the matrices ε and ε̄ given by

εαα̇ = i
√

2
λαµ̄α̇

〈λ, µ〉
, ε̄αα̇ = i

√
2
λ̄α̇µα

[λ̄, µ̄]
(I.22)

correspond to polarization vectors. Clearly these satisfy the equation ε · p = 0 since 〈λ, λ〉 =
[λ̄, λ̄] = 0. A change of the reference spinors µ or µ̄ amounts to a change of the polarization
vector by the momentum p and therefore a change of gauge.

3This patch and the patch λ2 6= 0 cover the whole space, a CP1.
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I.4 Planar Limit

Scattering amplitudes in (N -extended) Yang-Mills theories and QCD-like theories are notori-
ously hard to calculate. A most important realization for the calculation of scattering amplitudes
in such theories came from ’t Hooft in 1974 [24]. He showed that a good approximation for QCD
calculations of scattering amplitudes can be achieved by taking the number of colors Nc → ∞
and retaining only the leading order diagrams which are known as the planar graphs4. We will
give a derivation of the result largely following [24] but with a N = 4 SYM flavor.

In gauge theories all fields are grouped in representations of the gauge group. In N = 4 we
are in the lucky position that all fields are in the adjoint representation AdjNc of the gauge
group G, with generators Eaij where we explicitly wrote the matrix indices i, j. The general
property of propagators 〈F a(x)F b(y)〉 in all gauge theories with simple gauge group G and G-
covariant gauge with fields F a in the adjoint representation of the gauge group is that they are
proportional to δab. To avoid unnecessary complications we exclude non-compact gauge groups
from this discussion. In the particular case of G = SU(Nc) which we will pursue from now on,
we find that the propagator is a tensor

〈F ijF kl〉 ∝ δilδkj −
1

Nc
δijδ

k
l. (I.23)

In this case the matrix indices are the indices of a fundamental and an antifundamental repre-
sentation by

Nc ⊗ N̄c ' AdjNc ⊕ 1. (I.24)

To simplify the argumentation in the following, we will work with U(Nc) which does not con-
stitute a significant change. In this case the second term in (I.23) vanishes.

a b

i k
j l

As stated earlier, all fields ofN = 4 transform in the adjoint so we may
denote all of them using the fundamental and antifundamental indices
and replace propagators with adjoint indices like the curly one on the
picture to the left with double lines to signify “exchange of color”.
Writing down a general Feynman diagram using such propagators, we
notice that the number of colors Nc only enters through closed color
loops i.e., summations ∑

i

δii = Nc. (I.25)

On the other hand, we notice from (I.1) that every propagator yields a factor g2
YM, while every

vertex yields a factor g−2
YM. Thus we can characterize any diagram by a quantity

m = g2P−2V
YM N I

c (I.26)

where P is the number of internal lines (propagators), V =
∑

n Vn is the number of vertices as
a sum of the number of types Vn of vertices and I is the number of closed color loops. If we
compactify the graph by adding a point at infinity and join all external lines in this point, we
can use Euler’s formula

I + V − P = 2− 2G (I.27)

4The approximation is better for theories with higher color number Nc. Still, for QCD, where Nc = 3, the
approximation is still good—usually predictions can be made at the 10% accuracy level [25].
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where G is the genus of the surface triangulated5 by the graph in question. We then find

m = (g2
YMNc)

P−VN2−2G
c . (I.28)

Upon inspection of m we find that graphs triangulating surfaces of genus G > 0 are suppressed
polynomially when we take the limit

Nc →∞, g2
YMN = λ fixed. (I.29)

Higher genera correspond to amplitudes
which either have crossing internal prop-
agators (like on the figure to the right)
such that they cannot be drawn with-
out intersection on a sphere or they cor-
respond to graphs that have multiple
trace contributions. In the second case
the external lines meeting in the point
at infinity enclose “handles” on a two-
dimensional surface, sketched in the blue
graph below.

The limit described above is known as the planar limit and was in-
troduced by ’t Hooft in 1974. He argued that a sensible expansion
for gauge theories contains in fact two expansions, first the 1/Nc

expansion around planar graphs and secondly the λ = g2
YMNc

expansion generating higher loop levels. These two expansions
together closely resemble respectively the α′ and gs expansions
of string theory, a fact that became essential for the formulation
of the AdS/CFT correspondence. The planar limit has proven
indispensable for the work with N = 4 SYM. It is suspected that

this theory is integrable in the planar limit (see e.g. [5] for a review).

No statement about scattering amplitudes in this thesis ever strays from the theory in the planar
limit.

I.5 Symmetry group

N = 4 SYM is invariant under the action of the superconformal group PSU(2, 2|4). The corre-
sponding Lie superalgebra psu(2, 2|4) consists of Poincaré transformations (P,L, L̄), conformal
transformations K and dilatations D, supersymmetry transformations (Q, Q̄), superconformal
transformations (S, S̄) and internal “R-symmetry” transformations R. The algebra is given in
appendix E.

5The surface gets split into polygons of different order, technically it becomes a polyhedron. Polyhedra can
be triangulated, so we may call the resulting split of the formerly smooth surface enclosed by the graph a
triangulation of the surface.
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The “distinguished” Dynkin dia-
gram of (p)su(2, 2|4)

Another Dynkin diagram for
(p)su(2, 2|4)

On the right hand side, two possible Dynkin dia-
grams for the A(n|n) type superalgebra6 (n = 3
here) have been drawn to illustrate the form of the
root system. It is possible to extend psu(2, 2|4)
to u(2, 2|4) by adding the outer automorphism B
of u(2, 2|4) and the central charge C. While B is
strictly not a symmetry of the theory, C can be
interpreted as a trivial symmetry. Both charges
can be useful to find physical representations of
psu(2, 2|4). The diagram below shows the algebra generators of u(2, 2|4) ' psu(2, 2|4)⊕B⊕ C
on a dimension-hypercharge grid.

[D]

[B]

S̄ Q

K
L, L̄,D
R,B,C

P

S Q̄

Due to the peculiar nature of psu(2, 2|4) it is not possible to
map it into the algebra of (4|4)× (4|4) supermatrices where
one would suspect its fundamental representation7. Usually
this problem is circumvented by giving a representation of
su(2, 2|4) in terms of (4|4) × (4|4) supermatrices. C is then
identified with the identity matrix. This approach is outlined
in Appendix E.

Additionally, N = 4 SYM has a discrete symmetry. The
supermultiplet of fields is mapped into itself by the combined conjugation X which consists of
charge conjugation C and parity transformation P with action

XF = −FT (I.30)

for any field F in the N = 4 SYM multiplet. The action (I.1) is invariant under this discrete
symmetry.

Recently, it has become evident that there is an enlarged hidden symmetry group of non-
Lagrangian symmetries. They first appeared in the context of the spectrum of N = 4. Unex-
pected simplifications in loop amplitudes of N = 4 SYM in the planar limit [26, 27] led to the
expectation of a enlarged symmetry group also for amplitudes. Later on, this enlarged symme-
try was found in terms of a dual superconformal symmetry of dual Feynman graphs [12, 28, 29]
which were finally identified as the generators of the Yangian algebra Y[psu(2, 2|4)] in [13]. Since
then, they have proven to be very useful in constraining the planar S-matrix of N = 4 SYM
([30, 5] for reviews). The action of the Yangian algebra will be the main topic of part 5. An
introduction to Yangian algebras in general is given in apdx. F.3 and for a textbook reference,
see [31].

For the sake of completeness, let us also mention that there is evidence for an additional SL(2,Z)
strong-weak duality symmetry first conjectured in [32] which generalizes the works of [33, 34].

6Corresponding to the sl(n+ 1|n+ 1) basic type I classic simple Lie superalgebras in Kac’s classification of Lie
superalgebras.

7However, the adjoint representation of psu(2, 2|4) can be represented in terms of supermatrices.
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I.6 Vanishing β-function

Not only is the amount of symmetries of N = 4 exceptionally big, the theory has also been
shown to be superconformal even at the quantum level. This was first suggested in [35]. Even
more so, we are able to show that N = 4 SYM is finite perturbatively [36, 37, 38, 39] and
non-perturbatively [40]. As we can see from the Lagrangian in (I.1) there is only one coupling
constant gYM under the assumption that we do not switch on a θ-angle term—which would have
no effect on perturbative statements anyway—and we use a simple gauge group [41].

It is possible to show that the β-function vanishes to first loop order by an inspection of the
field content of N = 4 SYM. A general statement can be made for all SU(Nc) gauge theories
about the first loop order β-function [42], namely it takes the form

β(1) = µ
∂gYM

∂µ
= −

g3
YM

16π2

(
11

3
Nc −

1

6

∑
i

Ci −
2

3

∑
i

C̃i

)
. (I.31)

The first sum runs over the number of real scalars with the quadratic Casimir Ci whereas the
second sum runs over the Weyl fermions with quadratic Casimir C̃j . As we have remarked before,
all fields are in the adjoint representation of the gauge group, so all the quadratic Casimirs are
given by the number of colors Nc. The sum can then simply be calculated for 6 real scalars and
4 Weyl fermions to yield zero (11− 3− 8 = 0). At higher loop orders perturbative calculations
using Feynman diagrams have been conducted, too, in e.g., [43].

However, there is a clear argument that the β-function of N = 4 SYM vanishes to all or-
ders. Since N = 4 supersymmetry contains N = 1 supersymmetry, the only divergence we
encounter is in a one-loop correction to the coupling gYM. This is ensured by the well-known
non-renormalization theorems (see e.g., in [44]). We may conclude therefore, that (I.31) is the
complete β-function of N = 4 SYM, which implies that the theory is finite.
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CHAPTER II

Scattering amplitudes and Wilson loops

Recently, a remarkable amount of work has been done in the field of scattering amplitudes of
N = 4 SYM. This chapter will give the necessary definitions and terminology as well as an
introduction to the salient features of scattering amplitudes and their connection to Wilson
loops. We will start by introducing the modern form of scattering amplitudes in massless
gauge theories as they are encountered in the literature now. Then we will focus on the special
connection between scattering amplitudes and Wilson loops on light-like contours in N = 4
SYM. For completeness, the figure on this page also includes the connection between these
objects and correlation functions, which has been explored in the literature (for references see
the caption).

An Wn

O(x1) . . .O(xn)

The duality between scattering amplitudes and Wilson loops [45, 46, 47, 48] on light-like
polygonal contours in a dual spacetime is shown in the upper part of the picture. The lower
part shows a visualization of a correlation function connecting to both scattering amplitudes
and Wilson loops by way of specific limits. [49, 50, 51, 52]

dual

limitlimit
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II.1 Scattering amplitudes

We begin by examining the construction of tree-level scattering amplitudes in planar N = 4
SYM theory. Since N = 4 SYM is a supersymmetric theory with a single multiplet, it is possi-
ble to arrange all particles in a single on-shell superfield Φ(p, η) [38, 39]. The Grassmann-odd
parameters ηa, a = 1, . . . , 4 are used to encode the flavor and helicity of the particles in the mul-
tiplet by using the fact that particles of different helicity transform in different representations
of the R-symmetry group su(4), such that

Φ(p, η) = G+(p) + ηaψa(p) +
1

2
ηaηbφab(p) +

1

3!
εabcdη

aηbηcψ̄d(p) +
1

4!
εabcdη

aηbηcηdG−(p). (II.1)

The on-shell fields G±, ψa, ψ̄a, and φab have helicities ±1, ±1
2 , and 0, respectively.

Next we will be putting the amplitudes in a special form using color-ordering. Given a set of
particles with momenta pi, color ai and helicity hi (here given in terms of Grassmann parameters
ηi) we may write an amplitude with n legs as An({pi, ηi, ai}). It is a conventional sum of all
contributing Feynman diagrams. This sum may be rewritten in terms of color-ordered scattering
amplitudes which are stripped bare of their gauge group factors by writing An({pi, ηi, ai}) as
an expansion

An({pi, ηi, ai}) = gn−2
∑

σ∈Sn/Zn

An(pσ(i), ησ(i)) tr(Eaσ(1) · · ·Eaσ(n)). (II.2)

The matrices Ea are the generators of the gauge group algebra su(N) in the fundamental rep-
resentation. Since An depend on massless particles, we will use the spinor-helicity formalism
introduced in sec. I.3 such that all the external data is neatly packaged in the variables λ, λ̄
and η.

An Φ

Φ

ΦΦΦ

Φ

Φ

Φ

Φ Φ Φ

Φ

Φ

We can write the function An in terms of R-symmetry and
Poincaré-symmetry invariants. Nair [22] and Berends and
Giele [23] showed that a special class of amplitudes can be writ-
ten in a remarkably simple way by using the on-shell momentum
(super)space. These are the maximally helicity violating (or
MHV) amplitudes, which—for n incoming particles—have n− 2
positive helicity and 2 negative helicity particles on their exterior
legs. On the picture to the left we indicate an incoming on-shell
superfield by Φ at every line. The blue corpus of the amplitude
An stands for any of the possible graphs that can be drawn. In

this chiral on-shell momentum superspace (λ, λ̄, η), R-symmetry invariants are given by the
combinations εabcdηai η

b
jη
c
kη
d
l . The indices i, j, . . . denote the site or leg at which η is inserted.

Using these invariants, we can classify the appearing scattering amplitudes in terms of powers
of such combinations of ηs, i.e.,

An =
n−2∑
m=2

An,m. (II.3)

This expansion gives rise to the NkMHV classification1 of scattering amplitudes where k =
m − 2. The cases when m = 0, 1, n − 1, n are excluded2 as can be shown by more elementary
(diagrammatic) methods (a low-n study of this phenomenon can be found in [54]).

1The “N” stands for ”next-to”.
2Precisely, it can be shown that any pure YM extended by an arbitrary amount of supersymmetry excludes
these types of amplitudes. See e.g., [6, 53].
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Let us compress all on-shell variables into a single multi-variable Λ = (λ, λ̄, η). For k = 0, the
resulting amplitudes are called MHV amplitudes and can be written as

AMHV
n (Λ1, . . . ,Λn) =

δ4(P )δ0|8(Q)∏n
i=1〈i, i+ 1〉

(II.4)

where
δ4(Pαα̇) = δ4

(∑
i

λαi λ̄
α̇
i

)
, δ0|8(Qaα) = δ0|8

(∑
i

ηai λ
α
i

)
(II.5)

encode momentum conservation and supermomentum conservation. We make the identification
n+ 1→ 1 to enforce the closure of the amplitude under cyclic shifts of the arguments Λi

An(1, 2, . . . , n) = An(2, 3, . . . , n, 1). (II.6)

It has been shown [55] that all higher NkMHV amplitudes are proportional to the MHV factor
AMHV
n , such that it is possible to write the full n particle tree amplitude as

An = AMHV
n

n−4∑
k=0

Pk (II.7)

where P0 = 1. Higher NkMHV factors Pk at tree-level are complicated3 rational functions of
external particle data, the building blocks of which are the so called R-invariants.

§ II.1.1. Twistors and Grassmannians.—Twistor coordinates are another set of variables
that have become increasingly important in the description of scattering amplitudes. A (su-
per)twistor

ZA = (λα, µα̇, χa) (II.8)

is a (4|4) dimensional variable of (compactified) twistor space CP3|4. Historically, the step from
the chiral on-shell momentum space variables (λ, λ̄, η) to twistor variables was made by first
changing to (2, 2) signature such that the two variables λ and λ̄ become real and independent
of each other [11]. Then by inspecting the scaling properties of these variables, one is led to
either half–Fourier transformation of the variable λ or the variables λ̄ and η to get an object
ZA with homogeneous scaling. We choose the second method, so

F̃ (λ, µ, χ) =

∫
exp

(
i[µ, λ̄]− η.χ

)
F (λ, λ̄, η). (II.9)

When performing this transformation on the amplitudes of N = 4 SYM we notice many sim-
plifications in the description of the MHV amplitudes.

For tree-level amplitudes, the function P =
∑

k Pk has a rather simple rational form on twistor
space [56, 57] given in terms of so called R-invariants [i, j, k, l,m] which can be built from 5
supertwistors by

[1, 2, 3, 4, 5] =

∫
CP4

D4c

c1c2c3c4c5
δ(4|4)(ciZi) (II.10)

with D4c = εabcdecadcbdccdcddce a projective measure. A representation of single trace, color-
ordered, n-point (tree-level) scattering amplitudes in N = 4 that is best suited for our purposes

3That is, they are complicated in a space-time description while they become remarkably simple functions in a
twistor description.
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however is given in terms of a generalization of (II.10). This is the so called Grassmannian
integral [58, 59]

Ln,k =
1

vol(GL(k))

∫
dcn×k

M1[c] · · ·Mn[c]

k∏
i=1

δ4|4(cimZm). (II.11)

Here, the external data is given in terms of supertwistors ZAm while the n×k matrix cim provides
coordinates for the Grassmannian manifold Gk(n). The whole integral is thus a contour integral
over Gk(n). Finally, the objectsMj [c] are consecutive k × k minors of the matrix cim starting
at column j i.e.,

Mj [c] = εi1...ikci1jci2j+1 · · · cikj+k. (II.12)

When j+k > n the minor starts “wrapping” around cim. That means j+k has to be interpreted
as j + k mod n. Since cim parametrizes a k-plane in n-dimensional space, there is a GL(k)
redundancy in the description of the matrix cim which needs to be fixed in order to allow a
proper calculation of the integral. This is done by setting a k × k block—usually one puts this
block at i = 1—to the unit matrix. The factor vol(GL(k))−1 is a formal way of reminding us
that in the expression above, this redundancy has not been fixed, yet.

It has been shown [60] that there is a transformation of (II.11) which turns the integral over
Gk(n) into an integral

Rn,k =
1

vol(GL(k − 2))

∫
dcn×(k−2)

M1[c] · · ·Mn[c]

k−2∏
i=1

δ4|4(cimWm). (II.13)

overGk−2(n) while transforming the supertwistors ZA to momentum supertwistorsWA. (Bosonic)
momentum twistors are formed by taking the variables xi defined by pi+1 = xi+1 − xi = λiλ̄i
and contract them with λi. So we have wA = (λ, λ.x =: µ). The immediate benefit of doing this
is that we solve the momentum conservation constraint

∑
i pi = 0. Thus momentum twistors

provide a set of unconstrained variables for on-shell kinematical data. Momentum twistors
have been introduced by Hodges in [61]. The proportionality factor between expression (II.11)
and (II.13) is exactly the n-particle MHV superamplitude

Ln,k = AMHV
n Rn,k (II.14)

and Rn,k encodes the higher NkMHV factors (R-invariants) Pk in momentum twistor variables.

The crucial element to be observed here is that Ln,k is manifestly superconformally invariant
while Rn,k is manifestly invariant under the celebrated dual superconformal symmetry [12]. It
has been shown that both expressions enjoy invariance (up to boundary terms) under the full
Yangian algebra [13].

Further work connected to the Grassmannian formulas Rn,k and Ln,k has revealed a remark-
able all-loop recursion relation [62] inspired by the BCFW recursion relations [9] for tree-level
amplitudes. Most recently, a theory of on-shell graphs was proposed by the same authors [63].
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§ II.1.2. A note on loops.—In this thesis we will not be concerned with perturbative cor-
rections to scattering amplitudes beyond one-loop level. However, we will give a short overview
of the topic in terms of scattering amplitudes.

The Yangian symmetry algebra is powerful enough to constrain the four and five point scattering
amplitudes to all orders in perturbation theory given by the BDS Ansatz [27]

ABDS
n = AMHV

n exp

( ∞∑
`=1

g̃2f (`)(ε)M (1)
n (`ε) + C(`) + E(`)

n (ε)

)
(II.15)

here given in dimensional regularization. The parameter ` is the loop order, M (1)
n the one-loop

result at n = 4, 5 points, g̃2 = 2g2(4πe−γ)ε the loop expansion parameter and f (`), C(`) functions
independent of the kinematics. E

(`)
n vanishes as the parameter of dimensional regularization

ε → 0. At higher points—for n > 5 legs—it was shown that the BDS Ansatz does not work:
The BDS prediction fails for the first time for the six-point two-loop MHV scattering amplitude.
The first hint at a failure came from a argument at strong coupling [64] and later at weak coupling
by a computation of the six-edge Wilson loop [48] as well as arguments from analysis of the
amplitude in multi-Regge kinematics [65, 66, 67]. The analytic result [68] conclusively showed
that the BDS Ansatz is broken beyond five points.

Many exciting developments have been sparked by the computation of this analytic result. One
of the most interesting was the introduction of the symbol [69] S(F ) of a transcendental function
F , which was used to vastly simplify [70] the result of ref. [68]. The symbol proves to be a most
important concept in N = 4 SYM due to the Kotikov-Lipatov transcendentality principle [71]
implying that the results of `-loop calculations must be of highest transcendentality 2` in N = 4
SYM as well as the fact that the coefficients of these functions are numbers unlike in e.g., QCD,
where they are rational functions of the kinematical data.

II.2 Wilson loops

An

pi+1
pi

p1

p2

p3

p4

p5

momentum cons
ervat

ion

x2

x3

x4
x5

Finally we want to introduce another remarkable prop-
erty of scattering amplitudes in N = 4 SYM: The du-
ality between scattering amplitudes and Wilson loops
on light-like contours. Originally, the duality only en-
compassed MHV scattering amplitudes [16, 48] but was
later generalized to all amplitudes [17, 10]. Let us
present the important features of this duality. We will
first examine how the dual space-time is constructed
and then turn to the formulation of these Wilson loops.

The situation is depicted in the diagram to the right.
Given a n-particle scattering amplitude with momenta
pi, each satisfying p2

i = 0, it is possible to define vari-
ables xi in a Minkowski space such that

xi − xi+1 = pi. (II.16)

Momentum conservation requires that the momenta
form a closed polygonal path. This path is parametrized
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by displacement vectors in a dual Minkowski space. The constraint p2
i = 0 implies that

(xi− xi+1)2 = 0 i.e., these intervals are light-like. We can use the spinor-helicity formulation of
massless momenta and write

(xi − xi+1)α̇α = λαλ̃α̇. (II.17)

Additionally, we need to identify
xn+1 ≡ x1 (II.18)

to ensure that momentum conservation is obeyed. Notice that the coordinates xi do not have
the correct mass dimension for a spacetime variable since [x] = [p] = −1. This identifies them
as being dual variables instead of the coordinates of the original spacetime on which the theory
has been originally formulated.

This dualization of the kinematical variables relates the set of massless momenta {pi} satisfying∑
i pi = 0 to a closed light-like contour in a dual space. A most natural object to define on such

a contour—we will denote it by Cn for n edges—is a Wilson loop

Wn =
1

Nc
trP exp

(∮
Cn

A
)

(II.19)

where A = dxµAµ(x) is the bosonic gauge field of N = 4 SYM. A duality in the planar
limit between the expectation value 〈Wn〉 of these objects and the perturbative corrections
Ân =

∑∞
l=1 g

2`A(`) to MHV scattering amplitudes

AMHV
n = AMHV

n Ân (II.20)

via
log Ân = logWn +O(ε) (II.21)

was conjectured [47] and probed extensively [72, 48, 46, 16, 73]. O(ε) stands for terms vanishing
in dimensional regularization upon taking the limit ε→ 0.

pi−1

qi−1

(xi, θi) (xi+1, θi+1) A supersymmetrization of this notion to produce a
duality that captures NkMHV amplitudes has been
formulated in Minkowski superspace and twistor
space [17, 10]. Since amplitudes are defined on a
chiral superspace (λ, λ̄, η), the Wilson loop should
be defined on a dual chiral superspace (x, θ) with
the identifications

xi − xi+1 = λiλ̄, θi − θi+1 = λiη (II.22)

for the momenta pα̇αi = λiλ̄i and the supermomenta qaαi = λαi η
a
i . In this superspace, light-like

lines are “thickened” by the additional fermionic directions η—the process can be thought of
as attaching fermionic dimensions to the bosonic line. On the diagram4 to the left above is a
schematic of the thickening of the light-like lines. While momentum and supermomentum sit
on thickened edges of dimension (1|4), they meet in (0|0)-dimensional superspace points (xi, θi).
These ideas will be explained in much more detail in part 4.

To perform the generalization, the Wilson loop operator in (II.19) is augmented by a fermionic
superfield5

A = dxµAµ(x, θ) + dθaαAαa(x, θ). (II.23)
4Inspired by the related “fat line” diagrams in [74].
5A similar notion appeared already in [75].
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The proposal appeared independently in [17, 10]. However, it was pointed out [18] that both
cases have problems at reproducing the correct results for NkMHV amplitudes. They also
have the even more puzzling problem that the supersymmetries Q̄ are broken at the quantum
level by the calculated results. The second issue was particularly vexing as seemingly even
finite quantities—unplagued by divergences and thus independent of regularization—failed to
be annihilated by Q̄.

The problem of the Q̄-anomaly was subsequently solved in two independent papers [76, 77],
both showing that Q̄ had to be corrected to take into account the formulation of scattering
amplitudes in terms of the chiral on-shell variables λ, λ̄, η or the holomorphic supertwistors ZA.
In the twistor case, the authors pointed out that the naive Q̄-operator

Q̄ = χ
∂

∂µ
(II.24)

here given in twistor language—was in fact not a symmetry of full N = 4 SYM on chiral
superspace but only of the self-dual theory.

Interestingly enough, the correction term needed is introducing a mixing of different levels in
perturbation theory. Effectively, a recursion relation combining NkMHV-level and loop-level `
had been found which constrains the form of the integrands of higher loop amplitudes. In view
of the duality with scattering amplitudes this echoed older results [78, 79, 80, 81].

Two workarounds to cure the Q̄-anomaly were also proposed: One by extending the chiral
Wilson loop to a non-chiral version [82] while the other relied on a bottom-up approach to
construct a Wilson loop on N = 4 full superspace [74, 1]. This second proposal will be reviewed
in much broader detail in part 4. In view of the duality with scattering amplitudes, there is a
nagging problem with non-chiral Wilson loops, though. While they restore Q̄ invariance, they
are not dual to scattering amplitudes anymore. Their θ̄-expansion also contains other quantities
that—while being crucial to the restoration of Q̄-invariance—cannot be related to scattering
amplitudes—not even to scattering amplitudes formulated on a non-chiral momentum space
[83]. We will investigate the bottom-up approach more closely in Part 4.
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Geometry





The present part, entitled Geometry, is concerned with fundamental properties of supersymmet-
ric Yang-Mills theories. We will first introduce the notion of flag manifolds of SL(4) and use
their formulation as cosets of SL(4) to derive vielbeins, the form of covariant derivatives, the
action of the superconformal algebra on the manifold and the easy derivation of supertransla-
tion invariant intervals in superspace. Furthermore, we will be able to translate these concepts
between different types of flag manifolds by way of double fibrations—a well known concept in
the case of the Penrose-Ward correspondence which relates Minkowski superspace to twistor
space.

We will then tie the abstract concept of flag manifolds to the more hands-on harmonic superspace
approach and explicitly showcase how to derive vielbeins and covariant derivatives on different
spaces. These we will use in cha. VI to explain how actions for Yang-Mills theories on spaces
other than Minkowski superspace can be found. The two relevant examples concentrate on
actions in terms of a holomorphic Chern-Simons form

CS[A] = A∂̄A+
2

3
A ∧A ∧A. (II.25)

Here A is a twistor gauge field. The first example is the derivation of holomorphic Chern-
Simons theory on twistor space from the self-dual Yang-Mills equations with N = 4 extended
supersymmetry. The second example is the holomorphic Chern-Simons theory that is obtained
by extendingN = 3 super-Yang-Mills theory by additional harmonic coordinates and subsequent
reduction of the theory to an analytic superspace which contains odd twistors.

In chapter VII we will concern ourselves with the retrieval of familiar spacetime fields—or
more generally operators—from twistor or harmonic superspace quantities. In both cases we
get these from the twistor gauge fields A. We will do so first for Abelian gauge theories by
using (a generalization of) the Penrose transform which implies integrating over the harmonics.
The existence of such a transform is a consequence of the double fibration picture. Then we
will expand these notions to non-Abelian theories by using a Wilson line picture in harmonic
coordinates.
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CHAPTER III
Flag manifolds

In this chapter, we will introduce flag manifolds. Flag manifolds are a generalization of the
better known projective spaces of vector spaces. They include the family Gk(N) of spaces of
k-dimensional subspaces in an N dimensional complex vector space V ' CN—the family of
Grassmannian manifolds—and also generalize this concept. We will always work with complex
vector spaces here.

We begin by introducing the concept of flag manifolds and some of the theory connected to it.
This chapter is confined to bosonic manifolds, which is enough to exhibit the most important
concepts. One of these are double fibrations, which we will be presenting in sec. III.3. In
a subsequent chapter we will use the language of flag manifolds for a unified presentation of
physically interesting manifolds which exhibit N extended superconformal symmetry in four
dimensions as flag manifolds of the group SL(4|N ). The layout is loosely following the exposition
in [84].

III.1 Flags

Consider the following. Let V be a vector space. We endow this vector space V ' CN with a
basis {ei}, i = 1, . . . ,dim(V ) = N . The group GL(N) has an action on V and having chosen
a volume form Ω, we can narrow this down to an action of SL(N). Now, choose a subspace
(e1, . . . , ek), where k < N . This subspace is some hyperplane in V . The space of all such
subspaces of V is called the Grassmannian Gk(N), the space of k-planes in (complex) N -
dimensional space. The most fundamental one of this family of derived spaces is the space of
lines in CN passing through the origin. This space is called projective space CPN−1. This is a
special case of a flag manifold. We will always consider V ' CN and only use real vector spaces
when we explicitly say so.

So now, what is a flag? Choose a hyperplane (e1, . . . , ek) in CN with k < N . In this hyperplane,
chose another subspace (e1, . . . , el), l < k and so on. Such an object will be called a flag. If we
have an N dimensional vector space with basis {ei} and K a sequence k1, . . . , kn of non-negative
integers with

k1 < k2 < . . . < kn < N, (III.1)

we call the sequence of subsets also denoted by K

K = [(e1, . . . , ek1) : (e1, . . . , ek2) : . . . : (e1, . . . , ekn)] (III.2)

a flag of type K. Clearly, this generalizes the notion of Grassmannian manifolds by creating
“Grassmannians in Grassmannians”.
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Therefore, we understand flags as the natural generalization
of subspaces in vector spaces. The spaces of all flags of type
K are—just like the family of Grassmannians Gk(N)—not
vector spaces anymore but have the structure of differen-
tiable manifolds. These manifolds are quite aptly named
flag manifolds and will be denoted by FK(N)—if we don’t
identify them with other manifolds. Interestingly enough,
the dimension of any flag manifold can be calculated from
the sequence K by taking the Grassmannian dimension of
any two consecutive pairs in the sequence and adding up,
e.g., given K = k1 < · · · < kn we have

dimFK(N) = k1(k2 − k1) + k2(k3 − k2) + · · ·+ kn−1(kn − kn−1). (III.3)

Using the family of Grassmannian manifolds as our example of choice we may express them in
the new language of flag manifolds. The sequence K consists of only one element k in these
cases, so we write

Fk(N) = Gk(N). (III.4)

The picture above tries to give an intuition for a flag: The vector c = αe1 + βe2 + γe3 is
contained within the blue plane (i.e. a two-dimensional space) which is contained in a three
dimensional space spanned by the vectors ei. A flag manifold is defined as the set of all such
objects.

Grassmannian manifolds have another feature that may guide us in our understanding of flag
manifolds. They are naturally isomorphic to homogeneous spaces of the Lie group GL(N) with
the stabilizer of the k-dimensional subspace which we denote by H ′k(N), so

Gk(N) ' GL(N)

H ′k(N)
. (III.5)

This generalizes to any given flag manifold with sequence K. We can find its stabilizing group
H ′K(N) by a simple algorithm1. Given a flag K = k1 < k2 < · · · < ki, the elements of
h ∈ H ′K(V ) will be of the form

∗ . ∗
. . .
∗ . ∗
∗ . . . . . ∗
. . . . . . .
. . . . . . .
∗ . . . . . ∗
∗ . . . . . . . . ∗
. . . . . . . . . .
∗ . . . . . . . . ∗

. . .




[h]=

k1

k1

k2

k2

1That is true for flags of the groups SL(N), SU(N), and SO(N); flags of the group Sp(N) do not conform to
this simple algorithm.
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where the first block is a k1 × k1 matrix, the first and second block together a k2 × k2 matrix
and so on—the diagonal dots are meant to signify the continuation of this pattern. Any flag
manifold can then be defined as the right coset of the group GL(N) (or SL(N) in the presence
of a volume form) divided by the stabilizer of the flag, i.e., given a flag K = k1 < . . . < ki

FK(N) ' GL(N)

H ′K(N)
' SL(N)

HK(N)
(III.6)

The second equation holds after having chosen a volume form. The group HK(N) corresponds
to the subgroup of H ′K(N) with unit determinant. Thus any group element g may be written
in terms of a coset representative s(u) ∈ FK(N) with coordinates u on GL(N) and an element
of the stabilizer h(u) s.t.

g(u) = h(u).s(u). (III.7)

For an element g′ of the group SL(N) to map s(u) into another element on the flag manifold
we need to multiply by an element of the stability group

s(u).g′(u) = h(g, u).s(u′). (III.8)

Using this, the action of (super)conformal transformations on the coordinates u may be deduced
immediately from the linearized version of the last equation.

If we grace CN with a hermitian metric h, the symmetry group further narrows down to the
unitary group U(N), and a volume form finally reduces this to SU(N) and similarly for the
quotient groups. All the quotients are isomorphic, so we can see that flag manifolds derived in
this way are in fact, compact2. Interestingly, the stabilizing groups H ′K(N) can be written in an
easy way when we narrow down to the unitary SU(N). In this case, given K = k1 < · · · < kn,
we have that

FK(N) ' SU(N)

S(U(k1)× U(k2 − k1)× · · · × U(N − kn))
. (III.9)

Using the simplest example of Grassmannian manifolds, we can write

Gk(N) ' SU(N)

S(U(k)× U(N − k))
. (III.10)

As a simple application of this, let [C] = cij be a matrix in SU(N). The stabilizing group
Hk(N) consists of block-diagonal matrices where the first block is a k×k-matrix and the second
block is a (N − k) × (N − k)-matrix. The coset may be parametrized by matrices cim where
i = 1, . . . , k and m = 1, . . . , N − k, e.g.,

cim =

 c11 . . . c1,N−k

1k×k . . .
...

ck1 . . . ck,N−k

 (III.11)

and the conjugate which is a (N − k)× k matrix. In the case of SL(N)/Hk(N), (III.11) taken
as matrix of complex coordinates describes the patch on the complex Grassmannian Gk(N).
Compare also the discussion of the Grassmannian integral in sec. II.1.1.

2Since SU(N) is real, while SL(N) is complex, we run into the problem of correctly counting the dimensions of
the various flag manifolds. The isomorphism ensures that the dimensions of the different flag manifolds over
C is the same. The reality of SU(N) is present in the form of the stabilizer. The elements h of the stabilizer
have block-diagonal form such that we end up with twice as many coordinates on the flag manifold. The
unitarity of the matrices ensure that under complex conjugation ūij = ui

j as matrix elements, which reduces
the complex dimension by a factor of two, such that the counting works out.
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III.2 Parabolic Lie algebras

It is possible to classify and count all possible flag manifolds derived from GL(N). Let g
denote the Lie algebra of the (semi-simple) Lie group G. Any such Lie algebra contains a Borel
subalgebra b which is the direct sum of the Cartan subalgebra h and the space of positive—or
equivalently negative—roots

⊕
i g

+
i

b = h
⊕
i

g+
i . (III.12)

A Borel subalgebra is a special case of a parabolic subalgebra p which are direct sums of b and
any number of negative roots. In a word, there are as many flag manifolds to be had from g as
there are parabolic subalgebras p ⊂ g.

What does this mean in terms of the stabilizers HK(N)? It is easy to see that b ⊂ gl(N)
generates the lower triangular matrices

∗
∗ ∗
...

. . .
∗ ∗ · · · ∗

 (III.13)

which form a Lie subgroup of GL(N). The lower triangular matrices however correspond to
the stabilizer of flags of the form 1 < 2 < . . . < N − 1 < N . These flags we will call full or
equivalently maximal flags. Any other flag manifold can be built by successively adding negative
roots to b thus generating higher parabolic subalgebras. This gives rise to the very important
concept of double fibrations which was central to the development of the twistorial description
of Yang-Mills theories which we will discuss now.

III.3 Double fibrations

Given any two flag manifolds F1 and F2 derived from a Lie group G, we can associate them
with the parabolic subgroups P1 and P2 used to define the quotients3

Fi = Pi\G. (III.14)

To these two flag manifolds we can associate a third flag manifold FK1∩2 = P1 ∩P2\G. The flag
manifolds Fi can be derived from FK1∩2 by projections π1 and π2 such that we get the diagram

P1 ∩ P2\G
π1

yyrrrrrrrrrr
π2

%%LLLLLLLLLL

P1\G ks +3 P2\G

(III.15)

The thick arrow in the middle is what we are interested in. Given a point p ∈ P1\G we can
map it to a set π2 ◦ π−1

1 (p) ∈ P2\G and vice versa. More importantly, the set π2 ◦ π−1
1 (p) can

be thought of as a copy of π−1
1 (p) embedded in F2 via π2. Such a structure is called a double

fibration and its existence has deep implications for gauge theories defined on flag manifolds.
Minkowski space itself is (part of) a flag manifold and interesting double fibrations exist for it
with other spaces (see below). Let us look at two very specific and very important examples of
double fibrations.

3The notation indicates the fact that we are working with right cosets.
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III.4 The Ward and Witten correspondence

In four dimensions, the group SL(4) is the group of conformal transformations. Our starting
point for any considerations will therefore be the group SL(4) out of which we will build flag
manifolds. There are two especially important double fibrations we would like to study in detail.

§ III.4.1. The Ward correspondence.—The first involves the three flags4 F12, F2 and F1.
It is easy to identify the second as the Grassmannian G2(4) according to (III.4). Following
Penrose, we know that by compactifying Minkowski spacetime by adding in the “light-cone at
infinity” and then complexifying this compactification, we arrive at G2(4), the Grassmannian of
two-dimensional subspaces in four-dimensional complex space C4, see e.g., the book by Manin
[85]. Conversely, we can choose a patch in G2(4) which contains a copy of (complexified)
Minkowski space. In the following, when we talk about Minkowski space, we will be talking
about complexified compactified Minkowski space G2(4) which we will be denoting by M4. As
stated before, when we make use of a specific reality condition, we will explicitly notify the
reader of this.

The space F1 we can recognize as the projective space CP3 and the space F12 is the bundle
of undotted spinors5 over Minkowski space M4, locally therefore given by M4 × CP1. The
projective space CP3 is Penrose’s twistor space [86] P with the “light-cone at infinity” added in.
For briefness, we will refer to F12(4) as correspondence space. All three spaces neatly fit into a
double fibration diagram like (III.15)

F12(4)
π1

{{xxxxxxxx
π2

##GG
GG

GG
GG

G

M4 ks +3 CP3

(III.16)

xµ

(xµ, λα)

z
A = (λ

α , λ.
x
α̇ )

π1 π2

Let us endow the three spaces
with coordinates. Since the
correspondence space is the
bundle of undotted spinors
over Minkowski space we pick
a chart and put coordinates
(λα, xα̇α). The projection π1

maps (λα, xα̇α) to (xα̇α) in a
chart in complexified, compact-
ified Minkowski space while π2

maps (λα, xα̇α) to coordinates
(λα, µα̇ = εαβλ

αxα̇β) on CP3. The figure above emphasizes the structure of the correspondence
space as essentially a Minkowski space with a Riemann sphere attached at every point. Under
π2 we recover complex lines in CP3. Without any further ado, we see which kinds of sets are
mapped by the two maps π2 ◦ π−1

1 and π1 ◦ π−1
2 . In the first case a point x ∈ M4 gets mapped

4Equivalently we may use F23, F2 and F3
5This is of course an arbitrary choice conforming to convention. We equivalently could have chosen it to be the
bundle of dotted spinors over complexified compactified Minkowski space.
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to a line (λ, λx) ∈ CP3 (x here is fixed, while λ runs). Conversely, a point ZA = (λ, µ) gets
mapped to a plane (λ fixed, x running) by the incidence relation

µα̇ = εαβλ
αxα̇β. (III.17)

More precisely, this is a so called α-plane in Penrose’s terminology. Thus, the set in Minkowski
space corresponding to the point ZA ∈ CP3 is a plane. We can see this by solving the incidence
relations by

xαα̇ = xαα̇0 + λαρα̇ (III.18)

where x0 is a fixed point and ρ is a undetermined spinor mapping out a plane in Minkowski
space. Since εαβλαλβ = 0, this is the solution to the incidence relations. α-planes will play an
interesting role in our discussion of self-dual Yang-Mills theory.

Minkowski space Twistor space
point complex line CP1

α - plane point

Table III.1.: The Penrose-Ward correspondence

Historically, the correspondence between these two spaces is known as Penrose-Ward correspon-
dence. The correspondence between points of one space and subsets of another space under the
double fibration have been summarized in Table III.1.

Given a scalar function f(Z) on twistor space, we can restrict it to a specific CP1 ⊂ CP3 such
that Z = (λ, λ.x). Then the extension of the map π1 ◦π−1

2 to the scalar functions is the Penrose
integral transformation

f̃(x) =

∫
CP1

D2λ f(λ, λ.x)|CP1 (III.19)

with projective measure D2λ = 〈λ, dλ〉[λ̄, dλ̄]. With such a transform we retrieve functions on
spacetime from functions on twistor space. In the modern twistor literature, however, the map
is usually understood as a map from (0, 1)-forms f̄(Z) on twistor space restricted to a CP1 to
spacetime, i.e.,

f̃(x) =

∫
CP1

Dλ ∧ f̄(Z)|CP1 . (III.20)

We will see it again in this form in cha. VI.

§ III.4.2. The Witten correspondence.—Let us now turn to our second important example.
The correspondence space in this case is the full flag F123(4). Furthermore we want to build
the two flag manifolds F2(4) and F13(4). While we know the Grassmannian G2(4) ' F2(4)
already, the full flag is also known as the bundle of dotted and undotted spinors over Minkowski
space. The other space F13(4) is a five-complex dimensional space known as ambitwistor space
A3 which is a quadric in CP3 ×CP∗3. Once again, these three spaces fit into a double fibration
diagram like (III.15)

F123(4)
π1

{{www
ww

ww
ww π2

##GG
GG

GG
GG

G

M4 ks +3 A3

(III.21)
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If we pick a chart on F123(4) with coordinates (λα, κα̇, xα̇α), then the projections π1 and π2 map
these coordinates to coordinates xα̇α ∈M4 and

([λα, µα̇ = εαβλ
αxα̇β], [ρα = −εα̇β̇x

α̇ακβ̇, κα̇]) ∈ A3 (III.22)

such that
λαρα + µα̇κα̇ = 0. (III.23)

zAwA

xµcorresponds

Let us attempt to understand the maps from points
x ∈ M4 to ambitwistor space. As in the Penrose-Ward
correspondence, the map π2 ◦π−1

1 maps x to the pair of
lines zA = (λ, λx) and wA = (xκ, κ) constrained to lie
in the quadric A3 ⊂ CP3 × CP∗3. This has been indi-
cated on the figure to the left. Conversely, the incidence
relations

µα̇ = εαβλ
αxα̇β, (III.24a)

ρα = −εα̇β̇x
α̇ακβ̇ (III.24b)

have a unique solution
xα̇α = xα̇α0 + tλακα̇ (III.25)

in Minkowski space.

Minkowski space Ambitwistor space
point CP1 × CP1

light-like line point

Table III.2.: The Witten correspondence

We see that the solution is a light-like line through x0 in M4. For this reason ambitwistor
space is also called the space of light-like lines in Minkowski space. The correspondence was first
explored by E. Witten [87] and at the same time by [88] and is known as Witten correspondence
in analogy with the Penrose-Ward correspondence. We will revisit A3 in Part 4. The Witten
correspondence is summarized in Table III.2.

Let us now turn to the description of harmonic variables. We will extend the formalism of flag
manifolds to supermanifolds in cha. V.
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CHAPTER IV
Harmonics

After having introduced the more abstract features of flag manifolds, we want to turn to the
more hands-on topic of harmonics. The study of essential properties of manifolds that can be
described as coset spaces is vastly simplified by the use of harmonic variables. These variables are
essentially coordinates of the group underlying the coset space in question. We shall make use of
them in the following to find the Maurer-Cartan form, the covariant derivatives and the action
of the superconformal transformations of various spaces by using a very limited set of “recipes”
for the calculation of these quantities. We will use harmonic variables for our calculations in
cha. VI.

There is a vast amount of literature on harmonic coordinates, for a textbook reference see [89].
Originally, harmonics were introduced in gauge theories like supersymmetric Yang-Mills theory
to parametrize manifolds that had been “glued” to Minkowski superspace. These additional
degrees of freedom could be used to solve the constraints of SYM. The reason why this is a
viable way of extending Minkowski superspace lies in our discussion of flag manifolds: Together
with the additional coordinates, new flag manifolds could be parametrized [84]. In the following,
we will use harmonics as a “hands-on” way of understanding flag manifolds inspired by [90].

Let us start with a general definition of these coordinates. Given the group1 SL(N) we can
assign coordinates to the whole group by taking the group element

SL(N) 3 [U ] =

u1
1 . . . u1

N
...

...
uN 1 . . . uNN

 (IV.1)

with uij ∈ C. All we have to ask is that

detU = εi1···iN ε
j1···jNui1j1 · · ·uiN jN = 1 (IV.2)

thus immediately defining the inverse U−1 with entries

uik
jl = εi1···ik···iN−1ε

j1···jl···jN−1ui1j1 · · · ûik jl · · ·u
iN
jN (IV.3)

where û is the omission of u. We will make use of exactly this form of U−1 in the following
calculations.

Given such u on SL(N) it is now possible to write down coordinates on the flag manifolds that
can be derived from SL(N) without having to rely on picking a chart on the coset.

1Or in fact any semi-simple Lie group G, although the cases apart from SL(N) and SU(N) can get very
involved.
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IV.1 Harmonics and Flag manifolds

As described in sec. III.2, flag manifolds are the right cosets P\G of the semi-simple groupG with
respect to one of its parabolic subgroups P . One of the advantages of the harmonic approach
lies in the possibility to choose different embeddings for P in G and so provide convenient
coordinates for the cosets using the coordinates uij on SL(N).

We will calculate a few examples of the process for illustration and for later reference. We shall
begin by calculating the harmonic coordinates for twistor space.

§ IV.1.1. Twistor space CP3.—The parabolic subgroup of SL(4) of interest in this case2 is
H3(N). Let us assume we have introduced a hermitian metric. Then we can work equivalently
with SU(4). The parabolic subgroup of SU(4) we are interested in is S(U(3) × U(1)). In this
case there is the Abelian subalgebra U(1) to be taken into account. To do so we will label the
coordinates uI j on SU(4) with one U(3) index i and one U(1) charge (q) such that uI j = u(q)i

j .
The fundamental representation 4 of SU(4) splits like3

4 ' 31 ⊕ 1−3. (IV.4)

We shall look at the more general case of SU(N+1)/S(U(N)×U(1)) because it doesn’t add any
additional complexity to the calculation. We can easily see that the fundamental representation
of SU(N + 1) reduces like

N + 1 ' (N)1 ⊕ 1−N (IV.5)

so it is possible to write an element U ∈ SU(N + 1) parametrized by coordinates u(q)i
j with

charge q as
[U ]ij =

[
u(1)α

i, u(−N)
i

]
(IV.6)

with i = 1, . . . , N+1 and α = 1, . . . , N . When things are unambiguous we shall take the liberty
of dropping the U(1)-charges. The inverse is clearly given by

[U−1]ij =

[
u

(−1)i
α

u(N)i

]
(IV.7)

such that
u(−1)i
α u(1)β

i = δβα, u(N)iu(−N)
i = 1 (IV.8)

and all the other contractions zero. Let us proceed to the quantities of interest.

The Maurer-Cartan form is given by

[U−1dU ]ij =

(
uα

iduβi uα
idui

uiduβi uidui

)
=

(
−ωαβ e

(−N−1)
α

e(N+1)β −ω′0

)
. (IV.9)

We can now determine the covariant derivatives D on the coset by following the steps outlined
in apdx. B. Taking into account the tracelessness constraint

ω′0 + ωα
α = 0 (IV.10)

2In the literature twistors were originally described as this coset, nowadays people tend to use the dual space
CP3 with stabilizer H1(N).

3The global value of the U(1) charges are of course arbitrary and can be fixed by normalization, only the relative
charges count. To simplify notation we choose to avoid fractions and keep integer charges.
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we can write the exterior derivative as D = d+ ω, hence

d = e(N+1)αD(−N−1)
α + e(−N−1)

α D(N+1)α − ωαβDα
β − ω0D0 (IV.11)

where ω′0 = −Nω0 and

D(−N−1)
α = u(−N)

i
∂

∂u(1)α
i

D(N+1)α = u(1)α
i

∂

∂u(−N)
i

(IV.12)

Dα
β = u(1)α

i
∂

∂u(1)β
i
− 1

N
δαβu

(1)γ
i

∂

∂u(1)γ
i

(IV.13)

D0 = u(1)α
i

∂

∂u(1)α
i
−Nu(−N)

i
∂

∂u(−N)
i

(IV.14)

We can restrict to a patch of CPN to make things clearer. The variables u(−N)
i can be

considered homogeneous coordinates on CPN . The space CPN cannot be mapped to CN
with only one patch since there are points at infinity for every direction in the projective
coordinate system. Every point on CPN is described by a vector (u1, . . . , uN+1) in CN+1.
Then by taking ui 6= 0 for each i in turn, N + 1 patches can be formed by taking ratios
(u1/ui, . . . , ui−1/ui, 1, ui+1/ui, . . . , uN+1/ui) which cover all of CPN . These new coordinates
are a non-projective or inhomogeneous coordinate system on CPN . In the case of CP1, for
example, spinors λα = (λ1, λ2) with λi ∈ C provide a homogeneous coordinate system, and we
can form two patches (1, z2) for λ1 6= 0 or (z1, 1) for λ2 6= 0.

To go to a set of homogeneous coordinates on the coset we have been looking at, we get to the
patch where uαi = δαi . In the specific case of N = 3, we will relabel

u(−N)
i → wA (IV.15)

and call wA twistors. Twistor space is of tremendous importance to theories of gauge fields and
gravity alike (see for example in [91]).

Finally, one can split the covariant derivative on the coset into holomorphic and antiholomorphic
parts4 by letting

D = ∂ + ∂̄ = e(−N−1)αD(N+1)
α + e(N+1)αD(−N−1)

α (IV.16)

satisfying
∂2 = ∂̄2 = 0, and ∂∂̄ + ∂̄∂ = 0 (IV.17)

where the last equation holds on functions f(u) which are invariant under transformations of
the factored group S(U(N) × U(1)), i.e., they have U(1) weight 0 and are SU(N) singlets. In
this way the coset comes with a complex structure—just as we would have expected, since we
claimed that it would be isomorphic to CPN . In this case ∂̄ is a so called Dolbeault derivative
with which we can change the order of complex differential forms and define a cohomology on
complex manifolds. This is a special case of the more coarse deRham-cohomology which is
available on more general manifolds without a complex structure. We do not need to go into
the details of Dolbeault cohomology here. However, it has proven to be a useful concept to
understand self-dual Yang-Mills theories, see e.g., [85].

As a final remark—we could have chosen a different embedding of S(U(N)×U(1)) in SU(N+1),
this would have led us to CP∗N , the conjugate twistor space which is isomorphic to CPN .

4As can be seen ∂ and ∂̄ are (1, 0) and (0, 1)-forms respectively.
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§ IV.1.2. Ambitwistor space A.—Finally, let us work out an example that will be relevant
for the calculations in cha. VI. The third family of spaces of interest is the family of ambitwistor-
like spaces5 AN . We will work with cosets of G = SU(N + 2). The relevant subgroup is
P = S(U(1)×U(N)×U(1)) and the fundamental representation (N + 2) of SU(N+2) restricts
quite naturally over P

(N + 2) ' (N)(−1,1) ⊕ 1(N,0) ⊕ 1(0,−N). (IV.18)

We choose the harmonic coordinates uI i in the following way

[U ]ij =
[
u(N,0)

i, u(−1,1)α
i, u(0,−N)

i

]
(IV.19)

with two U(1)-weights (p, q). The inverse is

[U−1]ij =

u(−N,0)i

u
(1,−1)i
α

u(0,N)i

 . (IV.20)

The Maurer-Cartan form splits then into nine pieces according to U(1)-weights

[U−1dU ]ij =

u(−N,0)idu(N,0)
i u(−N,0)idu(−1,1)β

i u(−N,0)idu(0,−N)
i

u
(1,−1)i
α du(N,0)

i u
(1,−1)i
α du(−1,1)β

i u
(1,−1)i
α du(0,−N)

i

u(0,N)idu(N,0)
i u(0,N)idu(−1,1)β

i u(0,N)idu(0,−N)
i


=

 −ω′1 e(−N−1,1)β e(−N,−N)

e
(N+1,−1)
α ωα

β e
(1,−N−1)
α

e(N,N) e(−1,N+1)β −ω′2

 (IV.21)

Furthermore, the exterior derivative is given by

d = e(−N,−N)D(N,N) + e(N,N)D(−N,−N) + e(N+1,−1)
α D(−N−1,1)α

+ e(1,−N−1)
α D(−1,N+1)α + e(−N−1,1)αD(N+1,−1)

α + e(−1,N+1)αD(1,−N−1)
α

+ ωα
βDα

β − ω1D1 − ω2D2 (IV.22)

with

D(N,N) = u(N,0)
i

∂

∂u(0,−N)
i

D(−N,−N) = u(0,−N)
i

∂

∂u(N,0)
i

(IV.23a)

D(−N−1,1)α = u(−1,1)α
i

∂

∂u(N,0)
i

D(−1,N+1)α = u(−1,1)α
i

∂

∂u(0,−N)
i

(IV.23b)

D(N+1,−1)
α = u(N,0)

i
∂

∂u(−1,1)α
i

D(1,−N−1)
α = u(0,−N)

i
∂

∂u(−1,1)α
i

(IV.23c)

Dα
β = u(−1,1)α

i
∂

∂u(−1,1)β
i
− 1

N
δαβu

(−1,1)γ
i

∂

∂u(−1,1)γ
i

(IV.23d)

D1 = Nu(N,0)
i

∂

∂u(N,0)
i
− u(−1,1)α

i
∂

∂u(−1,1)a
i

(IV.23e)

D2 = −Nu(0,−N)
i

∂

∂u(0,−N)
i

+ u(−1,1)α
i

∂

∂u(−1,1)a
i

(IV.23f)

which we can use to extract the covariant derivative D. These relations are a bit overwhelming,
so let us restrict to a particular case which is relevant for us in the following.

5We follow the following naming convention: Since all ambitwistor spaces can be described as quadric in
CPN × CPN , we call these submanifolds AN . This is independent of the actual dimension of AN . See also
the footnote on superambitwistor space on page 47.

42



§ IV.1.3. The case A2 = SU(3)/U(1)×2.—We will choose the case where N = 1 because it
will be relevant for the discussion in cha. VI: N = 3 SYM can be described on a space containing
A2 as a subspace6. The relevant coset7 is SU(3)/U(1)×2. Observe that the SU(N) subalgebra
vanishes. We are left with

D(1,1) = u(1,0)
i

∂

∂u(0,−1)
i

D(−1,−1) = u(0,−1)
i

∂

∂u(1,0)
i

(IV.24a)

D(−2,1) = u(−1,1)
i

∂

∂u(1,0)
i

D(−1,2) = u(−1,1)
i

∂

∂u(0,−1)
i

(IV.24b)

D(2,−1) = u(1,0)
i

∂

∂u(−1,1)
i

D(1,−2) = u(0,−1)
i

∂

∂u(−1,1)
i

(IV.24c)

D1 = u(1,0)
i

∂

∂u(1,0)
i
− u(−1,1)

i
∂

∂u(−1,1)
i

(IV.24d)

D2 = −u(0,−1)
i

∂

∂u(0,−1)
i

+ u(−1,1)
i

∂

∂u(−1,1)
i

(IV.24e)

The corresponding set of vielbein one-forms is

e(2,−1) = u(−1,1)idu
(1,0)
i e(1,1) = u(0,1)idu

(1,0)
i e(−1,2) = u(0,1)idu

(−1,1)
i (IV.25)

e(−2,1) = u(−1,0)idu
(−1,1)
i e(−1,−1) = u(−1,0)idu

(0,−1)
i e(1,−2) = u(1,−1)idu

(0,−1)
i . (IV.26)

Now we notice the following, interesting feature of ambitwistor spaces. In the selection of
covariant derivatives, we can pick D(1,1), D(2,−1), and D(−1,2) to form a Dolbeault derivative

∂̄ = e(−1,−1)D(1,1) + e(−2,1)D(2,−1) + e(1,−2)D−1,2). (IV.27)

Again, we have a holomorphic derivative ∂ satisfying ∂∂̄+ ∂̄∂ = 0 on functions f(u) of the coset
coordinates which are weightless under the two U(1) charges. Functions which transform nicely,
that is via f(u.g) = ρ(h)f(u′) under the transformations of the group are called equivariant
functions. Here, ρ is the representation of the factor group H under which f transforms.

An interesting caveat: The relation ∂̄∂̄ = 0 implies torsion when written out in components.
This is easy to see, as

∂̄e(−1,−1) = e(−2,1) ∧ e(1,−2) (IV.28)

and so we find that
[D(2,−1), D(−1,2)] = D(1,1) (IV.29)

and all other commutators zero. The appearance of torsion is a general fact for all flag manifolds
with more than a single “step” in the form of the matrices h ∈ HK(N).

However, on higher dimensional spaces it is also possible to choose subsets of the covariant
derivatives to build derivative operators. Under specific conditions, which are described in
detail in apdx. C, these derivative operators provide us with other interesting structures on
the coset manifold. These CR structures become important when one tries to formulate a
theory on ambitwistor space A3 that is equivalent to (pure) Yang-Mills theory on four spacetime
dimensions. Attempts have been made here [92].

6In the literature, these spaces are usually called analytic spaces.
7In cha. VI the indices i will be the indices of the internal R-symmetry, i.e., the coset described in this section
will be part of the lower diagonal M ×M -block of a (N |M)-supermatrix. We will come to this in cha. V.
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CHAPTER V

Supersymmetric extension

Supersymmetric Yang-Mills theories—in particular N = 4 SYM, the theory we are interested
in—are most naturally defined on superspaces, manifolds with fermionic coordinates. The the-
ory of flag supermanifolds gives us the possibility to treat all physically interesting superspaces
in a unified framework and provides us with the necessary set of tools to work effectively with
different forms of the same theory on different manifolds. In this chapter we provide the gen-
eralization of flag manifolds to the case of manifolds with fermionic directions. Many of the
definitions that were given for the case of purely bosonic flag manifolds can be generalized
to fermionic flag manifolds with little effort. Flag supermanifolds and double fibrations for
supermanifolds can thus be defined easily after having introduced the bosonic case.

V.1 Flag supermanifolds

The generalization of the notion of flag manifolds to flag supermanifolds is mostly straightfor-
ward except when it comes to the exact definition of the sequence K that characterizes the
flags. Given a complex vector space CN |M with basis {ei, ηj}, there is a natural action of the
Lie supergroup GL(N |M). In the presence of a measure Ω, we replace GL(N |M) with the
elements of GL(N |M) with unit Berezinian i.e.,

SL(N |M) = {M ∈ GL(N |M)|Ber(M) = 1}. (V.1)

Let K be a sequence K = {(k1|κ1), . . . , (kn|κn)} of non-negative integers in both entries and

K1 < K2 < · · · < Kn < (N |M). (V.2)

The important information is how to read the “smaller than” sign. Given two points in the
sequence (ki|κi) and (ki+1|κi+1) then, (ki|κi) < (ki+1|κi+1) means that ki ≤ ki+1, κi ≤ κi+1 but
not both equal at the same time. The corresponding sequence of subsets of the basis of CN |M
is called a superflag.

The space of all such flags K is a supermanifold and will be denoted by FK(N |M). To find
the stabilizer HK(N |M), we apply the same algorithm as in the bosonic case. However, in the
(4|4)×(4|4)-matrix formHK(N |M) isn’t in a diagonal block form anymore, this can be recovered
when working with (2|4|2)× (2|4|2) (two bosonic, four fermionic and two bosonic columns and
rows) matrices. Here we have chosen to accept the non-diagonal block form and work with
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(4|4)×(4|4) matrices. For example in the case of the manifold of superflags (2|0) ≤ (2|4) ≤ (4|4)
the elements of H(2|0),(2|4)(4|4) have the form

∗ ∗
∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


. (V.3)

The flag supermanifold H(2|0)(4|4)\SL(4|4) can be identified with complexified, compactified
Minkowski superspace M4|16, where compactified refers to the compact body of M4|16.

Given a coset representative s(u) the action of an element g of the superconformal group SL(4|4)
on flag manifolds is still given by

s(u).g = h(u, g).s(u′) (V.4)

with h(u, g) ∈ HK(4|4). This can be used to calculate the form of the superconformal transfor-
mations on the coordinates u. Furthermore, we can find translation invariant intervals between
points in a coset space of SL(4|4) in the following way. Given two coset representatives s(ui)
and s(uj) with coordinates ui and uj , a translation from i to j on the coset manifold is given
by the group element

gij = s(ui)
−1.s(uj) (V.5)

since
s(ui).gij = s(uj). (V.6)

The entries of gij may be used to define translation invariant intervals in a patch of the flag
manifold. For this, examine the example ofM4|16. We can map non-compact complex Minkowski
space into the flag manifold H(2|0)(4|4)\SL(4|4) by letting (x, θ, θ̄) 7→ s(x, θ, θ̄) with [84]

s(x, θ, θ̄) =

1 −i(x−)α̇α −2iθαa

0 1 0
0 −2iθ̄α̇a 1

 (V.7)

where x± = x± 2iθθ̄. The inverse s−1(x, θ, θ̄) is given by

s−1(x, θ, θ̄) =

1 i(x+)α̇α 2iθαa

0 1 0
0 2iθ̄α̇a 1

 (V.8)

which can be easily verified by matrix multiplication. Then the group element gij is

gij = s−1(xi, θi, θ̄i).s(xj , θj , θ̄j) =

1 −i(x−j − x
+
i + 2iθiθ̄j)

α̇α −2i(θi − θj)αa
0 1 0
0 −2i(θ̄i − θ̄j)α̇a 1

 (V.9)

which indeed contains the invariant intervals x+−
ji , θji and θ̄ji as found in [74] by translation

invariance considerations. The bosonic interval is not the minimal choice for a translation
invariant interval, that would be

xji = xi − xj + 2iθiθ̄j − 2iθj θ̄i (V.10)
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but the combination x+−
ji = xji − 2iθjiθ̄ji does contain this choice as well as an additional bi-

fermionic piece which is invariant on its own. Similar procedures lead to translation invariant
intervals for other flag manifolds of SL(4|4).

A final word on vielbeins and one forms before we turn to the generalization of double fibrations:
The vielbein forms of supermanifolds are going to be of mixed Grassmann degree. When working
with fermionic and bosonic forms dzM , where degM ≡ |M | = 0 for bosonic indices and |M | = 1
for fermionic indices, we will adopt the following convention: A graded wedge product is defined
by

dzM ∧ dzN = −(−)MNdzN ∧ dzM . (V.11)
Most properties introduced for the bosonic case then carry over immediately.

§ V.1.1. The supersymmetric Penrose-Ward correspondence.—The following discus-
sion is valid for any N . Starting from the superconformal group SL(4|N ) where 0 < N ≤ 4 it
is possible to establish a double fibration between complex, chiral Minkowski space1 M4|2N

R and
supertwistor space CP3|N via the supermanifold of (1|0) < (2|0) < (4|N ) flags F(1|0),(2|0)(4|N )
i.e.,

F(1|0),(2|0)

π1

yyttttttttt
π2

%%JJJJJJJJJJ

M4|2N
R

ks +3 CP3|N

(V.12)

Using the double fibration, like in the bosonic case, certain sets of chiral Minkowski superspace
can be related to sets in supertwistor space. The derivation proceeds similarly to the bosonic
case, too. Endowing M4|4N

R with coordinates X = (xαα̇, θaα), a = 1, . . . ,N while CP3|N with
ZA = (λα, µα̇, χa) the double fibration relates points X in Minkowski superspace to complex
superlines (λα, (λx)α̇, (λθ)a) parametrized by the CP1 coordinate λα.

Conversely, a point ZA in supertwistor space gets mapped to a (2|2N )-dimensional hyperplane
in Minkowski superspace via

µα̇ = (λx)α̇, χa = (λθ)a. (V.13)

This is the supersymmetric Penrose-Ward correspondence for N -extended superspaces.

For scalar functions f(ZA) of the supertwistors, the Penrose transform extends to a super-
symmetric Penrose transform connecting twistor space and chiral superspace. Since points in
superspace M4|2N

R are still in correspondence with complex lines CP1 ⊂ CP3|N , we may restrict
to a certain CP1 such that ZA = (λ, λ.x+, λ.θ) and have

f̃(x+, θ) =

∫
CP1

D2λ f(ZA)|CP1 . (V.14)

In terms of full superspace f̃ is a chiral superfunction, i.e., it satisfies D̄α̇af̃ = 0. This establishes
a map from scalar functions of supertwistors to the chiral superfunctions on superspace2.

§ V.1.2. The supersymmetric Witten correspondence.—Similarly, we can define a dou-
ble fibration for full four-dimensional Minkowski superspace and superambitwistor space3 A3|N .

1Instead of working with full Minkowski superspace, it is more natural to work with chiral superspaces ML

or MR here. Under hermitian conjugation ML and MR are exchanged. This makes chiral spaces essentially
complex spaces.

2More precisely the correspondence is given between elements of the Dolbeault cohomology group H1(O−2)—
where O−2 is meant to indicate that the one forms contained in H1 are of homogeneity −2—and on-shell
chiral superfunctions.

3The convention here is as follows: The space A3|N is a quadric in CP3|N × CP3|N , hence the label.
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Again, one side of the double fibration diagram is being taken by full Minkowski superspace
M4|4N , while the correspondence space is the supermanifold of flags of type (1|0) < (2|0) <
(2|N ) < (3|N ) < (4|N ) such that the diagram takes the form

F(1|0),(2|0),(2|N ),(3|N )

π1

vvnnnnnnnnnnnn
π2

''PPPPPPPPPPPPP

M4|4N ks +3 A3|N

(V.15)

Endowing M4|4N with the coordinates X = (x, θ, θ̄), and A3|N with the coordinates

(ZA = (λα, µα̇, χa),WA = (ρα, κα̇, ηa)) (V.16)

such that
ZAWA = 0 (V.17)

we can figure out the mapping between the two bottom spaces in (V.15). Given a point X in
Minkowski superspace, define the two chiral coordinates x± by

(x±)αα̇ = xαα̇ ± 2iθaαφα̇a . (V.18)

Then π2 ◦ π−1
1 maps the point X to

([− i
2
λα, (λx+)α̇, (λθ)a], [(x−κ)α,− i

2
κα̇, (φκ)a]). (V.19)

The parameter space is a CP1 ×CP1 ⊂ A3|N , i.e. two complex lines in superambitwistor space.
Conversely, a point (Z,W) satisfying Z · W = 0 in superambitwistor space gets mapped to
M4|4N via π1 ◦ π−1

2

µα̇ = (λx+)α̇, χa = (λθ)a (V.20)
ρα = (x−κ)α, ηa = (φκ)a (V.21)

with the condition

0 = λαρα + µα̇κα̇ + 4iχaφa ⇒ 0 = (x+)αα̇ − (x−)αα̇ + 4iθaαφα̇a . (V.22)

The first of the two sets of two equations in (V.20) defines an anti-self-dual plane in a chiral
subspace (x+, θ) of M4|4N while the second set defines a self-dual plane in an antichiral subspace.
The last constraint demands that these planes intersect in full Minkowski space. Overall, this
leads to a subspace of M4|4N of dimension (1|2N ). These subspaces are supersymmetric gener-
alizations of light-like lines in Minkowski space and are usually called fat lines or super-light-like
lines [74]. We will revisit fat lines in sec. VIII.1, where we will consider non-chiral super-Wilson
loops on light-like contours.
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CHAPTER VI

YM as hCS

The title of this section is to be read as Yang-Mills theory as a holomorphic Chern-Simons
theory. The aim of this chapter is to show that Yang-Mills theories in four dimensions may be
reformulated as holomorphic Chern-Simons theories on twistor space and analytic superspace
[93, 56, 92, 94, 19]. It has been known for quite some time that self-dual Yang-Mills theory has
a formulation as a Chern-Simons theory on twistor space. This formulation was subsequently
extended to the full theory by introducing a non-local piece to the action [11]. As an example
we will show this reformulation by using the harmonic coordinates that have been introduced
in cha. IV. Similarly, we will present the reformulation of N = 3 SYM on harmonic superspace
in sec. VI.21 [19]. In the first part of this chapter, sec. VI.1 we will set the stage by reviewing
super Yang-Mills theory as a gauge theory over superspace.

VI.1 N = 4 (SD)SYM in harmonic superspace

The superspace we will be using is M4|4N . This is compactified Minkowski superspace with
coordinates

(xαα̇, θαa, θ̄α̇a ). (VI.1)

In this setting, the notation is not meant to imply that θ and θ̄ are conjugates of each other. In
the definition of x we have mapped x into the 2×2-dimensional matrices using (for conventions
see appendix A)

xµσ̄α̇αµ = xαα̇. (VI.2)

Let us use the Maurer-Cartan form Ω = ds(x, θ, θ̄).s−1(x, θ, θ̄) to find the vielbeine of superspace

Eαα̇ = dxαα̇ − 2idθαaθ̄α̇a + 2iθαadθ̄α̇a (VI.3a)
Eαa = dθαa (VI.3b)

Ēα̇a = −dθ̄α̇a (VI.3c)

1At the time when the paper [19] was written the authors were not aware of the paper [94] which contains some
of the work done in [19] and presented here.
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Using these the exterior derivative

d =
1

2
dxαα̇

∂

∂xαα̇
+ dθαa

∂

∂θαa
+ dθ̄α̇a

∂

∂θ̄α̇a
(VI.4)

may be rewritten in terms of supersymmetry covariant derivatives2 (∂α̇α, Dαa, D̄
a
α̇) given by

∂α̇α =
∂

∂xαα̇
, Dαa =

∂

∂θαa
+ iθ̄α̇a ∂α̇α, D̄a

α̇ = − ∂

∂θ̄α̇a
− iθαa∂α̇α. (VI.5)

Hence the exterior derivative can be written as

d =
1

2
Eαα̇∂α̇α + EαaDαa + Ēα̇a D̄

a
α̇. (VI.6)

To satisfy d2 = 0 we encounter a torsion term (using (V.11))

dEαα̇ = 2iEαa ∧ Ēα̇a , while dEαa = 0, dEα̇a = 0 (VI.7)

which leads to the commutation relations

{Dαa, Dβb} = 0 (VI.8a)

{D̄α̇
a , D̄

β̇
b } = 0 (VI.8b)

{Dαa, D̄
b
α̇} = −2iδba∂α̇α (VI.8c)

A gauge connection

A =
1

2
Eαα̇Aα̇α + EαaAαa + Ēα̇a Ā

a
α̇ (VI.9)

may be introduced by lifting M4|4N to a SU(N) principal bundle. On such a bundle, we may
extend the action of the exterior derivative to SU(N)-valued one-forms by defining

d∇ =
1

2
Eαα̇∇α̇α + Eαa∇αa + Ēα̇a ∇̄aα̇. (VI.10)

The condition d2 = 0 becomes

(d∇)2 = F = dA+A ∧A, (VI.11)

where F is the curvature two-form of the principal bundle. F satisfies the Bianchi identities
(d∇)3 = d∇F = 0. In pure (N = 0) Yang-Mills theory, the equations of motion are further
given by

d∇ ? F = 0, (VI.12)

where ? is the Hodge dualizer. In theories with matter, for example in QCD, the right hand
side is given by a current j different from zero. For N = 4 SYM, the equations of motion are
implied by certain constraints on the coefficients of F and the Bianchi identities [95].

2This approach is the inverse of the historical approach where the form of the covariant derivatives determines
the form of the vielbein. The covariant derivatives in turn are determined by their commutation relation with
the supertranslation operators Q and Q̄. Of course we have used an inspired guess for the embedding of the
coordinates (x, θ, θ̄) in the group by the map s(x, θ, θ̄) to retrieve the usual form of the covariant derivatives
given in the text.
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When expanding F in terms of the basis of vielbeine (Eαα̇, Eαa, Ēα̇a ) we find

F = Eαa ∧ Ēα̇b (2iδbaAα̇α + D̄b
α̇Aαa +DαaĀ

b
α̇ + {Aαa, Ābα̇})

+
1

2
Eαa ∧ Ebβ(DαaAβb +DβbAαa + {Aαa, Aβb})

+
1

2
Ēα̇a ∧ Ē

β̇
b (D̄a

α̇Ā
b
β̇

+ D̄b
β̇
Āaα̇ + {Āaα̇, Abβ̇})

+ Eαα̇ ∧ Eβb(DβbAα̇α −Dα̇αAβb + [Aβb, Aα̇α])

+ Eαα̇ ∧ Ēβ̇b (D̄b
β̇
Aα̇α −Dα̇αĀ

b
β̇

+ [Āb
β̇
, Aα̇α])

+
1

2
Eαα̇ ∧ Eββ̇(Dβ̇βAα̇α −Dα̇αAβ̇β + [Aβ̇β , Aα̇α]) (VI.13)

§ VI.1.1. Constraints for N -extended SYM.—In supersymmetric theories the components
of the field strength tensor F must be constrained [95] since the appearing superfields form re-
ducible representations of the supersymmetry algebra (see e.g., [89]). The necessary constraints
take slightly different forms for different SYM theories. So far we have left the question of the
range of the index a open. We shall now specialize to the cases that will interest us in the
following: N = 3 and N = 4. For N = 3 SYM theories, a = 1, . . . , 3—i.e., the R-symmetry
group is SU(3)—and the field content is arranged in two multiplets

(Fαβ, ψ
a
α, φa), (Gα̇β̇, ψ̄aα̇, φ̄

a). (VI.14)

For N = 4 the field content is the same but arranged in a single multiplet

(Fαβ, ψ
a
α, φab, ψ̄aα̇, Gα̇β̇). (VI.15)

Here the scalars φab satisfy the additional self-duality constraint

φ̄ab =
1

2
εabcdφ

cd. (VI.16)

The correct constraints for N = 3 read

2iδbaAα̇α + D̄b
α̇Aαa +DαaĀ

b
α̇ + {Aαa, Ābα̇} = 0 (VI.17a)

DαaAβb +DβbAαa + {Aαa, Aβb} = εαβW̄ab (VI.17b)

D̄a
α̇Ā

b
β̇

+ D̄b
β̇
Āaα̇ + {Āaα̇, Abβ̇} = εα̇β̇W

ab (VI.17c)

The scalar superfields W and W̄ are antisymmetric in their indices

W̄ab = εabcW̄
c, W ab = εabcWc (VI.18)

and their bottom components in the θ, θ̄ expansion are the scalars φa and φ̄a respectively. Thus
there are six independent scalar superfields in this theory. For N = 4 a = 1, . . . , 4 is a 4 or a 4̄
index of SU(4) and the constraints look the same as (VI.17a). Here the scalar fields satisfy the
constraint

W ab =
1

2
εabcdW̄cd (VI.19)

implied by the reality constraint for the scalar fields

φab =
1

2
εabcdφ̄cd (VI.20)
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which in turn implies again that there are only six independent scalar fields. In contrast with
the N = 3 case the constraints on the N = 4 field strength F now immediately imply the
field equations of N = 4 SYM. N = 3 experiences a symmetry enhancement on-shell such that
N = 3 and N = 4 SYM are in fact equivalent on-shell. The notable difference between the
theories is the fact that N = 4 only exists on-shell—the constraints of the theory imply the
equations of motion—while N = 3 also admits an off-shell formulation in superspace.

We may make the additional identifications

Fαa,βb = εαβW̄ab F aα̇
b
β̇

= εα̇β̇W
ab (VI.21a)

Fαa,α̇β = εαβΨ̄aα̇ F aα̇ β̇α = εα̇β̇Ψa
α (VI.21b)

Fα̇α,β̇β = εα̇β̇Fαβ + εα̇β̇Gα̇β̇ (VI.21c)

with superfields Ψa
α, Ψ̄aα̇, Fαβ and Gα̇β̇ . In N = 4 they are directly related to the scalar

superfields W ab and W̄ab as can be derived from the Bianchi identities (d∇)3 = 0. For later
reference we give the full set of commutators again, which are just the constraints in (VI.17a)
and (VI.13) and the identifications in (VI.21)

{∇αa,∇βb} = εαβW̄ab {∇̄aα̇, ∇̄bβ̇} = εα̇β̇W
ab (VI.22a)

[∇αa,∇α̇β] = εαβΨaα̇ [∇̄aα̇,∇β̇α] = εα̇β̇Ψa
α (VI.22b)

[∇α̇α,∇β̇β ] = εα̇β̇Fαβ + εαβGα̇β̇ (VI.22c)

where Fαβ and Gα̇β̇ are superfields and symmetric in their indices.

§ VI.1.2. A little complex differential geometry .—Since we are going to need a few of
the notions of differential geometry on complex manifolds, this is the natural spot to make a few
definitions. We already encountered the exterior derivative d and the fact that over a complex
manifold, this derivative splits into two pieces ∂ and ∂̄, such that

d = ∂ + ∂̄. (VI.23)

In fact, over a complex manifold M, the complexified tangent space TM⊗ C splits into the
holomorphic tangent space T (1,0)M and the antiholomorphic tangent space T (0,1)M. Both are of
complex dimension n. Taking the dual, we may define the complexified cotangent bundle T ∗CM =
T ∗M⊗ C and the complex structure implies that there is a split into holomorphic cotangent
bundle T ∗(1,0)M and antiholomorphic cotangent bundle T ∗(0,1)M. The exterior product ∧ then
gives rise to p forms on the complexified tangent bundle T ∗CM which can be further decomposed
into (p, q)-form. Explicitly, we have

ΛrT ∗CM =
⊕
p+q=r

Λ(p,q)M =
⊕
p+q=r

Λ(p,0)M∧ Λ(0,q)M. (VI.24)

It is this split of the cotangent bundle that gives rise to the split of the exterior derivative d on
a complex manifold. Letting Ω(p,q)M describe the sheaf of sections of Λ(p,q)M we have that

∂ : Ω(p,q)M→ Ω(p+1,q)M, and ∂̄ : Ω(p,q)M→ Ω(p,q+1)M. (VI.25)

Clearly, it is favorable to work with the Dolbeault derivative ∂̄ which has a clear action on the
sheaf of (p, q)-forms, rather than the exterior derivative which sends a (p, q)-form into the direct
sum of (p+ 1, q) and (p, q + 1)-forms.
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We can now go and describe vector bundles (or principal bundles which adds only minor com-
plications) over complex manifolds. Let E → M be a rank m vector bundle over a complex
manifold M. To describe functions on this vector bundle, we define the sheaf of E-valued
(p, q)-forms overM, denoted by A(p,q)

E , which is locally given by

A(p,q)
E ' Γ(Λ(p,q)M⊗C E). (VI.26)

A partial connection, or partial covariant derivative on such a vector bundle E is the C-linear
sheaf homomorphism ∂̄E = ∂̄∇ (where we indicated two notations appearing in this text). Such
a partial covariant derivative has the property that

∂̄E : A(p,q)
E → A(p,q+1)

E (VI.27)

and satisfying (ω a (p, q)-form, s a section)

∂̄E(ω ⊗ s) = ∂̄ω ⊗ s+ (−1)p+qω ∧ ∂̄Es. (VI.28)

Thus upon choosing a basis of sections {si}, we may write locally ∂̄E = ∂̄ + A, where A is the
partial connection.

It is easy to check that the operator ∂̄E ◦ ∂̄E is linear over smooth complex functions, i.e. f a
function, s a section

∂̄E ◦ ∂̄E(fs) = f∂̄E ◦ ∂̄Es (VI.29)

and thus defines a global section of A(0,2)
End(E) over the endomorphisms of the vector bundle. In

essence this is a partial curvature and locally we may write F (0,2) = ∂̄A+A ∧A.

A partial covariant derivative ∂̄E is called a holomorphic structure if the partial curvature
vanishes, i.e. if

∂̄E ◦ ∂̄E = 0. (VI.30)

A smooth complex vector bundle E and a holomorphic structure in turn define a holomorphic
vector bundle (E, ∂̄E) with holomorphic sections s defined by ∂̄Es = 0.

Now we can state the second part of the Penrose-Ward correspondence: A solution to the self-
dual SU(N) (super-)Yang-Mills equations in four-dimensions is equivalent to a holomorphic
structure ∂̄∇ on a holomorphic SU(N)-bundle over (super-)twistor space. For this reason, we
will find in the following subsections that self-dual Yang-Mills theory can be described by a
holomorphic Chern-Simons theory. An easy argument for this are the equations of motion of
hCS: they are nothing else than ∂̄E ◦ ∂̄E = 0 or locally

F (0,2) = ∂̄A+A ∧A ≡ 0 (VI.31)

which naturally follow from the Lagrangian A∂̄A+ 2
3A ∧A ∧A.

Let us now turn to the translation between self-dual Yang-Mills theory and holomorphic Chern-
Simons theory.
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§ VI.1.3. Self-dual super-Yang-Mills theories.—Before we will work with full super Yang-
Mills theories, let us introduce the much simpler case of (anti-)self-dual theories. (Anti-)Self-
dual theories have a smaller field content [96, 97, 98]. They are characterized by a reduced set
of commutation relations in super-Minkowski space, which makes a formulation in chiral—or
antichiral—superspace very desirable. We shall focus on self-dual N = 4 SYM. In this case, the
field content is reduced to

(φab, ψaα, Fαβ). (VI.32)

All the other fields are set to zero. In terms of commutators and superfields in full superspace,
we have the relations

{∇αa,∇βb} = 0 {∇̄aα̇, ∇̄bβ̇} = εα̇β̇W
ab (VI.33a)

[∇αa,∇α̇β] = 0 [∇̄aα̇,∇β̇α] = εα̇β̇Ψa
α (VI.33b)

[∇α̇α,∇β̇β ] = εα̇β̇Fαβ. (VI.33c)

These relations are best expressed in chiral superspace M4|8
L

(x− = xαα̇ − 2iθαaθ̄α̇a , θ̄
α̇
a ) (VI.34)

which is a subspace of full superspace. The projection πchir from full to chiral superspace
is achieved by setting θαa to be fixed. It leads to a reduced set of supersymmetry-covariant
derivatives (

∂α̇α =
∂

∂(x−)αα̇
, D̄a

α̇ = − ∂

∂θ̄α̇a

)
(VI.35)

and an exterior derivative

dchir = πchir ◦ d =
1

2
d(x−)αα̇∂α̇α + dθ̄α̇a ∂̄

a
α̇. (VI.36)

After having introduced a gauge field

A =
1

2
d(x−)αα̇Aα̇α + dθ̄α̇a Ā

a
α̇ (VI.37)

over chiral superspace we can introduce covariant derivatives

(∇α̇α = ∂α̇α +Aα̇α, ∇̄aα̇ = D̄a
α̇ + Āaα̇) (VI.38)

which satisfy commutation relations that are equivalent to the set (VI.33) in full superspace.
Quite obviously, we have

{∇̄aα̇, ∇̄bβ̇} = εα̇β̇W
ab (VI.39)

[∇̄aα̇,∇β̇α] = εα̇β̇Ψa
α (VI.40)

[∇α̇α,∇β̇β ] = εα̇β̇Fαβ. (VI.41)

Our endeavor is now to lift these commutation relations to a correspondence space FK which
will allow us to map them into twistor space [93, 19]. To do so, we will introduce harmonic
variables u± in the next section. These parametrize a CP1 and satisfy u+α̇u−α̇ = 1 as well as
(u+) = u−. We will use these to contract the Lorentz indices α̇ on the covariant derivatives
∇ which will lead us to flat commutators. Said differently, the constraints of self-dual N = 4
are flat when pulled back to anti-self-dual planes, i.e., the gauge fields A become pure gauge on
these submanifolds. The process is explained in the next subsection.
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§ VI.1.4. Harmonization of Lorentz indices.—We want to show now that there are certain
submanifolds—namely anti-self-dual planes—of chiral Minkowski space on which the constraints
(VI.39) are flat, i.e., the right hand sides of the commutators are zero [93]. To do so, we need to
lift these relations to a suitable correspondence space. This is in essence the already presented
Penrose-Ward correspondence, see cha. V.1.1, and an example of the importance of double
fibrations. In this discussion we restrict the theory immediately to chiral superspace M4|8

L .

Extending chiral superspace by CP1 means that the correspondence space in question is locally
M4|8
L × CP1. We use the harmonic description of this CP1 by writing down a matrix

u =

(
u−1 u+

1

u−2 u+
2

)
(VI.42)

which can be thought of as filling the lower 2 × 2-block in the upper 4 × 4-block of the coset
representative of the correspondence space, i.e.,1 x 0

0 u 0
0 θ̄ 1

 . (VI.43)

On this combined space we can perfom a coordinate transformation which leads us to the set of
coordinates

(u±α̇ , x
α±, θ̄±a ) (VI.44)

where xα± = εα̇β̇u
±α̇xβ̇α. The harmonic coordinates u± parametrizing CP1 are subject to three

constraints (u+) = u− and u+α̇u−α̇ = 1 from SU(2). Thus the coordinates parametrize an
SU(2)/U(1), where the elimination of U(1) reduces in the spirit of chapter IV where the labels
± are U(1) charges. Using the methods developed in cha. IV.1, we may find the covariant
derivatives on the combined space M4|8

L × CP1 to be(
D++ = u+α̇ ∂

∂u−α̇
, D−− = u−α̇

∂

∂u+α̇
, ∂±α = u±α̇∂αα̇, D̄

±a = u±α̇D̄a
α̇

)
. (VI.45)

The space CP1 is a complex space which can be parametrized using two patches. The tangent
space over CP1 splits into holomorphic and antiholomorphic parts, just as we discussed in VI.1.2,
and so does the dual cotangent bundle. Therefore, we find that the exterior derivative on CP1

splits into a ∂ and a ∂̄ operator (analogous to the normal complex plane, where we have two
derivatives for one complex variable). The two covariant derivatives D−− and D++ play the
roles of these two exterior derivative operators after reattaching the crucial vielbeins e++ and
e−− to them, i.e., ∂ = e++D−− and ∂̄ = e−−D++. The use of harmonic coordinates u± spares
us from having to work in patches, which is their sole purpose in life.

Notice now that the set (D++, ∂+
α , D̄

+a) is a commuting subset of the set of covariant deriva-
tives3. Introducing gauge fields for this commuting subset we may write the set of commuta-
tors (VI.39) in an equivalent way as

[∇+
α ,∇+

β ] = 0 [∇+
α ,∇+

a ] = 0 (VI.46a)

[∇++,∇+
a ] = 0 [∇++,∇+

α ] = 0 (VI.46b)

{∇+a,∇+b} = 0 (VI.46c)

3Thus the covariant derivatives (D++, D+
α , D̄

+a) form an integrable distribution in the sense of apdx. C.
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Notice how the commutators of ∇+
α and ∇̄+a are just the constraints defining self-dual Yang-

Mills theory restricted to an anti-self-dual plane in chiral superspace. These compose the first
and third line above as can be found be inspection of (VI.39). The second line contains new
commutators between the covariant derivative ∇++ and the restricted derivatives ∇+

α and ∇+
a ,

these are flat commutators by construction.

Equation (VI.46c) implies that we can solve the constraint by setting the gauge field A+a = 0.
This is a partial gauge choice. The other constraints containing D̄+a imply then a reduction of
the coordinate dependencies of the other gauge fields to

(u±, x±, θ̄+). (VI.47)

Using the remaining two covariant derivatives and the vielbeine e−− = u−.du− and e−α =
(u−.dx)α which can be derived from the procedure using the Maurer-Cartan form explained
in earlier sections (see IV.1.1), we can assemble a complex derivative operator, the Dolbeault
operator

∂̄ = e−−D++ + e−αD+
α (VI.48)

as it was given in (IV.16). Given a gauge field

A = e−−A++ + e−αA+
α (VI.49)

we can neatly arrange all commutators left in (VI.46) into one flatness condition

F = ∂̄A+A ∧A ≡ 0. (VI.50)

Observe that in the process of expanding the space by the harmonics u± and the subsequent
reduction, we produced a different, equivalent set of commutation relations from the constraints
of self-dual theory on chiral superspace by the procedure outlined above.

If we interpret this condition as the equations of motion of a theory, it is possible to write down
a Lagrangian reproducing the theory. The Lagrangian in question describes a holomorphic
Chern-Simons theory with

L = A∂̄A+
2

3
A ∧A ∧A. (VI.51)

An action can be written by defining the holomorphic volume form4

Ω = d4θ̄+e+α ∧ e+
α ∧ e++ (VI.52)

such that
S[A] =

∫
Ω ∧

(
A∂̄A+

2

3
A ∧A ∧A

)
. (VI.53)

Indeed, when we solved the fermionic constraint (VI.46c) and defined ∂̄, we made a projection
into twistor space CP3|4. The action (VI.53) is exactly of the form found by Witten [11]. In the
notation of the preceding chapters we can identify χ̄a = θ̄+

a and

z = (x+, u+), z̄ = (x−, u−). (VI.54)

We may also start from this side and begin with the twistor theory: this is the approach of the
Penrose-Ward correspondence as explained in e.g., [56, 99]. We may start with a ∂̄∇ operator,

4Notice that the Chern-Simons form as well as the volume form Ω have zero U(1) weight.

56



defining a holomorphic structure on twistor space CP3|4 and show that using a specific gauge,
we can translate the between Yang-Mills gauge fields and twistor gauge fields in a natural way.

Finally, there is the possibility of choosing a gauge different from A+
a = 0. The resulting theory

is not a Chern-Simons theory and we haven’t seen a possiblity to write down Lagrangian for
the case of N = 4. For N = 2 supersymmetry, one could however define a derivative

∂̄ = e−−D++ + dθi−D+
i (VI.55)

and write down a (partially) fermionic Chern-Simons action of sorts. We haven’t made attempts
in this direction and shall keep this as a side remark.

In ssec. VII.1.1 we also present the completion of the action to full N = 4 SYM by inclusion of
a local operator.

VI.2 N = 3 in harmonic superspace

Interestingly enough, we can also represent [89, 19] full N = 3 SYM as a Chern-Simons theory
on an ambitwistorial space5. Take the equations in (VI.17a) where now the R-symmetry index
a = 1, 2, 3

{∇αa,∇βb} = εαβW̄ab, {∇̄aα̇, ∇̄bβ̇} = εα̇β̇W
ab, {∇αa, ∇̄bα̇} = −2iδba∇α̇α. (VI.56)

This time around we use full superspace M4|12, attach the space A2 ' SL(3)/H1,2(3) '
SU(3)/U(1)×2 and so lift to the correspondence space

F 'M4|12 × SU(3)

U(1)×2
(VI.57)

with coordinates
(xαα̇, θαa, θ̄α̇a , u

(i,j)a). (VI.58)

The coordinates u are the harmonic coordinates as introduced in ssec. IV.1.3. We notice now,
that F is a flag supermanifold of flags of type

K = (2|0) ⊂ (2|1) ⊂ (2|2) ⊂ (2|3) ⊂ (4|3) (VI.59)

and the elements of the stabilizing group HK(4|3) ⊂ SL(4|3), have the form

∗ ∗
∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


(VI.60)

5The space in question is not actually ambitwistor space achieved by harmonizing the Lorentz indices but an
iso-ambitwistor space obtained by harmonization of the R-symmetry indices.
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We can harmonize the R-symmetry indices in the constraints (VI.56) using u(1,0)a and u
(0,1)
a .

This means we have now ∇(1,0)
α = u(1,0)a∇αa and ∇̄(0,1)

α̇ = u
(0,1)
a ∇̄aα̇. Hence the commutators

(VI.56) become flat

{∇(1,0)
α ,∇(1,0)

β } = 0, {∇̄(0,1)
α̇ , ∇̄(0,1)

β̇
} = 0, {∇(1,0)

α , ∇̄(0,1)
α̇ } = 0 (VI.61)

where the last commutator follows from the identity u(1,0)au
(0,1)
a = 0 which follows from the rôle

of the u(i,j) as coordinates on an SU(3). So here we see that the constraints of N = 3 SYM
vanish when pulled back to a three-dimensional bosonic submanifold of the harmonic superspace
F.

Now we turn to the covariant derivatives on this space. The covariant derivatives on the space
A2 have been given in (IV.24a). Calculation of their algebra is straightforward and we only give
the commutators which will become important for us in the following. We have

[D(2,−1),∇(1,0)
α ] = 0, [D(−1,2),∇(1,0)

α ] = 0, [D(1,1),∇(1,0)
α ] = 0, (VI.62a)

[D(2,−1), ∇̄(0,1)
α̇ ] = 0, [D(−1,2),∇(0,1)

α̇ ] = 0, [D(1,1),∇(0,1)
α̇ ] = 0. (VI.62b)

Introduce gauge connections A(q1,q2) for all the D(q1,q2) by a u-dependent gauge transformation.
This also lifts all the original gauge connections to the space F due to the introduction of
a dependence on u(q1,q2). Since the newly introduced gauge fields A(q1,q2) are all flat6, the
covariant derivatives ∇(q1,q2) satisfy the same algebra as the D(q1,q2).

We can now make a choice for an integrable distribution out of the set of covariant derivatives
D(i,j) we introduced by first solving the fermionic constraints (VI.61). Since these commutators
are all flat we can gauge both fields A(1,0)

α = 0 = A
(0,1)
α̇ . The remaining gauge fields depend on

the reduced set of coordinates

(xA, θ
(1,−1)
α , θ(0,1)

α , θ̄
(1,0)
α̇ , θ̄

(−1,1)
α̇ , u) (VI.63)

which parametrizes a so called analytic superspace with xA such thatD(1,0)
α xA = 0 and D̄(0,1)

α̇ xA =
0 and a reduced number of fermionic directions. Then we can pick the derivatives

(∇(2,−1),∇(−1,2),∇(1,1)) (VI.64)

which have only one non-zero commutator

[∇(−1,2),∇(2,−1)] = ∇(1,1). (VI.65)

Using the Maurer-Cartan form introduced in sec. IV.1.3, we can extract the vielbeine e(q1,q2).
Then we rewrite all commutators in the form of a zero curvature condition. Defining a covariant
Dolbeault derivative as detailed in apdx. C

∂̄∇ = e(−1,−1)∇(1,1) + e(−2,1)∇(2,−1) + e(1,−2)∇(−1,2), (VI.66)

the zero curvature condition which encompasses all of the commutators above is given by

F = ∂̄A+A ∧A = 0 (VI.67)
6Assuming new non-trivial field strengths is not impossible but leads to unnecessary complications when proving
the equivalence of the lifted theory to the original theory. However, for theories with additional matter fields,
harmonic directions may necessitate new non-zero field strength components.

58



with F a (0, 2) curvature form. Interpreting this condition as the equations of motion of the
theory, we are led to write a Chern-Simons type Lagrangian

LN=3 = A∂̄A+
2

3
A ∧A ∧A. (VI.68)

Notably, if we were to write F in components [89], we would find that the commutator (VI.65)
produces an additional A(1,1)

F = e(−2,1) ∧ e(1,−2)(D(2,−1)A(−1,2) −D(−1,2)A(2,−1) + [A(2,−1), A(−1,2)]−A(1,1))

+ e(−2,1) ∧ e(−1,−1)(D(2,−1)A(1,1) −D(1,1)A(2,−1) + [A(2,−1), A(1,1)])

+ e(1,−2) ∧ e(−1,−1)(D(−1,2)A(1,1) −D(1,1)A(−1,2) + [A(−1,2), A(1,1)]) (VI.69)

such that the Lagrangian in component form develops a term (A(1,1))2 which obscures the fact
that we are dealing with a Chern-Simons type Lagrangian. Since the Lagrangian LN=3 is a
(0, 3) form, we define a (3, 0) form Ω by

Ω = d4xAd
8θ e(1,1) ∧ e(2,−1) ∧ e(−1,2) (VI.70)

to get a (3, 3) form to integrate over the manifold we are working on. Notice that the com-
bination e(1,1) ∧ e(2,−1) ∧ e(−1,2) has U(1) × U(1)-weight (2, 2). This is offset by the factor
d8θ = d2θ(1,−1)d2θ(0,1)d2θ̄(1,0)d2θ̄(−1,1) which has weight (−2,−2) such that the full measure is
weightless. In the end the action reads

S[A] =

∫
Ω ∧

(
A∂̄A+

2

3
A ∧A ∧A

)
. (VI.71)

Attempts have been made to quantize this theory [100] but were reliant on disassembling the
field A into its component fields. When understanding A as a twistor gauge field, we might be
able to quantize A as a one-form just as it was done for the twistorial description of N = 4.
One obstacle that we are encountering rather immediately is that we cannot use axial gauge for
A in this theory.

Axial gauge simplified the treatment of twistor theory ([101] for a review) and is achieved by
letting the twistor field A = e−−A++ + e−αA+

α vanish along a fixed direction Z?, i.e.,

ıZ?A = z−−A++ + z−αA+
α = 0. (VI.72)

We may use this gauge to set one component of A to zero. This would imply that the trivalent
vertex in the action (VI.71) had to vanish.

Another approach is to use a Lorenz-like gauge as in [102] and proceed in the same way as done
in the reference. After having found a propagator for A it would then be possible to derive
correlation functions or other observables. This theory should be understood as a playground
for an actual ambitwistor theory of supersymmetric Yang-Mills theory; the techniques used for
this theory will be transportable to other gauge theories on (ambi)twistorial spaces.

We shall now leave this topic and turn to the question how to find the familiar fields of super-
symmetric Yang-Mills theory when we start with an equivalent twistor theory. In the Abelian
case and for N = 4 SYM and holomorphic Chern-Simons theory on chiral twistor space this is
done by using the Penrose transform as introduced before. However, we would like to extend
this to other spaces and to the non-Abelian case. This will be the topic of the next chapter.
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CHAPTER VII
Local operators in superspace from twistor connections

The final chapter of this part will be concerned with the question of how to extract local operators
in spacetime from the twistor connections introduced in the preceding chapters. We shall start
by looking at the case of self-dual N = 4 SYM twistor space. As is well known, one can lift
the holomorphic Chern-Simons action for SDSYM to an action describing full super Yang-Mills
theory on twistor space by adding the non-local log det-term introduced by Witten [11]. We
will show that the form of this additional term can be understood from a local operator point
of view, too.

The next step will be to understand local operators in N = 3 SYM in SU(3)/U(1)×2 language.
We will see that the description and the idea behind the mechanism is essentially the same as
in ordinary twistor space.

VII.1 Local operators from twistor space

The problem has been solved a long time ago for the Abelian theory [103, 104, 105, 99]. We know
that via the Penrose transformation, fields φα̇1···α̇2h

(x) of helicity h which satisfy the equations1

εα̇β̇∂α̇αφβ̇α̇2···α̇2h
= 0 (VII.2)

can be expressed in terms of sections ψ ∈ Γ(O(2h − 2)) of line bundles O(−2h − 2) over
twistor space CP3. The weight −2h − 2 is the homogeneity of the functions under scaling
transformations. A correspondence is achieved via an integral over the complex line CP1: this
is the famous Penrose transform and the explicit form of the double fibration π1 ◦ π−1

2 that we
discussed in previous chapters. Using the notation of VI.1.4 for the case of Abelian self-dual
N = 4 SYM, we can extract the spacetime fields φab, ψα̇a, or Gα̇β̇) by

φab(x) =

∫
CP1

e++ ∧D−aD−bA|X (VII.3a)

ψα̇a (x) =
1

3!
εabcd

∫
CP1

e++ ∧ u+α̇D−bD−cD−dA|X (VII.3b)

Gα̇β̇(x) =
1

4!
εabcd

∫
CP1

e++ ∧ u+α̇u+β̇D−aD−bD−cD−dA|X (VII.3c)

1In the special case of h = 0 this equation gets replaced by the Klein-Gordon equation without mass

�φ = 0. (VII.1)
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Notice how the U(1) weights cancel out precisely. The form A is the twistor gauge field restricted
to the submanifold CP1 ⊂ CP3 denoted by X

A|X = (e−−A++ + e−αA+
α )|X = e−−A++. (VII.4)

We can show that these fields behave correctly under Abelian gauge transformations A 7→ A+∂̄λ

δlinφ
ab =

∫
CP1

e++ ∧ e−−D−aD−bD++λ = 0 (VII.5)

up to boundary terms. Clearly, they are not invariant under non-Abelian transformations
A 7→ A+ ∂̄A+ [A, λ] since in general

δφab =

∫
CP1

e++ ∧ e−−[D−aD−bA++, λ] 6= 0. (VII.6)

It is, however, possible to add a term to (VII.3a) which cancels this additional term up to higher
order commutators. We will now show how to do it.

Introduce the inverse (D++)−1 of the operator D++ acting on functions of the harmonics u±.
D++ has a kernel, so (D++)−1 is not unique. We can nevertheless define it on functions f++

of weight +2 by

(D++)−1f++ =

∫
CP1

e−−(v) ∧ e++(v)
u+α̇v−α̇

u+β̇v+

β̇

f++(v). (VII.7)

It is easy to check that
D++(D++)−1f++(u) = f++(u). (VII.8)

On functions of zero charge like λ we find that there will be a non-zero difference

λ0 = λ−D++(D++)−1λ(u) (VII.9)

independent of u, D++λ0 = 0. This remainder corresponds to the zero mode in an expansion
of λ in terms of u±. Under a linearized gauge transformation we find

δlin

(∫
CP1

e++ ∧ e−−[D−aD−bA++, (D++)−1A++]
)

=

∫
CP1

e++ ∧ e−−[D−aD−bA++, λ− λ0].

(VII.10)
Adding (VII.6) and (VII.10) yields

δφab = [φab, λ0] +O((A++)2). (VII.11)

Hence the zero mode λ0 of the non-Abelian gauge transformation λ(u) in twistor space plays the
role of gauge parameter in spacetime. The terms quadratic in A++ can be canceled by adding
yet another term. This will lead to series of correction terms which we can write as

φab(x, θ̄) =

∫
CP1

e++ ∧ e−−
∞∑
p=1

[(D++)−1A++, . . . , [(D++)−1A++︸ ︷︷ ︸
p−1

, D−aD−bA++] · · · ]. (VII.12)

The same procedure is available for the other space-time fields. In this way, we can recover local
operators in non-Abelian Yang-Mills theory on spacetime from non-Abelian gauge theory on
twistor space. Geometrically, the construction relies on the double fibration described in V.1.1.
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To extract the superspace gauge fields Aα̇α and Āaα̇ from the twistor gauge field A we can also
use the Penrose transform

Aα̇α(x, θ̄) =

∫
CP1

e++ ∧ u−α̇D
−
αA, (VII.13)

Āaα̇(x, θ̄) =

∫
CP1

e++ ∧ u−α̇D
−aA (VII.14)

Note the appearance of u− in these transformations! When performing a linear gauge transfor-
mation δlinA

++ = D++λ, the u− will be responsible for the inhomogeneous term in the gauge
transformations in spacetime. Up to total derivatives we see

δlinAα̇α =

∫
CP1

e++ ∧ e−−u−α̇D
−
αD

++λ = ∂α̇αλ0 (VII.15)

with λ0 =
∫
e++ ∧ e−−λ, the zero mode in the u± expansion of λ. Once again, λ0 is the zero

mode of λ, as arbitrary functions of harmonic variables u can be decomposed on an orthogonal
basis of symmetrised products of u±. Integration over the CP1 projects out the zeroth order
term in the expansion, the rest vanish by orthogonality.

§ VII.1.1. Full N = 4 SYM in twistor space.—Now that we have learned how to handle
local operators, we can relatively easily tackle the problem of providing a twistor action for full
N = 4 SYM in twistor space. So far we had the self-dual part of the action on twistor space

S[A] =

∫
Ω ∧ tr

(
A∂̄A+

2

3
A ∧A ∧A

)
. (VII.16)

To find the action describing full Yang-Mills theory, we have to inspect the constraints of the
full theory on chiral superspace once again

{∇̄aα̇, ∇̄bβ̇} = εα̇β̇W
ab (VII.17a)

[∇̄aα̇,∇β̇α] = εα̇β̇Ψa
α (VII.17b)

[∇α̇α,∇β̇β ] = εα̇β̇Fαβ + εαβGα̇β̇. (VII.17c)

They contain the new term εαβGα̇β̇ . This term hinders us from writing the full Yang-Mills
constraints in the form of flatness conditions. Instead, we find that the constraints become

{∇̄+a, ∇̄+b} = 0, [∇+
α , ∇̄+a] = 0, [∇+

α ,∇+
β ] = εαβG

++ (VII.18)

where the additional field G++ = u+α̇u+β̇Gα̇β̇ . The question is how to rewrite (VII.17) as
equations of motion of a Chern-Simons theory plus an additional term to include G++. We can
do this by extending equation (VII.12) to Gα̇β̇ . This amounts to adding a log det(∂̄ + A) term
[11]. One finds

SF [A] =

∫
Ω ∧ tr

(
A∂̄A+

2

3
A ∧A ∧A

)
+

∫
d4xd4θ+d4θ− log det(∂̄ +A)|X (VII.19)

where X is the line in twistor space corresponding to the point (x, θ̄) in chiral superspace. The
determinant takes care of the harmonics and the integral over d4xd8θ integrates over the space
of linearly embedded CP1’s (corresponding to spacetime points) in twistor space. To write the
action in the Chalmers-Siegel form [106] we need to rescale the field Gα̇β̇ = g−2

YMF̄α̇β̇ .

Varying SF [A] w.r.t. A will lead to the equations of motion (VII.17) when rewriting the result
of the variation in component form.

63



VII.2 Wilson loops for local operators

Remarkably, it is possible to rewrite (VII.12) in terms of Wilson line operators [107]. In twistor
space the harmonics u± parametrize a CP1 ⊂ CP3|4, a complex line in twistor space. We will
continue to denote such CP1s as X. If we restrict the twistor connection to X, we find that it
is in fact flat, and so there exists a gauge transformation h(u) such that

(∂̄ +A(u))|Xh(u) = 0 (VII.20)

up to multiplication of h(u) with a constant group element to the right. Then define the analog
of a Wilson line operator U(u1, u0) by

U(u1, u0) = h(u1)h(u0)−1 (VII.21)

where

U(u, u) = 1, U(u1, u0)−1 = U(u0, u1), U(u2, u1)U(u1, u0) = U(u2, u0). (VII.22)

A gauge transformation ∂̄+A′ = g(∂̄+A)g−1 transforms the Wilson line operators covariantly

U ′(u1, u0) = g(u1)U(u1, u0)g(u0)−1. (VII.23)

We can use (VII.20) to express U in terms of the twistor field A, by writing the recursion
equation

U = 1 + ∂̄−1(AU) (VII.24)

where we have defined the inverse operator ∂̄−1. This operator acts on (0, 1) forms ω like in
(VII.7)

(∂̄−1ω)(u) =
1

π

∫
CP1

(
e++(u1)〈u+, u−1 〉
〈u+, u+

1 〉
− e++(u1)〈u+

0 , u
−
1 〉

〈u+
0 , u

+
1 〉

)
∧ ω. (VII.25)

It satisfies the boundary condition (∂̄−1ω)(u0) = 0, too. We can write the Wilson line operator
U(u, u0) as a power series in A

U(u, u0) = 1 + (∂̄−1A)(u) + ∂̄−1(A(∂̄−1A))(u) + . . .

= 1 +
1

π

∫
CP1

e++(u1) ∧A(u1)
〈u+, u+

0 〉
〈u+, u+

1 〉〈u
+
1 , u

+
0 〉

+
1

π2

∫
CP1

e++(u1) ∧A(u1)

∫
CP1

e++(u2) ∧A(u2)
〈u+, u+

0 〉
〈u+, u+

2 〉〈u
+
2 , u

+
1 〉〈u

+
1 , u

+
0 〉

+ . . . (VII.26)

Careful inspection of (VII.12) reveals that there is a more concise way of writing the non-Abelian
form of the local operators. By replacing the infinite sum by a product of Wilson lines one gets

φab(x) =

∫
X
e++(u)UX(v, u)(D−aD−bA)(u)UX(u, v). (VII.27)
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u

v

The submanifold X = CP1 ⊂ CP3|4 corresponds to a point (x, θ̄)
in chiral spacetime. UX(v, u) is the Wilson line along X and u
and v are local coordinates on X. In the picture to the right,
we have depicted the CP1 by a sphere. The Wilson line starts
and ends at v and moves around the sphere. A change in the
coordinate v amounts to a global gauge transformation [108].
With this we have found a consistent way of extracting spacetime
fields from twistor fields in the non-Abelian theory.

VII.3 Local operators from N = 3 harmonic superspace

The previous section can be understood as the setup for this section. Here, we want to use the
same techniques as above to extract the spacetime local operators from the gauge field

A = e(−1,−1)A(1,1) + e(−2,1)A(2,−1) + e(1,−2)A(−1,2) (VII.28)

on N = 3 harmonic superspace M4|8
A × A2. We will see that the ideas are rather similar.

The integrals over A2 that we will see in the following equations will be normalized such that∫
A2

vol = 1. (VII.29)

Let us start with the Abelian theory again and identify potential candidates for the scalar
superfields φ̄i(x, θ, θ̄) and φi(x, θ, θ̄) by looking for U(1)×U(1)-weightless expressions which are
invariant under Abelian gauge transformations.

Since the algebra of covariant derivatives is slightly more involved than in the case of N = 4
SYM on chiral superspace and hCS on twistor space, observe first the identities below∫

A2

u
(1,0)
i f (−1,0) = −

∫
A2

u
(−1,1)
i D(2,−1)f (−1,0) = −

∫
A2

u
(0,−1)
i D(1,1)f (−1,0) (VII.30a)∫

A2

u
(0,−1)
i f (0,1) = −

∫
A2

u
(1,0)
i D(−1,−1)f (0,1) = −

∫
A2

u
(−1,1)
i D(1,−2)f (0,1) (VII.30b)∫

A2

u
(−1,1)
i f (1,−1) = −

∫
A2

u
(0,−1)
i D(−1,2)f (1,−1) = −

∫
A2

u
(1,0)
i D(−2,1)f (1,−1) (VII.30c)

for f an arbitrary function of the indicated weight. Interestingly enough, there are several
candidates for the scalar superfield φi which are weightless w.r.t to U(1)×2 and invariant under
linearized gauge transformations δlin. These are∫

A2

εαβu
(0,−1)
i D(−1,1)

α D
(−1,1)
β A(2,−1) (VII.31a)

−
∫
A2

εαβu
(−1,1)
i D(0,−1)

α D
(0,−1)
β A(1,1) (VII.31b)∫

A2

εαβ
(
− 2u

(−1,1)
i D(0,−1)

α D
(−1,1)
β A(2,−1) + u

(1,0)
i D(0,−1)

α D
(0,−1)
β A(−1,2)

)
(VII.31c)∫

A2

εαβ
(

2u
(0,−1)
i D(0,−1)

α D
(−1,1)
β A(1,1) − u(1,0)

i D(0,−1)
α D

(0,−1)
β A(−1,2)

)
(VII.31d)
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With the help of algebra of covariant derivatives, integration by parts, and the analyticity of
the gauge fields

D(1,0)
α A(2,−1) = D(1,0)

α A(−1,2) = D(1,0)
α A(1,1) = 0 (VII.32)

imposed by gauge choice as explained in sec. VI.2, it is easy to show that (VII.31) are invariant
under linearized gauge transformations

δlinA
(q1,q2) = D(q1,q2)λ. (VII.33)

Observe that the expressions (VII.31) are similar to the expressions in twistor space (VII.3).
However, while we could write down unique expressions in the twistor case, we find ourselves
with four candidate expressions here. Luckily, on-shell all of the four candidates agree which
can be shown by using the equations of motion on the equations (VII.31).

The next step is to understand the space-time operators for non-linear gauge transformations.
Due to the more difficult algebra of covariant derivatives an approach as in (VII.12) is destined
to fail due to the ever increasing number of possible correction terms that have to be added at
every step. The difference between the twistor formulation of N = 4 SYM and this formulation
of N = 3 SYM lies in the less clear relation between points (x, θ, θ̄) in N = 3 superspace and
a distinguished submanifold in harmonic N = 3 superspace. For twistor space, any linearly
embedded CP1 ⊂ CP3|4 would define a point in chiral superspace. In the present case there are
in fact three submanifolds of A2. These can be obtained by setting either of the u(p,q)

i —and
their inverses u(−p,−q)i—to a constant value. We call these three different submanifolds X1,
X2 and X3. X1 and X2 obtained by setting u(1,0)

i or u(0,1)
i to a constant value, are linearly

embedded lines in A2 while X3 is non-linearly embedded in A2. These Xi are the distinguished
submanifolds over which we need to integrate to remove the dependence on the variables u(p,q)

i .

Upon imposing the constraints for Xi only two vielbeine survive in either case, the rest are set
to zero by the constraints. The nonzero vielbeine are (for their definitions see IV.1.3)

X1 : e(−1,2), e(1,−2) (VII.34a)

X2 : e(−2,1), e(2,−1) (VII.34b)

X3 : e(−1,−1), e(1,1). (VII.34c)

Varying u(1,0)
i resp. u(−1,0)i parametrizes a CP2 ⊂ A2 which is the space of all lines X1. We

denote the space Y1 and for X2 and X3 we define Y2 and Y3 in the analogous way. All three
spaces come equipped with natural volume forms µYi which in terms of the vielbeine can be
written as

µY1 = e(1,1) ∧ e(2,−1) ∧ e(−1,−1) ∧ e(−2,1) (VII.35a)

µY2 = e(1,−2) ∧ e(−1,−1) ∧ e(−1,2) ∧ e(1,1) (VII.35b)

µY3 = e(−2,1) ∧ e(−1,2) ∧ e(2,−1) ∧ e(1,−2). (VII.35c)

After having defined these measures we can write local operators on spacetime by

φi = −
∫
Y3

µY3

∫
X3

e(1,1) ∧ εαβu(−1,1)
i D(0,−1)

α D
(0,−1)
β A (VII.36)

This is analogous to writing

φi =

∫
X1

e(−1,2) ∧ e(1,−2)

∫
X2

e(−2,1) ∧ e(2,−1)

∫
X3

e(1,1) ∧ εαβu(−1,−1)D(0,−1)
α D

(0,−1)
β A. (VII.37)
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These expressions can be generalized to non-Abelian gauge transformations by introducing Wil-
son line operators UXi(u, v). The corresponding scalar superfield transforming under non-linear
gauge transformations is given by

φi(x, θ, θ̄) =

∫
X1(ξ)

e(−1,2)(ζ) ∧ e(1,−2)(ζ)UX1(ξ, ζ)

∫
X2(ζ)

e(−2,1) ∧ e(2,−1)(τ)UX2(ζ, τ)

×
∫
X3(τ)

e(1,1) ∧ UX3(τ, σ)
(
εαβu

(−1,1)
i D(0,−1)

α D
(0,−1)
β A

)
UX3(σ, τ)UX2(τ, ζ)UX1(ζ.ξ) (VII.38)

We denote the line Xi containing the point κ ∈ A2 by Xi(κ). This introduces a slight abuse of
notation as κ denotes the point on A2 as well as the local coordinate on Xi. In the linear case
we found four different but equivalent ways to write down the local superspace operator φi. In
the non-Abelian case, there is in fact an infinite number of ways to construct local spacetime
fields starting form the harmonic connection A. Since A is flat on A2 on-shell, it is possible to
deform the integration contours of the Wilson lines arbitrarily. Luckily, on-shell all the possible
ways of writing down local operators are in fact equivalent.

With this, we have found a way to extract local operators on full N = 3 superspace from
analytic N = 3 superspace in the non-Abelian theory. This allows us to relate calculations done
in one space to results in another space similarly to the chiral twistor space case. The perfect
observables to calculate in this theory would most probably be correlation functions since there
is only one field A, that contains the whole information. We haven’t made any attempts at
doing such calculations, yet, but they may be enlightening.

As a final remark, let us contrast the situation with N = 4 SYM translated to twistor space.
There we had the advantage that we could immediately see which observables would be best
suited for translation between the two spaces—these are the Wilson loops on light-like lines due
to the correspondence between points and α-planes in chiral superspace, and lines and points
in twistor space. In the next part 4 we will be studying exactly this relationship.
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4
Wilson loops





Historically, Wilson lines have been introduced to find a non-perturbative formulation of QCD
[109] and to explain confinement, and closed loops motivated the first formulations of string
theory. In N = 4 SYM, Wilson loops formulated on polygonal, light-like contours have found
wide interest recently due to a conjectured duality [47] between such operators and MHV gluon
scattering amplitudes. It is this specific type of Wilson loop that this part will be concerned
with.

Subsequently, Wilson loops on contours with fermionic directions and fermionic gauge fields
have been formulated in an attempt to capture a duality between such super-Wilson loops and
the full range of superamplitudes of N = 4 SYM [17, 10]. As outlined in sec. II.2 these proposals
had the problem that they had trouble reproducing the duality in the expected way. Even worse,
it was shown [18] that the Wilson loops in question introduced a new unexpected anomaly of
the supersymmetry operator Q̄ seemingly independent of quantum effects and regularization.
The problem was traced back to the formulation of N = 4 SYM on chiral superspace and the
dependence of the scattering amplitude on only 4 fermionic parameters.

There have been a number of different attempts to solve or circumvent this problem. In the
following chapters, we will present one of them—the formulation of a new Wilson loop on a
light-like contour for N = 4 SYM on full Minkowski superspace M4|16. We start by considering
the correct definition of light-like lines in full superspace in the sec. VIII.1. In cha. IX, we
will formulate the quantum theory of the gauge fields of N = 4 SYM on full superspace in
the linearized theory. Using these ingredients we will calculate the one-loop expectation value
of this non-chiral Wilson loop and look at various ways to regularize the appearing ultraviolet
divergences on the first loop level in sec. IX.3. This discussion is based on [1].
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CHAPTER VIII

Light-like lines and null polygonal contours

Defining null lines in Minkowski spacetime is a rather natural process. We pick two points x1

and x2 and demand that the interval between them is null

(x2 − x1)µ(x2 − x1)νηµν = 0 (VIII.1)

and solve it. A solution is given by
xµ2 = xµ1 + tvµ (VIII.2)

where vµ is a null vector v2 = 0. This process is less clear when we deal with spaces that contain
fermionic directions and even non-commutative translation operators as in (N extended) full
superspace

{Qαb, Q̄
b
α̇} = 2iδabPαα̇. (VIII.3)

We may ask ourselves therefore what ingredients did we use to come up with the solution for
ordinary spacetime? First of all, we may see that x2 − x1 is invariant under finite translations
x 7→ x+ a, so this is a good requirement for any interval. The second ingredient is less obvious:
Null intervals also transform covariantly under conformal transformations, i.e., null intervals
transform into null intervals. In the bosonic case, we could see that immediately from x2 = 0,
in the fermionic case we need ask for superconformal covariance more explicitly.

Luckily, the work we have done in cha. V pays here. We can easily derive the correct superspace
interval using the flag manifold approach. Checking for superconformal covariance is then a
matter of calculating the transformation properties directly by acting on coordinates. This is
the approach to light-like lines in this chapter. We will need them to define the contour on
which we want to define a super Wilson loop in cha. IX.

VIII.1 Lines in complex superspace

In chapter V we already outlined a way to find translation invariant intervals from the formu-
lation of Minkowski space as a subset of the manifold of flags with sequence (2|0) < (4|4). Let
us revisit this again.

Let (xαα̇, θαa, θ̄α̇a ) =: X with α, α̇ = 1, 2 and a = 1, . . . , 4 be coordinates in complex superspace
M4|16. As explained before, we are using the extended Pauli-Matrices σµ = (1, σi) and σ̄µ =
(1,−σi) to produce the map

xµ 7→ xα̇α = xµσ̄α̇αµ . (VIII.4)
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Although we will keep working in complexified superspace, we will take the liberty of using the
conventions appropriate for (3, 1) signature as before1. In full superspace, it is convenient to
define chiral coordinates xαα̇L = xαα̇−iθαaθ̄α̇a and xαα̇R = xαα̇+iθαaθ̄α̇a which define together with
the fermionic coordinates left chiral space (xL, θ̄) and right chiral space (xR, θ). The hermitian
conjugation exchanges these two spaces i.e., the chiral subspaces of Minkowski superspace are
essentially complex spaces [84]. In this part, instead of writing xL and xR, we will write
x± = x± iθθ̄ since there is no danger of confusing the ±-superscript with U(1) weights.

As demonstrated before, the supersymmetry covariant derivatives onM4|4N are the set (∂α̇α, Daα, D̄
a
α̇)

given by

∂αα̇ = σµαα̇∂µ, Daα =
∂

∂θαa
+ iθ̄α̇a ∂α̇α, D̄a

α̇ = − ∂

∂θ̄α̇a
− iθαa∂α̇α. (VIII.7)

Note that the conventions we chose imply that

∂αα̇x
β̇β = 2δβαδ

β̇
α̇. (VIII.8)

The supersymmetry covariant derivatives are chosen such that they commute with the transla-
tion operators (P,Q, Q̄) on superspace. These are

Pαα̇ = ∂αα̇, Qaα =
∂

∂θαa
− iθ̄α̇a ∂αα̇, Q̄a

α̇ = − ∂

∂θ̄α̇a
+ iθαa∂αα̇ (VIII.9)

which form only one non-trivial (anti-)commutator

{Qaα, Q̄
b
α̇} = 2iδbaPαα̇. (VIII.10)

Given such coordinates X = (xαα̇, θαa, θ̄α̇a ) we can map Minkowski space into the (right) coset
H(2|0)(4|4)\SL(4|4) by X 7→ s(X), s.t.,

s(X) =

1 −ix− −2iθ
0 1 0

0 −2iθ̄i 1

 (VIII.11)

A superconformal transformation is given by the action of a group element g ∈ SL(4|4) by

s(X).g = h(X, g).s(X ′). (VIII.12)

h is an element of the stabilizing group H(2|0)(4|4). A translation of the point Xi to the point
Xj can then be encoded as an element gij ∈ SL(4|4) with

s(Xi).gij = h(Xi, gij)s(Xj) = s(Xj) (VIII.13)

where it can be shown easily that h(Xi, gij) = 1. Thus gij takes the easy form gij = s−1(Xi).s(Xj),
i.e.,

gij =

1 −i(x−j − x
+
i + 2iθiθ̄j) −2i(θi − θj)

0 1 0

0 −2i(θ̄i − θ̄j) 1

 (VIII.14)

1The reality conditions which singles out this real slice of complex Minkowski spacetime are

x† = x, θ† = θ̄. (VIII.5)

The hermitian conjugation is taken to follow the DeWitt convention [110] such that the product θαaθ̄α̇a behaves
under conjugation like

(θθ̄)† = θθ̄ (VIII.6)
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gij is invariant under finite translations by construction and it is also easy to check that the
entries of gij are invariant under translation operators P, Q, and Q̄. The combination x+−

ij =

x−j − x
+
i + 2iθiθ̄j is not the minimal combination of the superspace variables invariant under

translations. This can be seen when rewriting

x+−
ij = (xj − xi + iθj θ̄i − iθiθ̄j)︸ ︷︷ ︸

=:xij

+iθij θ̄ij . (VIII.15)

The term xij is invariant under translations on its own—so is the combination θij θ̄ij . This is an
ambiguity that one encounters generally when working with supersymmetrizations of bosonic
expressions: The definitions are unique up to higher powers of fermionic coordinates.

The same construction for a translation operator gij applies to other coset spaces. For example
for the chiral superspace M4|8

L with coordinates (x−, θ̄) we may write gij in the form

gij = s(Xi)
−1.s(Xj) =

1 ix−i 0
0 1 0
0 iθ̄i 1

1 −ix−j 0

0 1 0
0 iθ̄j 1

 . (VIII.16)

The entries are once again the translation invariant intervals of chiral superspace

x−j − x
−
i =: x−ij and θ̄j − θ̄i = θ̄ij . (VIII.17)

§ VIII.1.1. Light-like intervals.—To impose light-likeness on the intervals we found in the
last section, we have to inspect their behavior under superconformal transformations. This was
done in [74]. The authors found that sufficient and necessary conditions for light-likeness in full
superspace are

x2
ij = 0, εαβx

αα̇
ij θ

βa
ij = 0, εα̇β̇ θ̄

α̇
ij,ax

αβ̇
ij = 0. (VIII.18)

(VIII.18) can be solved in terms of spinor variables

Λ = (λα, λ̄α̇, ηa, η̄a) (VIII.19)

by
xij = λλ̄, θij = λη, θ̄ij = λ̄η̄. (VIII.20)

If all variables are taken to be complex, λ and λ̄ are independent of each other, the same goes
for η and η̄. To recover (3, 1) signature we have to impose the conditions

λ† = λ̄ (VIII.21a)

η† = η̄. (VIII.21b)

Additionally, there is a redundancy in the description of the spinor variables. This redundancy
is a complex scaling

λ 7→ zλ, λ̄ 7→ z−1λ̄, η 7→ z−1η, η̄ 7→ zη̄ (VIII.22)

which can be used to eliminate one bosonic degree of freedom from the spinor variables such
that the amount of degrees of freedom on both sides of (VIII.20) match2.

2In real (3, 1) signature, this redundancy gets reduced to a phase.
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As we have explained in sec. V.1.2, the light-like lines of full superspace are in one-to-one
correspondence with a pair of twistors

ZA ≡
(
− i

2
λα, εαβλ

αx+αα̇, εαβλ
αθαa

)
=

(
− i

2
λα, µα̇, χa

)
(VIII.23)

WA ≡
(
εα̇β̇λ̄

α̇x−αβ̇,− i
2
λ̄α̇, εα̇β̇λ̄

α̇θ̄α̇a

)
=

(
µ̄α̇,− i

2
λ̄α̇, χ̄a

)
(VIII.24)

satisfying the constraint

Z.W = − i
2
εαβλ

αµ̄β − i

2
εα̇β̇µ

α̇λ̄β̇ + χaχ̄a = 0. (VIII.25)

This is the ambitwistor constraint defining the quadric A3|4 ⊂ CP3|4 × CP3|4. The hermitian
conjugation inherited from superspace imposes the signature (2, 2|4) on the point (Z,W) by

Z† = ±CW (VIII.26)

with C a matrix in (2, 2|4) block form

C =

0 1 0
1 0 0
0 0 1

 . (VIII.27)

§ VIII.1.2. Fat polygons.—Given the ability to form intervals which are invariant under
translations, and null conditions which are invariant under superconformal transformations, we
are able to describe closed contours in superspace which are stable under superconformal trans-
formations. These contours are polygons with light-like separated vertices Xi. The bosonic part
of the edges are one-dimensional, but they are thickened in full superspace by eight additional
fermionic directions. Overall, we find that a sequence of pairwise null-separated points (xi, θi, θ̄i)
can be connected by fat light-like lines parametrized by

x(t, σ, σ̄) = xi + tλλ̄+ iλσθ̄i − iθiσ̄λ̄, θ(σ) = θi + λσ, θ̄(σ̄) = θ̄i + λ̄σ̄ (VIII.28)

where t ∈ [0, 1] and x(1, η, η̄) = xi+1. Thus there are (1|8) parameters that parametrize the null
line between xi+1 and xi.

pi−1

(xi, θi, θ̄i) (xi+1, θi+1, θ̄i+1)
Due to the Witten correspondence, we can map such
a sequence of null separated points in Minkowski su-
perspace to a sequence of ambitwistors (Zi,Wi) in
superambitwistor space. The conditions that ensure
that a vertex xi lies at the intersection of two light-
like lines implies the constraints

Zi−1.Wi = Zi+1.Wi = 0. (VIII.29)

This implies that any two points (Zi,Wi) and (Zi+1,Wi+1) satisfying (VIII.29) lie on a linearly
embedded submanifold CP1 × CP1 ⊂ A3|N parametrized by

(Zi,i+1(z),Wi,i+1(z′)) = (Zi + zZi+1,Wi + z̄′Wi+1). (VIII.30)

Every set of points on these lines satisfies the ambitwistor relation as can be easily checked
by Zi,i+1.Wi,i+1 = 0 for all z and z′. The correspondence between ambitwistor space and full
Minkowski space is especially pleasing since polygons on null lines in superspace translate to
points in ambitwistor space connected by complex lines CP1 × CP1.
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CHAPTER IX
Null polygonal Wilson loops in full superspace

Let us now turn our attention to the calculation of null-polygonal Wilson loops in a non-chiral
superspace setting [1]. Since we do not know of a way to solve the full constraints (VI.17a) we
will consider them in their linearized form

2iδbaAα̇α + D̄b
α̇Aαa +DαaĀ

a
α̇ = 0 (IX.1a)

DαaAβb +DβbAαa = εαβW̄ab (IX.1b)

D̄a
α̇Ā

b
β̇

+ D̄b
β̇
Aaα̇ = εα̇β̇W

ab (IX.1c)

These linearized constraints can be solved by introducing the two chiral prepotentials Bαβ(x+, θ)

and B̄α̇β̇(x−, θ̄) which are symmetric in their respective spinor indices. Explicitly, we can write

Aαa = DβaB
β
α +DαaΛ (IX.2a)

Āaα̇ = −D̄a
β̇
B̄β̇

α̇ + D̄a
α̇Λ (IX.2b)

Aα̇α = ∂α̇βB
β
α − ∂β̇αB̄

β̇
α̇ + ∂α̇αΛ (IX.2c)

where the last line is a consequence of (IX.1a), and Λ = Λ(x, θ, θ̄) is an explicit gauge transfor-
mation. Under hermitian conjugation the fields B and B̄ are conjugates

B† = B̄ (IX.3)

and Λ is antihermitian. We can also reinstate the vielbein Eαα̇, Eaα, and Ēα̇a and write

A =
1

2
Eαα̇Aα̇α + EaαAαa + Ēα̇a Ā

a
α̇

=

[
1

2
(dx+)αα̇∂+

α̇βB
β
α + dθaα

∂

∂θaβ
Bβ

α

]
−

[
1

2
(dx−)αα̇∂+

β̇α
B̄β̇

α̇ + dθ̄α̇a
∂

∂θ̄β̇a
B̄β̇

α̇

]
+ dΛ

= A+ +A− + dΛ (IX.4)

where ∂± are derivatives with respect to the chiral variables x±. This shows that the gauge
connection A decomposes into a left and a right chiral part in the linearized theory1. Equa-
tions (IX.1b) and (IX.1c) imply that B and B̄ are harmonic functions satisfying

εαβDαaDβbBγδ = 0, εα̇β̇D̄a
α̇D̄

b
β̇
B̄γ̇δ̇ = 0 (IX.5)

which implies that both prepotentials satisfy the massless wave equation �B = 0. These
prepotentials can be understood in terms of Hertz potentials2 as has been pointed out before

1The fate of such a decomposition in the non-Abelian theory is unclear. It seems unlikely that there exists a
similar construction as the crucial piece, the solution of the constraints using Hertz potentials, is not available
in the non-Abelian theory.

2More on Hertz potentials in the bosonic case can be found in the appendix D.3.
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in [111].

The self-duality constraint (VI.19) implies furthermore that

−D̄a
α̇D̄

b
β̇
B̄α̇β̇ =

1

2
εabcdDαcDβdB

αβ. (IX.6)

IX.1 On-shell momentum space and light-cone gauge

We will now impose (3,1) signature throughout. It is possible to express the fields B and B̄ in
terms of Fourier integrals over on-shell momentum space variables [1]

Bαβ(x+, θ) =
1

8π2

∫
d2λd2λ̄d0|4η̄ exp

(
i

2
〈λ|x+|λ̄] + 〈λ|θ|η̄]

)
Cαβ(λ, λ̄, η̄) (IX.7a)

B̄α̇β̇(x−, θ̄) =
1

8π2

∫
d2λd2λ̄d0|4η exp

(
i

2
〈λ|x−|λ̄]− 〈η|θ̄|λ̄]

)
Cαβ(λ, λ̄, η) (IX.7b)

with the shorthand notations 〈λ|x|λ̄] = λαxαα̇λ̄
α̇, 〈λ|θ|η̄] = λαθaαηa and 〈η|θ̄|λ̄] = ηaθ̄aα̇λ̄

α̇. The
conditions on the fields B and B̄ imposed by the Minkowski reality conditions imply

Cαβ(λ, λ̄, η̄)† = C̄α̇β̇(λ,−λ̄, η) (IX.8)

and the self-duality constraint further implies that there exists a relation between C and C̄ by

λ̄α̇λ̄β̇C̄
α̇β̇(λ, λ̄, η) = 4

∫
d0|4η̄ exp

(
1

2
ηη̄

)
λαλβC

αβ(λ, λ̄, η̄) (IX.9)

which expresses neatly that both superfields contain the same component fields. Both fields are
homogeneous with degree −4 (C) and +4 (C̄) under the scaling transformation (λ, λ̄, η, η̄) 7→
(zλ, z−1λ̄, zη, z−1η̄).

Now, we introduce a light-cone gauge (see apdx. D.2). Introduce a pair of reference spinors `α

and ¯̀α̇ and demand `αBαβ = 0 and ¯̀α̇B̄α̇β̇ = 0 as a gauge condition. It is solved in terms of
the on-shell momentum fields by

Cαβ =
`α`β

〈λ, `〉2
C(λ, λ̄, η̄), C̄α̇β̇ =

¯̀α̇ ¯̀β̇

[¯̀, λ̄]2
C̄(λ, λ̄, η). (IX.10)

C and C̄ are on-shell fields of homogeneity −2 and 2 under the scaling transformation above
and they satisfy the self-duality constraint3

C̄(λ, λ̄, η̄) = 4

∫
d0|4η̄ exp

(
1

2
ηη̄

)
C(λ, λ̄, η̄). (IX.11)

This is a complete gauge, i.e., there is no more gauge freedom left.

3Furthermore B† = B̄ implies C†(λ, λ̄, η̄) = C̄(λ,−λ̄, η). Together with (IX.11) this implies that all 16 physical
degrees of freedom of N = 4 are contained in either of the two fields C or C̄.

78



Furthermore, there exists a half–Fourier transform4 which takes the fields C and C̄ from on-shell
momentum space Λ = (λ, λ̄, η, η̄) to ambitwistor space via (denoting the fields on both sides by
C and C̄)

C(λ, µ, χ) =

∫
d2λ̄d0|4η̄ exp

(
−2i[µ, λ̄] + χη̄

)
C(λ, λ̄, η̄) (IX.12a)

C̄(λ̄, µ̄, χ̄) =

∫
d2λd0|4η exp (−2i〈λ, µ̄〉 − ηχ̄) C̄(λ, λ̄, η). (IX.12b)

and the self-duality constraint translates to a relation between the two twistor fields

C̄(W) =
1

(2π)2

∫
d4|4Z exp(2 Z.W)C(Z) (IX.13)

and the prepotentials B and B̄ can be expressed as

Bαβ(x+, θ) =
1

8π2

∫
CP1

〈λdλ〉`α`β

〈λ`〉2
C(Z)|CP1 (IX.14)

B̄α̇β̇(x−, θ̄) =
1

8π2

∫
CP1

[λ̄dλ̄]¯̀α̇ ¯̀β̇

[λ̄¯̀]2
C̄(W)|CP1 (IX.15)

where the restriction to CP1 is the same restriction as in sec. VII.1 to express that we are looking
at a fixed point in left or right chiral superspace.

IX.2 Wilson loop in full superspace

A Wilson loop in a non-Abelian gauge theory is the path-ordered exponential of the integral of
the gauge connection A over a loop γ in the space of concern

W = trP exp

(∮
γ
A

)
. (IX.16)

Stated differently it calculates the holonomy of the connection around a closed curve. This is
a nice gauge-invariant quantity so the result of the calculation is a meaningful quantity. The
curve in question can be any type of closed path, but the Wilson loop calculations concerning
the duality to scattering amplitudes in gauge theories must be done on polygonal paths Cn made
up from n light-like segments in superspace. In full superspace, we must calculate

Wn = trP exp

(∮
Cn

A

)
= trP exp

(∮
Cn

1
2E

α̇αAαα̇ + EαaAaα + Ēα̇a Ā
a
α̇

)
. (IX.17)

For the quantum mechanical computation we need to take the expectation value of the Wilson
loop as an operator 〈Wn〉 and calculate it perturbatively5. The one-loop contribution sits at
the second level in the expansion of the exponential6

〈W(1)
n 〉 =

λ̃

N

∮
Cn

∮ ′
Cn

1
2 tr〈AA′〉. (IX.18)

4This half–Fourier transform has been lurking in the background ever since eq. (IX.7). We want to point out
that the variables µ = 〈λ|x+ and µ̄ = x−|λ̄].

5As explained in [1] the calculation of the Wilson loop is tricky. Since N = 4 SYM exists only on-shell, all
calculations have to be done on-shell as well. This forces us to use the Whitman or “cut” propagator G+

as described in apdx. D i.e., we calculate the vacuum expectation value 〈0|Wn|0〉 but denote all expectation
values by 〈W〉.

6Clearly, the vacuum expectation value 〈A〉 = 0.
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Here we defined a rescaled ’t Hooft coupling by λ̃ =
g2YMNc

64π2 . In the linearized (Abelian) theory
we can drop the trace. Using (IX.4) we see that the Wilson loop at this level neatly splits into
three parts given by a chiral-chiral, an antichiral-antichiral, and a chiral-antichiral piece

〈W(1)
n 〉 = 〈W(1)

n++〉+ 〈W(1)
n−−〉+ 2〈W(1)

n+−〉

=
1

2λ̃N

∮
Cn

∮ ′
Cn

〈A+A
′+〉+

1

2λ̃N

∮
Cn

∮ ′
Cn

〈A−A′−〉+
1

λ̃N

∮
Cn

∮ ′
Cn

〈A+A
′−〉 (IX.19)

A+

A+

A−

A−

A+

A−

Figure IX.1.: The three different propagators appearing in the Wilson loop expectation value
are marked by different lines. Left the chiral-chiral contribution, in the mid-
dle the antichiral-antichiral contribution, and on the right the chiral-antichiral
contribution.

These three contributions to the expectation value do not mix since they come with different
orders in θ and θ̄. The purely chiral and purely antichiral parts in this expectation value have
to yield the same contributions as the purely chiral Wilson loops proposed in [10, 17].

The curve Cn is a sequence of light-like segments—let us evaluate what this means for the
calculation of the integral over the curve. The solution of the linearized constraints implies that
the gauge field A is flat on light-like lines. So A can be written as a total derivative A = dF .
This total derivative further decomposes into chiral and antichiral parts, so

A+ = dB(x+, θ), A− = dB̄(x−, θ̄). (IX.20)

If the light-like line passes through the vertices (xi, θi, θ̄i) and (xi+1, θi+1, θ̄i+1) let

xαα̇i,i+1 = λαi λ̄
α̇
i , θαai,i+1 = λαi η

a
i , θ̄α̇i,i+1 a = λ̄α̇i η̄i a. (IX.21)

It is then possible to solve for B and B̄ in terms of C(λ, λ̄, η̄) and C̄(λ, λ̄, η) using the expres-
sions (IX.7). We find

Bi(x
+, θ) =

1

8π2

∫
d2λd2λ̄d0|4η̄ exp

(
i
2〈λ|x

+
i |λ̄] + 〈λ|θi|η̄]

) 〈i, `〉
〈λ, `〉〈λ, i〉

Ci(λ, λ̄, η̄) (IX.22)

B̄i(x
−, θ̄) =

1

8π2

∫
d2λd2λ̄d0|4η exp

(
i
2〈λ|x

−
i |λ̄]− 〈θ|θ̄i|λ̄]

) [i, ¯̀]

[λ̄, ¯̀][λ̄, i]
C̄i(λ, λ̄, η) (IX.23)

Due to the polygonal nature of the integration contour, the integral over the loop can be written
as a sum of shifts over the edges of the polygon∮

Cn

A =
n∑
i=1

(
Bi(xi+1, θi+1, θ̄i+1)−Bi(xi, θi, θ̄i)

)
. (IX.24)
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By rearranging the sum, we can express this in terms of shifts Bi−1,i(xi, θi, θ̄i) localized at the
vertices of the Wilson loop with

Bi−1,i(xi, θi, θ̄i) = Bi−1(xi, θi, θ̄i)−Bi(xi, θi, θ̄i) (IX.25)

and

Bi−1,i(x
+, θ) =

1

8π2

∫
d2λd2λ̄d0|4η̄ exp

(
i
2〈λ|x

+
i |λ̄] + 〈λ|θi|η̄]

) 〈i− 1, i〉
〈i− 1, λ〉〈λ, i〉

C(λ, λ̄, η̄)

(IX.26)

B̄i−1,i(x
−, θ̄) =

1

8π2

∫
d2λd2λ̄d0|4η exp

(
i
2〈λ|x

−
i |λ̄]− 〈θ|θ̄i|λ̄]

) [i− 1, i]

[̄i− 1, λ̄][λ̄, i]
C̄(λ, λ̄, η).

(IX.27)

In essence these expressions are Penrose-Witten transformations in disguise, which take us from
ambitwistor space to spacetime. For this reason (and the fact that Bi−1,i and B̄i−1,i are localized
at a point) the reference spinors ` and ¯̀ have dropped out of the expressions above. Thus the
Wilson loop expectation value has reduced to the sum of expectation values

λ̃〈W(1)
n 〉 =

n∑
i,j=1

(
1

2N 〈Bi−1,iBj−1,j〉+ 1
2N 〈B̄i−1,iB̄j−1,j〉+ 1

N 〈Bi−1,iB̄j−1,j〉
)

(IX.28)

The explicit calculation of the expectation values in the above expression can be found in [1] and
we will content ourselves with only giving the results which will be important in the following.
One finds that the chiral-chiral expectation value 〈Bi−1,iBj−1,j〉 and the antichiral-antichiral
expectation value 〈B̄i−1,iB̄j−1,j〉 yield rational functions which are exactly the R-invariants of
[55]. We expected this result from a chiral super Wilson loop. One finds

〈Bi−1,iBj−1,j〉 = − 1

4π2

〈i− 1, i〉〈j − 1, j〉δ0|4(θj,i|x+
j,i|ρ̄])

(x+
j,i)

2〈j − 1|x+
j,i|ρ̄〈j|x

+
j,i|ρ̄]〈i− 1|x+

j,i|ρ̄〈i|x
+
j,i|ρ̄]

(IX.29)

where ρ̄ is a reference spinor which can be interpreted as an integration constant. This reference
spinor drops out upon summation of all contributions to the Wilson loop, so it plays a rôle
akin to the reference twistor Z∗ of axial gauge twistor theory as used in [10]. The result of the
antichiral-antichiral computation can be obtained by conjugation of (IX.29).

The hardest calculation is the mixed correlator

〈Bi−1,iB̄j−1,j〉 = − 1

256π4

∫
d2λd2λ̄ exp

(
− i

2
〈λ|x+

i,j |λ̄]
) 〈i− 1, i〉[j − 1, j]

〈j − 1, λ〉〈λ, j〉[k − 1, λ̄][λ̄, k]
(IX.30)

which has been solved by using a second order differential equation to extract the term of highest
transcendentality. The result is

〈Bi−1,iB̄j−1,j〉 = − 1

64π2
Li2

(
〈i− 1|x+−

i,j |j]〈i|x
+−
i,j |j − 1]

〈i− 1|x+−
i,j |j − 1]〈i|x+−

i,j |j]

)

+
1

128π2
log(〈i− 1|x+−

i,j |j − 1]〈i|x+−
i,j |j]) log

(
〈i− 1|x+−

i,j |j]〈i|x
+−
i,j |j − 1]

〈i− 1|x+−
i,j |j − 1]〈i|x+−

i,j |j]

)
(IX.31)
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We have given the results in their spacetime—or rather correspondence space—form. Since it is
possible to translate all appearing quantities into ambitwistor language, we will do so. Observe
that

− i
4
〈i|x+−

i,j |j] = − i
4
〈i|(x−j − x

+
i + 4iθiθ̄j |j]) = −i〈λi, µ̄j〉+ i[µi, λj ] + χiχ̄j = Zi.Wj (IX.32)

is the scalar product of a twistor Zi and a dual twistorWj . Remember that for a null polygonal
contour in spacetime, the ambitwistor relations imply that

Zi.Wi−1 = Zi.Wi = Zi.Wi+1 = 0. (IX.33)

For the rest of the discussion we will use the shorthand notation 〈i, j] ≡ Zi.Wj . We can then
express the mixed correlator as a true ambitwistor expression7 by

64π2〈Bi−1,iBj−1,j〉 = −Li2 (Xi,j) +
1

2
log(〈i− 1, j − 1]〈i, j]) log (Xi,j) (IX.34)

where
Xi,j =

〈i− 1, j]〈i, j − 1]

〈i− 1, j − 1]〈i, j]
(IX.35)

are cross-ratios. These are invariant under scaling and superconformal transformations8.

Additionally, there was also a proposal for the form of the propagators for the ambitwistor fields
in [1]. We review another proposal in apdx. D.5.

7In contrast with the R-invariants which are really only dependent on the chiral subspaces.
8This will be expanded upon in cha. XI. For now it is important to note that the ambitwistor brackets 〈i, j] are
themselves superconformal invariants, thus making the cross-ratios natural invariants.
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IX.3 Regularization of ultraviolet divergences in the mixed sector

a) b)

c)

Before we can give the full one-loop result in the mixed
sector we need to discuss regularizations. Upon inspec-
tion of equation (IX.31), we see that there are three
different sources for divergences when |i − j| < 3 as il-
lustrated in the picture to the left. The divergence in
a) is caused by a pinching of the propagator in the cor-
ner or by the propagator going light-like when the left
insertion reaches the left-most point and the right inser-
tion reaches the top point (in the similar situation for
the left propagator reaching the top most point). The

divergence in b) is caused by the light-like separation of the two points in the upper corners such
that the propagator goes on-shell. Diagram c) shows a very singular contribution as every two
points on a light-like line are light-like separated, the propagator is ∝ 1

0 . Such diagrams have
to be treated by taking the lines to be slightly space-like. In the following, we will disregard
such singular contributions9. They have been studied and regularized in [112]. Due to these
potential (and actual) divergences we need to regularize the Wilson loop expectation value. We
will briefly discuss three possible regularizations as presented in [1].

§ IX.3.1. Framing.—Framing a Wilson loop
means that we do not actually calculate the ex-
pectation value of a single loop 〈Wn〉 but the cor-
relation function of two infinitesimally displaced
Wilson loops Wn and W ′n divided by their expec-
tation values

〈Wn〉framed =
〈WnW ′n〉
〈Wn〉〈W ′n〉

. (IX.36)

This procedure removes all potentially divergent terms to order g2 in perturbation theory. Yet,
if we take the limit of zero displacement, we essentially calculate the expectation value of a single
Wilson loop. Thus this is a valid regularization procedure. The picture above shows the four
contributions that come from a single corner in the one-loop case. The upper left and upper
right corners of the picture show finite contributions while the lower corners show divergent
terms. At one loop, the ratio (IX.36) is equivalent to the sum

2〈Wn〉(1)
framed = 〈WnW ′n〉 − 〈Wn〉 − 〈W ′n〉 (IX.37)

where (suppressing λ)

1

64π2
〈WnW ′n〉(1) =

1

2

∮
Cn

∮
C′n

(〈A+A−〉+ 〈A−A+〉). (IX.38)

The other two terms from the expansion of 〈Wn〉 and 〈W ′n〉 subtract all divergences from the
original and the displaced Wilson loops thus leaving behind only finite terms. Expressing the
infinitesimal shift of the primed Wilson loop by two reference twistors (Z?,W?) (note: 〈?, ?] 6= 0)
we can describe the light-like lines of the displaced Wilson loop by the ambitwistors

Z ′i = Zi + iε
〈i, ?]
〈?, ?]

Z?, W ′i =Wi − iε
〈?, i]
〈?, ?]

W? (IX.39)

9It can be shown that they produce vanishing contributions to the expectation value of the Wilson loop.
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which satisfy the ambitwistor conditions

Z ′i.W ′i = Z ′i.W ′i±1 = O(ε2). (IX.40)

At O(1) the product contains only the bracket 〈i, i] which is zero and at order ε the contributions
cancel. Correlators between well separated vertices have a finite limit when ε→ 0 while divergent
terms need to be regularized by

Zi.Wj → iε
〈j, ?]〈?, k]

〈?, ?]
=: ε〈i, j]?. (IX.41)

Using these definitions10 we can give a fully regularized expectation value for the non-chiral
Wilson loop

〈Wn〉framed =

n∑
j=1

{
− log2 ε+ log ε log

〈j + 1, j − 1]〈j − 1, j + 1]

〈j + 1, j]∗〈j, j + 1]?

+

j−3∑
k=j+3

(
−Li2Xj,k +

1

2
log
[
〈j − 1, k − 1]〈j, k]

]
logXj,k

)
+
∑
k=j±2

1

2
log
[
〈j−1, k−1]〈j, k]

]
logX?

j,k

+
∑
k=j±1

1

2
log
[
〈j, k−1]?〈j−1, k]?

]
logX?

j,k

}
+O(ε), (IX.42)

where constant terms (like ζ-values) have been neglected.

§ IX.3.2. Super-Poincaré regularization.—We also want to discuss an ad-hoc regulariza-
tion of the Wilson loop expectation value in the mixed sector—we may call it super-Poincaré
regularization. To perform the regularization one replaces any problematic ambitwistor bracket
e.g., 〈i, i], 〈i, i± 1], by the product ZiIZj resp. WiIWj where I is the infinity twistor11 (which
is actually a bi-twistor describing the light-cone at infinity—a plane) which projects any twistor
to its λ or λ̄ component

ZIZ ′ = 〈λλ′〉, WIW ′ = [λ̄λ̄′]. (IX.43)

10Further details can be found in [1].
11Notice the abuse of notation. Technically, the two CP3|4 each have their own infinity twistor. Since there is

no danger of confusion, we denote both by the same letter I.
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This breaks superconformal symmetry but preserves Poincaré symmetry, whence the name. The
result of such a replacement is

M
(1)
n,I = −

n∑
j=1

(
2

ε2
+

2

ε
log
〈j−1, j+1]〈j+1, j−1]

µ2〈j, j+1〉[j, j+1]

)

−
n∑
j=1

j−3∑
k=j+3

Li2Xj,k −
1

2

n∑
j=1

(
log2 〈j, j+1]

[j, j+1]
− log2 〈j−1, j〉

[j, j+1]
− log2 [j−1, j−2]

〈j, j−1〉

)

− 1

2

n∑
j=1

(
log2 〈j−1, j+1]

µ[j, j+1]
+ log2 µ[j−1, j−2]

〈j, j−2]
+ log2 〈j, j+2]

µ〈j, j+1〉
+ log2 µ〈j, j−1〉

〈j, j−2]

)

− 1

2

n∑
j=1

 j−3∑
k=j+2

log2 〈j−1, k]

〈j, k]
+

j−2∑
k=j+3

log2 〈j, k]

〈j, k−1]
−

j−2∑
k=j+2

log2 〈j−1, k−1]

〈j, k]


+

1

2
γ

n∑
j=1

log2 〈j−1, j+1]〈j, j+1〉[j−1, j]

〈j+1, j−1]〈j−1, j〉[j, j+1]
. (IX.44)

This result supersymmetrizes the bosonic result for a Wilson loop given in [113]. The super-
symmetrization is not unique however. This has been emphasized by adding the last term
proportional to γ. This coefficient is not fixed by any physical input, so it might be as well set
to 0.

§ IX.3.3. Boxing.—Finally, in the bosonic case the boxing procedure has proven to be a
viable regularization process for Wilson loops on light-like contours [114]. It does calculate a
perfectly finite and superconformal quantity (as we will prove in due course). However, the
quantity itself is problematic to relate to the original Wilson loop and the one-loop expectation
value so extracted will be called the boxed loop to distinguish it from the original Wilson loop.

Cn

i

j

t

b

a)

b)

c)

d)

Figure IX.2.: The different contours of the boxed Wilson loop. Please refer to the text for the
definition of the different contours.

Given an arbitrarily shaped null polygonal contour with n vertices in full superspace, we choose
two edges, or four vertices Xi, Xi+1, Xj , and Xj+1. Let us denote the edges between points Xi

and Xi+1 as I. We may extend the edge I such that we reach point Xt on I that is separated
from the point Xj by a light-like line T. We can do the same for Xj and Xj+1, this time around
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defining an edge J and extending it such that we find a point Xb on J that is separated by a
null line B from the point Xi. In the bosonic case we could say that we extend the light-like
edges such that they intersect the light-cones of some other point on the contour.

With these two new edges we build three new polygonal contours apart from the original one.
Assuming 1 ≤ i < j < n these are given by the paths

Cb := [i, i+ 1, . . . , j − 1, j, b], Ct := [1, . . . , i, t, j, j + 1, . . . , n], Ctb = [i, t, j, b].

which have also been illustrated in figure IX.2 by frame a), b), and d) respectively. The remaining
frame c) gives an impression of the resulting path for the boxed Wilson loop.

Given the contours, the boxed loop expectation value is defined by the ratio

〈Wn〉� =
〈Wn〉〈Wtb〉
〈Wt〉〈Wb〉

' 〈Wn〉(1) + 〈Wtb〉(1) − 〈Wt〉(1) − 〈Wb〉(1) =: ri,j (IX.45)

where the second approximate equality holds on the first loop level which we call the ratio
function ri,j . Notice that ri,j will be different for different choices of i and j.

Since light-like lines and ambitwistors are in correspondence, we may express the edges T and
B—as well as all the other edges— by ambitwistors (Zt,Wt) and (Zb,Wb). Using the condition
〈i, i+ 1] = 0 for two light-like lines to intersect, we see that these new twistors are given by the
expressions

Zt = Zi −
〈i, j]
〈i+ 1, j]

Zi+1, Zb = Zj −
〈j, i]
〈j + 1, i]

Zj+1, (IX.46)

similarly for the conjugate twistors Wt and Wb.

The boxed Wilson loop is a finite quantity, i.e., all divergences cancel after a careful calculation.
For definiteness we pick i = 1 and provide the solution

r1,j =

j∑
i=4

n∑
k=j+2

(
−Li2Xi,k +

1

2
log〈i−1, k−1]〈i, k] logXi,k

)

+
1

2
log2 〈3, n]

〈3, 1]
+

1

2
log2 〈2, b]

〈3, b]
− 1

2
log2 〈j, n]

〈j, 1]
− 1

2
log2 〈2, n]

〈3, n]

+
1

2
log〈j, 1]〈t,b] logX ′t,b +

1

2
log〈2, n]〈3, 1] logX ′3,b + conj., (IX.47)

where conj. stands for the conjugate result.

IX.4 What remains to be done

Despite the success at one-loop level it is unclear how to proceed from here to higher loop levels.
As the one-loop level marks the end of the perturbative series for the Abelian theory—the rest
is given by exponentiation—we cannot hope to extract any more information from the solution
of the linearized constraints as given in cha. IX. Two possibilities to proceed from here should
nevertheless be mentioned.

First of all, it would be possible to use the N = 3 off-shell action in ambitwistor space as
proposed in [92] to calculate a Wilson loop in N = 3 superspace. Since N = 3 and N = 4 are
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equivalent on-shell, we should be able to find results from N = 3 that are also viable in N = 4.
The drawback to this approach is the smaller superspace of N = 3 which could lead to a loss of
information compared to a result calculated in N = 4 superspace.

A second possibility would be to find a non-Abelian generalization to the solution of the N = 4
SYM constraints as shown in this chapter. To this end, we might use a harmonic approach to
ambitwistors and try to extend the Abelian result to a non-Abelian result in a way similar to
the extension from Abelian twistor theory to non-Abelian twistor theory presented in cha. VII.
The drawback to this method might be that an extension of this technique is very hard to find.

Both possibilities await further inspection. For now, we will contend ourselves with a test of
the regularized one-loop expectation values for their symmetry properties under superconformal
and Yangian symmetry generators.
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5
Symmetries





As we already pointed out in sec. I.5, N = 4 SYM is superconformally invariant even on the
quantum level—the symmetry algebra is the superconformal algebra psu(2, 2|4). Detailed study
of the scattering amplitudes of planar N = 4 has also revealed a second, hidden superconformal
symmetry known as dual superconformal symmetry. The existence of such a dual symmetry
group is extremely non-trivial and has led to many interesting insights.

It has been shown that ordinary superconformal symmetry and dual superconformal symmetry
form an extended infinite-dimensional algebra, a quantum group known as Yangian algebra
Y[psu(2, 2|4)]. This infinite-dimensional symmetry group will be the main topic of the present
part. An abridged version of the general theory of Yangian algebras can be found in apdx. F.

In cha. X we will give the form of the Yangian symmetry generators as they are used in N = 4
calculations concerning scattering amplitudes and Wilson loops. We will also paraphrase a proof
of the invariance of all tree-level scattering amplitudes under the generators of the Yangian
symmetry algebra. In cha. XI we turn to the result of the non-chiral Wilson loop computation
of the last part and inspect its behavior under superconformal and Yangian symmetries. Finally,
in chapter XII, we will show that tree-level scattering amplitudes in planar N = 4 SYM have
an additional symmetry that lies outside of the Yangian algebra.
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CHAPTER X

Yangian symmetry of the S-matrix

The Yangian of psu(2, 2|4) appears in planar N = 4 SYM as an extended hidden symmetry
algebra [13, 79, 13, 115, 15, 116, 117]. The word hidden cannot be understood in the traditional
sense as “non-Lagrangian symmetries of the equations of motion”. Rather we need to understand
the Yangian generators as symmetries of the S-matrix of planar N = 4 SYM. Yangians are
quantum algebras which make their appearance usually in the context of the symmetries of
integrable theories. They have first been introduced in [118]. To save space we have relegated
the general definition of Yangian algebras to Appendix F.

In the context of the symmetries of the S-matrix of planar maximally supersymmetric Yang-
Mills theory in four dimensions, the Yangian of psu(2, 2|4) has first been identified in [13].
The generators of the Yangian in planar N = 4 have been shown to consist of the generators
of the superconformal symmetry algebra psu(2, 2|4) and the generators of dual superconformal
symmetry—a second psu(2, 2|4)—that appears as the symmetry algebra of Wilson loops in chiral
superspace which are dual to scattering amplitudes in on-shell momentum superspace (λ, λ̃, η).
For an introduction to this topic please refer to cha. VIII.

X.1 The Yangian of psu(2, 2|4)

In sec. II.1 we mentioned that scattering amplitudes An of n particles in planar N = 4 SYM
obey an extended symmetry algebra. The set of Lagrangian symmetries of N = 4 SYM is given
by the Lie superalgebra psu(2, 2|4). If we denote the generators of psu(2, 2|4) by Ja such that

Ja ∈ {L, L̄,P,K,R,D|Q, Q̄,S, S̄}, (X.1)

the action of these symmetry generators on the external data inserted into the scattering am-
plitudes An(Λ1, . . . ,Λn) where

Λi = (λi, λ̃i, ηi) (X.2)

is given by the sum of the densities Jai

Ja =
n∑
i=1

Jai . (X.3)
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The realization of the algebra on the space with coordinates Λ is presented in apdx. E. An
maps the n-fold tensor product of the spinor-helicity representation space1 Λ⊗n into C. To
describe the action of an algebra on such a tensor product of representation spaces, we have
used the coproduct ∆ of the Hopf algebra structure of the universal enveloping algebra U[g].
Both concepts have been briefly introduced in apdx. F.1. In general, given an amplitude An
with n legs, the action of an algebra generator Ja on this amplitude will be described by (X.3)
in the following.

Ja An = An
∑
i

Jai

Above we have given an diagrammatic description of the action of the generator Ja on An. The
bubble on the leg on the right hand side of the equation signifies the modification of the on-shell
variables (λi, λ̄i, ηi) by the generator density Jai . The sum gives zero if Ja generates a symmetry
of An.

The Yangian structure can be described by the underlying algebra psu(2, 2|4) with generators
Ja and additional first level generators Ĵa which transform in the adjoint representation of the
algebra, e.g.,

[Ja, Ĵb} = fabc Ĵ
c. (X.4)

These additional operators have to obey consistency conditions which have been laid out in
apdx. F.3. Knowledge of the algebra structure, the first level generators and their commutation
relations, and the consistency conditions is enough to define the Yangian algebra. In our specific
case with underlying algebra psu(2, 2|4), we will denote the Yangian algebra by Y[psu(2, 2|4)].

A generator Ĵa of the first level of Y[psu(2, 2|4)] can also act on An, just like, in fact the
generators of any level of the Yangian. The action of the higher level generators is obtained via
the coproduct, again. Compared to the usual coproduct (see apdx. F.2) of U [g] however, the
coproduct consistent with the Yangian consistency conditions is deformed. This special form of
the coproduct is described in (F.16). To act on An, we need to take the n-fold coproduct and
find

∆n(Ĵa) =
n∑
i=1

Ĵai +
1

2
fabc

n∑
i,j

σijJ
b
iJ
c
j . (X.5)

where σij denotes the sign function

σij = sign(j − i)

and fabc are the structure constants of2 psu(2, 2|4). We use the evaluation representation as
described in apdx. F.3.2 and set the appearing spectral parameter u = 0 because its coefficients
are proportional to generators of the underlying algebra at this level, i.e., they generate a

1We call this space Λ just like the set of variables.
2Strictly speaking these are the structure constants of the dual g∗, but the dual is identified with g via the
Killing form.
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symmetry transformation and annihilate the amplitude anyway. From here on throughout we
will therefore use the definition

Ĵa =
1

2
fabc

∑
i,j

σijJ
b
iJ
c
j (X.6)

and refer to it as the Yangian first-level generator or first level generator for (relative) briefness.

Ĵa An = An
∑
i<j

Jaj

Jai

The figure shows the action of the Yangian generator on An. Notice that the ordering “opens”
the amplitude (symbolized by the gray line). Hence, a first-level generator Ĵa will not obey
the cyclic symmetry of amplitudes. We can see this as the ordered structure that is imposed
by σji—the sum has a reference point in site 1. It is therefore necessary to check whether the
Yangian generators obey the cyclic symmetry by taking the difference of two first-level operators
that cut the amplitude open at different points. A shift by one step

1→ 2, . . . , n→ n+ 1 (X.7)

will suffice, so we calculate

Ĵa2,n+1 − Ĵa1,n = fabcJ
b
1J
c + fabcf

bc
dJ
d
1. (X.8)

Although this looks worryingly non-vanishing, we are in the fortunate position to work with
psu(2, 2|4): The first term in (X.8) is proportional to a symmetry, so when acting with both
sides of this equation on An, its action will yield zero. The second term on the other hand is
proportional to the dual Coxeter number h∨ which is zero in the case of all the superalgebras
sl(n|n). The right hand side of (X.8) is therefore equivalent to zero on An and thus is the left
hand side. See below for a graphical impression of this equality.

An−

Jaj

Jai

An
∑
i<j

σji

Jaj

Jai

= 0

This is a remarkable, non-trivial consistency check. A similar cancellation is only known from
the Yangian of osp(6|4) which is a hidden symmetry algebra of the scattering amplitudes of
ABJM theory [119], a N = 6 Chern-Simons theory with matter.
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X.2 Invariance of tree-level scattering amplitudes

It has been shown that all tree-level scattering amplitudes of planar N = 4 SYM are—at least
naively—invariant under the zeroth- and first-level generators of Y[psu(2, 2|4)]

JaAn = 0, and ĴaAn = 0 (X.9)

and therefore under the whole Yangian algebra. In particular, this has been shown in [120]
using the Grassmannian integral [60, 58, 62]. We will paraphrase the proof here, and use it in
cha. XII to show the existence of a new symmetry generator.

The Grassmannian integral Ln,k (II.11) is invariant under the generators of the superconformal
algebra psu(2, 2|4) by construction3

JABLn,k =
1

vol(GL(k))

∫
dn×kt

M1 · · ·Mn

∑
m

timZAm∂iB
∏
j

δ4|4(tj · Z) = 0 (X.10)

after partial integration of ∂iB. To see the invariance under ĴAB more work is necessary. A crucial
remark before we do so: The Grassmannian integral is only invariant under Ĵ up to boundary
terms [120]. This however is enough to show the invariance of all tree-level amplitudes under
the Yangian first-level operators Ĵ.

An observation of [120] is the fact that the Yangian generators in their twistor representation

ĴAB = (−1)C
∑
i,j

σjiZAi ∂iCZCi ∂iB (X.11)

can be rewritten and used on the Grassmannian integral to give4

ĴABLn,k =

∫
dn×kt

M1 · · ·Mn

k∑
a,b=1

∑
i,j

σji

[
taiZAi tbj

∂

∂taj

]
∂bB

∏
d

δ4|4(td · Z). (X.12)

The operator OAb =
∑

i,j σjitaiZAi tbj
∂
∂taj

can be commuted past the product of minors5 such
that finally

ĴABLn,k =
∑
i,j

σji

∫
dn×kt tai

∂

∂taj

[
ZAi tbj

M1 · · ·Mn
∂bB

∏
d

δ4|4(td · Z)

]
. (X.13)

The integrand here is—due to the factor σji—a total derivative, thus proving the invariance of
the Grassmannian integral under Ĵ up to boundary terms. This concludes the proof of [120].

3Observe that the generators JAB are to be understood to have the super-trace (−)AδAB removed.
4We shall drop the volume factor in the following for brevity and tidiness
5This operation is—although computationally non-trivial to show—not very hard to understand. The way the
operator OAb works is to replace some taj by other tbj . In some cases, the minor then vanishes, in the other
cases, we can use permutation of the arguments of the minor to bring it back into its original shape.
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CHAPTER XI

Wilson loops and Yangian transformations

XI.1 Yangian generators in ambitwistor space

On ambitwistor space A3|4 with coordinates (Z,W) the generators JAB of u(2, 2|4) are repre-
sented by single derivative operators (see E.3.3)

JAB =

n∑
i=1

JAi,B =

n∑
i=1

(−1)AZAi ∂i,B − (−1)ABWi,B∂̄
A
i . (XI.1)

The central charge C and the hypercharge B are obtained by taking the super-trace and trace
of JAB respectively. The level-one generators ĴAB may be represented by the bi-local formula1

ĴAB =
n∑

i,j=1

σji J
A
i CJ

C
j B =

∑
i<j

(
JAi CJ

C
j B − JAj CJ

C
i B
)
. (XI.2)

and they transform under the level-zero generators in the following way

[JAB, Ĵ
C
D} = (−1)CδCBĴ

A
D − (−1)C+(A+B)(C+D)δAD Ĵ

C
B. (XI.3)

Yangian invariance of a function of ambitwistor variables F (Z,W) is achieved when

JABF (Z,W) = 0 and ĴABF (Z,W) = 0. (XI.4)

§ XI.1.1. Superconformal invariance.—As we pointed out above, all generators

{P,L, L̄,K,D|Q, Q̄,S, S̄} (XI.5)

of the superconformal algebra psu(2, 2|4) are represented by one easy expression for JAB. Hence,
we can treat them all at once.

The ambitwistor brackets 〈k, l] are superconformal invariants

JAB〈i, j] = 0, |i− j| ≥ 2 (XI.6)
1The sign factor (−1)A was included to eliminate a factor of (−1)C in the definition of the Yangian charges.
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by construction. Of course, since the generators JAB are represented by single derivative oper-
ators any function F (〈k, l]) of finite ambitwistor brackets is a superconformal invariant, too

JABF (〈k, l]) = 0. (XI.7)

In the following, we will be interested in calculating the action of the Yangian operators on the
regularized results of the one-loop calculation of the Wilson loop in full superspace. Regulariza-
tion introduces a wider class of functions Freg with additional dependencies on auxiliary twistors
Z? as in the framing regularization or explicitly non-superconformally invariant combinations
of the twistor data like the angle and square brackets

〈i, j〉 = ZAi IABZBj , [i, j] =WiAI
ABWiB (XI.8)

in supersymmetric regularization with I the infinity twistor. Such objects in general break
superconformal invariance. We expect therefore an anomalous remainder A

JABFreg = AAB. (XI.9)

§ XI.1.2. Yangian invariance.—The generators ĴAB act as second order derivatives on func-
tions of ambitwistors. This requires any Yangian invariant function of ambitwistors (ZA,WB)
to satisfy an additional second order differential equation

ĴABF (Z,W) = 0. (XI.10)

We can check that a single ambitwistor bracket 〈k, l] is invariant under the first level generators
of Y[psu(2, 2|4)]—and therefore by construction of the algebra under the full Yangian. Never-
theless, when studying generic functions F (〈k, l]) of brackets, we find these in general not to be
invariant 2

ĴABF (〈m,n]) = (−1)A
n∑

i,j,k,l=1

Σkl,ijZAi Wl,B〈k, j]∂k,l∂i,jF (〈m,n])

− δAB
n∑

k,l=1

σkl〈k, l]∂k,lF (〈m,n]). (XI.11)

This is a non-trivial second order partial differential equation. The trace term proportional to δAB
in (XI.11) only appears when considering the level one hypercharge B̂ of the Yangian Y[u(2, 2|4)].
This generator was shown to be an additional symmetry of the scattering amplitudes of N = 4
SYM [15] not contained in the Yangian Y[psu(2, 2|4)] and will be treated in detail in chapter XII.
Ambitwistor brackets transform covariantly under B̂

B̂〈k, l] = 8 σlk〈k, l]. (XI.12)

2The occurring derivative is defined by ∂k,l = ∂/∂〈k, l]. The function Σ is a factor defined by

Σkl,ij = σki − σkj − σli + σlj

.
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XI.2 Anomaly of Yangian symmetry

As we already explained in sec. II.2 the motivation to study Wilson loops in a non-chiral setting
came from the results on the symmetry properties of Wilson loops in chiral superspace. It has
been shown that the one-loop corrections to the chiral supersymmetric Wilson loop [17, 10]
break the chiral N = 4 supersymmetry transformations [18, 121].

The puzzling problem was the fact that chiral Wilson loops seemingly broke the Poincaré su-
persymmetry Q̄. Even worse, the anomaly didn’t seem to have anything to do with the fact
that the loop corrections to the Wilson loop needed regularization, finite quantities like the
remainder function failed to vanish under Q̄. This behavior was not only unexpected but also
very hard to explain. Subsequent publications [77, 76] could finally prove that the anomalous
behavior of Q̄ could be corrected unambiguously. They explained the appearing anomaly by
showing that

Q̄ =
∑
i

χi
∂

∂λi
(XI.13)

is not actually a symmetry of full N = 4 SYM on chiral superspace but only of the self-dual
theory which we discussed in sec. VI.1. Turning Q̄ into a symmetry of the full theory required
the addition of a non-local correction term that enabled further calculations of higher loop
results [76].

The non-chiral supersymmetric n-polygonal Wilson loop expectation value 〈Wn〉 presented in IX
suffers from ultraviolet divergences in the regions close to the cusps just like the chiral Wilson
loop. To derive a sensible result we had to regularize these divergences, see sec. IX.3. The
regularization procedure breaks certain symmetries

jFn 6= 0 (XI.14)

where j ∈ Y[psu(2, 2|4)].

While the Q̄-anomaly of the chiral Wilson loop was seemingly regularization independent and
universal, we will show that the anomalies of the Wilson loop in full superspace are only produced
by the need to regularize the appearing ultra-violet divergences. In particular, we show that
there is a regularization for the non-chiral Wilson loop that preserves super-Poincaré symmetry,
so the Q̄-anomaly does not appear.

In the following we will treat the anomalies

jM (1)
n = An,j (XI.15)

for the non-chiral MHV one-loop expectation value in different regularizations. We investigate
not only the anomalies of the symmetry generators JAB of the superconformal algebra psu(2, 2|4)
but also the anomalies

ĴABM
(1)
n = ÂAn,B (XI.16)

of the Yangian generators Ĵ.

Naturally, it would be better to check explicitly finite, regularization independent quantities for
superconformal and Yangian invariance. An interesting class of such quantities is provided by
the functions

ri,j = M (1)[C] +M (1)[Ctb]−M (1)[Ct]−M (1)[Cb] (XI.17)
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that are obtained by the boxing procedure presented in ssec. IX.3.3. We find that these are
clearly superconformally invariant

JAB ri,j = 0 (XI.18)

since they are regularization independent. On the other hand, Yangian generators fail to anni-
hilate these quantities entirely.

XI.3 Vertex correlators

Let us start by inspecting finite mixed correlators (IX.31) 〈Bj−1,jB̄k−1,k〉 with j and k well
separated |j − k| � 3. Since these are are functions of ambitwistor brackets and regularization
independent, they are invariant under superconformal transformations. Therefore, let us im-
mediately turn to Yangian generators. We act with ĴAB on the mixed vertex correlators and
find

ĴAB〈Bj−1,jB̄k−1,k〉 = 64π2(−1)A

[
ZAj−1Wk,B

〈j − 1, k]
−
ZAj Wk−1,B

〈j, k − 1]

]

+ δAB log

(
〈j − 1, k]〈j, k − 1]

〈j − 1, k − 1]〈j, k]

)
. (XI.19)

Hence, the correlators by themselves aren’t Yangian invariants. Nevertheless, the anomaly is
of the form fj−1,k − fj,k−1 (the trace term is slightly different, but the conclusion is the same)
which naively telescopes in the sum over all vertices

n∑
j,k=1

(
fj−1,k − fj,k−1

)
=

n∑
j,k=1

(
fj,k − fj,k

)
= 0. (XI.20)

The trouble is that (XI.19) holds only for the finite vertex correlators with |j − k| ≥ 3. The
divergent correlators for |j − k| ≤ 2 need to be regularized. As we pointed out before, this
inevitably breaks superconformal and Yangian invariance. Therefore it is fair to say that the
one-loop Wilson loop expectation value is perfectly superconformal and Yangian invariant ex-
cept for the effects of regularization! Only the divergent correlators of nearby vertices call for
regularization and break both symmetries in an analogous fashion. These anomaly terms are
computed in the subsequent subsections.

It is worth mentioning that the expression in (XI.19) makes no reference to the vertex which
defines the ordering in the Yangian action (XI.2). This is because the function is also super-
conformally invariant in which case the Yangian action respects cyclic symmetry—a fact that
was explained in cha. X. However, the regularized vertex correlators for |j − k| ≤ 2 break
superconformal symmetry and consequently introduce dependence on the reference vertex.

It is helpful to cast 〈Bj−1,jB̄k−1,k〉 into the form of a symbol

S〈Bj−1,jB̄k−1,k〉 =
∑

i=j−1,j
l=k−1,k

Ri,l ⊗ 〈i, l]. (XI.21)

We notice that there are only single brackets in the second entry. A very similar observation
for the form of the symbols of scattering amplitudes has been made in [82] where the ordinary
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twistor brackets 〈i − 1, i, j − 1, j〉 = εABCDZ
A
i−1Z

B
i Z

C
j−1Z

D
j took the place of 〈i, j]. The Ri,l

represent the rational functions which appear as the first entry of the symbol for a given second
entry 〈i, l]. A generator of u(2, 2|4) acts like a logarithmic derivative on the last entry of a
symbol.

Since—roughly speaking3—the length of a symbol determines the degree of transcendentality
of the function the symbol represents, the superconformal generators act like transcendentality
lowering operators, lowering the degree by one. The Yangian level-one generators ĴAB on the
other hand generically act on the last entry of the symbol and Ri,l. The one-loop result is of
transcendentality degree 2 so we expect the Yangian operator to yield at most rational anomaly
terms. As we will show, this expectation is fulfilled by all Yangian operators except for the
generator B̂. This is the only generator acting “twice” on the second part of a symbol (XI.21).
The logarithmic terms in (XI.19) proportional to δAB are therefore solely part of the anomaly of
B̂.

Correlators that need regularization can be inspected in the same way. Supersymmetric and
axial regularization also produce symbols with only one bracket in the second entry for the
divergent propagators |j − k| < 3:

S〈Bj−1,jB̄k−1,k〉sP =
∑

i=j−1,j
l=k−1,k

(
R

(1)
i,l ⊗ 〈i, l] +R

(2)
i,l ⊗ 〈i, l〉+R

(3)
i,l ⊗ [i, l]

)
, (XI.22)

S〈Bj−1,jB̄k−1,k〉framed =
∑

i=j−1,j
l=k−1,k

(
R(1)
i,l ⊗ 〈i, l] +R(2)

i,l ⊗ 〈i, ?̄]

+R(3)
i,l ⊗ 〈?, l] +R(4)

i,l ⊗ 〈?, ?̄]
)
. (XI.23)

The functions R(i) and R(i) in (XI.22) are all rational and they differ in both schemes. The
presence of non-invariant brackets 〈·, ·〉 and [·, ·] in super-Poincaré regularization or 〈?, ·] and
〈·, ?̄] in axial regularization in the second entries break superconformal invariance4. Similarly
we expect further contributions to the anomalies of all ĴAB.

XI.4 Super-Poincaré regularization

To calculate the anomalous remainder for the action of the superconformal generators, we only
need to act with the J on the spinor brackets in (XI.22). Let us write the generator JAB acting
on a function

F = F (〈k, l], 〈k, k + 1〉, [k, k + 1]) (XI.24)

as a function of derivatives with respect to brackets. Then

JABF = (−1)AIBC

n∑
i=1

(ZAi ZCi+1 −ZAi+1ZCi )∂iF

−(−1)AIAC
n∑
i=1

(Wi,BWi+1,C −Wi+1,BWi,C)∂̄iF (XI.25)

3We gloss over the fact that most symbols don’t even correspond to transcendental functions in the first place.
4Notice that R(4) has no influence on the anomaly of superconformal or Yangian generators.
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where ∂i = ∂/∂〈i, i+ 1〉, similarly for ∂̄i. It is now an easy exercise in calculus to replace
F = 〈Wn〉(1)

sP and calculate the anomalous remainder

JAB〈Wn〉(1)
sP = (−1)AIBC

∑
i

(
ZAi ZCi+1 −ZAi+1ZCi

〈i, i+ 1〉

)

×
[

2

ε
+ log

(
[i, i+ 1]〈i, i+ 2]〈i+ 1, i− 1]

µ2〈i, i+ 1〉[i+ 1, i+ 2][i, i− 1]

)]
− IAC

∑
i

(
Wi,BWi+1,C −Wi+1,BWi,C

[i, i+ 1]

)
×
[

2

ε
+ log

(
〈i, i+ 1〉〈i− 1, i+ 1]〈i+ 2, i]

µ2〈i− 1, i〉[i, i+ 1]〈i+ 2, i+ 1〉

)]
. (XI.26)

The right hand side of (XI.26) is zero for any of the Poincaré generators as well as supersymmetry
and R-symmetry thus realizing full super-Poincaré symmetry free of anomalies. So the Wilson
loop in full superspace does not feature any trace of the Q̄-anomaly as we already anticipated.
We are left with the conformal anomaly of the Wilson loop.

When comparing this anomaly to the literature, e.g. [120], note that the bosonic result is often
split

〈Wn〉 = ZnFn (XI.27)

into a divergent part Zn and a finite part Fn. The divergent part Zn is defined such that it
contains the full dependence on the renormalization scale µ. Ref. [120], computed the anomaly
of the conformal group, when acting on logFn. This fact must be taken into account when
comparing to the above anomaly of the whole answer, including the contribution of the divergent
part Zn. When doing so, we find agreement with the conformal anomaly computed in ref. [120].

Let us proceed with the calculation of the Yangian anomaly

ĴAB〈Wn〉(1)
sP = ÂAn,B. (XI.28)

While it would be possible to calculate any of the Yangian anomalies, we choose to give the
form of the anomaly of the level-one hypercharge B̂. Its form is especially nice compared to
the anomalies of the other first level generators ĴAB which can be deduced using (XI.3). Just
as before we can find the action of B̂ on a function F in terms of derivatives with respect to
brackets. We find

B̂〈Wn〉(1)
sP = 2

n∑
j=1

[
〈j − 1, j + 2](−1)AZAj Wj+1,A

〈j − 1, j + 1]〈j, j + 2]
−
〈j + 2, j − 1](−1)AZAj+1Wj,A

〈j + 1, j − 1]〈j + 2, j]

+ 2

(
(−1)AZAj+2Wj,A

〈j + 2, j]
−

(−1)AZAj Wj+2,A

〈j, j + 2]

)]
+ 16

n−2∑
j=1

log

(
〈j + 2, j]

〈j, j + 2]

)

+ 16 log

(
〈1, 2〉[n− 1, n]

〈n− 1, n〉[1, 2]

)
(XI.29)

where the regularization dependent part of the anomaly is fully contained in the terms propor-
tional to ZiWi+2 and Zi+2Wi. The last term is a contribution from the 1, n boundary since—as
we saw above—superconformal symmetry is broken by this regularization as well.
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XI.5 Axial regularization

Let us now consider the action of the superconformal generators on a framed Wilson loop. When
acting with JAB on a function

Freg = F (〈k, l], 〈k, ?̄], 〈?, k], 〈?, ?̄]) (XI.30)

in axial regularization we can write the generator J in terms of derivatives with respect to the
brackets

JABFreg = (−1)A
n∑
j=1

[
ZAj W?̄,B

∂F

∂〈j, ?̄]
−ZA? Wj,B

∂F

∂〈?, j]

]
. (XI.31)

Setting Freg = 〈Wn〉(1)
framed we find

JAB〈Wn〉(1)
framed = (−1)A

n∑
i=1

[
ZA? Wi,B
〈?, i]

−
ZAi W?̄,B
〈i, ?̄]

]
log

(
ε2
〈i− 1, i+ 1]?〈i+ 1, i− 1]?

〈i− 1, i+ 1]〈i+ 1, i− 1]

)
.

(XI.32)

We notice that the general structure of (XI.26) is present here, too. In both cases there are
single logarithmic terms weighted by rational functions depending on the symmetry breaking
brackets. However, the different regularization schemes break superconformal symmetry in very
different ways. Here, the twistors Z? and W?̄ do not get transformed under the action of the
generators of psu(2, 2|4). Hence, the brackets 〈i, ?̄] and 〈?, i] are not invariant under J. If Z? and
W?̄ were to be transformed under superconformal transformations we would find the expectation
value (IX.42) 〈Wn〉(1)

framed to be perfectly invariant J′AB〈Wn〉(1)
framed = 0.

§ XI.5.1. The Yangian anomaly.—In the following we will use some additional notation to
shorten the expression for the Yangian anomaly. We write5

(i j) ∩ k := Zi〈j, k]−Zj〈i, k]. (XI.33)

This resembles the notation used in [62]. For anti-chiral twistor variables, we use

k ∩ (i j) :=Wi〈k, j]−Wk〈k, i]. (XI.34)

They satisfy the relation
〈(i j) ∩ k,m] = 〈j, i ∩ (k m)]. (XI.35)

Finally, to write the Yangian anomaly in a more compact form we will make use of the notation

([i j]k) ∩ (l m) = Zi〈(j k) ∩ l,m]−Wj〈(i k) ∩ l,m] . (XI.36)

When restricted to bosonic components this quantity indicates that the points (j k)∩ l, (i k)∩ l
and (i j) ∩ l are linearly related. Hence, in the bosonic case we could use a Plücker identity
to replace (XI.36) by a simpler one. However on inclusion of the fermionic directions there are
additional sign factors from the fermions that prevent us from doing so.

5When restricted to bosonic components this denotes the intersection point between a line (jk) and the plane
Wk.
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The Yangian anomaly can then be straightforwardly calculated. It is given by

ĴAB〈Wn〉(1)
framed =

n−1∑
i=1

(
2
〈([i− 1 ?]i) ∩ (i+ 2 ?̄), i+ 1]

〈i− 1, i+ 1]〈i, i+ 2]〈?, ?̄]
− 1

)
(−1)AZAi Wi+1,B
〈i, i+ 1]?

+

(
2
〈i+ 1, (? i+ 2) ∩ ([?̄ i− 1]i)]

〈i+ 1, i− 1]〈i+ 2, i]〈?, ?̄]
− 1

)
(−1)AZAi+1Wi,B

〈i+ 1, i]?

−
n∑
i=1

(
(−1)AZAi Wi+2,B
〈i, i+ 2]

−
(−1)AZAi+2Wi,B

〈i+ 2, i]

)

+ 2
(−1)A[(n− 1 ?) ∩ 1]AWn,B

〈n− 1, 1]〈?, n]
− 2

(−1)AZAn [1 ∩ (n− 1 ?̄)]B
〈1, n− 1]〈n, ?̄]

+ 2
(−1)AZAi [n ∩ (2 ?̄)]B

〈1, ?̄]〈n, 2]
− 2

(−1)A[(2?) ∩ n]AW1,B
〈2, n]〈?, 1]

−
(−1)AZAnW1,B
〈n, 1]?

+
(−1)AZA1 Wn,B
〈1, n]?

+ 2δAB

n−2∑
j=1

log

(
〈j + 2, j]

〈j, j + 2]

)
. (XI.37)

Despite the fact that we could make superconformal symmetry exact by transforming the aux-
iliary twistors Z? and W?̄, too, the same trick does not cure the Yangian anomaly ÂAB. The
bi-local structure of the Yangian generators distinguishes the auxiliary sites as we need to insert
these into the chain 1 → . . . → n → 1. Putting them between n and 1 the new level-one
generators Ĵ′AB are defined by ĴAB and additional pieces from the new sites

Ĵ′AB = ĴAB + JACJ
C
?B + JACJ

C
?̄B − JA?̄ CJ

C
B − JA? CJ

C
B + JA? CJ

C
?̄B − JA?̄ CJ

C
?B. (XI.38)

Their action on 〈Wn〉(1)
framed is given by

Ĵ′AB〈Wn〉(1)
framed = ÂAn,B − J′

A
CACn,B + fAE

F
D
G
BJ
E
?,FJ

D
?̄,G〈Wn〉(1)

framed (XI.39)

with fAE
F
D
G
B = (−1)AδAE δ

F
Dδ
G
B − (−1)A+(A+G)(G+F)δADδ

F
B δ
G
E . In particular, cyclic symmetry

remains broken after the inclusion of the auxiliary points into the superconformal generators.

XI.6 Boxing the Wilson loop

Framing and superconformal regularization break superconformal and Yangian symmetry. More-
over, the anomaly terms are different in both cases. This is, however, not very surprising because
both results are divergent when the regulator is removed, ε → 0. In other words, the above
Wilson loops are regularized but not renormalized, and therefore all answers certainly depend
on the regularization scheme. It only makes sense to consider the symmetries of a regularized
but not renormalized quantity within any given regularization scheme.

Consider, for example, correlators of local operators in a conformal theory. Naively they are
also divergent and need to be regularized. In addition, local operators are renormalized, and
when the regulator is removed, the correlation functions are not only perfectly finite, but also
transform nicely under superconformal symmetry (albeit with quantum corrections to scaling
dimensions).
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The boxed Wilson loop can be regarded as such a renormalization of a Wilson loop. The
quantities ri,j do not depend on the regularization scheme, they are finite and manifestly super-
conformally invariant. However, when inspecting the functions ri,j we notice the occurrence of
brackets like

〈k, t] = 〈k, 1]− 〈i, 1]

〈i, 2]
〈k, 2]. (XI.40)

Their occurrence breaks Yangian invariance. This can be seen by considering the symbols Sri,j
of these quantities. We find terms like

Ri,j,k,l ⊗
(

1− 〈i, k]〈j, l]
〈i, l]〈j, k]

)
. (XI.41)

The Yangian acts twice on the second entry of the symbol which produces additional logarithmic
terms that do not cancel amongst each other.

Hence, the boxed Wilson loop is finite and respects superconformal symmetry, but it does not
respect Yangian symmetry. Naively this seems to imply that superconformal symmetry is exact
while Yangian symmetry is broken or anomalous. However one has to bear in mind that the
boxed Wilson loop is not a simple planar Wilson loop expectation value anymore. For instance,
at the one-loop level, the boxed Wilson loop is equivalent to the correlator of two Wilson loops

r =
〈W [C]〉〈W [Ctb]〉
〈W [Ct]〉〈W [Cb]〉

=
〈W [CT]W [CB]〉
〈W [CT]〉〈W [CB]〉

+Og4, (XI.42)

where CT, CB refer to the top and bottom polygons enclosed by the edges (t, 2, . . . , i) and
(b, i + 1, . . . , n, 1). In the string world sheet picture, the simple planar Wilson loop has the
topology of a disk while the correlator here has annulus topology. Yangian invariance is expected
only for disc topology, because a loop surrounding the disc which represents a Yangian generator
can be contracted to a point, see the discussions in [122]. Hence it is not surprising that we find
no Yangian invariance from the quantities obtained through boxing despite the fact that they
are finite and superconformally invariant.

This fits experience with local operators. There we know that two-point functions of local
operators do not exhibit Yangian invariance. Hence it is not surprising that we find no Yangian
invariance from the quantities obtained through boxing despite the fact that they are finite and
superconformally invariant.
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CHAPTER XII

Bonus symmetry

Although the superconformal symmetry algebra is psu(2, 2|4), it is possible to include the central
charge C as another trivial symmetry, by interpreting the vanishing of the central charge CiAn =
0 as a symmetry statement. By doing so, the central charge gets added back into the symmetry
algebra

su(2, 2|4) ' psu(2, 2|4)⊕ C. (XII.1)

On the other hand, the outer automorphism B of u(2, 2|4)—variously called super-trace, hy-
percharge or helicity charge—is no symmetry of the scattering amplitudes of N = 4 SYM since

BAn,k = 4kAn,k. (XII.2)

Contemplation of the name maximally helicity violating scattering amplitudes underlines the
statement: Helicity is not a conserved quantity1.

The inclusion of the central charge as a symmetry however does have an impact on the structure
of the Yangian. When trying to build the first order recurrence of the central charge operator C
we encounter a surprise: We need the structure constants fabC and the Killing form κaC, where
the “index” C signifies the entries in which one C appears. While the only nonzero structure
constants are (see E)

fQS
C, f Q̄S̄

C, (XII.3)

the only non-zero entry of the Killing form is κBC! For the construction to work, we even have
to use the Killing form of u(2, 2|4). Thus, when we raise and lower indices on the structure
constants fabc we exchange the lower index C for the upper index B and vice versa.

psu(2, 2|4) ⊕ B ⊕ C

p̂su(2, 2|4) ⊕ B̂ ⊕ Ĉ

That means, when we are building the gener-
ator B̂ we will have to use (non-zero) commu-
tation relations in which C appears, namely
those in which the structure constants (XII.3)
occur. On the other hand, there exist no non-
zero structure constants fabB, thus, when we
raise the index B we find that the first level generator Ĉ associated with these dual structure
constants must be identically zero. Although the construction of the first level generators is,
in fact, independent of the choice of the Killing form, we can see that for the concrete choice

1It is possible to make one NkMHV class of amplitudes invariant under B by subtraction of the charge 4k of
this class of amplitudes. This deformation of B is consistent with the algebra but ultimately inconsequential.
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we have made here, things work out as expected. The non-diagonal form of the Killing form
swaps the construction the generators B̂ and Ĉ compared to their level zero incarnations and
the generators of psu(2, 2|4) (see figure).

With this explanation, recall the structure constants in (XII.3) and use the Killing form to raise
and lower the indices. We find

B̂ =
∑
i,j

σji
[
Qαa
i Sj,αa − Q̄α̇

i,aS̄
a
j,α̇

]
. (XII.4)

In particular, since B is an outer automorphism, it never appears on the right hand side of
the commutation relations (E.6), and so does not appear in the definition of B̂ either. This is
promising since B could spoil some of the nice properties that B̂ has. We will come to this
point in due course.

We should check what kind of commutation relations B̂ satisfies with the generators of the
algebra psu(2, 2|4). When doing so we notice that it commutes with all bosonic generators, but
not with the odd generators Q, Q̄, S or S̄. Let us calculate the commutator of B̂ with Pαα̇

and Qαa as an example. First with P

[B̂,Pαα̇] =
∑
i,j

σji

(
Qβa
i [Sj,βa,P

αα̇]− Q̄β̇
i,a[S̄

a
j,β̇
,Pαα̇]

)
=
∑
i,j

σji

(
Qαa
i Q̄α̇

j,a − Q̄α̇
i,aQ

αa
j

)
= 0 (XII.5)

due to the properties of σji = −σij . On the other hand,

[B̂,Qαa] =
∑
i,j

σji

(
Lαi,βQ

βa
j −Ra

i,bQ
αb
j +

1

2
(Di + Ci)Q

αa
j + S̄a

j,β̇
Pαβ̇
j

)
(XII.6)

which we can identify with the first level operator Q̂. In fact, we find

[B̂, Q̄α̇
a ] = − ̂̄Qα̇

a , [B̂,Sαa] = −Ŝαa, [B̂, S̄a
α̇] = ̂̄Sa

α̇ (XII.7)

and (XII.6) to be the only non-zero commutators with the elements of the algebra. Thus,

[B̂, Ja] = hyp(J)Ĵa (XII.8)

has the same commutations relations as the hypercharge operator of u(2, 2|4)—up to hats. Under
cyclic shifts, the B̂ generator behaves like

B̂2,n+1 − B̂1,n = −2fBbcJ
b
1J
c + C1. (XII.9)

The second term was potentially dangerous, as it is proportional to a density. It turns out that
it is proportional to C1 which is fine since we are requiring that B̂ acts on a representation
of psu(2, 2|4) which implies that the central charge acts like 0. Thus B̂ is cyclic, a crucial
requirement for a symmetry operator acting on planar scattering amplitudes [13].

We shall now proceed to prove that B̂ is in fact a symmetry of the tree-level scattering amplitudes
of N = 4.
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XII.1 Invariance of the MHV factor

We begin by checking the invariance of the MHV factor AMHV
n under B̂. To do so, we write B̂

in terms of the spinor-helicity representation

B̂ =
∑
i,j

σji

(
λαi η

a
i ∂j,α∂j,a − λ̄α̇i ∂i,aηaj ∂̄j,α̇

)
. (XII.10)

There are three basic objects in the MHV amplitude

AMHV
n =

δ4(P )δ0|8(Q)∏
i〈i, i+ 1〉

, (XII.11)

the overall momentum Pαα̇ =
∑

i λ
α
i λ̃

α̇
i , the overall supermomentum Qαa =

∑
i λ

α
i η

a
i and the

product of spinor brackets N−1 =
∏
i〈i, i+ 1〉. Hence, it is profitable to express the derivatives

∂a, ∂α and ∂̄α̇ in terms of these three quantities

∂i,a =
∂Qαb

∂ηai

∂

∂Qαb
= λαi

∂

∂Qαa
(XII.12)

∂i,α̇ =
∂P βα̇

∂λα
∂

∂P βα̇
= λαi

∂

∂Pαα̇
(XII.13)

∂i,α = ηai
∂

∂Qαa
+ λ̃α̇i

∂

∂Pαα̇
− εαβ

[
λβi+1

〈i, i+ 1〉
−

λβi−1

〈i− 1, i〉

]
N

∂

∂N
(XII.14)

and rewrite B̂ in terms of the basic objects in AMHV
n

B̂ =
∑
i,j

σji

[
λαi η

a
i

(
∂

∂Qαa
− εαβ

[
λβj+1

〈j, j + 1〉
−

λβj−1

〈j − 1, j〉

]
λγjN

∂

∂N

∂

∂Qγa

)]
(XII.15)

where terms canceling due to symmetry/antisymmetry in i and j have been omitted. Since
N∂NAMHV

n = AMHV
n , we can drop this combination at this point and continue working with

the rest of the expression for B̂. By performing a shift j − 1→ j in the last term and using the
cyclicity of the sum mod n, on MHV amplitudes the last term takes the form

λαi η
a
i

∂

∂Qαa
(XII.16)

precisely with the right sign to cancel the first term. Therefore

B̂AMHV
n = 0. (XII.17)

To show that all NkMHV amplitudes are invariant under B̂, we shall make use of the Grass-
mannian integral (II.11) and the proof of Yangian invariance used in X.2.

Finally, in the whole discussion above, we have been ignoring the presence of the holomorphic
anomaly of the MHV amplitude

∂

∂λ̄α̇
1

〈λ, µ〉
= πδ2(〈λ, µ〉)εα̇β̇µ̄

β̇. (XII.18)

Such derivatives occur for the generators S, S̄, and K. It has been shown [78] that corrections
to these generators are necessary, which turn them into actual symmetry generators at the price

109



of having to give up the notion of “superconformally invariant amplitudes”. This is because the
corrections lead to mixing of different numbers of external legs, i.e., we may only speak about
a superconformally invariant S-matrix at best.

Since B̂ contains both S and S̄ it is clear that the holomorphic anomaly will also play a role
for this symmetry. We have been able to show that a correction is possible and refer at this
point to [15] fo further details.

XII.2 Invariance of all tree level amplitudes

The invariance of the Grassmannian integral under the Yangian Y[psu(2, 2|4)] has been shown
in sec. X.2. To work with the Grassmannian formula (II.11), we have to forge B̂ into its twistor
representation form. Since all Yangian operators are given by the expression

ĴAB = (−1)C
∑
i,j

σjiZAi ∂i,CZCj ∂j,B (XII.19)

and B̂ is just the super-trace (−1)AδAB we can deduce

B̂ = (−1)A+C
∑
i,j

σjiZAi ∂i,CZCj ∂j,A. (XII.20)

In the proof paraphrased in X.2, exactly this case was excluded. We shall now retrace the proof
and see whether there are any obstacles to the invariance of Ln,k under B̂.

When initially acting with B̂ on Ln,k we can go through the same steps as in the proof for the
other Yangian operators. After the dust settles we are left with the expression2

B̂Ln,k =

∫
dn×kt

M1 · · ·Mn

k∑
a,b=1

∑
i,j

σji

[
(−1)AtaiZAi tbj

∂

∂taj

]
∂bA

∏
d

δ4|4(td · Z). (XII.21)

We now need to move the derivative w.r.t. t to the very left to show that this expression is in
fact a total derivative. To do so, it is imperative to notice that the wrapping of the minors
Mj makes it necessary to use the constraints in the δ-functions. These sometimes come with a
derivative ∂bA which has to be partially integrated to make use of the constraints. When doing
so we pick up a factor of

8k(k − 1)
∑
i,j

σjiLn,k (XII.22)

which upon quick inspection vanishes due to the sum over the sign-function. What is left is a
total derivative term

B̂Ln,k =
∑
a,b

∑
i,j

σji

∫
dn×kt

∂

∂taj

[
(−1)AtaiZAi tbj

1

M1 · Mn
∂bA

∏
c

δ4|4(tc · ZA)

]
(XII.23)

2At this point, we want to make a comment about the very recent paper [63] by Arkani-Hamed et al. The
form of the operator in equation (XII.21) is the same of the claimed representation of the Yangian in [63].
However, the crucial derivative of the δ-functions is missing.
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so B̂ is a symmetry of all tree-level amplitudes of N = 4 (up to potential boundary terms)3. At
this point we have earned the right to endow the level one recurrence of the hypercharge B̂ with
a new name: bonus symmetry. This name mirrors the known cases of additional symmetries
especially on the string side of the AdS/CFT correspondence [123, 14, 124] (see [125] for a
review). It has also been shown that the pattern on level one and level zero outlined above
carries on to higher orders in the Yangian tower of generators [126].

At this point we conclude our discussion of the bonus symmetry and come to the end of this
thesis. It is our hope that B̂ and the Yangian overall might yet produce more insights into the
remarkable structure of scattering amplitudes and Wilson loops.

3The result is actually somewhat stronger, as the Grassmannian integral does not only calculate all tree-level
amplitudes but also all leading singularities [60, 58].
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Summary

The weak-weak duality between scattering amplitudes and Wilson loops on light-like contours
in planar N = 4 SYM is a most remarkable and extremely non-trivial feature of the theory. The
change of picture that this duality allows—the extraction of results from calculations of objects
that are seemingly unrelated in their physical description—has led to advances in our under-
standing of the inner workings of N = 4 beyond the expected advances from more traditional
quantum field theoretic calculations. Part of this success is based on a better understanding of
the geometry of superspaces: We find, for example, that the results of calculations in N = 4
SYM are especially nice not on ordinary superspace but on twistor space, where the theory can
be formulated thanks to the geometric tools of flag manifolds and double fibrations. The same
is true for the symmetries of the theory. Superconformal symmetry has a realization in terms
of single derivative operators on twistor space.

The Yangian algebra is essentially built up from the ordinary superconformal symmetry of
scattering amplitudes and the superconformal symmetry of Wilson loops, usually called dual
superconformal symmetry for this reason. While ordinary superconformal symmetry is especially
easy in a twistor description, dual superconformal symmetry is not, and only becomes easy when
we change picture and describe the theory in momentum twistors. This juggling with coordinates
can be understood on a deep level with the help of the geometry of flag manifolds. This even
extends to the level of actions, where it can be shown that what looks like a Yang-Mills theory
in one description can be described by a (holomorphic) Chern-Simons theory in another. This
is a feature of ordinary and supersymmetric Yang-Mills theories which has not been exploited
to its full extent, yet.

We explored some geometrical tools in this thesis and investigated two ways in which super-
symmetric Yang-Mills theories can be written as holomorphic Chern-Simons theories. First of
all, in the standard twistor space, where it needs to be completed by a non-local term. And
secondly in analytic superspace where it is a pure holomorphic Chern-Simons theory. This alone
is remarkable, but there is also the ambitwistorial description of the theory, which again allows
for a Chern-Simons description. The formulation of Yang-Mills on ambitwistor space is known,
but could be investigated from the point of view of harmonic superspaces. We have refrained
from doing so in this thesis, but the techniques to do so are expected to be essentially the same
as the ones we used here.

The description of N = 4 SYM on such different spaces gives us the ability to calculate spe-
cific quantities in the appropriate spaces where they are most naturally expressed. We can
also translate them into the language and the setting of other superspaces. This allowed us to
calculate a Wilson loop that had originally been formulated on superspace by the use of am-
bitwistor variables and we were able to translate the results from one language into the other.
We found that ambitwistor variables help to clean up results and help us to write them in such
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a way that the symmetries of the theory become manifest. The role of non-chiral null-polygonal
Wilson loops is unclear. Clearly, they contain more information than their chiral counterparts,
so the duality between scattering amplitudes and Wilson loops is not valid. On the other hand,
it might be that the constituent parts of such Wilson loops contain information about other
physical quantities. Finding evidence for such a correspondence is a matter of devotion to the
topic.

Finally, to address the last part of this thesis, let us mention again the huge role of symmetries in
the development of N = 4. Clearly, the symmetry group PSU(2, 2|4) of N = 4 SYM essentially
sets the stage: From the flag manifold picture we learn which superspace we may use to define
the theory on. But this is essentially true for any symmetry group of any Yang-Mills theory in
four dimensions. The novel ingredients in planar N = 4 SYM are the non-Lagrangian Yangian
symmetries which are the reason for so many simplifications in the calculation of physical results
and the mechanism underlying the integrability of N = 4 SYM. The existence of even more
symmetry, as was proven in this thesis in the last part is a welcome addition, but it is just one
more generator in an infinite sea of symmetry.

The symmetries of N = 4 SYM also give us the ability to do calculations by guessing the answer
and inspect the behavior of the Ansatz under the symmetries of N = 4 SYM. Good behavior
is usually a very strong sign that the guess was correct. On the other hand, one would wish
for a more systematic use for the Yangian like for example the way the Yangian is used in two-
dimensional integrable field theories where sophisticated methods allow the use of the Yangian
symmetry algebra to its full extent. Such techniques do not yet exist for N = 4 SYM, but their
development will have definite consequences for the way we understand Yang-Mills theories and
quantum field theories in general.
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Outlook

In this last chapter let us map out some further areas of research connected to the work in this
thesis.

We did not discuss the formulation of a quantum theory from the hCS Lagrangian for N = 3
SYM given in sec. VI.2. Although there have been attempts at formulating a propagator for
the gauge field A [100] we would like to see a more unified formulation. One that is closer
to the form of the propagator of twistor gauge fields. We expect such a formulation to exist
since N = 3 analytic superspace can be understood as an ambitwistor space with additional
internal directions (xA, θ

I , θ̄I). We hope to gain from such a program an understanding of
how to formulate a consistent ambitwistor propagator from a field theoretic calculation. Such
an understanding would also allow for the development of a propagator for N = 4 SYM on
ambitwistor space which would ultimately allow us to push the calculation of the non-chiral null
polygonal Wilson loops of cha. IX to higher loop orders.

This is of course another goal: the formulation of a solution to the non-linearized constraints of
N = 4 SYM on full superspace. This would allow us to understand the Wilson loops of cha. IX
better as well as make it possible to compare calculations done in the non-chiral setting with
the known results obtained in the chiral superspace setting. An immediate gain would be a
better understanding of N = 4 SYM on non-chiral space which could help our understanding of
other gauge theories which do not allow for chiral reductions. As a maybe far-fetched example,
we’d like to name ABJM, which—as a three-dimensional theory—does not allow for a chiral
formulation of its superspace. The solution to this problem is strongly connected to finding an
appropriate formulation of N = 4 on ambitwistor space, so solving one problem might amount
to solving the other problem too.

More ambitious areas of research are connected to the Yangian symmetry algebra: Is there a
geometrical understanding of the Yangian? Can we formulate planar, classical N = 4 SYM
such that Yangian invariance becomes manifest? At present these endeavors seem unrealistic,
but maybe the way towards such a formulation bears new insights.
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APPENDIX A
Conventions

We use the antisymmetric symbols of second order (ε-tensors for shortness) εαβ and εα̇β̇ to raise
and lower indices

εαβA
β = Aα, εαβAβ = Aα, εα̇β̇B

β̇ = Bα̇, εα̇β̇Bβ̇ = Bα̇ (A.1)

such that
εαβεβγ = δαγ , εα̇β̇εβ̇γ̇ = δα̇γ̇ . (A.2)

The extended Pauli-matrices (σµ)αα̇ = (1, σi)αα̇ and (σ̄µ)α̇α = (1,−σi)α̇α satisfy the following
relations

σµσ̄ν = ηµν1− iσµν σ̄µσ̄ν = ηµν1− iσ̄µν (A.3)

where σµν = −σνµ and σ̄µν = −σ̄νµ (both traceless in the spinor indices). We choose the
normalization of σ and σ̄ such that

σαα̇µ σµββ̇ = ηµνσαα̇µ σββ̇ν = 2εαβεα̇β̇, εαβεα̇β̇σ
αα̇
µ σββ̇ν = 2ηµν . (A.4)

This implies
∂

∂xαα̇
xββ̇ = 2δβαδ

β̇
α̇. (A.5)

The spinor products are taken with the help of ε

〈λ, µ〉 = εαβλ
αµβ, [λ̄, µ̄] = εα̇β̇λ̄

α̇µ̄β̇. (A.6)

The index convention is as follows (and mostly followed):

• Greek indices from the beginning of the alphabet α, β, . . . have ranges 1, 2 and are Lorentz
spinor indices. The same goes for their dotted counterparts.

• Latin indices from the beginning of the alphabet a, b, . . . mark SU(N ) R-symmetry indices
and will run from 1, . . . ,N .

• Uppercase Latin indices from the beginning of the alphabet A,B, . . . are conventionally
used as multi-indices for bosonic twistors A = (α, α̇) .

• Calligraphic uppercase Latin indices from the beginning of the alphabet A,B, . . . mark
super-twistor indices encompassing uppercase Latin and lower case Latin indices: A =
(α, α̇, a).

• Uppercase Latin indices from the middle of the alphabet are used for everything else.
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APPENDIX B

Coset spaces

Let G be some matrix Lie group and H ⊂ G a Lie subgroup. We denote the Lie algebra of H
and G by h and g respectively. Elements of the basis of h will be denoted by Vi. A basis of g
is then given by the basis of h and the generators Xα.

Let s(u) ∈ H\G be a right coset of G, then we can parametrize the coset using coordinates uα

s(u) = exp(uαXα). (B.1)

Under (right) multiplication with a group element g, such an coset element transforms like

s(u).g = h(g, u).s(u′(u, g)) (B.2)

where h(g, u) ∈ H. Since Ω = ds(u).s(u)−1 ∈ g we can write

Ω = ds(u).s(u)−1 = eαXα + ωiVi. (B.3)

Under the action of G this element of the Lie algebra behaves like

Ω 7→ d(h.s(u′))(h.s(u′))−1 = hΩ′h−1 + dh.h−1

= h(eαXα + ωiVi)h
−1 + dh.h−1

= e
′αXα + ω

′iVi. (B.4)

so we see that

e
′αXα = heαXαh

−1 (B.5)

ω
′iVi = hω

′iVih
−1 + dh.h−1 (B.6)

thus we are led to the conclusion that the eα transform like vielbeine while the ω transform like
connections. By calculating the exterior derivative of these objects we can effectively calculate
the torsion and the curvature of the coset. Clearly, we have dΩ = −Ω ∧ Ω and so

deαXα + dωiVi = −1

2
eα ∧ eβ[Xα,Xβ]− 1

2
ωi ∧ ωj [Vi,Vj ]− eα ∧ ωi[Xα,Vi]. (B.7)

Since h is a Lie subalgebra of g, we have that

[Vi,Vj ] = fij
kVk (B.8a)

[Vi,Xβ] = fiβ
αXα (B.8b)

[Xα,Xβ] = fαβ
γXγ . (B.8c)
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With these commutators we may identify specific terms in (B.7)

deα + εβ ∧ ωifβiα = −1

2
eβ ∧ eγfβγα (B.9)

dωi +
1

2
ωj ∧ ωkfjki = −1

2
eα ∧ eβfαβi. (B.10)

We recognize the second identity to be of the form of the Cartan structural equations from
Cartan’s moving frame method, thus it describes the curvature of the manifold in question—see
e.g. [127]— while the first identity measures the torsion of the manifold.

Functions on the coset F (u) = F (s(u)) transform under g ∈ G by

F (u′) = F (s(u).g) = ρ(h(u, g)).F (u) (B.11)

where ρ is a representation of H under which F transforms. The covariant derivative acting on
such a function is then given by

DF (u) = (d+ ωiρ(Xi))F (u) (B.12)

which can be easily checked to transform in the right way under G transformations. Finally, we
can decompose the covariant derivative D on the vielbeine eα,

D = eαDα (B.13)

which defines the components Dα of the covariant derivative.

Using the vielbeine, we can also define the invariant integration measure on the coset by denoting
it as a top form

dµ = e1 ∧ . . . ∧ en = dnudet e (B.14)

when we let eα = eαβdu
α with eαβ being the vielbein matrix.
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APPENDIX C

Cauchy-Riemann/Complex-Real structures

In this appendix, we provide some background material and relevant examples for CR structures.
We follow the definitions in [128].

As we have pointed out, some spaces like twistors space come equipped with a complex structure
with Dolbeault derivatives ∂̄ and ∂. A generalization of this concept are CR structures, which
we will introduce here.

C.1 CR structures – Definition

A CR structure is built

Let us denote an abstract C∞ (i.e. analytic) manifold byM and TCM denotes the complexified
tangent bundle i.e., at p ∈M

TCM|p = TpM⊗ C. (C.1)

A CR structure—for complex-real or Cauchy-Riemann—is a manifold M with a subbundle
L ⊂ TCM such that

1. The intersection of L and its conjugate L is L|p ∩ L|p = {0} at every point p ∈M.

2. L is involutive i.e., for two vector fields L1, L2 ∈ L we find that the commutator [L1, L2] ∈
L.

We say L forms an integrable distribution. Let dim(TCM) = r = 2n+m where we call

dim

(
TCM
L⊕ L̄

)
= m (C.2)

the CR codimension. It is possible to1 assume thatM comes equipped with a Hermitian metric
with which we choose L⊥L̄. We call

TCM
L⊕ L̄

= X(M) (C.3)

1And we will do so.
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the (totally) real part of TCM and choose it orthogonal to L ⊕ L̄ using the Hermitian metric
onM. With this, finally, we define two new subbundles T 1,0M and T (0,1)M such that TCM =
T (1,0)M⊕ T (0,1)M where

T (0,1)M = L̄, T (1,0)M = L⊕X(M). (C.4)

To these subbundles of TCM we can associate duals T ∗(1,0)M and T ∗(0,1)M such that forms in
T ∗(1,0) destroy vector fields in T (0,1) and vice versa.

Having defined one-forms, it is now easy to define the bundle of (p, q) forms overM via

Λp,qT ∗M = ΛpT ∗(1,0)M⊗ ΛqT ∗(0,1)M (C.5)

with the understanding that Λp,qT ∗M = 0 if either p > n+m or q > n.

On the space of smooth sections Ωp,q(M) of Λp,qM there is an operator ∂̄ : Ωp,q → Ωp,q+1 which
is called the tangential Cauchy-Riemann operator. It is this operator we are interested in. The
CR operator ∂̄ satisfies

∂̄2 = 0. (C.6)

Given the (partial) complex structure on M there is also an operator ∂ = (∂̄)† which satisfies
∂2 = 0. However, in general we will find that

∂∂̄ + ∂̄∂ 6= 0. (C.7)

Denoting the space of r-forms onM by ΛrT ∗CM, there exist natural projections πp,q : ΛrT ∗CM→
Λp,qT ∗M such that it is possible to express the CR operator ∂̄ in terms of the exterior derivative
d via

∂̄ = πp,q+1 ◦ d. (C.8)

It is in this way that we will find the relevant ∂̄ operators from the exterior derivatives d on flag
manifolds constructed via harmonic descriptions introduced in IV. Let us give two examples

§ C.1.1. The operator ∂̄ on twistor space CPN .—In IV.1.1 we exposed the form of the
exterior derivative in (IV.11). We see that D(N+1)α provides a basis for a subbundle L since

[D(N+1)α, D(N+1)β] = 0 (C.9)

while L̄ gets formed by D(−N−1)
α . Clearly

L ∩ L̄ = {0}, X(CPN ) = {0}. (C.10)

So unsurprisingly, we find that CPN is a family of complex manifolds. The CR operator is then
defined by

∂̄CP3 = π0,1 ◦D = e(−N−1)
α D(N+1)α. (C.11)
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§ C.1.2. The operator ∂̄ on ambitwistor space CPN .—In ambitwistor spaces, we have
the possibility to choose multiple (different) CR structures. Since

[D(N+1,−1)
α , D(−1,N+1)β] = δβαD

(N,N) (C.12)

we can choose D(N,N) and any subset of the Dα and Dβ to form L̄ with. Note that in the case
N = 1, there is only one choice. In the four-dimensional case—when N = 2—and in all higher
cases, the easiest choice of basis for L is given by a different subset. While we can choose the
ambitwistor quadric to be a complex space with a five complex-dimensional distribution2, it
turns out to be more interesting to choose the three-dimensional subset [92]

{D(−1,3)1, D
(3,−1)
2 , D(2,2)} (C.13)

thus defining a CR derivative by

∂̄ = e
(1,−3)
1 D(−1,3)1 + e(3,−1)2D

(3,−1)
2 + e(2,2)D(2,2). (C.14)

This subset has no torsion and is therefore the easiest choice of a three-dimensional distribution.
We will be revisiting this possibility when we will talk about the reformulation of Yang-Mills
theories on four-dimensional Minkowski space as complex-real Chern-Simons theories in chap-
ter VI.

2Choosing such a five-dimensional distribution however would require us to produce a five-dimensional Chern-
Simons theory as gauge theory on this space. For reasons of physicality, we are not—or at least not at this
point—interested in writing down such a theory.
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APPENDIX D

Propagators

D.1 General discussion

Flat Minkowski spacetime does not, as in the case of Euclidean spacetime, provide us with
a unique inverse to the d’Alembertian operator �, e.g. a unique solution for G(x, x′) in the
equation

�xG(x, x′) = −δ4(x− x′). (D.1)

For this reason propagators G are only defined up to addition of distributional terms. Depending
on the choice of distribution, these propagators come with varying names like Feynman, Whit-
man or Hadamard propagator, retarded or advanced propagator or off- and on-shell propagator.
In this appendix we want to sort these different propagators out, give identities between the
various propagators and discuss some of their physical interpretations using the most ubiquitous
example of massless scalar field theory. Some of this discussion follows [129].

When canonically quantizing the (massless) scalar field, two Green’s functions are generally
encountered, the Pauli-Jordan function

iGS(x, x′) = 〈0|[φ(x), φ(x′)]|0〉 = − i

2π
sign(u0)δ(u2), u = x− x′ (D.2)

and the Hadamard elementary function

GH(x, x′) = 〈0|{φ(x), φ(x′)}|0〉 = − 1

2π2u2
. (D.3)

In the equations above we introduced the usual no particle or vacuum state |0〉. Both functions
can be written in terms of the Wightman or “cut” functions G±

G+(x, x′) = 〈0|φ(x)φ(x′)|0〉 = − 1

4π2u2
− i

4π
sign(u0)δ(u2) (D.4)

G−(x, x′) = 〈0|φ(x′)φ(x)|0〉 = − 1

4π2u2
+

i

4π
sign(u0)δ(u2) (D.5)

The functions GH , GS and G± solve the homogeneous Klein-Gordon equation

�xG
•(x, x′) = 0. (D.6)
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To accommodate sources for the scalar fields we require solutions to the equation (D.1). Such
solutions are given in terms of the Feynman propagator

iGF (x, x′) = Θ(u0)G+ + Θ(−u0)G− = − 1

4π2u2
− i

4π
δ(u2) (D.7)

or the advanced and retarded propagators

GA(x, x′) = Θ(−u0)GS(x, x′), GR(x, x′) = −Θ(u0)GS(x, x′) (D.8)

which solve
�xGA,R = δ4(x− x′). (D.9)

Notice that GA and GR have well defined support within the light-cone. While GR is supported
on the positive light-cone of the point x′ (taking x to be variable) GA is defined on the negative
light-cone. As such they are solutions to a well-posed Cauchy problem. In contrast, the Green
functions G±, GF and GH are supported on all of space-time (excluding u = 0). Furthermore,
the definition of G± and therefore GF is dependent on the decomposition of the solutions into
positive and negative frequency parts.

There is however, a nagging problem with many of these functions. Upon transformation to
momentum space, many1 of these functions become singular when going on-shell p2 = 0. This
can be seen directly from their Fourier transformations, i.e. from

G+(p) =

∫
d4x exp(iu.p)G+(u) = 2πΘ(p0)δ(p2) (D.10)

and
GF (p) =

∫
d4x exp(iu.p)GF (u) =

1

p2 + iε
(D.11)

where the iε is the usual iε-prescription by Feynman to calculate the Fourier integral. However,
we see, that the supports of these distributions are quite different. While the Feynman propa-
gator has support everywhere excluding p2 = 0, G+ has support exclusively for p2 = 0. It is in
this sense that one can say the propagator G+ is “on-shell”. This property has been made use
of in [1] and the definitions of propagators in the text in IX.

D.2 The gauge field propagator in light-cone gauge

For a textbook treatment of the following see e.g. [129]. We will assume an axial gauge

`.A = 0 (D.12)

for the fieldAµ in ordinary Yang-Mills theory. The vector ` does not satisfy any special properties
at this point. Using the standard way to introduce a gauge fixing term into the action we find
the defining equation for the Green function to be(

δµν�− ∂µ∂ν −
1

α
`µ`ν

)
Gνσ(u = x− x′) = ηµσδ4(u). (D.13)

1To be precise, all.
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Fourier transformation (as above we assume a weightless transformation) to momentum space
and subsequent inversion of the resulting operator gives us the answer

G̃µνax (p, q) =
−i
p2
δ4(p+ q)

[
ηµν − pµ`ν + pν`µ

`.p
+
αp2 + `2

(p.`)2
pµpν

]
. (D.14)

When assuming a light-cone gauge `2 = 0 one usually takes the limit α → 0 such that the last
term vanishes leaving us with

G̃µνlc (p, q) =
−i
p2
δ4(p+ q)

[
ηµν − pµ`ν + pν`µ

`.p

]
. (D.15)

The p−2 pole can be dealt with in the usual way by adding a iε to it and maintaining the strong
intend of taking the limit ε → 0 in the end of the calculation. The way [130, 38] to treat the
pole in p.` is to add another iε′ prescription

1

p.`
→ `0p0 + `ipi

`20p
2
0 − (`ipi)2 + iε′

. (D.16)

From this we can deduce that we can freely add higher terms in (p.`)−1 (subject to the conditions
that `µG̃µν = 0 and pµG̃µν = 0) as they have no influence in a Fourier transformation back to
space-time (i.e. they are higher poles in a Laurent series not adding any new residues). The
additional poles can be traced back to the fact that light-cone gauge fixes the gauge freedom
only partially.

We use this freedom and add a term to the propagator

G̃µνlc (p, q) =
−i
p2
δ4(p+ q)

[
ηµν − pµ`ν + pν`µ

`.p
+

`µ`ν

(p.`)2
p2

]
. (D.17)

This is the propagator we will employ in the rest of this appendix.

D.3 Hertz Potentials

The gauge redundancy of the connection A = dxµAµ of an Abelian gauge theory is given by

δgA = dα (D.18)

where α is a zero-form, i.e. a function. Upon assuming the Lorentz gauge condition δA = 0 we
notice that A = δH is a solution to this gauge because δ2 = 0. Here δ is the codifferential, e.g.

δ = (−1)k−1 ? d? (D.19)

on k-forms in Minkowski signature in four dimensions. ? is the Hodge star operator. Since H
is a two-form (in coordinates H = 1

2Hµνdx
µ ∧ dxν) it has a further gauge redundancy

δgH = δK (D.20)

where K is a three-form. Note that this gauge symmetry of H has no influence on A. Finally,
this three-form has a further gauge redundancy

δgK = δL. (D.21)
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In four dimensions L is proportional to the volume form, so δgL = 0. While the Bianchi identities
dF = 0 are trivially satisfied by A = δH, the (linearized) Yang-Mills equations imply that

�H = (dδ + δd)H = 0 mod co-closed two forms. (D.22)

Thus every component of H satisfies the massless KG wave equation on-shell. This makes H
an ideal candidate for a Penrose transformation to twistor space.

Going back to a more pedestrian notation, we see that as H is a two form in four dimensions,
we may split it into its self-dual and anti-self-dual part, i.e.

σµα̇ασ
ν
β̇β
Hµν = εα̇β̇Hαβ − εαβH̄α̇β̇. (D.23)

Some algebra reveals that

Aα̇α =
1

2
∂α̇βH

β
α −

1

2
∂γ̇αH̄

γ̇
α̇ (D.24)

which resembles the solution (IX.2) in the supersymmetric case. An axial gauge

ı`A = 0 ⇒ ı`H = 0 (D.25)

with `2 = 0 is equivalent to the light-cone gauge as presented in the text, if we solve `2 = 0 by
`αα̇ = `α ¯̀α̇.

We cannot solve the potential in this way when working with non-Abelian theories. The ob-
struction is that the exterior derivative d needs to be replaced everywhere by d∇, the covariant
version of d, when acting on gauge-group G valued forms. But (d∇)2 is proportional to the field
strength tensor F = dA+A∧A so the closest we could get to a solution using a Hertz potential
would be an infinite expansion in commutators.

D.4 Propagator for Hertz potential

From (D.24) and 〈AµAν〉 = pρqσ〈Hρµ(p)Hσν(q)〉 follows that

〈Hρµ(p)Hσν(q)〉lc = δ4(p+ q)
−i(ηµν`ρ`σ − ηρν`µ`σ − ηµσ`ρ`ν + ηρσ`µ`ν)

p2(p.`)
(D.26)

which can be transformed to spinor language where

〈HαβHγδ〉 = 〈H̄α̇β̇H̄γ̇δ̇〉 = 0 (D.27)

and

〈Hαβ(p)H̄α̇β̇〉 = −2iδ4(p+ q)
`α`β ¯̀

α̇
¯̀
β̇

p2(p.`)2
. (D.28)

As before, the iε prescription is used to regularize the divergence at p2 = 0. Using this way it
is possible to set the Hertz potentials H and H̄ on-shell

Hαβ(p) = δ(p2)
`α`β
〈λ, `〉2

H(λ, λ̄), H̄α̇β̇(p) = δ(p2)
¯̀
α̇

¯̀
β̇

[λ̄, ¯̀]2
H̄(λ, λ̄) (D.29)

for the light-like momentum pαα̇ = λαλ̄α̇. These fields are the lowest order components (up to a
factor 1

2) of the half–Fourier transform of the fields given in (IX.12a). In the non-supersymmetric
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case only the expectation value of H with H̄ can yield a non-zero result. We set the propagator
on-shell by replacing the Feynman prescription by −iπδ(p2) and find2

δ(q2)〈H(λ, λ̄)H̄(λ′, λ̄′)〉 [λ̄, ¯̀]2

[λ̄′, ¯̀]2
= −8πδ4(p+ q) (D.30)

and rewrite

δ4(p+ q) =
1

4
δ(q2)

∣∣∣∣λ1

λ′1

∣∣∣∣2 ∫ ds

s
δ2(λ− sλ′)δ2(sλ̄+ λ̄′) (D.31)

where we used (again) that δ(q2) imposes q = λ′λ̄′ and introduced a projective integral.

With this the correlation function 〈HH̄〉 can be written as

〈H(λ, λ̄)H̄(λ′, λ̄′)〉 = −2π

∫
ds s3δ2(λ− sλ′)δ2(sλ̄+ λ̄′). (D.32)

In the bosonic theory described here, we notice that the exponent of s is in fact three, while
for the supersymmetric case we find the exponent −1. This is an effect of the absence of the
fermionic δ-function.

D.5 Ambitwistor propagators

There is another curious fact about the propagator from the section above that we want to point
out: There are different choices to do half–Fourier transformations of the correlation function
〈H(λ, λ̄)H̄(λ′, λ̄′)〉.

In this appendix we will review the proposal for a set of ambitwistor propagators. Such objects
have been proposed in [1], but they haven’t been used for any of the calculations therein. We
want to give a slightly different proposal for a set of propagators which is based on the following
considerations3.

Since the mixed correlator 〈C(Z)C(W ′)〉 is meant to calculate a one loop result we postulate
that the correct propagator should be of the form

〈C(Z)C̄(W ′)〉 = − 1

16π2

∫
ds

s

dt

t

du

u
exp

(
sZ.W ′ + tZ.W? + uZ?.W ′

)
(D.33)

where the integrations over s, t, and u should be treated as contour integrals defining Heaviside-
functions via an iε regularization4. Explicitly we have

Θ(x) =

∮
C

dt

t− iε
exp(ixt) (D.34)

with a contour C circling the origin, such that the above propagator is in fact a product of three
Heaviside step functions5

〈C(Z)C̄(W ′)〉 = − 1

16π2
Θ(Z.W ′)Θ(Z.W?)Θ(Z?.W ′). (D.35)

2Use 2p.l = 〈λ, `〉[¯̀, λ̄].
3I am thankful for Simon Caron-Huot to point out this particular form for the mixed propagator.
4Such an iε-prescription also stops us from rendering the integral trivial by a redefinition of integration variables.
5Remember that there are hidden i’s in the ambitwistor scalar products (IX.32).
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It is then possible to calculate the correlator 〈Bi−1,iB̄j−1,j〉 in an ambitwistor setting by inte-
grating over two projective lines Zs = Zi−1 + sZi and Wt =Wj−1 + tWj , i.e. from

Bi−1,i =
1

8π2

∫
ds

s
C(Zi−1 + sZi), B̄i−1,i = − 1

8π2

∫
ds

s
C̄(Wi−1 + sWi) (D.36)

thus
〈Bi−1,iB̄j−1,j〉 =

1

1024π6

∫
ds

s

dt

t
Θ(Zs.Wt)Θ(Zs.W?)Θ(Z?.Wt). (D.37)

s

t

s > a

t > b

t(s)

Formally, this integral can be evaluated explicitly in
terms of dilogarithms. To do so, we must evaluate the
restrictions imposed by the Heaviside functions. In-
specting from the right to the left, they impose the do-
main of integration to be bounded by a curve

〈i−1, j−1]+s〈i, j−1]+t〈i−1, j]+st〈i, j] = 0 (D.38)

and two projective lines

〈i−1, ?]+s〈i, ?] = 0, 〈?, j−1]+t〈?, j] = 0. (D.39)

The diagram to the right shows the integration area
enclosed by the hyperbola and the two line as a trian-
gular region shaded gray. Thus if we take the integrations over t and s to be real contours6 the
integrals can be evaluated to7

〈Bi−1,iB̄j−1,j〉 ∝ −Li2

(
〈i, j]〈i− 1, j − 1]

〈i, j − 1]〈i− 1, j]

)
+ Li2

(
〈?, j − 1]〈i, j]
〈?, j]〈i, j − 1]

)
− Li2

(
〈?, j − 1]〈i− 1, j]

〈?, j]〈i− 1, j − 1]

)
− Li2

(
〈i− 1, ?]〈i, j − 1]

〈i, ?]〈i− 1, j − 1]

)
+ Li2

(
〈i− 1, ?]〈i, j]
〈i, ?]〈i− 1, j]

)
+ products of logarithms (D.40)

When we sum over i and j we get the same result for the non-chiral correlator as obtained in [1]
which shows that the two reference twistors Z? and W? are gauge artifacts very much like in
the chiral case [101].

Finally, we can also derive the form of the chiral propagators from this proposal using (IX.13).
To do so we write

−16π2〈C(Z)C(Z ′)〉 =

∫
d4|4W ′ exp

(
−2Z ′.W ′

)
〈C(Z)C̄(W ′)〉

=

∫
ds

s

dt

t

du

u

∫
d4|4W ′ exp([sZ.+ uZ? − 2Z ′].W ′ + tZ.W?)

=

∫
dt

t
exp(tZ.W?)

∫
ds

s

du

u
δ4|4(sZ + uZ? − 2Z ′). (D.41)

The antichiral-antichiral propagator looks similar and can be calculated in like manner. We
should note two features of this expression. First of all, this result closely resembles the propa-
gator of chiral twistor theory in axial gauge as proposed in [10]. The argument of the δ-function
can be rearranged to reflect the standard form. Secondly, the first integral over the exponen-
tial has the interpretation of a Heaviside function closely emulating the role of the Θ function
appearing in front of the chiral-chiral propagators in on-shell momentum space proposed in [1].

6This, however, is not entirely justified as s ant t are really coordinates on a CP1, the integration must therefore
be understood as a formal operation.

7Immediately after the integration, we have four dilogarithms with rational functions of brackets in the argu-
ments. After rearranging the dilogs using the symbol [69, 70, 131] the arguments become cross-ratios.
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APPENDIX E
The algebra u(2, 2|4)

E.1 The algebra

The set of generators
(P,L, L̄,K,R,D,C,B|Q, Q̄,S, S̄) (E.1)

of u(2, 2|4) obeys the following algebra. The generators Lαβ and L̄α̇β̇ form two su(2) subalgebras
and act on generators bearing Lorentz indices as

[Lαβ, J
γ ] = δγβJ

α − 1

2
δαβJ

γ , [Lαβ, Jγ ] = −δαγ Jβ +
1

2
δαβJ

γ , (E.2)

and similarly for L̄. The generators of R-symmetry Ra
b form a su(4) subalgebra and likewise

act in the usual way

[Ra
b , J

c] = δcbJ
a − 1

4
δabJ

c, [Ra
b , Jc] = −δacJb +

1

4
δabJ

c. (E.3)

The generator of dilatations D and the hypercharge operator act like

[D, J] = dim(J)J, [B, J] = hyp(J)J. (E.4)

The quantities dim(J) and hyp(J) are the canonical dimension and the hypercharge of the
generator J respectively. It is possible to order the generators of u(2, 2|4) in a lattice according
to their dimensions and hypercharge as was done on page 16. As can be clearly seen from the
picture, only the generators Q, Q̄, S and S̄ do have nontrivial hypercharge i.e.,

[B,Qαa] = Qαa, [B, Q̄α̇
a ] = −Q̄α̇

a , [B,Sαa] = −Sαa, [B, S̄a
α̇] = S̄a

α̇ (E.5)

The rest of the algebra is given by the following non-trivial set of commutation relations

{Qαa, Q̄α̇
b } = δabP

αα̇ {Sαa, S̄
b
α̇} = δbaKαα̇ (E.6a)

[Sβa,P
αα̇] = δαβ Q̄

α̇
a [S̄a

β̇
,Pαα̇] = δα̇

β̇
Qαa (E.6b)

[Kβα̇,Q
αa] = δαβ S̄

a
α̇ [Kαβ̇, Q̄

α̇
a ] = δα̇

β̇
Sαa (E.6c)

{Qαa,Sβb} = δabL
α
β − δαβRa

b +
1

2
δαβ δ

a
b (D + C) (E.6d)

{Q̄α̇
b , S̄

a
β̇
} = δab L̄

α̇
β̇

+ δα̇
β̇
Ra
b +

1

2
δα̇
β̇
δab (D− C) (E.6e)

[Kαα̇,P
ββ̇] = δαβ L̄

α̇
β̇

+ δα̇
β̇
Lαβ + δαβ δ

α̇
β̇
D (E.6f)

Commutators not listed in here are zero. The two generators C and B take special places. In
fact, it is possible to remove both from the algebra u(2, 2|4) to get the algebra psu(2, 2|4) i.e.,

u(2, 2|4) ∼ psu(2, 2|4)⊕B⊕ C ∼ su(2, 2|4)⊕B ∼ pu(2, 2|4)⊕ C. (E.7)
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E.2 The Killing form

The super-algebra u(2, 2|4) is a real form of sl(4|4) which does not allow for a non-degenerate
Killing form (which is tantamount to saying that the dual Coxeter number of this algebra is zero,
a fact which is very important in Part 5). This is a special case of a more general phenomenon
for all sl(n|n) type super-algebras (for a textbook treatment see [132]).

However, it is still possible to define a metric κ using the fundamental representation as outlined
in [13]. It is instructive to recapitulate the definition of this metric, as it will become very
important for the definition of the Yangian operators. Let the defining representation of gl(n|m)
be the set of matrices EAB which are defined to have a 1 in the Ath row and the Bth column
and zeros everywhere else. Then, for Ja ∈ (P,L, L̄,K,R|Q, Q̄,S, S̄)

U(Ja) =

E
α
β − 1

2δ
α
β1 Eαβ̇ Eαb

Eα̇β Eα̇β̇ −
1
2δ
α̇
β̇
1 Eα̇b

Eaβ Eaβ̇ Ea
b − 1

4δ
b
a1

 (E.8)

as well as the three elements (D,C,B)

U(D) =

1
21 0 0
0 −1

21 0
0 0 0

 , U(C) =

1
21 0 0
0 1

21 0
0 0 1

21

 , U(B) =

0 0 0
0 0 0
0 0 −1

21

 (E.9)

Define κ by
κ(Ja, Jb) = str

[
U(Ja)U(Jb)

]
. (E.10)

The definitions above allow for an easy derivation of the entries of this metric. There are only
a few results this work is going to be concerned with. It is the entries of κ with respect to B

κ(C,B) = 1, κ(B, J) = 0 (E.11)

for all J 6= C.

More generally, the metric κ satisfies the associativity property

κ([Ja, Jb], Jc) = κ(Ja, [Jb, Jc]) (E.12)

and a Z2-graded symmetry
κ(Ja, Jb) = (−1)|ab|κ(Jb, Ja). (E.13)

In the adjoint representation the generators are given by the structure constants

[ad(Ja)]bc = fabc. (E.14)

Given the metric, it is possible to raise and lower indices

fabc = κadκbef
ed
c . (E.15)

Extensive use of this property will be made when defining the Yangian Y[psu(2, 2|4)].
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E.3 Representations of psu(2, 2|4)

As there are many very useful representations of the superconformal algebra that this work will
make use of, a short survey of common representations will come in handy at a later stage.

§ E.3.1. Spinor-Helicity.—Witten [11] introduced the following representation of psu(2, 2|4)
on on-shell super-momentum space (λ, λ̄, η)

Pαα̇ = λαλ̄α̇, Qαa = ηaλα (E.16a)

Kαα̇ =
∂

∂λα
∂

∂λ̄α̇
, Q̄α̇

a = λ̄α̇
∂

∂ηa
(E.16b)

Sαa =
∂

∂λα
∂

∂ηa
, S̄a

α̇ = ηa
∂

∂λ̄α̇
(E.16c)

Lαβ = λα
∂

∂λβ
− 1

2
δαβλ

γ ∂

∂λγ
, L̄α̇β̇ = λ̄α̇

∂

∂λ̄β̇
− 1

2
δα̇
β̇
λ̄γ̇

∂

∂λ̄γ̇
(E.16d)

Ra
b = ηa

∂

∂ηb
− 1

4
δab η

c ∂

∂ηc
, B = ηa

∂

∂ηa
(E.16e)

D =
1

2
λα

∂

∂λα
+

1

2
λ̄α̇

∂

∂λ̄α̇
+ 1 (E.16f)

C = 1 +
1

2
λα

∂

∂λα
− 1

2
λ̄α̇

∂

∂λ̄α̇
− 1

2
ηa

∂

∂ηa
(E.16g)

§ E.3.2. Twistor and momentum-twistor space.—Super-twistor space CP3|4 is the fun-
damental representation of psu(2, 2|4). This makes the derivative operators defining the action
on functions of twistors ZA = (λα, µα̇, χa) especially easy. All generators can be written as

JAB = ZA ∂

∂ZB
(E.17)

where the super-trace (−1)AδABJ
BA is understood to be removed as this would correspond to

the outer automorphism B of u(2, 2|4). The form (E.17) of these generators can also be obtained
from the generators in spinor-helicity representation by half–Fourier transform of λ̃. However,
this requires complex momenta or (2, 2) space-time signature. For Minkowski signature, the
half–Fourier transform is not well defined.

In momentum twistor space [61] the form of the dual superconformal algebra is exactly identical
to (E.17) replacing Z → W.

§ E.3.3. Ambitwistors.—Ambitwistor space is the quadric

A = {(W, W̄ ) ∈ CP3|4 × CP3|4?|Z.W = λµ̄+ λ̄µ+ 4iχχ̄ = 0}. (E.18)

The quadric is embedded in the direct product of twistor and conjugate twistor space. The
defining constraint Z.W = 0 must be preserved by any symmetry transformation which leads
to the following form of the generators of psu(2, 2|4)

JAB = ZA ∂

∂ZB
− (−1)|A||B|+|A|WB

∂

∂WA
. (E.19)

This form of the generators ensures

JAB(Zi · Wj = 0) (E.20)

for any i and j. It turns out to be convenient to redefine the generators by a factor of (−1)A.
In the Yangian first-level generators, this additional factor eliminates a similar factor from the
structure constants.
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APPENDIX F

Yangian algebras

F.1 Hopf algebras

Following the introduction to Hopf algebras in [31] a Hopf algebra A is an algebra with unit 1
(over a field k) with a product

µ : A⊗A→ A, µ(a1 ⊗ a2) := a1.a2 ∈ A (F.1)

for a1, a2 ∈ A together with a unit

ı : k → A, ı(λ) = λ1 (F.2)

as well as a coalgebra structure. A coalgebra structure encompasses a coproduct ∆ : A→ A⊗A
and a counit ε : A → k compatible with the algebra structure. Furthermore, there is the
antipodal map S : A→ A which is bijective and satisfies

µ(S ⊗ id)∆ = i⊗ ε = µ(id⊗ S)∆ (F.3)

or as a commuting diagram

AA⊗A ∆
A⊗A∆

A⊗A

id⊗ S

A⊗A

S ⊗ id

A µµ

ı⊗ ε

A⊗A

A⊗A⊗A

id⊗∆

A
id

A⊗A

∆

∆⊗ id

The coproduct satisfies the coassociativity relation

(id ◦∆)∆ = (∆ ◦ id)∆. (F.4)

A coalgebra is called cocommutative if ∆(A) ⊂
Sym(A⊗A), the symmetric part of A⊗A.
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F.2 Universal enveloping algebra U(g)

The universal enveloping algebra U(g) of a Lie algebra g is a cocommutative Hopf algebra
with the following properties. Let J ∈ g. The Lie structure is generated by the product
µ : U(g)⊗ U(g)→ U(g), i.e. if Ja, Jb ∈ g, then

[Ja, Jb] = Ja.Jb − Jb.Ja = fabcJ
c ∈ g ⊂ U(g) (F.5)

where fabc are the usual structure constants. The elements J of g generate U(g) via the product
µ. It is enough to state the action of the coproduct ∆, the antipode S and the counit on the J.
They are

∆(J) = 1⊗ J + J⊗ 1, S(J) = −J, ε(J) = 0. (F.6)

One has to check whether the coalgebra structure is compatible with the algebra structure, that
is, whether the coproduct ∆ is homomorphism of Lie algebras

∆([Ja, Jb]) = [∆(Ja),∆(Ja)]. (F.7)

In the present case of U(g) this is easily done.

F.3 Yangian algebras

Drinfel’d introduced Yangian algebras for the first time in 1985 in paper [118]. Yangians are like
the Nue in the Heike monogatari. Approaching them from different directions they show a very
different face. This is most evident in the three different realizations Drinfel’d provided, for a
textbook reference, see [31]. As the text only goes into the details of Drinfel’d’s first realization,
this appendix will also only introduce this realization in a broader context.

§ F.3.1. Definition.—Let g be a finite-dimensional (complex) semi-simple Lie algebra with
an invariant form κ : g× g→ C and elements Ja. Then define elements of the “first level” of the
Yangian Ĵa ∈ Y[g] such that they satisfy the following conditions.

1. The generators of the algebra Ja satisfy the usual commutation relations and the Jacobi
identity

[Ja, Jb] = fabcJ
c (F.8)

[Ja, [Jb, Jc]] + cycl. perms. of a,b, c = 0 (F.9)

2. The Ĵa define an adjoint representation of g

[Ja, Ĵb] = fabcĴ
c. (F.10)
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3. The generators Ja and Ĵa satisfy Drinfel’d’s “terrific” relations1

[Ĵa, [Jb, Ĵc]] + [Ĵc, [Ja, Ĵb]] + [Ĵb, [Jc, Ĵa]]

= fadlf
be
mf

cf
nf

mn
pκ
lp{Jd, Je, Jf} (F.11)

[[Ĵa, Ĵb], [Jc, Jd]] + [[Ĵc, Ĵd], [Ja, Jb]]

= faelf
bf
mf

cd
nf

ng
sf
msl{Je, Jf , Ĵg} (F.12)

where the products of structure constants can be obtained from

κ([Ja, Jd], [[Jb, Je], [Jc, Jf ]]) = fadlf
be
mf

cf
nf

mn
pκ
lp (F.13)

κ([Ja, Je], [[Jb, Jf ], [[Jc, Jd], Jg]]) = faelf
bf
mf

cd
nf

ng
sf
msl (F.14)

All the contractions are done using the metric κ. The quantity {Ja, Jb, Jc} is the totally
symmetrised product of the three entries.

The dependence of the relations above on the choice of κ is evident. Nevertheless, the Yangian
Y[g] itself is not. To complete the definition of the Yangian it is necessary to give the coproduct
rules for the generators Ja and Ĵa of the Yangian. On these the coproduct satisfies the identities

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja (F.15)

∆(Ĵa) = Ĵa ⊗ 1 + 1⊗ Ĵa +
1

2
fabcJ

b ⊗ Jc (F.16)

where fabc = κadκbeκcff
ef
d. Drinfel’d’s first realization is in fact a recursive definition for all

Yangian generators. In consequence, it is only necessary to know the algebra g and one Ĵa to
generate the whole Yangian algebra. In fact (F.12) is a consequence of (F.11) for all Lie algebras
except sl(2), so it’s possible to safely disregard this constraint entirely as the only Yangian this
work is going to be concerned with is the Yangian Y[psu(2, 2|4)].

§ F.3.2. Evaluation representation.—The evaluation representation ev of Yangian genera-
tors is a map from the Yangian Y[g] into the universal enveloping algebra U(g[u]) of the loop
algebra g[u]. This means it is possible to express any generator in Y[g] to a generator of g times
a complex parameter u

ev[Ja] = Ja, ev[Ĵa] ∝ uJa (F.17)

where the proportionality means that additional terms from the universal enveloping algebra
U [g] are possible. This representation is compatible with the coproduct structure

ev[∆[Ĵa]] = uJa ⊗ 1 + 1⊗ uJa +
1

2
fabcJ

b ⊗ Jc. (F.18)

§ F.3.3. Defining relations for superalgebras.—In the case of Lie superalgebras with Z2

graded brackets [·, ·} the Serre relations in (F.11) as well as the Jacobi identity for the algebra g
must be suitably generalized (see [123, 133, 118] for details). The generalizations mostly consist
of additional sign factors (−1)|a|, where |a| = 1 for a fermionic index, 0 otherwise. Let here2

[Ja, Jb} = JaJb − (−1)|a|||bJbJa. (F.19)
1These are also known as Serre relations
2This definition is for convenience. In main text, all (anti)commutators will be explicitly marked with (curly)
brackets.
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The super-Jacobi identity is

[Ja, [Jb, Jb}}+ (−1)|a|(|b|+|c|)[Jb, [Jc, Ja}}+ (−1)|c|(|b|+|a|)[Jc, [Ja, Jb}} = 0. (F.20)

(F.11) is generalized by

[Ĵa, [Jb, Ĵc]] + (−1)|a|(|b|+|c|)[Ĵc, [Ja, Ĵb]] + (−1)|c|(|b|+|a|)[Ĵb, [Jc, Ĵa]]

= (−1)fadlf
be
mf

cf
nf

lmn{Jd, Je, Jf} (F.21)

where the triple product is the generalized symmetric product

{Ja, Jb, Jc} =
1

4!

(
JaJbJc + (−1)|a||b|JbJaJc + (−1)|a|(|b|+|c|)JbJcJa+

(−1)|b||c|+|a|(|b|+|c|)JcJbJa + (−1)|c|(|a|+|b|)JcJaJb + (−1)|c||b|)JaJcJb
)
. (F.22)
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