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Abbreviations

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

5-LO 5-lipoxygenase
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ACE Angiotensin converting enzyme
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FDA Food and Drug Administration

GP Gaussian Process

GPCR G-protein-coupled Receptor

GTM Generative Topographic Mapping

hERG Human Ether-a-go-go Related Gene

HGTM Hierarchical Generative Topographic Mapping
HRMS High Resolution Mass Spectrometry
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KL Kullback-Leibler

kNN k-Nearest Neighbor

LCMC Local Continuity Meta-Criterion

LiSARD Ligand-induced Structure-Activity Relationship Display
LLE Local Linear Embedding

M1 Muscarinic receptor 1

MAE Mean Absolute Error

MAntA Molecular Ant Algorithm



v l Abbreviations
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Summary

The goal of computer-aided drug discovery is the identification of New Chemical
Entities (NCEs) that exhibit a desired therapeutic effect. Selectively inhibiting a single
disease-related target (most often a protein) using small molecules has been in focus
of drug discovery for the last decades in order to maximize efficacy while minimizing
undesired side effects through off-target modulation. However, with the increasing
awareness that many diseases are polygenic, often involving cross-connected
signaling cascades, the necessity for drugs that simultaneously modulate multiple
macromolecular targets has become evident. Carefully balancing the effects on
multiple therapeutic targets while avoiding side effect-related targets is generally
anticipated to lead to improved drug efficacy and increased safety. Another
opportunity closely related to polypharmacology is the repurposing of approved
drugs for new therapeutic indications. Computational methods are routinely used in
drug discovery projects to identify selective hit- and lead-compounds with optimized
pharmacokinetic and safety profiles. In this context, machine-learning models have
demonstrated their possession of high prediction quality and allowance for an
enrichment of promising compounds. However, they have yet to demonstrate their
broad applicability to polypharmacology.

In this thesis, a new method for computer-based de novo design of drug candidates
with desired multi-target profiles is proposed. The Molecular Ant Algorithm (MAntA)
features a fragment-based strategy to suggest innovative molecular structures. The
quality of these candidates is assessed using Gaussian process regression models
built for 640 macromolecular drug targets based on a curated subset of the ChEMBL
database. Two molecular representations, topological CATS2 pharmacophore
descriptors and ECFP-like circular Morgan fingerprints, are fused in a single kernel
function to capture complementary aspects of molecular representation. A molecule
construction procedure incorporating a library of readily available building blocks
and economically sustainable combinatorial reactions enhances the synthetically
accessibility of the proposed designs. To navigate the potentially huge combinatorial
space, a nature-inspired Ant Colony Optimization (ACO) algorithm has been adapted
to combinatorial small-molecule design. Using the Gaussian process models as fitness

functions, ACO adaptively proposes candidate compounds according to the desired
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objectives and is able to enumerate an objective-specific focused library of readily
synthetically accessible compounds. To visually assist medicinal chemists in the
molecular design process, MAntA has been equipped with an intuitive chemical space
visualization method. Each of the four underlying algorithmic components was
individually assessed before ultimately combining all parts of the approach and
applying MAntA prospectively in a comprehensive molecular design study.

1) Three-dimensional (3D) landscape visualization (LiSARD), utilizing a
neighborhood preserving dimensionality reduction algorithm and an adaptive
Gaussian kernel smoother, is introduced as an intuitive method to visually
analyze large sets of heterogeneous compound data. In a first application, the
progress of a "real world" drug discovery project dataset was visualized for
several project stages. Project-relevant areas in chemical space were already
identified in the first stage and confirmed in later stages, emphasizing the
benefits for hit prioritization and progress monitoring. Additionally, multi-
objective landscapes were introduced as visual aid for multi-objective compound
design.

2) An extension of the topological pharmacophore descriptor (CATS) with aromatic
features (CATS2) was introduced. Retrospective analysis confirmed improved
enrichment of bioactive compounds for the CATS2 descriptor while retaining
scaffold-hopping potential. In a preliminary prospective study, the viability of
CATS2 for target prediction was successfully confirmed in combination with self-
organizing maps. Two hitherto unknown targets were discovered for compounds
taken from a focused combinatorial library.

3) By utilizing a robust cross-validation scheme, multi-target Gaussian process
regression models were evaluated for their ability to accurately predict ligand
binding affinity and their discriminative power to separate binders and non-
binders. The approach was prospectively applied in combination with on-chip
chemical synthesis to generate a focused combinatorial library containing a
privileged GPCR scaffold. Four new GPCR targets for this molecular framework
were revealed, and 71% of the tested compounds were found to be active as

predicted.
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4) The potential use of ACO for combinatorial compound construction was
evaluated in two scenarios. Its ability to efficiently identify "activity islands" in
vast combinatorial space was demonstrated by sampling clusters of major
histocompatibility complex class I (MHC-1) binding peptides from the complete
octapeptide space. In this study, ACO was coupled to an ensemble machine-
learning approach for predicting peptide binding to MHC-1. The ACO technique
was further extended to arbitrary combinatorial reactions and retrospectively
evaluated for adaptive combinatorial library design employing a virtual assay
system as fitness function. With the constrain of limited numbers of tests cycles,
ACO was able to efficiently enrich desired compounds and generally
outperformed other optimization methods previously studied in the same
context.

Finally, the MAntA concept was experimentally validated in two prospective de novo

design projects with a focus on high-profile drug targets involved in neuropsychiatric

disorders. In these proof-of-concept studies, the reaction scheme used to construct
new candidate compounds was restricted to the reductive amination reaction. MAntA
was applied to generate sigma-1 receptor selective ligands and multi-target
modulating dopamine D4 antagonists. For each scenario, compounds were selected
for synthesis according to their predicted potency, selectivity, and exploration of
chemical space. LiISARD multi-target landscape visualization was employed to depict
the preferred design areas and localize the designed compounds in chemical space.

The 16 selected designs were readily synthesizable, and the quantitative affinity

predictions were biochemically confirmed. Overall, a success rate of 90% was

achieved, and the designed compounds possess lead-like properties. This result
demonstrates the potential of the MAntA concept for the design of synthetically

accessible compounds that accurately match a predicted multi-target activity profile.
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Zusammenfassung

Das Ziel des computergestiitzten de novo Designs ist die Identifikation von neuartigen
chemischen Substanzen (New Chemical Entity, NCE), welche einen gewilinschten
therapeutischen Effekt erzielen kénnen. In den letzten Jahrzehnten wurden primar
niedermolekulare Wirkstoffe entwickelt, die einzelne krankheitsrelevante
Zielmolekiile (zumeist ein Protein, Target) selektiv inhibieren, um so die Wirksamkeit
zu maximieren und gleichzeitig mogliche Nebeneffekte zu minimieren. Es beginnt
sich jedoch die Erkenntnis durchzusetzen, dass viele Krankheiten polygener Natur
sind und mehrere vernetzte regulatorische Netzwerke an der phanotypischen
Auspragung involviert sind. Daher steigt der Bedarf an Wirkstoffen, die gleichzeitig
mehrere makromolekulare Zielmolekiile modulieren. Es ist erforderlich, die Wirkung
auf die unterschiedlichen Zielmolekiile genau auszutarieren, um eine hohe
Wirksamkeit zu erreichen und gleichzeitig die Sicherheit des Wirkstoffs zu erhéhen.
Dartiber hinaus ist es moglich, neue therapeutische Indikationen fiir bereits etablierte
Wirkstoffe zu finden. Computergestiitzte Methoden werden heutzutage routinemaf3ig
eingesetzt, um neue selektive Wirkstoffkandidaten mit optimierter Pharmakokinetik
zu entdecken. In diesem Zusammenhang sind insbesondere maschinelle
Lernverfahren interessant, da diese bereits gezeigt haben, dass sie eine hohe
Vorhersagekraft besitzen und zu einer Anreicherung von Erfolg versprechenden
Molekiilen beitragen kénnen. Es muss sich jedoch noch erweisen, ob diese Methoden
auch geeignet sind, um neuartige Substanzen gemaf} eines polypharmakologischen
Profils zu entwerfen.

In dieser Arbeit wird eine neue Methode zum computergestiitzten de novo Design von
Wirkstoffkandidaten vorgestellt. Die Wirkstoffkandidaten werden so entworfen, dass
sie ein gewiinschtes polypharmakologisches Profil adressieren. Der molekulare
Ameisen Algorithmus (Molecular Ant Algorithm, MAntA) verwendet eine fragment-
basierte Strategie fiir die Konstruktion der neuartigen Molekiilstrukturen. Die
Qualitat der Molekiilkandidaten wird mit Gauss’schen Prozess Regressions Modellen
bewertet. Basierend auf einer Fehler bereinigten Teilmenge der ChEMBL Datenbank
wurden Modelle fiir insgesamt 640 makromolekulare Zielproteine erstellt. Hierbei
wurden zwei unterschiedliche molekulare Reprasentationen verwendet: der

topologische CATS2 Pharmakophordeskriptor und der ECFP-dhnliche binare
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topologische Morgan Fingerabdruck. Diese wurden in einer Kernfunktion vereinigt,

wodurch sich ergidnzende molekulare Repradsentationen im Lernprozess simultan

berticksichtigt werden konnten. Mittels virtueller Synthesen werden Molekiile aus
direkt verfiigharen chemischen Bausteinen zusammengesetzt. Damit erhoht sich die

Wahrscheinlichkeit, dass die vorgeschlagenen Molekiile auch synthetisch zuganglich

sind. Ein von der Natur inspirierter Ameisenkolonie Optimierungs Algorithmus (Ant

Colony Optimization, ACO) wurde an die Anforderungen des molekularen Designs

angepasst. Der ACO Algorithmus wird verwendet, um in dem potentiell grofien

kombinatorischen Raum nach geeigneten Losungen zu suchen. Dabei werden die

Gauss'schen Prozess Modelle als Fitness Funktion verwendet. Der ACO Algorithmus

schlagt Molekiilkandidaten vor, die den angestrebten Kriterien entsprechen, und

adaptiert neue Vorschlage jeweils an die ermittelte Fitness. Dieses Vorgehen
ermoglicht es, chemisch zugangliche fokussierte Substanzbibliotheken zu entwerfen.

MAnNtA enthalt zusatzlich eine Methode zur intuitiven Visualisierung von chemischen

Rdumen, durch die Medizinchemiker bei der Analyse der molekularen Designs visuell

unterstiitzt werden. Bevor der MAntA Ansatz in einer umfangreichen prospektiven

Studie praktisch evaluiert wurde, erfolgte zunachst eine individuelle Bewertung der

vier zugrundeliegenden algorithmischen Komponenten.

1) Fir die intuitive Visualisierung von grofien heterogenen Molekiildatensatzen
wurde die dreidimensionale (3D) Landschaftsvisualisierung (LiSARD) vorgestellt.
Zur Berechnung der Landschaften verwendet LiSARD eine Nachbarschaft
erhaltende Dimensionsreduktionsmethode und einen adaptiven Gauss'schen
Kernglatter. In einer ersten Anwendung wurde die zeitliche Entwicklung eines
Molekiildatensatzes aus einem realistischen Wirkstoffforschungsprojekt
visualisiert. Bereits in der ersten Projektphase konnten fiir das Projekt wichtige
Regionen im chemischen Raum identifiziert werden. Diese Regionen wurden in
spateren Projektphasen bestdtigt, womit die Vorteile einer frithen
Projektunterstiitzung durch Visualisierungsmethoden verdeutlicht wurden, und
zwar sowohl hinsichtlich der Priorisierung von Treffern als auch zum Monitoring
des Projektfortschritts. Dariiber hinaus wurden Multi-Kriterien Landschaften
vorgestellt, welche zur visuellen Unterstiitzung beim Design von Molekiilen fiir

multiple Kriterien eingesetzt werden kénnen.
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2) Der etablierte CATS Pharmakophordeskriptor wurde um aromatische Merkmale
erweitert (CATS2). Die retrospektive Analyse bestdtigte eine verbesserte
Anreicherung von bioaktiven Molekiilen fiir den neuen CATS2 Deskriptor bei
gleichbleibendem Potential zur Auffindung neuartiger chemischer Grundgertste
("scaffold-hopping"). Der CATS2 Deskriptor wurde erfolgreich fiir die Vorhersage
von makromolekularen Targets verwendet, indem der Deskriptor mit
selbstorganisierenden Karten (Self-Organizing Map, SOM) kombiniert wurde. In
der prospektiven Studie wurden fiir eine fokussierte kombinatorische Bibliothek
zwei bis dahin unbekannte Targets entdeckt.

3) Die Gauss'schen Prozess Modelle wurden auf ihre Eignung zur akkuraten
Vorhersage von Bindungsaffinitdten und der Diskriminierung zwischen Bindern
und Nicht-Bindern hin untersucht. Die Methode wurde prospektiv angewendet in
Kombination mit einem Mikrofluidiksystem fiir die On-Chip-Synthese. Dabei
wurde eine fokussierte Substanzbibliothek erzeugt, die ein GPCR-privilegiertes
chemisches Grundgertiist enthilt. Vier neue GPCR Targets wurden fiir dieses
Grundgeriist enthiillt, und 71% der experimentell getesteten Molekiile waren wie
vorhergesagt aktiv.

4) Der potentielle Nutzen des ACO Algorithmus fiir die kombinatorische Erzeugung
von Molekiilen wurde anhand von zwei Szenarien evaluiert. Am Beispiel von
Haupthistokompatibilititskomplex I (MHC-1) bindenden Peptiden wurde gezeigt,
dass der ACO Algorithmus in der Lage ist, effizient "Aktivitdtsinseln" im
vollstandigen Oktapeptidraum zu identifizieren. In dieser Studie wurde der ACO
Algorithmus mit einem kaskadierten maschinellen Ensemble-Lernansatz zur
Vorhersage der MHC-1 Bindung kombiniert. Zusatzlich wurde die ACO Methode
dahingehend erweitert, dass beliebige kombinatorische Reaktionen eingesetzt
werden konnen. In einer retrospektiven Studie wurde untersucht, inwieweit die
erweiterte = Methode geeignet ist, fokussierte  Substanzbibliotheken
zusammenzustellen mit der Randbedingung, dass nur eine begrenzte Anzahl von
Testzyklen durchgefiihrt werden kann. Es wurde gezeigt, dass die erweiterte ACO
Methode die gewiinschten Molekiile in der fokussierten Bibliothek effizient
anreichert. Dabei lbertraf die Methode andere Optimierungsalgorithmen, die

frither bereits in demselben Zusammenhang untersucht wurden.
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Schliefdlich wurde die MAntA Methode in zwei prospektiven de novo Design Projekten
experimentell validiert. Der Fokus lag dabei auf Wirkstofftargets, die an
neuropsychologischen Erkrankungen beteiligt sind. In diesen Machbarkeitsstudien
wurde zur Konstruktion von neuen Molekiilkandidaten ausschliefdlich die reduktive
Aminierung verwendet. MAntA wurde eingesetzt, um selektive Sigma-1 Rezeptor
Liganden sowie multi-target modulierende Dopamin D4 Antagonisten zu erzeugen.
Flr jedes Szenario wurden Molekiile ausgewahlt gemafd der vorhergesagten Potenz,
der Selektivitat sowie der Exploration des chemischen Raumes. Praferierte Regionen
im chemischen Raum sowie die Lokalisierung der generierten Molekiile wurden mit
der LiSARD multi-target Landschaftsvisualisierung dargestellt. 16 ausgewdhlte
Molekiile waren ohne weiteres synthetisierbar, und die quantitative
Bindungsaffinitdat-Vorhersage konnte biochemisch bestdtigt werden. Insgesamt
wurde eine Erfolgsquote von 90% erzielt. Weiterhin besitzen die erzeugten Molekiile
Leitstruktureigenschaften. Dieses Ergebnis veranschaulicht das Potential von MAntA
fir den Entwurf von synthetisch zugdnglichen Molekiilen mit einem akkurat

vorhergesagten multi-target Aktivitatsprofil.
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1 Introduction

Small-molecule drug discovery is an interdisciplinary endeavor linking chemistry,
biology and medicine in order to discover New Chemical Entities (NCEs) that exhibit a
desired therapeutic effect(l]l. Historically, the discovery of several important drugs
was largely serendipitous, a prominent example being the discovery of penicillinf2l.
With major technical advances in genomic sciences, combinatorial chemistry, and
biological and biochemical assay technology, the rational design of drugs has now
become feasible. The discovery of potential starting points for drug development is
mainly facilitated by screening diverse libraries of readily available compounds by
means of automated biochemical High-Throughput Screening (HTS) and by
synthesizing individual molecules "from scratch" according to a target-specific
structure-activity hypothesisi3l. A central paradigm has been the "one target, one
gene, one disease" hypothesis. Pharmaceutical research has consequently focused on
designing highly selective ligands affecting only a single macromolecular target.
Today the mechanisms of several diseases are much better understood on a
molecular level through advances in molecular and systems biologyl*l. Polygenic
causes for a disease involving highly cross-connected networks of proteins and
signaling cascades are frequently encountered. These findings have resulted in a
gradual paradigm shift towards drugs that exhibit a carefully balanced interaction
profile with a whole panel of biological targets!>l. With the recently observed decline
of efficacy in pharmaceutical R&D, it seems as if traditional drug discovery
approaches have reached their limit. New sustainable technologies are required to
effectively support the discovery of next-generation drugsl®l. A variety of
computational methods have been developed that could help improve the discovery
processl’-9l. Virtual screening approaches have been used to identify potential drug
candidates in large databases of virtual compounds. Computer-assisted de novo
design has been established for suggesting innovative compounds. Both

computational approaches are complementary to bench experiments.
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1.1 Virtual screening

Virtual screening of potentially large collection ("libraries") of molecules, often
implemented in chemical database systems, is an important pillar of the computer-
aided search for novel lead compounds[®10l. Various computational methods are
employed to prioritize prospective candidate compounds for biological testing and
further investigation in lead discovery programs(11-13l. These candidate compounds
can then be used as starting points for further development through medicinal
chemistry, and provide "surprising” new ideas for compound optimization in later
stages of the development process!®!4. Before applying any target-specific
information, compounds with undesired properties or unwanted chemical structures
are often excluded from the screening library (also referred to as "negative
designl®>"). Lipinski’s Rule-of-Fivell®] for orally bioavailable drug candidates, or the
Rule-of-Threell7] for fragment-based lead compounds, are well-known examples of
property filters that can be employed for tailoring the screening library towards
drug- or lead-like properties![!8l. More recently, Hopkins and coworkers introduced
the Quantitative Estimate of Drug-likeness (QED)[1°], a method to rank compounds
according to their oral bioavailability, in contrast to simply classifying them as
favorable or unfavorable. Undesired chemical substructures usually include reactive
groups, which can be eliminated using the Rapid Elimination Of Swill (REOS)
approach!20l, or substructures facilitating promiscuous binding ("frequent
hitters")[21], which can be identified by Pan Assay Interference Compounds (PAINS)
substructure filters(22l. There are two principal categories of virtual screening
approaches:

1. Ligand-based, if one or multiple reference ligands are known.

2. Receptor-based, if structural information on the macromolecular target is

available.
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1.1.1 Ligand-based

Many methods employed in ligand-based virtual screening rely on the Principle of
Strong Causality, a term derived from technical optimization!23], which has been
adapted to the field of drug design by Johnson and Maggiora as the Chemical
Similarity Principle!?4l. The latter states that compounds exhibiting high structural
similarity should have an increased probability to exhibit similar properties. In other
words, small structural changes should only have a small effect on biological function.
Several studies have pointed out that strict compliance with the Chemical Similarity
Principle might not always be effectivel25-27]. However, while a perfect correlation
between structural similarity and biological function cannot be anticipated, an
enrichment of hits can be expected even if individual selected molecules are
inactivel®26]. In this context, Maggiora has highlighted the importance of chemical
representation, due to the "lack of invariance of chemical space"[?¢l. By changing the
chemical representation of a compound library, the neighborhood relationship in the
chemical space spanned by the respective descriptors is also changed (Figure 1)[28l.
Thus, selecting an appropriate context-dependent molecular representation is crucial
for a successful similarity applicationl®]. Visualization aids with the selection of an
appropriate representation, and is discussed in detail in Chapter 1.4.

A wide range of chemical descriptors have been proposed to represent chemical
molecules, and an extensive overview of more than 2000 descriptors was compiled
by Todeshini and Consonnil2?]. Descriptors are usually classified in three categories
according to the dimensionality of the chemical structure they operate on (Table 1,
Figure 2)[30l. One-dimensional (1D) descriptors describe global molecular properties
that can be calculated based on the chemical formula. Two-dimensional (2D)
descriptors, derived from the connectivity table or the topological molecular graph,
are the most frequently used descriptors for virtual screeningl30l. Prominent
examples are topological indices, single valued descriptors[31-33], topological
autocorrelation descriptors represented as real valued vectors!434], and topological
fingerprints, bit strings decoding the presence or absence of features[3>36l. A
conformation of the molecule is required for the calculation of three-dimensional
(3D) descriptors. 3D descriptors represent the spatial relationship of molecular

features and properties.
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Table 1. Molecular descriptor categories. (Adapted from Ref.[3O])

Examples

Dimensionality Type

One (1D) Global
(whole  molecule-
based)

Two (2D) Topological
(molecular graph-
based)

Three (3D) Conformational

Molecular weight, atom and bond counts (e.g.

number rotatable bonds, number hydrogen-bond

donors/acceptors, number of rings), polar surface

area, clogP

Topological and connectivity indices, substructures

(e.g. maximum common substructures), topological

fingerprints (e.g. structural keys)

Multi-point pharmacophore, molecular shape, 3D

fingerprints
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Examples include pharmacophore keys, encoding the distance of pharmacophoric
features (e.g. hydrogen-bond donor / acceptor) in the Cartesian coordinates as
fingerprints[3839], radial distribution functions derived from the 3D conformation(4%],
and 3D pharmacophore correlation vectors[#142], As the ligand-receptor interaction is
an event taking place in 3D space, one would think that 3D descriptors have a general
advantage over 1D or 2D descriptors. Surprisingly, several studies indicate that this is
not necessarily the casel#2-44l, A drawback of current 3D descriptors seems to be the
requirement for a suitable 3D molecular conformation (a conformer that is close to
the bioactive ligand conformation), which has to be derived from the topological 2D
information. Furthermore, the 3D conformation of a ligand and its target is dynamic
and time-dependent, which is a property that is insufficiently contained in

contemporary 3D descriptor types!(11l.

Descriptor

Polar surface area 327 A2

Molecular weight 284.7 g/mol

cLogP 3.0

H-bond donor 0

Rings 3
1-D

\
:' P NJS
ML AL 2-D C

(0]
' )
[o]ofo]o[ao[ofo[ofofaT o1 0]o] = A
2D fingerprint
gerp O Pharmacophore
points
6.4 A 75A

N \> : 34A
@;N ,/> 3.0A' 24A

Substructure

[EloTolo oloololo @ o o]0 1]oo]1]
3D fingerprint

Figure 2. Examples of molecular descriptors for small-molecule ligands. (Adapted from Ref.Bo])

To compute the similarity between two molecules, a similarity (or inverted distance)
index or metric is required. Numerous concepts of chemical similarity metrics and
indices have been described[5], For real-valued vectors, the Euclidean and Manhattan

distances (Minkowski metric, Table 2) are frequently used[#24647]. For binary
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fingerprint descriptors, several studies have suggested that the Tanimoto coefficient
(Table 2) might be a similarity index of choice for similarity searching

applications!10:48-50],

Table 2. Equations of metrics and indices discussed in this work. A and B are molecules, x are molecule
descriptors (continuous vectors or binary fingerprints), n is the total number of descriptor attributes, and
X;ja is the value of the jth attribute. D, 5 denotes the distance, and S,  the similarity between molecules A
and B. Manhattan and Euclidean distance are instances of the Minkowski distance with p being 1 or 2,
respectively. Note that the range of the Tanimoto coefficient is [0,1] if it is used with non-negative attribute
values or binary fingerprints.

Name Equation Range

. .. 1/p
Minkowski distance Dap = (Z?=1|xj,4 _ ijlp) , withp > 1 [0,°]

n
Xj=1XjAXjB

= 2 2
X0 (xja) +27, (xjB) ~ETo, xjax B

Tanimoto coefficient SaB [—1/5,+1]

A plethora of performance measures has been proposed to assess a virtual screening
methods' prediction quality and predictive powerl51-33], Virtual screening methods
usually rank sets of compounds according to some calculated scorel>4. In order to be
successful, scores assigned to molecules that relevant for the drug discovery project
under investigation must be distinguishable from the scores of irrelevant
molecules®¥. Therefore, the evaluation of score-based compound ranking
performance is of central interest in the scope of virtual screening. Also, a successful
method should compute ranked lists of screening compounds in such a way, so that
interesting molecules are enriched in the top fraction of the ranked list ("early
enrichment"). This requirement is owed to the fact that typically only a small fraction
of the screened compounds will actually be tested experimentally!>3l. A widely used
performance measure in a variety of disciplines, including virtual screening!>?], is the
area under the Receiver Operating Characteristic (ROC) curvel>¢l. The ROC curve is
derived by plotting the fraction of false positives versus the fraction of true
positivesl57l. However, the area under the ROC curve is not sensitive to early
enrichment and therefore might be considered a poor metric for evaluating virtual
screening performancel>3l. Consequently, additional measures have been suggested
that specifically address the early enrichment problem[>153541, A frequently applied
measure is the Enrichment Factor (EF)4], which calculates the enrichment of actives

in a given fraction of the ranked list (Eq. 1).
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EF(y) = -/°%, (1)

where y € [0,1] is the considered fraction, n is the number of ranked samples, n, is
the total number of active samples, and s, is the number of actives in the early
fraction of the ranked list. While the EF metric is simple to calculate, it has several
drawbacks e.g. the dependency on the active/inactive ratio, and the lack of including
the exact position of actives in the early fraction>4. An example that circumvent the
problems present in the EF measure is the Boltzmann-Enhanced Discrimination of
Receiver Operating Characteristic (BEDROC)[53! metric (Eq. 2), which has been used in
this work to evaluate virtual screening performance. It adapts the ROC AUC to early

enrichment by an exponential weighting according to the rank of the actives.

BEDROC = RIEX n

a

Ty (2)

1-e™*
ea/n—1

where RIE = Z?:le‘“xi /%( ),xi is the relative rank of the ith active in the
ranked list, and «a is the early recognition tuning parameter. Virtual screening
methods are best applied once substantial information has accumulated regarding
the ligand-receptor interaction under investigation. However, in an early project
phase there might not be sufficient information availablel>8l. The methods discussed
in this thesis can be grouped according to the required number of reference/training
data: (i) Similarity searching is already applicable if a single reference ligand is
available. (ii) Multi-reference methods are able to work with a small set of reference
ligands. (iii) Machine-learning approaches that are applicable to large compound

databases exceed the simpler similarity metrics and indices by providing an

application-specific model.

Similarity searching

The Chemical Similarity Principle states that compounds similar to a molecule
exhibiting an activity of interest, e.g. a marketed drug or clinical candidate, are more
likely to also exhibit the activity of this reference compound. By ranking compounds
from a screening pool according to their pair-wise similarity to the reference

compound, one would expect the top-ranking molecules more likely to be active than
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the lower-ranking compounds. Focusing on the top-ranked compounds should
therefore yield better results than random hit rates in biochemical screening
campaigns. This simple concept of virtual screening was initially published almost
three decades ago using binary molecular fingerprint representations[>%60l, [t has
been successfully used in an overwhelming number of studies ever since, not only
retrospectivelyl1043.61] but also prospectively, thereby contributing to the finding of
novel entry points to drug discoveryl6263l. In early applications, a single molecular
representation and similarity coefficient was used. It has been suggested to combine
different types of structural representations and similarity metrics in order to
improve virtual screening performancel®4l. In similarity fusion, a single compound is
used as reference, and the results obtained with different representationsl®®! or

different similarity metrics are combined[10.65.66],

Multi-reference

When several active molecules are available, an approach closely related to similarity
fusion can be used to incorporate information obtained from the individual reference
molecules!*?l. In data fusion (sometimes also referred to as group fusion!1%) multiple
reference compounds are used for the similarity search, while using the identical
molecular representation and similarity metric for each search. Analogously to
similarity fusion, the results are then combined to yield a consensus score for each
screening compound[19l. Multiple studies emphasize the improved performance of
multi-reference approaches compared to single reference virtual screeningl10.49.67-69],
An example of a simulated similarity search using multiple reference structures is
shown in Figure 3. Further improved retrieval performance is possible by not only
considering the active molecules, but also molecules with undesired properties that
exhibit no activity at a biological target (inactives)[4%6970]. A prominent example is the
Binary Kernel Discrimination (BKD, Eq. 3)[70711 method, a non-parametric machine-
learning method that uses kernel density estimation techniques to distinguish
between active and inactive molecules (classification).

i — Zicactive K/l(i'j)
SBKD(]) Zicinactive K/l(i'j), (3)

where
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S..

.. Bs;
Ky = (1= (2 (4)

with s;; =Tc(i,j)/n, T, is the Tanimoto structural similarity, and n is the length of the

binary fingerprint.

NN,
P
N

™

AN
)

ROChe

Reference compounds

=z

Figure 3. Starting from three diverse dopamine D, receptor ligands, a series of hits ranging from close
analogs to increasingly diverse structures is identified by simulated similarity searching in a database of
annotated binders and non-binders of dopamine D, receptor taken from the ChEMBL database!’?.
Structural similarity is expressed as the pair-wise Tanimoto coefficient, and reported for each of the hits
relative to the most similar reference. Molecules were compared using Morgan structural fingerprintsBS].

3D pharmacophore modeling is another type of method that is applicable if multiple
reference ligands are available. According to the International Union of Pure and
Applied Chemistry (IUPAC) a pharmacophore (or pharmacophoric pattern) is defined
as the "[...] ensemble of steric and electronic features that is necessary to ensure the
optimal supramolecular interactions with a specific biological target structure and to
trigger (or to block) its biological response."[’3l. Thus, a 3D pharmacophore model
describes the spatial arrangement of key interactions between a receptor (protein, or
another macromolecular target) and a ligand. If a crystal structures with co-
crystalized ligands is available, the pharmacophore can directly be derived from the
receptor-bound ligand conformation (receptor-based case)l’4l. In the receptor-free

situation, a pharmacophore model is constructed from multiple reference ligands
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(known actives and inactives). Here, a crucial step is the computational sampling of a
ligand conformation or conformation ensemble, which should ideally mimic the
bioactive, receptor-relevant conformation(’>l. By detecting spatially conserved
potential pharmacophoric interaction patterns, a pharmacophore model is derived
from the reference ligand's conformational ensemble. In this context, the ligand-
receptor interaction is a function of the individual functional group contributions!®l.
The respective groups are also termed Potential Pharmacophoric Points (PPP) to
reflect the fact that it is not known a priori if they actually contribute to the receptor-
ligand interaction/®l.

To evaluate a screening molecule with a pharmacophore model, a 3D-alignment of
the molecular features to the pharmacophore model must be computed. The 3D-
alignment often is a time-consuming step, limiting its practicability for large-scale
virtual screening experimentsl®l. Explicit 3D-alignment can be avoided by using
alignment-free representations of the pharmacophore model. Such a representation
can be obtained by converting the PPPs of the individual function groups into vector
representations (e.g. fingerprints, or correlation vectors) that have the identical
number of elements. Instead of performing the explicit 3D feature alignment, these
reduced molecular representations are then applicable to rapid compound database

screening(®l.

Machine-learning

Machine-learning techniques are applicable to virtual screening when a set of
reference compounds is available (training data). In virtual screening, binary
active/inactive labels are used in combination with classification methods. Real-
valued labels (e.g. compound activity expressed as ICso), on the other hand, are used
by regression methods. A focus has been on supervised machine-learning methods. In
supervised learning, each training sample is associated with a label, and the task is to
infer the label for new samples by means of a statistical mathematical Structure-
Activity Relationship (SAR) modell7¢l. Unsupervised methods where the samples are
not associated with labels!’””l are discussed in Chapter 1.4 for chemical space
visualization and dimensionality reduction. The following machine-learning methods
are frequently encountered in virtual screening: nearest neighbor analysis, naive

Bayes classifier, Artificial Neural Network (ANN), Support Vector Machine (SVM),
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Gaussian Process (GP) model, and ensemble learning(1>78-81], These methods exceed
linear methods, in which the predictive output is calculated as a linear combination of
the descriptor variables, by discovering a nonlinear relationship between the
descriptor variables and the associated label. A particular advantage of machine-
learning methods is their robustness against noise in the datal®2-85]. This
advantageous property stems from their ability to generalize from the training data
to a model that explains the general trend of the data, whilst neglecting data points
whose explanation would increase the model complexity, e.g. data points that are
subject to noisel8687], In the next section, a brief overview of methods frequently

encountered in virtual screening is provided.

Nearest Neighbor Analysis

In this approach, the prediction for a query molecule is inferred from the properties
(labels) of the most similar compound(s) (nearest neighbor(s)) in the training data. k-
Nearest Neighbor (KNN) methods have demonstrated their effectiveness in several
studies!®0l. In KNN analysis, the prediction is averaged over the k (k = 1, 2, etc...)
nearest neighbors of the query molecule. The predictive kNN model consists of the
training data and a similarity metric to calculate the nearest neighbor relationship.
This basic kNN approach was further improved by considering the distance between
the candidate molecule and its k nearest neighbors for calculating the prediction. This
was achieved by weighting the contribution of each neighbor according to its inverse
distancel®8l. For example, Shen et al used kNN in combination with a variable
selection procedure to virtually screen a database of 250,000 molecules for
anticonvulsant compounds. 48 reference compounds were used to build the kNN
models. The authors synthesized nine compounds, out of which seven displayed
appreciable anticonvulsant activity in micel®°l. In the kScore algorithm, Oloff and
Miigge combined the epsilon loss function and Structural Risk Minimization term from
SVM theory with a kNN approach[®091], It is used to estimate weights for individual
descriptor variables, representing descriptor importance in respect to the training
labels. Using a corporate dataset of 10,200 compounds with activity labels for a
specific kinase, a 35-fold enrichment over random by selecting the ranked top 1% of a

database containing 775,000 molecules was achieved.
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Naive Bayes Classifier

Naive Bayes classifiers are machine-learning techniques that do not involve complex
iterative modeling steps, but rely on observed feature frequencies. The idea behind
Bayes classifiers is Bayes' theorem!92] (Eq. 5). If we define C as the hypothesis (target
class) and X as the data (presence or absence of a feature in the compound to be
classified), then P(C|X) is the probability of the hypothesis given the observable
features X (posterior probability). The conditional posterior probability of an event C,

given data X is:

P(CIX) = HEE5E, (5)
where
c* = argmax,, P(C = c;) [[; P(X;|C = cy), (6)

X; are individual features, and c, the hypothesis. The binary Quantitative Structure-
Activity Relationship (QSAR) method was among the first methods to apply naive
Bayes to virtual screeningl[®3l. Bajorath and coworkers applied the binary QSAR
method to a dataset of 463 estrogen receptor ligands with measured affinity,
collected from the literaturel®¥. Affinity values were transformed into binary
active/inactive values. A cross-validated classification accuracy of over 90% was
reported, which was not greatly affected by induced noise. Such a tolerance is
particularly important for HTS data, which is known to often be associated with high
noise levels[84959] The robustness of naive Bayes classifiers in regard to false-
positive prediction was also shown in a comparative study conducted by Glick and
coworkers(84]. Further improvements in performance have been reported for naive
Bayes classifiers with feature selection methods[®7%8l. In combination with the
MOLPRINT2D topological circular fingerprint(59], the naive Bayes classifier performed
favorably to standard similarity searching, data fusion, and BKDI[®?l. In a recent study,
Hopkins and coworkers have successfully applied naive Bayes classifiers using
Extended-Connectivity Fingerprints (ECFP)[36] and a genetic algorithm molecular
design procedure for the polypharmacological de novo design of G-protein-coupled
receptor (GPCR) ligands. In this large-scale study, 75% of over 800 ligand-target

predictions were experimentally confirmed[100],
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In naive Bayes classifiers, all features are class-conditionally independent; thus,
mutual dependencies are not considered when training the classifier. Bayesian
Interference Networks (BINs) can be used to model the relations between features!101l,
BINs have recently been introduced to virtual screeningl102103], [n these two studies,
BINs performed favorable in comparison to the Tanimoto similarity searching

approach, increasing the relative hit retrieval rate by 8-10%.

Artificial Neural Network

Artificial Neural Networks (ANNs) have a long history in the field of chemistry!104l and
have attracted much attention towards various tasks in drug design, including their
application to virtual screeningl105106], ANNs are widely used for diverse tasks such as
classification, clustering, feature extraction, and function approximation!1l. One of
the advantages of neural networks is that nonlinear structure-activity/property
relationships can be modeled without prior knowledge about the required functional
form of the model. The two types of neural networks most often encountered in drug
discovery are three-layered feed-forward neural networks[197] (supervised learning
method) and two-dimensional Self-Organizing Maps (SOMs)[108109] (unsupervised
learning method). Here, the focus will be on supervised ANNs. For applications of
SOMs see Chapter 1.4.1.

Biological neural networks have been an inspiration for the structure and operation
of ANNs. Standard multilayer feed-forward ANNs with one layer of hidden neurons,
implementing a nonlinear activation function (e.g. sigmoid or tanh)[10], "[..] are
capable of approximating any measurable function to any desired degree of
accuracy."l1111. Hence, such networks are universal function approximators(110.111],
Neural networks consist of inter-connected neurons, which take multiple numerical
inputs and calculate a transformed weighted sum. In feed-forward networks,
descriptors are fed into the initial layer of fan-out neurons, hidden layers take the
inputs from the output of the previous layers, and the final layer reports the
predictions, usually only a single neuron for the predicted value. The neurons in each
layer are fully connected as shown in Figure 6. Training of weights is most often done
by Back-Propagation of Errors(1%7], where weights are modified to reduce the
observed prediction error. A variety of different training methods exist and are

actively used in drug discovery applications[106.112],
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ANNs have been used for a variety of objectives in virtual screening and drug
designl106113,114] Qne of the early virtual screening applications was to use ANNs as a
first-pass filter to distinguish between drug and non-drug molecules[195]. Using the
ANN filter, Sadowski and Kubinyi classified 83% of the Available Chemicals Directory
(ACD)[115] correctly as non-drugs, and 77% of the World Drug Index (WDI)I116] as
drugs(195]. An external test-set, consisting of a selection of top selling drugs, was
correctly classified as drugs by the ANN filter. In a study by Schneider and coworkers
at Roche, ANNs were used to identify compounds that show up as hits in assays for
many different targets ("frequent hitters") due to assay interference or promiscuous
binding!?1l. Frequent hitters are in general considered being poor starting points for
further drug development. Their nonlinear ANN model, with fragment-based Ghose-
Crippen descriptors(117-119] as input, was able to correctly classify over 90% of the
compounds, an improvement of about 10% compared to a benchmark linear
Projection to Latent Structures (PLS) model. Interestingly, only two hidden neurons
were sufficient to achieve this result. In a related study, predicting cytochrome P450
3A4 inhibition, an ANN was found to be inferior to linear-PLS[120],

Ajay et al. were among the first to apply ANN to virtual screening of a large database
with the objective of finding potentially central nervous system active
compounds(!2ll. The authors used a combination of seven 1D and 166 2D ISIS
fingerprint descriptorsl122] with a Bayesian neural networkl123124] to construct a
focused library of central nervous system active compounds, but did not
prospectively validate their findings. Comparable work was done for designing kinase
and GPCR focused libraries(125126],

In a genuinely prospective virtual screening study, Derksen et al. screened a
catalogue of 229,658 molecules for peroxisome proliferator-activated receptor
(PPAR) modulators using a probabilistic neural network[127l and the CATS[14
topological pharmacophore descriptor(128l. Nine molecules were selected for testing,
based on visual inspection of the top-ranking 20 compounds for PPARa and PPARYy,
out of which four showed activity.

At Vanderbilt University, a large-scale virtual screening study aimed at finding novel
chemotypes of metabotropic glutamate receptor 5 (mGIluRs) NAMs using a HTS
screen of 160,000 compounds as basis for ANN modeling[12°l. Models were trained on

different subsets of the ADRIANA descriptors!130l. The model yielding the highest
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retrospective enrichment factor was used to screen a database of 708,416
commercial available compounds. 749 compounds were selected and 88 were
experimentally confirmed as mGluRs ligands. This result corresponds to an
enrichment factor of 16 compared to the original HTS approach. The study revealed
two potent mGluRs NAMs, featuring a novel molecular scaffold.

By combining different virtual screening methods, namely pharmacophore modeling
and ANN classification using "inductive" QSAR descriptors[13ll, Cherkasov et al
screened a library of 23,836 natural products in order to find novel non-steroidal
ligands for the human sex hormone binding globulin (SHBG)!32l. The authors
identified 29 potential SHBG ligands in the library and could confirmed eight in vitro.
In a comparative study, ANNs and SVMs!133] were applied to the drugs/non-drugs
classification problem!134l. While the overall correct prediction was high (> 80%),
SVMs had a slight advantage but in general did not outperform the ANNs. The authors
pointed out that SVM and ANN complement each other by producing non-identical
sets of correctly and misclassified compounds, which could be exploited by ensemble

learning methods[134135],

Support Vector Machine

The Support Vector Machine (SVM) is widely used in the machine-learning community
and is particular popular for various tasks in chem- and bioinformatics(36:137, SVUMs
were originally developed by Vapnik and coworkers!133! in the field of handwritten
digit and character recognition and were introduced to chemoinformatics and drug
discovery in 2001 by Czerminski et al. and Burbidge et al.[13813%9], SVMs are based on
the Structural Risk Minimization principle, which simultaneously takes into account
both the capacity of the model, measured by its Vapnik-Chervonenkis (VC)
dimension!14%], and the classification error on the training datal33l. The idea is that
while more complex models might fit the training data better, they are prone to only
learning the training data by heart without generalizing well to unknown data
(overfitting effect). Adding a regularization term that penalizes complex models can
be beneficial for generalization abilities of the model by avoiding overfitting via a
higher order approximation. An intuitive example of Structural Risk Minimization is
Occam's rule of simplicity (Occam's razor)[141.142] which would keep the training

error equal to zero and minimizes the VC-dimension. By minimizing the VC
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dimension, while still allowing a certain degree of errors, one may obtain an even
better generalization!133], Generalization is accomplished by constructing a separating
hyperplane, usually in a high-dimensional descriptor space that maximizes the
distance between the hyperplane and the nearest training points. The subset of data
points defining this boundary is referred to as support vectors, and the distance of the
closest points of the separating plane as margin. Generalization ability is not
influenced by the cardinality of the descriptor, but only depends on the number of
support vectors required to define the hyperplanel133l. This enables SVMs to be used
with high-dimensional descriptors even if only a small number of training data is
availablel143]. In case of non-separable classes, the soft-margin hyperplane is
applicable, which maximizes the margin while keeping the number of misclassified
samples minimal. Constructing the optimal hyperplane is a convex quadratic
programming problem, which can be globally solved by nonlinear programming. As it
is a convex problem, the solution found is always a global optimum!144l, SVMs do not
make any assumptions about correlation of descriptor dimensions, in contrast to e.g.
the naive Bayes approach that assumes statistical independence of dimensions.
Therefore, SVMs are also applicable to problems with highly correlated
descriptors!139l. To allow the definition of nonlinear hyperplanes, SVMs utilize kernel
functions to implicitly map input data into a potentially indefinite dimensional
feature space, without requiring to explicitly calculate this transformation (the so-
called kernel trick, Figure 4). Kernel functions calculate the similarity between two
data points in terms of inner products!44l. Linear separation in high-dimensional
space corresponds to a nonlinear separation in the original data space. In
combination with real-valued, vectorial molecular property descriptors, the Gaussian
kernel (also Radial Basis Function (RBF) kernel, Eq. 7) is widely used in virtual
screeningl143],

k(x,y) = exp (— M), (7)

202

where o is the kernel width, x and y are molecular descriptor vectors, and ||-|| is the
Euclidean norm. Baldi and coworkers have evaluated kernel functions for a variety of
molecular representations(145. While most kernels rely on explicitly calculated
molecular descriptors, molecular graph kernels offer an intriguing alternative by

avoiding the step of calculating the descriptors(4¢l. If the dimensionality of the



1.1 Virtual screening | 17

descriptor is already very high, as often encountered with substructure fingerprint
descriptors, the implicit projection to an even higher dimensional space is not
necessarily required and it is sufficient to use linear kernels, which are closely related
to fingerprint-based similarity searchingl147.148], Linear SVM kernels are favorable in
terms of performance, especially when applied in large-scale settings, while at the
same time being able to maintain prediction accuracy in benchmark studies!1471,

For virtual screening applications it is desirable to not only classify the compounds
but also rank them in order to obtain an enrichment of actives among the top ranking
compounds. The signed distance between a candidate compound and the hyperplane
can be used for such a ranking(149-1511, When real-valued class labels are available (e.g.
ICs0 measurements) another possibility is to use SVM regression and rank according
to the prediction!152l. Currently, SVM variants are emerging that directly optimize the
ranking performance instead of classification or regression[153-1551. The bipartite
RankSVM algorithml156.157] has shown favorable performance in a retrospective
comparison compared to standard SVM and SVM regression in virtual screening

applications!153],

input space ¢ feature space input space

Figure 4. The kernel approach. Black and white dots represent two distinct classes (active / inactive) that
are not linearly separable in input space. The mapping ¢ transforms the data in a feature space in which the
data is linearly separable. There are many hyperplanes that could separate the data, and the one
maximizing the margin is chosen by SVM. Dots intercepted by the dotted line are support vectors. The
hyperplane in feature space defines a complex nonlinear surface in input space. (Adapted from Ref.[lssl)

Schneider and coworkers were the first to prospectively apply SVM methods for the
screening of COX-2 inhibitors!1>0l. The authors screened a vendor library of 2.7
million substances with SVM models trained on subsets of their COBRA collection of
pharmacologically active compounds. From 13 cherry-picked candidates with novel
structural features, three compounds showed an inhibitory effect with one compound

exhibiting even greater activity than the references celecoxib and rofecoxib. Machine-
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learning methods are usually considered to be "black box" methods without an
immediate interpretation. In the same study, Schneider et al. demonstrated the
possibility to derive important pharmacophore points from the SVM model, which
can then be visualized for intuitive interpretation(1>°l. The same group also applied
the concept of semi-supervised learning (termed "active learning” in these
publications) to increase the enrichment by retraining the SVM with the top ranked
fraction of the training datal150.15%], The prospective applicability of SVM regression
was shown in a study searching for selective dopamine D3 receptor ligands(15°l. The
authors combined a binary SVM for discrimination of actives/inactives with SVM
regression for predicting selectivity ratios between dopamine Dz and D3 receptors. 11
compounds were experimentally tested, and six of them were confirmed as D3
receptor ligands with low micromolar binding affinities. Three compounds exhibited
the desired selective for the D3 receptor. Using similarity searching, one initial hit was
successfully optimized to nanomolar potency, while maintaining the desired receptor
selectivity.

By combining kNN regressionl1¢0], and SVM regression in a consensus approach,
Tropsha and coworkers identified novel human histone deacetylase inhibitors!161l.
The best performing models were selected for prospective virtual screening of 9.5
million compounds. From 45 consensus hits, predicted by both methods, the authors
selected four compounds and confirmed three of them experimentally as inhibitors
with micromolar activity.

In a study mimicking the traditional iterative drug discovery process, Warmuth et al.
investigated the benefits of applying the active learning paradigm from machine-
learning theory in combination with SVM methods to virtual screeningl!48l. They
proposed different selection strategies and demonstrated that active learning is
advantageous in comparison to passive learning.

For orphan GPCR-receptors, i.e. GPCRs that bind unknown ligands to modulate their
function, a SVM regression screening method has been proposed to identify potential
small-molecule ligands(162l. A target-ligand kernel combined information about
targets as well as corresponding ligands. In a thorough retrospective evaluation, the
authors showed the potential applicability to orphan GPCR screening. An

experimental validation is, however, still outstanding.



1.1 Virtual screening | 19

Gaussian Process Model

Gaussian Processes (GPs) are a popular machine-learning technique in a variety of
fields including computer science, bioinformatics, environmental sciences, and
robotics, but are a relative new addition to the cheminformatics toolbox[163.1641, The
usage of GP to define prior distributions over functions dates back to the work of
O’Hagan in 1978 with the application to one-dimensional curve-fittingl16sl. In
cheminformatics, GPs were initially used for prediction of physicochemical properties
like solubility!16¢] or lipophilicity(163l and ADMET properties!167.168]. Most recently, GPs
have also been employed for virtual screening!16°l,

The idea of GP modeling is to place a prior directly on the space of model functions
without parameterizing the functions. In a sense this is a generalization of a Gaussian
distribution over a finite vector space to an infinite dimensional function space. A
Gaussian process is fully defined by its mean and covariance function. Usually, the
mean function is the zero function. The covariance function expresses the expected
covariance between the function values at two points, comparable to the SVM kernel
function170l, Importantly, the prior does not depend on the data but defines general
properties of the functions by specifying the mean and covariance functions with
corresponding hyperparameters. The prior is used for Bayesian inference in feature
space. To yield the posterior distribution, the probability distribution is updated in
the light of the observed data. For unobserved data points, the mean and variance of
the posterior distribution is used as the prediction and confidence estimate,
respectively. In Figure 5a, four random functions are drawn at random from the prior
distribution, only constrained by the covariance function and the zero mean function.
In Figure 5b, observations are added, and random samples are drawn from the
posterior distribution. Only functions going through or passing the data closely are
likely to be sampled. The shaded area indicates the estimated uncertainty of each
prediction, which is low in close proximity to the training data and large in greater
distance. Consequently, the predictive variance depends only on distribution of data

points and not on their actually observed values(171l.
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X X

Figure 5. lllustration of Gaussian Process (GP) inference. (a) Four sample function (colored lines) are drawn
from a GP prior with zero mean and isotropic squared exponential covariance function. The shaded area
indicates the confidence interval (b) Four sample functions drawn from the posterior distribution (dashed
lines) and the predictive mean function (solid black line) after introducing six observations (green symbols).

Training a GP model corresponds to finding hyperparameters suitable for the
problem under investigation. Due to the underlying Bayesian framework, it is
possible to directly infer hyperparameter values from the training data. One
intriguing option is to choose those hyperparameter values that maximize the log
marginal likelihood, which is the probability of the data given the hyperparameters.
Particularly beneficial is the fact that, by using the log marginal likelihood, the
complexity of the model and the data-fit are automatically balanced without relying
on external methods such as cross-validation[171l.

Several retrospective studies have been published showing the general usefulness of
GPs for early drug discovery and the state-of-the-art performance that is comparable
to SVM models or random forests[172173], In a pioneering prospective application,
Rupp et al. used GP modeling to identify a natural product derivative that selectively
activates PPARy[16%]. Different GP models with varying descriptors and kernels were
trained on a dataset of 144 published PPARy ligands. With the three best performing
models a collection of 360,000 compounds was screened. 15 candidate compounds
were manually selected from the obtained ranked lists, out of which eight were
experimentally validated as PPARy agonists. Interestingly, the most active compound
was a derivative of the natural product truxilic acid and presented a scaffold-hop

from synthetic compounds to a natural product.
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The statistically well-founded estimate of confidence in a prediction provided by the
GPs predictive variance can be further exploited. It has been shown to be useful for
defining the model's domain of applicability(!74 and could potentially be used in
virtual screening to improve enrichment by focusing on the domain of applicability. It
can also be used as an exploration-exploitation trade-off in active learningl17>l. The
theory for GP-based active learning is well established due to the work in closely
related fields, including experimental design[17¢] and global optimization[177]. Initial
work on GP active learning with a focus on drug discovery was done by De Raedt and
coworkers who investigated different strategies to select next candidates based on
the predictive variance in an iterative screening application!178l. Recently, Rupp et al.
demonstrated the applicability of GP-based active learning to accurately estimate
natural product conformational energies at the density functional level of theory!179l.
Conformations were obtained from Molecular Dynamics (MD) simulations of the

natural product archazolid A.

Ensemble Methods

Traditional modeling approaches consist of one single predictive model. Recently,
methods have been proposed which aim at improving prediction accuracy and
robustness by combining an ensemble of models. Such ensembles can consist of
homogeneous classifier, trained with varying descriptors or different training data, or
even heterogeneous classifiers. Examples include jury classifiers!180, baggingl181],
boosting!182], and random forests[183l.

In jury approaches, several (possibly weak) base classifiers are combined in a voting
or cascaded learning scheme to obtain strong ensemble classifiers!180.184] An
illustration of a cascaded learning model combining two neural networks trained on
different molecular representations is shown in Figure 6. For finding selective
metabotropic glutamate receptor 5 (mGluRs) NAMs, Renner et al. combined 10 ANNs
trained on varying training data and descriptors in an averaged jury prediction!185],
From over one million molecules, a focused library of 8403 was selected according to
the jury prediction. To assess the diversity of the library, SOM projections were
calculated. From each SOM cluster, a representative was picked and 33 compounds
were experimentally tested. Seven molecules exhibited activity for either mGluR: or

mGluRs in the ECso range 9-50 pM.
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Figure 6. Cascaded neural network model. Individual first-stage feed-forward neural network models,
trained on different molecular representations (descriptor A and B), are combined in one jury network. The
final prediction is a weighted model of the two different descriptor perspectives. (Adapted from Ref.lls])

The bagging scheme employs bootstrapping!18¢! to train one type of classifier on
varying subsets of training datall81l. By allowing the classifier to learn from different
samples of the original distribution, the classifiers predictive performance is
stabilized. In boosting, a set of classifiers is constructed by giving poorly predicted
samples additional weight in the subsequent classifier, thus focusing on the
observations that are difficult to predict[187l. In both methods the final prediction is
found by majority voting. Agrafiotis and coworkers used bagging with ANNs to
construct predictive models for human ether-a-go-go related gene (hERG)
binding!188l. Svetnik and coworkers investigated the performance of boosting for a set
of ten cheminformatics datasets!182l. Two datasets were representative of virtual
screening applications; one consisted of 15,440 compounds screened against cycline-
dependent kinase 2 (CDK2), and the other of 23,102 compounds with ICso inhibition
measurements for an unspecified channel protein. The authors concluded that the
performance of their stochastic gradient boosting method is comparable to that of
random forest or SVM techniques.

Random forests are a relative new addition to ensemble learning(183]. They consist of
a forest of decision trees, each built from a randomly sampled subset of descriptors
and training data. Trees are grown to the maximum size, and generalization is

achieved by constructing several trees without pruning(183l. Random forests are easy
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to construct, inherently provide measures of variable importance, and have only one
adjustable parameter; still, they achieve performance levels in various benchmark
studies that are comparable to other machine-learning methods(147.172.182189]  For
example, a random forest trained on 2597 bioactive plant compounds was used to
screen a Chinese herbs dataset consisting of 8264 compounds!1°?l. 83 herb-target

predictions were confirmed by literature reference.

1.1.2 Receptor-based

While in ligand-based virtual screening information about the receptor-ligand
interaction is only implicitly included by structural preferences in the reference
ligands, it is explicitly exploited in receptor-based (structure-based) virtual
screening. When a receptor protein structure is known, typically an X-ray structure or
a carefully designed comparative protein structural model, it can be used for virtual
screening by deriving 3D pharmacophores or shape information from the ligand-
binding pocket, or by applying automated ligand-receptor docking![7.191l. Note that
even with the availability of a structure of the biological target, there often lies value
in applying ligand-based approaches in parallel or combining them in hybrid

methods[192,193],

Receptor-derived pharmacophore screening

With the known macromolecular target structure, information about e.g. pocket
shape or excluded volumes[°4 can be added to a pharmacophore model, or the
pharmacophore model can be directly derived from the receptor without considering
any ligand. A common concept is to identify pharmacophore features in the binding
site. Two seminal approaches are GRIDI%! and LUDINM%I. GRID calculates the
interaction energy of representative small-molecule probes (hydrophobic, hydrogen-
bond donor / acceptor) in the binding site and identifies regions of favored or
disfavored interactions for the respective probell?>l. In LUDI, potential hydrogen-
bonding and hydrophobic interaction sites are identified by a set of rules that were
derived from interactions observed in known crystal structures(1¢l. PPPs can be
identified by analysis of the detected interaction sites. The resulting 3D

pharmacophore model can then be applied to compound database screening using



24 l 1 Introduction

pharmacophore fingerprints, autocorrelation vectors, or pharmacophore
alignment[197],

In a pioneering study at Roche Pharmaceuticals, Basel, pharmacophores derived from
LUDI interaction sites were used to identify DNA gyrase inhibitors[1°8l. A library of
350,000 compounds was screened and 3000 selected compounds were tested
experimentally, revealing 150 hits. Further hit optimization yielded several potent
DNA gyrase inhibitors. Schneider and coworkers used clustering of LUDI-derived
feature maps to define a "fuzzy" pharmacophore representation!1®?l. The idealized
receptor-derived ligand pharmacophores (termed "virtual ligand") were translated
into a feature correlation vector, which was used for alignment-free similarity
searching. In a prospective study aiming at finding inhibitors of Helicobacter pylori
protease HtrA, the authors extracted pharmacophore models based on the predicted
binding pocket of a homology model. They screened 556,763 compounds, selected 26
hits, and experimentally confirmed six as HtrA inhibitors, which is notable
considering the absence of a H. pylori HtrA crystal structurel19l. LigandScout was
used in a receptor-based study to automatically derive pharmacophore models for
angiotensin converting enzyme 2 (ACE2) and also accounting for ACE-subtype
selectivity[200l. This model identified 26 ACE2 inhibitors from a library of 3.8 million
compounds. For GPCR proteins, Sanders et al developed the pharmacophore-
screening tool Snooker that combines comparative protein structural modeling,
interaction feature extraction, pharmacophore modeling, and screening all in one
process!201l, The authors reported enrichment factors exceeding tenfold for eight out
of 15 GPCR targets in a retrospective virtual screening evaluation. An in-depth review
of pharmacophore-based methods and applications with a special focus on virtual

screening is given by A. R. Leachl[191] and D. Horvath[202],

Molecular docking

If the macromolecular target structure is known, another strategy commonly used in
drug discovery projects is molecular dockingl7.62192203-205] Molecular docking aims at
"predicting the structure and binding free energy of a ligand-receptor complex given
only the structures of the free ligand and receptor"[206]. Many docking tools have been
described. In 2008, Moitessier et al. referenced more than 60 different programs with

over 30 individual scoring functions!297], and new tools are continuously reported!208].
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Table 3 gives an overview of the most actively applied docking programs based on
their citation in the recent literaturel28l. In the following, a brief overview of the
various concepts used in docking algorithms is provided. Further approaches can be
found in the literaturel207-210],

Docking methods have two integral components: An efficient search procedure to
generate a plausible conformation, as well as the position and orientation of a ligand
in the protein binding site ("pose"), and a scoring scheme ("fitness function") to
evaluate the quality of the ligand-protein interaction. The latter is closely related to
predicting ligand binding affinity. In most of the major docking programs, the ligand
is treated as flexible and the protein is kept fixed in its crystal structure conformation,
or only allowing limited flexibility of the amino acid side chains. Docking can be
achieved by iteratively sampling ligand conformations in the binding site and
subsequently assessing the quality using a scoring function. The goal is to find
conformations closely resembling the ligand conformation observed in the crystal,
and to assign higher scores to high affinity ligands than to non-binders. The latter is
crucial for virtual screening applications. While both aspects can be governed by a
single scoring function, it is possible to use separate scoring functions for docking and
final pose scoring. In fact, several studies suggest that rescoring of docked poses is

favorable for virtual screening applications(211-213],

Table 3. Examples of commonly used docking programs.

Software Sampling strategy® Scoring function®
AutoDock!?** GA FF/E
GoLp™* GA FF/E
Glide!?*® Hierarchical filters and MC E
Surflex!?*® IC with MA E
FlexX*”! IC E
DOCK??8! IC FF
Icm2! MC FF
MOE??%°! MA FF
CDOCKER™! MD-SA FF
eHiTS??% IC E

a GA, Genetic Algorithm; 1C, Incremental Construction; MA, Matching Algorithm;
MC, Monte Carlo; MD, Molecular Dynamics; SA, Simulated Annealing
bFF, Force Field; E, Empirical; KB, Knowledge Based
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Ligand conformation sampling and placement strategies

Essentially, docking is an optimization problem, and many different algorithms are
applicable for efficiently identifying the optimum pose that maximizes the scoring
function[?23], Within rigid docking methods, pre-calculated conformation libraries are
docked using shape and interaction complementary of the ligand and the protein
active sitel224l. Matching algorithms place the rigid ligand by matching the ligands'
shape, geometrical features, or PPPs with the receptor binding pocket(224-227],
Matching algorithms are very fast, but the fixed conformation ensemble prevents the
method from tailoring conformations to a specific binding pocket[202228], Qther search
algorithms treat the conformational exploration as an integral part of the process.
Incremental construction methods[217.222] divide the ligand in several fragments and
re-assemble the ligand on-the-fly in the binding site. One fragment is used as anchor
and the remaining fragments are incrementally connected using a library of preferred
geometries. Fragments are then placed using rigid-docking.

A second class of sampling methods uses stochastic optimization to simultaneously
search for both ligand conformation and position by randomly modifying the ligand
pose. Monte Carlo samplingl?2°l and genetic algorithms[23% are examples of such
strategies. Monte Carlo methods modify the pose through random bond-rotation,
translation, or rigid body rotation. The candidate pose is evaluated, and if its score is
an improvement over the previous pose, it is immediately accepted. For higher
energy conformations the Metropolis criterion is used to decide if they are accepted
or rejected[?19]. Genetic algorithms represent the ligand pose as a chromosome,
encoding the ligand conformation, translation, and position as individual genes(231l.
Genes are subject to modifications by genetic operations (mutation, crossover,
migration). A population of possible solutions is evolved using the genetic operations,
and the resulting population is evaluated using the scoring function. Only a fraction of
candidate solutions is kept for the next generation[215218],

In general, the conformational sampling is handled sufficiently well and poses in close
resemblance of the bioactive conformation are frequently among the proposed
candidate solutions[210232], How to reliably identify good docking solutions from the
candidates is still an open question as current scoring functions often fail to assign

highest ranks to the biologically relevant poses[210.232,233],
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Scoring functions

A scoring function should be able to reliably distinguish between binders and non-
binders, identify the bioactive conformation among all generated conformations, and
produce correct rankings in terms of the ligands' potential free energies of
binding[210l. Several scoring functions have been proposed for this purpose. In 2008,
Moitessier et al. referenced more than 30 variations, which can be grouped into three
categoriesl”.234l;

1. Physically motivated force fields,

2. Empirical scoring functions,

3. Knowledge-based scoring functions.
Force field scoring functions

Force field scoring functions are based on modeling physical atomic interactions of
the ligand and the receptor moleculel?35]. Non-bonded interaction terms typically
include Van der Waals (VDW) and electrostatic interaction as well as the internal
strain energy. Force field parameters are usually derived from experimental data or
ab initio quantum mechanical calculations(?3¢6l. In Eq. 8 the function used in the initial
implementation of the software DOCK is given as an example of a force field scoring
function[236l, It consists of the Lennard-Jones VDW potential and an electrostatic term.
Aij By

E=Y,Y, |55y 33594 ] (8)
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where 7;; is the distance between protein atom i and ligand atom j, A;; and B;; are
VDW repulsion and attraction parameters, q;q; are atomic point charges, ¢ is the
dielectric function, and the factor 332 converts the electrostatic energy into kcal/mol.
In DOCK, the force field parameters are taken from the AMBER force field[237],
excluding the explicit hydrogen-bonding terms. To account for solvent effects the
distance dependent dielectric function s(rij) was added to the Coulombic term. To
consider the solvent effect more rigorously, water molecules can be explicitly
included. Examples implementing this approach are free energy perturbation!(238], and
thermodynamic integration(23°l. Both methods are computationally demanding and
currently not suitable for fast virtual screeningl209240], A computationally more

efficient, but more coarse-grained approach is to treat the solvent as a continuum
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dielectric medium!232l, Examples of such implicit solvent models are Poisson-
Boltzmann or generalized-Born surface area models[241l. In 2013, the Nobel Prize in
Chemistry was awarded for the development of multiscale models for complex
chemical systems!?42]. The work honored includes the method to calculate protein-
ligand interactions more accurately by combining Quantum Mechanics and Molecular
Mechanics force fields (QM/MM)[243], In this approach, QM is used for the local ligand
environment, while MM is used for the remaining system. Rigorous QM/MM methods
are currently still too computationally demanding to be used as scoring functions in

high-throughput virtual screening(244.

Empirical scoring functions

In empirical scoring functions, also termed "regression-based" scoring functions, the
estimation of the free energy of binding, AGy;,q4, is decomposed into a set of weighted
energy terms. An example including terms for hydrogen-bonding, metal ligation,
hydrophobic effects, and ligand flexibility is given in Eq. 9, generalized from the

commonly used ChemScore scoring function[24>],

AGping = AGy + AGpp Ly f(AD)f (Ad) + AGmer Lmet f (Ar) 9)
+AGlip0 Zlipo f(Ar) + AGroref (Nyor)

The individual terms are obtained by multiple linear regression in order to reproduce
experimentally determined binding affinities. f is a penalty function accounting for
radius (Ar) and angle (Aa) deviations from the ideal geometries, and the number of
frozen rotational bonds N,.,;. The development of empirical scoring functions was
pioneered by Bohm with his work on SCORE1, which was later incorporated into
LUDI for dockingl[246.247], Since then, a variety of empirical scoring functions has been
developed with different empirical energy terms and varying sets of training datal210l.
Empirical scoring functions are trained on interactions observed in crystal structures,
and thus only attractive interactions are considered and additional repulsive terms
have to be added to correctly account for repulsive contacts, e.g. clashes with the

receptor(248],
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Knowledge-based scoring functions

In contrast to empirical scoring functions, explicit binding affinities are not used in
knowledge-based scoring functions. Instead, they utilize the statistical discrepancies
between observed and expected distributions of atom-pair distances. The idea is that
ligand-protein atom pairs frequently found at a certain distance are more likely to
represent a favorable interaction. Binned and normalized occurrence frequencies of
atom-type pairs are converted to pair-wise potentials using the inverse Boltzmann

relation (Eq. 10)1L.

observed

Pij ()
expected 4

pi Pt

E(i,j) = —ksTIn (10)

where kg is the Boltzmann constant, T is the absolute temperature and p;; are
observed and expected frequencies for atom types i and j at distance r. The final score
is calculated as the sum of all protein-ligand atom pairs within a given cutoff distance.
Interpretation of the scores is difficult as they often consist of hundreds of small
contributions[234l, Popular examples of knowledge-based scoring functions used in
docking are PMF[249] and DrugScorel?40l. More recently, knowledge-based approaches
have been combined with machine-learning methods!2%8l. Their particular advantage
is the implicit inclusion of ligand-protein interactions, avoiding the explicit modeling
of function terms and the arguable assumption of additivity!2591.

The comparison of different scoring functions has been the subject of numerous
studiesl233251,252] Most of these studies conclude that current scoring functions are
able to correctly predict the binding pose, but fail at correctly predicting the binding
affinity and "virtually no correlations could be observed between the docking score
and in vitro binding affinities"[233l. Schneider reasoned that "[..] flexible fit
phenomena, the role of water molecules, protonation states in proteinaceous
environments, and the entropic and enthalpic contributions and compensations upon
complex formation are not satisfactorily addressed by the existing virtual screening
methods"[11l. Keeping these caveats in mind, several successful prospective studies
emphasize the practical benefit of molecular docking for virtual screening, especially
in comparison to biochemical HTS[7.253]. While high-throughput docking was initially
computationally too demanding for large-scale screens, this has changed with the

constantly increasing computational power. In a recent study on dopamine D3
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receptor ligands, Shoichet and coworkers screened over three million compounds
using high-throughput molecular docking!?54. About two trillion ligand-protein
complexes had to be evaluated with DOCK3.6[253]. A receptor homology model and the
recently available D3 crystal structure was used to perform two separate screens.
Interestingly, the observed overlap of the top 1,000 docking hits from the two screens
was only 9%. The authors selected a total of 51 top-ranked compounds from both
screens and experimentally confirmed 11 compounds as D3 antagonists, six from the
homology model, and five from the crystal structure, with affinities in the range of 0.2
and 3.1 uM.

The methods and respective applications presented in this chapter demonstrate the
versatility of virtual screening approaches. However, virtual screening efforts are
limited by the structural diversity of the screened compound libraries. The de novo
design methods presented in the next chapter circumvent this by allowing the

construction of novel compounds.
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1.2 Computer-assisted molecular de novo design

While virtual screening and the corresponding biochemical HTS may be used to find
active molecules in a library of synthesized molecules, de novo design methods are
required to generate NCEs "from scratch"[15l. Whereas HTS is limited to a focused
part of known chemical space, de novo design is intrinsically innovative and facilitates
exploration of chemical spaceltl. This may justify the increased costs per de novo
designed molecule, compared to its HTS counterpart(2>¢l. Most of the in silico
counterparts to bench synthesis mimic the iterative drug discovery process. In
comparison to static compound library screening, iterative de novo methods have the
advantage that several dimensions (e.g. potency, toxicitiy, ADME) can be measured
and optimized with the prospect of continuous improvement in each iterationl®l. The
first programs for computer-assisted de novo design were introduced more than two
decades ago, prominent tools being ALADDINI[257], GROWI258] and LUDI!%], and with
their seminal article on peptides and peptide-like ligands Moon and Howe pioneered
the field of automated computer-assisted de novo design!2>8l. Ever since, a plethora of
different de novo design approaches have been published. In a recent publication,
Schneider and Baringhaus referenced more than 50 de novo design tools[!>]. De novo
algorithms have to address three pivotal questions in order to successfully design
NCEs!2591:
1. How are new molecules assembled?
2. How is the quality of a molecule evaluated?

3. How to efficiently navigate in vast chemical space?

De novo design aims at exploring the chemical space, which Lipinski and Hopkins
compared to the cosmic universe in its vastness, with chemical compounds
populating space instead of stars[260l., [nitially, molecules were constructed iteratively
on an atom-by-atom basis. This offered the advantage of greatest possible flexibility
by allowing the generation of any possible structure. A caveat of this concept is that
the huge number of possibilities impedes systematic searching of the total search
space, ultimately leading to a large fraction of chemically unstable or synthetically
inaccessible designs without desired drug-like properties!ll. While chemical space is
indisputably huge, its estimated size for synthetically accessible small molecules is up

to 10290,[28] from which only a small fraction is relevant for medicinal chemistry!261l,
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Examples for focused chemical space are drug-like, biological active, and receptor-
relevant chemical (sub)spacel28l. This fact can be exploited by restricting the search
for NCEs in these relevant regions of chemical space, essentially by taking smart

shortcuts(15l.

1.2.1 Fragment-based de novo design

With the introduction of fragment-based assembly strategies in computer-based
design approaches, the search space has been reduced to a feasible size. By using
larger molecular fragments instead of individual atoms, the number of decisions
required to construct a molecule is considerably reduced, and most of the bonds
present in the designed product are predetermined by the used fragments.
Additionally, fragments often bind macromolecular targets with high ligand
efficiencyl262], which designate them as attractive starting points for drug
discovery!1>l. Most of the early de novo design programs were exclusively receptor-
based, and products were directly assembled in the binding cavity of the protein. One
approach is to superimpose different ligand-bound protein structures by backbone
alignment and identify strategic ligand bonds brought to close proximity by the
alignment. Ligands are dissected at these positions and recombined to yield new
candidate molecules. An example of this approach is BREED[263], A drawback is that
the chemical variety in the designs is restricted by the fragments present in
crystalized ligand-protein complexes. Related approaches rely on molecular docking
techniques instead of experimentally determined crystal structures. In the software
IADE, molecules are also initially fragmented, but instead of using fragments from
other known ligands they are replaced with assumed bioisosteric analogs(64l. The
reconstructed molecules are then evaluated using docking or field- and shape-based
similarity. A related strategy employing bioisosteric replacement for de novo design is
implemented in SHOP using the alignment-independent GRID similarity(26>].

Another possibility is to automatically place fragments in the binding cavity guided by
molecular docking. After preferred positions for seed fragments are determined, they
can be developed to candidate molecules using fragment growing or linking
strategies. Growing iteratively adds fragments to one starting seed fragment, while

linking connects fragments in the binding site with suitable linkers!ll. A schematic
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overview of the described fragment strategies is shown in Figure 7. If fragments
commonly observed in drug-like compounds are used for assembly, the designed

compounds are expected to more likely also resemble drug-like properties(l.

Fragment swapping Fragment growing
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_A_. Docked Expanded Final
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Original drug-like hit Improved hit Docked Merged
fragments hit

Figure 7. Fragment strategies for receptor-based de novo design. Same shape but different color indicates
related receptor interaction properties. (Adapted from Ref.m)

The fragment poses are evaluated using the methods described for molecular docking
including force-fields as well as empiric and knowledge-based scoring functions (cf.
Chapter 1.1.2, molecular docking). While most fragment approaches are appealing
due to a fast design strategy, they suffer from relying on the assumption of additivity
of the contributions of individual fragments to the docking score, and as a
consequence to the binding affinityl262.266267], This assumption is only approximately
true in cases where the binding mode and orientation of the individual fragments is
also meaningful for the whole designed product!1>l. Additionally, it has been realized
that superadditivity (overproportional increase of binding affinity compared to
individual fragment contributions) can occur due to the loss of rotational and
translational entropy upon complex formation[268l. A possible solution might be to
evaluate the whole product instead of individual fragments, which in turn eliminates
the convenience of a small search space due to combinatorial explosion. Therefore,
stochastic and deterministic local optimization strategies are required to identify
high-scoring solutions![15.

An elegant method to obtain motivated fragments is by applying virtual retro-
synthesis, most prominently the REtrosynthetic Combinatorial Analysis Procedure
(RECAP)[26%], to a library of drug-like molecules. RECAP defines eleven cleavable

substructures based on reactions commonly observed in medicinal chemistry, which
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are further used to dissect the molecules. By using the same rules for reassembly,
designed products are more likely to be synthetically accessible, which is an
important requirement for practical de novo design. The first software to implement a
RECAP-based design scheme was TOPASI270, Context-dependent building block
reactivity and physical availability of the required building blocks are challenges for
the successful realization of designed compounds and in general it is not guaranteed
that the anticipated reaction is possible[*8l. One way to handle synthetic feasibility is
to apply a synthetic accessibility filter in post-processing, e.g. implemented in
SYLVIA[271], or to use synthesis planning software to recommend possible synthesis
routes, e.g. employed in CAESAI272],

Reaction-based approaches are the latest incarnation of fragment-based methods
that explicitly account for the synthetic tractability of the designed compounds!273l.
Formalized reaction schemes, mirroring "real" synthesis protocols, are used as
connection rules and readily available building blocks (eg. purchasable from
commercial vendors) as fragments. This does not only increase the likelihood to
design synthetically feasible molecules but also suggest a synthesis route for
immediate realization of the proposed compound. The software SYNOPSIS was
among the first reaction-based de novo toolsl274], in which virtual synthesis is guided
by a collection of 70 organic reactions. Furthermore, an advanced protocol
incorporating context-dependent reactivity ensured the eligibility of the building
blocks for the chosen reaction. An apparent drawback of using only a limited set of
reaction is the drastic restriction of the accessible chemical space, which could be
problematic if, for example, novel targets are addressed. Several studies estimated
the size of chemical space accessible using combinatorial reactions!275l. Schneider and
coworkers calculated a size of 107 one-step products for a set of 58 robust
reactions[276l. Another example is the Pfizer Global Virtual Library, which consists of
up to 1018 virtual products, incorporating 1244 virtual reactions with more than
3000 experimentally validated synthesis protocols[277l. Compared to the estimated
size of the total synthetically accessible chemical space (between 1020 and 10324)[278]
there is still a distinctive difference, but this should only have a minor impact on
practical drug discovery endeavors in the authors' opinion.

While fragment-based approaches drastically reduce the search space size, it still

exceeds the size for exhaustive enumeration. Initially, deterministic design strategies
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(e.g- breadth-first and depth-first searching) implementing the additivity principle
were used with growing or linking approaches to quickly navigate the search
spacel2>9]. Stochastic search algorithms offer an alternative that can be used for
optimization without relying on fragment additivity. While they cannot guarantee
finding the globally optimal solution, they usually generate collections of acceptable
candidate solutions in reasonable timel25°]. Due to constituting a related problem,
there is a profound overlap of methods used in molecular docking pose optimization.
In the following, a brief overview of search methods frequently used in molecular
docking programs is given. A detailed overview of search strategies used in popular
de novo programs is also given in the literaturel259279]. A widely used stochastic
search strategy in early design programs was Monte Carlo (random) sampling
combined with the Metropolis Criterion (MCMC) to guide the search process(?59]. The
first program implementing this strategy was CONCEPTS with an atom-based
strategy!280l, Among the first to use MCMC for fragment-based design was SMogG,
using a knowledge-based scoring function to evaluate the randomly designed
candidates for their protein-binding potentiall28ll. Evolutionary algorithms are the
second group of search methods that were frequently adopted by de novo design
programs. Algorithms belonging to this group are genetic algorithms, genetic
programming(282], and evolution strategies!23]. Glen and Payne reported one of the
earliest applications of a genetic algorithm to guide the compound construction in a
fragment-based de novo process in their Chemical Genesis softwarel283]. Other
prominent examples using evolutionary algorithms include TOPASI?701 and
SYNOPSISI2741, With the focus of recent de novo design programs on just a few reliable
sampling methods, the evidence of several retrospective and prospective studies
regarding their ability to identify suitable solutions suggest that "[...] one might
consider the task of chemical space navigation solved."(8l.

Ligand-based de novo design is a complementary strategy for receptor-based design,
which is applicable without a known protein structure. While the same concepts for
compound construction and sampling are applicable, the scoring during the design
process has to be done independently of the macromolecular target structure.
Therefore, candidate designs are compared to one (or multiple) reference
compounds in a predefined descriptor space, yielding a measure of similarity or even

a prediction of relevance. The chemical similarity concept and the methods used are
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equivalent to the ones previously described for virtual screening (cf. Chapter 1.1.1).
Among the first to describe a solely ligand-based design tool incorporating fragments
was the work of Globus et al, based on a genetic graph algorithm and all-pairs-
shortest-path similarity to a single reference compound[?84l. In a contemporaneous
study, the software TOPAS was introduced, which employed an evolutionary
algorithm!23] to navigate the search space, but used pharmacophore and substructure
fingerprint molecular similarity for scoring the designed products(270l. TOPAS was
used in several seminal prospective drug discovery studies at Roche, including the
design of inhibitors for the human Kv1.5 potassium channell279, and reverse agonists
for the cannabinoid-1 receptor (CB-1), which were also validated in in vivo mouse
models!?85]. It is noteworthy that in the CB-1 study the whole process from de novo
design to hit series identification was accomplished in four months.

Even though the majority of ligand-based de novo studies utilize structural or
pharmacophoric similarity for evaluating the designs, it is also possible to make use
of problem-specific QSAR models. De novo design with a QSAR scoring function is
closely related to inverse QSAR, which aims at constructing molecules closely
matching a given predicted optimal position in the descriptor or property spacel286l.
The first software tool to integrate a QSAR scoring function was PRO_LIGANDI287],
using a scoring approach similar to Comparative Molecular Fields Analysis
(CoMFA)[288], At the same time, a prospective study combining LUDI (de novo design)
with GRIDI[195] (QSAR scoring) was published![28°l. In this prospective study, LUDI and
GRID were employed to identify possible substituents for a known inhibitor of human
synovial fluid phospholipase A; receptor in order to increase affinity. Since then,
several additional de novo tools incorporating QSAR methods have been
published[259],

There is also increasing interest in applying advanced machine-learning techniques
to de novo design, which provide a "top-down" knowledge-based scoring concept,
complementing the "bottom-up" concept of established methods. Not surprisingly,
this mirrors the ongoing development in the virtual screening community and is
fueled by the increasing amount of publicly available data mandatory for model
building. Even though the first studies describing the design of peptides using ANN
machine-learning methods have been introduced more than 15 years agol290], there

are only few small-molecule de novo design studies incorporating machine-learning
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techniques. A distinguished example recently published by van der Horst et al
features the combination of a genetic algorithm for compound design with adenosine
subtype specific SVM regression models for scoring(?91l. It is of interest to note that
these authors did not include the synthetic feasibility as a design objective, which
could be a reason why they did not select designed compounds for synthesis. Instead,
they identified promising scaffold patterns in the designed library and experimentally
validated two out of six selected scaffolds, decorated with methyl substituents.

Numerous structure- and ligand-based de novo design success stories have been
published in the last 25 years and automated de novo design has proven to deliver
innovative hit- and lead-compoundsl137:8292.293] Consequently, de novo design can be
considered an established tool in the toolbox of commercial drug discovery

programs|8205294],

1.2.2 Multi-objective optimization

Developing a drug is a balancing act between a broad set of different objectives, most
prominently the affinity to the main target (or a multi-target panel), selectivity, and
pharmacokinetic / toxicological properties (ADMET; Absorption, Distribution,
Metabolism, Excretion, Toxicity). Deficiencies in ADMET properties are the leading
cause of failure in late stages of drug development or withdrawal of already marketed
drugs(295]. Historically, the development was done sequentially, first optimizing
affinity and afterwards taking care of additional objectives[296.297], With the increasing
pressure on drug development projects due to escalating costs of drug discovery!e!
and the realization that considering the crucial ADMET properties as early as possible
in the discovery process might be beneficial for the overall success!2?°], this paradigm
is starting to shift towards multi-objective optimization approaches!??7l. By
simultaneously considering multiple primary objectives in candidate solutions, the
amount of trial and error design rounds might be reduced (Figure 8a), ultimately
leading to a more efficient discovery process, while avoiding potential liabilities that
could lead to later-stage failures(298l.

In a multi-objective problem, a suitable solution must fulfill two or more primary
objectives. In the case of conflicting objectives, a compromise has to be made and the

identification of candidate solutions is in general a non-trivial task[298l. If multiple
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objectives have to be considered simultaneously, costs increase sharply for
conventional biochemical HTS approaches. Complementary computational methods
including multi-objective library and de novo design might be cost-effective
alternatives(299]. A straightforward way to consider multiple objectives is to combine
them in one aggregated weighted-sum score, which can then be used for conventional
single-objective optimization[3%%. In the case of contradicting objectives mean-sum
methods have the drawback that solutions are ranked best that are mediocre for all
objectives, which is possibly not ideallll. An alternative is to predefine desired values
for the individual objectives and use a geometric mean of desirability functions for
optimization (Figure 8b)[B30ll. The software MOOP-DESIRE is an example for a
desirability-based multi-objective optimization applied to library design(302l. The
same group also used MOOP-DESIRE for designing non-steroidal anti-inflammatory
drugs with optimized analgesic, anti-inflammatory, and ulcerogenic pharmaceutical

profiles[303],

o

a goal
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Figure 8. (a) Drug discovery strategies. Sequential single-objective optimization for two objectives (dashed
line). Initially potency is optimized and consecutively ADMET properties. Multi-objective optimization
methods simultaneously consider both objectives enabling more efficient convergence (solid line). Green
star is the anticipated optimum. (Adapted from Ref.[297]) (b) Multi-objective prioritization. The dashed red
line represents the Pareto frontier and filled circles are Pareto-optimal solutions. Green circles are solutions
closest to the desired multi-objective value with ranks according to the geometric mean of the desirability
functions. (Adapted from Ref.[mol)

Pareto optimization does not require an explicit definition of individual weights or
optimum values. Instead, it identifies a set of solutions (the Pareto frontier) that is
optimal in the sense that no other solution dominates it in all objectives. The set of
pareto-optimal solutions represents various compromises among the objectives and

allows the user to choose the most suitable solutions[300l. With two objectives, the
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Pareto frontier is a curve and can easily be visualized (Figure 8b). With more
objectives it becomes a surface or hypersurface. It was already introduced in 1989 by
Goldberg with a genetic algorithm to identify the ensemble of Pareto-optimal
solutions[230, Among the first to use Pareto optimization in the field of
chemoinformatics were Gillet et al. with their study on library design using the
MoSELECT softwarel3%4]. Soon after, Brown et al. introduced Pareto-optimization for
de novo designl3%5]. Another recent example is the design software MEGAI[3%6l. One
apparent drawback of Pareto-based compound prioritization is that with an
increasing amount of objectives, the number of solutions on the Pareto-optimal
hypersurface tends to increase exponentially!307],

If there is a primary and several secondary objectives, an unsophisticated yet
effective approach is to design candidates for the primary objective and filter (or flag)

the designed solutions afterwards with respect to the remaining objectives!398l.
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1.3 Polypharmacology

One of the dominant objectives of drug discovery projects in the last decades has
been to find NCEs that selectively modulate one single macromolecular target with
high potencyl>399], so-called "magic bullets"[5l. This concept was already identified by
Ehrlich in 1904[310], The "one drug-one target" strategy is closely connected to the
linear causality model of "one protein-one gene-one disease"”, which have mainly
influenced the definition of standard drug design protocols we encounter
today(299309], While there has been notable success with this single-target centric
approach for diseases with clearly defined cause and mechanism, it is now recognized
that the incomplete knowledge of target networks and drug interaction profiles have
strongly biased the perception of drug selectivity[39l. Recent studies indicate that
most therapeutically effective drugs interact with multiple proteins and selective
drugs are less frequently encountered[3%°l. Studies investigating drug promiscuity
estimate that, on average, drugs interact with approximately six targets[311.312] and
only 15% of analyzed drugs interacted solely selectively!39°]. Given the limited assays'
availability compared to the total number of potential biological targets, these
numbers are likely to increase with additional targets being investigated![39°1.

Multiple on-target binding is perceived to be essential for efficacy, while binding to
off-targets induce undesired side effects encountered in many marketed drugs(313l.
Especially for complex, polygenic diseases, including the majority of neurological
diseases and cancer, a polypharmacology design is essential, and several marketed
drugs already exhibit a distinctive multi-target profile[4313314], An illustrative example
is the antipsychotic drug clozapine, already discovered in the 1960s[315], which
exhibits a highly complex pharmacological profile with high affinities for a variety of
GPCR receptors including serotonin, dopamine, muscarinic and adrenergic
receptors[316l, While clozapine is extremely effective in treatment of schizophrenia,
and in reducing suicidal tendencies, it also has severe side effects, including
agranulocytosis, seizures, weight gain, and diabetes, caused by unwillingly targeted
GPCR receptors!31¢l. Identifying the appropriate subset of receptors responsible for
efficacy, while avoiding side effect-inducing ones, is clearly a future strategy for
further drug development(#l.

Another fact facilitating polypharmacology drug design is the realization that many

diseases are connected to multiple compensatory signaling pathways, which are often
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found to be remarkably resilient to perturbation[317]. This realization is supported by
large-scale genomics studies showing that single-gene knockouts targeting a single
pathway frequently have no effect on the phenotype and multiple simultaneous
knockouts are required in order to induce a phenotypic effectl317l. An example is the
complementarity of the mitogenic Ras/mitogen-activated protein kinase (MAPK) and
survival phosphoinositide 3-kinase (PI3K)/Akt pathways[318l. Targeting just a single
pathway in tumor or leukemia treatment has proven ineffective due to extensive
cross talk and compensatory regulations between the pathways[318l. Drugs suffering
from this are kinase inhibitors selectively acting on individual proteins in either of
the signaling cascade. Blocking both pathways at the same time by combining PI3K
and MAPK selective inhibitors has shown to be beneficiall31°l.

These findings implicate that systematically searching for multi-target drugs globally
affecting disease-associated networks should be considered more often instead of
solely relying on designing selective drugs[*l. Additionally, it has been realized that
the rational design of multi-target profiles could be beneficial for drug efficacy as well

as drug safety(3091,

1.3.1 Multi-target drug discovery

Combination therapy, i.e. the simultaneous administration of a mixture of selective
drugs with different mechanisms of action, is a well-established therapeutic approach
to treat polygenic diseases!>299l. Prominent examples are anticancer chemotherapy,
the treatment of infectious diseases, and the treatment of central nervous system
diseases!320-322], While these therapies are effective, they suffer from the combined
side effects of the individual drug entities, and the risk of possible drug-drug cross
interactions[299:323], It is also challenging to balance the differences in bioavailability,
pharmacokinetics, and metabolism[323]. Combining therapeutic effects of the drug
cocktail in a single compound containing multiple biological properties could be of
advantage compared to combination therapy!>324l. The design of multi-target ligands
for predefined polypharmacology profiles can be challenging[100.299], Essentially a set
of potentially contradicting objectives is added to the already complex multi-objective

drug discovery problem. Two distinct strategies have emerged for the rational multi-
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target ligand design: The combination of pharmacophores derived from selective
ligands, and data mining in chemogenomics databases[>2%91.

The combination of pharmacophores observed in selective ligands is currently the
most commonly used method for designing multi-target ligands®l. To achieve the
desired in vivo efficacy profile and therapeutic effect, the affinities towards the
individually addressed targets have to be carefully adjusted[®]. This can be a
challenging task. Dual-target compounds are most frequently designed instead of
poly-target compounds to limit the costs associated with multi-target strategies!2991.
After promising targets located on complementary pathological pathways with
known selective ligands are identified, the observed pharmacophoric patterns
contributing to selective binding can be joined in a single molecule. Comparison of
binding pockets could be used to assess a priori if the selected targets can potentially
be addressed with a single moleculel323]. A straightforward way to achieve dual-target
ligands is to synthesize drug conjugates by combining two selective ligands with a
cleavable linker. Frequently, an ester linker is used that is cleaved by plasma
esterases to release the individual drugsl®l. Conjugates can also be linked
permanently if a linking position can be identified that does not affect the binding
affinity of the individual drugs. Drug conjugates are often larger and more complex
compared to the selective drugs, which is associated with problematic
pharmacokinetics, lower in vivo efficacy, and limited oral availabilityl326l.
Optimization of pharmacokinetics while retaining dual-target affinities of drug
conjugates is particularly challengingl®l. To gain candidate compounds with drug-like
properties, pharmacophores can also be fused or completely integrated in a single
pharmacophore profile to limit the compound size and complexityl®l. The
identification of pharmacophore hybrids can be supported by computational
methods. In a recent study, Achenbach et al. employed their multiSOM approach to
identify hybrid 5-lipoxygenase (5-LO) and soluble epoxide hydrolase (sEH) dual-
target ligands[327l. Characteristic substructures were identified for each target, and
target-specific SOMs were built to represent the target profiles. The authors screened
fragment libraries with combined SOMs, and discovered fragments binding both
targets. One of the fragments was further expanded to a ligand efficient dual-target

inhibitor (5-LO 0.05 uM; sEH 0.17 pM). In general, fragments seem to offer a valid
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starting point for multi-target drug development due to their inherent binding
promiscuity(299].

Data mining of large chemogenomics databases is an alternative approach to design
compounds matching a multi-target profile. Without the limitations associated with
the combination of pharmacophores, it might be possible to simultaneously address
several target-objectives[299328], Usually, such polypharmacology profiles are a
combination of desired on-target modulation, and avoidance of side effect related off-
targets[328l. In the SOSA approach, a library of drugs is screened for compounds
partially matching an aspired target profilel32°]. Using traditional optimization, the
initial observed profile is then modified to yield the desired multi-target activity
profile, possibly exchanging the main and side activity in this process. Starting with
an existing drug should increase the likelihood of obtaining analogs with favorable
pharmacokinetics and safety profiles329l. In a recent study, Besnard et al. combined
target-specific naive Bayes models with a genetic algorithm to adaptively evolve
known drugs to a desired multi-target profile(100l. The authors implemented a ligand
transformation scheme based on a collection of medicinal chemistry transformations
frequently used in the literature. The applicability to polypharmacology design was
demonstrated by evolving an approved acetylcholinesterase inhibitor into a brain-
penetrable ligand with a distinctive GPCR polypharmacology profile. In this study,
More than 800 predictions were validated experimentally, and 75% of the

predictions were confirmed.

1.3.2 Target prediction

With the revival of compound screenings based on cell or organismal phenotypically
readouts, there is an increasing demand of identifying biological targets for orphan
chemical entities, ie. molecules without a known macromolecular target!330.331],
Another trend that could profit from target identification is the repurposing of
approved drugs for novel therapeutic indications. With the increasing complexity and
requirements of clinical trials and additional hurdles in the approval process for
novel drugs, repurposing offers an alternative that effectively reduces risks in clinical

activitiesl®332l. A third area of application for target identification methods is the
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prediction of side effect-related drug-target interactions to identify potential clinical
risks early in the drug discovery process!330.333],

Conventional biochemical approaches for target identification include affinity
purification using immobilized compounds and "pulling-down" target proteins from
cell extracts, yeast three-hybrid technique with hybrids of small molecules and cDNA
libraries, and the screening of protein micro arrays with small-molecule probes!330l.
Experimental constraints, e.g. different levels of proteins in cell extracts, can prevent
the straightforward application. Therefore, they can be complemented by
computational target identification methods, including chemical similarity searching,
data mining in annotated chemogenomics databases, and panel docking(331l.
Similarity searching with any molecular descriptor and similarity metric can be used
for target identificationl[331l. A query compound is compared to a database of known
ligands with annotated targets. The annotated targets of the most similar compounds
point to potential targets for the orphan compound. There are several issues with this
simplistic approach(331l: When are two compounds similar enough to be considered
for target prediction? If there are several targets, how are they ranked? How is the
prediction influenced by target class bias in the database?

By clustering the database with an unsupervised learning method, eg. Self-
Organizing-Maps (SOMs)[108109] 'some of the issues are addressed. The SOM algorithm
detects cluster boundaries in the high-dimensional descriptor space, which can be
interpreted as applicability domain for target prediction[334-336], Only compounds
inside a SOMs neuron perception field are used for target identification. Schneider et
al. used a SOM trained on their expert curated collection of bioactive reference
compounds?7] to identify protein-tyrosine phosphatase 1B as a new target for
aspirinf371,

A potential target bias can be eliminated by comparing whole sets of target-specific
ligand instead of simple pair-wise similarities331. A recent example for such an
approach is the Similarity Ensemble Approach (SEA)B337l. SEA calculates the
similarities between molecules of two sets and retains all similarities above a
predefined threshold. The sum of similarity scores is then normalized based on an
empirical extreme value distribution model for random distributed sets of equivalent
size in order to avoid a bias due to different set sizes. Finally, an Expectation value (E-

value) is calculated that expresses the likelihood of seeing a score at least as high just
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by chance, motivated by the BLAST pairwise sequence alignment theory!338l. The E-
value can also be used to rank target predictions. Keiser et al. successfully applied
SEA for drug repurposing and side effect-related off-target prediction[33°l. The
authors predicted targets for 878 US Food and Drug Administration (FDA) approved
small-molecule drugs, based on 246 target sets drawn from the MDL Drug Data
Report (MDDR) databasel340l. 30 predictions were experimentally tested and 23 new
drug-target associations could be confirmed. As an example, the dopamine D4
receptor was identified as off-target for the marketed drug doralese with even
greater potency compared to the known therapeutic targets aia/s adrenergic
receptor. Several of the 23 confirmed off-targets belonged to the aminergic GPCR
family, a class with well-known cross-activity!33°l. Nevertheless, also four unexpected
cross-boundary off-targets were discovered in the study. In a related effort, Mestres
and coworkers developed a ligand-set approach based on the group fusion similarity
searching technique. The authors predicted potential off-targets for 767 drugs, using
a database of 109,766 compounds annotated to 684 therapeutically relevant

targets[341l,

Chemogenomics databases can be analyzed with data mining methods to infer
activity spectra for target panels(331l. Inductive machine-learning methods are
commonly used for this task[331342], Already in the 1990s, the software PASS was
introduced to predict activity spectra for molecules!343.344], [t is based on a multilevel
neighborhood atoms descriptor and linear regression to yield a binary classification
for each target with probabilities of being active or inactive. Initially, predictions for
300 pharmaceutical effects were included, which was later extended to more than
2000 using a library of over 60,000 annotated compounds[34>].

Naive Bayesian classifiers are frequently used to estimate class labels from large
collections of data points (c¢f.: Chapter 1.1.1, machine-learning). Multiple-category
Laplacian-modified naive Bayes models have been used by Nidhi et al. for the
prediction of 964 targetsi346l. The models were trained on the WOMBAT
chemogenomics databasel®47] using binary circular substructure fingerprints
(ECFP)36l. A retrospective evaluation, using 85% of the WOMBAT database as
training data and predicting the remaining 15%, indicated a high accuracy of the

method. Considering the top three predictions for each query compound, 92% of the
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compounds were correctly assigned to their annotated targets. In a second study,
targets for all MDDR database compounds were predicted to systematically
deconvolute the generic therapeutic annotation in the MDDR database to specific
macromolecular targets associated with the effect(346l. In a similar approach, Paolini
et al. used Naive Bayes models with a large-scale database containing 4.8 million
molecules, of which over 275,000 molecules were classified as being biologically

activel348],

While molecular docking has a long history in receptor-based drug design, it has only
recently been investigated for its target identification potentiall349l. Instead of
docking a collection of molecules to one binding site, the opposite strategy is used in
inverse docking approaches(349l. Molecules are docked in parallel to a set of prepared
target protein structures, and the individual docking scores are used for ranking the
targets. Compared to ligand-based approaches, this strategy is computationally
demanding and requires the appropriate preparation of a heterogeneous collection of
protein binding pockets suitable for small-molecule docking on a large scale. Inverse
docking suffers from the inaccuracy of current fast scoring functions and a high false
negative ratel349]. Despite these drawbacks, it has been successfully applied in
prospective target fishing projects, including the identification of potential targets for
natural products[350! and to "deorphanize" a small focused library containing a novel
chemical scaffold3>1l. Other receptor-based approaches include the comparison of
protein-ligand binding sites!352 and multi-target pharmacophore models!3331.

Additionally to the described chemoinformatic tools, it is also possible to identify new
targets for small molecules based on the phenotypic response they elicit. For
example, targets can be related using drug side effects obtained from literature
mining[354], or experimentally by means of gene-expression profiles, which have to be

thoroughly computationally analyzed in order to make robust predictions!3>5l.
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14 Chemical space visualization

Understanding the distribution of molecules in chemical space is essential for
answering the fundamental question in a drug discovery project: Which molecule
should be synthesized next? In a sense, it is a "voyage to the unknown", in which an
excellent navigation is required to avoid rough terrain, and find an easy and efficient
route to the desired goall®>¢l. For large collections of compounds combined with
available knowledge about their respective biological activity, different approaches
have been formulated on how to build informative maps, which can provide an
intuitive access to the data and allow analysis, visualization, and navigation of the
underlying chemical spacell>28260357-359] [npitially, visualization was solely used to
investigate the diversity of libraries and find uncovered areas of chemical spacel360l.
With the continuing use of biochemical HTS also for novel biological targets, the
composition of the supporting compound libraries has to be constantly revised.
Instead of solely relying on maximizing the number and diversity of compounds,
focused libraries are increasingly used for screening!20361], For designing appropriate
focused libraries, visualization techniques can be applied to identify and explore
regions of chemical space with potential biological interest and to understand the
content and relative distribution of compounds in a library362l. An early example of a
software incorporating different visualization methods with the purpose of providing

data mining capabilities to drug discovery researchers is ChemSpaceShuttlel363].

In drug discovery, multivariate datasets are frequently encountered, with data
originating from in silico calculations, phenotypic screenings, biological assay panels,
ADMET profiling, or functional genomics[?8l. The most basic way to visualize such
data is to create histograms for individual properties and compare those by visual
inspection or statistical methods[357. This type of analysis is usually restricted to the
comparison of a few properties. To overcome this restriction, visualization methods
project data from a high-dimensional space into an easily accessible lower-
dimensional space (two or three dimensions for reasons of visualization), while

preserving most of the relevant information[359:3641,
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1.4.1 Dimensionality reduction

For dimensionality reduction, unsupervised learning methods are frequently applied,
which aim at finding hidden structures in high-dimensional datal28365366l, Two
methods commonly applied are Principal Component Analysis (PCA)[367] as well as the
closely related Multi Dimensional Scaling (MDS)[368l. PCA finds the direction in the
data in which the data varies most, and the potentially correlated variables are
transformed in a set of uncorrelated variables. PCA preserves the covariance
structure of a set of variables by computing the eigenvectors and eigenvalues of the
data covariance matrix. The data is linearly projecting, according to the matrix of
eigenvectors. For visualization purposes, only two or three eigenvectors with the
greatest eigenvalues are used for projection, while the others are discarded. In MDS, a
low-dimensional mapping is computed that preserves the pair-wise distance matrix
by minimizing a distance based cost function. In the case of classical MDS, a Euclidean
distance matrix is used, and the low-dimensional mapping found is identical to the
PCA solution[36°],

In contrast to linear projections, Kohonens’ SOMs[109.370] " jnitially introduced to
chemistry by Zupan and Gasteiger[371], is an unsupervised learning algorithm. It is
capable of revealing nonlinear relations whilst preserving the topology of the data by
approximation of the data density. It is closely related to artificial neural networks as
it is based on a regular lattice (usually two-dimensional) of artificial neurons whose
weights are adapted to match the training vectors in high-dimensional data space.
Neurons are connected to their adjacent neighbors and influence each other during
training according to the neighborhood function. Influence is gradually reduced
during the training process, enabling adaption to the global shape in the beginning as
well as adaption to finer local structures at the end of the optimization. In the SOM
projection the local neighborhood is preserved. Data points located in close proximity
in the planar SOM projection were also close in the high-dimensional data space.
SOMs have been widely applied in drug discoveryl356372] eg. for identifying
compound clusters belonging to specific target families[373374], comparing or shaping
compound libraries!375376], or for designing target-specific or multi-target modulating
ligands(327.377],

A probabilistic extension of the SOM is the Generative Topographic Mapping (GTM)

algorithm[378], GTM generates a probability distribution in the high-dimensional data
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space by means of low-dimensional latent variables. The nonlinear transformation
from the latent to data space is achieved using a RBF network. By analogy with the
SOM algorithm, a regular grid of nonlinear basis functions covers the latent space
with associated radial symmetric Gaussians in the data space. Due to the probabilistic
definition, Bayes’ theorem can be used to calculate the inverted projection from data
to latent space. A GTM is trained using the Expectation-Maximization algorithm to
maximize the likelihood of the data with respect to the model. For a HTS campaign
covering five GPCR targets, Maniyar et al. applied GTM to gain informative and
discriminative visualizations and compared it to PCA and SOMI35%]. The authors also
used an extension to GTM, Hierarchical GTM (HGTM)[379], which combines multiple
GTM models in a tree hierarchy, each focusing on different sub-spaces of the data
space. For the dataset used in the study, visualizations generated with GTM and
HGTM showed a clearer separation of target clusters compared to PCA or SOM.

In the distance preserving Nonlinear Mapping (NLM)B80 each data point is
represented in the low-dimensional mapping and all relative distances are taken into
account. Thus, distances between points on the map are directly related to the
similarity in high-dimensional space. Mappings are found by minimizing Sammon's
stress function[38] by means of standard optimization methods. Due to the
preservation of all relative distances, without special focus on e.g. local distances, the
global shape of the compound distribution is preserved. In 2003, Agrafiotis
introduced an approximation for nonlinear mapping, suitable for large datasets
commonly found in drug discovery applications!381l.

Methods focusing on preserving the local neighborhood have recently been
proposed[382-385], The assumption is that the data is truly located on a low-
dimensional nonlinear manifold. To truthfully represent data on or near a low-
dimensional manifold, it is crucial to keep the low-dimensional representations of
similar data points close together, while in traditional linear mappings it is important
to keep dissimilar data points far apart!386l.

A detailed overview of dimensionality reduction with a focus on drug discovery

application is given in Chapter 8.1.
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1.4.2 Structure-activity relationship visualization

If a set of reference compounds with additional properties is available, it is possible
to model a property landscape of this data (with the activity landscape being a special
case). Visualization methods complement mathematical QSAR methods in a graphical
and intuitive way. They are not only suitable for analyzing congeneric compound
series during compound optimization, which is the primary field of application for
classical QSAR approaches, but are also applicable for hit identification in
combination with structurally diverse sets of compounds from different sources!387l.
Visualization methods are descriptive in nature and do not directly aim at the
prediction of new compounds[3>8l. They can aid medicinal chemists in rationalizing
SAR features based on increasingly large amounts of diverse data. When used in
conjunction with complementary predictive methods, visualization can act as a guide
during the modeling process!15. While SAR analysis can also be accomplished by
experienced medicinal chemists, solely relying on their chemical knowledge and
intuition, the size of the datasets to be analyzed usually prevent manual in-depth
analysis, and favors computational approaches for decision support(388l. In general,
activity landscapes integrate molecular similarity and potency information, and are
suitable for large-scale SAR analysis[388l. This rather broad definition covers a diverse
set of different methodologies!388:389], In this chapter we focus on four types of activity
landscape visualization:
1. Analog-centric visualization
2. Comparisons of structural similarity and activity similarity

3. 2D / 3D surface representation
4

Similarity networks

A simple way to assess the SAR for a series of related molecules (chemical analogs) is
the R-group analysis3?01. Within this analysis, molecules are decomposed into core
scaffolds and attached R-groups, which are then related to the observed activities. A
recent example is SAR Map, which arranges the decomposed R-groups in a
rectangular grid. Each cell represents a single compound, color-coded with the
corresponding activity[3°°l. The inherent drawback is that only SAR datasets arranged
around a specific scaffold are suitable for this analysis and multiple examples for each

R-group are required to gain additional SAR insights. By considering molecules not
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only as a set of R-groups but as a whole, and relating them by means of global

molecular similarity, it becomes feasible to investigate structural diverse datasets.

Plotting the pair-wise structural similarity versus the difference in activity is a
straightforward way of analyzing a structure activity dataset[3°1392l. In Structure-
Activity-Similarity (SAS) maps, all compound pairs are systematically compared, and
each pair is represented by a point in the scatterplot(391-393l, Structural similarity is
calculated based on any structural representation, and using an appropriate
similarity metric. Activity similarity for compounds i and j is calculated as

|4i-4;]

Sii=1-—

ij ) (11)

Amax—Amin

where A; gives the activity of compound i and A,,4, — Amin the range of observed
activities in the whole dataset. Points can be color-coded according to the activity of
the compound pair (e.g. sum or maximum of paired activities), adding an additional
layer of information[388]. As all possible compound pairs are depicted in SAS maps, the
number of points in the scatter plot increases quadratically with the number of
compounds, thus limiting this approach to the analysis of small sets of important
compounds[393].

Different areas in the SAS plot can be assigned to distinct SAR characteristics[388l. Of
special interest are "scaffold-hopping" (low structural similarity - high activity
similarity), and "activity cliff" areas (high structural similarity - low activity
similarity) (Figure 9a). The term "scaffold-hopping" was introduced by Schneider et
al. with their use of topological pharmacophore search for virtual screening!14], while
"activity cliff" was first described by Lajiness[3?4l. Scaffold-hopping potential is a
desired behavior for a given chemical reference space, as it enables medicinal
chemists to extensively modify a structure while still maintaining biological
activityl®2l. On the other hand, activity cliffs are problematic as small changes in the
structure lead to unexpected changes in activity. One has to keep in mind that activity
cliffs are an artificial concept and reflect the fact that we are still lacking an
appropriate chemical reference space representation capturing the important factors
determining biological activityl2¢l. It might not be surprising that relatively small
structural changes have the potential to drastically influence activity, depending on

the protein environment the molecule interacts with upon binding. The influence of
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“magic methyl” on protein-ligand interaction is a prominent example, where the
addition of a single methyl can result in an up to 100-fold activity boost[395. The
addition of an unsatisfied hydrogen bond donor can also have drastic energy
consequences, e.g. burying a hydroxyl group in hydrophobic pockets lead to a
desolvation penalty of up to 21 k]J/mol, which translates to a activity loss of 3.7 log
units[39%l. Activity cliffs can reveal substitution sites essential for activity, and thus
have high SAR information content. In general they are nonetheless not necessarily
beneficial for understanding global trends that could help improve activityl388l.

An example of SAS map visualization for a focused QSAR dataset is shown in Figure
9b. The benchmark dataset by Riicker et al, previously used to evaluate QSAR
performancel169397], consists of 144 PPARy ligands with pK; affinities obtained by
scintillation proximity assays. This result in 10,244 compound pairs included in the
SAS map. For the molecular representation Morgan fingerprints(3®] (radius 2, 1024
bits) were used. The number of depicted compound pairs leads to a crowded plot,
which limits the expressiveness of this visualization. In Figure 9c, representative
pairs from each SAR quadrant are shown for one origin compound. Several detailed
perspectives on activity cliffs and related concepts have recently been
pub]ished[393,398-401]_

For the global analysis of compound sets combined with additional properties, 2D/3D
landscapes are an especially intuitive visualization. More than two decades ago,
Kauffmann et al. introduced rugged fitness landscapes for the analysis of species
coevolution[#92l. For SAR analysis, Maggiora and coworkers were among the first to
describe the concept of theoretical schematic 3D landscape views, which are
reminiscent of topographic maps or actual landscapes!4%3]. For the categorization of
SAR phenotypes, they compared areas of continuous SAR (small distances in chemical
space that lead only to moderate changes in activity) to "gentle rolling hills" of a
smooth landscape, while discontinuous SAR (small distances in chemical space that
have large impact on activity) were compared to rough landscapes!*%3]. The different
characteristics have a direct impact on the amount of compounds required to
sufficiently represent a specific area. While only a few compounds are required for
continuous SAR regions, extensive sampling is necessary for areas of discontinuous

SARI#03],
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Figure 9. SAS maps (a) Schematic representation of a SAS map with characteristic SAR areas I-IV highlighted.
(b) SAS map visualization of a focused dataset with 144 PPARYy pK; measurements™""". Activity similarity was
calculated using Eq. 11, and molecular similarity was calculated using the Tanimoto coefficient with RDKit
Morgan Fingerprints (radius = 2) as molecular descriptor. Coloring according to the sum of activities. (c)
Example compound pairs taken from each of the SAR quadrants. The central compound is the same in all
depicted pairs. Numbers indicate the position of the respective pair in the SAS map.

For the visualization of SAR datasets, molecules are described by molecular
descriptors, which span a high-dimensional chemical space. Dimensionality reduction
methods are applied to reduce the dimensionality and define a sparsely distributed
2D chemical (reference) space. Additionally, compound positions are "decorated” by
an auxiliary property as a third dimension, most prominently biological activity. To
approximate a continuous and smooth surface from the sparsely distributed

compound property values (data points), interpolation or data fitting functions are
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applied. The obtained 3D surface is then colored with a gradient according to the
elevation, and underlying data density[4%4l. Clusters of molecules with similar
properties lead to distinct plateaus, while diverging properties in close proximity are
lacking a clear trend in the corresponding landscape patch. This gives rise to
landscapes with varying topologies, mainly influenced by the underlying target SAR,
the chosen molecular descriptor, and dimensionality reduction methodology. Such
response surface landscapes are suitable for large-scale analysis of global or local
SARs in the context of a specific molecular representation. Regions with an
accumulation of attractive compounds are rapidly identified as well as regions that
should be avoided for subsequent investigations. The concept of "activity islands",
initially described for abstract chemical space representations by Schneider et al.[25%],
can easily be transferred to 3D landscape visualization. An island consists of
molecules belonging to a distinct structural class that share a function in regard to
their primary target. Note that activity islands are not necessarily caused by
biological distinctions, e.g. different mechanisms of action or alternative binding
modes, but could be artificially evoked by an inadequate molecular
representationl264051, A comparison of different molecular descriptors and modeling
techniques might be required to find an adequate representation.

A 2D projection of the PPARy dataset, previously used for SAS analysis in Figure 9, is
shown in Figure 10a. MDS was applied to calculate a 2D mapping from the Tanimoto
distance matrix. An exemplary 3D landscape derived from the projection is shown in
Figure 10b. pK; values were used as an additional property. Trends in chemical space
are immediately visible. Weakly active molecules are distributed in one half of the
focused chemical space, while most of the potent compounds are located in two
distinct activity islands, which are separated by a sparsely populated area. This

region could be a promising target for further chemical exploration efforts.
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Figure 10. (a) 2D chemical space projection found by multidimensional scaling (MDS) for 144 PPARy
inhibitors (cf. Figure 9 for details) colored by pKi values. (b) 3D landscape visualization with highlighted
compounds from selected areas of the landscape created with LiSARD. Surface color according to the
interpolated activity value.

In principle, the interpolated surface could be used as a nonlinear QSAR model for
quantitative prediction, but usually the accuracy is not sufficient(387]. Predictive
modeling should instead be performed based on the original high-dimensional space.
Hence, 3D landscapes are best used in a qualitative manner to visualize trends of

global SAR and provide global views of compound distributions![3871,

Graph or network visualization of molecular relationships has a long history in
biosciences, for example for the construction and analysis of metabolic, gene
regulation, or proteomics networks[406-408]. Network representations of compound
sets have a long tradition in chemoinformatics. Minimum spanning trees calculated
for two-dimensional representation (MDS or PCA) of physicochemical properties
were among the first approaches to visualize molecule relations using graphs[409:4101,
Other approaches derived networks directly from the chemical graph eg. by
calculating edge-deletion matrixes!411412] or by relating molecules by their Maximum
Common Substructure (MCS)[413],

Recently, networks derived from structural similarity metrics have gained increasing
attention. In these network visualizations each graph node represents a compound
and edges similarity relationships of linked compound pairs. In threshold networks
only nodes having a similarity exceeding a specific value are connected, with the

consequence of a sparsely connected graph(4141,
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Network-like Similarity Graphs (NSGs) are an example for such threshold
networks[415], Structural similarity is calculated as the Tanimoto similarity, based on
binary fingerprint representations. Edges are added between two nodes if the
Tanimoto similarity exceeds a specific threshold. Nodes are colored according to the
activity or other properties, e.g. a selectivity ratio. An additional information layer is
added by sizing the nodes regarding a local discontinuity score. The score is high for
closely related compounds with a heterogeneous distribution of activity values. In
NSGs, the node layout in the two-dimensional plane is determined by a force-directed
layout algorithm solely on the basis of node connectivity. A direct consequence is that
actual similarity values are not reflected by edge lengthl415]. Similarity networks can
also be analyzed by means of graph theory. An example is the estimation of the
importance of individual compounds in large compound libraries and the
identification of key compounds, bridging different structure classes[414.

For the focused QSAR dataset of PPARYy ligands, a NSG is shown in Figure 11a. The
activity islands discovered in Figure 10b are also clearly visible. The heterogeneity of
the clusters can be visually evaluated, which is assisted by scaling the nodes
according to the local discontinuity score. For a diverse dataset taken from ChEMBL
database, the NSG consists of a collection of smaller clusters, evenly distributed on
the plane by the layout algorithm. The global structure is not easily perceived, and it
seems as if NSGs are especially suited for analyzing smaller sets of interrelated

compounds, while global chemical space analysis is the domain of 3D landscapes.
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Figure 11. Network-like Similarity Graph (NSG) visualization. An edge between two nodes is drawn if the
Tanimoto similarity exceeds 0.65. Node size reflects the compound local discontinuity score. Clusters with
small circles indicate smooth, and big circles rough SAR with respect to the associated neighbors.
Visualization created using SARANEA“®, (a) A focused QSAR set of 144 PPARYy inhibitors (cf. Figure 9 for
details). (b) Diverse set of 1524 compounds collected from ChEMBL with annotated human dopamine D4
receptor affinity > 10 uM.

By extending the similarity network idea to similarity analysis of whole ligand sets, it
is possible to relate drug targets by their known ligands. In ligand set threshold
networks nodes represent ligand sets and are linked by edges according to the
minimum level of set similarity[#17]. Similarity is not restricted to simple set-wise
compound similarity comparison, but can also be calculated based on representative
ligand set properties, which can be evaluated e.g. by correlation analysis of SOM-

derived pharmacophoric features!334l,
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2 Aims of this thesis

This study aims at identifying hit- and lead-compounds that exhibit a multi-target
affinity profile, while simultaneously fulfilling secondary criteria including high
ligand efficiency, solubility, and acceptable ADMET properties. By first identifying
compounds matching the main objective - most commonly high affinity to the main
target — and then optimizing the remaining objectives, multiple goals can be
consecutively addressed. With contradicting objectives, the sequential approach
easily leads to suboptimal compound prioritization, and consequently requires
lengthy optimization. Adaptive molecule optimization according to multiple
objectives simultaneously could spur a more efficient hit and lead discovery process,
with potentially lower compound attrition. Although several retrospective studies
have confirmed the benefits of multi-objective optimization, but prospective studies
investigating the potential of this emerging computational technology are still rare.

Within the scope of this work, several aspects of computer-aided multi-target design

are examined in a prospective setting, with a focus on potential applicability to actual

drug discovery.

Working hypothesis: Chemical space visualization and predictive machine-learning

models can aid the drug design process by suggesting macromolecular targets for a

given molecule, and generating innovative, multi-target modulating compounds with

the desired properties.

To test this hypothesis, the aims of this doctoral thesis are the following:

1. Development of locally adaptive, multi-objective landscape visualization software
as a visual guideline for molecular design.

2. Extension of the topological pharmacophore descriptor (CATS) by aromatic
features (CATS2), and evaluation of the parameter influence on virtual screening
retrieval performance and scaffold-hopping potential.

3. Development of a multi-target machine-learning model using Gaussian process
regression based on publicly available chemogenomics data.

4. Adaption of a nature-inspired optimization concept to combinatorial molecular
design, and assessment of the method's applicability to focused library design,
large-scale compound sampling, and de novo compound generation.

5. Synthesis and testing of de novo designed compounds.
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3 Results

3.1 Neighborhood-preserving visualization of adaptive structure-
activity landscapes and application to drug discovery

In this initial study, a three-dimensional landscape visualization method is introduced
as an intuitively accessible roadmap of chemical space. It contains a neighborhood
preserving dimensionality reduction technique in order to preserve meaningful
relations between molecules in their low-dimensional representation. The extension
of the method to incorporate multiple objectives in combined multi-objective
landscapes is demonstrated. To assess the benefits of visualization support, the
proposed method LiSARD was applied to a representative "real-world" drug
discovery project dataset (provided by F. Hoffmann-La Roche Ltd., Basel), focusing on

human somatostatin subtype 5 receptor (hSST5R) as therapeutic target.

3.1.1 Abstract

Compound optimization from primary hits to pharmaceutical lead structures by
organic synthesis is largely guided by the chemical feasibility and tractability of the
candidate compounds, and the specific knowledge and intuition of the medicinal
chemists involved. Here, we present a modeling approach that assists synthetic
chemists in decision-making and molecular design by visualizing and rationalizing

structure-activity and -property relationships as "SAR landscapes".

3.1.2 Introduction

Visualization and analysis of Structure-Activity Relationship (SAR) or "fitness"
landscapes have been research topics in computational medicinal chemistry for
approximately two decades[259:356,374,399,404,410,418-422] * Principal Component Analysis
(PCA)4231 and Projection to Latent Structures (PLS)4241 yield linear, statistically
interpretable SAR models and data projections from typically high-dimensional
property spaces. Due to the underlying mathematical models, the solutions provided

by nonlinear projection are often more accurate, but also evade immediate
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interpretation. Despite this apparent drawback, nonlinear projection techniques like
the  Self-Organizing Map (Kohonen network, SOM)[114370376]  Sammon
mapping[380425426] - Multidimensional Scaling (MDS)#27], and Stochastic Proximity
Embedding (SPE)[#28429] - to name just the most prominent approaches - have
demonstrated their particular usefulness for SAR modeling. Their appeal lies in the
ability to appropriately mirror the typically nonlinear dependencies between a
structural (constitution-, topology-, conformation-based) molecular representation
and some measured bioactivity or property.

We present an advanced modeling approach to SAR landscape visualization that
results in easily interpretable biological response surfaces in chemical space (Ligand-
induced Structure-Activity Relationship Display, LiSARD). The LiSARD algorithm
generates interactive graphics that can be used as intuitive roadmaps for molecular
design and optimization. As a first practical application, we analyzed human
somatostatin receptor subtype 5 receptor (hSST5R) antagonists. This class-A G-
protein coupled receptor is involved in several physiological processes, e.g., NMDA
receptor activation and control of hormonal secretion[#30431] In a chemogenomics
study aimed at finding non-peptidic hSST5R antagonists, approx. 3000 compounds of
which the majority belonged to four structural classes, were synthesized and tested

at Roche (Scheme 1)[432-435],

Y
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N Aryl
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Scheme 1. Scaffold classes of compounds synthesized and tested for hSST5R activity (or antagonization).
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Although this application of LiSARD to a real-life dataset from Roche is of a
retrospective nature, it serves as a proof-of-concept study to test the applicability of

innovative approaches for interactive SAR visualization in medicinal chemistry.

3.1.3 Material and Methods

Structural data

Compound structures were standardized using the "wash" function in MOE v2010.10
(The Chemical Computing Group Inc., Montreal, Canada). Properties were computed
with MOE. CATS descriptors were computed using the speedcats software (0-9 bonds,

type-sensitive scaling), as described[14436],

Dimensionality reduction

Stochastic Neighbor Embedding (SNE) defines two conditional probabilities: i) Dy the
probability that a data point &, has ‘g’j as its neighbor (Eq. 12), and ii) Qi the induced
probability that point i picks point j as its neighbor as a function of the low-
dimensional images x; of all data points &, (Eq. 13). The cost function minimized in

the embedding is a sum of the Kullback-Leibler (KL) divergences between the original

(p;;) and induced (g;;) distributions (Eq. 14).

2
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o;was chosen by a binary search, such that the entropy of the distribution over

neighbors was equal to logk, where k is the number of local neighbors or "perplexity".

2
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We used the implementation of SNE from the Matlab Toolbox for Dimensionality

Reduction v0.7.2[4371 and Matlab 7.10.0 (The MathWorks Inc., Natick, USA).

Surface calculation
The Nadaraya-Watson estimator was applied to fitting a surface to the projected data
points[438439], The value for an unobserved location is estimated as a locally weighted
average of the given data, using a kernel as weighting function. For a set of n
observations (x;yi) with x € R? and y € R the Nadaraya-Watson estimator is defined
as given in Eq. 15.

f(x h) = 2110 XDy where (15)

Lin(x—x;)’
— 1 (x1x
nn (%) = ol (h1 ’ hz)'
Here, h = (hy, h,) is a vector of bandwidths, and #(x) a multivariate kernel function,
for which we used the multivariate Gaussian kernel (Eq. 16).
_L.Ty-1

() = —a—e T I, (16)

(2m)z|H| 2

The bandwidth matrix H is defined as H = diag(h%, h5)[44%], The optimal bandwidth
hy,h, was estimated from the data according to the Normal Reference Rulel**1l. As
data points are in general unevenly distributed, a fixed bandwidth only represents a
compromise for both densely and sparsely populated areas. We thus combined the
Local Density Adaptive Bandwidth Estimator with the Nadaraya-Watson approach to
obtain the local bandwidth h(x) (Eq. 17)[#42443],

h(x) = k(VEL, a(x —x)) 7" (17)

The factor k defines the degree of smoothing. We used k = 1. The bandwidth varies
with the estimation position, inversely proportional to local data density. All surface
interpolations were calculated in our visualization software LiSARD, which was
implemented in Java SE 6 (Oracle Corporation, Redwood Shores, USA). For license

requests contact the authors.
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Chemical dissimilarity assessment

The dissimilarity between compounds was calculated as the distance between
descriptor values of the compounds. In this study, we used the Euclidean distance
between the compounds numerical descriptor representation. The Euclidean distance

d;; between descriptor vectors PuD; is calculated with Eq. 18, where n is the

dimensionality of the descriptor.

dij = d(p;,p;) = \/Z?=1(Pik = ij)z- (18)

Comparison of dimensionality reduction methods

Three chemical compound libraries containing drug-like bioactive molecules (LOPAC
Library of Pharmacologically-Active Compounds (Sigma-Aldrich, St. Louis, USA), 1280
compounds; COBRA Collection of Bioactive Reference Compounds v10.337], 11230
compounds; hSST5R project data, 2965 compounds) served as reference data for the
comparison of four different dimensionality reduction techniques (MDSI#27],
SPE[28429] SNE[382], PCA[423]), We analyzed the preservation of the K = 10 nearest
neighbors of each compound in the original high-dimensional space (150-
dimensional topological CATS pharmacophore descriptor, scaled by background
feature occurrence)[14436] and in the three-dimensional (3D) projection. Five quality
indices were calculated: Trustworthiness Wr, Continuity W¢, Mean Relative Rank Error
(MRRE) W,, MRRE Wy, and the Local Continuity Meta-Criterion (LCMC), as detailed

below.

For high-dimensional vectors § with distance §;; and their lower-dimensional
projection x with distance d;;, py;is the rank of ‘g']. with respect to & and ry; for x; and x;.
The co-ranking matrix is defined as Q = [qiq]1<k1<n—1With g,y = [{(i. ) py=kandr;=

l}| On the co-ranking matrix the following three subdivisions can be defined (Eq. 19):

ULg ={(i,j):1<i<Kand1<j <K},
LLg = {(i,j): K <i<N-1land1<j <K}, (19)
URg ={(i,j):1<i<KandK <j<N—1}.
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Accordingly, the T&C indices!*44! (Eq. 20) were computed as:

2
Wr(K)=1- QZ(k,l)e]L]LK(k — K)qy, and

20
We(K) =1- iZ(k,l)eURK(l — K)qu- (20)

The normalization factor Gy = N min{K(2N — 3K — 1),(N — K)(N — K — 1)} considers
the worst and scales the values to [0,1]. N is the data count.

Additionally, we computed MRRE indices!*44], which incorporate the rank difference
in the first K ranks (Eq. 21):

) el
W, (K) = EZ(k,I)EUILKUIULK L

1 k=1 21
W, (K) = H—KZ(k,l)emlLKumKqul- (21)

N-2k+1 . .
| | considers the worst-case scenario.

The normalizing factor Hy = N X¥_;

LCMCI#45] is a measure for the preservation of the first K ranks (Eq. 22):

K 1
Ure(K) = T + 75 Zheuly qxi- (22)

[t is desirable to achieve high Wt, W¢ and LCMC values, and low W, and Wy, values.

3.1.4 Results and Discussion

Projection and visualization of chemical data

For SAR landscape analysis, compounds need to be represented by meaningful
structural attributes ("descriptors") that correlate with the measured activities. In
this study, we employed a topological pharmacophore representation (CATS
descriptor)(1443¢] which leads to a 150-dimensional feature space containing
information of both molecular structure and potential ligand-receptor interaction
points. Molecules that are neighbors in such a chemical space are more likely to have
similar properties and activity than compounds with a large pairwise distance. This
means that for dimensionality reduction and data visualization the preservation of
the local neighborhood (context) might be more important than preservation of
distances. We evaluated different dimensionality reduction methods (PCAI#23],

MDSI427], SPE[428429]  SNEI382]) for their ability to preserve the high-dimensional
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neighborhood in the low-dimensional projection for different chemical libraries
(Table 3). Within the given framework, SNE scored best for all calculated measures
on all datasets. SNE aims at finding a projection from the original data space to the
lower dimensional embedding space such that the pairwise neighborhood
distribution of points in the data and embedding space are approximately the same.
For visualization of the hSST5R compound distribution, the 150-dimensional
descriptor space was projected to a three-dimensional (3D) space by SNE. We
observed a projection trustworthiness of 96% and continuity of 99% for the hSST5R

data.

Table 3. Comparison of four different dimensionality reduction methods (MDS, SPE, SNE, PCA) for
three chemical libraries (LOPAC, COBRA, hSST5R). All indices were calculated for K = 10 nearest
neighbors.

LOPAC COBRA hSST5R
MDS SPE SNE PCA MDS SPE SNE PCA MDS SPE SNE PCA
Trustworthiness Wy 0.89 0.85 0.92 0.85 0.89 0.84 0.93 0.89 0.80 0.81 0.96 0.90

Continuity W¢ 0.97 0.92 0.98 0.95 0.97 0.92 0.99 0.97 0.95 0.89 0.99 0.99
MRRE W, 0.11 0.14 0.07 0.14 0.11 0.16 0.06 0.10 0.20 0.19 0.03 0.10
MRRE W, 0.03 0.07 0.02 0.04 0.02 0.07 0.01 0.02 0.05 0.10 0.01 o0.01
LCMC 0.16 0.20 0.44 0.21 0.11 0.04 0.33 0.13 0.06 0.06 0.60 0.19

For ease of interpretation, 2D projections are preferably used for analyzing the
structure of the SAR landscape, with the third dimension typically being an
experimental measure of activity (e.g., pICso). To allow for multiple views on such a
landscape and reduce the risk of artifacts and potential misinterpretation, LiSARD
enables manual rotation of the 3D compound cloud to select a suitable view on a 2D
plane (Figure 12a). Local activity values are computed on the fly from the available
data points by Gaussian kernel regression with adaptive bandwidths and represented
as a colored surface (Figure 12b). As a result, a continuous surface is spanned over
the data points. Its height corresponds to some observed variable, eg. local
compound potency, and the transparency of the landscape indicates the local
confidence of the model. This continuous SAR landscape representation resulted from
tight interaction between the computer scientists and medicinal chemists. It offers
the advantage of identifying local SARs by rotating the compound cloud and reducing

the risk of over-interpretation of a static graphical model.
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In this study, experimentally determined biological activity values were added to the
projected data points as the third dimension, which required interpolation between
the data points. For continuous SAR estimation Bajorath and coworkers recently
employed a geostatistic method called kriging[4%4]. As this technique turns out to be
computationally demanding and a limiting factor for dynamic data visualization, we
decided to implement a Kernel regression technique, which is suitable for large

datasets and interactive calculation of fitness landscapes.
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Scheme 2. Selected compounds and their potency on hSST5R. Higher compound index numbers indicate
later stages of the project.
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Figure 12. Landscape generation and visualization by LiSARD. a) Three-dimensional compound distribution
obtained by compressing a 150-dimensional compound representation (CATS pharmacophore feature
vector) using Stochastic Neighbor Embedding (SN E)BSZ]. Dots represent compounds; blue: low k;; red: high k.

b) View on the hSST5R SAR landscape. Note that only two (x’ ,x/ ’ ) of the three dimensions shown in a)
are used. Surface regions with low transparency correspond to areas of high model confidence. Coloring of
the landscape is according to average local potency <k;>. c) Progress of the hSST5R project over time. The
sample trajectory starts with the reference Astemizole and ends at compound 2966. Compound numbers
correspond to strategically preferred hits selected by the project team. d) Adaptive evolution of the
structure-activity landscape for hSST5R agonists over project time. The snapshots contain increasing levels
of detail that can be captured depending on the available number of compounds synthesized and tested.
Note that active and inactive compounds contribute equally to the model (blue = low k;, red = high k;). e)
Superimposition of different landscapes for various relevant drug properties results in a multidimensional
"fitness landscape" for drug design (here: hSST5R). The locations of the reference Astemizole and the two
endpoints of medicinal chemical optimization (921, 2966) are shown. (blue = preferred regions, red = tabu
regions).
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Trajectories in chemical space, adaptive SAR landscapes, and multidimensional
optimization

Visualization of the chemical space visited during a drug design project can help avoid
tabu-areas containing unwanted chemotypes and properties. Figure 12c presents the
trajectory of hSST5R project progress over time. Strategic decision points are marked,
and the corresponding lead structures are presented in Scheme 2. Using a
chemogenomics strategy, Astemizole 1 and the spiropiperidine class were identified
as chemical entry points. Until then no small-molecule hSST5R antagonists were
known. Both starting points evolved into the benzothiazole and the bioisosteric
benzamidopiperidine series, which were optimized in parallel.

In the early project phase, compound potency and selectivity towards the related H1
receptor (Astemizole was marketed as a H1R antagonist and withdrawn later) were
the driving criteria to obtain potent and selective tool compounds. Compound 921
(endpoint 1) represents such an intermediate candidate. This phase was followed by
a multidimensional optimization strategy aiming at the best compromise between
potency and physicochemical as well as pharmacokinetic parameters. Optimization
finally resulted in compound 2966 (endpoint 2), which was tested in vivol#46l.
Visualization of SAR landscapes at all project stages provides an additional criterion
that is based not only on the actives found so far, but equally on the inactive
compounds. Figure 12d demonstrates the adaptive nature of the SAR landscape
models. Depending on the number of compounds synthesized and tested, and on the
project status, increasingly fine-grained models are computed. Using two thirds of the
data, the final shape of the SAR landscape (cf- Figure 12b) is clearly visible. It is of
note that even the first approximate landscape model computed from only 100
compounds correctly structures chemical space into desired (blue) and "tabu" (red)
regions (Figure 12d). Having access to such knowledge at an early project stage
provides valuable information for hit prioritization, and helps focus on relevant areas
in chemical space earlier so that optimized lead structures may be identified faster.
Monitoring the SAR landscape over project duration certainly is a desirable feature
for medicinal chemists to explore innovative structural variations of a chemotype and
avoid walking in circles and areas with potential off-target liabilities. Multiple
activities and properties can be displayed simultaneously in LiSARD, thereby

enabling multidimensional optimization with the aim to avoid compounds that have
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an undesired pharmacological activity and property profile. Figure 12e presents the
superimposition of the landscapes for experimentally determined potency (hSST5R
antagonism), membrane permeability (PAMPA) and aqueous solubility (LYSA)[#47-449],
Such a multi-dimensional "fitness landscape” can be readily obtained by adding up
the individual landscape functions and subsequent re-scaling of the z-axis to obtain

pseudo-probabilities.

3.1.5 Conclusion

In this proof-of-concept study, we have demonstrated that a dynamic view on
adaptive SAR landscapes can support molecular design by providing project-specific
visual aids for compound prioritization. Potential compound liabilities can be avoided,
multiple properties can be considered at a time, and the information contained in
both active and inactive compounds is optimally exploited for early hit prioritization

and progress monitoring.
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3.2 Chemically advanced template search (CATS) for scaffold-hopping
and prospective target prediction for "orphan" molecules

The chemical space visualization LiSARD introduced in Chapter 3.1 utilizes a
molecular representation. The topological CATS pharmacophore descriptor, which
was used in the study, does not explicitly consider aromatic pharmacophores in its
original implementation!#2l. In this second study, the CATS descriptor was extended
by the aromatic pharmacophore pattern and evaluated for its ability to enrich
bioactive compounds with an emphasis on the scaffold hopping potential
Additionally, the viability of CATS for identifying new biological targets for a given

chemical structure was assessed.

3.2.1 Introduction

Drug discovery is driven by the identification of New Chemical Entities (NCEs)[450:451],
Virtual screening and de novo design techniques have been proven to serve this
purpose, thereby complementing experimental biochemical and biological
approaches!1l. Still, it remains a matter of debate, which particular molecular
representation and similarity index are preferable for a given drug target in order to
identify appropriate NCEs with minimal synthetic and testing effort involved![61452-455],
Ligand-based chemical similarity approaches have also been effectively applied to
large-scale activity and target prediction for known drugs, some of the prominent
methods being PASS developed by Poroikov et al.[34%], the techniques conceived by
Mestres and coworkers[341456457]  and the Similarity Ensemble Approach (SEA)
implemented by the Shoichet group!333l. Here, we compared several popular two-
dimensional molecular representations for their ability to retrieve actives
(enrichment potential) and chemotypes (scaffold-hopping potential) from a collection
of druglike bioactive compounds. Subsequently the applied Chemical Advanced
Template Search (CATS)!1442] was applied to predicting potential drug targets for a
virtually assembled combinatorial compound library, from which we synthesized and
successfully tested candidate compounds. The results demonstrate that CATS is not

only suited for its intended purpose of NCE retrieval by scaffold-hopping!®2], but also
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for reliable target profiling of "orphan" virtual molecules342458], [t thereby

complements the suite of available validated tools for target prediction.

3.2.2 Material and Methods

Synthesis and analytics

Chemical synthesis was performed with a Biotage® Initiator microwave synthesizer
(Upsala, Sweden). Aminopyridine (1.0 mol. eq.), aldehyde (1.0 mol. eq.), isocyanyde
(1.0 mol. eq.) and perchloric acid (11 mol%) were dissolved in EtOH (1.1 ml x mmol-
1). The solution was heated at 1702C for 5 minutes under microwave irradiation . The
resulting crude product was purified via preparative HPLC using CH3CN:H20 (+0.1%
trifluoroacetic acid in each phase) as eluent, in a gradient of 5-50% CH3CN run over

16 minutes, to afford compounds 2 and 3 as yellow oils.

Compound 2 (methyl 2-((2-(2,4-dimethoxyphenyl)imidazo[1,2-a]pyridin-3-yl)amino)acetate), 81%:
TH-NMR (CD30D, 400.13 MHz): § 3.44 (3H, s, OCHs), 3.67 (2H, s, CHz2), 3.75 (3H, s, OCH3), 3.80 (3H, s,
OCH3), 6.57-6.61 (2H, m, Ar-H), 7.32-7.36 (1H, m, Ar-H), 7.53 (1H, d, ] = 8.0 Hz, Ar-H), 6.77-7.75 (2H, m,
Ar-H), 8.68 (1H, d, ] = 2.4 Hz, Ar-H). 13C NMR (CD30D, 100.61 MHz): § 48.54, 52.52, 56.18, 56.48, 99.77,
107.08,108.44,112.51,117.43,123.13,126.42, 129.04, 132.62, 133.56, 137.46, 159.91, 164.60, 173.19.
HRMS-ESI calc. (C1sH19N304+H*): 342.1448, found: 342.1448.

Compound 3 (methyl 2-(1-methyl-1H-pyrrol-2-yl)-3-((2-morpholinoethyl)amino)imidazo[1,2-a]
pyridine-7-carboxylate), 74%: tH-NMR (CD30D, 400.13 MHz): § 3.08 (2H, m, CHz), 3.21 (2H,t, /= 6.4
Hz, CH»), 3.37 (2H, m, CH2), 3.45 (2H, t,/ = 6.4 Hz, CH>), 3.72 (3H, s, CH3), 3.81 (2H, m, CH>), 3.97 (2H, m,
CHz), 4.05 (3H, s, CH3), 6.32 (1H, dd, J = 3.8 Hz, Ar-H), 6.63 (1H, dd, J = 3.8 Hz Ar-H), 7.06 (1H, m, Ar-H),
7.93 (1H, dd, J = 1.6 and 7.2 Hz, Ar-H), 8.40 (1H, m, Ar-H), 8.80 (1H, dd, J = 0.8 and 7.2 Hz, Ar-H). 13C
NMR (CD30D, 100.61 MHz): 35.01, 41.04, 53.33, 53.84, 57.27, 64.81, 110.04, 114.52, 115.63, 116.03,
116.31, 118.78, 126.40, 127.62, 131.28, 134.24, 137.07, 165.19. HRMS-ESI calc. (C20H25N503+H*):
384.2030, found: 384.2031.

We used dynamic light scattering (Brookhaven 90Plus) to determine potential
aggregation of compound 3 in aqueous solution with 1% DMSO. Aggregate particles

were observable at concentrations ranging from 15.5-250 puM.
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Self-organizing map

We use our software tool molmap for generating a toroidal SOM containing 160
clusters arranged in a 16x10 rectangular grid, as described previously!334-336] with

number of training cycles = 10° and Gaussian neighborhood radius = 8.

CATS molecular descriptor

Descriptor calculation was performed with a proprietary Java-based software tool
(for licensing options, contact G.S.). Free online access to demonstration software is

provided at URL: http://modlab-cadd.ethz.ch/

Biochemical activity determination

Activity against PI3Ka was measured by Reaction Biology Corp. (Malvern, PA, USA) in
a 10-dose ICso determination (n = 3), in the presence of 10 pM ATP. Preliminary DNA
topoisomerase and gyrase inhibition tests were performed with a compound

concentration of 5 mM by Inspiralis Ltd (Norwich, UK).

3.2.3 Results and Discussion

A framework for retrospective evaluation of similarity searching runs with different
molecular representations ("descriptors") was established on basis of the COBRA
collection of druglike bioactive compounds(37], employing Euclidean distances for
metric descriptors and the Tanimoto coefficient for fingerprint descriptors!1?l. COBRA
contains 12,642 manually curated entries with 980 target protein subtype
annotations. For 170 macromolecular drug targets with a minimum of 20 annotated
active ligands per target, each compound annotated as "active" was selected as a
query in turn, and compared to all remaining compounds in the screening pool in
terms of molecular descriptor similarity, finally yielding sorted results lists with the
most similar or least distant pool compounds sorted to the top. Although there are
large collections of bioactive compounds available in the public domain[#5°], we used

the carefully compiled COBRA collection to (i) reduce the risk of erroneous activity
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data and faulty compound structures(#60], and (ii) avoid redundancy with existing
tools that are based on such public structure-activity data. In addition, we intend to
probe the value of a comparably small but well curated reference compound pool for
target prediction.

We used a representative set of descriptors and fingerprints for benchmarking.
"Morgan" fingerprints, closely related to Extended-Connectivity Fingerprints (ECFP),
are based on radial assessment of non-predefined potentially infinite molecular
fragments(36l. The "AtomPair" descriptor can be seen as a CATS predecessor merely
denoting the occurrence of all pairs of atoms at a given topological distancel>°l. The
"MACCS" keys represent substructure-based fingerprints,[#61l and the "RDkit"
fingerprint implements a Daylight-like fingerprint based on hashed molecular
subgraphsl462l, Latter fingerprints and descriptors were calculated using the open-
source software package RDKitl#63]. Finally, the "MOE2D" descriptor consists of a
standardized vector of physicochemical properties provided by the Molecular
Operating Environment (v2011, Chemical Computing Group, Montreal).

At this point, we analyzed two versions of CATS vectors, namely the originally
described CATS111442] and CATS2, which distinguishes lipophilic from aromatic atoms
during typing, thereby resulting in more pharmacophore type pairs and consequently
a higher dimensionality of the descriptor than CATS1, which lacks the aromatic atom
type. For both descriptors we employed "types scaling”, which mitigates the potential
dominance of prevalent pharmacophore feature types, and a maximal correlation
distance of 10 bonds!*3¢l. An example of CATS descriptor calculation is presented in
Figure 13.

We employed the Receiver Operating Characteristic (ROC) related BEDROC score for
actives-retrieval benchmarking!>3l. For our study, the alpha level of the BEDROC
method was set to 160.9, which corresponds to the top 1% of the screening list
contributing 80% of the score. Murcko scaffold!#64! diversity among the set of actives
within the top 1% of respective screening lists served as measure for scaffold-

hopping potential.
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Figure 13. Principle of CATS descriptor calculation. The molecular structure (Step 1) is reduced to the
molecular graph, and feature types are assigned (Step 2; L, lipophilic; R, aromatic; A, hydrogen-bond
acceptor; D, hydrogen-bond donor). Then, atom pairs for all feature pairs are counted (Step 3), and the final
descriptor values are scaled (Step 4). Here, the raw values were divided by the respective A value (sum of
atom type pair occurrences). Note that not all vertices in the molecular graph are considered
"pharmacophoric". These possess no feature types.
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Figure 14. Comparison of molecular representations for their abilities to retrieve known actives (a) and
scaffolds (b) from a collection of druglike bioactive compounds (COBRA). Violin plots show the shapes (gray),
medians (white circle) and quartiles (thick lines) of the distributions.

Albeit state-of-the-art radial fingerprints and atom-pair fingerprints outperformed
CATS descriptors in terms of the number of actives retrieved (Figure 14a), they ratify
their intent of design by delivering the overall highest ratio of diverse scaffolds
among retrieved actives. Scaffold-hopping potential was determined by examining
the distribution of relative scaffold diversities r, which is the ratio of differing

scaffolds s to the number of retrieved actives n among the top 1% of respective
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screening runs. While s correlates to the BEDROC scores when comparing different
descriptors, r unveils the CATS1 descriptor as the most suitable descriptor for
scaffold-hopping among the compared molecular representations (Figure 14b). In
terms of BEDROC scores estimating the enrichment potential, radial fingerprints
(Morgan) and Carhart-type atom pairs (AtomPair) performed similar, as did the
CATS2 and MOE descriptors, while MACCS, CATS1, and RDKkit fingerprints formed a
third group (Figure 15a). With respect to scaffold-hopping potential, the groups vary,
with CATS1 and MOE2D pairing up, as well as CATS2 and MACCS (Figure 15b). It
might thus be advisable to select one method from each group for similarity
searching and compare ranked results lists, e.g. by data fusion!*6>l. We wish to point
out that the grouping of methods depicted in Figure 15 should be treated with
caution, as the dendrograms are likely to vary for other reference data sets and

chemotype/target coverage.

A B
Morgan CATS1
AtomPair MOE2D
CATS2 MACCS
MOE2D CATS2
MACCS AtomPair
CATS1 Morgan
RDkit RDKkit

Figure 15. Similarity of molecular representations in terms of their enrichment (A) and scaffold-hopping
potential (B). Pair-wise, one-sided Wilcoxon rank sum tests™**® were performed for the BEDROC score
distributions of the descriptors. Clustering the obtained p-values with Ward’s method*®” resulted in the
depicted dendrograms.

The outcome of this limited benchmark study is in agreement with a large-scale
systematic analysis of 2D fingerprint methods by Sherman and coworkers, who
conclude "(..) if the objective of a screen is to identify novel, diverse hits, then a less
specific atom-typing scheme may be more appropriate">0l. The CATS representation of
molecular graphs and pharmacophoric features serves this purpose of finding new
chemotypes. When using the descriptor, one should not expect highest possible
enrichment of actives among the top-scoring virtual hits, but can anticipate surprising
new ideas for synthesis and activity testing.

This intended permissiveness ("fuzziness")[#68469] of the CATS molecular

representation, which is achieved by coarse-grained atom-typing and feature pair
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correlation, not only enables scaffold-hopping but may also be used for predicting
mutual targets of structurally diverse bioactive ligands. Here, we started from an Ugi-
type three-component combinatorial synthesis (Scheme 3)[470] and tested whether
we could use CATS for "de-orphanizing”" some of the compounds by target
identification. All prospective experiments were carried out with the CATS2

implementation.
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Figure 16. Toroidal self-organizing map (SOM) visualizing overall data density (A), distribution of the virtual
combinatorial library (B), known PI3K inhibitors (C), and known muscarinic receptor ligands (D). 16x10 data
clusters ("neurons", Voronoi fields) are shown as squares. Gray shading represents local compound density
(note that the shading in each plot is scaled between minimal and maximal values). Compound 2 is located
in cluster (9,7), compound 3 in cluster (10,5). For compound 2 an overlap with PI3K inhibitors is predicted.
Compound 3 is found in a cluster that contains muscarinic receptor ligands.
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Scheme 3. Ugi-type three-component reaction used for constructing a virtual combinatorial library and
synthesizing selected compounds.
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Scheme 4. Structures of compounds 2 and 3.

We constructed a virtual combinatorial library from 12 aminopyridines, 40 aldehydes
and 8 isocyanide building blocks, resulting in 3840 virtual products (Scheme 3 and
Supplementary Information Chapter 8.2.2). To predict potential bioactivities for these
compounds we computed their CATS similarity values to known drugs and lead
structures (COBRA v11.10). Briefly, we trained a self-organizing neural network
(SOM, Kohonen network) on the pool of COBRA reference compounds and the virtual
combinatorial products, followed by visualization of compound distributions as a
two-dimensional toroidal map (Figure 16)[325376377] For the purpose of prediction,
we only considered annotated targets of the reference compounds that were co-
clustered with the combinatorial products. In this way, target predictions are limited
to a conservative "application domain" of a reference compound cluster, and the risk
of false-positive prediction is reduced[334-33¢], For further target prioritization, we
computed p-values from the similarity score distribution of the complete training
datal*’ll. The p-values are an estimate of the probability of making a false-positive
prediction (type-I error).

For the whole library, this method suggested six targets with average p-values < 0.01:
phosphoinositide 3-kinase (PI3K), biphenyl-2,3-diol 1,2-dioxygenase, diacylglyceride
O-acyltransferase, smoothened receptor, interleukin receptors, and cytochrome P450
reductase. We decided to investigate the PI3K prediction in more detail because this
enzyme is a relevant drug target in antitumor research. Of note, the underlying
scaffold was previously shown to afford PI3Ka inhibitors!472l.

First, we synthesized and tested the nine top-predicted compounds for PI3Ka
inhibition. In total, four of them exhibited the desired activity. Compound 2 turned
out to be the most active (ICso = 131 pM). Although the measured activities might be
considered as weak, this result verifies the CATS+SOM-based approach for target

prediction.
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We then synthesized and tested an additional set of 57 compounds from the virtual
combinatorial library, for which the highest joint prediction scores for PI3K and DNA
topoisomerases were computed. Previous studies suggested that simultaneous
inhibition of these two enzymes might allow for more efficient chemotherapy with
reduced chemoresistance of tumor cellsl473]. Molecules with a target profile that
includes both these targets will constitute an important step in anti-cancer research.
Moreover, the scaffold of our library has already been proven to produce bioactive
compounds against both those targets[472474], In fact, in the present study six of our
compounds, at a concentration of 75 puM, turned out to be moderately active against
PI3Ka, where compound 3 was the most potent (ICso = 230+30 puM). We wish to point
out that we cannot completely rule out measurement artifacts caused by compound
aggregation[47>]. None of the 57 synthesized compounds inhibited human DNA
topoisomerse II (EC 5.99.1.3), but in a preliminary test four of them inhibited
bacterial DNA gyrase, a bacterial type II topoisomerase (EC 5.99.1.3) (data not
shown). Apparently, the scaffold of the combinatorial library positions R-group
vectors appropriately, but proper side-chain functionalities are required for potency
and target selectivity. There is ample opportunity for optimizing compound 2 in this
regard by including additional building blocks in the combinatorial synthesis. The
SOM projection shown in Figure 16d may serve as a guide for structure
optimizationl[185376.377.476,477] 35 compound 2 is located in a sparsely populated region
of the activity island formed by known muscarinic receptor ligands. Side-chain
alteration could steer the design towards the center of the distribution thus
potentially improving potency!356:478],

For comparison, we also predicted targets for the obtained PI3Ka inhibitors using
SEABR37]. In SEA, compound 3 yielded no target predictions at all when using
ChEMBLI72] as reference data. For the remaining compounds SEA reported maximal
Tanimoto similarity below 0.35 and E-value > 1.2, rendering them low confidence
predictions. Compound 2 was suggested as ligand of quinone reductase 2 (NQO2) and
melatonin receptor 1B (MTNR1B). PI3K was not reported by SEA.

Finally, it is of particular note that CATS suggested human muscarinic receptor 1
(M1) ranking first on the target list computed just for compound 3. In a first cell-
based functional assayl4’°l compound 3, in a concentration of 10 pM, actually

exhibited substantial M1 agonistic activity yielding 34+5% of the effect caused by 100
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nM acetylcholine. Follow-up concentration-dependent activity determination yielded
an approximate ECso of 5 pM for compound 3 (Figure 17). This result confirms the
CATS+SOM-based target prediction as viable and de-orphanizes compound 3 as a

novel (no entry in CAS[#80]) functional M1 receptor agonist.

3.2.4 Conclusions

The results of this study corroborate CATS+SOM as a useful similarity approach for
identifying pairs of molecules with similar bioactivity but different molecular
scaffolds. Inclusion of the aromatic feature type in the CATS2Z implementation
increased enrichment in a retrospective analysis. Results of a preliminary prospective
target-profiling study demonstrate that (i) the CATS2 descriptor may be employed to
predict targets of virtually generated compounds with potential applications in de
novo design and drug re-purposing, (ii) relying only on a single prediction algorithm
bears the danger of missing relevant drug targets or focusing on false-positive
predictions, and (iii) different molecular descriptors (here: CATS2; SEA with ECFP4
fingerprints) in combination with its associated knowledge base (here: COBRA or
ChEMBL) complement each other in their domains of applicability. It will therefore be
worthwhile to construct a prediction tool that is based on multiple reference
databases, descriptors and models, e.g. as a jury decision approach. Whether activities
in the micromolar range give rise to desired poly-pharmacology effects or turn out to
be actually sufficient for drug re-purposing certainly depends on the particular
pharmacological activity, therapeutic area, and intended application[309:332], Many
more practical examples will be required to allow for a statistically motivated
assessment. Irrespective of the shortcomings of each method, our study validates
ligand-based target prediction as viable for rapid compound profiling in medicinal

chemistry and chemical biology.
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Figure 17. Concentration-dependent agonistic activity of compound 2 on the human M1 receptor.
Acetylcholine served as positive control agonist (ECso = 1.9 nM). At ligand concentrations > 10 uM
compound 3 aggregated and interfered with the measurement (data not shown).
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3.3 Combining on-chip synthesis of a focused combinatorial library with
in silico target prediction reveals imidazopyridine GPCR ligands

Motivated by the results reported in Chapter 3.2, the decision to incorporate two
complementary molecular representations in a machine-learning based method
applicable to biological target prediction was made. Gaussian Process (GP) regression
was used to build predictive affinity models based on data obtained from the ChEMBL
chemogenomics database. The GP regression not only provides an expected affinity
value but also an estimate of uncertainty, which can be combined in a single
prediction score to reflect both aspects. The approach was theoretically evaluated for
its predictive capabilities using a diverse range of protein targets. The computational
approach was further complemented with an on-chip chemical synthesis system to
prospectively evaluate its ability to identify new targets for a focused combinatorial

library.

3.3.1 Abstract

For the example of the Ugi three-component reaction we report a fast and efficient
microfluidic-assisted entry into the imidazopyridine scaffold, where building block
prioritization was coupled to a new computational method for predicting ligand-
target associations. We identified an innovative GPCR-modulating combinatorial
chemotype featuring ligand-efficient adenosine A1,28 and adrenergic a1a/s receptor
antagonists. Our results suggest tight integration of microfluidics-assisted synthesis
with computer-based target prediction as a viable approach to rapidly generate

bioactivity-focused combinatorial compound libraries with high success rates.

3.3.2 Introduction

The fast pace of drug discovery programs is supported by high-throughput screening
campaigns to identify new chemical entities, where the underlying screening
compound collections benefit from combinatorial libraries with lead- and drug-like
properties[4814821 While numerous synthesis protocols are available, a reliable

assessment of potential macromolecular targets of these compounds is desirable for
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the compilation of bioactivity-focused combinatorial libraries. We demonstrate this
concept taking the Ugi multicomponent reaction!483], which have shown robustness in
producing both tool compounds and drug candidates[*84485] as an example.
Imidazopyridines may be considered a privileged scaffold given their diverse range of
macromolecular drug targets[470474486-491] While entry into this chemotype through
an Ugi-3 component reaction has been reported[470486487] these methods do not
allow for the quick assembly of combinatorial libraries and scaling up. Therefore, our
initial efforts focused on developing a robust and scalable process in flow using a
continuous synthesis system equipped with low-pressure, pulsation-free syringe
pumps. The setup included a 3-2-way solenoid valve to allow for automated building
block filling-dispensing cycles. The amine and benzaldehyde components were
dissolved in ethanol, together with perchloric acid, while the isocyanide component
was pumped independently. Stock solution concentrations were adjusted to afford
the desired final building block concentration in the microreactor. A borosilicate
DeanFlow chip with a total volume of 5 pl and a zig-zag mixing zone was used as the
primary reactor (Figure 18a). Alternatively, we used a KombiMix chip with a reaction
volume of 13 pl (Figure 18b). The protocol was then scripted with Cetoni Qmix
Elements software to automate all steps, including washing of the microfluidic

channels.

16 mm

Figure 18. DeanFlow (a) and KombiMix (b) microreactor chips.

3.3.3 Material and Methods

Computational

For training the Gaussian process modelsl16%171] we used the ChEMBL database
(version 14) containing 1,213,242 distinct compounds with 10,129,256 bioactivities
for 9,003 targets!’2l. Protein targets with fewer than 200 annotated human

bioactivities were excluded. All activity end-points were standardized to pAffinity = -
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logio(activity). The final affinity data set consisted of 209,293 compounds with
431,313 bioactivities for 469 human targets. Post-processing was conducted using
Python (www.python.org) and Knime v.2.6.0.[4921 Molecular structures were
standardized using the "wash" function in MOE 2012.10 (The Chemical Computing
Group Inc., Montreal, Canada); logP(o/w) was calculated with MOE. Two different
molecular descriptors were calculated for each compound: topological
pharmacophores (CATS2, 0-9 bonds, type-sensitive scaling)[#86], and an ECFP-like
topological circular fingerprint (Morgan fingerprint, radius = 4, 2048 bit; RDKit:
www.rdkit.org)3¢l. Predictive models were implemented using Matlab R2012b (The
MathWorks Inc., Natick, USA) and the GPML toolbox v3.1 (www.gaussianprocess.org).
We assessed prediction quality by 10-fold stratified cross-validation (cross-validated
squared correlation coefficient, Q%; Mean Absolute Error, MAE). The Boltzmann-
Enhanced Discrimination of ROC (BEDROC; a = 56, top 3% contribute 80% to the
score) was used to quantify the early enrichment performancel®3l. We used the lower
confidence-bound pAffinity estimate throughout this study: prediction= u,—o?,
where pu, is the model's predictive mean and o¢? the predictive variance. To
distinguish from random predictions we calculated the Mahalanobis Distance (MhD)
of an activity prediction: MhD(prediction) = (prediction - u) / or, where u_and o, are
the mean and standard deviation of a randomized predictive distribution. The

background consisted of 50000 randomly selected molecules from ChemDBI[493],

Synthesis.

Stock solutions of building blocks were prepared in ethanol. The amine and aldehyde
components were premixed, and perchloric acid was added. Two independent
syringe pumps delivered the amine/benzaldehyde/perchloric acid solution and the
isocyanide solution at suitable flow rates. The reaction chamber containing the
microchip was heated at different temperatures and the crude product was collected
in a vial. The crude mixtures were purified by preparative HPLC (acetonitrile:H20 +
0.1% formic acid in each solvent) using a gradient of 30-95% or 5-50% acetonitrile
over 16 minutes. Microfluidics hardware and the Qmix Elements software were from
Cetoni (Korbufien, Germany). Microwave synthesis was performed in a Biotage

Initiator (Uppsala, Sweden) in 1-2 ml vials, as described![48¢l,
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Testing.

Tests for determination of ligand binding and K; values were performed at Cerep on a
fee-for-service basis (Le Bois I'Evéque, B.P. 30001, 86600 Celle I'Evescault, France,
www.cerep.fr). Assays were performed according to literature-described protocols
(functional assays: hA1 ref.[4%4]; hAzg ref.[495]; haia ref.[496]; hazp ref.[*97]). Functional
ECso values obtained for the test compounds were converted to Ki values using the

Cheng-Prusoff equation (Eq. 23):

K (23)

_ ECs
= "U%/1 4+ (A/ECson)

where A = concentration of reference agonist in the assay, ECsoa = ECso value of the
reference agonist (Figure S9).

Direct binding to the human adenosine A; receptor was measured in a radioligand
assay as described[*?8l. Percentage of binding was expressed as the mean of two

independent measurements

3.3.4 Results and Discussion

As an initial screening of reaction conditions we performed sequential and automated
synthesis of compound 1. Conversion rates were derived from 'H NMR spectra
(Figures 19a, 19b). In first instance we investigated optimal flow rates and reaction
temperatures, using 10 mol% of catalyst and a final concentration of each building
block equal to 0.3 M, as described previouslyl*8¢l. Generally, reactions at lower
temperatures (30 and 702C) performed better than at 170 and 2002C. Additionally,
we conducted control reactions in glassware at room temperature and 302C for two
hours, showing conversion rates of 73% and 80%, respectively. The results pinpoint
the usefulness of a microreactor, both for improving conversion rates and drastically
shortening reaction times. Reactions carried out under higher flow rates (30 and 60
ul x s1) performed worse than their 3.75 pul x st and 7.5 pl x s1 counterparts,
possibly due to shorter residence times in the reactor chip. We observed the highest
conversion at intermediate temperatures (70 and 1002C). Interestingly, at 702C the
reaction appears to be tolerant to a wide range of flow rates, while at 1002C a rate of

15 pl x s'1is preferable.
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Having studied the best binary combination of temperature and flow rate, we
screened for the ideal catalyst loading and final concentration of building blocks - 10
mol% and 0.3 M, respectively (Figure 19b). Comparable conversion rates were
obtained in a microwave procedure and the setup described herein (94% vs. 93%,
respectively)l#86l. Of note, these results were obtained using a lower reaction
temperature in the flow system (1002C in flow vs. 1702C for microwaves) and shorter
reaction times (0.3 seconds in flow vs. 15 minutes in microwaves). Finally, the
optimized reaction conditions were compared in the DeanFlow and KombiMix
microreactors. While 1 was converted to 93% in the DeanFlow chip, an 88%
conversion rate was observed in the KombiMix.

With these results in hand we synthesized a small focused library of imidazopyridines
4-15 (Figure 19c¢) using the DeanFlow reactor chip, and predicted potential biological
targets with Gaussian Process regression models, built for 469 drug targets that are
annotated in the ChEMBL database (version 14)[72l. Given a query compound, the
computer model predicts pAffinity values for each target, which goes beyond related
computational tools[100333], Furthermore, to ensure meaningful, non-trivial and high
value predictions we calculated the Mahalanobis Distance (MhD) of the predicted
values to the predictions made for a large collection of randomly selected molecules.
Here, we considered only drug targets for which we obtained pAffinity > 5.5 and MhD
> 0.5 standard deviations. With these mildly restrictive criteria we predicted an
average of 18 targets per compound. Basically due to the low pAffinity bound this
number exceeds other theoretical considerations and experimental findings
reporting between 2 and 10 targets per drug, depending on the target class[499,500],
We obtained an average of four targets per imidazopyridine compound with the more
conservative boundaries pAffinity > 6 and MhD > 1.

Keeping the permissive estimate we selected a total of 41 targets with high pAffinity
predictions for further study. For these targets the model yielded favorable cross-
validated accuracies of Q% = 0.68+0.10, MAE = 0.65+0.11 and BEDROC = 0.67+0.15 (all
values meanzstddev)5152501] We finally selected five targets based on majority
predictions for the whole library, potential pharmaceutical interest and assay
availability. pAffinity values were in the micromolar range (Table 4), notwithstanding
the models’ high predictive variance. This observation emphasizes the potential

scaffold novelty compared to known ligands in the ChEMBL database. In fact, to the
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best of our knowledge, imidazopyridines with this framework have not been reported
as adenosine or adrenergic receptor ligands (Chemical Abstracts Service, SciFinder,
https://scifinder.cas.org/).

Having predicted potential macromolecular targets for all synthesized compounds,
we selected those compounds for testing for which we obtained robust pAffinity
predictions. For one of the prominent targets, phosphoinositide 3-kinase, activity had
previously been reported for the underlying imidazopyridine scaffold[486], which
corroborated the prediction. For proof-of-concept, we then explored a range of
predicted G-protein coupled receptor (GPCR) targets aiming at the discovery of a new
activity island in chemical space. In radioligand displacement assays probing direct
ligand-receptor binding and cell-based functional activity assays, 71% of the
compounds were found to be active as predicted (Table 4). More specifically,
compounds 6 and 10 presented antagonistic K; values of 2-3 puM, respectively, against
the adrenergic aig receptor, while compound 5 showed similar low micromolar
antagonistic potency against the adrenergic aia and adenosine Azp receptors.
Compounds 11 and 15 turned out to be potent direct A: receptor ligands (84% and
89% binding at 100 pM, respectively), but inactive in the functional cell-based assay.
Additional tests will be required to determine selectivity profiles in a full GPCR panel
screen.

Several quality indices have been suggested to guide hit prioritization in drug
discovery!19502],  Accordingly, our compounds fully qualify as lead structure
candidates (Table 4). For example, compound 10 is a scarcely decorated, yet highly
ligand-efficient chemical entity (LE = 0.40; SILE = 3.23) that might justify
development as an adrenergic aia receptor antagonist. On the other hand, albeit less
ligand efficient than 10, compound 6 presents a better balance between affinity and
computed logP(o/w) (LLE = 3.46 vs. 1.74). Most importantly, the leads presented
herein are dissimilar to their nearest neighbors from the training data (structural
similarity Tanimoto = 0.16-0.30, Table S1) and would likely not have been selected

using straightforward substructure-based similarity searching.
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Figure 19. Synthesis of imidazopyridines in flow: (a) Screening of optimal flow rate and temperature (T), at
constant catalyst loading (10 mol%) and Building Block (BB) concentration (0.3 M); (b) Screening of optimal
catalyst loading and building block concentration, at fixed flow rate (15 pl/s) and temperature (70 and
1009C); (c) Focused library synthesized in the present study and isolated yields.

Table 4. Summary of results for selected compounds 3, 6, 8, 10, 11, 12 and 15.

Predicted Mahalanobis  Experimental

a b

Cmpd.  Target pAffinity distance pK;or % binding LE LLE SILE'

3 a;n’ / PDE10A®  5.7/5.7 0.7/0.8 <4 [ <4 - - -

6 ag 6.2 2.4 5.6 0.33 3.46 3.04

8 an/ Agg® 5.8/6.5 0.7/2.4 5.4/5.2 0.30/0.29 3.07/2.86 2.87/2.76
10 am 6.1 2.0 5.7 0.40 1.74 3.23

11 A" 5.7 3.2 > 80%' - - -

12 Ay / PDE10A 6.4/5.8 26/1.7 <4 [ <4 - - -

15 A, 6.0 33 > 80%' - - -

®ligand efficiency; bIipophilic ligand efficiency; “size-independent ligand efficiency; dadrenergic aia
receptor; éphosphodiesterase 10A; fadrenergic ap receptor; #adenosine A,z receptor; "adenosine Aq
receptor; 'radioligand assay; activity values are averaged from duplicate measurements.

3.3.5 Conclusion

Altogether, our chemistry-driven approach to target-focused combinatorial library
design, in an expeditious and efficient manner, led to the identification of a molecular

framework targeting four GPCRs. The results highlight the imidazopyridine scaffold
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as a privileged motif and demonstrate how the integration of emerging technologies
in drug discovery, such as on-chip synthesis and computational target prediction,
may advance hit and lead identification in chemical biology and molecular medicine.
In light of recent advances in lab-on-a-chip technologies!503-505], one could even
envisage a fully automated hit finding automaton that integrates computational target
prediction and building block selection for the microfluidic-assisted synthesis and

testing of candidate compounds.
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34 Combinatorial chemistry by ant colony optimization

Combinatorial reactions theoretically give access to large sets of diverse molecules. In
this study, Ant Colony Optimization (ACO) was introduced as a method to efficiently
identify focused compound libraries from the complete virtually accessible
combinatorial space. To assess its capabilities, ACO was initially applied to peptide
synthesis to find sets of MHC-1 binding peptides and further extended to arbitrary
combinatorial reactions. The enhanced small-molecule ACO design process was then
evaluated for its potential to adaptively prioritize small-molecule building blocks and

guide a design process.

3.4.1 Abstract

We present the implementation and practical application of ACO[596507] to adaptive
peptide design, which implicitly generates a task-specific molecular similarity metric
(Molecular Ant Algorithm, MAntA). We chose the design of novel major
histocompatibility complex I (MHC-I, mouse H-2KbP allele) molecule-stabilizing
octapeptides as an example, and demonstrate that this modelling method may be
used to find local clusters of peptides with desired properties ("activity islands")[37],
without the necessity for full peptide library enumeration. In a second practical
application, we extend the combinatorial approach to combinatorial chemistry, taking
the Ugi three-Component Reaction (Ugi-3CR) as an illustrative example. We show that
the computer-based design method is able to identify ideally suited molecular
building blocks, and present a successfully synthesized and tested combinatorial
product exhibiting effective inhibitory activity against human blood clotting factor Xa.
This result qualifies ACO-based approaches for efficient combinatorial synthesis

planning aiming at new hit and lead compounds for the pharmaceutical sciences.

3.4.2 Introduction

Peptides are currently experiencing a renaissance as tool compounds and lead

structures in pharmaceutical research and chemical biology!>%8l, specifically through
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combinations of computational, chemical, and biological approaches!509510l While
solid-phase synthesis and in vitro activity testing allow for analysing several thousand
peptides at a time, exhaustive peptide libraries become prohibitively impracticable
with growing peptide length. As an elegant alternative, phage display technologies
offer parallel access up to approximately 101> sequences[>11512], While this
biochemical approach will deliver peptides with desired properties and activities for
a large variety of applications, it also suffers from several limitations. For example,
very hydrophobic sequences and peptides that kill or otherwise affect the host
bacteria used for phage production will elude identification by phage display. When
time and resources are limited and a model or design hypothesis is available, de novo
computer-based peptide generation constitutes an alternative for providing solutions
of the combinatorial peptide optimization problem. This methodology is based on a
predictive model of peptide activity (the objective or "fitness" function), and a robust
optimization method for navigation in sequence space towards regions of high-
predicted fitness[290],

According to the Principle of Strong Causality!?3] — a term derived from technical
optimization, that was rephrased in the context of quantitative structure-activity
relationships and molecular design as the Chemical Similarity Principlel?*] -
systematic combinatorial optimization requires a type of function-related order
among the molecular building blocks that are used for compound construction.
Otherwise, one would always perform a "random" search for optimal products. In
other words, a context-sensitive similarity metric is needed so that small structural
variations between molecular building blocks result in only small changes of the
predicted and measured activity. Molecular similarity could thus be considered as a
context-dependent propertyl[3>6425], Nature-inspired optimization methods have been
shown to lead to practical solutions of this combinatorial design task and related

problems in molecular modelling(>13,514],

3.4.3 Materials and Methods

Ant colony optimization of peptide sequences (MAntA).

The MAntA algorithm is based on the MMAS approach introduced by Stiitzle and

Hoos!515], which is one of the most successful Ant Colony Optimization (ACO)
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algorithm variants in practicel>%7]. Here , we provide a brief description of MMAS,
based on the original paper by these authors, to highlight the modifications that were
implemented in MAntA. Originally, MMAS was developed to improve exploitation
while avoiding early stagnation. It differs from other ACO algorithms (e.g., Ant
System[>16] or Ant Colony System[>17]) in three key aspects:

1) Only a single ant adds pheromones to the path.

2) The pheromone intensity is bound to an adaptive min/max interval.

3) Pheromone levels are initialized at the interval's upper bound to foster

initial exploration.

MMAS is best described using the well-studied traveling salesman problem (TSP):
"Given a complete graph with n vertices (cities) and distances d as edge labels, find the
shortest closed tour visiting each of the cities exactly once." Let m be the number of
ants (colony size) and 7;;(t) the amount of pheromone deposited on the edge (i) at
time step t. In each iteration each ant constructs a tour based on a probabilistic
decision rule, which is biased by the pheromone trail 7;;(t) and by locally available
heuristic information 7;;, which for TSP is usually defined as 1/d;;. Ants prefer cities,
which are close to their actual location and have a high pheromone concentration on
the connecting edge. An ant k, currently located at position i, chooses to go to position

j with probability (Eq. 24):

[vi;0)] “[mi)°

Zjemk[fij(t)]a[nij

pi(t) = 7 ifj € N, (24)
where o and 3 determine the relative importance of pheromone concentration and
heuristic information and V;* represent the set of vertices (cities) that have not yet
been visited by ant k. After all ants have completed the construction a fraction of the
pheromone evaporates, and only edges involved in the best solution receive
additional pheromone according to the following update rule (Eq. 25):

7 (t + 1) = p 75(6) + AT}, where ATt = 1/f(sPsY), (25)
and p is the pheromone persistence. f(s?¢5t) gives the cost of either the global-best or
iteration-best solution, where latter has been used in MAntA. To avoid stagnation of

the search process, MMAS ensures that the pheromone concentration does not
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exceed the interval [T,,in, Tmax]- After a new best solution has been found, these

boundaries are updated according to Eq. 26 and Eq. 27:

1 1
_ Tmax(l_n\/pbest)
Tmin = (avg_l)n\/pbest ’ (27)

where f(s9%) is the cost of the best solution so far, avg = n/2, and pp,s is the
probability that the best solution found is constructed in a fully converged MMAS
process. The process of tour construction, solution evaluation and pheromone
deposition is iterated until a convergence criterion is met. In MAntA we limited the
iterations by a fixed amount of evaluated unique solutions (fixed budget constraint).

In MAntA, the MMAS algorithm has been modified to allow for solving the subset
selection problem for peptide design. Because of the lack of a path, ants deposit
pheromones directly on the nodes or in the case of peptides on the amino acids at
each sequence position. Accordingly, 7;;(t) is the pheromone concentration for amino
acid j at position i, and 7;; is the heuristic information. When constructing a peptide,
an ant probabilistically selects exactly one amino acid per sequence position

according to Eq. 28:

[2;0]“[n7)°
Zje]v‘i[fij(t)]a[nij

pij(t) = 7 with j € 2V} , (28)

where i is the ant's current position, values o and [ determine the relative
importance of pheromone concentration and heuristic information, and JV; is the set
of possible amino acids at position i. Only the iteration-best solution is used for the

pheromone update according to Eq. 25 to favour exploration of the search space. The

best
ij

best __

solution cost At is calculated using the trained jury predictor with A" =

1/(1 - 7-"(5“’)), and F(s) is the score for solution s. If multiple ants share the best
score, the solution components from all best solutions are updated with additional
pheromone. In the presented applications the heuristic information was set

uniformly. For the small-molecule example, the amino acids were replaced by

best _

combinatorial building blocks, and the solution cost was calculated as Az;7>" =

1/F (s“’), with F(s) the affinity information for solution s from the virtual assay. The
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chosen values for the free parameters are given in Table 6. Values for py.s:, p and

colony size were selected based on systematic testing (Figure 20).

a) P b) Colony size
2 4 8 16 32

0.1 0.1 5.8 5.8 5.7 5.9 -
0.3 0.3 5.8 5.7 5.7 5.8 6.2

. 05 5.6 9.8 9.9 54 . 05 15 5.5 54 5.7 6.0

8 3

s 8
0.7 5.2 5.2 5.2 5.1 0.7 5.2 5.2 5.2 54 5.9
0.9 4.7 4.7 4.7 4.7 0.9 4.7 4.7 4.9 51 515

0-95 4.6 _ 0.95 - 4‘8 5'0 5'5

Figure 20. Systematic evaluation of the influence of parameter values of p,., and p on the quality of the
selected focused library. Values are given as the mean /Csq values [uM] of the 20 most active compounds.
Cells are colored according to the ICsy values with a gradient from blue = lowest activity to red = highest
activity.

Peptide scoring function.

We used a previously implemented cascaded classifier modell>!8] based on Support
Vector Machines (SVM)I133] and multilayer Artificial Neural Networks (ANN)1071,
Model development and training is described in detail in the original publication!518l.
Figure 21 shows a schematic of the model's architecture. It consists of two SVMs and
two ANNs providing the input to a jury network, which computes a prediction score
between zero and one. Koch et al. have recently performed an analysis of the residue

positions and properties, which are most relevant for class separation(519l.

Stochastic neighbor embedding (SNE).

For dimensionality reduction (PPCA descriptor) we used the implementation of SNE
from the Matlab Toolbox for Dimensionality Reduction v0.7.2 and Matlab 7.13.0 (The
MathWorks Inc., Natick, USA)[520], The SNE perplexity parameter was set to 30 for all
calculations. To focus on uncommon motifs, peptides with canonical residue motifs

were eliminated beforehand.
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Physicochemical Residue Pharmacophore Correlated
properties frequency features properties

v v v v
SVM| | SVM| [ ANN [ [ ANN

Jury network

Prediction score

Figure 21. Schematic of the machine-learning model used for peptide activity prediction. It consists of a jury
network that combines individual prediction scores from four classifiers (two Support Vector Machines,
SVM, and two Artificial Neural Networks, ANN, as first-stage filters) to a single value between zero (non-
stabilizing) and 1 (H-2Kb stabilizing). First-stage filters are based on different peptide representations.

Sequence logos.

For sequence logo depiction we used the web application WebLogo v2.8.2
(http://weblogo.berkeley.edu/logo.cgi)>21l. Only peptides with a prediction score >

0.8 were included in sequence logo calculation.

Peptide synthesis and analytics.

Peptides were synthesized on an Overture™ robotic solid phase peptide synthesizer
(Protein Technologies, Tucson, USA) on a 10 pmol scale utilizing ten-fold excess of
Fmoc-protected amino acids (200 mM) over Fmoc-Wang resin. Resins, amino acids
and HCTU (0O-(6-chloro-1-hydroxybenzotriazol-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate) were purchased from AAPPTEC (Louisville, USA). DMF
(dimethylformamide), DCM (dichlormethane), diisopropylether, piperidine and TIPS
(triisopropylsilane) were purchased from Sigma-Aldrich (Buchs, Switzerland); NMM
(4-methylmorpholine) and TFA (2,2,2-Trifluoroacetic acid) from Fisher Scientific
(Wohlen, Switzerland). Deprotection was performed using 20% piperidine in DMF for
2 x 5 min. Double coupling was executed conservatively in rotation 2 x 15 min under

utilization of 1:1:4 200 mM amino acid / 200 mM HCTU / 800 mM NMM in DMF. After
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deprotection and double coupling washing with DMF was performed for 4 x 30 sec.
Automated cleavage was performed for 2 h with 95%/2.5%/2.5% TFA/H.0/TIPS
after multiple washing with DCM (4 x 30 sec). Product was precipitated out of the
final TFA-peptide solution in ice-cold diisopropylether, rewashed and dried under
nitrogen gas. Peptides were used in the experiments without further purification.
Peptide products were analysed on a LC-20A rpHPLC instrument (Shimadzu, Reinach,
Switzerland) using a €18, 110 A, 1.8 pm, 100 x 3 mm column (Macherey-Nagel,
Diiren, Germany). A linear gradient of 30-95% ACN/H20(0.1% TFA) over 12 min with
a flow rate of 0.5 ml x min! was applied. Shimadzu SPD-20A Prominence UV-VIS
detector was used for detection at 210 nm. Masses were detected on positive mode
between 500-1500 Da with a Shimadzu LCMS-2020 single-quad mass spectrometer
(ESI+).

Peptide sequences with calculated molecular weight (mw, unit: Da), retention time

(R, unit: minutes), and observed masses (m+):

AQFQYTNA (mw = 942.0, R. = 1.01, m/z = 943.4, 944.7), KSIFFSNP (mw = 939.1, R; = 1.16, m/z = 938.6),
RGLSFTPG (mw = 833.9, R, = 1.17, m/z = 834.5, 835.5, 836.5), VSPYFRAE (mw = 968.1, R, = 1.03, m/z =
968.6), RFFDLYSL (mw = 1060.2, R, = 3.46, m/z = 531.0, 531.9, 1060.6, 1061.6), IGWEIGTL (mw =
888.0, R: = 3.29, m/z = 888.5, 889.5, 890.5), VNLRAYLL (mw = 961.2, R; = 2.59, m/z = 961.6, 962.6,
963.6), KIFHLVSL (mw = 956.2, R = 2.29, m/z = 956.6), RTLNPPPL (mw = 907.1, R, = 1.18, m/z = 907.6,
909.6), IAFPWSIK (mw = 961.2, R: = 2.92, m/z = 961.6, 962.6), INLNPPPG (mw = 820.9, R, = 0.97, m/z =
821.5), RSVQWINK (mw = 1030.2, R, = 0.95, m/z = 516.1, 1030.7), ISPQGGPS (mw = 741.8, R, = 0.92,
m/z = 742.4), WWYAYHHI (mw = 1175.3, R: = 1.94, m/z =588.5, 588.6), TWYLYNEI (mw = 1101.2, R; =
3.16, m/z = 551.5, 551.6, 1101.6), EYYDYEAV (mw = 1051.1, R, = 1.17, m/z = 526.4, 1051.5, 1052.3,
1053.7), SIINFEKL (mw = 963.1, R, = 2.7, m/z = 963.7, 965.6), QDNGHDWI (mw = 984.0, R, = 1.43, m/z
=984.5,985.5).

Cell-based MHC stabilization assay.

The stabilization assay was conducted as previously described[522] with TAP-deficient
RMA-S cellsl23] and mouse mutagenized Rauscher-virus induced T-lymphoma cells
(RMA cells) as control. Briefly, cells were cultivated in RPMI (Gibco-BRL, Karlsruhe,
Germany) with 5% FCS (Biochrom, Berlin, Germany) at 37°C under 8% COx. Prior to
the assay, the cells were kept at 26°C for 16h to promote stabilization of peptide-free
MHC-I H-2KP on the plasma membrane. Subsequently, the cells were incubated for 30
min at 26°C with peptide concentrations ranging from 100 to 1 x 10-3 pg/ml (in 10
x-fold serial dilutions) followed by incubation for 45 min at 37°C inducing
denaturation of unloaded H-2KP. Remaining peptide-loaded H-2KP located at the cell

surface was measured by flow cell cytometry by combining the H-2KP specific



100 l 3 Results

monoclonal antibody B8.24.3 (G. Kohler, Basel Institute of Immunology) and FITC
(fluorescein isothiocyanate) labelled rat anti-mouse IgGl or goat anti-mouse IgG
secondary antibodies (BD Pharmingen, Heidelberg, Germany). The mean fluorescence
intensity (MFI) was taken as measure for the H-2KP stabilizing effect by protein-
bound peptide. SCso values were calculated as the peptide concentration leading to
half-maximal MFI (maximal FTI = response measured for the stabilizing peptide
SIINFEKL). Measurements were performed with a FACSCalibur flow cell cytometer
(BD Bioscience, Heidelberg, Germany), data analysis with WINMDI (The Scripps
Research Institute, La Jolla, USA). SCso calculation including data normalization and

linearization was done with Excel 2011 (Microsoft Corporation, Redmond, USA).

Synthesis

Compound 16 (tert-butyl 4-(2-((3-carbamimidoylphenyl)amino)-2-(2-((3,4,5-trihydroxy-6-
(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)acetamido)piperidine-1-
carboxylate).

Benzamidine (0.24 mmol) was dissolved with toluene (1 ml) and triethylamine (0.7
mmol). A suspension of aldehyde (0.24 mmol) in water (0.5 ml) was added, and the
mixture left reacting at room temperature for 1 h. Phenylphosphinic acid (10 mol%)
and isocyanide (0.24 mmol) were added subsequently to the solution. The reaction

mixture was stirred for 24 h at room temperature.

Enzyme inhibition assays.

Assays were performed at Reaction Biology Corp. (Malvern, PA, USA), as follows:
Factor VIla (Biomol Cat. No SE-438), Cathepsin S, L and Fluorogenic Substrate
(Peptide sequence: Z-Val-Val-Arg-AMC.HCl [Z=Cbz=Benzyloxycarbonyl; AMC=7-
amino-4-methylcoumarin] (Biomol Cat. No P-199) were prepared in fresh reaction
buffer (25 mM Tris pH 8.0, 100 mM NacCl, 0.01% Brij35; 1% DMSO in buffer was
added before use). Enzyme solution was delivered into the reaction well, followed by
the test compounds and substrate solution. The final concentration of the enzyme and
substrate was 10 pg/ml and 10 pM, respectively. The enzyme activities were
monitored (Ex/Em 355/460) as a time-course measurement of the increase in

fluorescence signal from fluorescently labelled peptide substrate for 120 minutes at
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room temperature. Same protocol using different buffers, and substrates was used for
the other proteases. For the factor Xa (Biomol Cat. No SE-362) assay, a buffer
consisting of 25 mM Tris pH 8.0, 100 mM NaCl, 0.01% Brij35, with 1% DMSO and
0.25mg/ml BSA added to the buffer before use was employed. The final enzyme
concentration in the assay was 2 mU/ml. Pefafluor™ FXa, fluorogenic peptide
substrate for factor Xa (sequence: CH3SO2-D-CHA-Gly-Arg-AMC-AcOH, final
concentration of 10 uM) was used. For thrombin (Enzyme Research Lab Cat. No HT-
10024, final concentration of 20 mU/ml) assay the buffer consisted of 25 mM Tris pH
8.0, 100 mM Nacl, 0.01% Brij35, with 1% DMSO, 0.25mM CaCl; and 1.0 mg/ml BSA
added to the buffer before use, and Pefafluor™ TH, fluorogenic peptide substrate for
thrombin (sequence: H-D-CHA-Ala-Arg-AMC.2AcOH, final concentration of 10 puM)
were used. Finally, for trypsin (Sigma Cat. No T-1426; final concentration of 0.8
pg/ml) the same buffer as for factor VIla was used, as well as the same substrate as in

the thrombin assay.

3.4.4 Results and discussion

Peptide design by ant colony optimization

The first goal of this study was to test the ability of the MAntA method to identify
MHC-I H-2K? stabilizing octapeptides without the requirement for full enumeration of
all 208 (» 1019) possible peptides. Computationally, sequence lengths up to eight
residues can still be handled exhaustively!518519, Thus, the application of MAntA to H-
2K stabilizing octapeptides should be regarded as a proof-of-concept study. We
focused on sequences that display discrepancies between the presence of a known
canonical MHC-I binding motif and the predicted H-2KP stabilizing potential. The
known canonical residue pattern defines residue positions 5 [Y, F] and 8 [aliphatic] as
relevant "anchors" for H-2Kb-peptide interaction. The term "anchor" is an
interpretation of observed residue conservation in known MHC-I binding
peptides[>24]l. Accordingly we defined three classes of peptides for candidate selection:

Category A - Partial agreement with the canonical motif (either residue at
position 5 or 8) and predicted as H-2KP stabilizing;

Category B - Lack of canonical motif residues, but predicted as stabilizing;

Category C - Complete motif fulfilled, but predicted as non-stabilizing.
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For prediction of MHC-I stabilizing potential, we used a machine-learning model as
fitness function, which computes a score between 0 and 1 for a given octapeptide
sequence. Score values greater than 0.5 suggest H-2KP stabilizing potential with
higher values corresponding to higher model confidence. We previously developed
this cascaded ensemble model using 996 known H-2KP stabilizing and non-stabilizing

octapeptides with sustained predictive accuracy!>18l,

Amino acid type :

H00066000000060006000
2000, 660000006606006000
3 (AEEEEEEOORMMEXEXDMMWO)
100606600000600600 6000
J00066060000000660006000
6 EEEEEEXEOWMEBEREOOWO
7 GEEEEEEEOMWEEEEREDOW®
1000066000060060000000

Sequence position

| IELSFQHK |

Figure 22. Schematic of an ant run showing the pheromone matrix of the search space. Eight horizontal
bars represent the residue positions of the octapeptides. At each position, there are pheromone variables
for 20 standard amino acids (circles). Colours represent the pheromone concentration at each amino acid
(blue = low, red = high). The black line (top to bottom) represents an ant path corresponding to the
currently preferred peptide sequence.

For target-driven sampling of peptides we employed our new method MAntA, which
implements an ACO algorithm. It simulates the process how ants find the shortest
path between a food source and their nest using pheromone trails. MAntA revises this
concept so that a colony of artificial search agents (ants) builds solutions (peptides),
evaluates the quality of the solutions (fitness, measured activity), and updates the
ants' pheromone trails proportional to the quality of the solutions. The design of
peptides is modelled as a subset selection problem with the constraint that exactly
one amino acid has to be selected for each position (Figure 22). Pheromones are
directly deposited on the nodes, which correspond to the amino acids at each
position. In each peptide construction step, the ants select the next solution
component (amino acid) based on a probabilistic decision rule. This probabilistic

choice is biased by the pheromone trail and by available heuristic information. The
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pheromone trail is updated after each design cycle according to the predictions by the
fitness function (machine-learning model). Only the amino acid residues of the fittest
solution (ie., the currently best peptide in terms of the computed score) receive
additional pheromone, which is mathematically expressed by increasing
probabilities. Consequently, preferred ant paths emerge in the search space (here:
208 peptides) that correspond to potential high-quality amino acid sequences. To
reduce the risk of early convergence of the search process a small fraction of
pheromones evaporates after each.

In the present study we generated artificial ant colonies with 10 ants and allowed a
maximum of 100 peptides to be sampled. The colony size of 10 ants was chosen to
boost initial explorative behaviour and increase the chance of discovering more
diverse local optima. We ran the optimization 100 times. The resulting 10000
peptides were represented by the PPCA descriptor (19 principal component scores of
residue properties)[106l. For visual inspection of the peptide distribution these high-
dimensional property data containing 19 x 8 = 152 descriptor values were projected
to three dimensions using a nonlinear method termed stochastic neighbor embedding,
which minimises information loss during data projection and retains local compound
neighborhoods (Figure 23)[382525], Apparently, peptides predicted to be active (grey-
coloured dots in Figure 23a) possess limited residue diversity, as indicated by low
Shannon entropy, while diverse residue patterns yielding great Shannon entropy
values are characteristic for the inactive centre of the projected space. This
observation suggests that the machine-learning model has extracted potential
function-relevant features from MHC-I stabilizing peptides. Since individual MAntA
runs converged in disjunct regions of sequence space resulting in different local
clusters of peptides, we conclude that (i) there are multiple classes of peptide
sequences that might stabilize the same MHC-I allele, and (ii) ant colony optimization
converged to several local optima. Such a visualization of chemical space helps
identify pharmacologically interesting regions and select promising candidate

compounds (here: peptides) for synthesis and activity testing!525],
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Figure 23. (a) Peptide distribution obtained by compressing the 152-dimensional PPCA representation to
three dimensions using stochastic neighbor embedding (SNE). Dots represent individual peptides. Colouring
is according to Shannon entropy (blue = low, red = high). Selected optimization runs are shown in darker
colour and with the corresponding sequence logo for the peptides generated by MAntA. (b) Peptide
distribution after elimination of sequences containing the canonical residue motif for MHC-I binding. Three
distinct clusters with positive predictions remained. Peptide positions in the projection are coloured
according to prediction score (blue = negative, red = positive).

The 100 independent MAntA runs resulted in 100 distinct clusters for the peptides
with prediction scores exceeding a value of 0.8, from which we chose 10 well
separated clusters (Figure 23a; Table 5 peptides 1-10). Peptides containing the
canonical residue motif were eliminated after dimensionality reduction (Figure 23b;
Table 5 peptides 11-13). From this reduced set three clusters were chosen for
peptide picking. Residue patterns present in local sequence clusters were visualized
as sequence logosl>2¢l. From each selected cluster we picked one representative
peptide compliant to the corresponding sequence logo for synthesis and testing
(Table 5). Additionally, we included three category C peptides (Table 5 peptides 14-
16). Evidently, prediction accuracy varies for the different peptide categories A, B and
C. Based on bias in the training data, sequences being close to training samples are
comparably easy to categorize, while the activities of sequences being profoundly
different to the training data (B) are more difficult to predict.

Peptides were tested for their ability to stabilize murine H-2K on the surface of TAP-
deficient mutagenized Rauscher virus-induced T lymphoma cells using an established
assay system!527], H-2KbP stabilization is a necessary step for complex formation with
the cognate T cell receptor, and served as an indirect measurement of peptide binding
to H-2Kb. The natural epitope sequence SIINFEKL served as a positive controll528], for
which we determined SCso values (peptide concentration yielding half-maximal H-2Kb

stabilization on the plasma membrane) of 0.02 uM and 0.04 pM in two independent
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measurements. The sequence QDNGHDWI was used as a negative control, which was
confirmed by lack of measureable activity.

All category A peptides were predicted and experimentally confirmed to stabilize H-
2Kb, the most potent peptide being AQFQYTNA (SCso = 0.2 uM, 0.4 uM). This result
confirms the sustained predictive potential of the machine-learning model used for
peptide sampling, and reliable convergence of the search process. Of note, the
stabilizing potencies of these peptides were an order of magnitude weaker than the
positive control, which might be attributed to their only partial match with the full
canonical residue motif.

For category B peptides completely lacking the canonical motif only the sequence
[IAFPWSIK exhibited some moderate activity (SCso =5.5 pM, 10.3 pM); the other three
candidates were inactive in the cell-based assay. Apparently, the predictions of
potential MHC-I binding peptides are dominated by partial or full compliance with
the canonical motif. This likely is a consequence of model training, for which the
majority of positive examples (59%) possessed appropriate residues in anchor
positions 5 and 8[518519],

Notably, presence of the motif alone seems to be insufficient for H-2KP stabilization,
as shown for the category C peptides: One peptide (EYYDYEAV) was predicted and
experimentally confirmed as inactive, despite full compliance with the canonical
residue pattern in the anchor positions. Two category C peptides (WWYAYHH],
TWYLYNEI) were moderately active but predicted as inactive.

The results of biochemical activity determination support the previously found
relevance of appropriate residues in the anchor positions of MHC-I binding peptides.
They also point to additionally required features, as shown by the sequence
EYYDYEAV, which turned out to be inactive despite the appropriate residues in the
anchor positions. Thereby, our machine-learning model not only correctly predicted
this sequence as non-stabilizing, which clearly demonstrates that this model exceeds
a simple pattern matching approach based on residue motifs, but also confirms
earlier experimental findings>2°l. Overall, we observed 11/16 = 69% correct
predictions in this prospective screening study with MAntA. Based on the suggested
peptide clusters resulting from this ant colony optimization algorithm we were able
to select peptides with desired sequence features and corresponding biological

activity.
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Table 5. Results of cell-based activity determination.’

No. Peptide category ?(ill;ne(;igld SCso (LM) Prediction
1 A AQFQYTNA 0.2,0.4 stabilizing
2 A IGWEIGTL 0.5,0.9 stabilizing
3 A KSIFFSNP 0.5,1.2 stabilizing
4 A RFFDLYSL 0.6, 0.7 stabilizing
5 A VNLRAYLL 0.6, 0.8 stabilizing
6 A KIFHLVSL 1.3,2.6 stabilizing
7 A VSPYFRAE 2.8,5.0 stabilizing
8 A RGLSFTPG 3.1,3.5 stabilizing
9 A RTLNPPPL 3.9,6.0 stabilizing
10 B TAFPWSIK 5.5,10.3 stabilizing
11 B INLNPPPG inactive stabilizing
12 B RSVQWINK inactive stabilizing
13 B ISPQGGPS inactive stabilizing
14 C WWYAYHHI 2.2,65 non-stabilizing
15 C TWYLYNEI 3.1,91 non-stabilizing
16 C EYYDYEAV inactive non-stabilizing
17  Positive control STINFEKL 0.02,0.04 stabilizing
18 Negative control QDNGHDWI inactive non-stabilizing

“peptides were tested for their ability to stabilize H-2K” molecules on the surface of TAP-deficient cells
(n = 2 independent experiments; SCso: peptide concentration that resulted in half-maximal protein
stabilization). Residues in agreement with the canonical binding motif are highlighted. Category A:
partial agreement (either pos. 5 or pos. 8) and predicted as stabilizing; Category B: lack of canonical
motif and predicted as stabilizing; Category C: complete motif and predicted as non-stabilizing.

Application of MAntA to combinatorial chemistry

As a pioneering application of ACO to combinatorial library design and molecular
building block selection we chose the Ugi-3CR, which essentially represents a one-pot
approach to the condensation of an aldehyde, amine and isocyanidel>30.531], We used
MAnNtA to prioritize building blocks with the aim of finding an inhibitor of human
factor Xa, as a representative of trypsin-like serine proteases involved in the blood-
clotting cascade, which previously served as targets for stochastic nature-inspired
ligand optimization!532-536], The stock of structures contained 43 aldehydes, 15
amines, and 24 isocyanides, giving access to 15,480 potential products. Iligen et al.
had synthesized and tested this whole combinatorial array and compiled a database
containing the activity data of reaction mixtures (ICso values)[537538] which we
employed as a virtual assay system for our computational approach. In a proof-of-

concept study, we restricted the number of virtual products and tests to 300 (approx.
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2% of the complete combinatorial library), because we wanted to mimic a realistic
early-phase drug discovery scenario with a limited budget for synthesis and testing,
i.e. without exhaustive compound generation. To this end we tested different ant
colony sizes for their ability to compile focused low ICso libraries (Figure 24a). From
the results obtained, one can observe that with larger colony size the mean ICso of the
top 20 compounds increases. This may be due to the additional agents exploring a
larger variety of local optima. Such behaviour is desirable if the fitness space contains
diverse local optima. In the present study the task was to compile a focused
compound library under simulated budget constraints, which resulted in the

selection of a colony size of two ants (Table 6).
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Figure 24. Performance evaluation of the MAntA algorithm for the optimization of factor Xa compounds
based on the mean ICsy [uM] of the 20 most active compounds. (a) Influence of the MAnNtA colony size on
the optimization performance relative to the optimization progress (in terms of evaluated compounds). The
grey line shows the result of pseudo-random searching, and the dashed line the global optimum. Median
values of 1000 repetitions are plotted. (b) Comparison of overall performance of MAntA, particle swarm
algorithm, random search and the theoretical global optimum. Values for Particle Swarm are taken from
Ref.l**? (lacking error estimates).

Table 6. MANtA parameters.

Peptide design Combinatorial chemistry
ey o Foorea
Colony size 10 2
p 0.95 0.4
Pbest 0.05 0.95
a 1 1

B 1 1
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The pheromone matrix was constructed in analogy to the MHC-I peptide example,
and updated in a model-free approach using the measured factor Xa inhibitory
activity (ICso value) of compounds stored in the reference database, thereby
simulating a direct feedback loop. Figure 25 presents the resulting relative
frequencies of building blocks among the generated virtual products. It is
immediately apparent that the algorithm focused on few preferred building blocks.
Apparently, the three top-ranking benzamidines from the amines set were selected
for their ability to bind to the arginine side chain (S1) pocket of trypsin-like serine
proteases(>40l. This result demonstrates that the algorithm was able to focus on
fragments that are well known as preferred building blocks for the S1 position. To
evaluate the performance in some more detail, we compared MAntA to a previously
reported particle swarm algorithm that had been applied to the identical molecular
design task (Figure 24b). The particle swarm algorithm employed by Schiiller and
Schneider was selected as it emerged from their studies as the best performing
algorithm on the Ugi data setl>3%], compared to random search, simulated annealing
and the (1,A) evolution strategyl>37.541542], Qur preliminary results indicate that
MAnNtA outperforms the particle swarm implementation and might be a preferable
computational method for combinatorial library design.

We synthesized compound 16 from the most frequently selected (highest pheromone
concentrations) building blocks (amine no. 12, aldehyde no. 25, isocyanide no. 21;
Scheme 5) following a slightly modified version of the protocol described by Illgen et
al, i.e., using phenylphosphinic acid as catalyst (Scheme 5)[537.538], LC-MS analysis of
the reaction mixture after 24 hours revealed the desired compound in approx. 5%
yield - in line with reports on similar reactions>38l. The crude mixture was then
tested in vitro against factors Xa, VIla, thrombin and trypsin. While no activity was
observed against factors VIla and thrombin, the reaction mixture presented ICso
values of 3.4 + 0.1 uM (Figure 26) and 23 + 1 uM (not shown) against factor Xa and
trypsin, respectively, assuming complete educt conversion. It is of note that the same
reaction mixture had exhibited higher activity (ICso = 0.2 uM) against factor Xa in a
previous reportl537l. Different assay conditions, actual product concentration, and
specifically lower enzyme concentration, can be accounted for the observed
difference. Compound 1, the structure of which we disclose here (Scheme 5), is the

most potent Ugi-3CR type factor Xa inhibitor in the reference database.
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Figure 25. Relative frequencies of building blocks in the designed Ugi-3CR products. Bars give distributions
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Figure 26. ICso curves obtained for the inhibitory activity of compound 16 (grey circles) and gabexate
mesilate (/Csp = 4.7 WM, black triangles) against factor Xa (n = 3).
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3.4.5 Conclusion

Ant colony algorithms have been successfully used to solve the travelling salesman
problem, resulting in the optimal ordering of a set of objects, e.g. the shortest path
connecting a group of cities. In contrast to applications, in which an order of objects
(e.g. cities) is to be determined, the design of peptides or other combinatorial reaction
products aim at the best combination of molecular building blocks. Such a subset
selection problem differs from other combinatorial problems because there is no
intuitive path conceptP43]l. We had previously introduced the ACO paradigm to
peptide designl544545] and in the present study extended it to arbitrary combinatorial
reactions implementing a modified MAx-MiN Ant System (MMAS)[513], For the peptide
experiments, we used a nonlinear projection for visualizing the underlying SAR
landscape. Apparently, several local sequence clusters presenting several residue
motifs characterize the group of MHC-I stabilizing peptides. While the known
canonical motif discovered by Rammensee and coworkers[>24] is fully or partially
present in the majority of known MHC-I stabilizing peptides, there are additional, yet
to explore sequence clusters containing bioactive peptides but lacking this residues
pattern. We envisage computational peptide design as one of the key technologies for
obtaining peptides with desired properties, e.g. for future personalized vaccine
design, and the design of selective antimicrobial and cell-penetrating peptides. Such
techniques will be particularly useful in cases where biochemical methods, e.g. phage-
display, are prohibitive. Smart combinatorial design approaches might also be

coupled to high-throughput peptide synthesis.

Overall, we have demonstrated that ACO-inspired peptide sampling in combination
with a machine-learning model serving as fitness function may be used for finding
novel bioactive amino acid sequences without the need to provide a fixed residue
grouping based on amino acid similarity. It is evident that different prediction models
bare the possibility of leading to different local optima in chemical space. We
therefore advocate the use of multi-model fitness functions, unless a biochemical
experiment is used to serve this purpose. This concept is immediately transferrable
to other types of combinatorial chemistry where a compound is considered as

constructed from a defined number of molecular building blocks or fragments. Our
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MAnNtA approach is tailored to exploring combinatorial libraries without the need for
full product synthesis. As a consequent next development, the algorithm could be
coupled to a continuous flow-synthesis system with inline analytics, so that rapid hit

prototyping becomes possible in a fully automated fashion.

3.4.6 Publication details and contributions

Authors

Jan A. Hiss,3? Michael Reutlinger,? Christian P. Koch,#2 Anna M. Perna,® Petra
Schneider,2 Tiago Rodrigues,@ Sarah Haller,2 Gerd Folkers,»® Lutz Weber,c Renato B.

Baleeiro,d Peter Walden,? Paul Wrede,¢ Gisbert Schneider 2

+ J.AH, M.R, and C.P.K. contributed equally.

a ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of
Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

b Collegium Helveticum, Schmelzbergstr. 25, 8092 Zurich, Switzerland.

¢ OntoChem GmbH, H.-Damerow-Str. 4, 06120 Halle/Saale, Germany.

d Charité-Universitdtsmedizin Berlin, Department of Dermatology, Venerology and
Allergology, Clinical Research Group Tumour Immunology, Charitéplatz 1, 10117
Berlin, Germany.

¢ Charité-Universititsmedizin Berlin, Molecular Biology and Bioinformatics,

Arnimallee 22, 14195 Berlin, Germany.

Author contributions

J.A.-H, M.R,, and C.P.K. contributed equally.
M.R. designed and executed the ACO research, provided the visualizations, analysed

the results, and contributed to the manuscript.

Acknowledgements

The authors thank Morphochem AG for providing the Ugi data collection.



112 l 3 Results

Reference

Hiss JA, Reutlinger M, Koch CP, Perna AM, Schneider P, Rodrigues T, Haller S, Folkers
G, Weber L, Baleeiro RB, Walden P, Wrede P, Schneider G (2014) Combinatorial
chemistry by ant colony optimization. Future Med. Chem. 6, 267-280.

Licence

To be issued.

Source of funding

The research was financially supported by the ETH Zurich, the Swiss National Science

Foundation (grant no. 205321-134783), and the OPO-Foundation Zurich.



3.5 Multi-objective molecular de novo design by adaptive fragment prioritization | 113

3.5 Multi-objective molecular de novo design by adaptive fragment
prioritization

Encouraged by the promising results obtained with the individual methods, the
potential use as an integrated multi-target de novo design process (MAntA) was
subsequently investigated. Focusing on therapeutic targets relevant for treatment of
neuropsychiatric disorders, it was assessed whether the MAntA approach is capable

of proposing innovative compounds matching a desired target profile.

3.5.1 Abstract

We present the development and application of a computational molecular de novo
design method for obtaining bioactive compounds with desired on- and off-target
binding. The approach translates the nature-inspired concept of ant colony
optimization to combinatorial building block selection. By relying on publicly
available structure-activity data, we developed a predictive quantitative
polypharmacology model for 640 human drug targets. By taking reductive amination
as an example of a privileged reaction, we obtained novel subtype-selective and
multi-target modulating dopamine D4 antagonists, as well as sigma-1 receptor-
selective ligands with accurately predicted affinities. Nanomolar potency of the hits
obtained, their high ligand efficiencies, and an overall success rate of 90%
demonstrate that this ligand-based computer-aided molecular design method may

guide target-focused combinatorial chemistry.

3.5.2 Introduction

Traditional combinatorial chemistry aims at the generation of large diverse
compound arrays for bioactivity screeningl546l. It has been realized that multiple
"adaptive" synthesis-and-test cycles using smaller, focused compound libraries might
be better suited, faster, and more economical to find lead-like bioactive
compounds[19:356547] Computational molecular design methods offer the additional

advantage to generate bioactive compounds while considering multiple objectives in
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parallell300548549]  and combinatorial libraries with desired properties can be
obtained by relying on chemistry-oriented computational molecular design!100.550],
Though potentially appealing, these methods have rarely been prospectively applied.
Here, we present the comprehensive application of a computational concept for
designing combinatorial libraries that exhibit an accurately predicted bioactivity
profile. We show that the Molecular Ant Algorithm (MAntA)[B135511 effectively
transfers a nature-inspired optimization principle to chemistry-driven molecular
design. For proof-of-concept we focused on the reductive amination reaction as a
scheme for combinatorial synthesis. By automated structure optimization, MAntA
generated small compound libraries with lead-like qualities, high hit rates, and
nanomolar activities. It implements a new design strategy that is applicable to all
kinds of chemistry-driven computational methods[1273.279], and does neither require
prior knowledge about the bioactivity of scaffold classes nor is it limited to privileged
scaffolds. In a retrospective study, ant colony optimization turned out to perform
better or en par with other optimization methods![>51l. Here, we pioneer the concept of
polypharmacology-based molecular de novo design using combinatorial chemistry.
We demonstrate that both target-selective, and multi-target modulating members of
large combinatorial compound libraries are rapidly identified without the need for

full library enumeration and synthesis.

3.5.3 Materials and Methods

Compound data

For machine learning, we used data from the ChEMBL (v14) database containing
1,213,242 distinct compounds with a total of 10,129,256 annotated bioactivities for
9,003 targets. The raw ChEMBL activity data were restricted to half-maximum
inhibitory concentration (ICs0), Ki or Kg values and the corresponding log
transformations. Prior to model building, all data were filtered according to the

following ChEMBL criteria:
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(i) Confidence score = 7 (direct protein complex subunit, homologous single

protein or direct single protein assigned);
(ii) Relationship type D (direct protein target) or H (homologue protein target);
(iii) Target type = Protein;
(iv) Measured activity or annotated inactive.

Protein targets with fewer than 200 annotated bioactivities were excluded. Activity
end-points were standardized to pAffinity = -logio(activity). Only annotated inactive
compounds were included in the training data. These define a region in chemical
space, which should be avoided for designing potential candidates. To prevent the
machine learning algorithms from learning an artificial tested vs. untested boundary
we considered only experimentally validated inactive compounds for machine
learning. End-points annotated as inactive entities were assigned the lowest pAffinity
value of the corresponding target. Unrealistic entries with pAffinity less than 3 or
greater than 12 were excluded. For compounds with multiple measurements per
target the arithmetic mean and standard deviation were calculated. Compounds with
a standard deviation > 0.5 log units were excluded for the corresponding target. The
final affinity data set consisted of 279,866 compounds with 569,725 bioactivities for
640 human targets, which were used for training machine learning models. Filtering
and post processing was conducted using Python (www.python.org) and Knime
(www.knime.org). Prior to descriptor calculation all chemical structures were
standardized using the "wash" function in MOE 2012.10 (The Chemical Computing
Group Inc., Montreal, Canada). For each molecule, we computed a topological
pharmacophore feature descriptor (CATS2, correlation distance: 0-9 bonds, type-
sensitive scaling)[486] using in-house software, and an ECFP-like circular fingerprint

(Morgan fingerprint, radius: 4, 2048 bits)[36] using RDKit (www.rdkit.org).

Gaussian process models

To model the nonlinear structure-activity relationship Gaussian Process (GP)
regression models were trained individually for each of the 640 targets[171l. In the
following a short introduction to GP modelling is given following the description
given by Rasmussen and Williams!171l. A GP defines a distribution over functions p(f),

where f is a mapping of an input space X to R. It is used as a prior for Bayesian
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inference. The GP is fully specified by its mean function m and the covariance function
(kernel function) k. By defining kernel functions on different representations of the
input, one can capture heterogeneous perspectives on the input. We used a linear
combination of an isotropic squared exponential kernel ksz (CATS2Z descriptor) and a

Tanimoto kernel k;,, (Morgan fingerprint)[552] (Eq. 29).

’x—x/

2
ks (%X >=a%exp< 7)

kry(x,x )= a?T(xX ), (29)

k (x, X ) = kg (x, X ) + kry (x, X ),

where T (x, X ) is the Tanimoto structural similarity for fixed-sized bit vectors, and

0 = {0y, ¢, 0.} are adjustable hyperparameters. Hyperparameter values were directly
estimated from the data by optimizing the logarithmic evidence of the data given the
hyperparameters 6. For prediction of pAffinity values, we computed a lower
confidence bound p, — o2 instead of directly using the predictive mean. All Gaussian
process models were implemented using Matlab R2012b (The MathWorks Inc,,
Natick, USA) and the GPML toolbox v3.1.

Combinatorial design

For exploration of combinatorial space we developed the Molecular Ant Algorithm
(MAntA) as a modified Ant Colony Optimization (ACO) algorithm[506:507] based on the
Max-MIN Ant System (MMAS) approach introduced by Stiitzle and Hoos[®13l. In ACO
artificial ants deposit pheromones on edges of a graph. The amount of pheromones is
determined by the fitness of the solution. In MMAS only edges belonging to the best
solution are considered and pheromone levels are bound to a min/max interval. The
deposited pheromones evaporate over time, enabling explorative behaviour and
avoiding early stagnation in suboptimal solutions. Eventually the optimal solution,
combination of edges with the greatest fitness emerges. We modelled the problem of
finding the optimal configuration of building blocks as a subset selection problem.
Because of the lack of a path concept, ants deposit pheromones directly on the nodes,

corresponding to individual molecular building blocks. Per iteration each ant of the
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colony builds candidate solutions by selecting exactly one building block per R-group

position according to probabilities defined in Eq. 30:

Pl-j(t) :M] € M ’ (30)

Zle]\fi[rij(t)]

where 7;;(t) is the pheromone concentration for building block j at position i at

iteration t, and JV; is the set of allowed molecular building blocks at position i. Only

the best solution found in one iteration contributed to pheromone update (Eq. 31):

7 (t + 1) = p1;;(0) + AtfPF and AT)Pt = 1/F(sP), (31)

where p is the pheromone persistence, and T(s”’) the fitness of the solution. Fitness
was computed by coupling the design process to the Gaussian process regression
model. Pheromone bounds [Ty, Tmer]l Were enforced after each iteration and
updated accordingly. To allow for exploration of the local neighborhood of promising
solutions additional pheromone was added using the scaled Tanimoto structural
distance between building blocks and the global best solution. To allow batch calls to
the Gaussian process regression prediction framework a tabu list was introduced,
forcing ants to build only novel solutions. Free parameters were set to colony size =
100, p = 0.8, prest = 0.9, v = 0.3. The design process was stopped after exploration of
0.1% of the combinatorial space. Results from three individual runs were merged and
the best 3,000 designs were kept for further investigation. ReactionMQL was used for
virtual synthesis of the selected educts, according to the predefined synthesis

schemel553l.

Landscape visualization

Chemical library distribution and activity landscapes were visualized in LiSARD[478], A
two-dimensional molecule distribution was obtained by compressing the 210-
dimensional CATS2 descriptor using Stochastic Neighbor Embedding (SNE)[382l. The
ability to preserve the local neighborhood was evaluated using rank based quality
metrics (Table S7)[554.. Local neighborhood influence in SNE was set to 30. By adding

the measured activity data for each molecule as an additional dimension a three-
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dimensional point distribution was obtained. For fitting a surface to the data points
the Nadayara-Watson estimator was applied[438439], The value for a given location is
estimated as a locally weighted average of the data, using a multivariate Gaussian

kernel as weighing function. The smoothing factor k was set to 0.5.

Performance assessment

The quality of the predictive models was analysed using 10-fold stratified cross-
validation. For stratification the training labels were split in three pAffinity categories
(< 5; 5-7; > 7). The performance was evaluated in regard to regression and early
enrichment potential, and compared to binary kernel discrimination and random
forest regression methods (Supplementary Table S4 and Figure S12-S13). To evaluate
the regression performance the cross-validated squared correlation coefficient (Q2,
Eq. 32), as a measure for the overall fit, and the Mean Absolute Error (MAE, Eq. 33)
were calculated[>152501] To assess the ability of the models to distinguish between
active compounds and an assumed inactive background the early enrichment
performance was analysed. The Boltzmann-enhanced discrimination of ROC (BEDROC,
Eq. 34)153] (a = 56, top 3% contribute 80% to the score) and the percentage of active
compounds retrieved in the top 3% (Recall 3%) were used to quantify to
performance. As a negative control the target labels (y-scrambling) were randomly
permutated and the validation procedure was repeated (Supplementary Table S5).
The overall ranking performance was visualized using ROC curves based on the
combined cross-validation folds (Supplementary Figure S1-S2). For rank analysis the
training data was enriched with a random inactive background of 50,000 compounds.
For labelling the ChEMBL data a threshold of pAffinity = 5 (10 uM) was used (£ 5 =
inactive; > 5 = active). Let N be the total number of compounds in the dataset and n is

the number of actives.

2 _ L 0y)?
Q" =1-38 G (32)

MAE =~ ly; - 9l (33)
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with y; denoting the target label for the it compound, ¥; the prediction and N being

the total number of compounds.

Zsinh (g) 1
BEDROC = RIE X Dltv 2 — + - (34)
cosh(E)—cosh(E—aﬁ) 1—ea(1_ﬁ)

1-e~@
e@/N—1

where RIE = 1., e‘“xi/%( ) , X; is the relative rank of the ith active in the

ordered list, and « is the early recognition tuning parameter.

Random Forest regression

The Random Forest(183] approach belongs to the class of ensemble machine learning
methods, in contrast to Kernel methods e.g. Gaussian processes. A random forest is an
ensemble of tree predictors h(x, 8) where x is the descriptor vector of length p and 6
a numerical random vector. Individual trees are grown to the maximum size, but only
a randomly selected subset of my, descriptors out of the total p is used for tree
definition. For the ensemble of n¢e. trees, the prediction is given by the unweighted
average over the ensemblel189]. The models were developed using the Random Forest
package for Matlab (www.mathworks.com) implemented by Abhishek Jaiantilal
(https://code.google.com/p/randomforest-matlab). Free parameters were set to myy

= sqrt(p) = 47 and nyee = 500.

Multiple-molecule query virtual screening

Binary Kernel Discrimination (BKD) was implemented using the Harper kernel
functionl>3! in combination with the Tanimoto similarity coefficient according to
Chen et al.l55¢] with bandwidth parameter A = 0.6 and § = 1.0. The BKD method was

implemented using Matlab R2012b (www.mathworks.com).

Synthesis

We compiled chemical building blocks from three vendors (Chembridge, Sigma-

Aldrich, Maybridge). Undesired structural motifs were eliminated (Table S3),
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resulting in 7062 amines and 2879 aldehydes and ketones. The required aldehyde or
ketone (1 molar eq.) and amine (1 molar eq.) starting materials were dissolved or
suspended in 1,2-dichloroethane (5 mL/mmol). NaBH(0OAc)3 (1.5-2.5 molar eq.) was
added and the mixture left reacting at room temperature until completion
(overnight). In the case of ketones, acetic acid (1.5 molar eq.) was used as catalyst.
The crude product was washed with water (10 mL) and brine (10 mL) before
evaporating the organic solvent under reduced pressure. Products 17-32 were
purified from reverse-phase flash chromatography using an 5-50% acetonitrile:H20

(+0.1% formic acid) gradient run over 20 minutes.

Binding assays

Binding assays were performed at Cerep (Celle I'Evescault, France, www.cerep.fr) on
a fee-for-service basis. K; values for D15 (Cerep assays ref. 0044, 0046, 0048, 0049,
0050)[>57-5611 and sigma-1 (ref. 0889)[562] receptors, as well as histamine H3z (ref.
1332)[563], serotonin 5-HT1a (ref. 0131)[5641, § (ref. 0114)[565], k (ref. 1971)[566], and p
(ref. 0118)0567] receptors were determined by measuring scintillation of suitable

reference ligands upon 60 or 120 minutes of incubation.

3.5.4 Results and Discussion

The molecular design method requires (i) a compound synthesis scheme, (ii) an
affinity prediction method for the virtual products, and (iii) a technique for building
block optimization. For our concept study, we chose the reductive amination reaction
working with aldehydes/ketones and amines as building blocks. We applied MAntA
to single-step reductive amination products accessible from commercially available
building blocks. Its reaction products have a high likelihood of possessing desirable
druglike features, as visualized in Figure 27, which presents a map of the known
bioactivity space. Virtual reaction products cluster in a densely populated area, and

the reductive amination may be regarded as a preferred reaction for drug discovery.
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Figure 27. The distribution of 5000 virtual reductive amination products (green dots) in a druglike chemical
space. The two-dimensional landscape was calculated from the density of 10,000 drug-like molecules
sampled from the ChEMBL database. The intensity of grey color indicates the density of known bioactive
substances (white: sparsely populated; black: highest local density). The compounds were represented by
topological pharmacophores ("CATS2" descriptor)[486] and projected to the plane (x', x") by stochastic
neighbor embedding (SNE), which led to a local-neighborhood preserving map of chemical space. The axes
represe[nt]nonlinear combinations of the original molecular descriptors. The image was generated with
LiSARD™®!,

For affinity prediction we trained individual Gaussian Process (GP) regression
models!i71l for 640 human targets annotated in ChEMBL (v14)[72], based on 279,866
compounds with 569,725 measured bioactivities. Molecules were represented by
topological pharmacophore ("CATS2")[486] and substructure (circular Morgan
fingerprints)3¢! descriptors. The choice of GP regression was motivated by extensive
comparison to other modeling techniques using the same training data, where the GP
approach performed best (Supplementary Table S4-S5). In addition, GP models
compute a data density dependent confidence estimate, which we combined with the
quantitative bioactivity prediction (pAffinity) to obtain a single robust prediction
score for each compound.

Equipped with this quantitative affinity prediction model, MAntA performs an
adaptive search for optimal building block combinations for the given reaction
scheme (Figure 28). The search space consists of all possible educts labeled with
pseudo-probabilities ("pheromones"), according to their contributions to the
computed predictive score. Individual ants traverse the search space following
pheromone trails and assemble virtual products. These are scored and the pseudo-

probabilities on their respective molecular building blocks are adjusted accordingly.
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Over simulation time, high scoring building block combinations emerge from the ant

colony's optimal path-finding capability.

R, OREE® -~ @

]
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Figure 28. Molecular building block selection by combinatorial ant colony optimization (MAntA). The arrows
represent artificial ant paths for this two-component combinatorial library. Their widths correspond to
pseudo-probabilities ("pheromone concentrations") that influence the choice made by the ants and thereby
determine the actual product spectrum. The pheromone concentrations are adaptive and subject to
evaporation.

We employed MAntA for the multi-objective design of novel ligands for high-profile
macromolecular drug targets that are involved in neuropsychiatric disorders - sigma-
1 and dopamine D4 receptors. The choice of D4 receptor was also made to allow for a
direct comparison to a recent publication by Hopkins and coworkers[109. In our study,
the task was to select a small number of preferred products from a total of
approximately 20 million. First, we discarded all designed molecules with undesired
structural motifs(>¢8], and poor predicted absorption, distribution, metabolism and
excretion ("negative design")[>¢%l. From the 3529 remaining molecules we selected

candidates having different aims in mind ("positive design"):

i)  Potent and selective (sigma-1) or multi-target modulating (dopamine D4)
ligands;

ii)  Target subtype-selective ligands;

iii) Exploratory molecules, lying outside the training domain as expressed by
Morgan fingerprint Tanimoto similarities < 0.20;

iv) Inactive compounds as nearest neighbors to known high-affinity ligands in

ChEMBL bioactivity space.



3.5 Multi-objective molecular de novo design by adaptive fragment prioritization | 123

For the sigma-1 receptor, we selected compounds 17-19 according to the high
affinity criterion. Molecules 20-21 were designed as receptor-selective ligands
(Figure 29a). In fact, the MAntA designs were experimentally validated for their
specific goals with accurately predicted pKi values (Table 7). Compounds 17-19
exhibited K; values of 1.1-2.2 nM, and designs 20-21 yielded more than 2500-fold
selectivity over the 9, , and u opioid receptors. Noteworthy, 17-20 are equipotent to
their nearest neighbor counterparts from ChEMBL, despite being structurally
dissimilar (Tanimoto similarity ~ 0.45), thereby endorsing the exploratory potential
of MAntA. Furthermore, the low molecular weight of 17-21, coupled to low
nanomolar K; values warrant these compounds high ligand efficiency. Additionally,
we synthesized and tested compounds 22-24 as scaffold hops from known ChEMBL
chemical space (structural Tanimoto similarity to nearest neighbors ~ 0.20), without
critical loss of affinity (sigma-1 K; = 10-210 nM, ApK; ~ 0.5, Table 7, Figure 29b) with
exception of compound 24. Furthermore, compounds 17-24 contain scaffolds that
were not present in the training data used for model building (Supplementary Table
S6). Apparently, the low structural resemblance to known small molecules did not
considerably affect the algorithm's performance. Finally, compound 25 was designed
and validated as a low affinity sigma-1 ligand (K; > 2,500 nM) despite having a highly
potent nearest neighbor (K; ~ 6 nM, Tanimoto similarity = 0.45, Table 7), pinpointing
the adaptive design capabilities of MAntA that go beyond structural similarity
analysis. Altogether, the experimental results are in agreement with the landscape
projection of the preferred sigma-1 activity islands (Figure 30a; individual target
landscapes are shown in Supplementary Figure S17). Furthermore, as an off-target
for the synthesized compounds, MAntA predicted moderate histamine Hz receptor
affinities, which were partly confirmed experimentally.

Next, we designed antagonists for the dopamine D4 receptor. Ds receptors are
especially implicated in attention deficit hyperactivity disorder, mood disorders, and
Parkinson's disease, among other neuropsychiatric illnesses>7%. From the top 1600
prioritized small molecules with predicted pK; > 7 for the D4 receptor, we selected
compounds 26 and 27 as high-affinity ligands. Although 26 (Ki = 2.0 nM) features an
already known scaffold®71l, 27 represents a notably different, and more ligand
efficient entity than its ChEMBL nearest neighbor (Tanimoto similarity ~ 0.6, Table

7). While the selected ligands were primarily designed as high-affinity D4 receptor
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antagonists, a polypharmacology profile was not precluded. Accordingly,
promiscuous dopamine Di.sand 5-HT1a receptor binding was predicted. Subsequent
binding tests confirmed the multi-target modulating profiles of 26 and 27 in
agreement with the MAntA-predicted bioactivity spectra and landscape projections
(Table 7, Figure 29b, preferred design zones Figure 30b; individual target landscapes
are shown in Supplementary Figure S18). Conversely, compounds 28 and 29 were
designed to meet the D4 receptor selectivity goal. Selective D4 antagonists are equally
relevant in clinics, as they can prevent stress-induced cognitive dysfunction without
extrapyramidal motor symptoms or neuroendocrine side effectsl>71l. Weak binding
affinities of 28 and 29 were predicted for the off-targets in the assay panel. Structural
simplicity and low nanomolar affinities (Ki = 10-12 nM) designate these compounds.
Their selectivity for the Ds receptor is particularly significant, given the high
structural similarity to promiscuous molecules 26 and 27. Of note, 1,4-disubstituted
aromatic piperazines have previously been recognized as predominant in
promiscuous biogenic amine G-protein coupled receptor (GPCR) ligands[®72l. The
opposing target engagement profiles for the arylpiperazines 26-27 and 28-29
confirm effective building-block selections. The polypharmacology profile of 30 and
31, which extend the known chemical diversity of D4 receptor antagonists, is also in
agreement with the pKi predictions. Remarkably, 30 is one log unit more potent
against the D4 receptor than the closest related reference antagonist, which together
with the screening results of the designed inactive 32, demonstrates the successful
application of MAntA to dopamine receptors. Evidently, considerably extended
experimental GPCR panel activities will be required for further hit-to-lead

progression of the MAntA designs.
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Figure 29. Bioactivity profiles of designed ligands. Comparison of the Gaussian process prediction for sigma-
1 (a) and dopamine D, (b) receptors, together with the observed experimental results. Predictions are
variance-corrected pAffinity values. Experimental data are expressed as % inhibition (competitive
radioligand binding assays at 2.5 uM). Colors are linearly interpolated from the predicted pAffinity intervals
[4, 9] (a) and [4, 8] (b), and % inhibition interval [20, 100] for the experimental data.

.31
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Figure 30. LISARD multi-target selectivity landscapes. Sigma-1 receptor (a) and dopamine D, receptor (b) as
the respective on-target.
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3.5.5 Conclusion

With regard to the polygenic nature of most major central nervous system diseases
and the individual variability of their genetic basis, new drugs with selected
polypharmacological activities are desirablel573l. The results of this study suggest a
feasible solution for the combinatorial design of new chemical entities with affinity
profiles and properties that exceed the average drug-likeness for approved drugs
(Quantitative Estimate of Drug-likeness, QED = 0.72 = 0.10 vs. 0.49)[19547], The
automated molecular design method should be broadly applicable to other drug
target classes and chemistry, provided reliable structure-activity data are available
for constructing predictive affinity prediction models. The actual computational
design process is fast (within minutes on a desktop computer), so that focused
combinatorial library design and synthesis can be realized within a day of work. A
particular advantage of MAntA compared to many other approaches, eg. the
meticulous work of Besnard et al. on adaptive drug designli%0], lies in the
simultaneous generation of both potent structural analogs and innovative scaffold-
hops from known reference compounds. Together with rapid computation, low-cost
synthesis, and readily accessible chemical structures, the concept of adaptive building

block and fragment prioritization might become widely applicable.



3.5 Multi-objective molecular de novo design by adaptive fragment prioritization | 127

Table 7. The designed molecules and their nearest neighbors from the ChEMBL training data with the
predicted and experimentally determined binding affinities of compounds 17-32.
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® Ligand efficiency (LE = -1.4 x pK;/ number of heavy atoms); ® ChEMBL IDs are quoted without the
"CHEMBL" prefix; © Tanimoto similarity index (Morgan fingerprints with radius = 3); d p/Cso value. n.d.: not
determined.
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4 Conclusions and Outlook

This thesis presents a holistic approach for the de novo design of multi-target
modulating compounds (MAntA). It combines a visualization tool for intuitive
navigation in chemical space, an ant colony optimization method, designing
synthetically accessible compounds, and machine-learning models for multi-target
affinity prediction and small-molecule prioritization. The modular components of the
approach were individually evaluated for their potential use in early drug discovery.
All tools were collectively applied in a prospective study to identify innovative,
potent, and ligand-efficient multi-target modulating compounds that can be further
developed through medicinal chemistry optimization. The results presented herein
demonstrate the capabilities of MAntA for generating new chemical entities with
accurately predicted bioactivities for a panel of relevant drug targets.

The visualization component (LiSARD) included in the MAntA process utilizes
stochastic neighbor embedding (SNE)B821 for dimensionality reduction of
mathematically represented chemical datasets. SNE aims at preserving the local
neighborhood observed in the original high-dimensional data space. To quantify the
potential benefits of this concept, a panel of quality indices for local neighborhood
preservation was calculated for three different compound libraries. SNE performed
favorably in comparison to PCAI367], MDS[368] and SPEI381] (cf. Table 3). Several
recently proposed, nonlinear dimension reduction methods (e.g. Isomap[®74], local
linear embedding(38%], Laplacian eigenmaps!>75]) utilize neighborhood graphs to
assess the local neighborhood and model the nonlinear geometry of the low-
dimensional manifold in close proximity to the observed data. In contrast to SNE,
these methods cannot guarantee that all data points are included in the local
embedding. Is is of note that SNE has a runtime and memory complexity of O(N?)
that usually restricts it to datasets of up to 15,000 data points. The computational
complexity did not adversely affect the studies conducted within the scope of the
thesis, but there are several scenarios (e.g. analyzing HTS results or large corporate
databases) that require the ability to handle larger datasets. In these scenarios, the
recently proposed Barnes-Hut-SNE algorithm could be employed[>7¢], as it reduces

the runtime and memory complexity to O(NlogN) and O(N), respectively, which
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makes it applicable to learning embeddings of datasets containing millions of data
points.

Scattered point distributions produced by dimensionality reduction can be enriched
with additional drug-relevant properties. Based on the enriched data, LiSARD
calculates a three-dimensional response surface on the fly to obtain an visually
accessible map of chemical space. Potential benefits of the LiSARD approach for drug
discovery efforts were investigated using a comprehensive dataset obtained from a
chemogenomics study performed at Roche Pharmaceuticals, Basel. This study aimed
at finding non-peptidic hSST5R antagonists (c¢f. Chapter 2.1). Even though the study
was retrospective in nature, the analysis of data evolution over time demonstrated
the potential application at several project stages. Importantly, trends in the bioactive
space of hSST5R activity were observable already within the first 100 synthesized
compounds (Figure 12d). Landscapes generated from subsequent compound
generations still resembled the early trend but also revealed further details. This
result clearly underlines the advantage of an early visual inspection of chemical space
to steer lead optimization. Thus, LISARD may be regarded as adequate to identify
undesired tabu-areas, and focus on regions of chemical space containing compounds
with desired properties. The bioactivity-focused landscapes are calculated using
whole-molecule descriptors, and visualize the global relation between compounds in
chemical space. Yet they lack an apparent interpretation regarding the contributions
of individual functional groups. Therefore, they could be complemented with
methods providing a visualization of feature importance. For example, Hansen et al.
recently introduced an suitable method that might also be suitable for the machine-
learning approach used in this work[>77l. While landscape visualization may not
provide the required accuracy for prioritizing individual compounds, it often offers a
useful perception of chemical space and can aid medicinal chemists in discovering
global multi-objective trends in complex structure-activity relationship datal>l.

For prioritizing candidate compounds, MAntA applies a quantitative machine-
learning method to polypharmacology-focused de novo molecule design. A ligand-
based strategy was implemented to provide a predictive multi-target framework. It
was successfully used to generate innovative compounds fitting the desired target
profile, and identifying macromolecular targets for several members of an Ugi-3CR-

driven GPCR focused library.
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The predictive models were trained using publicly available data obtained from the
ChEMBL databasel’2l. The raw data required substantial pre-processing and data
cleaning to be useful for model building. Annotation errors, e.g. wrongly assigned
affinity units, were frequently encountered. For the targets included in the
prospective design study, the manual inspection of assay data revealed several
quality issues including affinities measured for proteins with mutations in the
binding site, which we consequently excluded from the training data. The results
presented in this thesis indicate that contemporary machine-learning methods are
able to handle such errors in the data, provided that sufficient high-quality data is
available for model building. For example, the employed Gaussian process regression
explicitly learns a noise parameter, which accounts for data errors and the inevitable
experimental uncertainty. We found that the observed accuracy of the prospective
results is in agreement with theoretic considerations on the experimental uncertainty
of heterogeneous assay datal4®?l. A desirable feature of a predictive model would be
the possibility to predict the functional effect in addition to the binding affinity.
However, the lack of systematic functional annotation in current chemogenomics
databases prevents an immediate inclusion, and further text-mining will be required
to extract the required information from unstructured text data.

MAnNtA utilizes a quantitative nonlinear machine-learning method to evaluate de novo
designed compounds. This offers the potential advantage of ranking the designed
compounds according to estimated binding affinities, which is a desirable property
compared to related approaches that only rank according to the probability of
compounds being active. The prospective studies included in this thesis confirm the
applicability to de novo small-molecule design, with close agreement between
predicted and experimentally measured binding affinities. In a similar study, Besnard
et al. employed naive Bayes classifiers, a qualitative machine-learning approach, to a
related set of aminergic GPCRs!100l. The success rates reported by Besnard et al. are
comparable to the ones reported for MAntA in Chapter 3.5.4. However, the design
process implemented in MAntA is not restricted to transformations of a given
template or scaffold motifs but rather creates synthetically feasible molecules from
scratch, which should be beneficial for exploration of new chemical space and the

identification of innovative compounds.
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GPCRs have been extensively explored as drug targets in pharmaceutical
researchl348578579]  which is also reflected by the fact that over 25% of currently
marketed drugs address GPCR targets[>8%l. Consequently, a considerable amount of
ligand binding affinity data is available for GPCRs, including the ones investigated in
scope of this thesis. Our retrospective analysis of 640 targets (Table S4, Figure S12-
S13) showed that for over 90% of the targets a predictive model could be built.
Additionally, the results revealed an overall positive influence of additional training
data on the screening performance, which might be a reason for the exceptional
performance of the approach in the prospective studies. Further exploratory work
including targets with a limited amount of data will help to fully comprehend the
potential and also limitations of the proposed method. For biological targets where
there is limited knowledge on active ligands, alternative de novo design approaches
might be more suitable, e.g. utilizing the software DOGS, which requires only a single
known active as template to propose new compounds!273],

In order to broaden the scope of MAntA, it might be beneficial to combine several
complementary scoring schemes. Each scoring method should be tailored to address
a specific range of available information. The appropriate method for the investigated
target could then be chosen automatically, either by the number of available training
data or by retrospective performance estimates. A closely related approach was
introduced recently for computational target fishing by Rognan and coworkers!581l.
Another opportunity might also be to consider ligands from closely related targets by
incorporating a target similarity metric into the prediction framework. The similarity
could be calculated on the basis of protein sequence, as suggested in a recent
publication[82], or by relating the targets by binding pocket similarity. With the
renaissance of phenotypic screening as a method to identify drug candidates!330],
ligand-based machine-learning methods might also be applied to the raw phenotypic
readout without explicit knowledge of the ligand-target interaction in order to

identify promising drug candidates.

The current MAntA implementation is exclusively ligand-based and does not
incorporate structural information about the macromolecular target. For the GPCR
target family investigated in this work, there are currently only few crystal structures

available. With recent progress in solving GPCR structures, the number of available
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crystal structures is likely to increasel>83]. Therefore, MAntA could be combined with
receptor-based methods, especially when only a limited number of known ligands is
available. Such a combination could either be sequential, parallel, or made by directly
including receptor-information in the scoring process(1?3l. However, it has been
recognized that ligand-based methods often outperform contemporary receptor-
based approaches in regard to hit retrievall#4584585] and in the majority of cases the
combination of ligand- and receptor-based methods does not improve the
performancel>84l. Reasons for this observation could be that current ligand-receptor
docking methods are able to identify the receptor-relevant binding pose with
acceptable accuracy but are unable to accurately rank compounds according to their
binding affinityl(210.233,586], The problems mainly stem from the approximative nature
of the currently utilized scoring functions(>87l. Several problematic areas have been
identified that will probably be addressed in the futurel208]. A major concern is the
inherent protein flexibility, which affects the spatial arrangement of residues in the
ligand binding site, and consequently the ligand binding model>88l. Proteins are often
found to exist as a heterogeneous ensemble of conformations without a single
preferred bioactive conformation!>88l. It has recently been realized that molecular
ligand-receptor recognition is a "conformational selection" process where the ligand
selects the most favorable conformation out of the pre-existing conformational
ensemble upon binding[>89-592], rather than being an "induced fit" effect as proposed
by Koshland in 1958I593l. How to accurately model the target flexibility in a scoring
function is still an unsolved question(2085885%4] A second issue is the inadequate
treatment of entropic effects[210l. Current scoring functions mostly govern the
enthalpic contributions to binding affinity and neglect entropic contributions[210l, A
related issue which requires further attention in scoring function development is the
treatment of water in the binding pocket(>95]. Despite these drawbacks, receptor-
based methods have the advantage that they do not require any a priori ligand data.
Therefore, they can be utilized to find ligands for orphan targets(>87l.

Finally, it should be mentioned that it cannot be expected for a single method to
perform equally well for all targets. Rigorous evaluation of the methods' domain of
applicability is indispensable for picking the appropriate method(s) for the

investigated target(s).
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8 Appendix

8.1 Perspective — Nonlinear dimensionality reduction and mapping of
compound libraries for drug discovery

8.1.1 Abstract

Visualization of "chemical space" and compound distributions has received much
attraction by medicinal chemists, as it may help to intuitively comprehend
pharmaceutically relevant molecular features. It has been realized that for meaningful
feature extraction from complex multivariate chemical data, such as compound
libraries represented by many molecular descriptors, nonlinear projection
techniques are required. Recent advances in machine-learning and artificial
intelligence have resulted in a transfer of such methods to chemistry. We provide an
overview of prominent visualization methods based on nonlinear dimensionality
reduction, and highlight applications in drug discovery. Emphasis is on neural
network techniques, kernel methods and stochastic embedding approaches, which
have been successfully used for ligand-based virtual screening, SAR landscape

analysis, combinatorial library design, and screening compound selection.

8.1.2 Introduction

The first modern atlas of the world, the "Typvs Orbis Terrarvm", was published in
1570 employing the Mercator projection of the globe (Figure S1). There is no doubt
that a two-dimensional (2D) map of the three-dimensional (3D) surface of the earth
not only facilitated traveling from one place to the other, but more generally shaped
our modern perception of the world. Similarly, it can be helpful to visualize chemical
data in two dimensions, so that visual "navigation in chemical space" becomes
possible. Visualization of compound distributions presents complex data in a simpler
form[S152], By focusing on intrinsic dimensions of chemical data, relationships
between compounds may be graphically displayed to inspire medicinal chemists and
support hit finding and lead structure prioritization in drug discoverylS1.53-S5]. By

"compound library" we here refer to a defined set of compounds, eg. drug-like
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molecules or a combinatorial compound collection under investigation, rather than
the whole universe of stable chemical structures. In this review, we present some of
the essential mathematical concepts and motivate the use of nonlinear projection
methods for vectorial numerical chemical data, which is obtained from
representations of compounds by molecular descriptors like structural fingerprints,
pharmacophoric features, or physicochemical properties. For an extensive overview
of applications and practical examples of visualization in early drug discovery we

refer to an excellent review article by Balakin and coworkers [541.

Figure S1. World Map "Typvs Orbis Terrarvm" (A. Ortelius, 1570; source: The Library of Congress,
Washington DC, USA).

Often, the number of descriptors d used to encode molecular structure and properties
exceeds the number of uncorrelated features by far, and dimensionality reduction
and feature extraction methods are applied so that fewer "meaningful” descriptors or
descriptor combinations are found. In other words, most multivariate compound data
in R% are not truly d-dimensional but form patterns on a lower-dimensional
manifold[$¢l. In the context of this study, we refer to such a lower-dimensional
molecular representation as a "projection” of data from a high-dimensional pattern

space to a low-dimensional feature space X - X’ .
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This concept of low-dimensional virtual screening and chemical data analysis is
further motivated by several observations that can be made for high-dimensional
chemical descriptor spaces[S7l. With d approaching infinity, one encounters:

1. The empty space phenomenon: An exponential number of samples is needed
to cover R% in the sense that each dimension contains at least two
compounds. In typical drug discovery scenarios, the chemical space
spanned by a descriptor will be empty in terms of dataset coverage. For

example, the maximum dimension that could be covered by a compound

collection of one million compounds is as low as [logz (106)J =20.

2. Vanishing sphere volumes: The volume of a d-dimensional Euclidean sphere
with radius r becomes zero ford — o. As a practical consequence for
compound data from R?%, there is a dimension d after which a sphere of
radius r centered on compound x; contains only x; and no other sample. In
other words, with increasing dimension of the molecular representation,
the probability mass contained in a sphere with fixed radius around a
compound decreases rapidly.

3. Distance concentration: Sample norms tend to concentrate and as a
consequence, all distances are similar, samples lie on a hyper sphere, and,

each compound is nearest neighbor of all other compounds.

Consequences for virtual screening and the analysis of multivariate chemical data,
including compound ranking and clustering, bear the danger of leading to erroneous
results and consequently misinterpretation. We therefore motivate data visualization
and dimensionality reduction methods as potentially very useful for hit finding and

hit-to-lead optimization in early drug discovery.

8.1.3 Results and Discussion

Principal Component Analysis

Principal Component Analysis (PCA) is a linear dimension reduction method and
belongs to the class of spectral dimension reduction methods. The central idea of PCA
is to reduce the dimensionality of a data set consisting of a large number of

interrelated variables, while retaining as much as possible of their variation
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(variance). This is achieved by transforming the data to a new set of uncorrelated
variables, the Principle Components (PCs), which are ordered, such that the first few
retain most of the variation present in all of the original variables(S8l. PCs are linear
combinations of the original descriptor axes and represent those directions in data
space along which the scatter of the data is greatest. PCA has found widespread
application in molecular modeling and drug design, and it is common practice to
visualize compound distributions in graphical displays using the first two or three

principal components!s9.

PCA is performed by determining the eigenvectors and eigenvalues of the covariance
matrix, or approximated values in case of large data matrices. The covariance of two
random variables is their tendency to vary together. Suppose we have n independent
observations Xi, ..., Xn of a p-dimensional random variable (feature vector, molecular
descriptor vector). The sample covariance matrix S is given by Eq. S1, with X being

the sample mean and the superscript T denotes the matrix transpose.

S =3, G~ D - DT (S1)
In the case of centered data with X; = X; — X the covariance matrix can be rewritten
(Eq. S2):

= 1 ~ ~

§= =Y %k (52)

By solving the covariance matrix S for eigenvectors a € R? and eigenvalues A € R,

subject to the constraint that aTa = 1,we can find the projection directions (Eq. S3).
Sa=)a. (S3)
Data points X; are transformed into the new PC coordinate system by orthogonal
projection of the data points on each of the eigenvectors (Eq. S4).
Zi = ilA ) (84)

where A is the orthogonal (p x p) matrix with the eigenvectors as columns.
Eigenvectors are sorted by decreasing eigenvalues, which can be interpreted as their
"significance". To obtain a lower dimensional projection of the original data

eigenvectors with small eigenvalues are omitted from A.
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Ten years ago, Oprea and coworkers presented the Chemical Global Positioning
System (ChemGPS) in combination with PCA for the linear projection of chemical
datals10l, Its main feature is a set of "satellite" compounds that are placed outside
druglike space and thereby define outer data borders, and consequently, the
applicability domain of the projection. The original application employed a total of
423 satellites and representative drugs ("core structures"). This concept of defining
the borders of a chemical space by extreme-valued compounds can help identify
projection artifacts and prevent unjustified conclusions from inspection and
interpretation of chemical space maps and is not limited to PCA. In fact, it is
recommended to use a basis set of reference cores and satellites for any projection of
compound distributions. With the advent of large open access repositories and
searchable databases of bioactive compounds - e.g. ChEMBLIS!, PubCheml[S12],
ChemBank[$13], ChEBIS14], ChemDBIS151 - the known bioactive chemical space is
continuously extended and refined(S1¢l. This huge body of chemical structures and
literature data will help in defining appropriate boundaries of druglike chemical
spacelS17l. Despites its appeal there are certain limitations of PCA that motivate
nonlinear projection techniques to be used complementarily, e.g. the requirement for
normal-distributed data, susceptibility to outliers, and issues with data manifolds and
large data sets, to just name some prominent examples. In drug discovery one is
mainly interested in the structure of local neighborhoods of known bioactive
compounds or reference molecules,518] and the Chemical Similarity PrinciplelS19] is
grounded on the neighborhood conceptls205211, PCA per se does not preserve local
structure of the input data in the projection. In contrast, nonlinear embedding
techniques do not assume global linearity but make a weaker local linearity
assumption. In high-dimensional input space the Euclidian (L norm) distance is
assumed to be a good measure of geodesic distance (vide infra) only for nearby
points, which is also observed for chemical data suffering from the "curse of

dimensionality"[522],

We often face nonlinearity in structure-activity relationship (SAR) modeling, which
manifest as perceived "activity cliffs", that is, when structurally similar (nearby)
compounds exhibit a significantly different pharmacological or other measured effect.

Seemingly, the Chemical Similarity Principle does not hold in these regions of chemical
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space. This assumption may not be true, as the measured effect of a considered small
change of chemical structure, e.g. an exchange of methyl by ethyl, can be dramatic if
an essential, function-determining molecular feature (pharmacophore) is
destroyed!523524] In order to account for nonlinearity, specifically its relation to some
observable function or property, one can either conceive appropriate, context-
dependent molecular descriptors that restore global linearity, or apply nonlinear,
local neighborhood preserving embedding methods that are able to capture
manifolds in high-dimensional chemical datalS2l.

Numerous nonlinear projection methods - expressly manifold learning techniques
such as Local Linear Embedding (LLE)[S26], the IsoMaplS271 approach and its
derivatives Laplacian IsoMap[S28] and Kernel IsoMapl(529] - have found widespread
application in natural sciences, in particular bioinformatics!S30-533], but mainly outside
of chemistry. Some of these methods may be considered as specific instances of
Kernel PCAIS34535] which employs the "kernel trick" to perform conventional linear
PCA not in the original input space X (i.e. the original molecular descriptors), but in a
virtual, very high-dimensional Hilbert space V, so that nonlinear relationships in X
will gain linear meaning in V. In other words, the kernel trick virtually increases the
dimensionality of the input data so that, in this higher dimension space, they become
linearly related. The particular appeal of kernel methods is that the Hilbert space is
never explicitly generated by transforming the original data into that space, but
implicitly computed using a kernel function ®. The Support Vector Machine (SVM)
represents a prominent machine-learning concept using the kernel trick. SVMs are
most successfully employed for SAR modeling and classification of chemical datalS36l.
More recently, kernel-based Gaussian Process modeling has been introduced to
chemistry and drug discoveryl$37.538], While kernel methods provide an elegant
approach for nonlinear SAR modeling and classification, they do not explicitly provide
a means for data visualization and interpretation of complex nonlinear models. With
few exceptions of chemical feature extraction, visualization and interpretation
published[$39-541] this might be a reason why kernel techniques have not found

excessive appreciation in medicinal chemistry yet.
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Encoder network

Special types of feed-forward artificial networks were among the first nonlinear
methods employed for dimensionality reduction in chemistry($42-544], One such system
of particular interest is the symmetric encoder network (Figure 2)[545546], Here, the
idea is to simultaneously compute a nonlinear forward- and a back-projection of
chemical data. Within the applicability domain and under certain conditions[$47], this
concept would allow one to navigate in the low-dimensional projection, and for each
position of this map the coordinates (substructures, properties, or pharmacophoric
features - depending on the molecular descriptor used) of compound in the original
space are provided, thereby solving the "inverse QSAR problem"[5485491, Despite its
appeal only few applications of the encoder network approach have been published.
One reason for its limited use might be the small number of ready-to-use software
tools implementing such a system (one such free tool is the software
ChemSpaceShuttle!s501). One also needs to take into account long training times and
the requirement for an optimization of network architecture, specifically the number

of hidden neurons.

An encoder network must be trained in a supervised fashion, i.e. a forward (encoder)
and a backward (decoder) function must be found, by using sets of reference
compounds represented by a vectorial molecular descriptor x. Having defined the
number of hidden neurons and the desired projection (number of central layer
neurons), the weights of the encoder-decoder function defined by the network’s
architecture (whHidden yyCentral = yHidden yCentral) are optimized so that for every input
vector X, an identical output vector y is computed (Figure S2A).

Typically, variations of the delta rule in combination with gradient-based or
stochastic optimizers are employed for minimizing ||x — y||. After successful training,
the network "compresses"” the input data when smaller numbers of neurons are used
in the central layer than in the input layer, and can be used for generating projections
of x as outputs of the central layer neurons x’ (Figure S2B). Eq. S5 gives the simplified
network function computing the actual projection, where 9 and 0 are hidden and
central neuron bias values.

Xi/ _ f(x) — Z?Iidden(ijentral(Z;(nput W}I{-Iidden) + Sk) + ei . (SS)
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It must be kept in mind that there is an infinite number of input vectors that are
projected to the same point in X, and therefore, particular care must be taken to
clearly define the applicability domain of encoder network-based QSAR
modelstS515521, Only recently, this topic has been re-visited and appropriate
techniques for applicability domain estimation for various machine learning models
have been proposed![S53-555],

Input Hidden Central Hidden Output
A layer layer 1 layer layer 2 layer

Input vector > - Output vector

Input vector > - Projection

Figure S2. Topology of an encoder network for projection of multivariate data. Artificial neurons are drawn
as circles, connection weights as lines between neurons in the different network layers. The symmetric
network is trained so that any output vector y ideally is identical to its corresponding input vector x (A).
After successful network training the central layer neurons (blue circles) compute the desired projection of
x (B). The network structure shown accepts a five-dimensional input vector and computes a two-
dimensional projection x’.

Self-Organizing Map

The concept of self-organizing mapping of high-dimensional input was conceived by
Kohonen in the early 1980s[5°¢], and introduced to chemistry and drug design by
Gasteiger and coworkers in the 1990s[557l. The Self-Organizing Map (SOM) (or
"Kohonen net") has been extensively applied in drug discovery ever sincel$>8559, The
SOM architecture consists of a regular array of so-called "neurons"”, which essentially
are vectors that are arranged in a topological structure (typically a 2D array) and
have the same dimension as the input data. During the SOM training process - an

optimization procedure following the principles of unsupervised, associative Hebbian
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learningl$60] - the original high-dimensional space is tessellated, resulting in as many
data clusters as there are neurons in the SOM. The neurons represent centroids of
each cluster (Voronoi field). Data points within a cluster are more similar to "their"
neuron than to any other neuron of the SOM. In this regard, SOM training may be
considered a variant of k-means clustering, similar to vector quantization[s61562], The
resulting prototype vectors capture features in the input space that are unique for
each data cluster. Molecular feature analysis can be done, e.g., by comparing adjacent
neuron vectors. In analogy to the Mercator projection shown in Figure S1, Figure S3A
presents a SOM projection from 3D coordinates of points on the earth’s surface to a
2D map. The SOM grid contains 2400 neurons arranged as a toroidal 60x40 grid.
Some major city locations are highlighted as reference points. Note that although the
overall distribution and shapes of continents and oceans is not metric, local
neighborhoods are preserved, e.g. London and Zurich are close to each other on the

2D map.

A B

Beii London
€jing New York

Bejing

Zirich

Cape Town

Cape Town

Zirich London

Figure S3. Projections of the land-water distribution on the surface of the earth (red: land, blue: water). The
left panel (A) presents a 2D SOM (60x40 neurons) projection of these data. In B) Isometric SPE (ISPE) (r. =
0.2) was used to generate a 2D map. White color in A) indicates "empty space", i.e. neurons without data
points assigned. Earth data were obtained from the NASA NEO data set "Blue Marble: Next Generation
(Terra/MODIS)". The 2D latitude/longitude data, as defined by the position in the image, were transformed
to Cartesian coordinates. Random sampling from the sphere surface was applied to select subsets of 15,007
(SOM) and 65,167 points (ISPE), equally distributed over the sphere. The binary land/water descriptor was
calculated from the color information in HSV color space.

Kohonen’s algorithm represents an efficient way for mapping vectors that are close to
each other in input space onto contiguous locations in the output space. Preservation
of local neighborhood is achieved by introducing a topology to the layout of the SOM
neurons. The simplest topology is a chain of neurons, followed by a 2D grid.

Molecules that are located in adjacent clusters on the neuron grid are also close to
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each other in the original high-dimensional space. Topological mapping can be
achieved by two simple rules that guide the training process:
1.  Forinput vector x locate the best-matching neuron ("winner" neuron, w*).
2. Move this neuron and its topological neighbors toward x.
For the first rule vector distances between x and the SOM neurons w have to be
computed (Eq. S6). The number of comparisons needed depends linearly on the size

of the self-organizing system S, which can be expressed by its number of neurons.

I x—wjll-» min.(Vi€S) (S6)

The second rule requires an updating procedure to adapt the vector elements of the
winner neuron w* and its topological neighbors (Eq. S7), where ¢ is a learning rate
depending on both the topological distance between w* and neuron w;, and on the
training time passed. A toroidal neuron topology can be used to avoid some boundary
problems inherent to a planar topology. For a full description of the SOM algorithm

see the literaturelsé3l,

w;=w;+ellx—wll. (S7)

Figure 4 presents an application of SOM-based virtual screening for new kinase
inhibitors[S64l. The idea in this study was to map and cluster known drugs and lead
compounds and a virtual combinatorial library on a 2D SOM. All compounds were
represented by 150-dimensional CATS descriptors, a topological pharmacophore
feature representation(S65566]. The SOM was then colored according to the prevalence
of combinatorial compounds (Figure S4A) and known kinase inhibitors (COBRA data
collection, Figure S4B). The neuron containing the most combinatorial compounds
coincides with a kinase "activity island"[5¢7] This particular cluster holds many of the
reference inhibitors (seven-fold overrepresentation of kinase inhibitors compare to
the background distribution), and it was therefore reasonable to assume similar
targets for the combinatorial compounds. One candidate (compound 1) from the
virtual library was actually synthesized and successfully tested in a CDK2 inhibition

assay.
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Figure S4. 2D SOM projection of a virtual combinatorial library containing Biginelli-type dihydropyrimidones
(A) and drug-like bioactive compounds with kinase inhibitors highlighted (B). The SOM grid contains (15x20)
neurons. By SOM analysis, compound S1 was identified as an inhibitor of cyclin-dependent kinase 2 (CDK2).

The SOM virtual screening approach presented in Figure S4 belongs to the class of
ligand-based similarity searching methods[S245685691, [n contrast to using reference
compounds as queries and ranking the combinatorial screening compounds by some
pharmacophore similarity index, the SOM offers the potential advantage of
performing similarity searching using a "common pharmacophore” model (ie. the
neuron vector) as query. This avoids the necessity for comparing and merging ranked
lists of candidate compounds!S70l. Despite its appeal, the SOM approach used in this
study has several disadvantages compared to other ligand-based virtual screening
techniques. A major limitation of the original SOM algorithm is that the dimension of
the output space and the number of neurons must be predefined prior to SOM
training($71l. A disadvantage of SOMs can be the comparatively long training time
needed, especially if large data sets (e.g. HTS screening data, combinatorial compound
libraries) are used. Different training runs bear the additional danger of delivering
slightly different results due to the stochastic nature of SOM optimization. Several
variations and extensions of Kohonen's original SOM algorithm have been published
and applied to drug discoveryls72l. Such developments include self-organizing
networks with an adapting grid sizelS73], cascaded SOMsl74], and hybrid neural

networks[$75576], These systems might provide alternative approaches to virtual
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compound screening, although their practical usefulness and applicability to hit and

lead finding still needs to be rigorously assessed.

Stochastic Proximity Embedding

Stochastic Proximity Embedding (SPE) is a self-organizing dimensionality reduction
algorithm that aims at preserving the pairwise proximities in the lower dimensional
embedding. It was introduced to drug discovery by Agrafiotis and coworkers in
200215771, In its first version, SPE was used to find a stochastic approximation of
multidimensional scaling that preserved the metric structure. The mapping
procedure uses a pairwise refinement strategy that does not require the complete
distance or proximity matrix and scales linear with the size of the data set. This
allows dimension reduction even for large data sets.

If the data forms a lower dimensional nonlinear manifold, conventional similarity
measures, such as the Euclidean distance, tend to underestimate the proximity of
points and lead to erroneous embedding. To properly reconstruct the manifold, the
geodesic distance, the proximity of two points measured on the manifold itself, needs
to be preserved. Algorithms like IsoMap[S27] or LLE[S26] estimate the geodesic distance
from the local neighborhood. Agrafiotis observed that the geodesic distance is always
greater or equal to the input proximity. If two points are close, the input proximity
provides a good approximation to their geodesic distance; when they are further
away, the input proximity provides a lower boundlS78l. [sometric SPE (ISPE)
circumvents the calculation of estimated geodesic distances by incorporating this
observation(S¢l. [t forces embedding distances of nearby points to match their input
proximities, while points whose input proximities are larger than a defined threshold
are forced to stay further apart. ISPE preserves the distances of the local
neighborhood and views the distances between remote points as lower bounds of
their true geodesic distances and uses them to impose the global structure (Figure
2B). A similar approach has been applied to SOM training, where neurons adjacent to
the winner neuron w* are attracted to the data point presented, while neurons
outside a defined topological neighborhood on the SOM grid are pushed away. Such a
procedure can also be used to enhance contrast on SOMs[579l. The stress function S

minimized stochastically by ISPE is given by Eq. S8.
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f(dijre)
Zi<j#

— T,:]' .
S SiciTy - min., (S8)

where rj is the input proximity between the ith and jth point, djjis their Euclidean

distance in the low-dimensional embedding space and f (d;}, 7;;) is the pairwise stress

jr
function defined as f(d;j, ;) = (di; —1ij)? if ij <7, or d;; <r;; and f(d;;,7;) =0 if
1;j > 1, and d;; > ry;. rc is the neighborhood radius.

ISPE minimizes the stress function with a stochastic steepest descent approach. It
iteratively refines a starting configuration of the data points by repeatedly selecting
two points at random and adjusting their coordinates so that their embedding
distance dij matches more closely their input proximity rj. The correction is
proportional to the disparity 4 |r_ij — d_ij | / d_ij , where A is a learning rate. To avoid
oscillation the learning rate is decreased during the course of refinement. If the points
are not neighbors, ifr;; > r, and d;; > r;j, their coordinates remain unmodified. The
result of ISPE strongly depends on the choice of the neighborhood radius for learning
the embedded manifold. If ;. is too large, shortcuts to other branches of the manifold

are possible, whereas if it is too small it may lead to fragmented clusters (Figure S5).

r.=0.05 re=1.0

Figure S5. ISPE projections of the 3D "Swiss roll" manifold (A) to two dimensions (B-D) using different cut-
off distances r.. The data points for the Swiss roll were obtained by generating coordinate triplets (x =i
cos(i), y =i sin(i), j), where i and j are random numbers from the intervals [5, 15] and [0, 30], respectively.
The color corresponds to the angle i.
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As an illustrative example, Figure S6 presents the application of PCA and ISPE to
producing a 2D chemical structure depiction from 3D molecular atom coordinates.
The first compound is PPAR-gamma agonist pioglitazone, for which a receptor-bound
conformation served as "high-dimensional” input. Apparently, both PCA and ISPE are
able to produce a 2D visualization lacking great distortion. This can be explained by
the extended shape of the pioglitzone conformer, which is properly projected on the
first two PCs. The second example provides 2D projections computed for epothilone
D bound to cytochrome P450epoK. Here, ISPE generates a more appealing, less
compact 2D mapping than PCA, probably due to the greater degree of 3D

conformational folding of the reference structure.

PDBI-ID: 2xkw ISPE

PDB-ID: 1g5d PCA ISPE

Figure S6. Generation of 2D projections (right) for 3D molecular conformations (left). The top panel shows
the results obtained by PCA and ISPE (r. = 0.2) for the example of PPAR-gamma agonist pioglitazone bound
to the receptor (PDB—ID[SSO] 2ka[581]). The bottom panel provides the projections computed for epothilone
D bound to cytochrome P450epoK (PDB-ID 1q5d[582]).

Stochastic Neighbor Embedding

In contrast to SPE, Stochastic Neighbor Embedding (SNE) does not try to preserve
pairwise distances but instead the probabilities of points being neighbors!$83]. The
pairwise distances in the input and output space are used to calculate the probability
distributions that point i is a neighbor of point j. The aim of the embedding is to
approximate the neighbor probability distribution as close as possible in the low-

dimensional embedding.
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The probability of point i being neighbor to pointj in the input space is defined as (Eq.
S9):

e

Pij =5 —.23 (59)

~ Zreiexp(-df)

The proximities dizj may be given as a proximity matrix or calculated using the scaled

squared Euclidean distance between the high-dimensional input data points Xx; and x;

(Eq. S10).

az = byl (510)

The scaling factor o;, the variance of the Gaussian at point x;, is either set manually or
by fixing the entropy of the distribution. Setting the entropy to log k sets the "effective
number of local neighbors" to k[S83l.

The induced probability g;; that point i picks point j as its neighbor in the embedding

space, with yi being the low-dimensional images, is defined as (Eq. S11):

__exp (—||Yi—Yj||2)
UGj = Ykziexp (—llyi—yell®) (S11)

The aim is to match the probabilities as close as possible, as measured by the sum of
Kullback-Leibler (KL) divergences between the original and induced distributions
over neighbors for each object (Eq. S12).

€ =L:Z;pilog gt = LiKL(PIIQ) (512)
Hinton et al. already showed that the probabilistic framework can easily be extended
to allow multiple low-dimensional images for each high-dimensional object through a
mixture of Gaussians!S83l. In the past few years several extensions to the classical SNE
algorithm have been published. t-distributed Stochastic Neighbor Embedding (t-
SNE)[584] uses a symmetric cost function, which is easier to optimize, and a Student-t
distribution instead of the Gaussian to model similarity in low-dimensional space. It
improves visualization because natural clusters tend to be more separated in the low-
dimensional embedding, thus it simplifies the visual perception of clusters. The
application was extended to visualize data together with class labels[S8°], incorporate

multiple similarity matrices!S8¢], or multiple views of the input datal$87l. SNE has also
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been analyzed within the framework of information retrieval and a variant has been
introduced, which optimizes the retrieval quality, quantified by precision and
recallls88l. A limitation of SNE is its computational demand for projecting large
datasets due to the calculation of the complete pairwise probability matrix and
steepest-decent optimization. To some extent this has been addressed in recent
publications using trust-regions to speed-up convergencels8%], or landmark sampling

to reduce memory consumption[s83l,
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Figure S7. 2D SNE projection of a combinatorial library containing 15,840 three-component Ugi reaction
products (a-aminoacyl amide derivatives) formed from the condensation of an amine, aldehyde and
isocyanide. In (A) the compounds’ measured inhibitory activity against Tryptase is shown by color-coding
each compound (dot) from blue (inactive) to red (active). In (B) compound clusters containing the same
amine building block (R;) are highlighted in a different color. Ugi data courtesy of Dr. Lutz Weber
(Morphochem AG). Compound structures were standardized using the "wash" method in MOE v2010.10
and explicit hydrogen atoms were removed prior to descriptor calculation. Topological CATS descriptors
were computed using the speedcats software (0-9 bonds, type-sensitive scaling)[sgll.

A typical application of SNE is the visualization of the distribution of combinatorial
compound libraries in some high-dimensional pattern space spanned by
pharmacophore descriptors (Figure S7). As an example, we encoded a library of
15,840 three-component Ugi reaction products by the topological CATS descriptor.
Figure S7A presents a 2D projection of these 250-dimensional data that was obtained
by ISPE. Color corresponds to measure inhibitory activity of the compound against
tryptase. An "activity island" containing many inhibitors is highlighted in red color
(low ICso values). Visualization compound distributions can also help to graphically

investigate preliminary SARs. In Figure S7B, the same ISPE projection is colored
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according to the primary amine identity used in the multi-component Ugi reaction. It
becomes evident from looking at the color distribution that certain positively charged
benzamidine derivatives seem to be preferred for blocking the serine protease
tryptase, which has been long known from numerous medicinal chemistry

projects(s90l,

8.1.4 Conclusion

Maps of chemical space have demonstrated their usefulness for analyzing the
diversity and complementarity of compound libraries, with particular emphasis on
combinatorial compound collections and QSAR modeling($92-5%4], Efforts to develop
open platform for QSAR model generation and data analysis are ongoing($955%], with
visualization techniques playing an important role in activity prediction, extraction of
ligand-target networks, structural diversity analysis, and cluster visualization.
Structure-activity landscapes have received much attention recentlyS97.598] mainly
driven by innovative visualization methods that allow for online monitoring of
dynamic landscapes and fast and efficient embedding of chemical structures and
picturing response surfaces!$9951001 Such methods, including our own visualization
tool LiSARD (Ligand Structure Activity Relationship Display)[5101], might become a
valuable addition to the drug designer’s toolbox. Latest developments include a study
by Soto et al. who compared several mapping algorithms and suggest Correlative
Matrix Mapping (CMM) as a potential method of choice for target-driven subspace
mapping8102. We are also witnessing continuing amalgamation of methods. For
example, Neighbor Embedding XOM (NE-XOM), an extension to the Exploratory
Observation Machinel$103], is based on minimizing the Kullback-Leibler divergence of
neighborhood functions in data and embedding spacel$104, In this it is comparable to
SNE combined with principles first encountered in SOM modeling. Numerous related
concepts are being developed mainly in the context of machine-learning applications.
We expect such innovative data mapping approaches to be studied for their
transferability and practical usefulness in molecular modeling and drug discovery,
thereby complementing automated virtual screening protocols for rapid focused

library design and compound prioritization[$1055106],
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8.2 Supporting Information - Chemically advanced template search
(CATS) for scaffold-hopping and prospective target prediction for
"orphan" molecules

8.2.1 General information

All starting materials and solvents were obtained from ABCR Chemicals, Aldrich, Fluka,

Alfa Aesar or Acros, and were used without further purification.

Combinatorial library was built using J-KEM® Scientific robot for mixing the building

blocks. Microwave-assisted synthesis was then carried out in a Biotage Initiator reactor.

Analytical HPLC-MS was carried out in a Shimadzu LC-MS2020 system, equipped with a
Nucleodur Cig HTec column, under an appropriate gradient of acetonitrile : HO (+ 0.1%
trifluoroacetic acid in each phase), and a total flow rate of 0.5 mL/min. The mass
spectrometer was operated in positive-ion mode with ESI. Preparative HPLC was carried
out on a Shimadzu LC-8A system, coupled to a Nucleodur 100-5 C;s HTec column, and a
SPD-20A UV/Vis detector.

Proton and carbon nuclear magnetic resonance spectra (‘'H and ?C NMR, respectively)
were recorded on Bruker Avance 400 spectrometer. Chemical shifts (d) are reported in
units of parts per million (ppm) downfield from SiMe, (6 0.0) and relative to the respective
solvent’s peak. Multiplicities are given as: s (singlet), d (doublet), t (triplet), dd (double of
doublet) td (triplet of doublet) or m (multiplet). 'H-"H Coupling constants (J) are reported
in Hertz (Hz).
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8.2.2 Virtual combinatorial library — building blocks
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Figure S8. Aminopyridines (P), aldehydes (A) and isocyanides (I) building blocks described by Burchak et al’
used for enumerating the virtual combinatorial library

1 Burchak ON, Mugherli L, Ostuni M, Lacapere ]], Balakirev MY (2011) J. Am. Chem. Soc. 133, 10058-
10061.
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8.2.3 Synthesis

General procedure for synthesis of imidazopyridine combinatorial library

N
NH, =
MeOH, HCIO, 1 R2
R1{:,\',r + RZCHO + R3-NC : R N
MW, 170 °C, 5 min
NH
R3

Stock solutions in MeOH were prepared for all building blocks (P, A and I) and catalyst.
These solutions had a concentration of 400 mM for P, A and I starting materials, while for
perchloric acid a solution of concentration 40 mM was prepared. An automated system
dispensed 75 uL of each building block and catalyst, sequentially, into microwave vials.
These were sealed and heated for 5 minutes, at 170 °C under microwaves. The reaction
products were analyzed under HPLC-MS using ACN : H,O (+ 0.1% TFA in each phase) as

eluent. A typical run used a gradient of 5-50% ACN run in 12 minutes.

General procedure for synthesis of selected imidazopyridines

The protocol was adapted from existing literature.” 2-Aminopyridine (1.0 molar eq.),
aldehyde (1.0 molar eq.) isocyanide (1.0 molar eq.) and perchloric acid (10 mol%) were
dissolved in ethanol absolute (2.1 mL/mmol). The solutions were heated at 170 °C for 5
minutes under microwaves. The resulting crudes were purified via preparative HPLC using
ACN : H,O (+ 0.1% TFA in each phase) as eluent. A typical run used a gradient of 5-50%

ACN run over 16 minutes.

Methyl 2-((2-(2,4-dimethoxyphenyl)imidazo[1,2-a]pyridin-3-yl)amino)acetate, 2

_ /NMeO

 N_/ OMe

HN
CO,Me

Yellow oil; 81%; *H NMR (CD30D, 400.13 MHz): § 3.44 (3H, s, OCHz), 3.67 (2H, s, CH2), 3.75 (3H, s,
OCHz), 3.80 (3H, s, OCH3), 6.57-6.61 (2H, m, Ar-H), 7.32-7.36 (1H, m, Ar-H), 7.53 (1H, d, ] = 8.0 Hz, Ar-
H), 6.77-7.75 (2H, m, Ar-H), 8.68 (1H, d, ] = 2.4 Hz, Ar-H). 13C NMR (CD30D, 100.61 MHz): § 48.54,
52.52, 56.18, 56.48, 99.77, 107.08, 108.44, 112.51, 117.43, 123.13, 126.42, 129.04, 132.62, 133.56,
137.46,159.91, 164.60, 173.19. HRMS-ESI calc. (C1g8H19N304+H*): 342.1448, found: 342.1448.
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Methyl 2-(1-methyl-1H-pyrrol-2-yl)-3-((2-morpholinoethyl)amino)imidazo[1,2-a] pyridine-7-
carboxylate, 3

Yellow oil; 74%; (CDsOD, 400.13 MHz): & 3.08 (2H, m, CHz), 3.21 (2H, t, ] = 6.4 Hz, CH,), 3.37 (2H, m,
CHz), 3.45 (2H, t, ] = 6.4 Hz, CHy), 3.72 (3H, s, CHs), 3.81 (2H, m, CH;), 3.97 (2H, m, CH), 4.05 (3H, s,
CHs), 6.32 (1H, dd, ] = 3.8 Hz, Ar-H), 6.63 (1H, dd, ] = 3.8 Hz Ar-H), 7.06 (1H, m, Ar-H), 7.93 (1H, dd, ] =
1.6 and 7.2 Hz, Ar-H), 8.40 (1H, m, Ar-H), 8.80 (1H, dd, / = 0.8 and 7.2 Hz, Ar-H). 13C NMR (CDs0D,
100.61 MHz): 35.01, 41.04, 53.33, 53.84, 57.27, 64.81, 110.04, 114.52, 115.63, 116.03, 116.31, 118.78,
126.40, 127.62, 131.28, 134.24, 137.07, 165.19. HRMS-ESI calc. (C20H25Ns03+H+): 384.2030, found:
384.2031.

2-(Benzo[d][1,3]dioxol-4-yl)-N-(2-morpholinoethyl)imidazo[1,2-a]pyridin-3-amine, S2
N
o O

AN =N
s N/

NH

(" “S
o/
White solid; mp = 131-133 °C, 75%, 1H NMR (CDs0D, 400.13 MHz): & 3.00 (2H, m, CHz), 3.21 (3H, t, ] =
6.2 Hz, CHz+ CH), 3.34 (3H, t, ] = 6.4 Hz, CH, + CH), 3.56-3.94 (4H, m, CH,), 6.01 (2H, s, CH2), 6.87 (1H,
dd, J = 1.8 and 8.2 Hz, Ar-H), 6.92 (1H, t, ] = 8.2 Hz, Ar-H), 7.14 (1H, dd, ] = 1.8 and 8.0 Hz, Ar-H), 7.37
(1H, td, ] = 1.6 and 7.4 Hz, Ar-H), 7.74 (1H, m, Ar-H), 7.82 (1H, m, Ar-H), 8.65 (1H, m, Ar-H). 13C NMR
(CDs0D, 100.61 MHz): & 42.50, 53.47, 57.66, 64.84, 103.47, 109.52, 111.50, 112.97, 118.24, 122.26,
122.86, 124.07, 126.52, 128.89, 134.85, 138.74, 146.90, 149.91. HRMS-ESI calc. (C20H22N403+H*):
367.1765, found: 367.1765.

Methyl 2-(2,4-dimethoxyphenyl)-3-((2-morpholinoethyl)amino)imidazo[1,2-a]pyridine-6-
carboxylate, S3
MeO
/ /N
Meom/CN/ 7 OMe
o NH

e
()
Yellow oil; 92%; 1H NMR (CDCls, 400.13 MHz): & 2.90 (2H, m, CH,), 3.22 (2H, t, ] = 6.4 Hz, CHy), 3.32
(2H, t,J = 6.4 Hz, CH2), 3.39 (2H, d, ] = 11.6 Hz, CH3), 3.77 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.84-4.00
(4H, m, CHz), 4.04 (3H, s, OCH3), 6.42 (1H, d, ] = 2.0 Hz, Ar-H), 6.45 (1H, dd, J = 2.0 and 8.7 Hz, Ar-H),
7.54 (1H, d, ] = 8.8 Hz, Ar-H), 7.83 (1H, dd, J = 1.0 and 9.2 Hz, Ar-H), 8.20 (1H, dd, / = 1.6 and 9.4 Hz, Ar-
H), 911 (1H, S, Ar-H). 13C NMR (CD30D, 100.61 MHZ): 0 41.89, 53.36, 53.59, 56.22, 56.52, 57.46, 64.79,
99.86,107.21,107.91, 112.67, 116.07, 121.89, 125.05, 129.26, 132.88, 133.31, 138.60, 160.23, 165.11,
165.15. HRMS-ESI calc. (C23H28N405+H+): 441.2132, found: 441.2127.
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Methyl 2-(3-fluorophenyl)-3-((2-morpholinoethyl)amino)imidazo[1,2-a]pyridine-7-

carboxylate, S4
1% F
s N
NH
(\N
o/

Yellow oil; 70%; 'H NMR (CDCls, 400.13 MHz): & 2.96 (2H, m, CHz), 3.33 (2H, t, ] = 6.4 Hz, CH,), 3.44
(2H, t, ] = 6.4 Hz, CHy), 3.44-3.49 (2H, m, CHy), 3.90-4.01 (4H, m, CHy), 4.03 (3H, s, OCHs), 7.11 (1H, td, J
= 2.2 and 8.4 Hz, Ar-H), 7.45 (1H, m, Ar-H), 7.51 (1H, m, Ar-H), 7.59 (1H, d, ] = 8.2 Hz, Ar-H), 7.88 (1H,
dd,J = 1.6 and 7.0 Hz, Ar-H), 8.40 (1H, s, Ar-H), 8.71 (1H, dd, ] = 1.0 and 7.0 Hz, Ar-H). 13C NMR (CD30D,
100.61 MHz): & 42.56, 53.46, 53.86, 57.64, 64.83, 115.00, 116.12, 116.36, 116.62, 118.40, 118.61,
125.44, 126.73, 129.57, 132.77, 134.75, 138.17, 164.52, 165.21. HRMS-ESI calc. (C21H23FN4O3+H*):
399.1827, found: 399.1828.

Methyl 2-(3-methoxyphenyl)-3-((2-morpholinoethyl)amino)imidazo[1,2-a]pyridine-7-
carboxylate, S5
0 OMe
s N

NH

(\N
o
Yellow oil; 93%; 'H NMR (CDCls, 400.13 MHz): & 2.88 (2H, m, CHz), 3.22 (2H, t, ] = 6.4 Hz, CHy), 3.29
(2H, t, ] = 6.4 Hz, CHz), 3.37 (2H, m, CH2), 3.68 (3H, s, CHs), 3.82-3.91 (4H, m, CHy), 3.95 (3H, s, OCHa),
6.66 (1H, dd, J = 1.6 and 8.2 Hz, Ar-H), 7.06-7.20 (3H, m, Ar-H), 7.72 (1H, dd, ] = 1.4 and 7.2 Hz, Ar-H),
8.16 (1H, s Ar-H), 8.55 (1H, d, J = 7.2 Hz, Ar-H). 3C NMR (CDCls, 100.61 MHz): 41.35, 52.70, 53.52,
55.36, 57.41, 63.53, 112.62, 114.04, 116.17, 116.82, 119.82, 124.39, 126.43, 126.71, 129.48, 130.40,
133.38,160.18, 161.46, 163.30. HRMS-ESI calc. (C22H26N404+H*): 411.2027, found: 411.2027.

Methyl 2-(4-methoxyphenyl)-3-((2-morpholinoethyl)amino)imidazo[1,2-a]pyridine-8-
carboxylate, S6
Oy_-OMe

=N
X NwOMe

NH

(" ”g
o/
Yellow oil; 72%; 'H NMR (CDCls, 400.13 MHz): & 2.88 (2H, m, CH,), 3.20 (2H, t, ] = 6.4 Hz, CHy), 3.37-
3.42 (4H, m, CHz), 3.81 (3H, s, OCHs), 3.82-4.03 (4H, m, CH,), 4.03 (3H, s, OCH3), 6.98 (2H, d, ] = 9.0 Hz,
Ar-H), 7.46 (1H, dd, ] = 7.2 Hz Ar-H), 7.60 (2H, d, ] = 9.0 Hz, Ar-H), 8.38 (1H, dd, J = 1.0 and 7.4 Hz, Ar-
H), 7.98 (1H, dd, ] = 1.0 and 7.0 Hz, Ar-H). 13C NMR (CD30D, 100.61 MHz): & 42.46, 53.37, 53.86, 56.07,
57.63, 64.79, 115.73, 116.53, 117.69, 119.14, 128.30, 129.59, 130.70 132.39, 136.29, 137.34, 163.12,
164.19. HRMS-ESI calc. (C22H26N404+H*): 411.2027, found: 411.2028.
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Methyl 2-((7-cyano-2-(2,4-dimethoxyphenyl)imidazo[1,2-a]pyridin-3-yl)amino)acetate, S7

MeO
NC.__~~__N
. N_/ OMe
HN
CO,Me

Yellow solid; mp = 60-61 °C; 87%; H NMR (CDs0D, 400.13 MHz): & 3.55 (3H, s, OCHs), 3.80 (2H, s,
CH), 3.90 (3H, s, OCHs), 3.92 (3H, s, OCHs), 6.73 (1H, d, ] = 2.4 Hz, Ar-H), 6.76 (1H, dd, ] = 4.8 and 2.0
Hz, Ar-H), 7.62-7.68 (2H, m, Ar-H), 8.28 (1H, s, Ar-H), 8.89 (1H, d, J = 7.2 Hz, Ar-H). 13C NMR (CD30D,
100.61 MHz): & 48.17, 52.56, 56.22, 56.51, 99.83, 107.29, 108.31, 114.51, 117.25, 117.60, 118.58,
126.04, 127.11, 131.05, 132.79, 135.66, 160.07, 165.05, 173.04. HRMS-ESI calc. (Ci9H1sN4O4+H*):
367.1401, found: 367.1401.

Methyl 2-((2-(benzo[d][1,3]dioxol-4-yl)-7-cyanoimidazo[1,2-a]pyridin-3-yl)amino) acetate, S8
0o
NC AN
N Nf@
HN
CO,Me
Yellow solid; mp = 160-162 9C; 56%; *H NMR (DMSO-ds, 400.13 MHz): 8 3.49 (3H, s, OCH3), 3.84 (2H, d,
J=6.4Hz, CHy), 5.61 (1H, t,/ = 6.4 Hz, NH), 6.10 (2H, s, CHz), 6.95-6.97 (2H, m, Ar-H), 7.20 (1H,d, /= 7.2
Hz, Ar-H), 7.31 (1H, dd, J = 4.4 Hz, Ar-H), 8.23 (1H, s, Ar-H), 8.47 (1H, d, ] = 6.8 Hz, Ar-H). 13C NMR
(DMSO-ds, 100.61 MHz): 6 47.53,51.57,100.83,103.97,107.98, 111.44, 115.88, 118.44, 121.73 121.77,

123.34, 124.10, 129.74, 131.54, 138.01, 144.21, 147.36, 171.58. HRMS-ESI calc. (C1gH14N4O4+H*):
351.1088, found: 351.1087.

Methyl 2-((2-(4-methoxyphenyl)imidazo[1,2-a]pyrazin-3-yl)amino)acetate, S9

2N

K/Nj/)—@om
HN
CO,Me

Yellow solid; mp = 150-151 °C; 67%; 'H NMR (CD30D, 400.13 MHz): 6 3.50 (3H, s, OCH3), 3.78 (3H, s,
OCHz), 3.87 (2H, s, CH2), 7.00 (2H, d, ] = 6.8 Hz, Ar-H), 7.83-7.87 (3H, m, Ar-H), 8.56 (1H, d, ] = 4.8 Hz,
Ar-H), 8.92 (1H, s, Ar-H). 13C NMR (CD30D, 100.61 MHz): 6 48.06, 52.67, 55.96, 115.55, 118.72, 123.80,
124.50, 130.54, 133.56, 134.82, 135.96, 141.33, 162.58, 173.27. HRMS-ESI calc. (C16H16N4O3+H*):
313.1295, found: 313.1295.

Methyl 2-((7-cyano-2-(pyridin-3-yl)imidazo[1,2-a]pyridin-3-yl)amino)acetate, S10

NC.__~~__N =N
1O
HN

CO,Me
Yellow solid; mp = 183-185 2C; 39%; H NMR (CD30D, 400.13 MHz): 6 3.54 (3H, s, CHz), 3.93 (2H, s,
CH»), 7.28 (1H, dd, / = 7.2 and 2.0 Hz, Ar-H), 7.84 (1H, ddd, J = 8.0, 5.6 and 0.4 Hz, Ar-H), 8.29 (1H, dd, J
= 1.6 and 1.2 Hz, Ar-H), 8.63 (1H, dd, / = 7.2 and 0.8 Hz, Ar-H), 8.71 (1H, dd, J = 5.2 and 0.8 Hz, Ar-H),
8.80 (1H, dt, J = 8.0 and 2.0 Hz, Ar-H), 9.40 (1H, d, J = 2.0 Hz, Ar-H). 13C NMR (CDs0D, 100.61 MHz): &
47.93, 51.65, 105.81, 111.63, 118.09, 123.53, 125.27, 125.42, 130.11, 130.94, 131.82, 137.72, 138.61,

143.68, 144.48,171.97. HRMS-ESI calc. (C16H13N502+H*): 308.1142, found: 308.1143.
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Methyl 2-((2-(benzo[d][1,3]dioxol-4-yl)imidazo[1,2-a]pyridin-3-yl)amino)acetate, S11
0 o
AN
s N7
HN
CO,Me
Yellow oil; 80%; 'H NMR (CD30D, 400.13 MHz): 8 3.36 (3H, s, OCH3), 3.68 (2H, s, CHz), 5.93 (2H, s, CHy),
6.76 (1H, d, / = 8.0 Hz, Ar-H), 6.82 (1H, t, ] = 8.0 Hz, Ar-H), 7.10 (1H, d, J = 8.0 Hz, Ar-H), 7.29 (1H, t, ] =
7.2 Hz, Ar-H), 7.65 (1H, d, ] = 9.2 Hz, Ar-H), 7.72 (1H, m, Ar-H), 8.63 (1H, d, ] = 6.8 Hz, Ar-H). 13C NMR
(CD30D, 100.61 MHz): § 48.84, 52.57,103.33, 109.86, 111.18, 112.83, 117.87, 121.63, 123.98, 126.80,
129.62, 134.50, 134.57, 138.48, 146.54, 149.77, 173.17. HRMS-ESI calc. (C17H15sN304+H*): 326.1135,
found: 326.1133.

Methyl 2-((2-(3-methoxyphenyl)imidazo[1,2-a]pyrazin-3-yl)amino)acetate, S12

OMe
N* /N
HN\\

CO,Me
Yellow solid; mp = 137-138 °C; 61%; 'H NMR (CDs0D, 400.13 MHz): 6 3.60 (3H, s, OCHs), 3.88 (3H, s,
OCHs), 3.92 (2H, s, CHz), 7.06 (1H, ddd, ] = 8.6, 2.6 and 1.2 Hz, Ar-H), 7.45 (1H, t, ] = 8.0 Hz, Ar-H), 7.53-
7.60 (2H, m, Ar-H), 7.95 (1H, d, ] = 5.4 Hz, Ar-H), 8.66 (1H, dd, ] = 5.3 and 1.2 Hz, Ar-H), 9.05 (1H, d, ] =
0.8 Hz, Ar-H). 13C NMR (CD30D, 100.61 MHz): 6 48.21, 52.66, 55.90, 114.35, 116.45, 118.91, 121.18,
121.24, 124.15, 131.20, 133.94, 135.13, 137.42, 140.56, 161.60, 173.27. HRMS-ESI calc.
(C16H16N403+H+)2 313.1295, found: 313.1294.

Methyl 2-((2-(3-fluorophenyl)imidazo[1,2-a]pyrazin-3-yl)amino)acetate, S13
F
NN =N
N
HN
CO,Me
Yellow solid; mp = 170-171 9C; 46%; 'H NMR (CD30D, 400.13 MHz): § 3.50 (3H, s, OCH3), 3.87 (2H, s,
CHz), 7.12 (1H, tdd, = 8.6, 2.4, 0.8 Hz, Ar-H), 7.46 (1H, m, Ar-H), 7.69 (1H, m, Ar-H), 7.77 (1H, m, Ar-H),
7.83 (1H, d, J = 5.2 Hz, Ar-H), 8.57 (1H, dd, J = 5.2 and 1.2 Hz, Ar-H), 8.97 (1H, d, ] = 1.0 Hz, Ar-H). 13C
NMR (CD30D, 100.61 MHz): 6 48.41, 52.66, 115.41, 115.65, 117.11, 117.32, 119.29, 123.94, 124.72,
131.92, 135.44, 138.33, 163.28, 165.71, 173.31. HRMS-ESI calc. (C1sH13FN402+H*): 301.1095, found:
301.1097.

Methyl 2-((6-(2,4-dimethoxyphenyl)imidazo[2,1-b]thiazol-5-yl)amino)acetate, S14
MeO
S—_N

Q\J\T\/)—@we
HN
CO,Me

Yellow oil; 52%; 'H NMR (CD;0D, 400.13 MHz): & 3.39 (3H, s, OCHs), 3.58 (2H, s, CH,), 3.68 (3H, s,
OCH3), 3.72 (3H, s, OCHs), 6.46-6.53 (2H, m, Ar-H), 7.36 (1H, m, Ar-H), 7.46 (1H, m, Ar-H), 7.96 (1H, dd,
J = 4.4 and 1.2 Hz, Ar-H). 13C NMR (CD30D, 100.61 MHz): § 48.78, 52.53, 56.12, 56.40, 99.75, 106.88,
109.20, 117.89, 121.03, 123.30, 130.74, 132.10, 143.16, 159.66, 164.09, 173.34. HRMS-ESI calc.
(C16H17N304S+H*): 348.1013, found: 348.1013.
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combinatorial library with in silico target prediction reveals
imidazopyridine GPCR ligands

8.3.1 Synthesis

2-(2,4-Dimethoxyphenyl)-N-(2-morpholinoethyl)imidazo[1,2-a]pyridin-3-amine, formic acid
salt (4)

—\ OMe

M

Orange oil; 49%; H NMR (CDCls, 400.13 MHz): & 2.15 (4H, m, CHz), 2.26 (2H, m, CHz), 2.86 (2H, m,
CHz), 3.51 (4H, m, CHy), 3.79 (3H, s, OCH3), 3.84 (3H, s, OCH3), 6.51 (1H, d, ] = 2.0 Hz, Ar-H), 6.64 (1H,
dd, J = 2.4 and 8.4 Hz, Ar-H), 6.88 (1H, td, ] = 1.6 and 6.8 Hz, Ar-H), 7.22 (1H, m, Ar-H), 7.59 (1H, d, ] =
8.8 Hz, Ar-H), 7.75 (1H, d, ] = 8.8 Hz, Ar-H), 8.10 (1H, d, ] = 6.8 Hz, Ar-H), 8.30 (1H, s, Ar-H). 13C NMR
(CDCl3, 100.61 MHz): 6 43.73, 53.24, 55.53, 56.05, 57.72, 66.70, 99.10, 105.60, 113.04, 113.45, 116.03,
122.44, 125.67, 127.73, 129.22, 132.22, 140.18, 157.31, 161.48, 165.68. HRMS-ESI calc.
(C21H26N403+H+)2 383.2078, found: 383.2070.

Methyl 2-(2,4-dimethoxyphenyl)-3-((2-morpholinoethyl)amino) imidazo[1,2-a] pyridine-7-
carboxylate, formic acid salt (5)
0 —0

07 N N=N /
HN
\LNA\O
p—

Yellow oil; 35%; 'H NMR (CDCls, 400.13 MHz): § 2.42 (4H, m, CHz), 2.49 (2H, m, CH,), 3.05 (2H, m,
CHa), 3.66 (4H, m, CHz), 3.89 (3H, s, OCHs), 3.92 (3H, s, 0CH3), 4.00 (3H, s, OCH3), 6.61 (1H, d, ] = 2.0 Hz,
Ar-H), 6.70 (1H, dd, ] = 2.0 and 8.8 Hz, Ar-H), 7.53 (1H, dd, ] = 1.2 and 7.2 Hz, Ar-H), 7.67 (1H, d, ] = 8.8
Hz, Ar-H), 8.16 (1H, d, ] = 7.6 Hz, Ar-H), 8.26 (2H, br.s, NH), 8.42 (1H, s, Ar-H). 13C NMR (CDCls, 100.61
MHz): 8§ 44.35, 52.97, 54.49, 56.04, 56.51, 59.04, 67.91, 98.81, 99.80, 106.93, 112.07, 116.53, 117.72,
119.59, 123.49, 125.81, 131.48, 133.19, 159.02, 163.17, 167.29, 189.94. HRMS-ESI calc.
(C23Ho7N4Os+H*): 442.3232, found: 441.2133.

N-(2-Morpholinoethyl)-2-phenylimidazo[1,2-a]pyridin-3-amine, formic acid salt (6)

g N
(AN

N _N
oy
Brown oil; 9%; 'H NMR (CDCls, 400.13 MHz): § 2.42 (4H, m, CH3), 2.52 (2H, m, CHz), 3.03 (2H, m, CH3),
3.66 (4H, m, CHy), 6.81 (1H, td, ] = 1.2 and 6.8 Hz, Ar-H), 7.15 (1H, m, Ar-H), 7.27 (1H, t, ] = 7.2 Hz, Ar-
H), 7.38 (2H, m, Ar-H), 6.63 (1H, d, ] = 8.8 Hz, Ar-H), 8.85 (2H, d, ] = 8.0 Hz, Ar-H), 8.11 (1H, d, ]/ = 6.8 Hz,
Ar-H), 8.28 (1H, s, NH). 13C NMR (CDCls, 100.61 MHz): 6 43.77, 53.39, 58.06, 66.47, 112.57, 116.82,
122.59, 125.20, 126.33, 127.41, 127.53, 127.87, 128.75, 132.90, 140.85, 165.39. HRMS-ESI calc.
(C19H21N40+H*): 323.1866, found: 323.1860.

Methyl 3-((2-morpholinoethyl)amino)-2-phenylimidazo[1,2-a]pyridine-7-carboxylate (7)
o
MeO AN
SV,

HN
L

O
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Yellow oil; <5%; 'H NMR (CD30D, 400.13 MHz): § 2.38 (4H, m, CH), 2.54 (2H, m, CHz), 3.19 (2H, m,
CHz), 3.54 (4H, m, CHy), 3.98 (3H, s, OCHz), 7.41 (1H, m, Ar-H), 7.42-7.53 (3H, m, Ar-H), 8.03 (2H,d,J =
8.8 Hz, Ar-H), 8.20 (1H, d, J = 1.2 Hz, Ar-H), 8.45 (1H, dd, / = 1.0 and 7.2 Hz, Ar-H). HRMS-ESI calc.
(C21H23N403+H+)2 381.1921, found: 3811915
2-(4-Fluorophenyl)-N-(2-morpholinoethyl)imidazo[1,2-a]pyridin-3-amine (8)

F

o N
/" \H

N _N
o
Brown oil; 15%; 'H NMR (CDCl3, 400.13 MHz): § 2.41 (4H, m, CHy), 2.49 (2H, m, CH>), 3.01 (2H, m,
CH»), 3.67 (4H, m, CHy), 6.73 (1H, t, ] = 6.4 Hz, Ar-H), 7.04-7.10 (3H, m, Ar-H), 7.49 (1H, d, ] = 8.8 Hz, Ar-
H), 7.94 (2H, m, Ar-H), 8.05 (1H, d, J = 6.8 Hz, Ar-H). 13C NMR (CDCl3, 100.61 MHz): 6 43.90, 53.66,
58.38, 66.76, 111.93, 115.63, 117.35, 122.42, 124.21, 128.81, 130.31, 134.06, 141.24, 161.02, 163.47.
HRMS-ESI calc. (C19H20FN4O+H*): 341.1772, found: 341.1765.

Methyl 2-(4-fluorophenyl)-3-((2-morpholinoethyl)amino) imidazo[1,2-a]pyridine-7-
carboxylate (9)
o

Meoj\CNéh;: <:> .
HN

\\\N/\\

v

Yellow oil; <5%; 1H NMR (CDs0D, 400.13 MHz): § 2.42 (4H, m, CHy), 2.56 (2H, m, CHz), 3.19 (2H, m,
CH,), 3.55 (4H, m, CH,), 3.98 (3H, s, OCHs), 7.25 (2H, m, Ar-H), 7.48 (1H, d, ] = 1.6 and 7.2 Hz, Ar-H),
8.09 (2H, m, Ar-H), 8.19 (1H, d, ] = 0.8 and 1.6 Hz, Ar-H), 8.45 (1H, dd, / = 0.8 and 7.4 Hz, Ar-H). HRMS-
ESI calc. (C21H22FN4O3+H*): 399.1827, found: 3991824

N-(Tert-butyl)-2-phenylimidazo[1,2-a]pyridin-3-amine, formic acid salt (10)

NH

ZNA

XN
White oil; 8%; 'H NMR (CDCl3, 400.13 MHz): 6§ 0.91 (9H, s, (CH3)3), 6.77 (1H, t, ] = 6.8 Hz, Ar-H), 7.14
(1H, m, Ar-H), 7.26 (1H, t, J = 7.2 Hz, Ar-H), 7.37 (2H, t, ] = 7.2 Hz, Ar-H), 7.60 (1H, d, ] = 8.8 Hz, Ar-H),
7.78 (2H, d, ] = 6.8 Hz, Ar-H), 8.20 (2H, d, J = 6.8 Hz, Ar-H). 13C NMR (CDCl3, 100.61 MHz): 6 30.24,
56.50, 112.06, 116.70, 123.61, 125.23, 127.83, 128.32, 128.43, 128.53, 133.98, 138.42, 141.46, 164.88.
HRMS-ESI calc. (C17H1gN3+H*): 266.1652, found: 266.1646.

Methyl 2-((2-phenylimidazo[1,2-a]pyridin-3-yl)amino)acetate (11)

M N
eO,C NH

SN
Yellow oil; 8%; 'H NMR (CDCls, 400.13 MHz): § 3.65 (3H, s, CH3), 3.74 (2H, s, CHy), 6.82 (1H, td, J = 1.2
and 6.8 Hz, Ar-H), 7.15 (1H, m, Ar-H), 7.27 (1H, t, J = 7.2 Hz, Ar-H), 7.37 (2H, t, ] = 7.6 Hz, Ar-H), 7.58
(1H, d, ] = 9.2 Hz, Ar-H), 7.90 (2H, d, / = 8.4 Hz, Ar-H), 8.22 (1H, d, ] = 6.8 Hz, Ar-H). 13C NMR (CDCls,
100.61 MHz): 6 49.75, 52.35, 113.48 116.56, 120.02, 121.46, 125.21, 127.09, 128.31, 128.90, 129.73,
134.36,142.32,173.91. HRMS-ESI calc. (C16H15N302+H*): 282.8243, found: 282.1234.

2-(2,4-Dimethoxyphenyl)-N-(2-morpholinoethyl)imidazo[1,2-a]pyrazin-3-amine (12)
OMe

o] N
 \nH

//N ~N o

g
Yellow oil; 28%; 'H NMR (CDCls, 400.13 MHz): § 2.30 (4H, m, CH,), 2.39 (2H, m, CH,), 3.01 (2H, m,
CH,), 3.61 (4H, m, CH,), 3.89 (3H, s, OCH3), 3.93 (3H, s, 0CH3), 6.62 (1H, d, J = 2.0 Hz, Ar-H), 6.68 (1H,
dd,J = 2.0 and 8.8 Hz, Ar-H), 7.69 (1H, d, ] = 8.4 Hz, Ar-H), 7.90 (1H, d, ] = 4.8 Hz, Ar-H), 8.03 (1H, dd, ] =
1.2 and 8.8 Hz, Ar-H), 8.21 (1H, s, NH), 9.04 (1H, d, J = 1.6 Hz, Ar-H). 13C NMR (CDCl3, 100.61 MHz): &

Me
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43.21, 53.27, 55.55, 56.08, 57.84, 66.61, 98.90, 105.72, 115.20, 115.60, 128.76, 129.27, 132.37, 135.12,
136.91, 143.13, 157.37, 161.36. HRMS-ESI calc. (C20H24N503+H*): 384.2030, found: 384.2036.

N-(2-morpholinoethyl)-2-phenylimidazo[1,2-a]pyrazin-3-amine (13)

Yellow oil; <5%; 1H NMR (CDs0D, 400.13 MHz): § 2.50 (4H, m, CHz), 2.65 (2H, m, CHz), 3.25 (2H, m,
CH,), 3.57 (4H, m, CHz), 7.44 (1H, m, Ar-H), 7.54 (2H, m, Ar-H), 7.90 (1H, d, ] = 4.4 Hz, Ar-H), 8.06 (2H,
m, Ar-H), 8.41 (1H, dd, J = 2.0 and 4.8 Hz, Ar-H), 8.90 (1H, d, J = 1.4 Hz, Ar-H). HRMS-ESI calc.
(C18H20Ns0+H*): 324.1819, found: 324.1815.

2-(4-Fluorophenyl)-N-(2-morpholinoethyl)imidazo[1,2-a]pyrazin-3-amine (14)
N%N ;
&Nf@
HN
e

0
Yellow oil; <5%; *H NMR (CDCls, 400.13 MHz): § 2.40-2.60 (6H, m, CH,), 3.09 (2H, m, CHy), 3.72 (4H, m,
CHy), 7.10 (2H, m, Ar-H), 7.81 (1H, d, ] = 4.4 Hz, Ar-H), 7.92-8.00 (3H, m, Ar-H), 8.92 (1H, d, J = 1.4 Hz,
Ar-H). HRMS-ESI calc. (C1sH20FNsO+H*): 342.1725, found: 342.1732.

N-Benzyl-2-phenylimidazo[1,2-a]pyridin-3-amine, formic acid salt (15)

/\
WO

Yellow solid; mp = 119-121°C; 35%; 'H NMR (CDs0D, 400.13 MHz): § 4.16 (2H, s, CHz), 7.06 (1H, t, ] =
6.8 Hz, Ar-H), 7.16-7.18 (5H, m, Ar-H), 7.41 (1H, m, Ar-H), 7.47-7.52 (3H, m, Ar-H), 7.59 (1H, d,] = 9.2
Hz, Ar-H), 7.92 (2H, d, ] = 7.2 Hz, Ar-H), 8.25 (1H, s, NH), 8.31 (1H, d, ] = 6.8 Hz, Ar-H). 3C NMR (CD30D,
100.61 MHz): § 52.56, 115.01, 115.31, 125.04, 128.27, 128.48, 128.60, 129.45, 129.53, 129.61, 129.68,
129.89, 132.29, 132.83, 140.45, 140.84, 166.22. HRMS-ESI calc. (CzoH17Ns+H*): 300.1495, found:
300.1499.

| 199
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8.3.2
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Figure S9. Functional assay results for active compounds 6, 8, 10. Results for hA; are not shown (inactive
compounds).

Table S1. Parameters of the functional GPCR assays.

Receptor / Assay Source Stimulus Incubation Measured Detection
component method

hA2B human recombinant NECA 10 min, cAMP HTRF

(antagonist effect) (HEK-293 cells) (1000 nM) 37°C

haia human recombinant Epinephrine  RT intacellular Fluorimetry

(antagonist effect) (CHO cells) (3 nM) [Caz+]

haig human recombinant Epinephrine 30 min, cAMP HTRF

(antagonist effect) (CHO cells) (3000 nM) 37°C

hA1l human recombinant CPA 28eC impedance Cellular

(antagonist effect) (CHO cells) (1 nM) dielectric

spectroscopy
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8.3.3 Computational

Table S2. Imidazopyridines synthesized and tested in this study, their nearest neighbours from the training
data for the respective target and their activities, and their pairwise structural similarity expressed as
structure-based Tanimoto similarity index (Morgan fingerprints with radius = 3). ChEMBL IDs given without
"CHEMBL" prefix.

Imidazopyridines

Nearest neighbours

ChEMBL
Cmp. No. Chemical structure Target Chemical structure D pK; Tc
o OMe °
O\_/N‘\_NH ‘ - j@
N_O
4 — O N’ (N 80132 7.7 0.22
N OMe | _ N |
=N NN
r H
O/_\N OMe /N N
NEVARNEN “ < NH
4 — PDE10A 1940054 6.8 0.23
N oM K\N
~-N
Lr O\J
d
S _\—NH /\ ‘
N
6 (E%N s wa% 310599 9.1  0.24
O\_/N-\_NH
8 — Asp j/(( 1093432 5.0 0.18
N_N
— F Cl o
e ) 809
8 _ Olia N o 164612 6.6  0.22
= N\
/é % (0] N
10 . \NH s %@ 78584 6.6  0.16
|
[\ =N N‘N/\O
|
MeO,C\ O
11 /\N/\g__@ A 0 N 222718 7.4 0.28
N %HJ\N/ O
— OMe o <
o\_/N_\_NH \ Y/ )J\N/\ (0] N)
12 {=( ome Az @:sl%NHH H 1170134 7.9 0.18
Y N
( p
OMe /N N
N |
SR -  _JNH
12 — OMe PDE10A 1940054 6.8 0.22
~
(NJ7N Of N
. )
i —~ 2
i o
15 N A 0Ny N 7 113512 6.5 0.30
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8.4 Supporting Information — Multi-objective molecular de novo design
by adaptive fragment prioritization

8.4.1 Experimental section

General considerations

Starting materials and solvents were purchased from Sigma-Aldrich, Fluka,
Chembridge, Maybridge or ABCR and were used without further purification.
Syntheses were performed on a Radleys Tech Carousel with 12 reaction stations.
Melting points (mp) were recorded on a Biichi M560 apparatus and are uncorrected.
Proton and carbon nuclear magnetic resonance ('H and 13C NMR) spectra were
recorded on a Bruker Avance 400 (400 and 100 MHz, respectively). All chemical
shifts are quoted on the § scale in ppm using residual solvent peaks as the internal
standard. Coupling constants (/) are reported in Hz with the following splitting
abbreviations: s = singlet, br.s. = broad singlet, d = doublet, dd = doublet of doublets, t

= triplet, td = triplet of doublets, q = quartet, m = multiplet.

Analytical HPLC-MS was carried out in a Shimadzu LC-MS2020 system, equipped with
a Nucleodur Cig HTec column, under an appropriate gradient of acetonitrile: H,0 (+
0.1% formic acid in each solvent), and a total flow rate of 0.5 mL/min. High resolution
mass spectrometry (HRMS) analyses were performed on a Bruker Daltonics maXis
ESI-QTOF device. Mass spectrometry analyses were operated in positive-ion mode

with ESI. Nominal and exact m/z values are reported in Daltons.

Flash chromatography was performed on a Biotage Isolera One device equipped with
SNAP cartridges KP-C1s-HS 12, 30 or 60 g. All compounds present purity = 95% based
on LC-MS analysis.

Synthesis

General synthesis scheme for compounds 17-32.

Ry Rs  NaBH(OAc Ry Rs
o .y NasHOM,

R, R, DCE R, R,
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N-(3,4-Dichlorobenzyl)-N-methyl-2-(4-methylpiperidin-1-yl)ethanamine, formic acid salt (17)
Cljg/\'l\l/\/N\:l/
cl
Educt 1: 1-(3,4-dichlorophenyl)-N-methylmethanamine; Educt 2: 2-(4-methylpiperidin-1-
ylacetaldehyde. White oil; 40%; *H NMR (CDCl3, 400.13 MHz): § 1.02 (3H, d, J = 6.0 Hz, CH3), 1.62-1.70
(3H, m, CHz+CH), 1.80 (2H, m, CH2), 2.23 (3H, s, CHa), 2.63 (2H, m, CH3), 2.83 (2H, t, ] = 6.4 Hz, CHy),
3.06 (2H, t,] = 6.4 Hz, CHy), 3.51-3.54 (4H, m, CHz), 7.16 (1H, d, ] = 2.0 and 8.4 Hz, Ar-H), 7.40-7.42 (2H,
m, Ar-H), 8.45 (1H, br.s., NH). 13C NMR (CDCl3, 100.61 MHz): § 21.05, 29.37, 31.23, 42.07, 52.22, 52.72,

53.98, 61.33,128.16, 130.32, 130.64, 131.15, 132.42, 138.86, 167.76. HRMS-ESI calc. (C16H23Cl2N2+H*):
315.1389, found: 315.1384.

1-(Cyclohexylmethyl)-4-phenylpiperidine, formic acid salt (18)

[ N@

=

Educt 1: 4-phenylpiperidine; Educt 2: cyclohexanecarbaldehyde. White powder; mp = 61-622C 71%;
H NMR (CDCls, 400.13 MHz): 6 1.13-1.32 (5H, m, CH2+CH), 1.65-1.86 (6H, m, CHz), 1.99 (2H, d,/ = 14
Hz, CHz), 2.29 (2H, m, CHz), 2.70-2.86 (5H, m, CH2+CH), 3.69 (2H, m, CHz), 7.21-7.25 (3H, m, Ar-H),
7.31-7.34 (2H, m, Ar-H), 8.47 (1H, br.s, NH). 13C NMR (CDCl3, 100.61 MHz): § 25.55, 25.71, 29.73, 31.35,
33.23, 40.50, 53.19, 62.97, 126.70, 127.02, 128.77, 143.28, 166.76. HRMS-ESI calc. (CigHze+H*):
258.2216, found: 258.2214.

N-(4-Isopropylbenzyl)-N-methyl-2-(4-methylpiperidin-1-yl)ethanamine, formic acid salt (19)

)QN/\/N

Educt 1: N-methyl-2-(4-methylpiperidin-1-yl)ethanamine; Educt 2: 4-isopropylbenzaldehyde. White
0il; 96%; 1H NMR (CDCl3, 400.13 MHz): § 0.98 (3H, d, / = 6.0 Hz, CH3), 1.25 (6H, d, J = 7.2 Hz, CH3), 1.50-
1.71 (3H, m, CH,+CH), 1.72 (2H, m, CHy), 2.19 (3H, s, CH3), 2.52-2.52 (2H, m, CH), 2.83 (2H, t,/ = 7.2 Hz,
CHyz), 2.93 (1H, m, CH), 3.00 (2H, t, ] = 7.2 Hz, CHy), 3.38 (2H, m, CH2), 3.58 (2H, s, CH2), 7.20-7.25 (4H,
m, Ar-H), 8.50 (1H, br.s., NH). 13C NMR (CDCl3, 100.61 MHz): § 21.18, 24.00, 29.50, 31.72, 33.77, 42.02,
51.97, 52.59, 53.87, 62.00, 126.41, 129.28, 134.86, 148.16, 168.18. HRMS-ESI calc. (C19H31N2+H*):
289.2638, found: 289.2636.

N-(4-Ethylbenzyl)-N-methyl-2-(4-methylpiperidin-1-yl)ethanamine, formic acid salt (20)

\QAN/\/NJ/

|

Educt 1: 1-(4-ethylphenyl)-N-methylmethanamine; Educt 2: 2-(4-methylpiperidin-1-yl)acetaldehyde.
White oil; 74%; 1H NMR (CDCl3, 400.13 MHz): § 0.95 (3H, d,/ = 5.2 Hz, CH3), 1.21 (3H, t,/ = 7.6 Hz, CH3),
1.52-1.57 (3H, m, CH2+CH), 1.71 (2H, m, CHy), 2.82 (3H, s, CH3), 2.54-2.65 (4H, m, CHy), 2.82 (2H, t, ] =
6.4 Hz, CHy), 3.01 (2H, t, ] = 6.4 Hz, CH2), 3.37 (2H, d, ] = 12 Hz, CH»), 3.57 (2H, s, CHz), 7.15 (2H,d, ] =
8.0 Hz, Ar-H), 7.20 (2H, d, / = 8.0 Hz, Ar-H), 8.44 (1H, br.s., NH). 13C NMR (CDCl3, 100.61 MHz): § 15.58,

20.96, 28.49, 29.07, 31.05, 41.67, 51.05, 52.43, 53.12, 61.82, 127.97, 129.48, 133.81, 143.86, 167.14.
HRMS-ESI calc. (C18H29N2+H+): 275.2482, found: 275.2476.
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N-((1-Isopropyl-1H-pyrrol-3-yl)methyl)-N-methyl-2-(4-methylpiperidin-1-yl)ethanamine,

formic acid salt (21)
9
S~
Y

Educt 1: 1-(1-isopropyl-1H-pyrrol-3-yl)-N-methylmethanamine; Educt 2: 2-(4-methylpiperidin-1-
yl)acetaldehyde. Yellow oil; 34%; 'H NMR (CDCl3, 400.13 MHz): 6§ 0.97 (3H, d, ] = 6.0 Hz, CH3), 1.39-
1.47 (9H, m), 1.71 (2H, m, CHz), 2.39 (2H, m, CHy), 2.57 (3H, s, CH3), 2.98-3.19 (4H, m, CHz), 3.17 (2H,
m, CHz), 3.91 (2H, s, CH2), 4.22 (1H, m, CH), 6.13 (1H, m, Ar-H), 6.71 (1H, m, Ar-H), 6.81 (1H, m, Ar-H),
8.49 (2H, br.s,, NH). 13C NMR (CDCl3, 100.61 MHz): 6 21.35, 23.85, 29.82, 32.60, 39.86, 49.97, 50.98,
52.78, 53.15, 53.26, 109.86, 112.60, 119.00, 119.96, 167.70. HRMS-ESI calc. (C17H30N3+H*): 278.2591,
found: 278.2588.

1-(2-(Dimethylamino)ethyl)-N-((5-ethylthiophen-2-yl)methyl)piperidin-4-amine, formic acid
salt (22)

|
N/\/N\

s
TN
Educt 1: 1-(2-(dimethylamino)ethyl)piperidin-4-amine; Educt 2: 5-ethylthiophene-2-carbaldehyde.
Yellow oil; 40%; 'H NMR (CDCls, 400.13 MHz): § 1.30 (3H, t, / = 4.0 Hz, CH3), 1.72 (2H, m, CHy), 2.04
(2H, m, CHz), 2.29 (2H, m, CHy), 2.66 (6H, s, CH3), 2.79-2.87 (5H, m), 2.98-3.09 (4H, m, CH), 4.07 (2H, s,
CHy), 6.66 (1H, d, J = 3.2 Hz, Ar-H), 6.88 (1H, d, ] = 3.2 Hz, Ar-H), 8.23 (2H, br.s., NH). 13C NMR (CDCl3,
100.61 MHz): 6 15.77, 23.45, 29.02, 30.92, 42.95, 43.53, 51.53, 52.19, 52.85, 54.00, 123.41, 128.33,
133.45, 148.83. HRMS-ESI calc. (C16H28N3S+H*): 296.2155, found: 296.2151.

1-(6-Bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-(2-(4-ethylpiperidin-1-yl)ethyl)piperidine,

formic acid salt (23)
(-
e} -
Br

Educt 1: 4-ethyl-1-(2-(piperidin-4-yl)ethyl)piperidine; Educt 2: 6-bromo-3,4-dihydronaphthalen-
2(1H)-one. Brown oil; 51%; 'H NMR (CDCl3, 400.13 MHz): 6 0.93 (3H, t, / = 6.8 Hz, CH3), 1.33-1.38 (3H,
m, CH+CH), 1.59-1.92 (12H, m), 2.35 (1H, m, CH), 2.95 (2H, m, CHy), 2.79-3.15 (8H, m), 3.48-3.55 (5H,
m), 6.99 (1H, d, / = 8.0 Hz, Ar-H), 7.26-7.28 (2H, m, Ar-H), 8.43 (2H, br.s, Ar-H). 13C NMR (CDCl3, 100.61
MHz): § 11.06, 23.93, 28.18, 28.51, 29.09, 29.17, 29.43, 30.90, 32.16, 35.79, 47.96, 48.48, 52.30, 54.12,
61.03, 120.10, 129.31, 130.93, 131.25, 132.09, 137.25, 167.37. HRMS-ESI calc. (C24H26BrN,+H*):
433.2213, found: 433.2210.

N-(2,5-Dimethyl-3-((4-methylpiperidin-1-yl)methyl)benzyl)-2-(4,5,6,7-
tetrahydrobenzo[b]thiophen-3-yl)ethanamine, formic acid salt (24)

Gty

Educt 1: (2,5-dimethyl-3-((4-methylpiperidin-1-yl)methyl)phenyl)methanamine; Educt 2: 2-(4,5,6,7-
tetrahydrobenzo[b]thiophen-3-yl)acetaldehyde. White oil; 23%; H NMR (CDCl3, 400.13 MHz): § 0.95
(3H, d,J = 4.7 Hz, CH3), 1.39-1.55 (3H, m, CH,+CH), 1.68 (2H, d, ] = 9.4 Hz, CH>), 1.74-1.86 (4H, m, CH>),
2.24-2.46 (10H, m), 2.69-2.87 (4H, m, CHy), 2.98-3.08 (2H, m, CH>), 3.17 (2H, d,J = 10.6 Hz, CHy), 3.79
(2H, s, CHy), 3.99 (2H, s, CHy), 6.73 (1H, s, Ar-H), 7.16 (1H, s, Ar-H), 7.19 (1H, s, Ar-H), 8.45 (1H, br.s,
NH). 13C NMR (CDCl3, 100.61 MHz): 6 14.94, 20.75, 21.27, 22.58, 23.27, 24.26, 25.29, 26.14, 32.08,
47.09, 49.24, 52.74, 58.80, 118.11, 131.67, 132.30, 132.57, 132.93, 133.99, 134.17, 135.76, 136.01,
136.82, 167.53. HRMS-ESI calc. (C26H37N2S+H*): 411.2828, found: 411.2819.
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2-Methyl-4-(1-((4-phenylbutyl)amino)ethyl)benzene-1,3-diol, formic acid salt (25)

OH
S
Educt 1: 4-phenylbutan-1-amine; Educt 2: 1-(2,4-dihydroxy-3-methylphenyl)ethanone. White oil;
30%; 'H NMR (CDs0D, 400.13 MHz): § 1.63-1.68 (7H, m, CHz and CH3), 2.22 (3H, s, CH3), 2.61 (2H, m,
CHy), 2.81 (2H, m, CHz), 4.47 (1H, q, ] = 6.8 Hz, CH), 6.45 (2H, d, / = 8.4 Hz, Ar-H), 6.91 (2H, d, /] = 8.4 Hz,
Ar-H), 7.14-7.18 (3H, m, Ar-H), 7.25 (2H, m, Ar-H), 8.34 (2H, br. s, NH). 3C NMR (CD30D, 100.61 MHz):
§8.90, 18.57, 26.67, 29.32, 36.10, 46.50, 56.08, 108.60, 113.45, 115.55, 126.77,127.02, 129.43, 129.45,
142.74,155.21,158.52, 167.37. HRMS-ESI calc. (C19H25sNO2+H*): 300.1958, found: 300.1962.

1-((1-(3,4-Dimethylphenyl)-1H-pyrazol-4-yl)methyl)-4-(2-methoxyphenyl) piperazine (26)

EENJN&C;N

Educt 1: 1-(2-methoxyphenyl)piperazine; Educt 2: 1-(3,4-dimethylphenyl)-1H-pyrazole-4-
carbaldehyde. Brown powder; mp = 122-1242C; 61%; 'H NMR (CDCl3, 400.13 MHz): 6 2.31 (3H, s, CH3),
2.34 (3H, s, CH3), 2.74 (4H, br.s, CHy), 3.14 (4H, br.s, CHz), 3.60 (2H, s, CHy), 3.88 (3H, s, CH3), 6.88 (1H,
dd, /= 1.2 and 8.0 Hz, Ar-H), 6.92-7.04 (3H, m, Ar-H), 7.11 (1H, d, J = 8.0 Hz, Ar-H), 7.39 (1H, dd, J = 2.4
and 8.4 Hz, Ar-H), 7.52 (1H, d, ] = 2.4 Hz, Ar-H), 7.67 (1H, s, Ar-H), 7.88 (1H, s, Ar-H). 13C NMR (CDCl3,
100.61 MHz): § 19.27, 19.93, 50.56, 52.60, 53.03, 55.34, 111.14, 116.23, 118.23, 118.92, 120.33,
120.98, 122.92, 126.61, 130.34, 134.79, 137.85, 138.16, 141.29, 141.54, 152.27. HRMS-ESI calc.
(C23H27N40+H+)Z 377.2336, found: 377.2339.

1-(3,5-Dimethylbenzyl)-4-(2-methoxyphenyl)piperazine, formic acid salt (27)

N
N
8e
Educt 1: 1-(2-methoxyphenyl)piperazine; Educt 2: 2-(3,5-dimethylphenyl)acetaldehyde. Orange oil;
78%; 'H NMR (CDCl3, 400.13 MHz): § 2.33 (6H, s, CH3), 3.07 (4H, br.s, CHz), 3.25 (4H, br.s, CHz), 3.85
(3H, s, CH3), 3.93 (2H, s, CHy), 6.86 (1H, d, = 7.6 Hz, Ar-H), 6.91-6.93 (2H, m, Ar-H), 7.01-7.04 (3H, m,
Ar-H) 8.48 (1H, s, NH). 13C NMR (CDClz, 100.61 MHz): 6 21.23, 48.56, 51.70, 55.37, 61.09, 111.20,

118.53, 121.10, 123.73, 128.51, 130.51, 131.54, 138.41, 139.97, 152.09, 166.94. HRMS-ESI calc.
(C20H25N20+H*): 311.2118, found: 311.2113.

1-((1-Ethyl-1H-pyrazol-4-yl)methyl)-4-(p-tolyl)piperazine, formic acid salt (28)
N =
o

Educt 1: 1-(p-tolyl)piperazine; Educt 2: 1-ethyl-1H-pyrazole-4-carbaldehyde. Brown oil; 80%; H NMR
(CDClIs, 400.13 MHz): 6 1.48 (3H, t, / = 8.0 Hz, CH3), 2.26 (3H, s, CHs), 3.00 (4H, m, CHz), 3.28 (4H, m,
CHy), 3.86 (2H, s, CH2), 4.17, (2H, q, / = 8.0 Hz, CH2), 6.81 (2H, d, J = 8.0 Hz, Ar-H), 7.07 (2H, d, ]/ = 8.0 Hz,
Ar-H), 7.47 (1H, s, Ar-H), 7.54 (1H, s, Ar-H), 8.41 (1H, br.s, NH). 13C NMR (CDCl3, 100.61 MHz): § 15.41,
20.44, 47.18, 48.11, 50.97, 51.02, 111.52, 117.01, 129.79, 129.91, 130.41, 140.35, 148.14, 166.86.
HRMS-ESI calc. (C17H23N4+H*): 285.2074, found: 285.2071.

1-(3,5-Dimethoxybenzyl)-4-(p-tolyl)piperazine (29)

Q/\K/N <

_0 | =
Educt 1: 1-(p-tolyl)piperazine; Educt 2: 3,5-dimethoxybenzaldehyde. White powder; mp = 113-1159C;
50%; 'H NMR (CDCls, 400.13 MHz): § 2.29 (3H, s, CHs), 2.64 (4H, br.s., CHz), 3.18 (4H, br.s., CHz), 3.53
(2H, s, CHz), 3.82 (6H, s, OCH3), 6.40 (1H, s, Ar-H), 6.57 (2H, s, Ar-H), 6.87 (2H, d, ] = 7.6 Hz, Ar-H), 7.09
(2H, d, ] = 7.6 Hz, Ar-H). 13C NMR (CDCl3, 100.61 MHz): § 20.42, 49.74, 53.18, 55.34, 63.14, 99.05,
106.93, 116.38, 129.10, 129.60, 140.70, 149.34, 160.75. HRMS-ESI calc. (C20H25N202+H*): 327.2067,
found: 327.2062.
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7-Methyl-8-((4-(1,2,3,4-tetrahydronaphthalen-2-yl)piperazin-1-yl)methyl) quinolone, formic

acid salt (30)
-
OSOVAY
/

Educt 1: 6-methyl-5-(piperazin-1-ylmethyl)quinoline; Educt 2: 3,4-dihydronaphthalen-2(1H)-one.
Brown oil; 77%; tH NMR (CDCl3, 400.13 MHz): § 1.83 (1H, m, CH), 2.36 (1H, m, CH), 2.61 (3H, s, CHa),
2.89-3.16 (12H, m), 3.48 (1H, m, CH), 4.05 (2H, s, CHz), 7.08-7.16 (4H, m, Ar-H), 7.48 (1H, dd, / = 4.0
and 8.8 Hz, Ar-H), 7.50 (1H, d, J = 8.4 Hz, Ar-H), 8.03 (1H, d, ] = 8.4 Hz, Ar-H), 8.41 (2H, br.s., NH), 8.62
(1H, d, ] = 8.4 Hz, Ar-H), 8.91 (1H, dd, ] = 2.0 and 4.4 Hz, Ar-H). 3C NMR (CDCl3, 100.61 MHz): § 20.40,
24.42,28.69,29.82,48.27, 50.24, 54.28, 61.11, 120.90, 126.20, 126.50, 128.28, 128.51, 128.71, 129.32,
130.17,132.87,133.07, 133.52, 135.08, 136.51, 146.95, 148.85, 166.75. HRMS-ESI calc. (C25H2sN3+H*):
372.2434, found: 372.2430.

5-Fluoro-3-(1-(1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)benzo[d] isoxazole, formic
acid salt (31)

_ N

SO

NS
Educt 1: 5-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole; Educt 2: 3,4-dihydronaphthalen-2(1H)-one.
Brown powder; mp = 120-1229C; 31%; H NMR (CDCl3, 400.13 MHz): § 1.88 (1H, m, CH), 2.40-2.48
(5H, m, CH,+CH), 2.98-3.19 (6H, m, CH>), 3.55-3.60 (4H, m, CHz), 7.12-7.18 (4H, m, Ar-H), 7.35 (1H, td, J
= 2.4 and 9.2 Hz, Ar-H), 7.47 (1H, d, ] = 6.4 Hz, Ar-H), 7.56 (1H, dd, J = 3.7 and 8.8 Hz, Ar-H), 8.49 (1H,
br.s, NH). 33C NMR (CDCl;, 100.61 MHz): 6§ 24.30, 26.95, 28.71, 29.44, 46.96, 47.27, 61.76, 106.29,
111.13, 118.86, 119.13, 126.36, 126.68, 128.59, 129.38, 132.70, 134.96, 157.89, 159.78, 160.30,
166.98. HRMS-ESI calc. (C22H22FN,0+H*): 351.1867, found: 351.1864.

N-(Tert-butyl)-3-phenylpropan-1-amine, formic acid salt (32)
H\/\/@
>t
Educt 1: 2-methylpropan-2-amine; Educt 2: 3-phenylpropanal. White amorphous solid; 90%; 'H NMR
(CDCl3, 400.13 MHz) & 1.32 (9H, s, CH3), 2.05 (2H, m, CHz), 2.61 (2H, m, CH2), 2.82 (2H, m, CHy), 7.16-
7.20 (3H, m, Ar-H), 7.26 (2H, m, Ar-H), 8.52 (1H, s, NH). 13C NMR (CDCl3, 100.61 MHz): § 25.75, 27.73,

32.87, 40.84, 55.85, 126.18, 128.24, 128.49, 140.23, 167.46. HRMS-ESI calc. (C13H21N+H*): 192.1747,
found: 192.1753.



8.4 Supporting Information - Multi-objective molecular de novo design by | 207
adaptive fragment prioritization

8.4.2 Supplementary data

Building block SMARTS filter rules

Table $3: Modified ZINC’s® basic SMARTS expression for building block triage.

Maximal SMARTS pattern Description
occurrence
20 [a,A] Non-hydrogens atoms
10 [#7,#8,#16] N,O,S

[CI,Br] Cl, Br

F Fluorines

[C+,Cl+,5+4] Quaternary C,Cl,S

O O O O O O O R R R R R R R N N N N N N DNDNDNDNDNWDNDWO

C(=0)C[N+,n+]
[N;RO][N;R0]C(=0)
C1[O,S,N]C1

cC[N+]
C[O,S;R0][C;R0](=S)
[#7]0[#6,#16]=0

Beta cabonyl quaternary
Acylhydrazides
(Thio)epoxides, aziridines
Benzylic Quaternary
Thioesters

Aminooxy(oxo)

N(~[OD1])~[OD1] Nitros
C=[N;RO]* Imines
N#CC=C Acrylonitriles

C=CC(=0)[!#7;148]
S(=0)(=0)[Cl,Br]

Propenals

Sulfonyl Halides

[S,C1(=[O,S])[F,Br,CL,1] Acid Halides
[Br,CI][CX4;CH,CH2] Alkyl Halides
SC#N Thiocyanates

COS(=0)0[C,c]

COS(=0)(=0)[C,c]

[ND4+]
[CD1][CD2][CD2][CD2][CD2][CD2][CD2]
Ocl(o)(0)(0)

Sulfate esters
Sulfonates
Quaternary N
Heptanes

Perchlorates

O=CN=[N+]=[N-] Carbazides
S[CI,Br,F] S-Halides
N=C=N Carbodiimides
N#CC[OH] Cyanohydrines

C(=0)Oc1c(F)c(F)c(F)c(F)c1(F)

Pentafluorophenyl esters

Table continues on next page ...

2 Irwin JJ, Shoichet BK (2005) ZINC - a free database of commercially available

virtual screening. J. Chem. Inf. Model. 45, 177-182.

compounds for
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... continued from previous page

Maximal
occurrence

SMARTS pattern

Description

©O O O O O O O OO O OO O OO o 0o oo o o o o o o

C(=0)0clccc(N(=0)=0)ccl
C(=0)Onnn
05(=0)(=0)C(F)(F)F
[CI]C([C&RO])=N
C(=0)N(C(=0))0C(=0)
N#CC(=0)
S(=0)(=0)C#N
[N;RO]=[N;RO]C#N
[N;RO]=[N;R0O]CC=0
B([O;HO])([O;HO0])
B(F)(F)(F)
5(0)(0)(0)
C(=0)0C(=0)

00

[*]-C=CC(=0)
[N+]#[C-]

N=N=N
C(=0)[C;H2]C(=0)
[#6][CX3](=0)[#7]
C(=0)C(=0)
C(=0)[0;H1]
C(=0)[Cl,Br,F]
N=C=[S,0]

N(=0)O
[#6][NX3;H1IN

Paranitrophenyl esters
HOBt esters
Triflates
Chloramidines
Triacyloximes
Acyl Cyanides
Sulfonyl Cyanides
Azocyanamides
Azoalkanals
Boronic acid
Trifluoroborane
Sulfanetriol

Acid anhydrides
Peroxides
a,B-unsaturated carbonyl
Isonitriles

Azides
1,3-dicarbonyl
Amides
Oxalaldehyde
Carboxylic acids
Acyl Halides
Iso(thio)cyanates
Nitro

Hydrazine

Building blocks were restricted to a maximal molecular weight of 250 containing only elements H, C, N,
O, F, S, Cl, F and Br. Further the following SMARTS pattern were applied and building blocks were
filtered according the maximal allowed occurrence.
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Retrospective evaluation of the machine-learning models

Table S4. Comparison of the retrospective performance of GP, GP,cs, BKD and RF for the focused target
panel. Values are given as mean * sd.

Target #actives / Method BEDROC Recall 3% Q2 MAE?
#inactives
Sigma opioid 1636 / GP 0.71+0.03 0.84 +£0.03 0.84 +0.02 0.53+0.03
800 GPcs 0.77 £0.02 0.89 £0.02 0.84 +0.02 0.75 +£0.05
BKD 0.59+£0.03 0.73+0.03 0.61+0.04 -
RF 0.74 £ 0.02 0.85+0.03 0.84 +£0.03 0.59+£0.04
Delta opioid 2745/ GP 0.90+0.01 0.93+0.01 0.88£0.01 0.51+0.02
1572 GPcs 0.95+0.01 0.97+£0.01 0.88 £ 0.02 0.76 £0.04
BKD 0.84 +£0.02 0.88 £0.02 0.54 +£0.03 -
RF 0.89+0.01 0.93+£0.02 0.87+£0.01 0.57 +£0.03
Kappa opioid 3390/ GP 0.81+0.02 0.85+0.02 0.84 +£0.01 0.58 £ 0.02
1327 GPcs 0.90+0.01 0.93+0.01 0.83+0.01 0.88 £ 0.05
BKD 0.82 £0.02 0.85+0.02 0.51+0.02 -
RF 0.85+0.02 0.87 £0.02 0.83+0.01 0.63+£0.02
Mu opioid 3266 / GP 0.83+£0.02 0.87 £0.03 0.84 +0.02 0.57+£0.03
1260 GPcs 0.92+0.01 0.95+0.01 0.84 +0.02 0.85+0.03
BKD 0.82 £0.02 0.86 +0.02 0.56 £ 0.02 -
RF 0.83+0.01 0.86 +0.02 0.83+£0.02 0.62 £0.03
Histamine H3 2836 / GP 0.73+£0.02 0.77 £0.02 0.73+0.03 0.44 +£0.01
58 GPcs 0.84 +£0.01 0.87+£0.01 0.73+0.03 0.54 +0.02
BKD 0.69 £0.03 0.73+0.03 0.26 £0.03 -
RF 0.70 £0.02 0.70 £ 0.02 0.70+£0.03 0.48 £ 0.02
Dopamine D, 1658 / GP 0.79 £0.02 0.92+0.04 0.83+0.03 0.60+£0.04
953 GPcs 0.85+0.02 0.95+0.02 0.83+0.03 0.99 £ 0.05
BKD 0.67 £0.03 0.79 £0.02 0.59+£0.03 -
RF 0.78 £0.02 0.90+£0.03 0.83+0.03 0.64 +0.04
Dopamine D, 581/ GP 0.86 £0.03 0.90+£0.03 0.86 +0.02 0.49 £0.04
922 GPcs 0.89+£0.03 0.92+£0.03 0.86 £ 0.03 0.72 £0.05
BKD 0.76 £0.04 0.81+£0.05 0.63+0.04 -
RF 0.89 £0.02 0.92 £0.02 0.86 £ 0.03 0.53+0.03
Dopamine D, 4183/ GP 0.77 £0.02 0.84 +0.02 0.80 +£0.02 0.50 £ 0.02
1389 GPcs 0.87+£0.01 0.92+0.01 0.80 +£0.02 0.69 £ 0.02
BKD 0.64 +0.02 0.72 £0.02 0.35+0.03 -
RF 0.79 £0.02 0.82+£0.03 0.78 £0.02 0.55+0.02
Dopamine D; 2708 / GP 0.75+0.02 0.79+£0.03 0.83+£0.02 0.53+0.03
932 GPcs 0.83+£0.02 0.87 £0.02 0.83+£0.02 0.74 £0.03
BKD 0.67 £0.04 0.76 £0.03 0.46 £0.04 -
RF 0.78 £0.02 0.80 +£0.02 0.81+£0.03 0.58 £0.04
Dopamine Ds 148 / GP 0.68 £0.12 0.71+0.13 0.72+0.15 0.55+0.13
87 GPcs 0.84 +0.08 0.87 £0.07 0.71+0.15 0.85+0.12
BKD 0.79+0.12 0.86+0.12 0.58 £0.12 -
RF 0.68 +0.11 0.72+0.12 0.71+0.12 0.61+0.11
5-HT, 2640 / GP 0.63+0.03 0.67 £0.03 0.69 £0.04 0.54 +0.04
173 GPcs 0.76 £ 0.02 0.80+£0.03 0.68 £ 0.04 0.73+0.03
BKD 0.66 +0.02 0.74 £0.03 0.28 £0.03 -
RF 0.66 +0.02 0.66 +0.02 0.68 £ 0.04 0.57+£0.04

aMAE is not applicable to BKD due to different value ranges
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Table S5: Y-Scrambling performance evaluation. Values are given as mean + sd.

Target #actives / Method BEDROC Recall 3% Q2 MAE?
#inactives
Sigma-1 1636/ GP 0.09£0.03 0.12+0.03 0.00+£0.00 1.65+0.04
800 GPcs 0.19 £0.02 0.23+0.03 0.00 +£0.00 3.46+0.13
BKD 0.16 £ 0.07 0.19 £0.08 0.00 +£0.00 -
RF 0.19+0.04 0.23+0.04 0.01+0.01 1.69+0.04
Delta opioid 2745/ GP 0.09£0.04 0.11 £ 0.05 0.00 +£0.00 1.74+0.04
1572 GPcs 0.20 £ 0.08 0.22 £0.08 0.00 +£0.00 4.23+0.12
BKD 0.18 £ 0.08 0.20 £ 0.08 0.00 +£0.00 -
RF 0.23 £0.05 0.26 £ 0.05 0.00 +£0.00 1.81+0.03
Kappa opioid 3390/ GP 0.11+0.03 0.13+0.04 0.00+£0.00 1.66 +0.05
1327 GPcs 0.23+0.04 0.26 £ 0.05 0.00 +£0.00 4.03+0.08
BKD 0.19 £ 0.05 0.20 £ 0.06 0.00+0.01 -
RF 0.26 £ 0.02 0.27 £0.02 0.00 +£0.00 1.73+0.06
Mu opioid 3266/ GP 0.09£0.04 0.11 £ 0.05 0.00+£0.00 1.64+0.04
1260 GPcs 0.21+£0.06 0.25+0.06 0.00 +£0.00 3.96 £ 0.08
BKD 0.22 £0.07 0.23 £0.07 0.00 +£0.00 -
RF 0.25+0.03 0.28 £0.02 0.00 +£0.00 1.70+0.05
Histamine H3 2836 / GP 0.20 £ 0.08 0.24 £ 0.09 0.01+£0.00 0.96 £ 0.05
58 GPcs 0.43+0.14 0.49+0.16 0.01+£0.00 1.51+0.04
BKD 0.30+0.10 0.33+0.10 0.00+0.01 -
RF 0.32 +£0.05 0.34+0.04 0.01+0.01 0.99 £ 0.05
Dopamine D, 1658 / GP 0.09£0.04 0.13+£0.05 0.00 +£0.00 1.82+0.06
953 GPcs 0.19 £0.05 0.24 £ 0.06 0.00 +£0.00 442 +0.17
BKD 0.14 £ 0.06 0.16 £ 0.07 0.00 +£0.00 -
RF 0.20+0.04 0.24 £ 0.05 0.00 +£0.00 1.86+0.05
Dopamine D, 581/ GP 0.07 £0.04 0.11+£0.06 0.01+0.01 1.64+0.04
922 GPcs 0.16 £ 0.06 0.21+£0.07 0.01+0.01 3.60+0.12
BKD 0.17 £ 0.06 0.19 £0.07 0.01£0.02 -
RF 0.08 £0.03 0.09£0.04 0.01£0.02 1.65 +0.07
Dopamine D, 4183/ GP 0.09£0.04 0.11+0.04 0.00+0.01 1.24+0.04
1389 GPcs 0.17 £ 0.07 0.18 £ 0.07 0.00+0.01 2.75+0.08
BKD 0.15+0.06 0.16 £ 0.06 0.00 +£0.00 -
RF 0.27 £0.03 0.29+£0.03 0.00+0.01 1.29+0.04
Dopamine D; 2708 / GP 0.10+0.04 0.12 £0.05 0.00 +£0.00 1.49+0.05
932 GPcs 0.21 +£0.05 0.26 £ 0.06 0.00 +£0.00 3.15+0.11
BKD 0.21+0.12 0.22+0.12 0.00 +£0.00 -
RF 0.22+£0.04 0.24 £0.03 0.00+0.01 1.53+£0.07
Dopamine Ds 148 / GP 0.25+0.15 0.29+0.18 0.02+0.03 1.29+0.13
87 GPcs 0.59+0.19 0.65+0.21 0.02+0.04 2.26 £0.36
BKD 0.30+0.18 0.35+0.20 0.05+0.08 -
RF 0.16+0.14 0.17+0.14 0.02+0.03 1.30+0.12
5-HT, 2640 / GP 0.16 £ 0.06 0.19 £0.07 0.00+0.01 1.08 +£0.03
173 GP s 0.34+0.12 0.39+0.13 0.00+0.01 1.88 + 0.07
BKD 0.22 £0.07 0.24 £ 0.07 0.01+0.01 -
RF 0.29 £ 0.07 0.30+£0.07 0.00 +£0.00 1.11+0.03

® MAE is not applicable to BKD due to different value ranges
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Figure S10. Receiver operating characteristic (ROC) curves for the sigma-1 panel.
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Figure S11. Receiver operating characteristic (ROC) curves for the dopamine D4 panel.
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Figure S12. Retrospective, 10-fold cross-validated performance analysis of the machine learning models on
640 human drug targets. Performance is expressed by four different metrics, measuring early enrichment
(BEDORC / Recall 3%) and regression performance (Q° / MAE).
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Figure S13. Pairwise comparison of Q’ and BEDROC performance. BKD (A), GP (B), GP.cs (C) and RF (D).
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Dose-response curves

= Haloperidol = Haloperidol
-17 -18

n
o

% of Control Specific Binding
n B D o ] 8
o o o o o

-
n
o

% of Control Specific Binding
n B D o ] 5
o o o o o
//
b
L

-10 -9 -8 -7 -6 -5 -4 -10 -9 -8 -7 -6 -5 -4
log [antagonist] log [antagonist]

n
o
-
n
o

= Haloperidol = Haloperidol
-19 =20

o
o

% of Control Specific Binding
(2]
o

% of Control Specific Binding
o I}
o o

I ®
o =}
N ®
=) =}

n
o
n
o

L
o
|
©
|
®
|
N
|
[}
|
(&}
|
IS
L
o
|
©
|
®
|
G
|
[}
|
(&)}
|
IS

log [antagonist] log [antagonist]

= Haloperidol
21

% of Control Specific Binding
o o o o o o
(]
%
|
1
% of Control Specific Binding
o o o o o o
%
L
|

-10 -9 -8 -7 -6 -5 -4 -10 -9 -8 -7 -6 -5 -4
log [antagonist] log [antagonist]

G = Haloperidol H = Haloperidol
=23 —-24

n
o
-
n
o

o

o
o
L]

% of Control Specific Binding
(o))
o

% of Control Specific Binding
o )
o o

N ®
o =]
N ®
=) =]

n
o
n
o

o
|
©

-8 -7 -6 -5 -4 -10 -9 -8 -7 -6 -5 -4
log [antagonist] log [antagonist]

Figure S14. Sigma-1 (agonist radioligand) dose-response curves for 17 (A), 18 (B), 19 (C), 20 (D), 21 (E), 22
(F), 23 (G), 24 (H). Reference haloperidol as black line (K; = 1.6 nM).
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Figure S15. Dopamine D4.4 (antagonist radioligand) dose-response curves for 26 (A), 27 (B), 28 (C), 29 (D),

30 (E), 31 (F). Reference clozapine as black line (K; = 19 nM).
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Table S6: Scaffold frequency analysis of designed MAntA compounds in the respective
target training data. For 17-25 Sigma-1 (ChEMBL TID 11272) and for 26-32 Dopamine Dy
(ChEMBL TID 90). Murcko scaffolds were calculated using RDKit.

MANtA Design Training data
ID Chemical Murcko Scaffold ChEMBL IDs
structure scaffold frequency

M)
17 ° Nw'(j AN 0 -
DO o

18 S /\"\‘/\(\j O/Q@ 0 _

19 N/\/,‘\‘\ i | C\,/\/Hp 0 -

21 >\N N "“/VN HNjNNO 0 -

23 S > 0 ]

24 O\l” N Y GU\AH«@D
25 ©/\/VH\((;(OH H/WH\/Q 1 CHEMBL19628
OH ~F

o
'

CHEMBL208018
—~ = CHEMBL210405
N /
26 oy @ @”v’ Ry, 7 CHEMBL210717
@ CHEMBL210955
+ 3 more
N CHEMBL100952
N™ ™ B N/\l
" oA CHEMBL101032
S~ =
27 @A S - T 4 CHEMBL103900
CHEMBL88365
N N N
28 /@QEN h Cr@ mﬂ 0 .
. CHEMBL100952
- N = Nﬁ
29 ON . ljﬁbk _ A CHEMBL101032
3 ® g CHEMBL103900
CHEMBL88365
—_ =N TN
N\_/ N/
N-Q N-O
i |
31 N(j)\Q (j/@ 0 ;
QT g 99
CHEMBL1009
P CHEMBL108545
32 Xﬂw g @ 95 CHEMBL1089
CHEMBL112

+ 91 more
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Chemical space coverage and individual target activity landscapes

Table S7. Projection rank error calculations for sigma-1 and
dopamine D, selectivity panels. All indices were calculated for
K =10 nearest neighbors.

Sigma-1 Dopamine D,
Number of data points 10,658 8,346
Trustworthiness Wy 0.90 0.88
Continuity W¢ 0.98 0.98
MRRE W, 0.09 0.11
MRRE W, 0.01 0.01
LCMC 0.37 0.35

A sparse [ W dense B

x" 4

Figure S16. Drug-like chemical space coverage 2D-landscapes. Distribution of 10,000 random ChEMBL
molecules (A) and with additionally highlighted 5,000 compounds randomly generated using two
combinatorial reactions (Red = Ugi-3 component reaction, Green = reductive amination) (B).
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Figure S17. Activity landscapes of the sigma-1 selectivity panel. Coloring of the landscape according to fitted
pAffinity surface values. Transparency encodes local data density.
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Figure S18. Activity landscapes of the dopamine D, selectivity panel. Coloring according to Fig. S17.
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Figure $29. 'H and >C NMR spectra of 27.
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Figure $31. 'H and >C NMR spectra of 29.
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Figure $32. 'H and >C NMR spectra of 30.
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Figure $33. 'H and >C NMR spectra of 31.
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Figure $34 'H and °C NMR spectra of 32.



