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Abstract

We compare forecasts from different adaptive learning algorithms and calibrations ap-

plied to US real-time data on inflation and growth. We find that the Least Squares with

constant gains adjusted to match (past) survey forecasts provides the best overall perfor-

mance both in terms of forecasting accuracy and in matching (future) survey forecasts.

Keywords: expectations, learning algorithms, forecasting, learning-to-forecast, least

squares, stochastic gradient.

JEL: C53, D83, D84, E03, E37.

1 Introduction

Adaptive learning algorithms have been proposed to provide an alternative to, and a justifi-

cation for, rational expectations (RE) equilibria in macroeconomics (Evans and Honkapohja,

2001). Going beyond the RE hypothesis, however, comes at the cost of introducing another

degree of freedom in macroeconomic modeling, since one has to be specific about which al-

gorithm is assumed to represent agents behavior.

The usual choice for this purpose has been the Least Squares (LS) algorithm (Branch and

Evans, 2006; Markiewicz and Pick, 2014), possibly due to its widespread popularity between

econometricians. A computationally simpler alternative is offered by the Stochastic Gradient

(SG) algorithm (Barucci and Landi, 1997; Evans and Honkapohja, 1998). We argue that the
∗Accepted for publication in Economics Letters. A longer version of this paper has been previously circulated as

“On the plausibility of adaptive learning in macroeconomics” (CGBCR Discussion Paper series, 177), which was
presented at the 21th Symposium of the Society for Nonlinear Dynamics and Econometrics in Milan, 2013, and
seminar series at: the University of Manchester, Lund University, and the KOF Swiss Economic Institute. We thank
for useful comments provided by the participants of these events and by an anonymous referee.
†Corresponding author. E-mail: galimberti@kof.ethz.ch.
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previous literature has neglected the need of a realistic justification in the choice of the repre-

sentative learning algorithm.

Importantly, theoretical analyses of learning convergence have shown that these learning

algorithms may lead to different learnability conditions of RE equilibria (Heinemann, 2000;

Giannitsarou, 2005). The LS dominance also has been challenged in previous applied studies

(see Bullard and Eusepi, 2005; Carceles-Poveda and Giannitsarou, 2007). Hence, it remains

open the question of which algorithm should be taken as representative from an empirical

standpoint. Our main contribution is therefore an attempt to fill that gap, and we do this by

comparing the quality and fit to surveys of the forecasts associated to each of these learning

algorithms.

We estimate Vector Autoregressions (VARs) recursively with real-time quarterly data on US

inflation and output growth, and then compare the associated multi-horizon forecasts over an

evaluation sample from 1981q1 to 2011q4. Details of our approach are presented in section

2. Our results, presented in section 3, are favorable to the use of the LS as representative of

agents learning-to-forecast behavior for the growth variable, whereas for inflation we obtained

mixed evidence depending on the calibration of the learning gains. Namely, the LS dominance

is weakened when the learning gains are calibrated so as to minimize observed squared fore-

casting errors rather than their distance to survey forecasts. We discuss these results in section

4.

2 Approach

Our approach is based on learning-to-forecast exercises that mimic the real-time environment

faced by an economic agent when forming expectations on inflation (πt) and output growth

(gt). We assume this agent attempts to construct inferences about these variables estimating

a VAR of the form

yi,t = x′tθi,t + εi,t, (1)

where y1,t = πt and y2,t = gt, xt = (1, πt−1, . . . , πt−p, gt−1, . . . , gt−p)
′, θi,t = (θ0,i,t, θ1,i,t, . . . , θp,i,t,

θp+1,i,t, . . . , θ2p,i,t)
′, p denotes the VAR lag order, and εi,t is a white noise disturbance. To esti-

mate each equation’s vector of coefficients, θi,t, we follow the adaptive learning literature and

adopt the LS and the SG specifications.

2



Algorithm 1 (LS). Under the estimation context of (1), the LS algorithm assumes the form of

θ̂
LS

i,t = θ̂
LS

i,t−1 + γtR
−1
t xt

(
yi,t − x′tθ̂

LS

i,t−1

)
, (2)

Rt = Rt−1 + γt
(
xtx
′
t −Rt−1

)
, (3)

where γt is a learning gain parameter, and Rt stands for an estimate of regressors matrix of

second moments, E [xtx
′
t].

Algorithm 2 (SG). Under the estimation context of (1), the SG algorithm is given by

θ̂
SG

i,t = θ̂
SG

i,t−1 + µtxt

(
yi,t − x′tθ̂

SG

i,t−1

)
, (4)

with µt standing for the learning gain parameter.

We then use the LS and the SG algorithms to obtain recursive estimates of the parameters

of VAR model specifications (1 to 4 lag orders) applied to real-time quarterly data on US real

GNP/GDP and its price index from 1947q2 to 2011q4. Our data on these series comes from

the Philadelphia’s Fed Real-Time Data Research Center and consists of vintages from 1966q1

to 2012q1, i.e., a total of 185 snapshots of what was known on these variables by a market

participant in real-time (see Stark and Croushore, 2002). For the purpose of comparing the

algorithms forecasts to those provided by survey respondents, we use data from the Survey

of Professional Forecasters (SPF). Here we use the median of the individual forecasts made

for a total of five horizons, namely from t (nowcast) to t + 4. The SPF data is available from

1968q4 onwards, and, consistent to our data on actuals, the last survey data we use is that of

2010q4, which contains forecasts up to 2011q4.

Operation of these algorithms requires the specification of a (sequence of) gain value(s)

determining how quickly some given information is incorporated into the algorithm’s coefficients

estimates. Recognizing the prominent role that the learning gains have in determining the

statistical properties of the estimates associated to each algorithm (see, e.g., Benveniste et al.,

1990), here we follow the calibration approach proposed in Berardi and Galimberti (2014).

Particularly, we distinguish between two gain determination rationales: as a choice of rational

agents, selecting the gains that minimize the (average) squared forecasting errors over a given

window of observations; and as a primitive parameter of agents behavior, where the gains are

selected so as to minimize the distance of the algorithms forecasts to those collected through
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survey forecasts.

Regarding the windows used to select the gains according to the criteria above we adopt

two alternatives: a fixed and a time-varying gain calibration. Under the fixed calibration we pick

the gain evaluating the corresponding criterion over the full sample of forecasts that we have

computed, and keep this gain fixed throughout our exercise. For the time-varying calibration, in

contrast, we use a rolling window sample of 60 forecasts to evaluate each gain determination

criterion, hence selecting a new gain for every iteration on the real-time learning process. In

both cases, the set of admissible gains is based on a grid of 100 values constructed taking an

upper bound, experimentally computed to ensure algorithms stability, as reference.

Our design unfolds into a three-stages routine to generate the forecasts associated to each

learning algorithm: initialization, estimation and forecasting, and evaluation. The first 75 ob-

servations in our sample (up to 1965q4) are used for the smoothing-based initialization of the

algorithms (following Berardi and Galimberti, 2012). The next 60 observations (from 1966q1 to

1980q4) are used for the algorithms (first) time-varying calibration. Therefore, our evaluation

sample corresponds to the period from 1981q1 to 2010q4. To match the timing of information

in the SPF dataset, we compute and evaluate forecasts over five horizons, each of these with

its own instance of gain calibrations.

3 Results

We start looking over the forecasts associated to each algorithm and gain value included in

the grid computations. Figure 1 presents surfaces of average past performance for each al-

gorithm and variable, showing their evolution through time and for the different gain values.

Two main observations arise: (i) the behavior of each algorithm depends on the variable be-

ing forecasted, whereas for a given variable the LS and SG algorithms behave differently; (ii)

the magnitudes of forecast errors were relatively higher during the first decade in our sam-

ple, irrespective of the variable forecasted and the algorithm used, an observation that can be

associated with the period of greater volatility that preceded the Great Moderation in the US

economy (see Stock and Watson, 2003).
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Figure 1: Evolution of algorithms’ forecasting accuracy through time.

The MSFE plotted are computed on the basis of the 60 quarters backwards to the dates indicated into the
NW-SE axis. The gain calibrations used for each algorithm are indicated into the SW-NE axis. Forecast errors
refer to averaged errors over 5 horizons of forecasts.

To obtain a relative assessment of the learning mechanisms we now conduct two eval-

uation exercises comparing the forecasts associated to the learning algorithms with respect

to their accuracy and their resemblance to the survey forecasts. We check for the statistical

significance of these paired comparisons using tests common to the literature on forecast eval-

uation: the Diebold and Mariano (1995) (DM) test for equal (unconditional) predictive ability,

and its more recently developed conditional counterpart test of Giacomini and White (2006)

(GW). Our coverage of multiple forecasting horizons and VAR lag order specifications, for ro-

bustness, requires performing a high quantity of such comparisons1. Hence, to synthesize

these evaluations we adopt hit rate measures, which are defined as the frequency by which

the forecasts associated to a given algorithm is found to outperform those associate to its

competitor with respect to one of our evaluation criteria.
1To be specific, 40 for each pair of algorithms/calibrations: 5 horizons × 4 VARs × 2 evaluation criteria. An

Appendix is provided with the individual comparison results, and some descriptive statistics for each series of
forecasts.
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We present in Tables 1 and 2 the hit rates for the comparisons between the LS and the

SG algorithms2. In terms of accuracy a clear dominance of the LS is observed in forecasting

growth. For inflation, the results depend on the approach adopted to the determination of the

gains: while the SG is preferred under the gain as a choice, the LS tends to outperform the

SG when the gain is taken as a primitive. Notice, however, that the tests for equal predictive

ability rarely find statistical significance for the LS victories in forecasting inflation. Hence, our

reading of these accuracy results is that they represent mixed evidence in support of each of

the algorithms.

Table 1: Hit rates comparing the algorithms forecast accuracy.

Variables LS wins SG wins

- Gains Hit rate DM-20% GW-20% Hit rate DM-20% GW-20%

Inflation, gains as a choice
- Fixed 20% 0% 0% 80% 25% 20%
- Time-varying 35% 0% 0% 65% 20% 20%
Inflation, gains as a primitive
- Fixed 65% 0% 0% 35% 15% 15%
- Time-varying 60% 0% 5% 40% 15% 20%
Growth, gains as a choice
- Fixed 95% 75% 10% 5% 0% 5%
- Time-varying 75% 30% 40% 25% 0% 5%
Growth, gains as a primitive
- Fixed 100% 70% 10% 0% 0% 0%
- Time-varying 100% 55% 20% 0% 0% 0%

The hit rates sum up forecasting horizons (5) and VAR lag orders (4). DM-20%
and GW-20% represents the frequency within which the associated specification
was found to have superior performance with statistical significance below the
20% level using the DM and the GW tests.

2We adopt a 20% level of significance as reference due to the low power of the tests to detect statistical differ-
ences between the algorithms series of forecasts. Under a 10% level of significance (see the Appendix) we observe
a systematic decrease in these hit rates, meaning that our relative conclusions remain qualitatively unchanged.
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Table 2: Hit rates comparing the algorithms forecast resemblance to surveys.

Variables LS wins SG wins

- Calibrations Hit rate DM-20% GW-20% Hit rate DM-20% GW-20%

Inflation, gains as a choice
- Fixed 80% 45% 30% 20% 5% 5%
- Time-varying 100% 75% 35% 0% 0% 0%
Inflation, gains as a primitive
- Fixed 95% 55% 40% 5% 0% 0%
- Time-varying 100% 75% 40% 0% 0% 0%
Growth, gains as a choice
- Fixed 75% 70% 65% 25% 5% 20%
- Time-varying 65% 40% 65% 35% 5% 5%
Growth, gains as a primitive
- Fixed 80% 70% 65% 20% 0% 20%
- Time-varying 75% 65% 75% 25% 0% 10%

See footnotes to Table 1.

The results on the forecasts resemblance to surveys, in contrast, indicate an overwhelm-

ing dominance of the LS algorithm. Other than beating the SG resemblance with a higher

frequency, the victories of the LS are often found with statistical significance by the tests of

equal predictive ability. Also notice that, if the SG presents any threat to the LS dominance,

this would not be on the grounds of their resemblance to inflation but to the growth survey fore-

casts. Clearly, this is a disturbing observation given that in our previous exercise the slightly

favorable evidence for the SG was observed in forecasting inflation, but not for growth.

4 Discussion

Our results on the algorithms forecasting performance suggest that their relative suitability de-

pends mainly on the statistical properties of the data environment to which they are applied.

Compared to inflation rates, output growth is known to have a lower degree of dynamic per-

sistence and a higher degree of volatility, which makes of growth a variable harder to forecast

than inflation (see, e.g., Patton and Timmermann, 2011). Hence, it seems reasonable to find

that the more “sophisticated” LS method was favored in forecasting growth.

But it is instructive to see that, in some cases, the simpler SG was able to outperform

the LS in forecasting inflation. These results for inflation also seem to be consistent to the

recent findings of Faust and Wright (2013) showing that simpler forecasting methods tend

to outperform more complicated model-based forecasts of inflation. Taking the surveys as
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a reference, nevertheless, pointed to an overall dominance of the LS in providing forecasts

closer to those representing actual agents forecasts. Clearly, this result provides support for

the usually unquestioned choice of the LS learning scheme in the applied literature on adaptive

learning in macroeconomics.

A key aspect to understand our mixed findings relates to the two alternative approaches to

the determination of the gains we evaluated. In a companion paper (Berardi and Galimberti,

2014) we have motivated these two gain determination perspectives as a choice of rationally

optimizing agents, and as a primitive parameter of bounded rational agents, respectively, find-

ing evidence favorable to the latter. Given that under the primitive determination of the gains

our results were overall in favor to the LS, we conclude that our empirical evidence provides

support for the use of this algorithm as representative of agents learning-to-forecast behavior.

Nevertheless, our results suffer from the lack of a direct economic interpretation due to our

focus on non structural model specifications. We leave this as a motivation for future research

on the issue of the representative learning algorithm.

Appendix

A Details on data

Short time series history : some vintages lack of earlier observations due to delays into BEA

revisions (see Philadelphia’s Fed documentations). This was the case of the vin-

tages of 1992q1-1992q4 (missing data from 1947-1958), 1996q1-1997q1 (miss-

ing data from 1947-1959q2), and 1999q4-2000q1 (missing data from 1947-1958).

We circumvent this problem (to turn the dataset vintages-balanced) by reproduc-

ing observations from the last available vintage while rescaling in accordance to

the ratio between the first observation available in the missing observation vintage

and the value observed for the same period in the vintage being used as source

for the missing observations.

Missing observation for 1995q4 in vintage 1996q1: as a result of the US federal government

shutdown in late 1995, the observation for 1995q4 was missing in the 1996q1

vintage. Fortunately, this is the only point in this dataset that this happens. We

fulfill this gap by using the observation available in the March 1996 monthly vintage

8



for the same series. Incidentally, the SPF 1996q1 median backcast for 1995q4

is identical to the value later observed in March 1996, thence, our simplifying

procedure is not favoring any method.

Caveat on SPF’s forecasts for Real GDP: forecasts for real GDP were not asked in the sur-

veys prior to 1981q3. To extend this series of forecast back to 1968q4, real GDP

prior to 1981q3 is computed by using the formula (nominal GDP / GDP prices) *

100.

B Review of statistical tests for equal predictive ability

We want to determine whether two series of forecasts are statistically different from each other.

Let f1,t,h and f2,t,h stand for these forecasts, where h (going from 0 to 4 in our case) denotes

the horizon at which these forecasts were made, and yt stand for the series of targets of

these forecasts. Let the losses associated to each of these forecasts be given by L (f1,t,h, yt)

and L (f2,t,h, yt). Letting dt,h = L (f1,t,h, yt)− L (f2,t,h, yt) denote the series of loss differentials

between the two forecasts at horizon h, the Diebold and Mariano (1995) test evaluates whether

their average loss differences,

dh =
1

T

T∑
i=1

di,h, (5)

is significantly different from zero. Under the null hypothesis of equal predictive ability the DM

statistic,

DMh =
dh√
σ̂2d/T

, (6)

has a t-distribution with T − 1 degrees of freedom, where σ̂2d is an estimate of the long-run

variance of dt,h. For the estimation of σ̂2d we adopt the heteroskedasticity and autocorrelation

consistent (HAC) estimator proposed by Newey and West (1987).

The Giacomini and White (2006) test, in contrast, evaluates the null hypothesis of equal

conditional predictive ability. The main caveat on this test relates to the specification of a test

function, qt,h containing q instruments, which attempts to control for the informational condition-

ing required by the null hypothesis. To test the conditional moment restriction E [qt,hdt,h] = 0,
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a Wald-type test statistic is proposed having the form of

GWh = T

(
T−1

T∑
i=1

qi,hdi,h

)′
Ω̂
−1
h

(
T−1

T∑
i=1

qi,hdi,h

)
, (7)

where Ω̂h is a q × q consistent estimate of the covariance matrix of qt,hdt,h. Under the null

hypothesis of equal conditional predictive ability GWh has a χ2
q distribution.

Apart from the first horizon, Ω̂h is again estimated using the HAC estimator of Newey and

West (1987), with h determining the truncated kernel bandwidth. For the case of the first

horizon, Giacomini and White (2006) simplify the computation of (7) to be given by TR2, where

R2 is the uncentered squared multiple correlation coefficient obtained by regressing a constant

unity on qt,hdt,h. Finally, regarding the specification of qt,h, in the lack of better alternatives,

the recommendation is for the use of h-lagged loss differentials. Thus, in our calculations we

set qt,h = dt−h,h.

C Supplementary statistics

In table 3 we present statistics for each individual series of forecasts. Some observations

sprout from these statistics: (i) the LS (SG) forecasts tend to be biased up(down)wards; (ii)

the forecasts fail to replicate growth rates variability, whereas for inflation the SG forecasts

presented variances closer to that of the actuals; (iii) between each algorithm’s calibrations

there is little variation in terms of their forecasts statistical properties.
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Table 3: Data and forecasts statistics by algorithm/calibration.

(a) Inflation.

Series/Algorithm Mean Min Max Var AR(1) CorA CorS MSFE MSFCE

Actuals 2.67 -0.33 9.39 2.68 0.63 1.00 0.81 0.00 1.03
Surveys 2.93 0.62 9.49 2.46 0.94 0.81 1.00 1.03 0.00
Least Squares
-Fixed /choice 2.99 -0.14 10.30 2.94 0.83 0.73 0.90 1.62 0.55
-Time-var./choice 3.07 0.13 10.35 2.80 0.81 0.72 0.90 1.69 0.56
-Fixed/primit. 2.97 -0.34 10.32 2.75 0.74 0.70 0.90 1.71 0.54
-Time-var. /primit. 3.06 0.01 10.39 2.57 0.78 0.72 0.89 1.62 0.55
Stochastic Gradient
-Fixed /choice 2.77 0.12 11.89 2.65 0.69 0.67 0.88 1.76 0.62
-Time-var./choice 2.69 -0.83 11.89 2.79 0.74 0.69 0.89 1.69 0.63
-Fixed/primit. 2.77 0.12 11.89 2.65 0.69 0.67 0.88 1.76 0.62
-Time-var. /primit. 2.78 -0.08 11.84 2.62 0.68 0.67 0.88 1.76 0.63

(b) Growth.

Series/Algorithm Mean Min Max Var AR(1) CorA CorS MSFE MSFCE

Actuals 2.54 -6.14 8.67 6.17 0.50 1.00 0.78 0.00 2.56
Surveys 2.24 -5.19 7.01 3.14 0.72 0.78 1.00 2.56 0.00
Least Squares
-Fixed /choice 3.04 -3.66 6.58 1.58 0.60 0.39 0.58 5.55 2.74
-Time-var./choice 3.08 -0.95 6.70 1.18 0.53 0.38 0.63 5.55 2.61
-Fixed/primit. 3.01 -2.02 5.46 1.07 0.58 0.47 0.64 5.03 2.46
-Time-var. /primit. 2.98 -0.95 6.00 1.10 0.52 0.42 0.66 5.24 2.34
Stochastic Gradient
-Fixed /choice 1.88 -2.13 4.66 1.32 0.48 0.43 0.59 5.44 2.16
-Time-var./choice 2.10 -1.24 4.75 1.32 0.53 0.40 0.55 5.38 2.23
-Fixed/primit. 1.88 -2.13 4.66 1.32 0.48 0.43 0.59 5.44 2.16
-Time-var. /primit. 2.07 -1.85 4.68 1.46 0.53 0.41 0.56 5.37 2.20

The forecasts statistics refer to those obtained for the first forecasting horizon, h = 0, and over
the full evaluation sample from 1981q1 to 2010q4. The algorithms’ forecasts refer to those from
the VAR(1). AR(1) stands for the first order autocorrelation of each series, CorA and CorS stands
for the correlation with the series of actuals (first-available in real-time) and survey forecasts,
respectively, and MSF(C)E stands for the mean squared forecast (comparison) errors.

In tables 4-7 we present the individual comparisons of forecasting performance (accuracy

and resemblance) between the LS and SG algorithms. These results represent the input for

the hit rates presented in the main text. To illustrate that definition consider the LS accuracy hit

rate under the fixed gain determined as a choice, forecasting inflation: that hit rate was found

equal to 20%, e.g., indicating that the LS algorithm outperformed the SG only in 4 out of the

20 comparisons conducted for each combination of VAR lag order and forecasting horizon.

These cases can be easily identified from the first set of results in the upper left portion of
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table 4: the LS outperformed the SG for the VAR(1) at the first horizon, the VAR(2) at the

first and the last horizon, and for the VAR(3) at the last horizon. The DM-20% and GW-20%

statistics associated to these hit rates then represent the frequency by which the forecasting

(comparison) errors associated to the outperforming method is found to be statistically different

of its competitor according to the corresponding test at a 20% level of significance. So, in our

example case for the LS/fixed/choice/inflation accuracy hit rates we have that none of the 4

cases where the LS outperformed the SG presented a DM/GW test p-value below 20%, which

is also evident from the results in table 4.
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Table 4: Comparitive evaluations of algorithms forecasting accuracy for inflation.

Calibration Gains as a choice Gains as a primitive

- Model MSFE DM GW MSFE DM GW

- horizon LS SG Stat. p-val. Stat. p-val. LS SG Stat. p-val. Stat. p-val.

Fixed gains
- VAR(1) - h = 0 1.62 1.76 -0.78 0.44 0.00 0.98 1.71 1.76 -0.40 0.69 0.26 0.61

- h = 1 1.88 1.86 0.09 0.92 0.59 0.44 1.94 1.86 0.33 0.74 0.24 0.63
- h = 2 1.81 1.22 1.31 0.19 1.62 0.20 1.75 1.22 2.20 0.03 0.18 0.67
- h = 3 2.16 1.42 1.57 0.12 0.01 0.91 2.06 1.42 1.78 0.08 0.01 0.92
- h = 4 2.60 2.01 1.02 0.31 0.00 0.94 2.55 2.01 0.88 0.38 4.99 0.03

- VAR(2) - h = 0 1.51 1.56 -0.43 0.67 0.02 0.87 1.47 1.53 -0.59 0.56 0.01 0.90
- h = 1 1.72 1.69 0.14 0.89 0.01 0.91 1.62 1.66 -0.25 0.80 0.02 0.90
- h = 2 1.40 1.11 1.78 0.08 2.15 0.14 1.31 1.09 2.04 0.04 3.29 0.07
- h = 3 1.64 1.62 0.06 0.95 0.00 0.96 1.56 1.48 0.27 0.79 0.45 0.50
- h = 4 2.08 2.14 -0.11 0.91 0.71 0.40 1.94 1.96 -0.04 0.97 0.67 0.41

- VAR(3) - h = 0 1.37 1.34 0.27 0.79 0.00 0.96 1.34 1.34 -0.02 0.98 0.36 0.55
- h = 1 1.53 1.48 0.40 0.69 0.02 0.88 1.44 1.46 -0.20 0.84 0.55 0.46
- h = 2 1.43 1.22 1.64 0.10 1.65 0.20 1.24 1.21 0.28 0.78 1.73 0.19
- h = 3 1.77 1.72 0.14 0.89 0.01 0.93 1.56 1.64 -0.31 0.76 0.46 0.50
- h = 4 2.10 2.32 -0.37 0.71 0.77 0.38 1.86 2.11 -0.54 0.59 0.62 0.43

- VAR(4) - h = 0 1.44 1.44 0.01 0.99 2.95 0.09 1.39 1.44 -0.39 0.70 1.24 0.26
- h = 1 1.71 1.54 1.03 0.31 0.06 0.81 1.52 1.52 -0.02 0.98 0.34 0.56
- h = 2 1.63 1.49 1.30 0.20 3.37 0.07 1.31 1.47 -0.84 0.40 0.85 0.36
- h = 3 1.99 1.91 0.23 0.82 0.06 0.80 1.60 1.88 -0.77 0.44 0.66 0.42
- h = 4 2.54 2.41 0.22 0.82 0.08 0.77 2.07 2.22 -0.45 0.65 0.05 0.83

Time-varying gains
- VAR(1) - h = 0 1.69 1.69 0.02 0.99 0.90 0.34 1.62 1.76 -0.80 0.42 0.98 0.32

- h = 1 1.88 1.86 0.09 0.93 0.24 0.62 1.92 1.87 0.17 0.87 0.40 0.53
- h = 2 1.97 1.26 1.69 0.09 1.70 0.19 1.70 1.23 1.91 0.06 0.45 0.50
- h = 3 2.32 1.34 2.10 0.04 0.02 0.89 1.95 1.42 1.50 0.14 0.07 0.79
- h = 4 2.74 1.95 1.26 0.21 0.16 0.69 2.25 2.01 0.41 0.68 3.54 0.06

- VAR(2) - h = 0 1.57 1.54 0.28 0.78 0.01 0.92 1.48 1.53 -0.53 0.60 0.01 0.93
- h = 1 1.69 1.75 -0.34 0.73 0.04 0.85 1.58 1.67 -0.50 0.62 0.01 0.91
- h = 2 1.41 1.15 1.41 0.16 1.79 0.18 1.25 1.09 1.47 0.14 3.62 0.06
- h = 3 1.61 1.62 -0.03 0.97 0.11 0.74 1.47 1.52 -0.15 0.88 0.22 0.64
- h = 4 1.99 2.34 -0.48 0.64 0.94 0.33 1.79 2.10 -0.53 0.60 0.73 0.39

- VAR(3) - h = 0 1.44 1.32 1.36 0.18 0.03 0.86 1.37 1.32 0.59 0.56 0.25 0.62
- h = 1 1.56 1.52 0.28 0.78 0.89 0.35 1.45 1.48 -0.27 0.79 0.36 0.55
- h = 2 1.39 1.23 1.17 0.24 1.90 0.17 1.24 1.23 0.04 0.96 2.01 0.16
- h = 3 1.70 1.75 -0.14 0.89 0.00 0.99 1.49 1.69 -0.65 0.51 0.30 0.59
- h = 4 1.98 2.46 -0.78 0.44 1.14 0.28 1.83 2.18 -0.76 0.45 1.47 0.23

- VAR(4) - h = 0 1.50 1.43 0.51 0.61 0.44 0.51 1.47 1.42 0.41 0.68 2.15 0.14
- h = 1 1.72 1.54 0.90 0.37 0.61 0.44 1.51 1.53 -0.15 0.88 0.38 0.54
- h = 2 1.61 1.53 0.63 0.53 4.28 0.04 1.36 1.54 -1.10 0.28 2.45 0.12
- h = 3 1.92 1.95 -0.10 0.92 0.08 0.77 1.55 1.97 -1.24 0.22 0.45 0.50
- h = 4 2.33 2.48 -0.29 0.78 0.42 0.52 1.93 2.25 -0.96 0.34 0.11 0.74

We highlight in bold the algorithm presenting lower MSF(C)E by comparison. We do the same to highlight those
comparisons for which statistically significant differences between the forecasts provided by each algorithm is found
at levels below 20%, using the Diebold and Mariano (1995) (DM) and the Giacomini and White (2006) (GW) tests.
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Table 5: Paired comparisons of algorithms forecasting accuracy for growth.

Calibration Gains as a choice Gains as a primitive

- Model MSFE DM GW MSFE DM GW

- horizon LS SG Stat. p-val. Stat. p-val. LS SG Stat. p-val. Stat. p-val.

Fixed gains
- VAR(1) - h = 0 5.55 5.44 0.17 0.87 1.77 0.18 5.03 5.44 -0.75 0.45 0.17 0.68

- h = 1 6.65 7.24 -0.64 0.53 0.21 0.64 6.20 7.18 -1.17 0.25 0.04 0.84
- h = 2 6.16 7.81 -1.76 0.08 0.33 0.57 6.20 7.81 -1.65 0.10 0.48 0.49
- h = 3 6.16 8.16 -1.95 0.05 0.78 0.38 6.28 7.38 -0.99 0.32 1.03 0.31
- h = 4 5.57 7.82 -1.96 0.05 0.04 0.85 5.69 7.02 -1.13 0.26 0.67 0.41

- VAR(2) - h = 0 5.05 5.50 -1.23 0.22 0.44 0.51 4.90 5.48 -1.88 0.06 1.00 0.32
- h = 1 5.97 6.95 -1.60 0.11 0.91 0.34 5.88 6.94 -2.01 0.05 0.57 0.45
- h = 2 6.00 7.65 -2.17 0.03 0.19 0.67 6.00 7.60 -2.22 0.03 0.25 0.62
- h = 3 6.11 8.08 -2.06 0.04 0.01 0.93 6.11 8.06 -2.08 0.04 0.00 0.96
- h = 4 5.64 7.87 -2.03 0.04 0.46 0.50 5.64 7.84 -1.99 0.05 0.13 0.72

- VAR(3) - h = 0 5.03 5.52 -1.34 0.18 1.16 0.28 5.03 5.50 -1.29 0.20 1.12 0.29
- h = 1 5.96 7.00 -1.84 0.07 2.16 0.14 5.96 6.93 -1.82 0.07 2.41 0.12
- h = 2 5.90 7.63 -1.87 0.06 0.71 0.40 5.90 7.61 -1.87 0.06 0.76 0.38
- h = 3 6.00 8.01 -1.77 0.08 0.01 0.93 6.00 8.06 -1.78 0.08 0.00 0.97
- h = 4 5.54 7.83 -1.77 0.08 0.06 0.80 5.54 7.86 -1.75 0.08 0.91 0.34

- VAR(4) - h = 0 5.30 5.72 -0.93 0.36 0.74 0.39 5.30 5.70 -0.88 0.38 0.69 0.40
- h = 1 6.23 7.07 -1.09 0.28 2.51 0.11 6.18 7.02 -1.12 0.26 2.29 0.13
- h = 2 6.18 7.66 -1.39 0.17 0.63 0.43 6.18 7.67 -1.42 0.16 0.71 0.40
- h = 3 6.29 8.02 -1.33 0.19 0.01 0.93 6.30 8.20 -1.46 0.15 0.19 0.67
- h = 4 5.56 7.83 -1.59 0.11 0.92 0.34 5.84 7.97 -1.34 0.18 1.06 0.30

Time-varying gains
- VAR(1) - h = 0 5.55 5.38 0.30 0.76 2.92 0.09 5.24 5.37 -0.28 0.78 3.67 0.06

- h = 1 6.99 6.94 0.05 0.96 0.37 0.54 6.03 6.67 -1.10 0.28 0.51 0.47
- h = 2 7.25 7.37 -0.09 0.93 2.33 0.13 6.16 7.18 -1.32 0.19 0.93 0.34
- h = 3 6.29 7.66 -1.46 0.15 2.34 0.13 6.17 7.40 -1.29 0.20 1.30 0.25
- h = 4 5.76 7.12 -1.31 0.19 0.09 0.76 5.62 6.98 -1.24 0.22 0.27 0.60

- VAR(2) - h = 0 5.72 5.66 0.12 0.91 0.01 0.91 4.93 5.52 -1.84 0.07 0.57 0.45
- h = 1 5.86 7.04 -2.08 0.04 0.00 0.97 5.93 6.90 -1.91 0.06 0.68 0.41
- h = 2 7.59 7.76 -0.09 0.93 1.92 0.17 6.00 7.50 -2.19 0.03 0.07 0.79
- h = 3 6.17 8.05 -1.99 0.05 0.99 0.32 6.03 7.92 -2.07 0.04 0.71 0.40
- h = 4 6.19 7.93 -1.30 0.20 0.81 0.37 5.58 7.74 -1.99 0.05 0.23 0.63

- VAR(3) - h = 0 5.77 5.74 0.09 0.93 1.26 0.26 5.33 5.66 -0.64 0.52 1.28 0.26
- h = 1 6.05 7.08 -1.59 0.11 1.12 0.29 6.17 6.91 -1.19 0.24 0.21 0.65
- h = 2 6.95 7.77 -0.54 0.59 1.81 0.18 5.98 7.57 -1.80 0.07 0.40 0.52
- h = 3 6.64 8.10 -1.04 0.30 4.77 0.03 5.97 8.00 -1.76 0.08 0.24 0.63
- h = 4 9.48 8.00 0.34 0.74 1.10 0.29 5.52 7.83 -1.77 0.08 1.91 0.17

- VAR(4) - h = 0 5.72 5.83 -0.33 0.75 0.21 0.65 5.50 5.70 -0.45 0.66 0.90 0.34
- h = 1 6.51 7.24 -0.96 0.34 1.73 0.19 6.80 6.98 -0.21 0.84 0.24 0.62
- h = 2 7.07 7.91 -0.54 0.59 1.86 0.17 7.00 7.81 -0.51 0.61 1.35 0.24
- h = 3 6.76 8.26 -0.99 0.32 4.36 0.04 6.61 8.25 -1.08 0.28 2.51 0.11
- h = 4 7.83 8.18 -0.12 0.91 1.39 0.24 5.91 8.04 -1.33 0.19 3.30 0.07

See footnotes to table 4.
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Table 6: Paired comparisons of algorithms forecasting resemblance for inflation.

Calibration Gains as a choice Gains as a primitive

- Model MSFCE DM GW MSFCE DM GW

- horizon LS SG Stat. p-val. Stat. p-val. LS SG Stat. p-val. Stat. p-val.

Fixed gains
- VAR(1) - h = 0 0.55 0.62 -0.93 0.36 1.85 0.17 0.54 0.62 -1.04 0.30 2.11 0.15

- h = 1 0.49 0.75 -1.90 0.06 0.02 0.89 0.52 0.75 -1.28 0.20 0.13 0.72
- h = 2 0.49 0.79 -1.73 0.09 2.21 0.14 0.38 0.79 -1.60 0.11 3.09 0.08
- h = 3 0.42 0.99 -1.80 0.07 0.75 0.39 0.33 0.99 -1.63 0.11 5.88 0.02
- h = 4 0.41 1.21 -1.65 0.10 1.87 0.17 0.49 1.21 -1.42 0.16 2.13 0.14

- VAR(2) - h = 0 0.45 0.44 0.18 0.86 2.30 0.13 0.38 0.42 -0.89 0.37 1.54 0.21
- h = 1 0.48 0.69 -1.42 0.16 0.01 0.91 0.45 0.64 -1.46 0.15 0.08 0.78
- h = 2 0.36 0.82 -1.94 0.05 3.07 0.08 0.33 0.68 -1.92 0.06 1.63 0.20
- h = 3 0.34 1.26 -2.05 0.04 7.56 0.01 0.33 0.97 -2.04 0.04 4.87 0.03
- h = 4 0.44 1.39 -2.06 0.04 1.87 0.17 0.46 1.21 -2.14 0.03 1.68 0.20

- VAR(3) - h = 0 0.41 0.33 2.07 0.04 0.00 0.96 0.35 0.33 0.58 0.56 0.03 0.87
- h = 1 0.39 0.50 -1.01 0.32 0.23 0.63 0.33 0.45 -1.30 0.20 0.33 0.57
- h = 2 0.56 0.75 -0.88 0.38 0.64 0.42 0.37 0.65 -1.56 0.12 1.05 0.30
- h = 3 0.61 1.05 -1.19 0.23 1.58 0.21 0.40 0.85 -1.55 0.12 1.91 0.17
- h = 4 0.51 1.24 -1.65 0.10 1.55 0.21 0.47 1.03 -1.98 0.05 1.27 0.26

- VAR(4) - h = 0 0.48 0.44 0.69 0.49 0.92 0.34 0.42 0.44 -0.48 0.63 0.74 0.39
- h = 1 0.58 0.52 0.93 0.36 0.49 0.48 0.44 0.50 -0.75 0.45 0.64 0.42
- h = 2 0.74 0.81 -0.30 0.77 0.25 0.62 0.48 0.72 -1.17 0.24 1.61 0.20
- h = 3 0.88 1.10 -0.53 0.60 0.50 0.48 0.52 0.94 -1.11 0.27 1.89 0.17
- h = 4 0.90 1.26 -0.78 0.44 0.77 0.38 0.65 1.01 -1.13 0.26 1.50 0.22

Time-varying gains
- VAR(1) - h = 0 0.56 0.63 -0.89 0.38 1.79 0.18 0.55 0.63 -1.20 0.23 2.49 0.11

- h = 1 0.47 0.78 -1.73 0.09 0.00 0.94 0.50 0.76 -1.56 0.12 0.14 0.71
- h = 2 0.33 0.89 -2.58 0.01 2.92 0.09 0.35 0.81 -1.86 0.07 3.18 0.07
- h = 3 0.29 1.06 -2.28 0.02 3.18 0.07 0.26 0.99 -1.87 0.06 5.83 0.02
- h = 4 0.42 1.36 -1.93 0.06 2.04 0.15 0.41 1.22 -1.62 0.11 2.13 0.14

- VAR(2) - h = 0 0.40 0.50 -1.50 0.14 0.14 0.71 0.38 0.43 -1.27 0.21 2.33 0.13
- h = 1 0.41 0.72 -1.99 0.05 0.01 0.94 0.46 0.64 -1.42 0.16 0.08 0.77
- h = 2 0.28 0.87 -2.68 0.01 2.63 0.10 0.32 0.71 -2.08 0.04 2.07 0.15
- h = 3 0.25 1.30 -2.47 0.01 7.65 0.01 0.31 1.03 -2.10 0.04 5.96 0.01
- h = 4 0.37 1.52 -2.24 0.03 1.64 0.20 0.47 1.28 -2.07 0.04 1.41 0.23

- VAR(3) - h = 0 0.36 0.38 -0.24 0.81 0.73 0.39 0.31 0.33 -0.37 0.71 0.00 0.98
- h = 1 0.36 0.53 -1.70 0.09 0.40 0.53 0.33 0.46 -1.42 0.16 0.05 0.83
- h = 2 0.37 0.80 -2.07 0.04 0.60 0.44 0.31 0.66 -1.88 0.06 1.17 0.28
- h = 3 0.34 1.08 -2.15 0.03 2.12 0.14 0.33 0.87 -1.84 0.07 1.87 0.17
- h = 4 0.29 1.31 -2.28 0.02 1.54 0.21 0.40 1.06 -2.16 0.03 1.38 0.24

- VAR(4) - h = 0 0.48 0.48 -0.01 0.99 1.02 0.31 0.42 0.43 -0.26 0.79 1.04 0.31
- h = 1 0.51 0.54 -0.29 0.77 0.46 0.50 0.44 0.51 -0.86 0.39 0.70 0.40
- h = 2 0.58 0.83 -1.23 0.22 0.02 0.90 0.43 0.74 -1.50 0.14 1.41 0.24
- h = 3 0.65 1.12 -1.32 0.19 0.34 0.56 0.42 0.97 -1.47 0.14 1.63 0.20
- h = 4 0.45 1.26 -2.00 0.05 0.79 0.37 0.45 1.01 -1.84 0.07 1.52 0.22

See footnotes to table 4.
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Table 7: Paired comparisons of algorithms forecasting resemblance for growth.

Calibration Gains as a choice Gains as a primitive

- Model MSFCE DM GW MSFCE DM GW

- horizon LS SG Stat. p-val. Stat. p-val. LS SG Stat. p-val. Stat. p-val.

Fixed gains
- VAR(1) - h = 0 2.74 2.16 1.39 0.17 2.82 0.09 2.46 2.16 0.66 0.51 3.27 0.07

- h = 1 1.56 2.39 -1.68 0.10 8.44 0.00 1.35 2.27 -1.73 0.09 9.88 0.00
- h = 2 0.70 2.85 -4.13 0.00 13.44 0.00 0.79 2.68 -2.96 0.00 9.08 0.00
- h = 3 0.55 3.36 -5.21 0.00 15.41 0.00 0.58 2.14 -1.74 0.09 3.11 0.08
- h = 4 0.42 3.21 -5.43 0.00 16.35 0.00 0.45 1.86 -1.85 0.07 2.69 0.10

- VAR(2) - h = 0 2.42 2.11 0.85 0.40 3.16 0.08 2.23 2.10 0.53 0.59 3.07 0.08
- h = 1 1.43 2.02 -1.43 0.15 0.40 0.53 1.28 2.00 -2.22 0.03 0.46 0.50
- h = 2 0.87 2.55 -3.58 0.00 8.01 0.00 0.87 2.45 -3.41 0.00 7.02 0.01
- h = 3 0.66 3.15 -4.97 0.00 15.29 0.00 0.66 2.84 -4.21 0.00 10.68 0.00
- h = 4 0.48 3.15 -5.35 0.00 16.82 0.00 0.48 2.83 -4.30 0.00 11.19 0.00

- VAR(3) - h = 0 2.59 2.12 1.19 0.24 2.17 0.14 2.59 2.11 1.22 0.23 2.17 0.14
- h = 1 1.78 2.01 -0.58 0.56 0.77 0.38 1.78 1.93 -0.38 0.70 0.37 0.54
- h = 2 1.05 2.53 -2.86 0.01 4.85 0.03 1.05 2.42 -2.62 0.01 4.12 0.04
- h = 3 0.85 2.89 -4.02 0.00 9.91 0.00 0.85 2.81 -3.53 0.00 7.89 0.00
- h = 4 0.61 3.05 -4.66 0.00 14.28 0.00 0.61 2.81 -3.82 0.00 10.63 0.00

- VAR(4) - h = 0 2.70 2.24 0.96 0.34 3.50 0.06 2.70 2.21 1.00 0.32 3.03 0.08
- h = 1 2.13 1.99 0.30 0.77 1.11 0.29 1.87 1.94 -0.17 0.86 0.84 0.36
- h = 2 1.32 2.46 -2.18 0.03 2.97 0.08 1.32 2.32 -1.80 0.07 2.49 0.11
- h = 3 1.20 2.92 -2.95 0.00 8.14 0.00 1.05 2.77 -2.85 0.01 5.90 0.02
- h = 4 0.74 2.79 -3.97 0.00 10.40 0.00 1.00 2.76 -2.49 0.01 6.71 0.01

Time-varying gains
- VAR(1) - h = 0 2.61 2.23 1.27 0.21 1.17 0.28 2.34 2.20 0.49 0.63 0.59 0.44

- h = 1 1.62 2.08 -0.75 0.45 3.64 0.06 1.23 1.83 -1.32 0.19 8.17 0.00
- h = 2 1.14 2.25 -1.61 0.11 7.01 0.01 0.73 2.08 -2.15 0.03 6.41 0.01
- h = 3 0.64 2.59 -2.91 0.00 7.49 0.01 0.54 2.36 -2.44 0.02 5.68 0.02
- h = 4 0.54 2.25 -2.67 0.01 7.11 0.01 0.43 2.04 -2.40 0.02 4.38 0.04

- VAR(2) - h = 0 2.61 2.30 0.88 0.38 6.13 0.01 2.21 2.11 0.34 0.73 5.86 0.02
- h = 1 1.27 2.02 -1.77 0.08 3.90 0.05 1.31 1.87 -1.58 0.12 2.00 0.16
- h = 2 1.78 2.36 -0.55 0.59 8.78 0.00 0.88 2.11 -2.62 0.01 5.58 0.02
- h = 3 0.71 2.76 -3.52 0.00 9.05 0.00 0.64 2.42 -3.45 0.00 6.98 0.01
- h = 4 1.10 2.73 -1.99 0.05 4.11 0.04 0.50 2.40 -3.75 0.00 7.99 0.00

- VAR(3) - h = 0 2.85 2.24 1.50 0.14 0.01 0.94 2.76 2.15 1.19 0.24 1.11 0.29
- h = 1 1.83 1.97 -0.28 0.78 3.81 0.05 1.84 1.87 -0.06 0.95 5.71 0.02
- h = 2 1.46 2.49 -1.19 0.24 7.46 0.01 1.08 2.16 -2.01 0.05 4.09 0.04
- h = 3 1.14 2.80 -2.37 0.02 6.97 0.01 0.83 2.52 -2.98 0.00 5.37 0.02
- h = 4 4.85 2.76 0.50 0.62 0.50 0.48 0.61 2.47 -3.37 0.00 7.84 0.01

- VAR(4) - h = 0 2.87 2.36 1.17 0.24 0.02 0.88 2.82 2.21 1.10 0.27 1.48 0.22
- h = 1 2.17 2.03 0.24 0.81 1.08 0.30 2.13 1.91 0.48 0.63 4.17 0.04
- h = 2 1.65 2.45 -1.02 0.31 5.45 0.02 1.65 2.18 -0.72 0.47 2.48 0.12
- h = 3 1.41 2.89 -1.95 0.05 3.40 0.07 1.39 2.55 -1.46 0.15 2.87 0.09
- h = 4 3.30 2.70 0.23 0.82 0.33 0.57 1.07 2.55 -2.22 0.03 2.76 0.10

See footnotes to table 4.

We also complement our results in the main text by presenting in tables 8 and 9 the hit
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rates calculated using a significance level of 10%. Clearly, we observe a systematic decrease

in these hit rate measures compared to those presented in the main text assuming a 20%

minimum level of significance. This difficulty in detecting statistical differences between the

algorithms series of forecasts at lower levels of significance may be a signal of low power of

these tests for the comparisons we are conducting.

Table 8: Hit rates, at 10% significance level, comparing the algorithms forecast accuracy.

Variables LS wins SG wins

- Gains Hit rate DM-10% GW-10% Hit rate DM-10% GW-10%

Inflation, gains as a choice
- Fixed 20% 0% 0% 80% 5% 10%
- Time-varying 35% 0% 0% 65% 10% 5%
Inflation, gains as a primitive
- Fixed 65% 0% 0% 35% 15% 10%
- Time-varying 60% 0% 0% 40% 5% 10%
Growth, gains as a choice
- Fixed 95% 50% 0% 5% 0% 0%
- Time-varying 75% 10% 10% 25% 0% 5%
Growth, gains as a primitive
- Fixed 100% 45% 0% 0% 0% 0%
- Time-varying 100% 40% 10% 0% 0% 0%

See the main text for explanations.

Table 9: Hit rates, at 10% significance level, comparing the algorithms forecast resemblance
to surveys.

Variables LS wins SG wins

- Calibrations Hit rate DM-10% GW-10% Hit rate DM-10% GW-10%

Inflation, gains as a choice
- Fixed 80% 30% 10% 20% 5% 0%
- Time-varying 100% 65% 15% 0% 0% 0%
Inflation, gains as a primitive
- Fixed 95% 20% 15% 5% 0% 0%
- Time-varying 100% 45% 15% 0% 0% 0%
Growth, gains as a choice
- Fixed 75% 65% 65% 25% 0% 15%
- Time-varying 65% 35% 65% 35% 0% 5%
Growth, gains as a primitive
- Fixed 80% 70% 55% 20% 0% 15%
- Time-varying 75% 50% 65% 25% 0% 10%

See the main text for explanations.
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