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Abstract

Loss-of-function variants in innate immunity genes are associated with Mendelian disorders in the form of primary
immunodeficiencies. Recent resequencing projects report that stop-gains and frameshifts are collectively prevalent in
humans and could be responsible for some of the inter-individual variability in innate immune response. Current
computational approaches evaluating loss-of-function in genes carrying these variants rely on gene-level characteristics
such as evolutionary conservation and functional redundancy across the genome. However, innate immunity genes
represent a particular case because they are more likely to be under positive selection and duplicated. To create a ranking of
severity that would be applicable to innate immunity genes we evaluated 17,764 stop-gain and 13,915 frameshift variants
from the NHLBI Exome Sequencing Project and 1,000 Genomes Project. Sequence-based features such as loss of functional
domains, isoform-specific truncation and nonsense-mediated decay were found to correlate with variant allele frequency
and validated with gene expression data. We integrated these features in a Bayesian classification scheme and
benchmarked its use in predicting pathogenic variants against Online Mendelian Inheritance in Man (OMIM) disease stop-
gains and frameshifts. The classification scheme was applied in the assessment of 335 stop-gains and 236 frameshifts
affecting 227 interferon-stimulated genes. The sequence-based score ranks variants in innate immunity genes according to
their potential to cause disease, and complements existing gene-based pathogenicity scores. Specifically, the sequence-
based score improves measurement of functional gene impairment, discriminates across different variants in a given gene
and appears particularly useful for analysis of less conserved genes.
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Introduction

There is considerable variability in the human immune response

to pathogens. The observation of genetic causes of a number of

primary immunodeficiencies underscores the fundamental role of

variants in immune genes - in many cases resulting in severe,

pathogen-specific disorders [1]. A main challenge in the analysis of

genome variation today is the assignment of a functional role to

rare variants [2]. Here, large numbers of study participants would

not necessarily provide the statistical power to associate a genotype

with a phenotype. In this context, efforts are put toward to the

computational identification of features allowing prioritization of

variants for follow-up in genetic and functional analysis. Strategies

to attribute a severity score to a variant, recently reviewed in [3],

include approaches based on evolutionary, physico-chemical and

structural properties (Polyphen2 [4], SIFT [5]), methods based on

analysis of mutation load (e.g. the Residual Variation Intolerance

Score, RVIS [6]), and integrative pipelines [7–10].

Of special interest in the study of inter-individual variability in

innate immunity is the evaluation of stop-gains and frameshifts.

Such variants are prevalent, having an estimated number of 100 to

200 occurrences per human genome [11,12]. Stop-gains and

frameshifts may lead to functional consequences due to protein

truncation, degradation of the transcript by Nonsense-Mediated

Decay (NMD) [13] and dominant negative influences of protein

species. In particular, rare and young variants that have not

undergone purifying selection may contribute to burden of disease

in a population [14–16]. Despite a stop-gain or frameshift variant,

however, the function of a protein may be preserved because of

limited truncation of functional and structural domains, or because

the variant affects only one of the splice forms. A less understood

possibility is the occurrence of stop-codon read-through [17,18].

Analyses based on gene characteristics such as evolutionary

conservation and non-redundancy in the genome [19], or

mutational burden analysis [6] are used to predict the severity of

stop-gain and frameshift variants. Herein, we refer to these

analyses as ‘‘gene-based’’. However, innate immunity genes tend

to be less conserved and more duplicated than the genome average

[20] and other features may be needed to assess functional

relevance of a variant. The aim of this study is to explore sequence
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characteristics that may improve the understanding of the

functional consequences of stop-gain and frameshift variants in

innate immunity genes. Herein, we will refer to these analyses as

‘‘sequence-based’’. For this, we first evaluated two sets of publicly

available data from a total of 7595 individuals [16,21] including

gene expression data from 421 of them [22]. Specific sequence

features of truncating variants were found to correlate with allele

frequency and gene expression levels. These features were used to

generate a pathogenicity score that was evaluated through

benchmark against OMIM disease variants. The approach was

applied to assess functional consequences of stop-gain and

frameshift variants in innate immunity genes, with particular

attention to antiviral interferon-stimulated genes (ISGs).

Results

Variant set
We analysed gene variant data from a total of 7595 individuals

from the NHLBI GO Exome Sequencing Project (ESP) [16] and

the 1000 Genomes Project [21]. We considered 17764 stop-gain

and 13915 frameshift variants collectively affecting 11369 autoso-

mal protein coding genes reliably annotated by the Consensus

CDS (CCDS) project [23]. The distributions of gene truncating

variants according to allele frequency and study are presented in

Table S1.

Distribution of variants in sequence-based features
Consistent with previous reports [19,24], we observed that the

distribution of stop-gain and frameshift variants along the protein

coding sequence of genes is biased by allele frequency (Figure
S1). Variants with very low allele frequency (MAF#0.001)

are evenly distributed, with a modest 39 terminal enrichment.

However, the distribution of stop-gain and frameshift variants

becomes less uniform with increasing allele frequencies, yet does

not show a clear pattern. In contrast, we observed marked

distribution trends in association with the following sequence

features: (i) loss of functional domains; (ii) disruption of constitutive

exons (i.e. exons present in all isoforms), or of principal isoforms;

(iii) localization in potential NMD-targeted regions. In comparison

to rare truncating variants, common stop-gain and frameshift

variants were clearly depleted at positions leading to the loss of a

functional domain (Figure 1A). Analysis of splicing-dependent

effects was limited to genes with multiple annotated transcripts in

CCDS (n = 5203). We observed an enrichment of common stop-

gain and frameshift variants in alternative isoforms (Figure 1B)

and a depletion of common variants in principal isoforms

(Figure 1C). Defining principal isoform on the basis of highest

expression level across tissues [25] showed comparable results. We

observed that common gene truncating variants occurred less

frequently in regions more than fifty nucleotides upstream the last

exon-exon junction, possibly triggering NMD-mediated transcript

degradation (Figure 1D). For all the features discussed above,

gene-truncating variants associated with disease in the Online

Mendelian Inheritance in Man (OMIM) database exhibited a

distribution bias opposite to what was observed for common stop-

gain and frameshift variants (Figure 1). The same trends were

observed when ESP and 1000 Genomes variant datasets were

analysed separately (Figure S2).

Expression analysis
We used expression data from 421 individuals to assess the

functional impact of stop-gain and frameshift variants [22]. In

particular, we evaluated differences between protein truncating

variants localized to NMD-targeted region compared to those that

were not. Stop-gains predicted to trigger NMD (n = 756) had a

significantly lower expression level (median Z-score = 20.59) than

stop-gains predicted to escape NMD (n = 379, median = 20.10)

and lower than a reference distribution of synonymous variants

(median = 20.04, one-sided Wilcoxon rank-sum test p-value,

2.2e-16) (Figure 2A). Among stop-gains predicted to trigger

NMD, singletons (n = 488, median Z-score = 20.75) showed a

stronger decrease in expression level compared to non-singletons

(n = 268, median = 20.26, p-value = 1.3e-10, Figure 2B), which

is an indication that they represent actual variants and not

sequencing or bioinformatics errors. We did not observe a similar

reduction when considering 87 of the 172 frameshift variants with

expression data mapping to potential NMD-target regions

(median = 20.14, p-value = 5.7e-02).

To further evaluate a splicing-dependent impact on gene

expression levels, we limited the analysis to 301 stop-gains

predicted to trigger NMD and affecting genes with multiple

isoforms described in CCDS. We observed a significant decrease

in gene expression levels of NMD-triggering stop-gains affecting all

isoforms (n = 216, median = 20.64) compared to those affecting

only a fraction of isoforms (n = 85, median = 20.22, one-sided

Wilcoxon rank-sum test p-value = 2.5e-03) (Figure 2C). Similar

results were obtained using RPKM normalized expression values

(Figure S3). These observations confirmed the functional impact

of stop-gains consistently with predictions of degradation by NMD

and current annotation of isoforms.

Pathogenicity scores
We then evaluated the predictive value for pathogenicity of the

sequence-based features characterized in the previous sections:

percentage of sequence affected, loss of functional domains,

proportion of isoforms affected, principal isoform damage, and

NMD-target region. We integrated them into a naı̈ve Bayes

classifier (Table S3) and assessed its performance over a dataset of

1160 pathogenic stop-gain variants found in the OMIM database

and 125 common stop-gain variants that are not known to be

pathogenic. Predictive performance of the pathogenicity score was

validated over unseen variants excluded from the learning data

using successive random subsampling (see Methods). The classifier

was benchmarked against a state of the art gene-based probability

score proposed by MacArthur et al [19]. This gene-based score

Author Summary

There are well-characterized severe immunodeficiencies
associated with loss-of-function variants in innate immu-
nity genes. Genome sequencing projects identify rare
stop-gain and frameshift variants in innate immunity
genes whose phenotype is uncharacterized. Current
methods to estimate the severity of rare stop-gains and
frameshifts are based on evolutionary conservation of the
gene, the likelihood for redundancy in its function or
mutational burden. These parameters are not always
applicable to innate immunity genes. We evaluated
sequence-level characteristics of more than 30’000 stop-
gains and frameshifts and prioritized variants according to
their predicted functional consequences. Our scoring
approach complements existing tools in the prediction
of innate immunity OMIM disease variants and associates
with functional readouts such as gene expression. In this
framework, we show that many individuals do carry highly
pathogenic variants in genes participating in antiviral
defense. The clinical assessment of these variants is of
significant interest.

Stop-Gains and Frameshifts in Human Innate Immunity Genes
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relies on conservation and protein interaction network proximity

to genes associated to a recessive disease as predictive features. In

the case of stop-gain variants, the performance of the gene-based

method was consistent with the reported results in the original

work (Area Under the Curve (AUC) = 0.83, Figure 3A). Similar

ROC curves were obtained with the gene-based score RVIS [6]

that provides a measure of the departure from the average number

of common functional mutations in genes with a similar amount of

mutational burden (Figure S4). The score based on sequence

features alone showed a lower predictive value (AUC = 0.67).

However, optimal ROCs were achieved by combining sequence

and gene-based scores (Figure 3). We observe that at a False

Positive Rate (FPR) of less than 0.1 there is no improvement from

the combined sequence-based and from the MacArthur gene-

based score that used network proximity OMIM recessive disease

genes in its design. Improvement at low FPR occurs in the

combination of the sequence-based score with RVIS, which does

not rely on OMIM annotations. While the AUC improvement is

modest, it is consistent across two datasets (ESP and 1000

Genomes), over the two gene-based scores, and for the two types of

variants (stop-gains and frameshifts), Figure S4. These results

demonstrate that sequence features can be incorporated as an

Figure 1. Distribution of variants according to sequence features and allele frequency. The y-axis represents the percentage of variants
for the allele frequencies and categories represented in the x-axis. Panel A, percentage of variants upstream of a functional domain. Panel B, in
alternatively spliced sites. Panel C, in the principal isoform. Panel D, in regions targeted by NMD. The distribution is shown for synonymous (green),
missense (blue), stop-gain (red) and frameshift (orange) variants according to minor allele frequency (MAF) intervals, where singletons (variants
detected only in one individual) are represented separately. The pattern of OMIM disease variants and homozygous variants for each feature is
shown. The corresponding coding genome background (measured as the percentage of nucleotides displaying the feature) is shown as a grey line
(partly hidden by the distribution of synonymous variants in some panels). Numbers of variants in each category are reported in Table S2. Logistic
regression was used to model the relationship between observing a given sequence feature in a given type of variant as a function of the logarithm
of the minor allele frequency (MAF). The odds ratio estimates for stop-gain variants were significantly different from those of synonymous variants in
all panels (p-values,5e-05, heterogeneity test [40]; for frameshifts, in panels B, C and D (p-values,5e-03).
doi:10.1371/journal.pcbi.1003757.g001

Figure 2. Association of NMD-target variants with gene expression. Panel A shows the distribution of average expression z-scores for genes
from individuals carrying different types of variants (synonymous, missense, frameshift and stop-gain). Peer-factor normalized RPKM from [22] were
used. The black sector represents the distribution of variants outside the NMD-target region and the colored sector those within the NMD-target
region. Statistically significant differences were observed for stop-gain variants predicted to trigger NMD (n = 756) compared to synonymous variants
(one-sided Wilcoxon rank-sum test p-value,2.2e-16). Panel B shows the distribution of average expression z-scores described in panel A for
synonymous (grey) and stop-gain (dark and light purple) variants within the NMD-target region. The distribution of NMD-target stop-gains is
represented separately for singletons (dark purple, n = 488) and non-singletons (light purple, n = 268). Distributions are statistically different (one-
sided Wilcoxon rank-sum test = 1.3e-10). Panel C shows the distribution of average expression z-scores described in panel A for synonymous (grey)
and stop-gain (dark and light pink) variants within the NMD-target region of genes with multiple isoforms described in CCDS. The distribution of
NMD-target stop-gain is represented separately for those affecting all isoforms (dark pink, n = 216) and those affecting only a fraction of isoforms
(light pink, n = 85). Distributions are statistically different (one-sided Wilcoxon rank-sum test = 2.5e-03). Results were reproduced using RPKM
normalized expression values (Figure S3).
doi:10.1371/journal.pcbi.1003757.g002
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additional source of information to improve current pathogenicity

prediction.

Correlation and complementarity of sequence-based and
gene-based scores

The marginal improvement obtained when scores were

combined motivated us to explore whether the different

approaches were capturing independent information. We ob-

served a very low correlation between gene-based and sequence-

based scores (Spearman rank correlation ,0.13, p-value: ,2.2e-

16 ([0.10,0.13] 95% CI from 10,000 bootstrap samples). The

reason for this observation is that the various scores are based on

different criteria: gene conservation and centrality (MacArthur

2012), burden of variation (RVIS) and sequence features (current

work). Correlations were not increased in analyses limited to

OMIM disease variants (Figure S5). Based on these results we

explored the potential for complementarity across scores.

First, we analysed whether the sequence-based score was better

powered to detect functional impact as measured by effect on gene

expression. We observed a stronger correlation with expression

levels for the sequence-based score (Spearman rank correla-

tion = 0.2160.03, p-value: ,5e-12) than either gene-based scores

(0.0660.04, p-value.0.05 for MacArthur 2012 score and

0.1360.03, p-value,5e-05, for RVIS score), Figure 4. Second,

we analysed OMIM genes that carry variants annotated as

pathogenic in OMIM as well as unknown or non-pathogenic

variants. Here, the variants are scored differently using a

sequence-based approach, while all share the same gene-based

score. Figure 5 depicts this situation for 95 OMIM disease genes

carrying multiple stop-gains. The genes with the highest patho-

genicity gene-based scores also carried variants with very low

severity as determined by a sequence-based score. Third, we

checked whether the performance of the sequence-based score

varies depending on the degree of gene conservation, as measured

by dN/dS ratio in the same set of OMIM disease genes. Figure 6
shows that, for genes below the protein-coding genome average

dN/dS (0.261), the MacArthur and RVIS gene-based scores

resulted in higher pathogenicity estimates than the sequence-based

score; however without discriminating between pathogenic and

non-pathogenic/non-annotated variants. In contrast, for genes

with dN/dS$0.261, the sequence-based score performed similarly

for pathogenic variants while attributing less pathogenicity to non-

pathogenic/non-annotated variants of the same gene (Wilcoxon

signed rank test p-value,0.012). We note that OMIM variants

used here were not considered for learning in the Bayesian

classification (see Methods).

From these results, we conclude that the two types of scores are

complementary. Specifically, the sequence-based score improves

measurement of functional gene impairment, discriminates across

different variants in a given gene and appears particularly useful

for analysis of less conserved genes.

Analysis of innate immunity genes
To test the ability to rank the functional consequences of gene

truncating variants in innate immunity genes, we analysed the

distribution of both the sequenced-based and gene-based patho-

genicity scores in 1503 genes involved in innate immunity [20],

including 387 interferon stimulated genes (ISGs, [26] [27]). We

identified 856 innate immunity genes, including 230 ISGs,

carrying rare gene truncating variants (MAF,1%). Globally,

innate immunity and OMIM genes ranked higher than the

background set of the genome for both scores (Figure 7 and
Figure S6). However, the highest scores were obtained for stop-

gain variants in OMIM genes, particularly for variants in innate

immunity genes that are not observed in the ESP or the 1000

Genomes Project samples (Figure 7). The latter result is

consistent with their extreme rarity and severity. We note that

OMIM variants used here for validation were not considered for

learning in the Bayesian classification (see Methods). Despite their

apparent agreement in Figure 7, correlation between the

sequenced-based and gene-based pathogenicity scores was very

low (Spearman correlation below 0.31 in all sets of genes analyzed)

indicating that both scores provide complementary information.

Given the observation that truncating variants can be associated

with important differences in functional impact, we estimated the

number of individuals in the study population that carried variants

Figure 3. Receiver operating characteristic of the performance of pathogenicity scores for stop-gain variants. Panel A: Classification
power of three pathogenicity scores was evaluated on a set of 1160 pathogenic stop-gain variants in the OMIM database, and 125 common stop-gain
variants not known to be pathogenic. Shown are the ROC curves for the sequence-based classifier (SB) developed in this work, for the gene-based
score reported in [19] (GB), and for the joint classifier (SB6GB). Dashed curves correspond to a randomization test in which rows in sequence features
are shuffled column-wise (denoted by SB(r)). Panel B: AUC improvement achieved when combining the sequence-based scores with a gene-based
score. The panels shows AUC values of ROC curves using two independent gene-based scores (MacArthur 2012 [19] and RVIS [6]), on two
independent datasets of variants (ESP and 1000 Genomes) and two types of variants: stop-gains and frameshifts. Corresponding ROC curves and
number of pathogenic and common variants used for benchmark is shown in Figure S4. Inclusion of sequence features led to an increased area
under the ROC curve in all evaluated settings.
doi:10.1371/journal.pcbi.1003757.g003
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consistently annotated as highly pathogenic by one or several

scores. Among 7595 individuals and 1503 innate immunity genes,

33 individuals carried rare (MAF,0.01) stop-gains and 85 carried

rare frameshifts that scored with high severity (pathogenicity rank

percentile , = 20%) in all scores (sequence-based, MacArthur

2012 and RVIS). For the smaller set of 387 ISGs, we identified 8

individuals carrying rare stop-gains and 4 carrying rare frameshifts

with high severity in all scores.

We then focused on truncating variants in genes associated

with viral inhibition in cellular assays [26,27]. A total of 13 out of

42 genes carried such variants (observed in at least 2 people),

which were very rare overall (MAF,0.0053; Table S4).

Specifically, two genes had variants with high predicted

pathogenicity based on both scores: MX1 which controls

Influenza A virus in vitro and HPSE which is involved in

metapneumovirus, respiratory syncytial virus and yellow fever

virus control. While the gene-based scores were by definition

identical for all variants affecting a same gene, the sequenced-

based score sharply distinguished the variants according to

different predictive pathogenicity (Table S3). This observation

was consistent with the observed differences in gene expression

levels available for some of the variants.

Discussion

Numerous Mendelian disorders leading to severe infection are

caused by rare functional variation of innate immunity genes [1].

Here, we identified multiple stop-gain and frameshift variants in

this family of genes in the general population, especially among

interferon stimulated genes. These are generally heterozygous rare

variants that may or may not result in clinical consequences. To

understand the nature and possible consequences of these variants,

we first analyzed their characteristics at the genome level. The

genome-wide analysis of more than 30’000 variants provided the

statistical power to identify sequence specific features for severity

and to build a pathogenicity score. This sequence-based

pathogenicity score was then applied to the analysis of variants

in interferon stimulated genes with antiviral activity.

We observed that the distribution of stop-gain and frameshift

variants in the sequence is biased by the allele frequency. Thus, we

speculated that tolerance to these variants would reflect their

impact on functional domains, on isoforms, and on degradation by

NMD. Our results clearly underscore that rare stop-gain and

frameshift variants are subject to purifying selection [15,28].

Indeed, those variants are kept at very low frequency when they

result in the loss of functional domains, when they are located in

NMD-targeted regions, or when they disrupt the principal isoform

or constitutively spliced exons. The potential molecular impact of

heterozygous rare truncating variants was examined using mRNA

expression data [22]. Stop-gain variants predicted to trigger NMD

degradation resulted in a measurable decrease in global expression

levels. This is in line with recent findings showing a reduction in

expression levels of the variant allele compared to the reference

allele in heterozygous individuals when stop-gains occur in NMD

target regions [19,22,29]. In all analyses, singleton variants

associated with highest functional impact, consistent with higher

severity of lower frequency rare variants and indicative of

general accuracy in variant calling. A possible limitation to our

analysis is that we use lymphoblastoid cell line expression data

[22]; the impact of specific variants may be allele and tissue-

specific [30].

To further explore the functional consequences of gene

truncating variants, we analysed the collective contribution of

various severity features to the prediction of pathogenicity. For this

we built a model on a learning set that was validated through

benchmark against OMIM disease variants. These sequence-based

features improved the ranking of OMIM variants when added to a

predictive model that use gene-based features. Specifically, the

sequence-based score appeared particularly suited for functional

prediction (gene expression) and for the analysis of variants in less

conserved genes. We provide a web-based tool (http://nutvar.

labtelenti.org/) allowing the analysis of user-provided variants.

Figure 4. Correlation between pathogenicity scores of truncating variants and impact in gene-expression levels. Shown are the
distributions (y-axis) of three pathogenicity scores (Panel A: the sequence-based score developed in this work, Panel B: the gene-based score from
MacArthur 2012 [19]; Panel C: the gene-based score RVIS [6]) within quintile bins (x-axis) of the average expression z-scores from individuals carrying
stop-gain variants (Peer-factor normalized RPKM from [22] were used; see Methods and Figure 2). A total of 1060 stop-gain variants are represented,
212 in each quintile. Quintiles from 1 to 5 are ordered in decreasing impact on gene expression levels and correspond to the following intervals
respectively: z-score,21.25, (21.25, 20.66], (20.66, 20.23], (20.23, 0.23], (0.23, 5.15]. To allow comparison across scores, they are represented as
rank percentiles, where the value of a given variant accounts for the percentage of all stop-variants that had a score more pathogenic than the
variant. Therefore, a rank percentile of ‘‘0’’ indicates a variant with the highest predicted probability of being pathogenic while a rank percentile of
‘‘100’’ indicates a variant with the lowest predicted severity. A stronger correlation with expression levels was observed for the sequence-based score
(Spearman rank correlation = 0.2160.03, p-value: ,5e-12) than either gene-based scores (0.0660.04, p-value.0.05 for MacArthur 2012 score and
0.1360.03, p-value,5e-05, for RVIS score). None of the scores associated frameshift variants with gene expression levels.
doi:10.1371/journal.pcbi.1003757.g004
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We hypothesized that such a sequence-based approach would

be of particular interest for the study of innate immunity genes

because, as a group, these genes tend to be less conserved than the

genome average and hence need special consideration. The

analysis showed that our sequence-based score is able to rank

variants in innate immunity genes according to their pathogenicity

and provides complementary information to previously proposed

gene-based scores. Indeed we found that in the case of the antiviral

genes MX1 and HPSE, truncating variants ranked very highly in

pathogenicity on the basis of gene-based scores while important

differences were observed at sequence level suggesting significant

differences in functional impact. For example the MX1 stop-gain

Figure 5. Complementarity between sequence-based and gene-based pathogenicity scores illustrated for OMIM genes with both
pathogenic and non-pathogenic/non-annotated stop-gain variants. Shown are the sequence-based score (x-axis) for 273 stop-gain variants
reported by the ESP and 1000 Genomes datasets in 75 OMIM genes carrying both OMIM pathogenic-variants (grey dots) and a non-pathogenic/non-
annotated variants (orange dots). Genes are displayed by blocks from 1 to 9 (y-axis on the right) corresponding to deciles of the gene-based
MacArthur 2012 rank percentile (e.g. 1: , = 10; 2: (10,20], etc). Grey triangles beside the panels represent the direction of increasing pathogenicity for
the corresponding scores.
doi:10.1371/journal.pcbi.1003757.g005

Stop-Gains and Frameshifts in Human Innate Immunity Genes
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rs35132725 exhibits all the features of severity and a negative

effect on expression levels. In contrast, the MX1 frameshift

rs199916659 is not expected to alter protein function.

Overall, among 387 ISGs examined in 7595 individuals, more

than half of the genes carried a stop-gain or frameshift variant in 1

or more individuals, usually at low allele frequency. Of these, 12

individuals carried truncating variants consistently interpreted as

highly pathogenic by the three evaluated scores. This rate of 1.5

per 1000 carriers could be a genomic substrate of occasional

homozygosity with unknown phenotypic consequences.

We then evaluated those instances that concerned genes for

which an antiviral effect has been established through a gain-of-

function screen in vitro. This last analysis provided a short list of

genes and reliable variants that could modulate responses to

various viruses, including common human pathogens such as

influenza. Of note, the in vitro virological inhibition data

represents a technical readout, and there are a number of

considerations that may diminish the in vivo consequences of these

rare variants, including issues of redundancy and robustness

in innate immunity networks, and the possibility of stop codon

Figure 6. Discrimination of pathogenic and non-pathogenic variants within OMIM genes according to the degree of gene
conservation. Shown are boxplots representing the distribution of the average sequence-based score of pathogenic (dark grey) and non-
pathogenic/non-annotated (orange) stop-gain variants in OMIM genes depicted in Figure 5. The distributions of the corresponding MacArthur 2012
and RVIS gene-based scores are shown in light grey. Genes are represented in two categories according to their conservation level in primates: dN/dS
ratio below (Panel A; n = 54) and above (Panel B; n = 20) the protein-coding genome average.
doi:10.1371/journal.pcbi.1003757.g006

Figure 7. Pathogenicity score distributions for rare stop-gain variants in innate immunity genes. Rank percentile distributions of
pathogenicity scores for rare stop-gain variants (MAF,1%) are shown in different sets of genes: protein coding genome background (grey,
‘‘Genome’’), innate immunity genes (light turquoise, ‘‘Inn Imm’’) and their subset of interferon stimulated genes (dark turquoise, ‘‘ISGs’’). The same
categories are shown for OMIM disease variants. All variants are reported in ESP and 1000 Genomes datasets except for sets indicated with the 1
symbol (dashed boxes) which present scores for OMIM disease variants only reported in the OMIM database. Only three variants reported in ESP and
1000 Genomes were found to affect ISGs and annotated as pathogenic in OMIM; this category is not represented in the figure. Variants with the
highest probability of being pathogenic have rank percentiles closer to zero (top of the panels). Panel A represents precomputed gene-based
pathogenicity scores from [19]. Panel B represents sequence-based pathogenicity scores, i.e. posterior probabilities using the features described in
the present work (see main text). Distributions of rank percentiles are represented as boxes where each box spans between 1st and 3rd quantile, and
the median is denoted by a bold line in the middle. Total number of variants within each distribution is indicated. Differences in number of variants in
equivalent categories between panel A and B originate from unavailability of the gene-based scores for some genes. Statistical differences against
the genome reference (one-sided Wilcoxon rank sum tests) are indicated with asterisks according to Bonferroni corrected p-values: ,5e-02 (*), ,5e-
03 (**) and ,5e-04 (***). The genome-wide median is denoted by a red line. Spearman correlation between the sequenced-based and gene-based
pathogenicity scores was below 0.31 in all sets of genes analyzed (Figure S5).
doi:10.1371/journal.pcbi.1003757.g007

Stop-Gains and Frameshifts in Human Innate Immunity Genes

PLOS Computational Biology | www.ploscompbiol.org 7 July 2014 | Volume 10 | Issue 7 | e1003757



read-through. There are other limitations to the predictions based

on sequence features, particularly the incomplete understanding of

the functional role of alternative isoforms and their tissue

specificity.

Rare gene truncating variants predicted to have high pathoge-

nicity risk in innate immunity genes should be examined for

phenotypic consequences in the population. Exceptional homozy-

gous individuals may be at risk for severe infection while

heterozygous individuals could have adequate compensation or

subtler phenotypes. However, there is increasing awareness of the

relevance of haploinsufficiency [31], and thus, it is not excluded

that heterozygosity may be associated with apparent clinical

phenotypes. Thus, the next step should include assessment in vivo
of high risk variants, which requires the capacity to re-contact

carrier individuals for collection of biological specimens and in-

depth phenotypic assessment.

Materials and Methods

Human variation sets
Two genetic variant and annotation datasets were used: 1) 6503

individuals from the NHLBI GO Exome Sequencing Project

(ESP) [16] and 2) 1092 individuals from the 1000 Genomes

Project [21]. Variants (SNPs and INDELs) and annotations for the

ESP exomes (file ESP6500SI-V2-SSA137.dbSNP138-rsIDs.snp-

s_indels.txt.tar.gz) were downloaded from the Exome Variant

Server, NHLBI GO Exome Sequencing Project, Seattle, WA

(http://evs.gs.washington.edu/EVS/, accessed July 2013). Only

variants assigned to the following categories were considered for

further analysis: ‘‘stop-gained’’ (including ‘‘stop-gained-near-

splice’’), ‘‘frameshift’’, ‘‘coding-synonymous’’ (including ‘‘coding-

synonymous-near-splice’’) and ‘‘missense’’ (including ‘‘missense-

near-splice’’). One base was added to the genomic coordinates

reported for frameshifts in the ESP dataset to consider the actual

location of the insertion/deletion event (http://evs.gs.washington.

edu/EVS/HelpDescriptions.jsp?tab = tabs-1). Variants and geno-

types from the 1000 Genome Project [21] correspond to phase 1

version 3 of the 20110521 release (ftp://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/release/20110521/, accessed August 2013). SnpEff

Variant Analysis software [32] (version 3.3h build 2013-08-11) was

used to annotated 1000Genome variants against SnpEff’s pre-built

human database (GRCh37.71). SnpEff categories labeled with

errors or warnings in the EFF field were disregarded. Only

variants assigned to the following categories were considered for

further analysis: ‘‘stop_gained’’, ‘‘frame_shift’’, ‘‘synonymous_cod-

ing’’ (including ‘‘synonymous_start’’ and ‘‘synonymous_stop’’) and

‘‘non_synonymous_coding’’ (missense). Hardy-Weinberg equilib-

rium (HWE) was tested with R package GWASExactHW (http://

cran.r-project.org/web/packages/GWASExactHW/, version

1.1). A fraction of variants significantly deviated from HWE

(Fisher’s exact p-values,0.05), mainly due to an excess of

homozygous rare allele calls, likely indicating technical artifacts.

All variants not in HWE were filtered out. When both datasets

where considered together, the following criteria were adopted: i)

Genomic coordinates of frameshift variants reported by both

datasets were treated as reported for the ESP dataset. ii) Allele

frequencies and HWE of variants present in both datasets were

derived from the sum of individuals from both studies; allele

frequencies of variants present in only one dataset were taken as

originally reported by the corresponding dataset. To exclude bias

due to previous assumptions, results were reproduced for the two

datasets considered separately as well as combined. For the

combined analysis allele frequencies of variants present in only one

dataset are estimated over all 7593 individuals.

Annotation of variants in reference human transcript and
protein sequences

The analysis pipeline implemented to annotate genetic variants

is depicted in Figure S7. We restricted the analysis to protein

coding genes and transcripts annotated by the Consensus CDS

(CCDS) project [23] (ftp.ncbi.nlm.nih.gov/pub/CCDS/, Release

12 04/30/2013). We considered only variants affecting a core set

of human protein coding regions consistently annotated and of

high quality. Only genes on the 22 autosomes were retained and

only CCDS entries with a public status and an identical match

were kept.

Domains of human protein sequences were retrieved from the

InterPro database [33] (release 44.0, 23/09/2013). Data were

downloaded through BioMart Central Portal [34] (http://central.

biomart.org/, accessed 04/10/2013), filtering fragments and

considered domain boundaries corresponding to InterPro ‘‘super-

matches’’. Mapping from InterPro coordinates on UniProt protein

sequences to CCDS sequences was done by exact matching of the

complete amino acid sequences using UniProt database (release

2013_07; [35]).

A position within a protein coding gene was considered

alternatively spliced if it was shared by only a fraction of all

protein coding transcripts reported by the Consensus CCDS

Project for that gene. Otherwise it was considered constitutively

spliced for the purpose of the study. Annotation of principal

isoforms used APPRIS ([36]; file APPRIS-g15.v3.15Jul2013/

appris_data.principal.homo_sapiens.tsv accessed 03/09/2013 at

URL: http://appris.bioinfo.cnio.es), a computational pipeline and

database for annotations of human splice isoforms. APPRIS selects

a specific transcript as principal isoform, i.e. the one computa-

tionally predicted as responsible of the main cellular function,

being expressed in most of the tissues or developmental stages and

more evolutionary conserved. Selection of the principal isoform is

based on protein structure, function and interspecies conservation

of transcripts. As an alternative definition of principal isoform, we

identified the transcript with a recurrent highest expression level

across tissues as provided by [25].

We accounted for nonsense-mediated decay (NMD) following

HAVANA annotation guidelines v.20 (05/04/2012) (http://

www.sanger.ac.uk/research/projects/vertebrategenome/havana/

assets/guidelines.pdf), Specifically, the NMD-target region of a

transcript was defined as those positions more than 50 nucleotides

upstream the 39-most exon-exon junction. Transcripts bearing

stop-gain variants at these regions are predicted to be degraded by

NMD [13].

Functional validation using mRNA expression data
Geuvadis RNA sequencing data from 421 lymphoblastoid cell

lines from the 1000 Genomes Project (phase 1 version 3 of the

20110521 release, see above; [21]) were obtained from Lappalai-

nen et al. 2013 [22]. Gene expression quantifications of protein-

coding genes were downloaded from EBI ArrayExpress accession

E-GEUV-1 (accessed 05/11/2013). Analyses were independently

performed on both RPKM and Peer-factor normalized RPKM

values. As a measure of the impact of a variant on expression level,

we calculated the average Z-score of the expression level in cells

from individuals carrying the variant compared to all samples.

Derivation of sequence-based pathogenicity score
We used a naı̈ve Bayes classification scheme in order to derive a

probability of pathogenicity for a given variant using the following

sequence-based features: maximum transcript length affected,

maximum percentage of domain truncation, number of isoforms

Stop-Gains and Frameshifts in Human Innate Immunity Genes

PLOS Computational Biology | www.ploscompbiol.org 8 July 2014 | Volume 10 | Issue 7 | e1003757

http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/HelpDescriptions.jsp?tab=tabs-1
http://evs.gs.washington.edu/EVS/HelpDescriptions.jsp?tab=tabs-1
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
http://cran.r-project.org/web/packages/GWASExactHW/
http://cran.r-project.org/web/packages/GWASExactHW/
ftp.ncbi.nlm.nih.gov/pub/CCDS/
http://central.biomart.org/
http://central.biomart.org/
http://appris.bioinfo.cnio.es
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/assets/guidelines.pdf
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/assets/guidelines.pdf
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/assets/guidelines.pdf
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/assets/guidelines.pdf
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/assets/guidelines.pdf


and ratio of isoforms affected, truncation of the principal isoform

and localization in an NMD-target region. Solely for the purpose

of the classifier, missing values were imputed to zero for

percentage of domain truncation and to the longest isoform for

principal isoform annotation. We defined a matrix XN6K of K
sequence-based features for N variants of a given type in the

dataset and a binary vector cN61 annotating variants as benign or

pathogenic. A new variant, y16K, is evaluated using maximum

likelihood estimates for class-specific means from the annotated

data, and a common intra-class variance vector (except for binary

features). We estimate the variance vector as n = E[(xi - mci)
2],

where xi is the ith row in matrix X and mci is the mean vector

corresponding to the class indicated by ci,. We assigned a

pathogenic class with 1 and benign class with 0. Assuming a prior

probability of pathogenicity, p1, posterior probability of pathoge-

nicity can be evaluated as:

p cy~1
��y,h

� �
~

p yjcy~1,h
� �

p1

p yjcy~1,h
� �

p1zp yjcy~0,h
� �

p0

where p0 = 1-p1 is the prior probability of being benign and

h = {m1,m2,n} is the set of model parameter vectors. The

conditional likelihood of y for a given class is assumed to factorize

as product of K likelihoods corresponding to the K sequence

features available (naı̈ve Bayes assumption). We used normal, and

Bernoulli likelihood functions to model continuous and binary

features respectively. It is straightforward to show the ranking

produced from this posterior probability does not depend on the

prior probability p1 as long as it is larger than zero and it is equal

for all the mutations under consideration.

Evaluation of pathogenicity scores
As reference throughout the work, and as a learning set for the

predictive scores (ROC analyses), we used a catalogue of

pathogenic mutations from the Online Mendelian Inheritance in

Man [37] database. Only genes with a cytogenetic location

(genemap2.txt accessed 18/10/2013 at OMIM: ftp.omim.org) and

with a gene status of confirmed or provisional were kept. For each

gene with an associated OMIM number, all allelic variants with a

‘‘live’’ status and a dbSNP identifier were obtained through the

OMIM API server (http://api.omim.org/). We used Ensembl

Variation [38] (Ensembl release 71, April 2013, dataset Homo

sapiens Short Variation, SNPs and indels, GRCh37.p10, accessed

25/10/2013 at http://apr2013.archive.ensembl.org/biomart/

martview/) to obtain the genomic coordinates for each dbSNP

identifier together with the clinical significance of each specific

allele as reported by ClinVar and dbSNP following OMIM

guidelines (http://www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/).

Only variants with a dbSNP identifier annotatted as ‘‘pathogenic’’

and mapping to a unique genomic location were kept for further

analysis. SnpEff Variant Analysis was then used to re-annotate the

selected pathogenic variants as described above.

We benchmarked three different pathogenicity scores using all

stop-gain variants from the OMIM dataset as positive (pathogen-

ic), and all common variants (MAF$1%) not present in OMIM

dataset as negative (benign) variants. The sequence-based score is

the posterior probability calculated from the naı̈ve Bayes

classification scheme described in previous section using an

empirical prior for pathogenicity. We used two different gene-

based scores: first the probability provided by MacArthur et al [19]

for prioritization of variants derived from two gene-level features:

conservation and protein interaction network proximity to genes

associated with a recessive disease. And second the Residual

Variation Intolerance Score (RVIS) [6] that provides a measure of

the departure from the average number of common functional

mutations in genes with a similar amount of mutational burden.

RVIS pathogenic score was assessed as f(-RVIS), where f(.) is the

logistic function. The joint score was defined as the product of the

sequence-based score and one of the two previously defined gene-

based scores. This joint score can be interpreted as the joint

probability of a pathogenic mutation in a gene assuming

conditional independence of the two probability scores. The

receiver operating characteristic (ROC) curve was derived using

random subsampling validation iterations. In each iteration, we

use 75% of the data to train the classifier and use the remaining

25% for validation. This was done 10000 times, to minimize the

Monte Carlo error, and validation set scores were combined to

calculate the ROC curve. The same procedure was applied to

frameshift variants.

Except for ROC analyses, sequence-based scores used through-

out the work were derived from the learning set described above

excluding both i) OMIM pathogenic variants reported in ESP and

1000 Genomes Project and ii) OMIM pathogenic variants

affecting innate immunity genes and interferon stimulated genes.

Assessment of dN/dS values
Genome-wide codon alignments of orthologous genes for nine

primate species (human, chimpanzee, gorilla, orangutan, ma-

caque, marmoset, tarsier, bushbaby, and mouse lemur) were

collected from Ensembl v57. We assessed dN/dS estimates using

both Ensembl Compara’s protein-based alignments, and DNA-

based alignments of primate sequences generated from genomic

DNA alignments. Sitewise Likelihood Ratio test [39] was used to

calculate the overall dN/dS for a given gene based on a one-ratio

model where all sites have the same dN/dS value.

Analysis of innate immunity genes and interferon
stimulated genes (ISGs) with antiviral activity

A representative list of 1503 human innate immunity genes [20]

was used. Within this list, we further analyzed 387 interferon

stimulated genes (ISGs) [26]. Additionally, we focused on those

ISGs showing antiviral activity against 18 viruses (including

important human pathogens such as HIV-1, hepatitis C virus,

influenza virus and other respiratory viruses) upon overexpression

in in vitro cellular assays [26,27]. We first identified all ISGs

carrying gene truncating variants, and then characterized the

subset of those genes associated with more than 50% viral

inhibition in the cellular assays.

Supporting Information

Figure S1 Distribution of variants along the gene
sequence. The distribution is shown for synonymous (green),

missense (blue), stop-gain (red) and frameshift (orange) variants

binned by minor allele frequency (MAF) intervals: Singletons (panel

A), MAF,0.001 (Panel B), MAF 5 [0.001–0.01) (Panel C), MAF

5 [0.01–0.05) (Panel D) and MAF.0.05 (Panel E). Numbers of

variants in each category are reported in Table S1. Data were

combined across the sequence using intervals of 10%. The longest

transcript for each gene was used as the reference sequence length.

(TIF)

Figure S2 Distribution of variants according to se-
quence features and allele frequency represented sepa-
rately for the ESP and the 1000 Genomes datasets. The

percentage of variants upstream of a functional domain (Panels A
and E), in alternatively spliced sites (Panel B and F), in the
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principal isoform (panel C and G) and in regions targeted by

NMD (Panel D and H). Panels A, B, C and D correspond to

variants in the ESP dataset, and panels E, F, G and H to the 1000

Genomes dataset. The distribution is shown for synonymous

(green), missense (blue), stop-gains (red) and frameshift (orange)

variants according to minor allele frequency (MAF) intervals,

where singletons (variants detected only in one individual) are

represented separately. The pattern of OMIM disease variants and

homozygous variants for each feature is shown. The correspond-

ing coding genome background (measured as the percentage of

nucleotides displaying the feature) is shown as a grey line (partly

hidden by the distribution of synonymous variants in some panels).

The y-axis represents the percentage of variants for the categories

represented in the x-axis. Logistic regression was used to model the

relationship between observing a given sequence feature in a given

type of variant as a function of the logarithm of the minor allele

frequency (MAF). In the ESP dataset, the odds ratio estimates for

stop-gain variants were significantly different from those of

synonymous variants in all panels (p-values,1e-04, heterogeneity

test [1]; for frameshifts, in panels B, C and D (p-values,5e-02). In

the 1000G dataset, the odds ratio estimates for stop-gain variants

were significantly different from those of synonymous variants in

all panels (p-values%5e-02, heterogeneity test [1]; for frameshifts,

in panel F (p-value,5e-02). Distribution for frameshift variants

from the 1000 Genomes dataset is noisy due to small sample size

(Table S1).

(TIF)

Figure S3 Association of NMD-target variants with gene
expression using standard RPKM normalization. Results

in Figure 2 are reproduced here using standard RPKM

normalized expression values from Lappalainen et al. [2]. Panel
A shows the distribution of average expression z-scores for genes

from individuals carrying different types of variants (synonymous,

missense, frameshift and stop-gain). The black half represents the

distribution of variants outside the NMD-target region and the

colored half for those within the NMD-target region. As in

Figure 2, statistically significant differences were observed for

stop-gain variants predicted to trigger NMD (n = 756) compared

to synonymous variants (one-sided Wilcoxon rank-sum test p-

value,2.2e-16). Panel B shows the distribution of average

expression z-scores described in panel A for synonymous (grey)

and stop-gain (dark and light purple) variants within the NMD-

target region. The distribution of NMD-target stop-gains is

represented separately for singletons (dark purple, n = 488) and

non-singletons (n = 268). Distributions are statistically different

(one-sided Wilcoxon rank-sum test = 4.4e-10). Panel C shows the

distribution of average expression z-scores described in panel A for

synonymous (grey) and stop-gain (dark and light pink) variants

within the NMD-target region of genes with multiple isoforms

described in CCDS. The distribution of NMD-target stop-gain is

represented separately for those affecting all isoforms (dark pink,

n = 216) and those affecting only a fraction of isoforms (light pink,

n = 85). As in Figure 2, distributions are statistically different

(one-sided Wilcoxon rank-sum test = 1.5e-03).

(TIF)

Figure S4 Receiver operating characteristic of the
performance of pathogenicity scores for stop and
frameshift variants. Shown are the ROC curves correspond-

ing to the sequence-based classifier (SB) developed in this work, a

gene-based scores (GB) (Panels A–F: MacArthur 2012 [3];

Panels G–L: RVIS [4]), and the joint score combining the

sequence-based and a gene-based score (SB6GB). Dashed curves

correspond to a randomization test in which rows in sequence

features are shuffled column-wise (denoted by SB(r) and GBxSB(r)).

Classification power was evaluated on a set of pathogenic variants

found in OMIM database (referred in the figure as Positives (Pos),

and common variants not known to be pathogenic (referred in the

figure as Negatives (Neg). Total number of Positive and Negative

variants used is indicated above each panel. Panels A–C and G–I
represent stop-gain variants while Panels D–F and J–L represent

frameshif variants. Results are shown for both the ESP and 1000

Genomes datasets considered together (Panels A, D, G, J) or

separately (Panels B, E, H, K for the ESP dataset and panels
C, F, I, L for the 1000 Genomes dataset). Number of pathogenic

and common variants used for benchmarking is shown on top of

each panel. AUC values of ROC curves for each model are

indicated. Incorporating sequence features led to an increased area

under the ROC curve in all evaluated settings (Figure 3B).

(TIF)

Figure S5 Correlation between sequence-based scores
and gene-based scores for truncating variants. Figure

shows the correlation between the sequence-based pathogenicity

score developed in this work and two gene-based pathogenicity

scores (Panels A and D: MacArthur 2012 [3]; Panels B and E:

RVIS [4]). Correlation between the two gene-based scores is

shown in Panels C and F. Panels A–C represent values for

17645 stop-gain variants reported by the ESP and the 1000

Genomes datasets (panels A–C). Panels D–F represent values for

155 disease stop-gain variants annotated as pathogenic by OMIM

and reported by the ESP and the 1000 Genomes datasets (we note

that OMIM variants used here were not considered for learning in

the Bayesian classification; see Methods). Upper Panels A–C
display the distribution of the score on the y-axis in the form of

boxplots conditioned to decile bins of the score on the x-axis.

Lower Panels D–E represent the values for each individual

OMIM variant (depicted with cross marks). For comparison across

scores, they are represented as rank percentiles, where the value of

a given variant accounts for the percentage of all stop-variants that

had a score more pathogenic than the variant. Therefore, a rank

percentile of ‘‘0’’ indicates a variant with the highest predicted

probability of being pathogenic while a rank percentile of ‘‘100’’

indicates a variant with the lowest predicted severity. Grey

triangles beside the panels represent the direction of increasing

pathogenicity for the corresponding variable. Lines in Panels D–
F divide variants in four regimes according to their belonging to

the top 20% pathogenicity ranking of the corresponding scores,

the top-right regime being the one where both scores agreed.

Spearman rank correlation tests yielded significant p-values in

panels A–C (p-value,2.2e-16). Spearman correlations were ,

0.13 (panels A and B; [0.107,0.125] and [0.115,0.123] 95% CI

from 10,000 bootstrap samples, respectively), ,0.24 (panel C;

[0.224,0.241] 95% CI). No significant p-values were found in

panels D–E (Spearman correlation ,0.07). Similar figures were

obtained for frameshift variants in analogous analyses to panels A–

C. Analogous analyses to panels D–E on frameshifts variants were

not possible due to lack of OMIM pathogenic frameshift variants

in the ESP and 1000 Genomes datasets.

(TIF)

Figure S6 Pathogenicity score distributions for rare
frameshift variants in innate immunity genes. Rank

percentile distributions of pathogenicity scores for rare frameshift

variants (MAF,1%) are shown in different sets of genes: protein

coding genome background (grey, ‘‘Genome’’), innate immunity

genes (light turquoise, ‘‘Inn Imm’’) and their subset of interferon

stimulated genes (dark turquoise, ‘‘ISGs’’). In contrast with

Figure 7, the same categories for OMIM disease frameshifts
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are not shown due to low number or absence of variants. All

variants are reported in ESP and 1000 Genomes Projects.

Variants with the highest probability of being pathogenic have

rank percentiles closer to zero (top of the panels). Panel A
represents precomputed gene-based pathogenicity scores from [3].

Panel B represents sequence-based pathogenicity scores, i.e.

posterior probabilities using the features described in the present

work (see main text). Each box spans between 1st and 3rd quantile,

and the median is denoted by a bold line in the middle. Total

number of variants within each distribution is indicated.

Differences in number of variants in equivalent categories between

panel A and B originate from unavailability of the gene-based

scores for some genes. Statistical differences against the genome

reference (one-sided Wilcoxon rank sum tests) are indicated with

asterisks according to Bonferroni corrected p-values: ,5e-02 (*), ,

5e-03 (**) and ,5e-04 (**). The genome-wide median is denoted

by a red line. Spearman correlation between the sequenced-based

and gene-based pathogenicity scores was below 0.13 in all sets of

genes analyzed.

(TIF)

Figure S7 Pipeline implemented to annotate genetic
variants in reference human transcripts and protein
sequences. Figure depicts the schematic pipeline followed for the

annotation of variants (see Methods). Analysis was restricted to

variants affecting autosomal protein coding genes and transcripts

annotated by the Consensus CDS (CCDS) project ([5]. Annotation

of principal isoforms used APPRIS system ([6]. Transcript-based

information was related to protein-based information through

UniProt [7]. InterPro database ([8] was used to retrieve protein

domain information.

(TIF)

Table S1 Distribution of variants according to allele
frequency and dataset. Number of variants included in the

study is reported in total and according to their original dataset:

the NHLBI GO Exome Sequencing Project (ESP) and the 1000

Genomes Project. Distribution is shown according to variant type

and minor allele frequency intervals and the number of genes

bearing each type of variants is reported.

(XLSX)

Table S2 Distribution of variants displaying different
sequence features according to allele frequency. Table

shows the absolute numbers and corresponding percentages of the

distributions of variants shown in Figure 1. Absolute number (1),

reference number (2) and percentage (3) of variants upstream of a

functional domain (A), in alternatively spliced sites (B), in the

principal isoform (C) and in regions targeted by NMD (D) are

shown according to minor allele frequency intervals. Correspond-

ing figures are reported for OMIM disease variants and

homozygous variants together with a coding genome background

reference measured in nucleotides.

(XLSX)

Table S3 Parameters of the Naı̈ve Bayesian classifier
learned from the joint dataset.
(XLSX)

Table S4 Sequence features and pathogenicity scores of
gene truncating variants in antiviral interferon stimu-
lated genes. Table shows figures for 15 stop-gain and 7

frameshift variants affecting 13 of 42 genes with anti-viral activity

in cellular assays [9] [10]. Analysis was restricted to variants

identified in at least two individuals. Variants are ranked

according to their sequence-based pathogenicity score. High-

scoring variants affecting MX1 and HPSE are highlighted in

violet and green respectively and discussed in the main text.

(XLSX)

Text S1 References in Supplementary Information
legends.
(DOCX)
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