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ABSTRACT 
The principal focus of this thesis lies on the investigation of new compu-
tational approaches for the automated processing of medical images to 
identify normal and diseased structures. Medical images constitute a 
particularity for computer vision methods as they commonly result from 
highly complex acquisition techniques. Frequently, they visualize bio-
logical objects that are hidden to the naked human eye. Two examples of 
medical images are investigated in this thesis: microscopic immunohisto-
chemically stained cancer tissue images known from pathology and mac-
roscopic abdominal magnetic resonance images known from radiology. 
In both cases, the medical task is to diagnose and if needed quantify ab-
normal structures such as cancer or bowel diseases. We aim to solve this 
task in computer-aided or fully automated manner to be able to improve 
daily clinic diagnostics and scientific research on large patient cohorts. 
This thesis is structured in following parts:  

First, we introduce technical terms relevant for this thesis. Tissue microar-
rays (TMA) are medical instruments for experimental cancer research in 
large patient cohorts. Magnetic resonance imaging (MRI) is a medical im-
aging method used to visualize the gastrointestinal tract. Crohn’s disease 
(CD) and CD severity are explained. 

The data basis of the computer-aided staining estimation pipeline is 
formed by eight TMA images of clear cell renal cell carcinoma patients 
and six TMA images of prostate cancer patients. Each image is fully la-
beled by two medical doctors. Additionally, two labeled MRI datasets of 
27 and 35 CD patients are introduced serving as development and vali-
dation datasets of our automatic CD detection and severity estimation. 

For a medical understanding of a variety of cancers, the morphological 
evaluation of hundreds of histologic tissue images has emerged as fun-
damental procedure in clinical cancer research. We define in this chapter 
a new computational pipeline for automated cell nucleus detection, seg-
mentation, classification and staining estimation on this type of images. 
We investigate similarity based approaches such as (multiple) kernel 
learning for nucleus classification. Our best classifier reaches a classifica-
tion accuracy of 83% which is as good as the manual annotation: the in-
ter-pathologist accuracy for classification of 1633 renal clear cell carci-
noma nuclei is 80%. Further, active learning for nucleus classification re-
duces the number of annotated training samples by the factor of two. 

The automated staining estimation pipeline is implemented in the user-
friendly and free Java program TMARKER. 
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Abstract 

Single cell analysis of protein expression profiles constitute an emerging 
field in recent cancer research. Highly multiplexed mass cytometry has been 
introduced as new imaging method to visualize localized and quantified 
expression rates of dozens of proteins in single tissue slices. In this chap-
ter, we study the single cell segmentation in this new type of medical 
images. Our watershed based algorithm exploits the highly registered 
joint information of multiple membrane and nucleus proteins. 

As an example of macroscopic computer-aided disease recognition, we 
investigate in this chapter the automatic CD detection on MRI data. An 
automated system on MRI basis is favorable for research and daily clinic 
to process the increasing amount of patient data. We define a novel hier-
archical CD segmentation system with two steps: First, diseased areas 
are coarsely localized in the images. Second, a pixel-wise classification 
system precisely segments CD in the aforementioned areas. Dedicated 
image features, such as texture anisotropy, spatial context and higher or-
der statistics are developed for this task. We achieve a CD segmentation 
with a Dice metric of 91.9% compared to manual segmentations.  

CD is usually graded in its severity influencing therapy strategies and 
indicating surgery. Conventional grading systems such as the endo-
scopic index of severity (CDEIS) are subjective or invasive. Physicians 
commonly rely on multiple grading systems for a holistic view on the 
patient. This chapter investigates the potential of MRI to serve as stand-
ard for a new CD severity grading system. 14 MRI features manually as-
sessed by four radiologists serve as data basis for an exhaustive model 
development pipeline. Our proposed CD severity model shows favora-
ble performance compared to the literature models MaRIA and CDA. 

As a novel continuation of the MRI based CD severity assessment, we 
incorporate two new automatically measured MRI features: automatic 
wall thickness and dynamic contrast enhancement. The two dedicated CD 
descriptors improve the correlation to segmental CDEIS to over 80%. 

We conclude the work on computational radiology with a suggestion to 
combine the automatic CD detection with CD severity estimation to a holis-
tic medical approach. Automated feature extraction has shown to signif-
icantly improve CDEIS regression and should therefore be considered in 
future applications. 
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ZUSAMMENFASSUNG 
Der Fokus dieser Arbeit liegt in der Erforschung neuer Methoden für die 
medizinische Bildanalyse zur automatischen Erkennung gesunder und 
kranker Strukturen. Solche Strukturen sind mit bloßem Auge oft nicht zu 
erkennen und müssen daher in komplexen Verfahren sichtbar gemacht 
werden. Zwei Beispiele medizinischer Bilder werden in dieser Arbeit be-
handelt: mikroskopische, immunhistochemisch gefärbte Krebsgewebsbil-
der aus der Pathologie und makroskopische Kernspintomographiebilder 
des menschlichen Abdomens aus der Radiologie. In beiden Fällen ist die 
medizinische Aufgabe, abnormale Strukturen wie Krebs oder Morbus 
Crohn zu erkennen und gegebenenfalls zu quantifizieren. Wir wollen 
diese Aufgabe möglichst rechnergestützt und automatisiert lösen um so-
wohl die klinische Medizin als auch die Forschung an grossen Patienten-
gruppen zu verbessern. Diese Arbeit ist in folgende Teile gegliedert: 

Zunächst werden technisch relevante Begriffe erörtert. Tissue Microarrays  
(TMA) sind medizinische Instrumente für experimentelle Krebsfor-
schung an großen Patientenkohorten. MRI ist ein medizinisches Bildge-
bungsverfahren für die Visualisierung des gastrointestinalen Trakts. 
Morbus Crohn (CD) und dessen Schweregrad werden erklärt. 

Acht TMA Bilder des klarzelligen Nierenzellkarzinoms und sechs Pros-
tatakrebs TMA Bilder sind die Datenbasis für die automatische Färbe-
schätzung. Alle Nuklei in den Bildern sind von zwei Ärzten unabhängig 
voneinander annotiert. Für die Arbeit an CD Erkennung in MRI werden 
zwei annotierte MRI Datensätze von 27 bzw. 35 Patienten involviert. 

In der klinischen Krebsforschung ist die morphologische Beurteilung 
von Hunderten von Gewebeproben für ein medizinisches Verständnis 
vieler Krebsarten nötig. Wir definieren in diesem Kapitel eine neue Me-
thode für die rechnerbasierte Erkennung, Segmentierung, Klassifizie-
rung und Färbeschätzung von Nuklei. Ähnlichkeitsbasierte Klassifikato-
ren wie (Multiple) Kernel Learner erreichen eine Genauigkeit von 83% und 
erreichen damit das Level der Pathologen: Die Inter-Pathologen Genau-
igkeit für die Erkennung von 1633 Nierenkrebs Nuklei beträgt 80%. Aus-
serdem beschäftigen wir uns mit aktivem Lernen, wodurch die Zahl der 
benötigten annotierten Nuklei halbiert werden kann. 

Die automatisierte TMA Färbeschätzung ist in einem benutzerfreundli-
chen, freien Java Programm namens TMARKER implementiert.  

Die Einzelzellanalyse wird in der Krebsforschung immer bedeutender. 
Highly Multiplexed Mass Cytometry ist ein neues Bildgebungsverfahren 
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Zusammenfassung 

für mehrlagige, hochkorrelierte Proteinbilder aus einem einzigen Gewe-
beschnitt. Wir stellen eine neue Zellsegmentierungsmethode vor, die von 
der gemeinsamen Information mehrerer Membranproteine profitiert. 

Als ein Beispiel für makroskopische Strukturanalyse untersuchen wir in 
diesem Kapitel die automatische Erkennung von CD in MRI Daten. Ein 
automatisiertes System dafür wäre für die Forschung und klinische An-
wendung vorteilhaft, da es die Verarbeitung der zunehmenden Daten-
menge vereinfachen kann. Wir stellen eine neue zweistufige CD Segmen-
tierung vor: Zuerst werden erkrankte Bereiche in den Bildern grob loka-
lisiert. Diese werden in einem zweiten Schritt pixelgenau segmentiert. 
Spezifische Bildmerkmale wie Textur-Anisotropie, räumlicher Kontext 
und Statistiken höherer Ordnung werden für diese Aufgabe hergeleitet. 
Wir erreichen durch das zweistufige Vorgehen eine CD Segmentierung 
mit einer Genauigkeit von 91,9% (Dice Metrik). 

CD wird in der Regel nach Schweregrad eingestuft, welcher die Thera-
piestrategie massgeblich beeinflusst. Herkömmliche Bewertungssysteme 
für den Schweregrad sind aber sehr subjektiv oder invasiv. Häufig ver-
lassen sich Ärzte daher auf mehrere Graduierungssysteme für einen 
ganzheitlichen Eindruck vom Patienten. Wir untersuchen daher, inwie-
weit MRI als Standard für eine neue CD Schweregraduierung dienen 
kann. Dazu werden 14 durch vier Radiologen manuell annotierte CD 
Merkmale mit dem endoskopischen Schweregrad (CDEIS) in Zusam-
menhang gebracht. Aus einer umfangreichen Regressionsanalyse resul-
tiert ein Modell mit signifikant höherer Korrelation zum CDEIS als die 
der beiden bekannten Modelle MaRIA und CDA. 

Eine Neuheit in der MRI-basierten CD Schweregradbewertung ist die In-
volvierung der zwei automatisch gewonnenen CD Merkmalen Wanddicke 
und dynamische Kontrastverstärkung. Die Korrelation zum CDEIS kann 
mit ihnen auf über 80% angehoben werden. 

Am Schluss dieser Arbeit wird die Kombination der automatischen CD 
Erkennung mit der Bewertung des Schweregrads zu einer ganzheitlichen 
medizinischen Untersuchung erörtert. Die automatisch gewonnenen CD 
Merkmale können die CDEIS Regression deutlich verbessern und sollten 
auf jeden Fall in zukünftigen Studien berücksichtigt werden. 
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1 INTRODUCTION 

Medical imaging comprises all techniques which allow to visualize hid-
den parts of the body for clinical purposes or medical research. Several 
techniques that have been developed over the last decades are known for 
this task and they substantially improve modern medical decision mak-
ing as many morbid alterations of the body happen inside, invisible to 
every naked human eye. One prominent example is abdominal magnet 
resonance imaging (MRI) in radiology which allows a macroscopic in-
sight into the abdominal part of the body. A second common example 
are tissue microarrays (TMA) in pathology which allow a microscopic 
magnification of human cells to visualize cell alterations. Such medical 
images are widely used for identification, diagnosis and grading of vari-
ous types of diseases, disorders or cancers. While the image acquisition of 
e.g. MRI is more and more computer aided, the image interpretation with 
a subsequent decision making process depends on visual inspection by 
the attending physician, commonly of multiple images derived from sev-
eral scan sequences. 

In the advent of improved and cheaper imaging techniques, the compu-
tational medical imaging is more and more in focus of scientific research. 
Therein, the image analysis is driven by automatic image processing, 
computer vision and machine learning algorithms supporting and auto-
mating the manifold processes involved such as e.g. disease or cancer 
detection, object segmentation and object classification. Machine learn-
ing algorithms further play more and more a role in medical research 
when it comes to feature selection for modeling complex biological sys-
tems. 

This thesis is largely motivated by the improvement of existing and the 
development of new computational image analysis algorithms for ab-
dominal MRI and TMA images. Two multidisciplinary research projects 
from the European Community’s 7th Framework Program constitute a 
strong support for this thesis: the SIMBAD project (grant no. 213250) and 
the VIGOR++ project (grant no. 270379). Both projects partially focus on 
the exploration of machine learning approaches for specific problems in 
recent medical research. 

In the context of SIMBAD (“Similarity Based Pattern Analysis and 
Recognition”), we study the advantage of similarity based classification 
approaches for renal clear cell nucleus classification. Similarity based 
classification allows the design of individual distance measures between 

SIMBAD 
founded in 2008.  
www.simbad-fp7.eu 
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objects which are tailored to the underlying problem. Several classifica-
tion systems based on support vector machines dedicated to exploit such 
individual similarity measures are investigated. 

More medically driven, VIGOR++ (“Virtual Gastrointestinal Tract”) pi-
oneers in exploring the multifaceted field of automatic Crohn’s disease as-
sessment in abdominal MRI (Tielbeek et al. 2012). The demand of auto-
mated evaluation methods for Crohn’s disease (CD) is motivated by the 
fact that only moderate inter-observer agreement for radiologic severity 
measures are reported (Vos et al. 2012). Two essential parts of this re-
search field are covered by this thesis: the computational CD detec-
tion/segmentation on MRI, and the automatic endoscopic CD severity 
estimation.  

1.1 Thesis Structure 
After this introduction of the thesis, we will shortly outline the underly-
ing medical and technical background of TMA, MRI and CD in chapter 
2. Subsequently, the medical datasets comprising TMA of renal clear cell 
carcinoma patients and prostate cancer patients as well as the MRI scans 
from CD patients are introduced in chapter 3. Chapter 4 then proposes 
our new processing pipeline for computational staining estimation on 
immunohistochemically stained tissue microarrays. The cell nucleus 
classification within this pipeline is exhaustively studied with similarity 
based approaches. Also, the importance of shape features is outlined. 
Further, we demonstrate on a simplistic approach the advantage of active 
learning for cell nucleus classification for medical research. The number 
of training labels can be reduced when active learning for labeling is in-
corporated. An implementation of some of the proposed algorithms as a 
freely available Java program TMARKER is reported in chapter 5. There-
after in chapter 6, we consider whole cell segmentation based on water-
sheds in highly multiplexed TMA images. This watershed based method 
differs from the previously studied nucleus segmentation as it can incor-
porate the multidimensional information of various, highly aligned 
membrane proteins. Chapter 7 investigates the use of shape features for 
Crohn’s disease detection and segmentation in MR images, which high-
lights the importance of morphological shape features in various prob-
lems in computational medical imaging. Chapter 8 introduces a feature 
selection pipeline based on exhaustive search for the CD severity assess-
ment in MR images. This pipeline is used for the development of a sever-
ity score which incorporates computer-read CD related MRI images for 
the first time in such a model in chapter 9. Chapter 10 finally critically 
concludes the work with an outlook to possible future research direc-
tions. 

VIGOR++ 
started in 2011.  

www.vigorpp.eu 

2 
 



1.2 Scientific Challenges 

1.2 Scientific Challenges 
In various medical imaging problems, a common ultimate goal can be 
formulated as to identify qualitatively and/or quantitatively clinically 
relevant objects in a medical image with as little user input as possible. 
E.g. for VIGOR++, this means on the one hand to detect and segment CD 
in MR images and on the other hand to quantify the severity of CD as a 
clinically relevant factor. For computational pathology however, the de-
tection and classification of cell nuclei is a scientific problem. Several sci-
entific challenges come together with the aforementioned formulation, 
which we will explain in the following sections. 

1.2.1 Image Interpretation 

Medical images differ from natural images in several aspects. They might 
originate from artificial image source, e.g. magnetic resonance signals, 
microscopic light sources. MRI 3D scans are computationally recon-
structed from a series of 1D signals and consequently differ according to 
the applied normalization. Imaging techniques have individual difficul-
ties such as examination artifacts (e.g. poor bowel distention, air or fecal 
remains in the bowel, motion or breathing artefacts) for MRI or experi-
mental sample preparation for TMA. As a consequence, the interpreta-
tion of images might largely be driven by the experience of the physician.  

The computational image interpretation of CD in MRI is extremely diffi-
cult due to the high variability of the non-rigid anatomic structure of the 
bowel. Hence, to the best of our knowledge, no study exists which ad-
dresses the computational CD detection and segmentation in MRI. We 
examine the image interpretation by human domain experts as well as 
by computer vision methods. Four radiologists have exhaustively exam-
ined the MRI scans of 30 patients and screened for 17 different signs of 
CD. We show that such images can be sufficient for a consistent CD as-
sessment among independent experts and that the proposed features can 
be interpreted as endoscopic severity index. On the other hand, we in-
vestigate the scientific question whether modern computer vision meth-
ods and machine learning algorithms are able to detect the signs of CD 
in the same images in a standardized manner. 

1.2.2 Data Fusion 

Scientifically very interesting is the advent of multiple data domains in a 
single research problem. As Crohn’s disease is a multifaceted disorder 
with intra- and extra-intestinal manifestations, its extensive diagnosis 
and severity assessment commonly includes patient’s medical history, 
physical examinations, clinical biomarkers, endoscopy, MRI examination 
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and pathological studies. The fusion of these different data domains 
poses itself a major challenge of the project. Especially the definition of 
an adequate reference standard for validation is important. 

1.2.3 Lack of Ground Truth 

As well for a supervised analysis as for educated model validation, the 
lack of ground truth is a challenging problem which commonly occurs in 
a wide range of natural sciences. Computer algorithms have to be de-
signed to account for this problem. In our medical research, we incorpo-
rate the gold standard by multiple experts to estimate the variance of the 
underlying dataset and thus the “difficulty” of the problem as well as to 
train classifiers based on a larger range of data variability. 

1.2.4 Clinical Availability and Implementation 

Computer science has to provide the capacity to store and process an in-
creasing amount of data with parallel computing. Databases have to be 
created which tolerate the sovereignty of the hospitals and research in-
stitutes for the medical datasets. Further, the developed scientific algo-
rithms have to be implemented and designed for practical usability. 
While the VIGOR++ project incorporates a professional partner 
(Biotronics3D) for this task, we contribute with an own Java implemen-
tation of the proposed cancer cell nucleus classification in the SIMBAD 
project. 

1.3 Social Benefit 
This thesis largely contributes to a social benefit in several manners. The 
improvement of cancer cell nucleus classification will increase the accu-
racy and confidence in computational analysis methods by medical re-
search. Computational pathology will not only improve the treatment of 
every single patient by standardized and reproducible medical decisions. 
It further facilitates the creation of larger patient cohorts and research 
projects, too, by decreased time and costs of specimen evaluation. 

Further, this study explores automatic CD severity assessment and CD 
localization on MRI for the first time. This drastically facilitates the indi-
vidualized medicine for this type of disease. Physicians can benefit from 
computer-driven techniques for the automatic CD assessment in MRI. 
These algorithms also autonomously propose standardized and patient-
specific decision support which only has to be reviewed by the medical 
doctor instead of completely surveyed from the raw data. 
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1.4 Interdisciplinary Endeavor 

1.4 Interdisciplinary Endeavor 
This thesis clearly accrues from the fruitful collaboration of scientists 
from various domains. Medical doctors with a deep and experienced un-
derstanding of the underlying medical problems, radiologists with the 
technical and medical expertise in abdominal MRI analysis and interpre-
tation, pathologists with their medical expertise for cell nucleus classifi-
cation and description in various types of cancer tissue, computer scien-
tists from image processing, computer vision, machine learning, visuali-
zation and bioinformatics with their knowledge of computational re-
search in medical sciences and information scientists from software and 
business companies with the experience to bring new technologies into 
clinic have to cooperate for a successful contribution. The excellent col-
laboration and frequent communication of scientists and experts from 
various areas is a central characteristic of this PhD work. 

1.5 Original Contributions 
Motivated by the aforementioned scientific problems in the medical im-
aging domain, this thesis studies following computer science and ma-
chine learning approaches with the specified contributions: 

1.5.1 Extensions of Computational Pathology 

We continue the scientific investigation of computational pathology, a 
research field that has been defined by Fuchs and Buhmann (2011b) as 
“the investigation of a complete probabilistic treatment of scientific and clinical 
workflows in general pathology, combining experimental design, statistical pat-
tern recognition and survival analysis in a unified framework to answer scien-
tific and clinical questions in pathology”. Fuchs et al. (2008a; 2011b) system-
atically developed and validated a computational pathology workflow 
for the automated cancer cell nucleus detection and staining estimation 
of renal clear cell carcinoma TMA specimen with subsequent survival 
analysis. We extend this workflow by partitioning it into the subsequent 
steps (i) nucleus detection, (ii) nucleus segmentation, (iii) nucleus classification 
and (iv) staining estimation. This workflow allows the detailed investiga-
tion of the single steps and their influence on the whole new TMA anal-
ysis pipeline. The pipeline is validated on renal clear cell carcinoma and 
prostate carcinoma data. 

1.5.2 Similarity Based Classification 

Within the new staining estimation pipeline, we treat similarity based 
classification approaches for the distinction of malignant and benign cell 

Chapter 4 

Section 4.5 
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nuclei by the introduction of new multiple kernel learning algorithms 
which combine the information of specially designed features in a classi-
fication ensemble. This classification ensemble is favorable compared to 
single support vector machines. 15 kernel and distance functions are in-
cluded in the study. 

1.5.3 Shape Importance for Nucleus Classification 

We further introduce dedicated shape measurements for cell nucleus 
classification. Shape is an important descriptor of nucleus characteristics 
which influences the design of a nucleus detection and classification 
pipeline. We quantify the influence of shape descriptors in cell nucleus 
classification on the example of renal clear cell carcinoma. The infor-
mation of shape is statistically discriminative for classifying nuclei as ma-
lignant or benign. Although this hypothesis is already known in pathol-
ogy, there is no study which quantifies the information gain. 

1.5.4 TMARKER: Implementation of Staining Estimation 
Pipeline 

We introduce the new and freely available software package TMARKER 
which is tailored to automatic nuclear staining estimation of immuno-
histochemically stained TMA images. We implement our developed 
modern machine learning algorithms in the platform independent pro-
gramming language Java. The algorithms are validated on renal clear cell 
carcinoma images and prostate cancer images in terms of accuracy, pre-
cision, recall and survival grouping. The program is developed for scien-
tific and clinical use and allows the unspecific cell nucleus detection and 
counting as well as the comprehensive nucleus classification and staining 
estimation with subsequent survival analysis. TMARKER is available on 
www.comp-path.inf.ethz.ch. 

1.5.5 Crohn’s Disease Detection in MRI 

To the best of our knowledge, no study exist which tried to solve the dif-
ficult task of fully automated CD detection and segmentation in ab-
dominal MR images. The difficulty of this task lies in the high variance 
in image signal inside and outside the bowel, the low resolution com-
pared to endoscopic camera images and the lack of a ground truth which 
we encounter with an appropriate gold standard. We firstly describe a 
framework for automated Crohn’s disease detection in MR images based 
on standard image features, textures, shape, and context information.  

Section 4.6 

Chapter 7 

Chapter 5 
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1.5 Original Contributions 

1.5.6 General Feature Selection Pipeline 

We propose a new pipeline for the exhaustive and elaborate feature and 
model selection for the quantification of Crohn’s disease severity. The 
pipeline comprises combinatorial feature selection with exhaustive 
search for linear regression models quantifying endoscopic disease se-
verity and combining different data sources. We show the generality of 
the pipeline applying it on different problems, e.g. Crohn’s disease se-
verity estimation based on MR image features, and cancer diagnosis pre-
diction based on protein feature selection. 

1.5.7 Automated MRI CD Severity Assessment 

One principal idea of this thesis is to automate the CD severity assess-
ment procedure for MRI examinations by computational support with 
standardized and validated algorithms. Although a lot of research is on-
going concerning the detection and segmentation of rigid organs in MRI 
(e.g. liver segmentation (Masoumi et al. 2012), kidney segmentation 
(Zollner et al. 2012) or heart segmentation (Petitjean and Dacher 2011)), 
the exploration and development of automatic methods for CD detec-
tion, segmentation and severity estimation in MRI is completely new. 
The flexible anatomic structure of the bowel, the non-localized and 
highly variant phenotype of CD and the high variability of MRI scan 
quality complicate the computer-driven interpretation of the images. We 
show that it is not only possible to automatically extract severity related 
image features such as wall thickness or dynamic contrast enhancement, 
but also that these newly measured quantities arising from the VIGOR++ 
project qualify for an enhanced severity prediction for Crohn’s disease 
patients. 

1.5.8 Combination of Multiple Data Dimensions 

Many biological classification problems in medical tasks show a highly 
complex environment which complicates the choice of appropriate fea-
tures. In fact, the classification of a medical object can depend on numer-
ous different features. Often, the incorporation of different data dimen-
sions requires a prior registration of the data sources (e.g. image registra-
tion). We show that the registration of different protein expression im-
ages improves the proper single cell segmentation on breast cancer tissue 
microarray images. A new technique called Highly Multiplexed Mass Cy-
tometry allows for the simultaneous quantitative co-localized expression 
scan of dozens of proteins in tissue microarrays. The highly registered 
information is used for improved cell segmentation. 

Chapter 8 

Chapter 9 

Chapter 6 
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1.5.9 Combination of Different Data Domains 

Extending the idea of using a variety of data dimensions for a given 
learning task, one scientific challenge of recent medical research the con-
nection of different data sources to constitute an even higher dimen-
sional, but more holistic view of the patient and to gain information from 
the mutual interactions of the different data sources. We contribute to 
this research by illustrating how Crohn’s disease severity information 
from MR images, clinical data, colonoscopy, and computer vision can be 
fused to form a holistic severity measure superior to any single sensor 
modality. 
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2 TECHNICAL BACKGROUND 

2.1 Tissue Microarray (TMA) 
Cancer research in pathology frequently concerns the quantitative pro-
tein expression rate of nuclear expressed proteins in cancer tissue sam-
ples. Tissue microarrays (TMA) constitute a common diagnostic tool for 
this target (Meyer et al. 2010; Meyer et al. 2012). The preparation of a TMA 
is simplified on the following example of renal clear cell carcinoma, and 
different variations of that protocol are known: 

• A tissue biopsy of affected renal tissue is taken from a renal clear 
cell carcinoma (RCC) patient and formalin-fixed and paraffin em-
bedded for conservation. 

• On the biopsy specimen, the cancer site is localized and punched 
out with an inflation needle of 0.6 mm in diameter. The extracted 
tissue cylinder is transferred to a separate, empty paraffin block. 

• Repeating this procedure with biopsies from several patients, the 
new paraffin array can carry dozens to hundreds of small tissue 
samples. 

• A thin slice of approximately 2-50 µm is abraded from the array 
with a microtome and fixed on a glass plate. 

• In an immunohistochemical assay, the slice is exposed to MIB-1 
monoclonal antibodies which specifically bind to the nuclear pro-
liferation protein Ki-67, unspecific to cancer cells or normal cells. 
The antibodies are linked to the chromatic enzyme peroxidase. 
Unbound antibodies are washed out. 

• The chromogenic substrate 3,3'-Diaminobenzidine is incubated to 
the slice and will be processed by bound peroxidase to a brown 
reaction product. 

• A bluish hematoxylin counterstain reveals the morphological 
structure of the tissue for better visibility. 

The resulting immunohistochemically (IHC) stained TMA is then man-
ually examined under the light microscope, and cancerous cell nuclei 
which express protein are counted. The crucial advantage of TMA is the 
simultaneous preparation of samples of a whole patient cohort under 
equal experimental conditions, such as temperature, incubation times, 
pH levels, salt concentrations and other factors, which immediately in-
fluence the quality of staining. 
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2 Technical Background 

Our used TMA datasets of RCC tissue and prostate cancer (PCa) tissue 
are introduced in section 3.1 and 3.2. Both datasets are MIB-1 stained as 
explained above against Ki-67, a nuclear proliferation protein. The pres-
ence of this protein indicates cell proliferation which is an unwanted be-
havior of tumor cells. The estimation of the fraction of proliferating can-
cerous cells, called staining estimation, is a standard measure for various 
types of cancer and is commonly related to the cancer prognosis and es-
timated survival of patients. 

2.2 Magnetic Resonance Imaging (MRI) 
Magnetic resonance Imaging (MRI) is a non-invasive medical imaging 
method to visualize inner parts of the body. The technique is based on 
magnetic fields of strengths 1-7 T in which atomic nuclei show their res-
onant behavior to react on electromagnetic radiation. The MRI scanner 
detects these resonances as induced electricity and calculates the result-
ing MR signal image. Especially hydrogen atoms show a distinct reso-
nance behavior. Since the time to reach the thermodynamic equilibrium 
of the stimulated nuclei differs depending on the chemical and physio-
logical structure and environment (and thus in different tissues, fluids, 
etc.), the measured induced electromagnetic signals differ which will be 
visible in the reconstructed signal images as different intensities. Two 
possible “time-signals” are explained here: T1-weighted MRI and T2-
weighted MRI. 

2.2.1 T1-weighted MRI (Spin-Lattice Relaxation) 

After being stimulated by an external electro-
magnetic signal, the spin of an atomic nu-
cleus is excited from its aligned position and 
immediately tries to recover the magnetic 
equilibrium with its surroundings. T1-images 
refer to the time it takes for the stimulated 
magnetic moment in an atomic nucleus to re-
cover 63 % (1-1/e) of its initial value after 
stimulation. The initial value refers to the re-
laxed parallel orientation to the static mag-
netic field before an external electromagnetic 
field has been switched on for stimulation. 
The T1-time for clean water is in the range of 

a few seconds. Typically, T1 equals a few seconds for blood and approx-
imates 100ms for body fat. Therefore, fat appears brighter in T1-images 
than water. Figure 2.1 shows a slice of a T1-weighted scan of patient 3 of 
our dataset. Structures like bowel wall are clearly visible. 

 
Figure 2.1: T1-weighted image 
(coronal THRIVE). 
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2.2.2 T2-weighted MRI (Spin-Spin Relaxation) 

A stimulated atomic nucleus shows a tem-
porary magnetization orthogonal to the 
magnetic field. After stimulation, this tem-
porary magnetization exponentially de-
cays. T2 is the time it takes for the magneti-
zation reach 37% (1/e) of its maximum 
value. T2 is usually smaller than T1 depend-
ing on the material or tissue. The T2-times 
of aqueous tissues lie in the range of 40-
200ms, while fat based tissues lie in the 
range of 10-100ms. Therefore, water ap-
pears brighter than fat. T2-images are espe-
cially useful for detecting edema and can-
cerous abnormalities, since they appear 
brighter due to the higher water content. Figure 2.2 shows a slice of a T2-
weighted scan of patient 3 of our dataset. Structures like lumen are visi-
ble. 

2.2.3 Sequences 

MR images can be generated in different sequences. The aim of distinct 
sequences is either to visualize different characteristics of the object or to 
reduce the time needed to record the signals. As explained above, the 
electromagnetic recovery time of the magnetic moments ranges from mil-
liseconds to seconds. Especially motion artefacts (such as breathing or 
moving) and noise can therefore disturb the image quality. Several tech-
niques have been invented to increase the speed and signal accuracy of 
MRI scans. Relevant for this thesis are following sequences: 

Spin Echo (SE) 
When the magnetic moment of a nucleus is refracted by 90° by the stim-
ulating magnetic field, the orthogonal magnetization is not stable. Due to 
a slight spatial inhomogeneity of the field, the spins start to “drift” away 
from the refracted position, a phenomenon called dephasing. The stimu-
lating magnetic field is now used to turn the magnetic moment again by 
180°, by switching it on twice as long as before. After rotation, the spins 
“drift” together at the same rate as they had drifted away before. When 
al spins again align together orthogonally to the static field, the electro-
magnetic signal shows a clear peak (echo). 

 
Figure 2.2: T2-weighted image 
(coronal SPAIR). 
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T1-weighted High Resolution Isotropic Volume Examination 
(THRIVE) 
THRIVE is an optimized fast T1-weighted 3D imaging technique combin-
ing sensitivity encoding, large volume coverage and uniform fat sup-
pression. THRIVE improves for example dynamic liver, small bowel, 
breast, prostate and pancreas MRI, providing isotropic images with high 
resolution in short breath-hold times. 

Spectral Selection Attenuated Inversion Recovery (SPAIR) 
The MRI fat suppression technique SPAIR is characterized by a low sen-
sitivity to radio frequency field inhomogeneity. The used adiabatic radio 
frequency pulses for spectral saturation ensure a high uniformity and 
lower specific absorption rate (SAR). SPAIR is suitable for offset and dif-
ficult to suppress regions such as liver, pelvis and shoulder. 

Dynamic Contrast Enhanced MRI (DCE-MRI) 
This is a series of T1-weighted MRI scans which are consecutively taken 
after application of a gadolinium based contrast agent to the patient. 
Gadolinium causes the T1 relaxation time to decrease and thus will be 
visible as enhanced bright areas. The contrast agent is distributed in the 
whole body by blood vessels. Damaged tissue will accumulate the con-
trast agent over time which will be visible in the MRI scans. In contrast 
to the higher temporal resolution of the DCE-MRI sequence, these im-
ages usually show a lower spatial resolution or have a smaller field of 
view. 

2.2.4 Alternative Techniques 

Medical MRI constitutes a 3D visualization of hidden body parts at high 
resolution. Although alternative techniques for visualization are known 
in radiology and medical imaging, all of them arise with different bene-
fits and drawbacks, which will be shortly reviewed below. 

X-rays are used in radiology to visualize hard tissues such as bones. Elec-
tromagnetic radiation on the wave length between ultraviolet light and 
gamma rays from a radiation source are passed through an object (body) 
and detected on the other side by either a photographic film or a digital 
detector. Depending on the composition of the irradiated tissue, more or 
less energy of the X-rays is absorbed which will be visible on the gener-
ated image. Since soft tissues and fluids have a comparable low absorp-
tion rate for X-rays, they show low contrast on such images making them 
hardly visible, in opposite to bones, teeth and medical metal implants 
being clearly visible due to high contrast. X-rays present a high ionizing 
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radiation dose to the human body, which is why they are only used when 
absolutely indicated. 

Computer tomography (CT) is a further possibility to display inner parts 
of the body. Here, X-rays are again used to permeate the object while the 
radiation source and the detector move around the object allowing 3D 
reconstructions from the absorption profile. To enhance the tissue con-
trast in human bodies, iodine containing contrast agents are injected to 
the patient. The agent accumulates in soft tissues and shows different ab-
sorption profiles depending on its concentration. The high resolution of 
CT images comes at a prize of high radiation dose that limits the usage 
of CT in daily clinic.  

Ultrasonography is a radiation-free technique for medical imaging. It re-
constructs usually 2D images (but also 3D sonography is possible) from 
the echo signals of underlying tissue exposed to ultrasound. Although 
sonography is cheap and safe for the patient, it has limitations in the com-
parably low resolution of the images and the lower contrast between dif-
ferent tissues. Also, air-filled lumens such as lung and bowel as well as 
bones inhibit the application of sonography, since large density changes 
reflect the ultrasound signal making these borders impenetrable. Still, ul-
trasonography has shown to be useful for initial diagnosis, assessment of 
disease activity, identification of fistulas, stenosis and abscesses in CD. 

MRI as a further widespread imaging technique tries to overcome the 
drawbacks of the aforementioned methods while still delivering high 
resolution 3D images with high contrast for soft and hard tissues. Due to 
its lack of electromagnetic radiation (X-rays), MRI can potentially be used 
for frequent patient examinations and is also the first choice in research 
for novel applications. In theory, MRI can achieve much higher resolu-
tion images than X-rays or CT, since it is not limited by the resolution of 
a detector. But high resolution for MRI requires high static magnetic 
fields (7.0 T or above). The extremely high energy consumption might be 
problematic in clinical diagnostics. Therefore, 1.5 T and 3.0 T units are 
used in practice as they show sufficient resolution for diagnosis, medical 
decisions and guided surgery. 

2.3 Crohn’s Disease 
One emerging global disease and healthcare problems are inflammatory 
bowel diseases (IBD), which divide in to the two groups Crohn’s disease 
(CD), also known as regional enteritis, and ulcerative colitis (UC) 
(M'Koma 2013). CD occurs in North America at the largest annual inci-
dence rate of over 20 persons per 100,000 per year, whereas in Europe, 
around 13 newly CD patients per 100,000 per year are registered 
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(Molodecky et al. 2012). Europe and USA further show the largest num-
ber of prevalence of CD, with approximately 320 patients per 100,000 
persons (Molodecky et al. 2012). These numbers are estimated to be in-
creasing (Kirsner 1988; Molodecky et al. 2012), which is why more and 
more attention is paid in clinics and research to this disease. Whereas IBD 
have been known since 1761 (Kirsner 1988), Crohn’s disease was firstly 
described by Antoni Leśniowski (1903) and later by Burril Bernad Crohn 
(1932).  

2.3.1 Causes 

The typical onset of the disease is in the young adulthood between 25 
and 35 years of age, and 20-25% of patients have onset of symptoms even 
earlier during childhood or adolescence (Baumgart and Sandborn 2012). 
Although the biological causes of the disease are not fully understood, 
they are assumed to be an adverse mixture of genetic predisposition, life-
style and environmental factors. A German study showed CD to be con-
cordant in 35% of monozygotic twins with this disorder, but only in 3% 
of dizygotic pairs (Spehlmann et al. 2008). This genetic concordance has 
been confirmed even for CD phenotype such as location, behavior and 
age of diagnosis, as well at diagnosis and longitudinally (Ng et al. 2012). 
Ethnic groups with a traditionally low incidence rate such as Hispanics 
and Asians and immigrants moving from regions from low incidence 
rates to areas with high rates showed an increasing risk of developing 
IBD and CD (Joossens et al. 2007; Hou et al. 2009), stressing the im-
portance of the environmental factors. Further, a range of environmental 
factors and changes in lifestyle have been associated with increased prev-
alence of CD, such as e.g. more adverse life events (Lerebours et al. 2007), 
less women breastfeeding (Barclay et al. 2009), smaller families with im-
proved hygiene and sanitation (Gent et al. 1994), air pollution (Kaplan et 
al. 2010) or increased tobacco usage (Seksik et al. 2009; Jones et al. 2008). 

2.3.2 Symptoms 

Crohn’s disease is basically a systemic and chronic inflammatory disease, 
and mainly affects the gastrointestinal tract and especially the whole co-
lon (see Figure 2.3). The various manifestations of CD vary from patient 
to patient complicating the proper diagnosis and therapy of the disease. 
Acute CD can manifest with abdominal pain, fever, weight loss, diarrhea 
with passage of blood or mucus, or bowel obstruction (Baumgart et al. 
2012). CD further can be accompanied by anemia and autoimmune dis-
orders such as arthropathy, osteoporosis and pyoderma gangrenosum, 

Crohn’s disease 
arises from genetic 

predisposition, 
environment and 

lifestyle. 
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making a monitoring of the immune system 
necessary (Baumgart et al. 2012). 

Studies showed a significantly reduced di-
versity of the mucosal bowel flora and a 
dysfunction of the mucosal layer in patients 
with CD, meaning a considerable disturb-
ance of the first lines of defense of the im-
mune system (Baumgart et al. 2012). 

2.3.3 Therapy 

There is no general top down treatment 
model for patients with CD, and the disease 
shows a high variability among patients, 
multifaceted in terms of symptoms, severity 
and secondary disorders. The aim of the in-
dividual therapy is therefore to achieve a 
sustained clinical remission of CD and to minimize the risk of associated 
complications (Baert et al. 2010), and medical treatment is highly varying 
among patients. Among conventional treatment possibilities are diets, 
antibiotics, autoimmune-suppressors, steroids and surgery (Baumgart et 
al. 2012). New therapeutic strategies have been invented and engineered 
over the past years involving monoclonal antibodies, fusion proteins, 
small molecules, recombinant growth factors and oligonucleotides 
(Baumgart et al. 2012). Stem cell therapies from haematopoietic, mes-
enchmal stromal or adipose tissue have been suggested as new alterna-
tive strategies with promising outcome (Garcia-Olmo et al. 2009; Burt et 
al. 2010; Duijvestein et al. 2010). A careful differential diagnosis consider-
ing intra- and extraintestinal symptoms is needed for an individualized 
therapy respecting the patient’s situation (e.g. family planning, immune 
system state or drug tolerance). 

A long-term treatment of CD patients with combinational therapy has 
emerged as common strategy to provoke remission. However, there is no 
unique consent about the optimal therapy duration among the physi-
cians (Talley et al. 2011; Louis et al. 2012; Van Assche et al. 2013). Therapy 
might become unresponsive over time making a switch of drug classes 
or agents necessary (Baumgart et al. 2012). Surgery with operative re-
moval of affected bowel parts does not cure Crohn’s disease and should 
only be considered when indicated, e.g. for abscess, complex fistulas 
which are unresponsive to therapy, fibrostenotic strictures, high grade 
dysplasia or cancer (Larson and Pemberton 2004). 

 
Figure 2.3: Luminal 
Crohn’s disease com-
monly affects the termi-
nal ileum, right colon, 
transverse colon, left and 
sigmoid colon and the 
rectum. 
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2.3.4 Diagnosis and Monitoring 

Due to the multiple manifestations of the systemic disorder, various di-
agnosis techniques and screening methods exist to assess Crohn’s dis-
ease. The diagnosis often requires a holistic view of the patient, consid-
ering medical history and environment, physical examination (heart rate, 
blood pressure, body mass index or external signs of disease), laboratory 
studies (blood test, urine strip, C-reactive protein), microbial studies 
(stool cultures), pathology and histology (biopsies from bowel taken dur-
ing endoscopy), endoscopy, imaging examinations (CT, MRI, capsule en-
doscopy), and specialist consultations for possible extraintestinal symp-
toms (rheumatology, dermatology, urology, surgery) (Baumgart et al. 
2012). Several infectious or non-infectious diseases can trigger similar 
symptoms as CD and have to be excluded, e.g. tuberculosis (Lee et al. 
2003), John’s disease (Lee et al. 2009a), the irritable bowel syndrome or 
Behçet’s disease (Lee et al. 2009b), or enteroviruses (Pawlowski et al. 
2009). After diagnosis, patients are commonly categorized according to 
the Montreal classification into groups of differential loci and characteris-
tics (CD affecting the terminal ileum, colon, upper gastrointestinal tract 
or combination of these and with or without strictures and with or with-
out penetration) (Silverberg et al. 2005; Satsangi et al. 2006). Further, the 
disease activity is monitored according to a range of possible scores, 
helping to further group patients and to pick the optimal therapeutic 
strategies. Disease severity scores have been developed as important pre-
dictors for course and complications of CD. 

2.4 Crohn’s Disease Severity 
The absolute and objective measurement of CD severity is still an un-
solved problem. Although several CD activity related indices exist, they 
all focus on different aspects of the disease, such as patient’s quality of 
life, endoscopy, protein level, histopathology or MRI. Ileo-colonoscopy 
is considered the gold standard for CD severity assessment (Baumgart et 
al. 2012), but several research projects in the recent years have focused on 
abdominal MRI as principal CD activity or severity assessment modality 
(Rimola et al. 2009; Rimola et al. 2011; Steward et al. 2012; Vos et al. 2012; 
Ziech et al. 2012a; Ziech et al. 2012b). CD severity derived from MRI might 
be cheaper than colonoscopy, less painful and more compliant to the pa-
tients, especially on a regular examination basis. Prominent studies for 
MRI assessment are these of Rimola et al. (2009; 2011) and Steward et al. 
(2012). Rimola et al. have formulated a precise protocol for MRI interpre-
tation, in which specific signs of CD (visible bowel wall thickness, rela-
tive contrast enhancement (RCE), edema and ulceration) are predictive 

The gold-standard for 
CD severity  

assessment is 
ileo-colonoscopy. 
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for endoscopic CD severity and activity. Steward et al. have developed 
an activity index derived from MRI scans which closely relates to CD ac-
tivity as indicated by histopathology. Both approaches clearly emphasize 
the high potential of MRI for CD severity assessment. Still, they both rely 
on the manually interpretation of various types of MRI sequences by 
medical doctors, which is not always unproblematic due to a potentially 
subjective perception, different level of medical experience and different 
types of imaging protocols. Sostegni et al. (2003) comprehensively re-
viewed available CD activity measures, of which the most important 
ones are explained here.  

2.4.1 CDEIS (Endoscopic Index of Severity) 

The Crohn’s Disease Endoscopic Index of Severity was developed by 
Mary and Modigliani (1989). Until nowadays, it remains the gold-stand-
ard for clinical studies evaluating CD activity and severity. The CDEIS is 
completely based on endoscopic findings on five bowel segments termi-
nal ileum, right colon, transverse colon, sigmoid and left colon and rectum (see 
Table 2.1) and ranges from 0 to 44. The relation between clinical CD ac-
tivity and endoscopic CD activity is not clear, yet (Cellier et al. 1994). 
However, novel biologic therapies aim more and more endoscopic re-
mission measured by CDEIS. CDEIS assessment is more time consuming 
and complex than other scores, shows discomfort for the patient and can 
be impeded by stenosis and the risk of bowel perforation. Therefore, the 
use of CDEIS in daily clinic is still significantly limited. 

Local CDEIS 
For our Crohn’s disease analysis pipeline, we calculate a local severity 
score which we call “local CDEIS” for every bowel segment explored. 
The local CDEIS is the sum of all four segment wise CDEIS characteristics 
(deep ulcerations, superficial ulcerations, surface involved by disease, surface in-
volved by ulcerations). Table 2.1 illustrates the calculation of CDEIS to-
gether with the local CDEIS. 

2.4.2 AIS and eAIS (endoscopic Acute Inflammation Score) 

These scores refer to Crohn’s disease activity based on histopathology 
with methods from Borley et al. (2000). Steward et al. (2012) used this his-
topathological grading of CD to form the trans-mural histopathological 
scoring of acute inflammation (AIS), ranging from 0 to 13. Here, mucosal 
ulceration, edema, neutrophils and depth of neutrophil penetration are 
evaluated in surgical resection specimens. The authors further developed 
an endoscopic biopsy acute inflammation score (eAIS, range 0 to 6), 
which is also applicable on specimens without surgical resection. 
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Table 2.1: CDEIS calculation scheme. Four endoscopic findings are evaluated for 
five bowel segments and summed up to “TOTAL A”. The mean of the explored 
segments is calculated in “TOTAL B”. Three points add to B if ulcerated or non-
ulcerated stenosis is present anywhere, respectively, resulting in the CDEIS. 
Highlighted are the new local CDEIS scores for each segments as the sum of the 
four endoscopic findings per segment. Table from Daperno et al. (2004). 

CDEIS 

 Ileum Right 
colon 

Trans-
verse 

Sigmoid 
and left 
colon 

Rectum  

Deep ulcerations 
(0 if none; 
 12 if present) 

     
Total 1+ 

Superficial ulcera-
tions 
(0 if none; 
 6 if present) 

     

Total 2+ 

Surface involved by 
disease (cm) 

     
Total 3+ 

Surface involved by 
ulcerations (cm) 

     
Total 4= 

 

Local 
CDEIS 
Ileum 

Local 
CDEIS 
Right  
colon 

Local 
CDEIS 
Trans-
verse 

Local 
CDEIS 
Sigmoid 
and left 
colon 

Local 
CDEIS 
Rectum TOTAL A 

Number of segments explored (1-5) n 
Total A / n TOTAL B 

If ulcerated stenosis is present anywhere add 3 C 
If non-ulcerated stenosis is present anywhere add 3 D 

Total B + C + D  =  CDEIS 

 

The authors showed on 16 patients that the eAIS correlates to the MRI 
findings mural thickness and T2 signal (Kendall’s tau = 0.4, p=0.02). AIS 
and eAIS have been developed for study purposes. Clinical use in daily 
practice is limited due to the need of surgery or endoscopic biopsies. 

2.4.3 CDAI (Crohn’s Disease Activity Index) 

Crohn’s Disease Activity Index (CDAI) is one of the oldest activity indi-
ces, developed by Best et al. (1976). It ranges from 0 to around 600 and is 
calculated by a questionnaire with 8 questions answered by the patient 
(see Table 2.2). This self-assessment – especially of abdominal pain and 
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general well-being – makes the score highly subjective and less compa-
rable among different patients. A further limitation of the CDAI as 
marker in everyday clinical practice is the time consumption: the CDAI 
is elaborated over 7 days. Further, the index is not applicable for patients 
with fistula or stenosis since it does not reflect these complaints accu-
rately. 

Table 2.2: Questionnaire for CDAI (Best et al. 1976). 

Parameter Description  Weight 
Number liq-
uid stools 

Sum of 7 days  x2 

Abdominal 
pain 

Sum of 7 days 
ratings 

0 = none 
1 = mild 
2 = moderate 
3 = severe 

x5 

General well- 
being 

Sum of 7 days 
ratings 

0 = generally well 
1 = slightly under par 
2 = poor 
3 = very poor 
4 = terrible 

x7 

Extra-intesti-
nal complica-
tions 

Number of listed 
complications 

Arthritis / arthralgia, 
iritis / uveitis, 
erythema nodosum, 
pyoderma gangreno-
sum, 
aphtous stomatitis, 
anal fissure / fistula / 
abscess, fever > 37.8 °C 

x20 

Anti-diar-
rhoeal drugs 

Use in the previ-
ous 7 days 

0 = no 
1 = yes 

x30 

Abdominal 
mass 

 0 = no 
2 = questionable 
5 = definite 

x10 

Hematocrit Expected - ob-
served Hct 

Males: 47 - observed 
Females: 42 - ob-
served 

x6 

Body weight Ideal ⁄ observed 
ratio 

[1-(ideal/ob-
served)]x100 

x1 
(not <-10) 
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2.4.4 HBI (Harvey Bradshaw Index) 

Harvey and Bradshaw (1980) developed a simplified version of the 
CDAI. It is composed of only clinical parameters and uses a different 
scale than the CDAI (Table 2.3). 

Table 2.3: Clinical parameters for HBI (Harvey et al. 1980). These are a 
closely related to the CDAI. 

Parameter Score 
Number liquid stools (previous day) 
Abdominal pain (previous day) 0 = none 

1 = mild 
2 = moderate 
3 = severe 

General well-being (previous 
day) 

0 = very well 
1 = slightly below par 
2 = poor 
3 = very poor 
4 = terrible 

Complications (each score 1) arthralgia, uveitis, erythema no-
dosum, aphthous ulcers, 
pyoderma gangrenosum, anal fis-
sure, new fistula, abscess 

Abdominal mass 0 = none         1 = dubious 
2 = definite    3 = definite and ten-
der 

 

2.4.5 MaRIA (Magnetic Resonance Index of Activity) 

An elaborated MRI-based CD activity score is MaRIA (Magnetic Reso-
nance Index of Activity). Rimola et al. (2009) reported a significant corre-
lation (r = 0.81, p<0.001) between the CDEIS and a MR index built by a 
linear tobit regression model of the MRI findings wall thickness, RCE, 
edema and ulceration in 50 CD patients. This index has been validated 
and confirmed in a second study with 48 CD patients by the same authors 
(correlation to CDEIS r = 0.80, p < 0.001) (Rimola et al. 2011). The patient’s 
severity is calculated as the sum of the segmental scores. The reported 
MaRIA score serves as a baseline for this thesis. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
= 1.5 ∗ 𝑤𝑤𝑀𝑀𝑤𝑤𝑤𝑤 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑠𝑠) + 0.02 ∗ 𝑀𝑀𝑅𝑅𝑅𝑅 + 5 ∗ 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑀𝑀
+ 10 ∗ 𝑢𝑢𝑤𝑤𝑖𝑖𝑠𝑠𝑢𝑢𝑀𝑀𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠 
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2.4.6 CDA (Crohn’s Disease Activity) 

Since MRI is a non-invasive technology enabling an insight into the pa-
tient, it is also coming into the focus of CD activity scoring research. 
Steward et al. (2012) have shown MRI findings such as bowel wall (mu-
ral) thickness and T2 signal to be predictive for acute inflammation indi-
cated by biopsy histology (correlation to eAIS, Kendall’s τ = 0.4, p=0.02). 
Their definition of the Crohn’s disease activity is: 

𝑅𝑅𝐶𝐶𝑀𝑀 =  1.79 +  1.34 ∗ 𝑠𝑠𝑢𝑢𝑢𝑢𝑀𝑀𝑤𝑤 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  0.94 ∗ 𝑠𝑠𝑢𝑢𝑢𝑢𝑀𝑀𝑤𝑤 𝑇𝑇2 𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠 

 

2.4.7 CRP (C-Reactive Protein) 

C-Reactive Protein is an inflammation related protein. It can serve as a 
biochemical CD severity indicator, since it is commonly increased in pa-
tients with active CD. Although it is fast and easy to measure, it is not 
solely specific to CD and thus can only support the indication of CD ac-
tivity. 

2.4.8 Calprotectin 

This fecal marker protein is measured in stools. A calprotectin level over 
50 mg/L during remission has been shown to predict CD relapse within 
1 year with a sensitivity and specificity of 90% and 83%, respectively 
(Tibble et al. 2000). 

2.4.9 Further Indices 

Further indices for Crohn’s disease activity are the Dutch Index (van Hees 
et al. 1980), the Organization Mondiale de Gastroenterologie (OMGE) Index 
(Myren et al. 1984), the Cape Town Index (Wright et al. 1985), the Inflamma-
tory Bowel Disease Questionnaire (IBDQ) (Guyatt et al. 1989), the Rutgeerts’ 
score for postsurgical recurrence (Rutgeerts et al. 1990), the Perianal Disease 
Activity Index (PDAI) (Irvine 1995), intestinal permeability (Suenaert et al. 
2002), and the Simple Endoscopic Score for Crohn’s Disease (SES-CD) 
(Daperno et al. 2004). They are reviewed by Sostegni et al. (2003).
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3 DATASETS 

In this chapter, the datasets involved in the development and validation 
of our computational imaging methods are introduced. The labeled TMA 
dataset of clear cell renal cell carcinoma (ccRCC) images and the image 
database for retrospective Crohn’s disease patients are adopted from pre-
vious work (Fuchs et al. 2008a; Ziech et al. 2012a). All other datasets have 
been newly created during the projects discussed in this thesis and dur-
ing the SIMBAD and VIGOR++ projects (Schüffler et al. 2013c; Schüffler 
et al. 2013d). 

3.1 Renal Cell Carcinoma TMA Dataset 
Renal Cell Carcinoma (RCC) belongs to the 10 most common cancers in 
western societies’ mortality (Grignon et al. 2004). Clear cell renal cell car-
cinoma (ccRCC) is a subtype of RCC occurring on cells with clear cyto-
plasm. Since this cancer develops metastases in a very early stage, com-
monly already before the diagnosis, the prognosis for RCC patients is 
usually poor (Tannapfel et al. 1996). One research field is therefore the 
discovery of early stage biomarkers for diagnosis and prognosis. Tissue 
microarrays (see section 2.1) are an important tool for molecular bi-
omarker discovery, since they allow the screening of dozens or even hun-
dreds of specimen simultaneously. Subgroups of patients with differen-
tial protein expression patterns can be identified under unique experi-
mental settings. 

In a retrospective patient cohort, 133 ccRCC specimens with clinical sur-
vival data were collected on a TMA at the University Hospital Zurich, 
Switzerland. The specimens have been immunohistochemically (IHC) 
stained against the monoclonal Ki-67 antibody Mib-1. Ki-67 is a human 
nuclear proliferation protein (Scholzen and Gerdes 2000). Positively 
stained nuclei on the images indicate cell proliferation and thus tumor 
growth. The proliferation rate of ccRCC is related to clinical prognosis, 
which makes Mib-1 staining estimation an indicator for survival. The 133 
images were acquired with a Nanozoomer C9600 virtual slide light mi-
croscope scanner (Hamamatsu Photonics K.K.), with a 40x magnification 
(3000x3000px for one TMA spot). The per-pixel resolution is 0.23µm. 

To train our TMA staining estimation pipeline, two trained pathologists 
with experience over 10 years have independently classified all cell nu-
clei on the top left quarters of 8 of these ccRCC TMA images into benign 
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Figure 3.1: One example image of the eight fully labeled ccRCC TMA image quarters. 
LEFT: The top left quarter of one original MIB-1 stained TMA spot. The original size 
of the quarter is 1500x1500px. An unspecific hematoxylin staining makes cell nuclei 
appear as bluish roundish objects in the image. Due to the IHC staining, Ki-67 express-
ing nuclei appear brown in the image. The task is to estimate the percentage of brown 
nuclei among cancer nuclei. Computationally difficult is the nucleus detection and 
classification. RIGHT: One of the two manual labels of the pathologists who detected 
all nuclei on the image and classified them into cancerous (red) or benign (gray) class. 
Note that the classification of cell nuclei is independent from their color, proliferation 
takes place in cancer and normal cells. 

 

and malignant nuclei. Figure 3.1 shows one of the eight labeled TMA im-
ages. Every image shows 100-300 cell nuclei. In total, pathologist 1 dis-
covered 2091 nuclei and pathologist 2 1908 nuclei. 1781 nuclei have been 
found by both pathologists commonly with a radius of 10 pixels. 1379 of 
these have consistent label: 978 (55%) are recognized as benign nuclei and 
401 (23%) as cancerous nuclei. The 402 remaining nuclei (22%) are varia-
bly classified by the two pathologists (see Table 3.1). 

Table 3.1: Nuclei identified by two pathologists independently. 310 
(15%) and 127 (7%) nuclei have been recognized by either pathologist 
1 or 2, respectively. 

 
Malignant Benign 

Unknown / 
Discrepancy Total 

Pathologist 1 649 (31%) 1442 (69%) - 2091 
Pathologist 2 581 (30%) 1327 (70%) - 1908 
Consensus 401 (23%) 978 (55%) 402 (22%) 1781 
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3.2 Prostate Cancer TMA Dataset 
Prostate cancer (PCa) is one of the most common cancer types in western 
male society. It is the second most frequently diagnosed cancer for hu-
man males worldwide, and the sixth leading cause of cancer related 
death (Jemal et al. 2011). Although up to 80 % of the over 70 year old men 
have developed PCa highlighting the high incidence rate of this type of 
cancer, the mortality of PCa is relatively small (Breslow et al. 1977). How-
ever, research is ongoing for the development of specific biomarkers for 
the early diagnosis and the deeper understanding of PCa (Cima et al. 
2011; Kalin et al. 2011). 

To validate our TMA analysis pipeline on a wider range of cancers and 
to show its generality, we included a dataset of 227 TMA images of a PCa 
patient cohort. 2 pathologists exhaustively labeled six image patches of 
these. Pathologist 1 identified 1297 cell nuclei (407 benign, 892 malignant) 
in total and pathologist 2 labeled 1416 cell nuclei (314 benign, 784 malig-
nant and 318 unclassified). Given a radius of 10 pixels, the two 
pathologists agreed on the location of 1195 nuclei and on the label of 985 
nuclei (250 benign, 735 malignant). Figure 3.2 and Figure 3.3 show two 
examples of the labeled PCa dataset. Figure 3.3 illustrates the high con-
cordance for nucleus detection for this type of images, while the nucleus 
classification is more difficult. 

3.3 Retrospective Crohn’s Disease MRI dataset 
For our research on computational CD interpretation on MRI, two pa-
tient cohorts with clinical data and CDEIS were acquired. A retrospective 
dataset (explained in this section) of 27 CD patients comprising raw MRI 
scans (section 3.3.1), manual MRI scorings of 14 features by four radiolo-
gists (section 3.3.2), clinical data including CDEIS (section 3.3.4), CRP 
level and CDAI and manual CD segmentations on MRI (section 3.3.5) has 
been included for model generation. The initial retrospective dataset 
comprised 33 patients. Three of these patients were not scored by the ra-
diologists and three did not sign the written consent of publish, such that 
27 patients were used in this thesis. A second prospective dataset of 35 
patients has been acquired comprising raw MRI scans and manual MRI 
scorings of 16 features by two radiologists for model validation and is 
detailed in section 3.4. 
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Figure 3.2: Example of the nucleus labeling of a pathologist for one of 
six PCa images. The pathologist indicated location and class of cancer-
ous nuclei (red), normal nuclei (green) and unknown nuclei (blue). 
Original image patch dimensions are 800x800px. The orange rectangle 
is shown in original size in Figure 3.3. 

 

Figure 3.3: The bottom left part of Figure 3.2 is shown illustrating the 
original magnification (40x) of the image. Further, the independent la-
bels of two pathologists are overlaid (red, malignant nucleus; green, 
benign nucleus; blue, unknown nucleus). 

 

 

3.3.1 MRI Protocol for CD patients 

MRI scans of 27 CD patients with written consent of data usage have been 
acquired at the Academic Medical Center (AMC), Amsterdam, The Neth-
erlands with a 3 Tesla MRI scanner (Intera, Philips Healthcare, Best, The 
Netherlands) according to following protocol (Ziech et al. 2012a):  
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1. Patients fasted for 4 h before examination. 
2. To distend the bowel for better visibility in MRI, the patients 

drank 1.6 l of mannitol (2.5%, Baxter, Utrecht, The Netherlands), 
60 minutes before the scans. 

3. Axial and coronal T2-weighted single shot fast spin echo se-
quences (SSFSE) with and without fat saturation were acquired. 

4. A coronal 3D T1-weighted spoiled gradient echo sequence (SPGE) 
with fat saturation was recorded. 

5. The antispasmodic butylscopalaminebromide (20mg, Buscopan, 
Boehringer, Ingelheim, Germany) was injected to stop bowel mo-
tility. 

6. A dynamic contrast enhanced (DCE-MRI) sequence with contrast 
agent gadobutrol (0.1 ml/kg, Gadovist 1.0 mmol/ml, Bayer Scher-
ing Pharma, Berlin, Germany) was performed: A coronal DCE-
MRI sequence with 450 scans over 6 min (temporal resolution: 
0.82s, spatial resolution: 2.78x2.78x2.5mm at 227x227x14 px). 

7. Butylscopalaminebromide (20mg) was injected a second time. 
8. Post contrast axial and coronal 3D T1-weighted SPGE sequences 

with fat saturation were acquired with a resolution of 
1.02x1.02x2mm (400x400x100 vx). 

For medical inspection and scoring by four radiologists, all sequences 
have been used. Automatic CD segmentation was performed only on 
post contrast images. 

3.3.2 MRI Feature Assessment by Four Radiologists 

Four expert radiologists independently scored 14 segmental and 3 global 
CD specific MRI features in all 27 patients. For the segmental scores, the 
visible bowel was virtually partitioned into five segments (terminal ileum, 
ascend (right) colon, transverse colon, descend (left) and sigmoid colon and rec-
tum) and every bowel segment was individually scored. The bowel seg-
ments were identified by the medical experts coherently by visible land-
marks such as e.g. the ileocoecal valve, splenic flexure and hepatic flex-
ure. 

Table 3.2 lists the segmental features and Table 3.3 lists the global CD-
related features, evaluated for every patient. Among these are MRI fea-
tures reported in literature and commonly used by abdominal radiolo-
gists (Ziech et al. 2012b), and MRI features used in the two available CD 
MRI scoring systems MaRIA and CDA. However, it is not clear, which of 
these features represent CD severity and activity best, and radiologists 
disagree in the weighting of the features for CD assessment (Ziech et al. 
2012b).  
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Table 3.2: Scoring sheet of 14 segmental MRI features which have been 
manually scored by four radiologists independently. Features with a 
star (*) are not used for this study (see section 3.3.3). 

Feature Description Values 

abscess Indicator whether or not abscesses 
are found in the bowel segment. 

0: absent 
1: present 

comb_sign Indicator whether or not the comb 
sign can be seen in the bowel seg-
ment. The comb sign refers to visi-
ble intestinal arcades due to in-
creased flow, fibro fatty prolifera-
tion and perivascular inflammatory 
infiltration. 

0: absent 
1: present 

edema Indicator whether or not edema are 
present in the bowel segment. 

0: absent 
1: present 

enhance-
ment_T1 

The enhancement of T1 signal in the 
bowel segment. 

0: normal 
1: minor 
2: moderate 
3: marked 

fistula Indicator whether or not fistula are 
present in the bowel segment. 

0: absent 
1: present 

length The length of affected bowel wall in 
the segment. 

0: 0 cm 
1: 0-5 cm  
2: 5-15 cm 
3: > 15 cm 

muralT2 The mural T2 signal of the bowel 
segment. 

0: normal 
1: minor increase 
2: moderate in-
crease 
3: marked in-
crease 

mural 
thickness 

The largest mural thickness in the 
bowel segment. 

0: 1-3 mm 
1: 3-5 mm 
2: 5-7 mm 
3: >7 mm 
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pattern The mural enhancement pattern in 
the bowel segment. 

0: not allocable 
1: homogeneous  
2: mucosal 
3: layered 

peri-
mural_T2 

The perimural T2 signal in the bowel 
segment. 

0: normal 
1: increased 
2: small fluid rim 
3: large fluid rim 

rce The relative contrast enhancement 
between pre-contrast MRI and post-
contrast MRI in the bowel segment. 
Three regions of interest (ROI) with 
largest bowel wall thickness are 
identified. The wall signal intensity 
(WSI) is obtained before and after 
application of the contrast agent 
gadolinium as the mean intensity of 
the three ROI. The rce is then de-
fined as: 

 
𝑀𝑀𝑅𝑅𝑅𝑅 = 100 ∗
𝑊𝑊𝑊𝑊𝑊𝑊 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑊𝑊𝑊𝑊𝑊𝑊 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑊𝑊𝑊𝑊𝑊𝑊 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∗

𝑊𝑊𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑊𝑊𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 , 

 
where the standard deviation (SD) 
noise pre- and post-gadolinium is 
measured as average of three SD of 
intensities outside the body before 
and after gadolinium intake, re-
spectively (Semelka et al. 1991). 

∈ ℝ 

ulcers Indicator whether or not ulcers are 
present in the bowel segment. 

0: absent 
1: present 

wall- 
thickness 

The thickness of affected bowel wall 
in mm. 

∈ ℝ+ 

pseudo-
polyps* 

Indicator whether or not pseudo-
polyps are detected in the bowel 
segment. 

0: absent 
1: present 
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Table 3.3: Scoring sheet of 3 global MRI features which have been 
manually scored by four radiologists independently. “_pP”, per Pa-
tient. Features with a star (*) are not used for this study (see section 
3.3.3). 

Name Description Scores 

Enlarged_-
lymphnodes_pP 

Indicator whether or not 
enlarged lymph nodes are 
present in the patient. 

0: absent 
1: present 

lymph_nodes_pP* Reflects the number of 
lymph nodes found in all 
bowel segments. 

0: no lymph nodes 
1: lymph node clus-
ter  
2: 1 lymph node >1 
cm 
3: 3 lymph nodes >1 
cm 

node_enhance-
ment_pP* 

Describes the visual en-
hancement of the lymph 
nodes per patient. 

0: less than vascular 
structure 
1: equivalent to vas-
cular structure 

 

3.3.3 Pseudo-Polyps, Node enhancement, Lymph Nodes, 
Mural Thickness and Edema 

In our medical problem, 17 potentially CD related MRI features are 
scored by four experienced radiologists. Four features showed to be re-
dundant, unspecific or extremely difficult to score. 

Pseudo-polyps are clinically important biological markers for past in-
flammation. However, while they are preferably useful in cancer re-
search, they are not considered to be relevant for CD activity. Further, 
pseudo-polyps are often smaller than five mm and hard to identify on 
MRI scans. They are usually detected by high-resolution endoscopy. 

Similarly, present lymph nodes and lymph node enhancement are consid-
ered as important general, non-specific markers of current active inflam-
mation. Their meaning for CD activity is clinically not clear as well as 
their scoring is not well-defined as they appear outside the bowel. 

Finally, mural_thickness and edema are redundant features already ex-
pressed in wall_thickness and muralT2, respectively. While wall_thickness 
is measured in millimeters, mural_thickness is scored in four categories (1-

34 
 



3.3 Retrospective Crohn’s Disease MRI dataset 

3 mm, 3-5 mm, 5-7 mm and >7 mm). Nevertheless, both scorings are rec-
orded separately, meaning mural_thickness is not a post-processed strati-
fication of wall_thickness. Therefore, mural_thickness and wall_thickness are 
not perfectly correlated. The Spearman rank correlation between the two 
features throughout all radiologists is r=0.81 (p<2.2e-16). Analogously, 
edema is the binary formulation of the categorical muralT2 (“Normal”, 
“Minor”, “Moderate”, “Marked”). Their correlation is r=0.97 (p<2.2e-16). 

We decided to exclude pseudopolyps, lymph_nodes_pP, node_enhance-
ment_pP as they are not reasonably detectable or not CD severity related. 
On the other hand, we keep edema and mural_thickness since they are in-
cluded in the comparison literature scores. The resulting 14 manual MRI 
features are subjected to further analysis. 

The size of the final dataset is estimated as 27 patients * 5 bowel segments 
* 4 radiologists = 540 samples. Since 7 segments could not be assessed by 
the radiologists (ascend colon in patients 12, 14 and rectum in patients 13, 
15, 18, 26, 27; 2 due to resection, 5 due to poor bowel distension), the MRI 
dataset comprises 128 * 4 = 512 samples. This number will further reduce 
when the samples are matched to the label CDEIS in the next section. 

3.3.4 CDEIS Assessment by a Medical Doctor 

33 CD patients from Academic Medical Center (AMC), Amsterdam, The 
Netherlands, underwent ileo-colonoscopy prior to MRI examination. 
The Crohn’s Disease Endoscopic Index of Severity (CDEIS) is determined ac-
cording to the scheme in section 2.4.1. Thus, every bowel segment obtains 
a local severity score which we call “local CDEIS”.  

The CDEIS serves as gold-standard for disease severity. Three of all 33 
patients (no 10, 16 and 30) do not have a MRI report. The terminal ileum 
was not accessible for colonoscopy in six patients (no 11, 20, 21, 24, 28, 
33; e.g. due to stenosis). Combining the MRI dataset with the correspond-
ing local CDEIS results in 122 * 4 = 488 samples with 14 MRI features and 
one CDEIS label, each, which forms the final retrospective dataset. 

3.3.5 Manual CD Segmentation by One Radiologist 

To develop a framework for automatic CD detection and segmentation 
in MRI, we collected the manual segmentation of a trained domain expert 
as gold-standard. In 26 retrospective patients, 28 3D-regions of enhanced 
bowel wall signal were identified and manually segmented in the post-
contrast VIBE sequences. For every diseased region, a normal region in 
the same segment was depicted as counter example. Figure 3.4 illustrates 
two example images of the manual CD segmentation. The bowel seg-
ment is encoded by the color in the drawing. 

Retrospective 
dataset with 
122 samples and 
14 features. 
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Figure 3.4: Two example images of THRIVE MRI scans of two patients with man-
ually segmented bowel wall regions with enhanced signal. LEFT: Patient 4, 3D-
slice No. 33. RIGHT: Patient 18, slice No. 26 (100 slices in total for each patient). 
The color encodes the bowel segment: green, terminal ileum; blue, ascend colon; 
violet, descend and sigmoid colon. Resolution is 1.02x1.02x2mm (400x400 px). 

 

3.3.6 Retrospective Dataset Statistics 

CDEIS Distribution 
Four patients (no 3, 7, 15, 26) showed no endoscopic evidence of disease 
(CDEIS = 0). The CDEIS in all patients ranges from 0 to 18 (mean = 4.67, 
median = 3.6). The local CDEIS ranges from 0 to 38 (mean = 3.85, median 
= 0). From the 122 bowel segments in our dataset, 88 (72%) are normal 
(CDEIS = 0) and 34 (28%) have a CDEIS > 0. From the 34 affected bowel 
segments, 16 (47%) have a local CDEIS larger than 10 (see Figure 3.5). 

MRI Feature Data Types 
Two MRI features are numerical: rce (min = -48.5, max = 234.6, mean = 
52.8, median = 43.6) and wall_thickness (min = 1.8, max = 15.1, mean = 3.7, 
median = 2.8). An rce value of 0 means there is no contrast enhancement 
after application of contrast agent. A wall thickness < 3 mm is considered 
normal. 15 MRI features are categorical with two or four categories, with 
most segments being normal. E.g. abnormal abscess, pseudopolyps, fistula 
or ulcers were identified in only 5, 7 or 6 of 548 samples, respectively, 
making these features extremely sparse (~1%). 
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Correlation of Features 
A univariate correlation analysis reveals the cross-correlation of the 14 
MRI features and their correlation to the local CDEIS (see Figure 3.6). A 
significant Spearman rank correlation to the local CDEIS larger than r=.5 
throughout all radiologists can be found for length (r=.54, p<.001), mu-
ralT2 (r=.53, p<.001), enhancement_T1 (r=.52, p<.001) and mural_thickness 
(0=.5, p<.001). Further, wall_thickness, mural_thickness, edema, muralT2, 
length, pattern and enhancement_T1 show a significant and strong inter-
correlation (r>.7, p<.001) and therefore a yellow to white entry in Figure 
3.6. Note, that only three variables (CDEIS, wall_thickness and rce) are 
quantitative measurements. For Spearman rank correlation calculation, 
all categorical variables are considered ordinal (e.g. comb_sign “absent”, 
“present” is represented by 0 and 1). 

Figure 3.5: CDEIS distribution 
in our retrospective dataset. A: 
CDEIS in 27 patients ranges 
from 0 to 18, where most of the 
patients have a CDEIS around 
5. B: Local CDEIS in 122 bowel 
segments. 72% of the seg-
ments are normal with 
CDEIS=0. C: approximately 
half of the affected bowel seg-
ments have a local CDEIS > 10. 

 

A B 

C 
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Figure 3.6: Symmetric cross-correlation (Spearman’s r=0.0-1.0) of 14 
MRI features and local CDEIS (middle, red arrow). A dendrogram clus-
ters the features according to their means. 

Inter-Observer Agreement of Features 
To evaluate the reproducibility of the features among the four expert ra-
diologists, the overall agreement (OA), κ-statistics (Cohen 1960; Fleiss 
1971; Light 1971) and agreement coefficient (AC1) (Gwet 2008) was cal-
culated for categorical variables and an intra-class-correlation (ICC) 
(Fleiss and Cohen 1973) was calculated for numeric variables. These sta-
tistics are shortly explained here. 

Overall Agreement OA 
Given two raters A and B classifying 𝑁𝑁 objects into 𝑖𝑖 categories, the over-
all agreement 𝑝𝑝𝑝𝑝  is defined as the proportion of objects in which the 
raters agree with the category (see contingency Table 3.4):  

𝑝𝑝𝑝𝑝 =
1
𝑁𝑁
� 𝑓𝑓𝑝𝑝,𝑝𝑝

𝑘𝑘

𝑝𝑝=1
 

where 𝑓𝑓𝑝𝑝,𝑝𝑝 is the frequency of objects classified by both raters into category 𝑖𝑖. 
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Table 3.4: Contingency table of two raters classifying N objects into k 
categories. The overall agreement and κ coefficient is calculated with 
the frequencies 𝒇𝒇⋅,⋅. 

 Rater B 
Frequencies 𝑓𝑓𝑝𝑝,⋅ Cat 1 … Cat k 

R
at

er
 A

 Cat 1 𝑓𝑓1,1 … 𝑓𝑓1,𝑘𝑘 𝑓𝑓1,⋅ = �𝑓𝑓1,𝑝𝑝

𝑘𝑘

𝑝𝑝

 

… … … … … 

Cat k 𝑓𝑓𝑘𝑘,1 … 𝑓𝑓𝑘𝑘,𝑘𝑘 𝑓𝑓𝑘𝑘,⋅ = �𝑓𝑓𝑘𝑘,𝑝𝑝

𝑘𝑘

𝑝𝑝

 

 Frequencies 𝑓𝑓⋅,𝑝𝑝 𝑓𝑓⋅,1 = �𝑓𝑓𝑝𝑝,1

𝑘𝑘

𝑝𝑝

 … 𝑓𝑓⋅,𝑘𝑘 = �𝑓𝑓𝑝𝑝,𝑘𝑘

𝑘𝑘

𝑝𝑝

 �� = 𝑁𝑁 

κ-statistics 
Cohen (1960) defined the κ-coefficient as: 

𝜅𝜅 =
𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝
1 − 𝑝𝑝𝑝𝑝

 

where 𝑝𝑝𝑝𝑝 is the proportion of objects with expected agreement by chance: 

𝑝𝑝𝑝𝑝 =
1
𝑁𝑁2� 𝑓𝑓𝑝𝑝,⋅ ∗ 𝑓𝑓⋅,𝑝𝑝

𝑘𝑘

𝑝𝑝=1
 

Fleiss (1971) and Light (1971) have expanded the κ-coefficient to multiple 
raters. While Fleiss introduced 𝜅𝜅𝐹𝐹 by extending the contingency table to 
more dimensions and adjusting 𝑝𝑝𝑝𝑝  and 𝑝𝑝𝑝𝑝  accordingly, Light proposed 
𝜅𝜅𝐿𝐿 as average over all possible pairwise κ coefficients. We use both Fleiss’ 
and Light’s methods as they both form standard agreement measures in 
literature and are comparable to other studies (Tielbeek et al. 2013). 

Further, Cohen (1968) introduced a weighted 𝜅𝜅𝑊𝑊 coefficient for ordered 
categories. He suggested weights for the distance of the categories of the 
two raters from the contingency’s diagonal. The values of the features in 
our dataset can be ordered in the case of multiple categories, therefore 
we use a linear weight for the disagreement between the raters for 𝜅𝜅𝐿𝐿. 

 

Agreement Coefficient AC1 
Gwet (2008) proposed a new agreement coefficient AC1 for categorical 
data which is supposed to be more robust on data where the overall 
agreement is very high. In these cases, the κ-value can be very small, in-
dicating a poor agreement, which is not intuitive. This observation is 
known as a paradox of the κ-value and explained later on the example of 
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pseudopolyps and ulcers in our dataset. The agreement coefficient AC1 is 
defined as: 

𝑀𝑀𝑅𝑅1 =
𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑝𝑝𝑒𝑒

 

where 

𝑝𝑝𝑝𝑝𝑒𝑒 = 1
𝑘𝑘−1

∑ 𝑝𝑝𝑝𝑝 ∗ (1 − 𝑝𝑝𝑝𝑝)𝑘𝑘
𝑝𝑝=1   and  𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑖𝑖,⋅+𝑓𝑓⋅,𝑖𝑖

2𝑁𝑁
. 

 

Intra-Class-Coefficient ICC 
For numerical data and multiple raters, the intra-class-correlation (ICC) 
is the standard measure for agreement validation. This measure is based 
on variance analysis between the objects and raters. Fleiss and Cohen 
(1973) have shown that the ICC is the numeric equivalent to the weighted 
κ-coefficient. Table 3.5 lists the agreement of the features in our dataset 
of 27 CD patients by four radiologists. According to the nomenclature of 
κ-value interpretation by Landis and Koch (1977) (<.00: poor; .00-.20: 
slight; .21-.40: fair; .41-.60: moderate; .61-.80: substantial; .81-1.00: almost 
perfect), length, edema, wall_thickness, CDA and MaRIA show a substantial 
agreement among the four observers. Pattern, fistula, muralT2, enhance-
ment_T1, mural_thickness, node_enhancement_pP and rce still show a mod-
erate agreement, whereas the remaining features have a slight or fair 
agreement among the four radiologists. 

The example of pseudopolyps illustrates the delicate interpretation of the 
κ-value: of 128 bowel segments in the dataset, four radiologists did not 
see any pseudopolyps in 127 segments. In one segment, one expert de-
tected a pseudopolyp. Intuitively, the inter-observer agreement is expected 
to be high, though the 𝜅𝜅𝐿𝐿 value is 0.0. In this example, 𝑝𝑝𝑝𝑝 as the overall 
agreement is 1.00. But 𝑝𝑝𝑝𝑝 , the expected agreement by chance is also close 
to one. Since the observed agreement is not different than the agreement 
by chance, the 𝜅𝜅𝐹𝐹 value is comparable small. 

The feature ulcers further illustrates the paradox of a negative κ-value. 
Consider the pairwise Cohen κ of two observers: of 128 bowel segments, 
both observers agree on absence of ulcers in 123 segments. 4 segments 
show ulcers only for the first radiologist, one segment shows ulcers only 
for the second radiologist. No segment shows ulcers for both radiologists. 
Therefore, the observed agreement is: 𝑝𝑝𝑝𝑝 = 123/128 ≈ 0.9609 . The ex-
pected agreement with this contingency is: 𝑝𝑝𝑝𝑝 = 127∗124+4∗1

1282
≈ 0.9614 . 

Since 𝑝𝑝𝑝𝑝 > 𝑝𝑝𝑝𝑝, the resulting κ will be negative. 
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3.4 Prospective Crohn’s Disease MRI Dataset 

Table 3.5: Inter-observer agreement of 4 radiologists within all MRI 
findings and two MRI severity scores in 27 patients. Values are ordered 
by Gwet’s (2008) robust and intuitive agreement coefficient (AC1). All 
coefficients range from 0 (poor agreement) to 1 (perfect agreement). Κ 
can be negative if the expected agreement between raters is larger than 
the overall agreement. Overall agreement (OA), Fleiss‘ 𝜿𝜿𝑭𝑭, Light’s 𝜿𝜿𝑳𝑳 
and AC1 for categorical data, intra-class-correlation (ICC) for numeri-
cal data. 

Feature OA κF κL AC1 ICC
pseudopolyps 0.99 0.00 0.00 1.00
ulcers 0.95 -0.01 -0.01 0.98
abscess 0.95 0.24 0.38 0.98
fistula 0.94 0.48 0.50 0.97
comb_sign 0.86 0.26 0.20 0.92
edema 0.77 0.64 0.64 0.80
enlarged_lymphnodes_pP 0.74 0.35 0.34 0.80
perimural_T2 0.68 0.25 0.33 0.79
pattern 0.64 0.55 0.60 0.75
muralT2 0.66 0.42 0.51 0.74
length 0.59 0.48 0.61 0.71
enhancement_T1 0.56 0.39 0.53 0.67
wall_thickness 0.66
mural_thickness 0.52 0.39 0.57 0.64
node_enhancement_pP 0.59 0.50 0.50 0.56
lymph_nodes_pP 0.37 0.30 0.38 0.48
rce 0.44

CDA 0.77
MaRIA 0.72

Score

 

3.4 Prospective Crohn’s Disease MRI Dataset 
During this study, a prospective dataset is being prepared by the medical 
VIGOR++ partners at the Academic Medical Center (AMC), Amsterdam, 
The Netherlands and the University College London (UCL), London, 
United Kingdom. A shared MRE protocol has been developed to gener-
ate comparable MRI scans from new CD patients. The protocol is almost 
identical to that for the retrospective data. The main change in the pro-
spective MRI sequence is the use of a 3 Tesla scanner for UCL, instead of 
a 1.5 Tesla machine. The stronger magnetic field results in a better image 
quality with higher signal to noise ratio. 

Initially, 35 new patients have been scanned at UCL, with written consent 
of data usage. The basic specification for inclusion in this dataset is an 
age over 18, confirmed Crohn’s disease, assessed CDEIS and MRE with 
the same MRI features as for the retrospective study. 
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3 Datasets 

3.4.1 MRI Feature Assessment by Two Radiologists 

Similar to the retrospective data, two radiologists (one from each insti-
tute) have independently scored the MRI features listed in Table 3.2 and 
Table 3.3, except of the feature enlarged_lymphnodes_pP. Of the 35 pa-
tients, one radiologist scored 34 patients and the second radiologist 
scored 24 patients. 23 patients have been scored by both radiologists. In 
total, 172 bowel segments were scored by the radiologists, 114 segments 
in intersection. 

3.4.2 CDEIS Assessment by Two Medical Doctors 

As a peculiarity in the prospective dataset, the CDEIS is diagnosed by 
two medical doctors independently. The second CDEIS is derived 
through a video examination by the second gastroenterologist without 
communication to the performing physician. 

For two of the 35 patients (patients 5 and 6) a second CDEIS is not avail-
able, as well as for seven individual segments in patients 15, 24, 30, 44 
and 50. The correlation of the local CDEIS for 155 segments is r=0.96 
(p=2.2e-16) (see Figure 3.7, left). The root mean square deviation is 
RMSD=1.51. The large number of non-affected bowel segments does not 
influence these values: on only 44 segments with signs of CD for at least 
one labeler, the CDEIS correlation is r=0.93 (p=2.2e-16) and the 
RMSD=2.53. The high segmental CDEIS agreement propagates to the 
whole-patient assessment: the correlation of the global CDEIS in 33 pa-
tients is r=0.99 (p=2.2e-16) and the RMSD=0.60 (see Figure 3.7, right). This 
high correlation nicely indicates how suitable the endoscopic CDEIS is as 
gold standard reference. 

  

Figure 3.7: Pearson correlation of independently labeled CDEIS of two 
independent medical doctors. LEFT: Per segment CDEIS of 155 seg-
ments. RIGHT: Per patient CDEIS of 33 patients. The high concordance 
of this severity justifies its use as reference standard. 
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3.4 Prospective Crohn’s Disease MRI Dataset 

3.4.3 Prospective Dataset Statistics 

35 CD patients have been acquired for this study. 13 patients (37 %) show 
no endoscopic evidence of disease with CDEIS = 0. 16 patients (46 %) had 
CDEIS ≤ 1 and 20 patients (57 %) had a CDEIS ≤ 2. The CDEIS of all pa-
tients ranges from 0 to 15.3 (mean=2.9, median=1.5). The local CDEIS of 
all 172 bowel segments ranges from 0 to 27 (mean = 2.4, median = 0). 127 
(74%) segments are normal with CDEIS = 0 and 45 (26%) have a CDEIS > 
0. From the 45 affected bowel segments, 22 (49%) have a local CDEIS 
larger than 8 (see Figure 3.8). 

Inter-Observer Agreement of Features 
23 patients have been scored by two radiologists for 17 MRI features. The 
inter-observer agreement is similar and slightly higher than in the retro-
spective dataset (see Table 3.6). Note that this might mainly arise from 
the fact that only two observers instead of four have labeled weigh fewer 
patients (23 patients instead of 27). The chance of agreement is therefore 
higher than on the retrospective data set. Note that all perfect agreements 
of 1 (100% agreement) are exclusively a result of all samples being nor-
mal, with no positive sample according to both radiologists. 

  

 

 

Figure 3.8: CDEIS distribution 
in our prospective dataset. A: 
CDEIS in 35 patients ranges 
from 0 to 15.3, where most of 
the patients have a CDEIS < 2. 
B: Local CDEIS in 172 bowel 
segments. 74% of the seg-
ments are normal with CDEIS 
= 0. C: approximately half of 
the affected bowel segments 
have a local CDEIS ≤ 8. 

 

 

 

A B 

C 
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3 Datasets 

Table 3.6: Inter-observer agreement of two radiologists within all MRI 
findings and two MRI scores for CD severity in 23 prospective patients. 
Values are ordered by Gwet’s (2008) robust and intuitive agreement 
coefficient (AC1). All coefficients range from 0 (poor agreement) to 1 
(perfect agreement). Overall agreement (OA), Fleiss‘ 𝜿𝜿𝑭𝑭, Light’s 𝜿𝜿𝑳𝑳 and 
AC1 for categorical data, intra-class-correlation (ICC) for numerical 
data. 

Feature OA κF κL AC1 ICC
lymph_nodes_pP 1.00 1.00
node_enhancement_pP 1.00 1.00
abscess 1.00 1.00
fistula 1.00 1.00
pseudopolyps 1.00 1.00
perimural_T2 0.95 0.38 0.18 0.94
comb_sign 0.95 0.64 0.64 0.94
enlarged_lymphnodes_pP 0.91 -0.05 0.00 0.90
ulcers 0.85 0.25 0.29 0.82
length 0.84 0.54 0.63 0.81
pattern 0.82 0.49 0.63 0.79
mural_thickness 0.80 0.34 0.53 0.77
edema 0.84 0.47 0.48 0.76
enhancement_T1 0.76 0.36 0.49 0.73
muralT2 0.71 0.19 0.36 0.67
wall_thickness 0.61
rce 0.14

Score
CDA 0.75
MaRIA 0.63  
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4 TMA STAINING ESTIMATION 

PIPELINE 

The percentage staining estimation of immunohistochemically stained 
tissue microarrays (TMA) is essential in a variety of medical studies. E.g. 
in the context of cancer research, we refer to the pathologic staining es-
timation as the quantitative evaluation of stained cancerous cell nuclei in a 
given TMA spot. TMA specimens can thus be grouped to non-expressing, 
low expressing, moderately expressing or highly expressing samples. 
Staining estimation is widely employed in medical research and life sci-
ences for the development of diagnostic or therapeutic biomarkers. 

Pathologists typically estimate the staining percentage of TMA samples 
visually with a light microscope. Cell nuclei are counted and classified 
within a well-defined area, similar to a haemocytometer. The stained 
fraction of malignant cells for the whole TMA spot is then estimated. 

This visual procedure is of course highly time consuming, partly subjec-
tive and potentially prone to error. Although the experienced pathologist 
can easily judge the quality of the TMA spot and select a highly repre-
sentative subarea for the cell counts, still the manual staining estimation 
depends on the selected count window, the homogeneity of the TMA 
spot and the correct identification of malignant cells. Fuchs et al. (2011b) 
have shown that the human perception of malignant renal clear cell car-
cinoma cell nuclei varies among five trained pathologists: of 180 ccRCC 
nuclei, all radiologists agreed on only 105 (58%) on the label (tumor or 
non-tumor) whereas they disagreed on 75 (42%) nuclei, indicating a high 
inter-expert variability. The authors further illustrate the intra-expert 
variability when the five pathologists had to label the nuclei twice: The 
second time, they had an intra-expert classification disagreement of 
21.2% on average. The inter- and intra-expert variance in nucleus classi-
fication propagates to TMA staining estimation: also here, a high stand-
ard deviation of staining percentage can be found, especially on TMA 
spots with a mean staining percentage over 10% (Fuchs et al. 2011b).  

Therefore, a fast, standardized and reproducible staining estimation pro-
cedure is desirable, especially for large patient cohorts. For this reason, 
Fuchs et al. (2008a) have formalized a computer-aided TMA analysis 
pipeline on renal clear cell carcinoma samples. In principle, the pipeline 
works with following steps: (i) cancer-nucleus detection as pixel-wise 
classification problem, (ii) staining estimation among the detected nuclei 
as color classification and (iii) survival prediction on the whole patient 

Manual staining 
estimation 

Related Work:  
Computational 
Staining Estimation 
by Fuchs et al. 
(2008a). 
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4 TMA Staining Estimation Pipeline 

cohort as validation of the procedure. This automatic process comprises 
a classifier specifically designed to directly detect malignant nuclei on the 
image. A random forest classifier ensemble is used to solve this step. Lo-
cal binary patterns and color features are extracted as descriptors (Fuchs 
et al. 2008a).  

To study the difficult part of nucleus classification, we consider a new 
TMA analysis pipeline (Figure 4.1) which separates the nucleus detection 
and classification as two consecutive steps (Schüffler et al. 2013a). As an 
additional modulation, we introduce the cell nucleus segmentation as an 
essential part of the pipeline (Schüffler et al. 2010). 

 

Figure 4.1: Overview of the new computational TMA analysis pipeline. 
The dashed arrow indicates the manual staining estimation process by 
pathologists: From a TMA spot, cell nuclei are identified, classified and 
counted by human eye in nearly one step. We mimic this highly com-
plex process in a computer vision pipeline and partition it into the four 
steps (i) nucleus detection, (ii) nucleus segmentation (iii) nucleus clas-
sification and (iv) staining estimation on malignant nuclei. The dashed 
circle encloses the nucleus classification which we want to improve. 

Our proposed TMA analysis pipeline therefore consists of the following 
steps: (i) nucleus detection, (ii) nucleus segmentation, (iii) nucleus classi-
fication, and (iv) staining estimation.  

The new design of the computational staining estimation pipeline ena-
bles the isolated study of nucleus detection, nucleus segmentation and 
nucleus classification. We will show in section 4.7 that the isolated im-
provement of single steps in the pipeline also enhances the overall pro-
cess of staining estimation. In this thesis, we focus on the nucleus seg-
mentation and classification with new shape measurements and new 
classifier ensembles. Morphology and shape play an important role in 
manual and visual nucleus identification. 
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4.1 Structure 

4.1 Structure 
First, we will present two methods for nucleus detection in section 4.2: 
Color deconvolution has been developed by Ruifrok and Johnston (2001). 
This method is completely unsupervised and does not support cell nu-
cleus classification. As a new alternative, we study the potential of super-
pixels for nucleus detection with inherent segmentation and classifica-
tion. Cell nucleus segmentation is further detailed using graph-cuts as an 
isolated step in section 4.3. In the following section, we consider the nu-
cleus classification step of the TMA analysis pipeline as a similarity based 
classification problem on the example of 1272 ccRCC nuclei, labeled by 
two pathologists with a unique label cancerous or benign. Support vector 
machines (SVM) provide a possible object classification with custom 
measures for similarity or distance. First, we propose a simple classifica-
tion scenario with dedicated features described in section 4.4 and SVM 
in section 4.5. Shape measures are beneficial for this task, as we will ex-
plain in section 4.6. We extend this approach by the use of multiple kernel 
learning in section 4.8 as classifier ensemble. The kernels are then com-
bined in a nonlinear manner in section 4.9. These chapters are an im-
portant example of the joint contribution within the SIMBAD project. 

4.2 Nucleus Detection 

4.2.1 Color Deconvolution Based Nucleus Detection 

When the underlying biological problem aims for staining estimation 
without prior classification (i.e. the cells are homogeneous on the image), 
color deconvolution by Ruifrok et al. (2001) provides a fast and unsuper-
vised way for identifying and counting stained nuclei. The image is de-
convolved into distinct color channels (e.g. hematoxylin channel and 
DAB channel) which are then smoothed with a Gaussian blur filter. Sub-
sequently, the images are screened for local intensity maxima to localize 
the detected nuclei. Figure 4.2 shows an example image section of a 
ccRCC TMA on which cell nuclei are detected with color deconvolution. 
Note that the different classes of nuclei (green and red nuclei) refer to 
unstained or stained as they arise from the hematoxylin or DAB channel. 
Few parameters are needed for local maxima detection: The radius 𝑢𝑢 of 
cell nuclei describing the size of the local environment, and the intensity 
threshold 𝑠𝑠  per channel, above which a local maximum is accepted. 
These parameters vary between tissues and experimental staining proto-
cols of the experiments. The nucleus detection and staining estimation 
with color deconvolution provides facilitated parameter settings without 
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4 TMA Staining Estimation Pipeline 

classical machine learning influence. If the pathology goal does not de-
pend on the nucleus type (e.g. overall counting tasks), or the nucleus 
types are known throughout a given image set (e.g. all are cancer nuclei), 
this method is a fast alternative to the more comprehensive classification 

  

  
Figure 4.2: Color Deconvolution of an example ccRCC image patch: A: 
The original image. B: The hematoxylin channel image. C: The DAB 
channel image. D: Found nuclei based on the intensities on the two 
channels B and C. 

Validation of Nucleus Detection via Color Deconvolution 
To quantify the performance of the presented algorithms in this thesis, 
we calculate the match statistics between the gold standard labels of two 
trained pathologists and the computationally detected cell nuclei. Two 
nuclei with distance 𝑒𝑒 are called matching each other, if 𝑒𝑒 ≤ 2𝑢𝑢, where 𝑢𝑢 
is the nucleus radius. If more than two nuclei in a radius are found, the 
closest ones are matched to each other. Based on this radius, 𝑝𝑝𝑢𝑢𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠, 
𝑢𝑢𝑠𝑠𝑖𝑖𝑀𝑀𝑤𝑤𝑤𝑤 and 𝐹𝐹𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠 are calculated. After classification of the detected cell 
nuclei into malignant and benign, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠  and overall 
classification 𝑀𝑀𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑀𝑀𝑖𝑖𝑠𝑠 are evaluated. Consider following confusion ta-
ble for nucleus detection and classification (Table 4.1). Note that precision 
is also known as positive predictive value. 

A 

C D 

B 
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4.2 Nucleus Detection 

Table 4.1: Confusion table for nucleus detection (brown) and classifi-
cation (blue). Note for the detection, “true negative” is not defined, 
thus there is no “detection accuracy”. 

 Gold standard  

Present / 
Positive 

Absent / 
Negative 

M
ac

hi
ne

 

Present / 
Positive 

Found 
True Positive 

Hallucinated 
False Positive 

𝑃𝑃𝑢𝑢𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠 

=
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

Absent /  
Negative 

Missed 
False Negative 

- 
True Negative 

 

 𝑀𝑀𝑠𝑠𝑖𝑖𝑀𝑀𝑤𝑤𝑤𝑤
= 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 

=
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

  
𝑆𝑆𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 

=
𝑇𝑇𝑁𝑁

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁
 

 

 

Then, the 𝐹𝐹𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠 is defined as: 

𝐹𝐹𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠 = 2 ∗
𝑃𝑃𝑢𝑢𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠 ∗ 𝑀𝑀𝑠𝑠𝑖𝑖𝑀𝑀𝑤𝑤𝑤𝑤
𝑃𝑃𝑢𝑢𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠 + 𝑀𝑀𝑠𝑠𝑖𝑖𝑀𝑀𝑤𝑤𝑤𝑤

     , 

and the overall classification accuracy is defined as: 

𝑀𝑀𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑀𝑀𝑖𝑖𝑠𝑠 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
     . 

 

We tested the algorithm on 8 fully labeled images of ccRCC TMA. Two 
trained pathologists exhaustively identified all visible nuclei on the im-
ages. The detected nuclei of our algorithm are matched against one of the 
pathologists. As shown in Figure 4.3, color deconvolution achieves a re-
producible and high precision and recall in nucleus detection. Each pa-
tient is represented by a colored curve. The shifting parameter of the 
method in this figure is the radius 𝑢𝑢: a high radius entails a high precision 
but a low recall, since less nuclei are found, whereas a small radius in-
volves a high recall but a low precision. The performance hereby is still 
comparable to two individual pathologists with their inter-expert preci-
sion and inter-expert recall for the same patients, represented as black 
landmarks in the same plot (Schüffler et al. 2013b). 
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Figure 4.3: Precision/Recall curve for the nucleus detection via color 
deconvolution with varying radius 𝒓𝒓 . Each curve represents one of 
eight TMA images.  Higher radius 𝒓𝒓 reveals less nuclei and therefore 
influences the precision and recall. The automatically detected nuclei 
were validated against the labels of a trained pathologist. The inter-
expert values are denoted for all eight images (top right) as the preci-
sion and recall of one pathologist to “match” the other. 

4.2.2 Superpixel Based Nucleus Detection 

As pathological staining estimation commonly requires prior nucleus 
classification to identify the subset of malignant nuclei, we incorporate a 
proper segmentation and classification system using superpixels. The 
idea is to envelope roundish nuclei with superpixels which can then be 
classified as (cancerous) nuclei or background (Schüffler et al. 2013b).  

Superpixels 
For a fast nucleus segmentation, we make use of the superpixel over-seg-
mentation algorithm “Simple Linear Iterative Clustering” (SLIC) 
(Achanta et al. 2012). Superpixels are connected image pixel clusters 
which show a unique image characteristics such as intensity or morphol-
ogy. SLIC fully partitions the underlying image into roughly equally 
sized segments, the superpixels. To this end, the seeds or cluster centers 
of the superpixels are distributed over the image in a regular grid. Then, 
pixels in the local environment are iteratively assigned to a cluster center 
according to intensity and spatial constraints. We implemented an 
adapted version of the SLIC algorithm, where a comb-shaped prior struc-
ture of the superpixels supports the roundish shape of the nuclei (see 

  
Figure 4.4: LEFT: 
Original SLIC 
implementation. 
The uniform 
seeds result in 
quadratic super-
pixels. RIGHT: 
Our implementa-
tion favors comb-
shaped roundish 
superpixels. 
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4.2 Nucleus Detection 

Figure 4.4). The size of a superpixel should roughly cover the typical size 
of a nucleus. The number of superpixels 𝑠𝑠 for an image with width 𝑤𝑤 and 
height ℎ  can therefore be estimated as 𝑠𝑠 = (𝑤𝑤 ∗ ℎ)/(4 ∗ 𝑢𝑢2) , where 𝑢𝑢  is 
the typical nucleus radius. Superpixels have several advantages for com-
putational staining estimation: 

• They provide a fast and unsupervised segmentation which is fa-
vorable in a clinically used software program. 

• The over-segmentation of the image can be used for the whole 
staining estimation pipeline: in the first stage, nucleus detection is 
based on nucleus superpixels and background superpixels. In the 
second stage, the same superpixels can be classified into malig-
nant and benign. 

• They enable a fast processing of the image compared to pixel-wise 
classification since the number of samples is determined by the 
number of superpixels and not by the size of the image. 

See Figure 4.5 for an example of superpixels. However, 
their main disadvantages are: 

• SLIC superpixels are not scaling invariant. Thus, 
images with nuclei highly varying in size might 
not profit from the superpixel approach. Nuclei 
might be partitioned into two or more superpix-
els. 

• The smoothness of the segmentation can be reg-
ulated by a parameter which weights spatial 
constraints (smooth) against intensity con-
straints (precise) for pixel assignments to the su-
perpixel centers. Still, irregular shape of abnor-
mal cell nuclei especially on images with poor 
differentiation of background and foreground 
might be a problem. 

The processing of TMA images with superpixels ena-
bles the implementation of the nucleus detection, seg-
mentation and classification as a two-step classification scenario. In the 
first step, nucleus detection is solved as classification of foreground and 
background superpixels. The labels for training the classifier are given by 
the user. Alternatively, the background labels can be generated via Vo-
ronoi-sampling over a fully annotated image (see below). In the second 
step, all foreground superpixels are classified as malignant or benign, ac-
cording to the training labels given by the user. The TMA staining esti-
mation pipeline therefore is reordered with the (over-)segmentation in 
the beginning (see Figure 4.6). 

 

 

Figure 4.5: Example of Super-
pixels on a ccRCC image. 
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4 TMA Staining Estimation Pipeline 

 

Figure 4.6: Scheme of two-stage nucleus classification with superpixels. The SLIC 
over-segmentation segments cell nuclei and other structures. In step 1, cell nuclei 
are detected with a binary classifier for foreground (nuclei) and background. In step 
2, the foreground superpixels are classified as malignant or benign. 

Voronoi-Sampling for Background Labels 
Voronoi sampling for TMA has been described by Fuchs et al. (2009). To 
train a classifier in step 1, examples of foreground and background are 
needed. Since in our case, two pathologists exhaustively fully annotated 
eight TMA images identifying all nuclei, we can assume that not anno-
tated pixels belong to background. A Voronoi diagram around all anno-
tated nuclei reveals loci with largest distance to the surrounding nuclei 
(Figure 4.7). These loci form the background samples. To reduce the 
number of samples with similar image information (Figure 4.7 D, multi-
ple background samples on one locus), a post-processing of the Voronoi 
sampling filters overlapping background labels (Figure 4.7 E). In total, 
1584 background loci have been sampled. 

Step 1: Superpixel Based Nucleus Detection as Classification Problem 
The tissue image is first partitioned into superpixels which are used as 
samples to train a binary foreground/background classifier. From each 
superpixel, a feature vector is calculated considering three features 
which proved valuable for histology in the past: color histograms (3*16 
bins), local binary patterns (LBP) (Ahonen et al. 2004) (size 256), and pyr-
amid histograms of oriented gradients (PHOG) (Bosch et al. 2007) (size 
338). These features are detailed in section 4.4. The resulting concate-
nated feature vector has a length of 642. We employed a random forest 
(Breiman 2001) as default classifier. Based on the labels provided by a 
pathologist and by Voronoi-sampling, the classifier learns to discrimi-
nate between superpixels which represent a nucleus (foreground) and 
superpixels belonging to the background. The foreground superpixels 
are subjected to the subsequent nucleus classification. 

Step 2: Superpixel Based Nucleus Malignancy Classification 
After the detection of the superpixels with inherent cell nuclei, the goal 
is to classify them into malignant and benign. We are using the same fea-
ture vector as before, but the classifier is now trained only on cell nuclei 
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labeled by the pathologist, ignoring the background superpixels and la-
bels. Figure 4.8 illustrates the superpixel segmentation and superpixel 
classification of an example image. For illustration purposes, we trained 
the classifier to discriminate between stained and unstained cell nuclei 
(rather than between malignant and benign cell nuclei). 

 

   

   

   

Figure 4.7: Illustration of Voronoi-sampling for TMA images to get 
background labels. A: The original image patch. B: A pathologist la-
beled all malignant (red) and benign (green) nuclei. C: A Voronoi dia-
gram tessellates the nuclei in the image. D: The nodes of the Voronoi 
graph have largest distance to the surrounding nuclei and form the 
background samples. E: Overlapping background points are filtered in 
a post-processing step: For each locus, all background loci within a ra-
dius 𝒓𝒓 are merged to one locus. F: The resulting labeled image without 
Voronoi diagram. 

A 

C 

E 

D 

F 

B 
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Validation of Nucleus Detection and Classification via Superpixels 
Eight ccRCC IHC images have been labeled by two pathologists who in-
dependently identified and classified all visible cell nuclei. A leave-one-
patient-out cross-validation has been performed, in which 7 TMA images 
serve as training set for the classifier which is then tested on the remain-
ing TMA image. The quantitative detection accuracy (F-Score) of 92% 
and classification accuracy of 64% touches the accuracy range achieved 
by trained pathologists with an inter-expert accuracy of 97% and 74% on 
the same dataset, respectively. This holds also true for the sensitivity and 
specificity for nucleus classification (see Figure 4.9). 

  

  
Figure 4.8: Superpixels for cell nucleus segmentation, detection and 
classification. A: Original image. B: A user labelled positive and nega-
tive cell nuclei (red and green). C: SLIC superpixels segment nuclei. D: 
Superpixels are classified into red and green superpixels according to 
the user labels. The color intensity reflects the class probability. 

We also tested the performance when only a fraction of the available 
training set is incorporated. The high level detection accuracy is already 
reached, when only 15% of all available nuclei are used for training (Fig-
ure 4.9, yellow bars). However, the cell nucleus classification profits 
from more samples, and the accuracy steadily improves until 100% of 
available training samples are used (see Figure 4.9, red bars). Detection 
works faster than classification. 

A 

C D 

B 

54 
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Figure 4.9: Performance of nucleus detection and classification via su-
perpixels in 8 TMA spots. Depicted are precision, recall and F-score for 
the nucleus detection, as well as sensitivity, specificity and accuracy for 
the nucleus classification. Experiments were conducted with training 
set sizes from 5% to 100% (x-axis). Each box represents a leave-one-pa-
tient-out cross-validation. The performance stabilizes with 15% of 
training samples. The inter-expert performances of two pathologists is 
plotted last (“Pat”): for each of the 8 images, pathologist A is taken as 
reference for pathologist's B guesses.  

4.3 Nucleus Segmentation via Graph-Cut 
It is known from pathology that cancer nuclei tend to alter their size and 
shape compared to normal nuclei. This fact is extremely helpful for the 
detection and classification of cell nuclei (Schüffler et al. 2010). Table 4.2 
lists the most important morphological differences between normal and 
cancerous nuclei in ccRCC tissue. E.g. benign and healthy nuclei appear 
roundish and regular whereas malignant nuclei are commonly larger 
and more irregular in shape.  

To exploit the shape information of cancerous nuclei, we suggest a prior 
binary segmentation of the nucleus boundary via graph-cuts (Boykov et 
al. 2001; Boykov and Funka-Lea 2006). Graph-cut represents the image 
pixels as a meshed weighted graph with two additional nodes 𝑠𝑠 (source, 
foreground) and 𝑠𝑠 (sink, background) to which every pixel is connected. 
The graph is then cut with a minimum 𝑠𝑠-𝑠𝑠 cut to separate the foreground 
from the background (see Figure 4.10). The segmentation information is 
thus encoded in the weights of the graph. 

 

 

 

55 
 



4 TMA Staining Estimation Pipeline 

Table 4.2: Typical guidelines for pathologists to distinguish normal 
and malignant ccRCC nuclei. The image patches show example nuclei 
from our ccRCC dataset with both pathologists agreeing on the label. 

 Normal ccRCC nucleus Cancerous ccRCC nucleus 
Shape Roundish Irregular 
Membrane Regular Thick/thin irregular 
Size Smaller Larger 
Nucleolus None Dark spot in the nucleus 
Texture Smooth Irregular 

Example  

              
 
 

                      

Figure 4.10: Concept of graph-cut segmentation for images. The gray 
nodes represent the image pixels. Source and sink represent fore-
ground and background. LEFT: The weights for the graph (red, yellow 
and blue edges) are properly set. RIGHT: A minimum cut (green) par-
titions the graph into foreground and background pixels. 
 

Figure 4.11 illustrates the graph-cut process for our nucleus segmenta-
tion. To favor the naturally roundish shape of nuclei, we incorporate a 
roundish shape prior in the weights of 𝑠𝑠 and 𝑠𝑠. The nucleus image patch 
centering the nucleus is gray-scaled and smoothed with a Gaussian 
smooth filter of radius 5, which worked best for segmentation. The edges 
from the source to the image pixels are weighted by the normalized 
squared distance of the pixels to the image center. The edges from the 
image pixels to the sink are weighted by 1 minus the normalized squared 
distance of the pixels to the image center. The meshed graph weights are 
initialized with the intensity differences between neighbor-pixels. After 
cutting, the connected component in the middle of the patch represents 
the shape of the nucleus. Figure 4.12 depicts five typical examples. The 
contours of the nuclei were subjected to shape related feature extraction. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 4.11: Illustration of segmentation via graph-cut. (a), (b): roun-
dish shape priors of source and sink. (c), (d) original image patch with 
centered nucleus and gray scaled version. (e): smoothed gray-scaled 
nucleus patch. (f), (g): the roundish priors from a) and b) applied on 
the image patch define the source and the sink weights for the graph. 
(h), (i): the North-South and East-West difference image of e) form the 
weights for the connected graph. (j): a max-flow algorithm cuts the 
graph into the final segmentation. 

         

         

         

         

Figure 4.12: Five examples for nucleus segmentation via graph-cut. 
TOP: Original 80x80px image patches with nucleus centered in the im-
age. 2nd ROW: The patches are gray-scaled. 3rd ROW: The graph-cut al-
gorithm with a roundish shape preference cuts the centered object. 
BOTTOM: The resulting nucleus shape. 
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4.4 Feature Extraction 
To get a comprehensive description of the nuclei, we use following set of 
image and shape related features. All nuclei are represented by 80x80px 
image patches with the nucleus centered in the patch. All histogram-like 
features are normalized to unique sum. 

4.4.1 Histogram of Patch Intensity (ALL) 

A 32-bin intensity histogram is calculated over the whole gray scaled nu-
cleus patch, comprising the nucleus in the center and the immediate en-
vironment. The histograms are normalized to unique sum. 

4.4.2 Color Histogram (COL) 

The patch is rescaled to size 5x5px. The 25 intensity values of the three 
color channels red, green and blue are concatenated to a feature vector of 
length 75. 

4.4.3 Histogram of Foreground Intensity (FG) 

A 32-bin intensity histogram is calculated over the segmented nuclear 
area. A cancer cell’s nucleolus is represented as dark spot in a nucleus 
and is to be represented in a nuclear intensity histogram. 

4.4.4 Histogram of Background Intensity (BG) 

Similar to the foreground histogram, we calculate a 32-bin intensity his-
togram of the surrounding area of a nucleus (i.e. of the background area 
in the patch). This can capture differences of the microenvironment of a 
nucleus. 

4.4.5 Freeman Chain Code (FCC) 

The FCC is a string representation of a shape’s boundary (Freeman 1961). 
The boundary is pixel-wise locally described by a number of 1 to 8, ac-
cording to the direction in which the boundary points at that pixel. To be 
rotation invariant and scale invariant, the FCC is not directly used (it 
would change with the starting point and with the size of the boundary). 
Instead, the 8-bin histogram of the first derivative of the FCC forms the 
final FCC feature. 

4.4.6 1D-Signature (SIG) 

This shape descriptor is especially suitable for closed and roundish ob-
jects. Starting from the center of the nucleus, the radius of the object is 
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measured in all circular 360 directions (Gonzalez et al. 2004). To respect 
rotational invariance, the nucleus shape was first rotated to the direction 
with maximum radius (note that this rotation might be sensitive to out-
liers). The signature is normalized by the maximum value to be scale in-
variant. A 16-bin histogram of the signature creates the final signature 
feature. 

4.4.7 Pyramid Histogram of Oriented Gradients (PHOG) 

PHOG has been presented by Bosch et al. (2007). First, an 8-bin intensity 
histogram over the whole image is calculated. Then, the image is quar-
tered and four intensity histograms for the quarters are calculated. There-
after, each quarter is again quartered into smaller sub-images and histo-
grams are calculated. The resulting histograms are concatenated to a 168-
bin feature vector. 

4.4.8 Region Properties (PROP) 

Additionally to these elaborated features, we collected standard region 
descriptors to the feature vector. Area size, bonding box size, major axis 
length, minor axis length, eccentricity, convex area, equivalent diameter, 
solidity, extent, perimeter, mean intensity, min intensity and max inten-
sity of the nucleus region were measured. To count for their relative im-
pact rather than absolute, the PROP features were normalized to sum up 
to one. 

4.4.9 Local Binary Patterns (LBP) 

Local Binary Patterns are illumination invariant and showed advanta-
geous behavior in medical image processing (Fuchs et al. 2008a). For each 
pixel of the gray-scaled patch, an 8-bit string is generated where each bit 
corresponds to one neighbor of the pixel. A bit is set to 1, if the neighbor’s 
intensity value is smaller than the intensity of the original pixel, and oth-
erwise to 0. The resulting binary number is converted to a decimal num-
ber and a 256-bin histogram is calculated to capture the distribution of 
local binary patterns. 

4.5 Classification with Support Vector Machines 
Support vector machines (Schölkopf and Smola 2002) are in widespread 
use and highly successful for bioinformatics tasks (Ben-Hur et al. 2008). 
SVMs exhibit very competitive classification performance with similarity 
based classification, and they can conveniently be adapted to the specific 
problem at hand. This adaptation is achieved by designing individual 

59 
 



4 TMA Staining Estimation Pipeline 

kernel functions. Kernel functions can be seen as problem specific simi-
larity functions between examples. A kernel function implicitly maps ex-
amples from their input space 𝑋𝑋 to a Hilbert space ℋ of real-valued fea-
tures (e.g. ℋ = ℝ𝑝𝑝 , 𝑠𝑠 ∈ ℕ ∪ {∞} ) via an associated function Φ:𝑋𝑋 → ℋ . 
For two samples 𝑢𝑢, 𝑠𝑠 ∈ 𝑋𝑋 , the kernel function 𝑖𝑖  provides an efficient 
method for computing dot products in the feature space ℋ via: 

𝑖𝑖(𝑢𝑢, 𝑠𝑠) = 〈Φ(𝑢𝑢),Φ(𝑠𝑠)〉 

The resulting optimization problem is convex and the global optimum 
can be found efficiently, for which many freely available software pack-
ages can be used. The essential question is the choice of features or kernel 
functions 𝑖𝑖(𝑢𝑢, 𝑠𝑠) to be used for a particular problem.  

To use a dedicated distance function for nucleus classification as a kernel 
function, we calculated a 𝑠𝑠 ∗ 𝑠𝑠  squared distance matrix between all 𝑠𝑠 
samples. For explicit kernel functions, the resulting kernel matrix 𝐾𝐾  is 
symmetric and positive semi-definite – a requirement for support vector 
machines. Other distance functions may result in non-metric distance 
matrices 𝐶𝐶  (e.g. non-symmetric or not positive semi-definite). To use 
such a distance matrix 𝐶𝐶 as kernel matrix 𝐾𝐾, it has to be centered to zero 
mean: 

𝐶𝐶𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −0.5 ∗ 𝑄𝑄 ∗ 𝐶𝐶 ∗ 𝑄𝑄 

where 

𝑄𝑄 =

⎣
⎢
⎢
⎢
⎡1 −

1
𝑠𝑠

−
1
𝑠𝑠

⋱

−
1
𝑠𝑠

1 −
1
𝑠𝑠⎦
⎥
⎥
⎥
⎤

 

Then, 𝐶𝐶𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is checked for being positive semi-definite. Negative Ei-
genvalues are mirrored to calculate the corresponding positive semi-def-
inite kernel matrix 𝐾𝐾: 

𝐾𝐾 = 𝑉𝑉 ∗ |Λ| ∗ 𝑉𝑉′ 

where 𝑉𝑉 is the Eigenvector matrix and Λ is the Eigenvalue diagonal ma-
trix of 𝐶𝐶𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. The resulting kernel matrix 𝐾𝐾 can be used for SVM clas-
sification (Schüffler et al. 2010). For a comparison of different similarity 
measures, we incorporated 10 kernel functions and 8 distance functions 
as listed in Table 4.3. 
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Table 4.3: Kernel and distance functions for nucleus classification. 𝒖𝒖 
and v are scalar feature vectors of length 𝒑𝒑. For the histogram-like fea-
ture vectors, all functions were used. For the PROP feature, only the 
linear, polynomial and Gaussian kernel functions were applied. 

Kernel Functions 

Linear 𝑢𝑢′ ∗ 𝑠𝑠 

Polynomial (degree 
𝒅𝒅 ∈ {𝟑𝟑,𝟓𝟓,𝟕𝟕,𝟏𝟏𝟏𝟏}) �

𝑢𝑢′ ∗ 𝑠𝑠
𝑝𝑝

�
𝑝𝑝

 

Gaussian 𝑠𝑠−
1
𝑝𝑝∑ (𝑝𝑝𝑖𝑖∗𝑣𝑣𝑖𝑖)2𝑖𝑖  

Hellinger (1909) ��𝑢𝑢𝑝𝑝 ∗ 𝑠𝑠𝑝𝑝
𝑝𝑝

 

Jensen Shannon −
1

𝑤𝑤𝑢𝑢𝑠𝑠2
��𝑢𝑢𝑝𝑝𝑤𝑤𝑢𝑢𝑠𝑠

𝑢𝑢𝑝𝑝
𝑢𝑢𝑝𝑝 + 𝑠𝑠𝑝𝑝

+ 𝑠𝑠𝑝𝑝𝑤𝑤𝑢𝑢𝑠𝑠
𝑠𝑠𝑝𝑝

𝑢𝑢𝑝𝑝 + 𝑠𝑠𝑝𝑝
�

𝑝𝑝

 

Total Variation �min (𝑢𝑢𝑝𝑝, 𝑠𝑠𝑝𝑝)
𝑝𝑝

 

𝚾𝚾𝟐𝟐 �
𝑢𝑢𝑝𝑝 ∗ 𝑠𝑠𝑝𝑝
𝑢𝑢𝑝𝑝 + 𝑠𝑠𝑝𝑝𝑝𝑝

 

Distance Functions 

Euclidean ��(𝑢𝑢𝑝𝑝 − 𝑠𝑠𝑝𝑝)2
𝑝𝑝

 

Intersection 𝑠𝑠𝑖𝑖𝑠𝑠��𝑢𝑢𝑝𝑝
𝑝𝑝

,�𝑠𝑠𝑝𝑝
𝑝𝑝

� ∗ �1 −
∑ min (𝑢𝑢𝑝𝑝, 𝑠𝑠𝑝𝑝)𝑝𝑝

𝑠𝑠𝑖𝑖𝑠𝑠(∑ 𝑢𝑢𝑝𝑝𝑝𝑝 ,∑ 𝑠𝑠𝑝𝑝𝑝𝑝 )� 

Bhattacharyya (1943) −𝑤𝑤𝑢𝑢𝑠𝑠��𝑢𝑢𝑝𝑝 ∗ 𝑠𝑠𝑝𝑝
𝑝𝑝

 

𝚾𝚾𝟐𝟐 �
(𝑢𝑢𝑝𝑝 − 𝑠𝑠𝑝𝑝)2

𝑢𝑢𝑝𝑝 + 𝑠𝑠𝑝𝑝𝑝𝑝

 

Kullback Leibler 
(1951) 

�𝑢𝑢𝑝𝑝𝑤𝑤𝑢𝑢𝑠𝑠
𝑢𝑢𝑝𝑝
𝑠𝑠𝑝𝑝𝑝𝑝

+ �𝑠𝑠𝑝𝑝𝑤𝑤𝑢𝑢𝑠𝑠
𝑠𝑠𝑝𝑝
𝑢𝑢𝑝𝑝𝑝𝑝

 

Earth Mover (Rubner 
et al. 2000) 

���𝑢𝑢𝑗𝑗 − 𝑠𝑠𝑗𝑗

𝑝𝑝

𝑗𝑗=1

�
𝑝𝑝

𝑝𝑝=1
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Diffusion (Haibin 
and Okada 2006) 

�|𝑒𝑒𝑝𝑝(𝑥𝑥)|
𝐿𝐿

𝑝𝑝=0

 

with 
𝑒𝑒𝑝𝑝(𝑥𝑥) = 𝑢𝑢 − 𝑠𝑠 
𝑒𝑒𝑝𝑝(𝑥𝑥) = [𝑒𝑒𝑝𝑝−1(𝑥𝑥) ∗ 𝜙𝜙(𝑥𝑥,𝜎𝜎)] ↓2 

where 𝜙𝜙 is a Gaussian filter with standard 
deviation 𝜎𝜎. 
 

𝓵𝓵𝟏𝟏 �|𝑢𝑢𝑝𝑝 − 𝑠𝑠𝑝𝑝|
𝑝𝑝

 

4.5.1 Experimental Design 

The experiments for nucleus classification using SVM were conducted 
with Matlab (2010) and the libSVM package (Chang and Lin 2011). 1273 
ccRCC nucleus patches with unique label (cancerous or benign) from two 
pathologists were subjected to nucleus classification. Each nucleus is rep-
resented as 80x80px patch centering the nucleus. Graph-cut segmenta-
tion further segmented the nuclei as explained before. Six feature vectors 
were extracted per nucleus (FG, BG, FCC, SIG, PHOG, PROP) and 18 ker-
nel matrices were calculated for each feature with the 18 kernel and dis-
tance functions listed in Table 4.3 (polynomial kernel with degrees 3, 5, 7 
and 10). Kernel matrices for different features were normalized by their 
trace and combined (summed up) to a SVM classification matrix. The 
normalization is important to cope with matrices and features on differ-
ent scales. The addition of kernel matrices enabled the combination of 
different features as well as the combination of different distance 
measures.  

Support vector machines were trained and validated in a 10-fold cross-
validation. The capacity parameter 𝑅𝑅 of the SVM was set to 0.1, 1, 10, 100 
and 1000, to search for the optimal parameter. All cross-validated models 
were ranked and features and distance measures of the top performing 
parameters were investigated (Schüffler et al. 2010). 

4.5.2 Results 

The classification task can efficiently be solved with models using all fea-
tures FG, BG, FCC, SIG, PHOG and PROP. Due to the patch-wise ap-
proach, nuclei on the image boarders were excluded, and 1273 nuclei of 
all 1379 with consistent label have been used for this study. The median 
classification accuracy of the best model is 83%. Figure 4.13 plots the mis-
classification error of the 15 best models and 16 typical median models. 
These models all lie in the range or are slightly better than the guess of 
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two pathologists: their median “misclassification disagreement” is 20%, 
meaning they disagree on every 5th nucleus. To evolve a random level of 
classification performance, we cross-validated the best performing 
model (using all features and diffusion distance) on the dataset with ran-
domly permuted label. 100 repetitions for hundred permutations re-
sulted in a mean misclassification error of 30±3.5%, meaning that the in-
formation in the data can be exploit with our model. 

Further, we tested our approach for overfitting. A double layer 10-fold 
cross-validation was performed on the whole dataset of 1273 nuclei. The 
outer layer divided the dataset into 90% training data and 10% test data. 
On the training data, our approach as described above is run to find the 
best model in this fold, forming the inner layer. The top model is then 
tested on the 10% “external” test data which have never been seen during 
model training and ranking. The misclassification error on the test data 
is recorded and the scenario is repeated as the next fold in the outer cross-
validation. The 10 test errors have a median value of 20%, and lie in the 
same range as the cross-validation errors itself (see Figure 4.13, orange 
model “double CV”). This indicates that our cross-validated models are 
not overfitted, since they can hold their performance even on new, un-
seen data which have not been used for training. Interestingly, in six of 
the 10 folds, the best ranked model used all features with the diffusion 
distance as divergence measure for the histogram-like features, indicat-
ing this model’s stability. 

4.6 Shape Descriptors Boost the Classification 
Performance 

To answer the question, how far shape descriptors influence the perfor-
mance of the ccRCC nucleus classification (malignant vs. benign), we 
grouped the features into intensity features (FG and BG), shape features 
(FCC, SIG and PROP) and PHOG as a combination of both (Schüffler et 
al. 2010). With these groups, a double layer cross-validation was per-
formed as described before. On our ccRCC dataset, the intensity histo-
grams solely show a median misclassification error of 23%. The error is 
considerably lowered when shape features are incorporated: the misclas-
sification error drops to 21% (with shape features) or to 19% (with PHOG 
feature), respectively (see Figure 4.14). This consistent classification im-
provement motivates the nucleus segmentation with graph-cuts. Inter-
estingly, PHOG seems to inherit shape information: The combination of 
all three feature types does not improve the nucleus classification accu-
racy compared to intensity and PHOG alone. 
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Figure 4.13: Cross-validated nucleus classification. Shown are the 15 top models 
and 16 medium models (blue boxes). Each model is named by the features in-
volved and the distance measure used to calculate the kernel matrices. For the 
PROP feature, only linear, polynomial or Gaussian kernels are used since PROP 
is not a typical histogram-like feature. The best model uses all features FG, BG, 
FCC, SIG, PHOG and PROP with the diffusion distance (respectively Gaussian 
kernel for PROP). The median misclassification rate of this model is with 17% 
lower and less variant than the inter-rater disagreement of the two pathologists 
(red box, median 20%). Mean and standard deviation of 100 permutation tests are 
drawn as gray lines (random level, 30%). An additional 10-fold cross-validation 
level was employed to test for overfitting. The best found model of each fold was 
tested on the unseen samples, yielding one misclassification error of the orange 
box (median 20%). This external validation procedure reveals that the best model 
of a run holds its performance also on new data and lowers the risk of overfitting. 
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Figure 4.14: Classification accuracy of 1273 ccRCC benign or malignant 
nuclei with three feature groups intensity (FG, BG), shape (FCC, SIG, 
PROP) and PHOG. The misclassification rate lowers when shape fea-
tures are included in the classifier. 

4.7 Better Nucleus Classification for Better 
Staining Estimation 

To estimate the effect of nucleus classification on the TMA staining esti-
mation pipeline, we pulled the diverse model performances and the 
staining estimation together. As mentioned before, the staining estima-
tion only refers to cancerous stained nuclei. Therefore, it can be expected 
that a more accurate classification of nuclei would result in a more accu-
rate staining estimation (Schüffler et al. 2010).  

The staining color of the nucleus patches can be separated with a single 
threshold approach. A color histogram in the 30x30px center of each 
patch encodes the nucleus’ predominant color. Since blue and red are 
clearly separable color channels, the staining information of a patch can 
be expressed as a fraction 𝑓𝑓 of the red channel intensity mean (𝑢𝑢) and the 
blue channel intensity mean (𝑏𝑏): 

𝑓𝑓 =
𝑢𝑢
𝑏𝑏

 

If 𝑓𝑓 > 1, the nucleus is considered stained, and non-stained otherwise. 

4.7.1 Experimental Design 

The best ranked SVM model from 4.5.2 was used for this experiment. The 
kernel was trained in a 10-fold cross-validation scenario, similar as be-
fore. But instead of evaluating the misclassification rate on the nuclei in 
the test set, we calculated the staining estimation on the predicted can-
cerous nuclei in the test set. The predicted staining estimation is then 
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subtracted from the staining estimation of a pathologist. The absolute 
difference of the predicted and the annotated staining estimation should 
be as small as possible, if the task is to mimic the pathologists staining 
procedure. 

4.7.2 Results 

The computationally calculated staining estimation has a deviance of 
only 5% from the pathologist (Figure 4.15 left). A permutation test shows 
that guessing the nucleus label without any knowledge can yield a stain-
ing estimation difference of up to 20%. Figure 4.15, right shows a plot of 
the classification error of the best kernels with a misclassification error 
below 22% versus the staining estimation error clearly shows that the 
correct classification of cell nuclei as part of the pipeline has a positive 
effect on the predicted staining estimation: a better nucleus classification 
propagates to a more accurate staining estimation. This is a nice motiva-
tion to optimize single steps in the pipeline for a holistic improvement of 
the global medical task. 

 

 

Figure 4.15: A more accurate cell nucleus classification improves the predicted 
staining estimation. LEFT: Our best nucleus classification model (orange) pre-
dicts staining estimation in a 10-fold CV with 5% deviance to a pathologist. A 
random model has a twice as high error rate and reaches up to 20% deviance to 
a pathologist. RIGHT: The more accurate the nucleus classification is per-
formed as a single step in the TMA analysis pipeline, the more accurate is the 
subsequent staining estimation compared to a pathologist. Each point repre-
sents one top classifier with classification error < 22%. Shown are the absolute 
differences of predicted and observed staining estimation. 
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4.8 Multiple Kernel Learning for Nucleus 
Classification 

We consider in this section a Multiple Kernel Learning (MKL) framework 
for nuclei classification of renal cell carcinoma (Schüffler et al. 2011). The 
features extracted from the nuclei are identical to these introduced in sec-
tion 4.4. MKL is then applied for classification. We compare our results 
with an incremental version of MKL, SVM with single kernel and voting. 
We demonstrate that MKL inherently combines information from differ-
ent input spaces and creates statistically significantly more accurate clas-
sifiers than single kernel SVMs and voting for renal cell carcinoma clas-
sification on nuclear level. 

4.8.1 Introduction 

For various classification tasks, SVM classifiers use one data set and max-
imize the margin between different classes. This poses a restriction on 
some problems, where different data representations are used. Combin-
ing the contribution of different characteristics and properties is espe-
cially important in discriminating between cancerous and healthy cells. 
MKL is a recent and promising paradigm, where the decisions of multi-
ple kernels are combined to achieve better accuracies (Bach et al. 2004). 
MKL allows the beneficial utilization of data from multiple sources. We 
compare MKL using global combination of multiple kernels with the 
conventional combination of outputs of multiple classifiers. 

We used 1273 nucleus image patches with consistent label from 8 renal 
clear cell carcinoma TMA images. The images have been immunohisto-
chemically stained against the proliferation protein MIB-1 (Ki-67 anti-
gen), as described in section 3.1. The nuclei on these images have been 
labeled by two trained pathologists as cancerous or benign. Patches have 
the size of 80x80 pixels and center a cell nucleus, each. 891 (70%) of the 
nuclei are benign, 382 (30%) are malignant. Nuclei were segmented via 
graph-cut as described in section 4.3. ALL, BG, COL, FCC, FG, LBP, PHOG, 
SIG and PROP features for each nucleus have been extracted as explained 
in section 4.4. 

4.8.2 MKL Framework 

The main idea behind support vector machines is to transform the input 
feature space to another space with a possibly greater dimension, where 
the classes are linearly separable. After training, the discriminant func-
tion of SVM becomes 𝑓𝑓(𝑥𝑥) = 〈𝑤𝑤,𝛷𝛷(𝑥𝑥)〉 + 𝑏𝑏, where 𝑤𝑤 are the weights, 𝑏𝑏 is 
the threshold and 𝛷𝛷(𝑥𝑥) is the mapping function. Using dual formulation 
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and the kernels one does not have to define this 𝛷𝛷(𝑥𝑥) explicitly and the 
discriminant results as:  

𝑓𝑓(𝑥𝑥) = �𝛼𝛼𝑝𝑝𝑠𝑠𝑝𝑝

𝑁𝑁

𝑝𝑝=1

𝑖𝑖(𝑥𝑥, 𝑥𝑥𝑝𝑝) + 𝑏𝑏 

where 𝑖𝑖(𝑥𝑥, 𝑥𝑥𝑝𝑝)  is the kernel, 𝑁𝑁  is the number of samples with label 𝑠𝑠 , 
each, and 𝛼𝛼 is the weight of each sample. A single kernel SVM will be 
restricted to the use of one feature set (or a concatenation of all feature 
sets) and thus complicates the possibility to exploit the manifold infor-
mation coming from different sources. As known in classifier combina-
tion (Kuncheva 2004), the combination of multiple kernels using differ-
ent feature sets can come up with more accurate classifiers (Lee et al. 
2007). In a simple way, this can be achieved by using an unweighted sum 
of kernel functions (Moguerza et al. 2004). Lanckriet et al. (2004) formu-
lated this semi definite programming problem which allows finding the 
combination weights and support vector coefficients simultaneously. 
Bach et al. (2004) reformulated the problem and proposed an efficient al-
gorithm using sequential minimal optimization (SMO). Using Bach’s for-
mulation with 𝑃𝑃 kernels, the discriminant function results as: 

𝑓𝑓(𝑥𝑥) = � 𝜂𝜂𝑝𝑝�𝛼𝛼𝑝𝑝𝑠𝑠𝑝𝑝

𝑁𝑁

𝑝𝑝=1

𝑖𝑖𝑝𝑝(𝑥𝑥, 𝑥𝑥𝑝𝑝) + 𝑏𝑏
𝑃𝑃

𝑝𝑝=1

 

where 𝜂𝜂𝑝𝑝 is the weight of the 𝑠𝑠th kernel. 

This method allows us to combine different kernels of different feature 
spaces. In this study, the kernels are combined globally, i.e. the kernels 
are assigned the same weights for the whole input space. It has been 
shown by various studies that using a subset of given classification algo-
rithms increases accuracy rather than using all the classifiers (Ruta and 
Gabrys 2005; Ulaş et al. 2009). Against this background, we apply the 
same idea to incrementally adding kernels to the MKL framework and 
compare the results. The incremental algorithm works as follows: Start-
ing with the most accurate kernel (classifier) on the validation folds 
(leave-the-other-fold-out), kernels (classifiers) are added to the combina-
tion one by one. This procedure continues until all kernels (classifiers) 
are used or the average validation accuracy does not increase (Ulaş et al. 
2009). The algorithm starts with 𝑅𝑅0 ← ∅, then at each step 𝑠𝑠, all the ker-
nels (classifiers) 𝑖𝑖𝑗𝑗 ∉ 𝑅𝑅(𝑝𝑝−1)  are combined with 𝑅𝑅(𝑝𝑝−1)  to form 𝑆𝑆𝑗𝑗𝑝𝑝 =
𝑅𝑅(𝑝𝑝−1) ∪𝑀𝑀𝑗𝑗 . We select 𝑆𝑆𝑗𝑗∗

𝑝𝑝  which is the ensemble with the highest accu-
racy. If accuracy of 𝑆𝑆𝑗𝑗∗

𝑝𝑝  is higher than of 𝑅𝑅(𝑝𝑝−1), we set 𝑅𝑅𝑝𝑝 ← 𝑆𝑆𝑗𝑗∗
𝑝𝑝  and con-

tinue, else the algorithm stops and returns 𝑅𝑅(𝑝𝑝−1). 
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4.8.3 Experiments and Results 

The data of 1273 nucleus samples is divided into ten folds with stratifi-
cation. Support vector machines (svl, sv2, svg, see below) and MKL are 
trained and cross-validated (CV) using these folds. We also combine the 
support vector machines using voting and report average accuracies us-
ing 10-fold CV. For the Gaussian kernel, 𝜎𝜎  is chosen using a rule of 
thumb: 𝜎𝜎 = √𝐶𝐶  where 𝐶𝐶  is the number of features for data representa-
tion. We compare our results using a 10-fold CV t-test at p=0.05. In the 
incremental learning part, we apply leave-the-other-fold-out cross-vali-
dation (used for validation) to estimate which kernel and classifier 
should be added.  

Nine nucleus representations are collected in total (ALL, BG, COL, FCC, 
FG, LBP, PHOG, SIG and PROP), as well as three different kernels (linear 
kernel: svl, polynomial kernel with degree 2: sv2, and Gaussian kernel: 
svg), and two combination algorithms (MKL, VOTE). The SVM accura-
cies with each individual kernel are reported in Table 4.4. The best accu-
racy using a single SVM is 76.9 %. For most representations (except PHOG 
and COL), the accuracies of different kernels are comparable. 

Next, we use the same kernel and combine all the feature sets we ex-
tracted. As shown in Table 4.5 (top), we can reach an accuracy of 81.3% 
using the linear kernel, combining all feature representations. This fact 
stresses that the combination of information from multiple sources might 
be important and, by using MKL, the accuracy can be increased around 
5 % compared to single kernel SVM. Further, using all kernels with sv2, 
the accuracy decreases compared to the single best support vector ma-
chine (72.0% vs. 76.9%). This is analogous to combining all classifiers in 
classifier combination. The combination of inaccurate classifiers may de-
crease the accuracy. 

Table 4.4: Single support vector accuracies (± std) in %. 

 SVL SV2 SVG 
ALL 70.0 ± 0.2 71.6 ± 2.9 72.0 ± 3.2 
BG 70.0 ± 0.2 71.2 ± 2.6 68.9 ± 2.3 
COL 70.1 ± 0.2 63.6 ± 3.5 66.2 ± 2.3 
FCC 70.0 ± 0.2 70.0 ± 0.2 67.4 ± 1.6 
FG 70.0 ± 0.2 70.0 ± 3.2 70.5 ± 3.5 
LBP 70.0 ± 0.2 66.9 ± 3.0 68.7 ± 4.4 
PHOG 76.5 ± 3.7 72.0 ± 3.3 76.9 ± 3.6 
SIG 70.0 ± 0.2 68.6 ± 2.5 66.6 ± 2.6 
PROP 75.7 ± 2.3 75.6 ± 2.6 74.1 ± 1.8 
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Instead, it might be better to choose a subset of classifiers. A medical in-
terpretation of this result indicates that all the different information of 
the nuclei is complementary and should be used to achieve better accu-
racy. In Figure 4.16, the weights of MKL using the linear kernel are plot-
ted. As expected, the two best representations PHOG and PROP have high 
weights. But the representation LBP, having very low accuracy when con-
sidered as a single classifier, increases the accuracy when considered in 
combination with others. This illustrates that a combination of even 
solely more inaccurate classifiers might gain in performance, indicating 
hidden interaction of the different features. From this, we also deduce 
that these three features are useful in discriminating between malignant 
and benign cell nuclei and we may focus our attention on these proper-
ties. 

Table 4.5: MKL accuracies (in %). TOP: Accuracy (± std) of combining 
all kernels. BOTTOM: Accuracies calculated using the incremental al-
gorithm, the number 𝑷𝑷 of kernels / classifiers selected. 

 SVL SV2 SVG 
MKL 81.3 ± 3.6 72.0 ± 3.3 76.9 ± 3.6 
VOTE 70.0 ± 0.2 71.3 ± 1.7 72.4 ± 1.2 
MKL 76.9 ± 3.6,   P = 1 
VOTE 78.9 ± 2.5,   P = 4 

 

Table 4.5 (bottom) depicts the results using the incremental algorithm. 
There is no increase in accuracy compared to the best single support vec-
tor machine. In fact, the incremental algorithm cannot find a second com-
plementary kernel increasing the accuracy when added to the single best. 
Generally, we expect the incremental algorithm to reach higher accura-
cies than combining all classifiers. This behavior can be observed for sv2, 
but for svl, combining all kernels seems to be better than the subset selec-
tion strategy. This might partially result from the optimization formula-
tion of MKL. In the incremental search, we discard kernels which do not 
improve the overall accuracy. On the other hand, in MKL, every kernel 
is weighted and all kernels contribute to the solution of the problem. 
Therefore, we state that the framework of MKL is superior to combining 
outputs of support vector machines using voting. Table 4.5 supports this 
statement: using voting, combining all classifiers always results in lower 
accuracy than the single best kernel and MKL, since the optimization 
procedure does not “see” the data, but only combines outputs of all clas-
sifiers. On the other hand, applying the incremental paradigm is superior 
to MKL due to complementary classifiers that increase the accuracy. 
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Figure 4.16: Combination weights in MKL using the linear kernel svl. 
The weights are determined in a leave-one-out cross-validation. 

4.8.4 Discussion 

We have seen that MKL performs better than VOTE and SVMs with sin-
gle kernel, when all kernels are combined. This phenomenon is explained 
by the fact that the optimization procedure takes into account all data 
and gives weights to all kernels, so it can use all representations. On the 
other hand, when we apply the incremental algorithm, classifier combi-
nation achieves better accuracies than combining all classifiers. MKL 
combines the underlying feature sets to make a better combination. In 
this work, we used three different kernels and two combination schemes 
to study how the change of each parameter effects the classification ac-
curacy. All kernels have comparable stand-alone-accuracies. The im-
portance of each kernel function increases when their combination is con-
sidered, and combining outputs is less effective than combining the ker-
nels themselves using optimization. We experienced an accuracy gain of 
5% when using the multiple kernel learning algorithm instead of single 
kernels. Combining all kernels here comes with a drawback. All kernels 
have to be used and all features have to be extracted in order to use this 
model, but the increase in accuracy might be worth the costs. When the 
incremental algorithm is applied, no kernel is added, which is equivalent 
to be in a local minimum. When the classifiers are combined on the other 
hand, the incremental algorithm achieves more accurate results. Never-
theless, the best reached result so far is obtained when we use all repre-
sentations using svl. 
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4.8.5 Conclusion 

We propose the use of the multiple kernel learning paradigm for the clas-
sification of nuclei in TMA images of renal clear cell carcinoma. We stud-
ied support vector machines extensively through different feature sets in 
our previous work. This study extends those works by using several fea-
ture sets in a multiple kernel learning paradigm and compares the results 
with single support vector machines and combining outputs of support 
vector machines using voting. MKL performs better than SVMs or VOTE 
in most of the experiments. MKL exploits the underlying individual con-
tribution of each feature set, and by using multiple kernels, achieves bet-
ter results in terms of classification accuracy than single kernels or voting 
of classifiers.  

In this work, we used image based feature sets for creating multiple fea-
tures. In a further application of this scenario, the use of other modalities 
or features (e.g. SIFT), as well as the incorporation of complementary in-
formation of different modalities is possible in order to achieve better 
classification accuracy. 

4.9 Nonlinear Data Combination for Nucleus 
Classification 

In the previous section, we studied the linear combination of multiple 
kernels and reported a beneficial behavior of the combination of different 
data sources. As a logical consequence, we want to explore now how far 
a nonlinear combination of kernels can further improve nucleus classifi-
cation (Gönen et al. 2011). First, we formulate a nonlinear MKL variant 
and then we apply it for nuclei classification in tissue microarray images 
of renal cell carcinoma (RCC). The proposed variant is tested on several 
feature representations extracted from the automatically segmented nu-
clei. We compare our results with single-kernel support vector machines 
trained on each feature representation separately and three linear MKL 
algorithms from the literature. We use the dataset of 1273 renal clear cell 
carcinoma nucleus patches as already explained in section 0. The nonlin-
ear MKL approach is compared with single-kernel SVMs and linear MKL 
algorithms. Our experiments clearly indicate that although it is more 
costly to use the proposed nonlinear MKL approach, the increase in ac-
curacy is worth its computational complexity. 

4.9.1 MKL 

MKL algorithms found in the literature frequently combine kernels line-
arly (e.g., linear sum, convex sum, and conic sum) (Bach et al. 2004; 
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Lanckriet et al. 2004; Rakotomamonjy et al. 2008). Similar to nonlinear 
classifier combination rules, we can also formalize nonlinear kernel com-
binations obtain high performing classifiers (Lewis et al. 2006; Cortes et 
al. 2009; Gönen and Alpaydin 2013). Our nonlinear MKL variant is based 
on polynomial kernel combination (Cortes et al. 2009). We start with a 
formalization of multiple kernel learning, in which a combination 𝑖𝑖𝜂𝜂 of 
multiple kernels is learned: 

𝑖𝑖𝜂𝜂�𝑥𝑥𝑝𝑝 , 𝑥𝑥𝑗𝑗; 𝜂𝜂� = 𝑓𝑓𝜂𝜂��𝑖𝑖𝑝𝑝(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑥𝑥𝑗𝑗𝑝𝑝)𝑝𝑝=1
𝑃𝑃 �;𝜂𝜂� 

where the combination function 𝑓𝑓𝜂𝜂 forms a single kernel from 𝑃𝑃 base ker-
nels using the parameters 𝜂𝜂.  

4.9.2 Linear MKL 

Considerable research is ongoing on the theory and application of MKL 
and most of the published frameworks use linear combination functions 
(e.g. convex sum or conic sum). Fixed rules use the combination function 
𝑓𝑓𝜂𝜂 as a fixed function of the kernels, without any training. The combined 
kernel 𝑖𝑖𝜂𝜂 is then treated as single kernel SVM. One example for this sce-
nario is the non-weighted mean of the base kernels. 

Instead of using a fixed combination function, a parameterized function 
can be employed. A learning procedure would then optimize these pa-
rameters as well. A simple case is to parameterize the sum rule as a 
weighted sum: 

𝑖𝑖𝜂𝜂�𝑥𝑥𝑝𝑝, 𝑥𝑥𝑗𝑗; 𝜂𝜂� = � 𝜂𝜂𝑝𝑝𝑖𝑖𝑝𝑝�𝑥𝑥𝑝𝑝𝑝𝑝, 𝑥𝑥𝑗𝑗𝑝𝑝�
𝑃𝑃

𝑝𝑝=1

 

with 𝜂𝜂𝑝𝑝 ∈ ℝ. Different versions of this approach put different restrictions 
on the kernel weights. For example, arbitrary weights (i.e., linear combi-
nation), nonnegative kernel weights (i.e., conic combination), or weights 
on a simplex (i.e., convex combination) are possible. 

4.9.3 Nonlinear MKL Framework 

Cortes et al. (2009) developed a nonlinear kernel combination method 
based on kernel ridge regression (KRR) and polynomial combination of 
kernels. The nonlinear combination of 𝑃𝑃 kernels can be formulated as: 

𝑖𝑖𝜂𝜂�𝑥𝑥𝑝𝑝, 𝑥𝑥𝑗𝑗� = �𝜂𝜂𝑞𝑞1𝑞𝑞2…𝑞𝑞𝑃𝑃𝑖𝑖1�𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑗𝑗1�

𝑞𝑞1𝑖𝑖2�𝑥𝑥𝑝𝑝2, 𝑥𝑥𝑗𝑗2�
𝑞𝑞2 … 𝑖𝑖𝑃𝑃�𝑥𝑥𝑝𝑝𝑃𝑃, 𝑥𝑥𝑗𝑗𝑃𝑃�

𝑞𝑞𝑃𝑃

𝑞𝑞∈𝒬𝒬

 

where 𝒬𝒬 = {𝑞𝑞: 𝑞𝑞 ∈ ℤ+𝑃𝑃 ,∑ 𝑞𝑞𝑝𝑝𝑃𝑃
𝑝𝑝=1 ≤ 𝑒𝑒} and 𝜂𝜂𝑞𝑞1𝑞𝑞2…𝑞𝑞𝑃𝑃 ≥ 0. The number of pa-

rameters to be learned is too large and the combined kernel is simplified 
in order to reduce the learning complexity: 
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𝑖𝑖𝜂𝜂�𝑥𝑥𝑝𝑝, 𝑥𝑥𝑗𝑗� = �𝜂𝜂1
𝑞𝑞1𝜂𝜂2

𝑞𝑞2 … 𝜂𝜂𝑃𝑃
𝑞𝑞𝑃𝑃𝑖𝑖1�𝑥𝑥𝑝𝑝1, 𝑥𝑥𝑗𝑗1�

𝑞𝑞1𝑖𝑖2�𝑥𝑥𝑝𝑝2, 𝑥𝑥𝑗𝑗2�
𝑞𝑞2 … 𝑖𝑖𝑃𝑃�𝑥𝑥𝑝𝑝𝑃𝑃, 𝑥𝑥𝑗𝑗𝑃𝑃�

𝑞𝑞𝑃𝑃

𝑞𝑞∈ℛ

 

where ℛ = {𝑞𝑞: 𝑞𝑞 ∈ ℤ+𝑃𝑃 ,∑ 𝑞𝑞𝑝𝑝𝑃𝑃
𝑝𝑝=1 = 𝑒𝑒} and 𝜂𝜂 ∈ ℝ𝑃𝑃. For example, when 𝑒𝑒 =

2, the combined kernel function becomes 

𝑖𝑖𝜂𝜂�𝑥𝑥𝑝𝑝 , 𝑥𝑥𝑗𝑗� = � �𝜂𝜂𝑝𝑝𝜂𝜂ℎ𝑖𝑖𝑝𝑝�𝑥𝑥𝑝𝑝𝑝𝑝 , 𝑥𝑥𝑗𝑗𝑝𝑝�𝑖𝑖ℎ�𝑥𝑥𝑝𝑝ℎ , 𝑥𝑥𝑗𝑗ℎ�
𝑃𝑃

ℎ=1

𝑃𝑃

𝑝𝑝=1

 

The combination weights are optimized by solving the following min-
max optimization problem: 

min
𝜂𝜂∈ℳ

max
𝛼𝛼∈ℝ𝑁𝑁

𝑠𝑠𝑇𝑇𝛼𝛼 −
1
2
𝛼𝛼𝑇𝑇�𝐾𝐾𝜂𝜂 + 𝜆𝜆𝑀𝑀�𝛼𝛼 

where ℳ is a positive, bounded, and convex set. Two possible choices 
for ℳ are the 𝑤𝑤1-norm-bounded and the  𝑤𝑤2-norm-bounded sets  ℳ1 and 
ℳ2 defined as: 

ℳ1 = {𝜂𝜂: 𝜂𝜂 ∈ ℝ+
𝑃𝑃 , ‖𝜂𝜂 − 𝜂𝜂0‖1 ≤ Λ} 

ℳ2 = {𝜂𝜂: 𝜂𝜂 ∈ ℝ+
𝑃𝑃 , ‖𝜂𝜂 − 𝜂𝜂0‖2 ≤ Λ} 

where 𝜂𝜂0 and Λ are two model parameters. A projection-based gradient-
descent algorithm can be utilized to solve this min-max optimization 
problem. At each iteration, 𝛼𝛼 is obtained by solving a KRR problem with 
the current kernel matrix and 𝜂𝜂 is updated with the gradients calculated 
using 𝛼𝛼 while considering the bound constraints on 𝜂𝜂 due to ℳ1 or ℳ2. 
We formulate a variant of this optimization problem by replacing KRR 
with SVM as the base learner: 

min
𝜂𝜂∈ℳ

max
𝛼𝛼∈𝒜𝒜

𝐽𝐽𝜂𝜂 = 1𝑇𝑇𝛼𝛼 −
1
2
𝛼𝛼𝑇𝑇 �(𝑠𝑠𝑠𝑠𝑇𝑇)⨀𝐾𝐾𝜂𝜂�𝛼𝛼 

where 𝒜𝒜 is defined as: 

𝒜𝒜 = {𝛼𝛼:𝛼𝛼 ∈ ℝ+
𝑃𝑃 , 𝑠𝑠𝑇𝑇𝛼𝛼 = 0, 𝛼𝛼 ≤ C} 

We solve this optimization problem again using a projection-based gra-
dient-descent algorithm. When updating the kernel parameters at each 
iteration, the gradients of 𝐽𝐽𝜂𝜂 with respect to 𝜂𝜂 are used. These gradients 
can be written as 

𝜕𝜕𝐽𝐽𝜂𝜂
𝜕𝜕𝜂𝜂𝑝𝑝

= −
1
2
�𝜂𝜂ℎ𝛼𝛼𝑇𝑇�(𝑠𝑠𝑠𝑠𝑇𝑇)⨀𝐾𝐾ℎ⨀𝐾𝐾𝑝𝑝�𝛼𝛼
𝑃𝑃

ℎ=1

     . 
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4.9.4 Experimental Design 

The same dataset of 1273 RCC nucleus image patches as in the global 
MKL approach in the previous section was used, as well as the same ex-
perimental design (10-fold cross-validation). Analogously, three differ-
ent single-kernel functions were used: svl (linear kernel), sv2 (polynomial 
kernel of degree 2) and svg (Gaussian kernel). 

One single kernel SVM and four MKL algorithms have been imple-
mented. SVM denotes the single-kernel SVMs trained on each feature 
representation separately. RBMKL stands for the rule-based MKL algo-
rithm that trains an SVM with the mean of the combined kernels. Sim-
pleMKL denotes the iterative algorithm of (Rakotomamonjy et al. 2008) 
using projected gradient updates and training single-kernel SVMs at 
each iteration. GLMKL abbreviates the group Lasso-based MKL algo-
rithms proposed in (Xu et al. 2010; Kloft et al. 2011). Our implementation 
involves the 𝑤𝑤1-norm on the kernel weights learning a convex combina-
tion of the kernels. NLMKL denotes the nonlinear MKL variant derived 
from (Cortes et al. 2009), which uses the quadratic kernel (𝑒𝑒 = 2) and se-
lects the kernel weights from the set ℳ1. As a simple starting position, 
we choose 𝜂𝜂0 = 0 and Λ = 1. 

In total, eight representations (ALL, FG, BG, LBP, COL, FCC, SIG, and 
PHOG), three kernels (svl, sv2, and svg), and five algorithms (SVM, 
RBMKL, SimpleMKL, GLMKL, and NLMKL) are incorporated. 

4.9.5 Results 

The single-kernel SMV accuracies for all feature representations and ker-
nel functions are listed in Table 4.6. The best performance is obtained by 
svg with feature PHOG with 76.9 % classification accuracy. In general, fea-
ture representations BG and PHOG gave consistently higher accuracies 
than other representations. 

Table 4.6: Classification accuracies of single-kernel classifiers. Values 
are mean and standard deviation of 10-fold cross-validation. 

 SVL SV2 SVG 
ALL 70.0 ± 0.2 71.9 ± 2.9 68.7 ± 2.9 
FG 70.0 ± 0.2 71.2 ± 3.7 65.9 ± 4.3 
BG 70.2 ± 0.6 72.7 ± 3.8 69.6 ± 3.1 
LBP 70.0 ± 0.2 63.6 ± 2.7 68.4 ± 6.3 
COL 70.2 ± 3.0 62.9 ± 3.5 67.2 ± 3.4 
FCC 70.0 ± 0.2 69.8 ± 0.7 62.9 ± 5.5 
SIG 70.0 ± 0.2 69.6 ± 3.4 66.0 ± 3.0 
PHOG 76.0 ± 3.4 70.5 ± 3.3 76.9 ± 2.7 
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Next, using four different MKL algorithms, we combined eight kernels 
calculated on the feature representations with the same kernel function. 
Table 4.7 lists the results of best single-kernel SVMs and four MKL algo-
rithms trained. The highest accuracy of 83.3% is achieved by combining 
eight svg kernels via NLMKL. The accuracy is considerably higher than 
for all other MKL settings or single-kernel SVMs. Table 4.7 lists in the last 
column the classification accuracies when combining all pairs of feature 
representations and kernel functions (i.e., 24 kernels) in a single classifier. 
Still, NLMKL shows the highest accuracy of 83.1%, strengthening its po-
sition as best MKL variant. 

Table 4.7: Classification accuracies of MKL classifiers. Values are mean 
and standard deviation of 10-fold cross-validation. 

 SVL SV2 SVG SVL+SV2+SVG 
SVM 76.0 ± 3.4 72.7 ± 3.8 76.9 ± 2.7 - 
RBMKL 77.3 ± 4.0 77.2 ± 2.4 82.7 ± 3.6 81.8 ± 3.8 
SIMPLEMKL 77.1 ± 3.3 77.3 ± 2.3 81.8 ± 3.8 81.6 ± 3.9 
GLMKL 77.1 ± 3.5 76.5 ± 3.2 81.8 ± 4.3 81.8 ± 3.8 
NLMKL 77.9 ± 3.9 79.2 ± 3.8 83.3 ± 3.6 83.1 ± 3.5 

4.9.6 Discussion 

This study clearly supports the idea of multiple kernel learning. We have 
formulated a nonlinear MKL algorithm derived from polynomial kernel 
combination (Cortes et al. 2009) with which we could achieve a higher 
classification performance than single-kernel SVMs and three linear 
MKL algorithms. When combining linear kernels on the feature repre-
sentations, we observed linear MKL algorithms to outperform single-
kernel SVMs, whereas the nonlinear MKL algorithm improved the aver-
age accuracy at most – supposedly due to the beneficial nonlinear kernel 
combination. Even for the combination of nonlinear base kernel (sv2 and 
svg), the nonlinear MKL algorithm led to higher accuracies than single-
kernel SVMs and linear MKL algorithms. The gain in classification accu-
racy when using nonlinear MKL can be quantified as 6.4% compared to 
single-kernel SVMs. 

4.9.7 Conclusion 

This study extends our previous work on MKL (see section 0) by the use 
of a nonlinear MKL setting and clearly indicates that the nonlinear com-
bination of kernels can further improve cell nucleus classification. The 
proposed nonlinear MKL variant learns a better similarity metric than 
linear MKL algorithms by combining the input kernels nonlinearly. 
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4.10 Active Learning for Nucleus Classification 
Supervised cell nucleus classification based on IHC images requires a set 
of manually labeled cell nuclei serving as gold standard training labels. 
In our example, two trained pathologists have detected and classified all 
cell nuclei into malignant or benign on eight tissue microarray image 
quarters, in total a number of 1633 cell nuclei identified by both 
pathologists. This process of label acquisition commonly poses an expen-
sive part in medical research. We therefore investigated the possibility of 
reducing the number of needed training labels (Schüffler et al. 2013b), by 
active learning (AL). AL is a scenario where the classifier itself decides 
which labels from an external labeler are most informative for an im-
proved classification result (Cohn et al. 1996). Given an initial set of la-
beled test data, the probabilistic classifier calculates an uncertainty score 
for each unlabeled sample and queries the label for the most uncertain 
sample from the labeler. The uncertainty score 𝑈𝑈 for a sample 𝑠𝑠 is calcu-
lated by the entropy of classification probability: 

𝑈𝑈(𝑠𝑠) = − � 𝑝𝑝(𝑠𝑠�|𝑠𝑠) ∗ log�𝑝𝑝(𝑠𝑠�|𝑠𝑠)�
𝑦𝑦�∈{𝑀𝑀𝑀𝑀𝐿𝐿,𝐵𝐵𝐵𝐵𝑁𝑁}

 

where 𝑝𝑝(𝑠𝑠�|𝑠𝑠) denotes the probability of sample 𝑠𝑠 to be malignant or be-
nign, respectively. The samples with largest uncertainty is selected for 
supervision. 

4.10.1 Random Forests as Probabilistic Classifier Ensemble 

Random forests (RF) (Breiman 2001) are being used increasingly by many 
medical applications like cancer classification or tissue segmentation 
(Geremia et al. 2010; Fuchs et al. 2011b). They are computationally effi-
cient for large training data, can solve multiclass classification problems, 
and can be interpreted in a probabilistic manner. An RF is an ensemble 
of binary decision trees, where each tree is typically trained with a differ-
ent subset of the training set (“bagging”), thereby improving the gener-
alization ability of the classifier (Mahapatra et al. 2013c). Samples are pro-
cessed along a path from the root to a leaf in each tree by performing a 
binary test at each internal node along this path. A test compares a certain 
feature with a threshold. Training a forest amounts to identifying the set 
of tests that best separate the data into the different training classes. At 
each node, the feature space is searched for a test that maximizes the re-
duction of class impurity, typically measured by class entropy 
(Mahapatra et al. 2013c). 

Rather than inspecting the full space of features at each node of a tree, a 
random subset is sampled, and the best one is selected. Even if this choice 
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renders the individual trees weaker, it decreases the correlation between 
their outputs, increasing the performance of the forest as a whole. Each 
training sample is sent to the corresponding child depending on the re-
sult of the test. Comparison of a feature subset with a threshold continues 
iteratively until convergence. The convergence criteria for stopping the 
recursive comparison of feature values to a threshold are: 

1. The number of samples in a node falls below a threshold; 
2. A predefined maximum tree depth is reached; 
3. All samples belong to the same class. In that case, the node be-

comes a leaf, and the most frequent class of the training data at the 
node is stored. 

During testing, a new sample is processed by applying respective tests 
according to the path from the root node to the leaf it traverses. When a 
leaf node is reached, the tree casts a vote corresponding to the class as-
signed to this node in the training stage. The final decision for a test sam-
ple is given by the class with the majority of votes. Moreover, the proba-
bility that a test sample belongs to a class can be estimated as the fraction 
of votes for that class cast by all trees (Mahapatra et al. 2013c).  

4.10.2 Experiments and Results 

As we solely want to explore the potential of active learning in this field, 
we implemented a very basic active learning scenario (Algorithm 4.1). 20 
randomly chosen malignant and benign nuclei (ten from each class) serve 
as initial supervised training set for a random forest classifier ensemble 
with 50 trees. The classifier tries to predict all other nuclei on the test im-
ages. The classification accuracy is shown in Figure 4.17 on the left side, 
as a baseline for a weak classification performance (77.5% accuracy). The 
training set then grows by additional 20 nuclei, and the labels of the new 
nuclei are provided by the pathologist. In one experiment, the additional 
twenty nuclei are chosen randomly from all available nuclei. In a second 
experiment, the twenty new nuclei are systematically chosen by their 
classification confidence: those nuclei with the highest classification un-
certainty are added to the training set. The new classification accuracy is 
determined and the procedure is successively repeated until all nuclei 
from the image are queried. As shown in Figure 4.17, the classification 
accuracy performance increases when more nuclei are provided for train-
ing. But interestingly, the performance increases much faster when the 
new nuclei are queried according to their classification confidence. The 
classifier mostly profits form additional information of cases with high 
uncertainty. The plateau of maximum information is at around 96% clas-
sification accuracy and is reached twice as fast with AL as in the random 
sampling scenario (160 samples vs. 320 samples) (Schüffler et al. 2013b). 
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Based on these results, we emphasize the potential of active learning al-
gorithms especially in medical imaging, when the datasets can be very 
large and labeling very expensive. 

Algorithm 4.1: AL process of nucleus classification. A pathologist la-
bels the image step by step, thus correcting and improving the result-
ing classifier C. The underscored line is used for the AL approach and 
is omitted in the random approach. 

Data: Set of unlabeled cell nuclei 𝑈𝑈 = {𝑢𝑢1, … ,𝑢𝑢𝑝𝑝}, 
Input: Trained pathologist 𝑃𝑃.     Output: Probabilistic classifier 𝑅𝑅. 
1    let 𝑃𝑃 label ten malignant and ten benign nuclei with labels 𝑤𝑤1, … 𝑤𝑤20; 
2    train classifier 𝑅𝑅; 
3    while (∃𝑢𝑢𝑝𝑝 ∈ 𝑈𝑈|𝑢𝑢𝑝𝑝  𝑖𝑖𝑠𝑠 𝑠𝑠𝑢𝑢𝑠𝑠 𝑤𝑤𝑀𝑀𝑏𝑏𝑠𝑠𝑤𝑤𝑠𝑠𝑒𝑒 𝑏𝑏𝑠𝑠 𝑝𝑝𝑀𝑀𝑠𝑠ℎ𝑢𝑢𝑤𝑤𝑢𝑢𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠) 
4            predict labels for 𝑢𝑢𝑝𝑝; 
5            sort 𝑢𝑢𝑝𝑝  according to classification uncertainty U(ui); 
6            let 𝑃𝑃 label twenty malignant and benign unlabeled nuclei; 
7            retrain classifier 𝑅𝑅; 
8    end 
9    return 𝑅𝑅; 

 

Figure 4.17: Proof of concept for the active learning approach for nu-
cleus classification. For three given TMA images, initially 10 malignant 
and 10 benign nuclei were selected to train a random forest classifier 
with 50 trees. The classification result on all nuclei is shown as accu-
racy on the y-axis. Consecutively, 20 additional nuclei were added re-
peatedly to the training (x-axis) thus improving the classification per-
formance. The additional nuclei were chosen at random (acc_ran) or 
systematically according to the highest classification uncertainty 
(acc_sys). The systematic approach saturates much faster. The classifi-
cation accuracy reaches the level of the two pathologists shown as 
green bar on the right (acc_pat).  

79 
 



4 TMA Staining Estimation Pipeline 

4.11 Survival Analysis 
For a holistic analysis of the staining estimation pipeline, a set of 132 
TMA images of ccRCC patients was analyzed in a fully automatic man-
ner. Eight fully labeled TMA images served as training set showing 1633 
cell nuclei. 891 of these are benign and 382 are malignant. 360 are unde-
termined or unsure. A Voronoi sampling revealed 784 background loci 
to train the two-step classification pipeline. For training, images have 
been segmented using the SLIC superpixel algorithm (Achanta et al. 
2012). Standard image features as described in 4.4 (Intensity, LBP, PHOG, 
SIG, FCC). Random Forests (Breiman 2001) with 50 trees were used to 
train a nucleus detector, classifying foreground and background super-
pixels. Using the same features, a second classifier was learned exclu-
sively to discriminate superpixels on benign and malignant nuclei. 

During testing, the 132 TMA images were processed in a similar way: 
After over-segmentation with SLIC and subsequent feature extraction, 
superpixels were classified into foreground or background using the first 
classifier. Superpixels classified as foreground were processed by the sec-
ond classifier discriminating malignant from benign superpixels. Since 
MIB-1 (Ki-67 antigen) positive nuclei in ccRCC TMA are dark brown 
stained in contrast to bluish negative nuclei, the fraction 𝑓𝑓 of the mean 
red intensity (𝑢𝑢 ) and the mean blue intensity (𝑏𝑏 ), 𝑓𝑓 = 𝑢𝑢/𝑏𝑏 , defined the 
staining state of a superpixel. If 𝑓𝑓 > 1 , the nucleus was considered 
stained, and non-stained otherwise. 

Ki-67 protein is involved in cell proliferation. In ccRCC, a high percent-
age of proliferating cancer cells is associated with poor patient prognosis. 
Therefore, patients can be classified as “MIB-1 positive” and “MIB-1 neg-
ative” and a Kaplan-Meier estimate indicates the difference in survival 
between these two groups. As a reference, the MIB-1 staining was esti-
mated by a trained pathologists on the same TMA image data. To com-
pare the automatic method with the manual reference, the survival 
groups were kept at equal size: around 66 patient in each group. A log-
Rank test quantifies the statistical difference of the two survival curves. 

4.11.1 Results 

The reference groups are divided at the MIB-1 percentage level of 2% (67 
patients in group “negative”). The difference of survival curves is signif-
icant (p=0.028), supporting the hypothesis that Ki-67 is a prognostic 
marker for ccRCC (Figure 4.18, top). A similar assumption can be done 
with the fully automated staining estimation pipeline (Figure 4.18, bot-
tom): with a threshold at 4% (67 patients in group “negative”), the two 
survival groups are discriminated at similar significance level (p=0.034).  
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Figure 4.18: Survival time (months after diagnosis) for ccRCC patients 
with high or low percentage of MIB-1 positive cancer cells. TOP: A 
pathologist estimated the staining percentage of 132 TMA images 
(TMA_Mib1_perc). Patients of the “MIB-1 negative” group (≥2%, red, 
upper curve) have a better prognosis than those of the positive group. 
The difference of survival is significant (log-Rank test p=0.027). BOT-
TOM: Our staining estimation pipeline (TMARKERStainingPercent) 
stratified the patients in the same dataset similarly. While the thresh-
old is at 4%, the survival difference still is significant (p=0.034). 
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5 TMARKER: A FREE SOFTWARE 

TOOLKIT FOR STAINING 

ESTIMATION 

We provide an open-source and freely available software package which 
implements the aforementioned staining estimation pipeline (Schüffler et 
al. 2013b; Schüffler et al. 2013d). TMARKER is a user-friendly Java GUI, 
platform independent and can be used by any personal computer with 
internet connection and Java runtime environment 1.7 or higher. The 
software aims to fit following needs based on the pipeline presented in 
chapter 4: 

• Semiautomatic, reproducible, accurate and fast cell nuclei detec-
tion and counting for a given set of IHC stained images. 

• Automatic cell nucleus classification into malignant and benign. 
• Platform independence, open source, user-friendly Java webstart 

user interface for an easy distribution. 

The program TMARKER is implemented in Java v1.7 and is publicly 
available at http://www.comp-path.inf.ethz.ch. 

 

Figure 5.1: Screenshot of TMARKER with a TMA image of MIB-1 (ki-
67) stained ccRCC. Detected cancerous and benign nuclei are marked 
with red and green points, respectively. 

TMARKER implements the complete staining estimation pipeline from 
chapter 4. The program supports nucleus detection via color deconvolu-
tion (section 4.2.1), nucleus segmentation via superpixels (section 4.2.2) 
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or graph-cuts (section 4.3). All image and shape features explained in 
section 4.4 are implemented. Nucleus classification can then be per-
formed with support vector machines (section 4.5) or random forests 
(section 4.10.1). Further, labeling histopathological images is supported 
with the active learning approach from section 4.10. Implementation de-
tails of the individual modules are explained in the next section. 

5.1 Implementation Details 
TMARKER has been built with NetBeans IDE 7.4 under Java SDK 7. If 
not stated separately, Java modules for individual functions have been 
adopted from the Fiji software package (Schindelin et al. 2012), JFea-
tureLib (Graf 2012) or LIRE (Lucene Image Retrieval, (Lux and 
Chatzichristofis 2008)). Multiple histopathological tissue images can be 
loaded for computational analysis. Nucleus detection on various staining 
channels (e.g. DAB staining, HE staining, methyl green staining and oth-
ers) is performed with color deconvolution by Ruifrok et al. (2001).  

For patch-wise nucleus segmentation via graph-cuts, a Java implementa-
tion of the graph-cut MAXFLOW algorithm by Boykov and Kolmogorov 
(2004) has been employed. For superpixels, the Simple Linear Iterative 
Clustering (SLIC) algorithm (Achanta et al. 2012) has been translated to 
native Java code and adjusted for comb-shaped superpixels. 

We implemented a set of image features which have been described in 
section 4.4. Local binary patterns (Ahonen et al. 2004) and pyramid histo-
grams of oriented gradients (Bosch et al. 2007) have been adopted from 
JFeatureLib (Graf 2012). Random forest classifiers from WEKA package 
(Hall et al. 2009) and support vector machines from libSVM (Chang and 
Lin 2001) were incorporated for nucleus classification. TMARKER visu-
alizes the probabilistic classification results for nucleus detection and 
classification as an overlay over the histological image such that the user 
can immediately supervise and retrain the classifier. 

Background samples with Voronoi tessellation is calculated with Delau-
nay triangulation (Chew 2014). For visualization and plotting, jFreeChart 
(Gilbert 2000) has been incorporated. The library iTextPDF (Lowagie 
2010) enables TMARKER analyses to be exported as PDF file. 

Java is an object oriented programming language and supports modular 
implementation. TMA spots and nuclei are represented as individual ob-
jects. Figure 5.2 illustrates the architecture of TMARKER with a simpli-
fied unified modeling language (UML) class diagram. Classes for visual-
ization, feature extraction, parallel threading, and additional computing 
are omitted. In total, TMARKER comprises 67 classes. 
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Figure 5.2: Simplified UML class diagram of TMARKER illustrating 
dependencies of most important Java classes, attributes and functions. 
The main class is TMARKER (GUI, highlighted). 
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5.2 Usage Statistics 
TMARKER is programmed for stand-alone computer systems in hospi-
tals and other institutes. Figure 5.3 documents the usage of TMARKER 
webstart from launch to today. The program was launched over 1100 
times in over 29 different countries worldwide. The cities with the most 
usages are Zurich, Napoli, Melbourne, London, Los Angeles, Mountain 
View, Nashville and New York City. TMARKER is used daily. 

              

Figure 5.3: Usage numbers of TMARKER webstart by country from 
launch until today (Oct 11 2011 – Jan 22 2014). Data are collected by IP 
address, excluding those of ETHZ. Numbers of downloads of the desk-
top version are not included. 

5.3 Conclusion 
TMARKER is a free software toolkit with large potential in cell counting 
and staining estimation of histopathological IHC stained tissue images. 
A superior benefit of TMARKER is the computational reproducibility of 
competitive cell counts. A fast cell counting and staining estimation 
method is provided by the integrated color deconvolution method. 
When only relevant cells are to be considered for staining estimation, e.g. 
with distinction between malignant and benign cells, TMARKER offers 
modern machine learning algorithms for nucleus detection and classifi-
cation. The potential of TMARKER has been shown on renal clear cell 
carcinoma images, prostate cancer images and mamma carcinoma da-
tasets and the program is already in frequent use for diverse applications. 
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6 SINGLE CELL SEGMENTATION ON 

HIGHLY MULTIPLEXED IMAGES 

In the previous sections, we investigated the nucleus segmentation and 
classification on tissue microarrays (TMAs). These TMAs provide a qual-
itative and partially quantitative expression pattern of typically one tar-
get protein (singleplex). Modern cancer research commonly incorporates 
single cell analysis on affected tissues with multiple target proteins. Single 
cell analysis comprises whole cell segmentation with subsequent protein 
expression analysis in individual cells. Therefore, multiple singleplex pro-
tein images have to be aligned to each other for a holistic view of the cells 
segmented either on the individual images or on the overlay image. A 
new immunohistochemical mass cytometry approach, that has recently 
been introduced (Giesen et al. 2014), simultaneously and quantitatively 
measures multiple protein expression and modification profiles in a sin-
gle tissue sample making the alignment unnecessary. We present a new 
cell segmentation approach based on watersheds which exploits the 
highly registered multidimensional cell morphology information of the 
multiplexed images. The joint information of cell membrane proteins Β-
catenin, Her2 and Cytokeratin as well as the nucleus protein H3 improve 
the segmentation. We define a score for segmentation validation without 
manually segmented gold-standard. 

6.1 Introduction 
Computational pathology typically addresses the automated analysis of 
digitalized immunohistochemically (IHC) stained cancer tissue images 
(Fuchs and Buhmann 2011a). The visualized expression pattern of spe-
cific marker proteins such as e.g. the proliferation factor ki-67 can be in-
dicative for diagnosis, prognosis or therapy decision (Fuchs et al. 2008b). 
Machine learning algorithms have been invented which automate cell 
nucleus detection, segmentation and classification (Schuffler et al. 2010). 

Classical pathology usually examines the expression profiles of individ-
ual proteins separately in multiple IHC experiments on different sample 
slices (singleplex), as the simultaneous staining of multiple proteins in-
herits technical problems, such as lack of a variety of different dyes and 
non-separable color mixture on the prepared image. Immuno-fluores-
cence (IF), however, can achieve multiplexed staining protocols for the 
use of up to seven proteins in one sample by using three filter sets at 
different wavelengths (Tsurui et al. 2000), or more proteins by repeated 
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singleplex experiments with self-inactivating dyes (Gerdes et al. 2013). 
Still, such methods rely on post-processed registering of image stacks, 
are time consuming and prone to changes during experiment (Tsurui et 
al. 2000; Gerdes et al. 2013). 

Single-cell analysis in cancer research tries to gain information from spa-
tial protein expression patterns in individual cells and their interacting 
neighbors. IHC is a medical tool commonly used for the spatial and 
quantitative analysis of individual target proteins. To get a multidimen-
sional view of the sample with multiple proteins, several IHC experi-
ments have to be aligned to each other such that the spatial information 
of the samples corresponds to each. The alignment of the various IHC 
stained tissue samples is not unproblematic due to changing experi-
mental settings, anisotrop tissue slices and varying image quality. Single 
cells in one image can disappear on the subsequent image. Illumination 
changes, sharpness variances, scaling variances (linear or nonlinear), 
dust and tissue scratches can complicate or even impede a sufficient im-
age registration. A technical system with multidimensional highly regis-
tered spatial protein expression patterns would therefore be favorable. 

Giesen et al. (2014) developed a mass cytometry technique for the multi-
plexed spatial and quantitative measurement of dozens of protein ex-
pression patterns at sub cellular resolution in a single tissue specimen. 
The sample is scanned pixel-wise quantifying all targeted proteins sepa-
rately in each pixel. Thus, the resulting scan comprises multiple highly 
registered protein channel images. A registration process of these images 
is not required anymore facilitating single cell analysis drastically. 

For subsequent single cell analysis, a cell segmentation algorithm is 
needed which is able to detect and segment individual cells on this new 
type of images. The advantage of such a segmentation algorithm is the 
separate use of cell border information of multiple dimensions (proteins). 
In conventional microscopic IHC images, cell borders are usually not 
highlighted and their staining is mixed with the IHC information of the 
target protein, which complicates whole cell segmentation. 

We present a new weighted watershed based cell segmentation which 
uses separate information of the epithelial cell-cell junction proteins Beta-
catenin (Β-catenin), Her2 and Cytokeratin 8/18 (Keratin) together with 
the nucleosomal DNA package protein histone H3 for single cell segmen-
tation in human breast cancer images. 

The validation of a given segmentation is a crucial to compare different 
segmentation algorithms. In many medical segmentation problems, 
trained medical doctors therefore provide manual segmentations of the 
objects to which the algorithms are compared. In our case, no such gold 
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standard exists. We therefore define a segmentation score considering 
several aspects of a valuable segmentation, which (i) should present ap-
propriately sized cell segments, (ii) should encapsulate maximal one nu-
cleus per tissue cell, (iii) should largely overlap with membrane marker 
proteins and (iv) should not overlap with nucleus marker proteins. 

6.2 Methods 

6.2.1 Image Acquisition 

The breast cancer dataset has been described by Theurillat et al. (2007). 
The multiplexed IHC staining protocol described by Giesen et al. (2014) 
in principle follows a classical IHC staining protocol. 32 breast cancer 
relevant antibodies have been selected for staining. Before staining, the 
antibodies are labeled with a unqiue rare earth metal isotope with 
defined atomic mass. The stained sample is processed in a laser ablation 
chamber for high resolution, high-throughput and high sensitive 
analysis (Wang et al. 2013). A 193 nm argon fluoride laser beam (Gunther 
et al. 1997) at 3.5 J cm-2 fluence ablates the sample at a frequency of 20 Hz 
in a regular grid of 1 µm resolution. The ablated substance is 
immediately subject to a time-of-flight inductively coupled plasma mass 
spectrometer (ICP-MS, CyTOFTM) where the metal isotopes are identified 
and counted. The raw data counts are normalized to gray-scaled 
intensity images between 0 (black) and 1 (white). For contrast 
enhancement and to remove signal outliers, a histogram adjustment 
mapped the intensity values to new values such that 1% of data is 
saturated at low and high intensities. 32 rare earth metal isotops have 
been used to label antibodies to 32 different breast cancer target proteins. 
Each protein is visible in a separate channel image corresponding to the 
tagged metal isotope. We use the channels of four isotopes. 

6.2.2 Single Cell Segmentation 

For downstream single cell analysis, a prior single cell segmentation is 
necessary. The cell membrane proteins Β-catenin, Her2 and Keratin 
shown in Figure 6.1 visualize the morphological structure of cell 
membranes best. Further, the nuclear protein H3 indicates the loci of all 
cell nuclei as complementary information.  

For improved cell segmentation, we want to exploit the information of 
all four channels, treating the inverse of H3, namely 1-H3, as a pseudo-
membrane protein. All methods have been implemented using MATLAB 
(R2013b), standard imaging toolbox. 
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H3 (Yb176) Β-catenin (Ho165) 

Her2 (Eu151) 
 

Cytokeratin 8/18 (Yb174) 
Figure 6.1: The channel images of H3 (nucleus protein), Β-catenin, Her2 
and Keratin (epithelial cell-cell junction proteins mainly expressed in 
membrane). In brackets are the applied metal isotope for antibody la-
beling. For contrast enhancement, the images are normalized and ad-
justed for their histogram: the intensity values are mapped to new val-
ues such that 1% of data is saturated at low and high intensities. 

Voronoi Segmentation with Dirichlet Clustering  
As a reference cell segmentation, a Voronoi diagram (Aurenhammer 
1991; Okabe et al. 2009) around the cell nuclei is created (see Figure 6.2). 
Therefore, the H3 nucleus image (Figure 6.1 top left) is smoothed with a 
Gaussian blur filter of radius 2 to reduce single pixel noise. To find the 
centroids of the cell nuclei, the image is dichotomized at an intensity 
threshold 0.5 and the centroids are determined as the centers of mass of 
single connected components (Figure 6.2 A). For each centroid, the Vo-
ronoi polygon is defined as a boundary that encloses all intermediate pix-
els lying close to the centroid than to other centroids. The Voronoi dia-
gram is then defined as the set of all Voronoi polygons in the image. The 
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6.2 Methods 

segmentation is illustrated as overlay image (Figure 6.2 B) visualizing cell 
membranes (Her2, red), cell nuclei (H3, green) and cytoplasm (Vimentin, 
blue). Voronoi segmentation does not include explicit information of cell 
boundaries and only considers the cell nuclei as centers of cells. 

Watershed Segmentation 
As cell membrane proteins naturally indicate boundaries of the cells, we 
propose to use their information for single cell segmentation via water-
sheds (Beucher and Lantuejoul 1979; Meyer 1994). Watersheds interpret 
a gray-scaled image as a topographic relief with basins of low intensity 
and walls of high intensity. The relief is then uniformly flooded starting 
at the lowest point. When two neighboring catchment basins would 
merge due to the flood, a damn is erected to prevent the mixture. The 
collection of all damns over the image then describes the watershed seg-
mentation. Since the tissue cells in membrane channel images can be in-
terpreted as basins, the use of watersheds is intuitive. 

To capture the information of multiple membrane proteins (Β-catenin, 
Her2 and Keratin), the images first are weighted and averaged to a single 
membrane image. Further, since a cell nucleus is considered to be exclu-
sive to cell membrane, the inverse of the nucleus image H3, namely 1-
H3, is incorporated as pseudo-membrane channel. Two standard aver-
ages have been considered, the arithmetic mean and the geometric mean. 

 

 
A 

 
B 

Figure 6.2: Process of Voronoi tessellation for single cell segmentation 
without cell membrane information. A: The original image H3 shown 
in Figure 6.1 top left is smoothed with a Gaussian blur filter and di-
chotomized. Centroids (red) of the resulting clusters (blue) determine 
the centers of nuclei. B: Voronoi tessellation of found centroids. The 
colored image is an overlay of Her2 (red, membranes), H3 (green, nu-
clei) and Vimentin (blue, cytoplasm). 
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6 Single Cell Segmentation on Highly Multiplexed Images 

Given 𝑁𝑁 gray-scale images 𝑀𝑀𝑝𝑝, each weighted with 𝑤𝑤𝑝𝑝 ∈ ℝ, with ∑𝑤𝑤𝑝𝑝 = 1, 
the arithmetic mean image 𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝ℎ is defined as: 

𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝ℎ = �𝑤𝑤𝑝𝑝 ∗
𝑁𝑁

𝑝𝑝=1

𝑀𝑀𝑝𝑝 

Similarly, the geometric mean image 𝑀𝑀𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝 is defined as: 

𝑀𝑀𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝 = �𝑀𝑀𝑝𝑝𝑤𝑤𝑖𝑖

𝑁𝑁

𝑝𝑝=1

= 𝑠𝑠(∑ 𝑤𝑤𝑖𝑖log (𝑊𝑊𝑖𝑖𝑖𝑖 )) 

Two additional averages are defined as disjunction or conjunction: 

𝑀𝑀𝑂𝑂𝑂𝑂 = max (𝑀𝑀𝑝𝑝) 
 

𝑀𝑀𝑀𝑀𝑁𝑁𝑆𝑆 = min(𝑀𝑀𝑝𝑝) 
 

Note that all operations are performed element-wise, i.e. 𝑀𝑀𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝 uses the 
pixel-wise product of exponentiated intensities and 𝑀𝑀𝑂𝑂𝑂𝑂 and 𝑀𝑀𝑀𝑀𝑁𝑁𝑆𝑆 use the 
pixel-wise max and min intensity of all images, respectively.  

6.2.3 Segmentation Score  

Let 𝑀𝑀 be the original multiplexed tissue image of size m x n x 32 and 𝑀𝑀 ∈
{0,1}𝑝𝑝𝑚𝑚𝑝𝑝 a cell segmentation mask (0, no border; 1, border). Four terms 
define our segmentation score: 

1) The score should approximate the expected number of cells 
𝑁𝑁𝑝𝑝𝑚𝑚𝑝𝑝 = 𝑝𝑝∗𝑝𝑝

4𝑝𝑝2
 , where 𝑢𝑢  is the typical nucleus radius. We address 

this by sampling the observed number of cells 𝑁𝑁 from a normal-
ized Gaussian distribution with µ = 𝑁𝑁𝑝𝑝𝑚𝑚𝑝𝑝  and 𝜎𝜎 = 2 ∗ 𝑁𝑁𝑝𝑝𝑚𝑚𝑝𝑝  as a 
probability 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 ∈ [0; 1]. To avoid non-sense segmentation with 
no cells or too small cells, 𝑁𝑁 must not be larger than 4 ∗ 𝑁𝑁𝑝𝑝𝑚𝑚𝑝𝑝 or 
smaller than 𝑁𝑁𝑝𝑝𝑚𝑚𝑝𝑝/4. 

2) Multiple nuclei in one cell should be penalized. The total number 
of nuclei 𝑁𝑁𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝  is determined as explained for the Voronoi 
method. The number of nuclei lying in cells with one or more 
nuclei 𝑁𝑁𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝+  is determined. The sub-score of the nucleus con-
straint is given by 𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 = 1 − 𝑁𝑁𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝+/𝑁𝑁𝑁𝑁𝑝𝑝𝑐𝑐𝑝𝑝. 

3) To measure the wanted mask overlap with the membranes, we 
define a membrane image 𝑀𝑀𝑀𝑀𝐵𝐵𝑀𝑀 = �𝑀𝑀𝐵𝐵𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑀𝑀𝐻𝐻𝑝𝑝𝑝𝑝2 ∗ 𝑀𝑀𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

3   . 
The mean overlap is then quantified as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1

∑𝑀𝑀
∑𝑀𝑀 ∗

𝑀𝑀𝑀𝑀𝐵𝐵𝑀𝑀. 
4) The inverse mean overlap of the mask 𝑀𝑀 with the nuclei is quan-

tified as 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 = 1 − 1
∑𝑀𝑀

∑𝑀𝑀 ∗ 𝑀𝑀𝐻𝐻3. 
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6.3 Results 

The final segmentation score for an image 𝑀𝑀 and a mask 𝑀𝑀 is then defined 
as the geometric mean of the sub-scores: 

𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠(𝑀𝑀,𝑀𝑀)  =  �𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝4  

This score ranges from zero to one and enables to compare different seg-
mentation as a higher score implies a better segmentation. 

6.3 Results 

6.3.1 Mutual Information between Membrane Proteins 

Since the membrane protein channels Β-catenin, Her2 and Keratin are 
perfectly registered to each other, their mutual information pixel-wise 
can be calculated in a pixel-wise manner. The images are scaled down to 
half edge length in order to smooth scanning artifacts. The images are 
dichotomized according to a threshold 𝑠𝑠 and the normalized mutual in-
formation (MI) between two binary images 𝑀𝑀, 𝐽𝐽 is: 

𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝(𝑀𝑀, 𝐽𝐽) =
𝐻𝐻(𝑀𝑀) + 𝐻𝐻(𝐽𝐽) − 𝐻𝐻(𝑀𝑀, 𝐽𝐽)

max �𝐻𝐻(𝑀𝑀),𝐻𝐻(𝐽𝐽)�
 

where 𝐻𝐻(𝑀𝑀) is the entropy of 𝑀𝑀 and 𝐻𝐻(𝑀𝑀, 𝐽𝐽) is the joint entropy of 𝑀𝑀 and 𝐽𝐽. 

𝐻𝐻(𝑀𝑀) = − � 𝑝𝑝(𝑋𝑋) ∗ log2 𝑝𝑝(𝑋𝑋)
𝑋𝑋∈{𝑊𝑊=0,𝑊𝑊=1}

 

𝐻𝐻(𝑀𝑀, 𝐽𝐽) = − � � 𝑝𝑝(𝑋𝑋,𝑌𝑌) ∗ log2 𝑝𝑝(𝑋𝑋,𝑌𝑌)
𝑌𝑌∈{𝐽𝐽=0,𝐽𝐽=1}𝑋𝑋∈{𝑊𝑊=0,𝑊𝑊=1}

 

MI is normalized according to the image with largest entropy. The de-
pendence of MI to 𝑠𝑠  is illustrated in Figure 6.3. The MI shows a chi-
squared behavior with a maximum of 0.35 to 0.45. Although the three 
proteins are known membrane proteins, they apparently are not com-
pletely identical in terms of location and expression rate, which empha-
sizes to combine their information for better membrane description. 
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6 Single Cell Segmentation on Highly Multiplexed Images 

 

Figure 6.3: Pairwise normalized mutual information (MI) of the mem-
brane proteins Her2, Bcatenin and Keratin after dichotomization of the 
images at a shifting threshold 𝒕𝒕 ∈ [𝟏𝟏;𝟏𝟏]. 

 

6.3.2 Cell Segmentation 

Single cell segmentation in multiplexed images is different to the known 
nucleus segmentation in conventional IHC stained images, where the cell 
membranes are not specifically stained (Schüffler et al. 2013b). Superpix-
els, for example, would not identify whole cells as uniform image com-
partments with homogeneous content. Also graph-cut segmentation 
used for cell nucleus segmentation (Schuffler et al. 2010) will not be able 
to segment the multifaceted structure of a whole cell as a single unit. Wa-
tersheds on the other hand are best suited for cell segmentation when the 
cell is stained with membrane marker proteins. We tested our approach 
on human breast cancer images (Theurillat et al. 2007). 

Due to the lack of a gold-standard, different segmentation masks were 
compared according to the presented segmentation score. An exhaustive 
search through all parameters revealed the best segmentations possible 
with the proposed method. The Dirichlet tessellation of cell nuclei 
achieved a maximum segmentation score of 0.65 which mainly results 
from the high over-segmentation of unpopulated areas in the image. 
High dimensional watershed segmentations yield a higher segmentation 
score of 0.70 (arithmetic and geometric combination, Figure 6.4). The seg-
mentation algorithm further profits from the independent contribution 
of individual registered channels. The best segmentation with a score of 
0.70 can be found with weights 0.63, 0.25 and 0.12 for β-catenin, Her2 and 
Keratin, respectively. This clearly demonstrates the advantage of multi-
plexed cytometry with multidimensional registered information over 
singleplexed methods accessing only one dimension. 
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6.3 Results 

Arithmetic Mean

 

Geometric Mean

 

  

  
Figure 6.4: Process of watershed based single cell segmentation with 
multiplexed images β-catenin, Her2, Keratin and 1-H3 (see Figure 6.1). 
TOP: The averaged image as arithmetic mean (left) or geometric mean 
(right). MIDDLE: The combined image is smoothed with a Gaussian 
blur filter of radius 3. A threshold t=0.18 excludes all image areas where 
no tissue cells are visible (blue). BOTTOM: A watershed segmentation 
of foreground area is overlaid to Her2 (red, membranes), H3 (green, 
nuclei) and Vimentin (blue, cytoplasm). 
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6 Single Cell Segmentation on Highly Multiplexed Images 

6.3.3 Implementation 

The algorithms used in this paper are implemented in MATLAB 
(R2013b) and compiled as a GUI for Windows called MultiplexedCellSeg-
mentation (see Figure 6.5). The program is freely available for non-com-
mercial use at www.comp-path.inf.ethz.ch. 

 

Figure 6.5: Screenshot of MultiplexedCellSegmentation, a program 
which implements the Voronoi tessellation (left) and the watershed 
segmentation (right) of tissue cells in multiplexed images. 

 

6.4 Discussion 
Cell segmentation in medical images is mandatory for single cell cancer 
research. IHC mass cytometry is a new promising imaging technique for 
multidimensional and perfectly registered quantitative and spatial pro-
tein expression profiles. The idea of this paper is to exploit the registered 
information of several protein channels for an improved segmentation 
compared to single-image segmentations. Since the value of a given seg-
mentation dependent on the underlying medical task and since a gold-
standard segmentation is missing for the new type of images at hand, we 
defined a new segmentation score to compare different segmentation 
masks. The simplistic score accounts for favorable passages of the seg-
mentation overlapping with membrane signal and for unfavorable seg-
mentations through a nucleus, which is a good start for comparison of 
different segmentation algorithms. Though, more sophisticated scores 
are possible, e.g. considering the number of non-segmented nuclei. 
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6.5 Conclusion 

6.5 Conclusion 
In contrast to IHC or IF, highly multiplexed mass cytometry provide a 
perfect registration of the target protein images. IHC and IF are com-
monly used to detect the expression of one or two proteins simultane-
ously. Other proteins are then processed on a subsequent tissue slice. For 
single cell analysis, a computational registration process is therefore nec-
essary to align the different slices to each other. This process can be com-
plicated or impeded when individual cells disappear on the subsequent 
tissue slice. Highly multiplexed mass cytometry circumvents this issue 
by simultaneously measuring dozens of proteins on one tissue slice. 

Highly registered protein channels can be exploit to improve single cell 
segmentation which is mandatory for downstream single cell analysis. 
We have shown that the combination of the information of three mem-
brane proteins Bcatenin, Her2 and Keratin as well as the nucleus protein 
H3 improves the single cell segmentation in human breast cancer images, 
compared to a segmentation which is based on only H3. A single cell 
segmentation in conventional IHC or IF images is typically based on sin-
gular protein markers for general morphological structure (e.g. hematox-
ylin staining), but not specific for cell membrane. The multidimensional 
view on single cells with highly registered dimensions enables more ac-
curate cell segmentation. 
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7 SHAPE FEATURES FOR AUTOMATIC 

CROHN’S DISEASE DETECTION AND 

SEGMENTATION 

In the previous chapters, a shape measurement for cancerous renal clear 
cell nuclei was derived exploiting their description for improved cancer 
cell classification. The shape information was basically hidden in the 
dedicated feature design. We will now study this shape impact for med-
ical image segmentation and demonstrate the importance of shape infor-
mation for the detection and segmentation of Crohn’s disease (CD) in 
MRI images. 

7.1 Introduction 
 T1-weighted high-resolution isotropic volume examinations (THRIVE) 
after contrast agent supply are sharp and high-contrast magnetic reso-
nance imaging (MRI) sequences for the visualization of CD. On 3D signal 
images, organic structures of small bowel, terminal ileum and colon are 
usually clearly visible. Signal enhancement in bowel wall as a result of 
CD activity can be recognized. THRIVE was therefore chosen to acquire 
manual segmentations by trained radiologists for training an automatic 
CD detection system. Two medical experts with more than 7 years of ex-
perience in abdominal MRI analysis identified and segmented diseased 
areas and healthy counter examples in bowel segments as well as back-
ground areas in MRI volumes of 26 patients (Figure 7.1). The scientific 
task is then to learn a computer algorithm to autonomously detect and 
segment similar regions in unseen images. 

To achieve this goal, we start with a voxel-based method. Every image 
voxel is individually classified and the final segmentation results as a 
connected component of equally classified voxels. This approach is 
packed in a two-stage classification scenario: First, the pixels are classi-
fied into intestine or background. Second, the intestine is further classi-
fied into enhanced (diseased) or normal regions. Thereafter, we will re-
fine the method in several ways. New features (e.g. spatial context fea-
tures) are introduced. Further, the automatic detection of a region of in-
terest as starting point is studied. Additionally, we investigate superpix-
els as unsupervised object segmentation in the context of CD. Finally, we 
evaluate weakly supervised learning methods as well as active learning 
scenarios for this label intensive task of CD detection in MRI. 
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7 Shape Features for Automatic Crohn’s Disease Detection and Segmentation 

     

Figure 7.1: Typical manual annotations of CD in MRI sequences on two 
different slices from one patient. Red: CD affected bowel segments. 
Green: normal bowel segments. Yellow: non-intestine regions. 26 CD 
patients are manually annotated analogously. 

7.2 Voxel Based Classification 
A voxel-wise MRI segmentation has been presented (Mahapatra et al. 
2012b, 2013b) for the detection of CD. Since voxel (vx) based classification 
can be computationally infeasible for large images (in our case MRI vol-
umes of 400x400x100vx), we restrict this classification approach to a spe-
cific region of interest (ROI) within the whole volume. This localization 
is reasonable since the bowel appears in the middle slices, and even there, 
the bowel covers the area in the center of the images. Large peripheral 
parts of the scans show other organs or even background. Processing of 
the complete image would result in a large false positive rate. Figure 7.2 
illustrates an example MRI slice with two ROIs (red) with a manually 
segmented diseased area (green). 

 

Figure 7.2: Example 
MRI scan of human 
abdomen. Two rec-
tangular regions of 
interest (red) con-
tain intestine, back-
ground and manu-
ally segmented dis-
eased bowel (green). 
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7.2 Voxel Based Classification 

7.2.1 Feature extraction 

For voxel-wise classification, texture and shape asymmetry features for 
each voxel in three different scales, each within a local neighborhood 
around the voxel were extracted. Trained radiologists usually rely on 
multiple data sources to identify diseased regions in a patient (e.g., dif-
ferent MRI sequences), whereas the automatic approach does not incor-
porate multimodal information without comprehensive inter-modality 
registration. In order to reveal hidden structures in the images which 
make the classification still possible on only one MRI sequence, we tar-
geted image features that are not discernible by the human eye 
(Mahapatra et al. 2013b). It has been shown in psychological experiments, 
that the human visual perception is especially sensitive to first order and 
second order image features (mean and variance of intensity) (Julesz et 
al. 1973). Higher order statistics, such as skewness and kurtosis, are hidden 
to the observer. Still, they frequently vary among different image objects 
in MR images (Petrou et al. 2006), which is to be exploited for voxel clas-
sification. Therefore, we calculate for every image voxel in a given neigh-
borhood the mean, variance, skewness and kurtosis for intensity and for 
texture. To respect scaling issues in the images, the neighborhoods are 
chosen at the scales 25x25, 30x30 and 35x35 pixels. We call a pixel with 
its given neighborhood a patch. 

Skewness 
The skewness of an image patch is defined by its third order moment: Let 
𝑆𝑆𝑝𝑝 be an image patch with 𝑁𝑁 voxels where 𝑆𝑆𝑝𝑝(𝑗𝑗) is the intensity value of 
its 𝑗𝑗th voxel, 𝑆𝑆𝚤𝚤�  the mean intensity and 𝜎𝜎𝑝𝑝2 the variance. Then the skew-
ness 𝑆𝑆𝑖𝑖𝑝𝑝 is defined by: 

𝑆𝑆𝑖𝑖𝑝𝑝 = �
1
𝑁𝑁
� (𝑆𝑆𝑝𝑝(𝑗𝑗) − 𝑆𝑆𝚤𝚤�)3

𝑁𝑁

𝑗𝑗=1
� ∗

1
𝜎𝜎𝑝𝑝3

 

Skewness can be understood as a measure of the symmetry of a distribu-
tion: 𝑆𝑆𝑖𝑖𝑝𝑝 < 0 indicates a shift of most values to the right side of the mean, 
and 𝑆𝑆𝑖𝑖𝑝𝑝 > 0 implicates a shift to the left side of the mean. A skewness is 
close to zero when the values are relatively equally distributed, e.g. for a 
Gaussian distribution.  

Kurtosis 
Similarly, the kurtosis 𝐾𝐾𝑢𝑢𝑝𝑝 is defined by the fourth order moment:  

𝐾𝐾𝑢𝑢𝑝𝑝 = �
1
𝑁𝑁
� (𝑆𝑆𝑝𝑝(𝑗𝑗) − 𝑆𝑆𝚤𝚤�)4

𝑁𝑁

𝑗𝑗=1
� ∗

1
𝜎𝜎𝑝𝑝4
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7 Shape Features for Automatic Crohn’s Disease Detection and Segmentation 

Kurtosis describes the style of the peaks a distribution: A high kurtosis 
means sharper peaks with larger, wider tails, whereas a low kurtosis de-
scribes more roundish peaks with smaller, thinner tails. 

Texture 
2D Gabor filter banks are rich descriptors of texture in images and inherit 
various desired properties. Multi-scale and multi-orientation Gabor filter 
banks can capture visual characteristics such as spatial localization, ori-
entation and spatial frequency. They have previously been used as tex-
ture descriptors in medical imaging, e.g. for simple cortical cell represen-
tation (Devalois et al. 1982; Manjunath and Ma 1996; Liu and Wechsler 
2002). A Gabor filter bank is defined as: 

𝑠𝑠𝑒𝑒,𝜔𝜔(𝑥𝑥,𝑠𝑠) = 𝑀𝑀𝑒𝑒𝑠𝑠(𝑀𝑀𝑒𝑒(𝑥𝑥 ∗ cos(𝜔𝜔𝜔𝜔) + 𝑠𝑠 ∗ sin(𝜔𝜔𝜔𝜔))𝑀𝑀𝑒𝑒(𝑠𝑠
∗ cos(𝜔𝜔𝜔𝜔) − 𝑥𝑥 ∗ sin(𝜔𝜔𝜔𝜔)) 

where 𝛾𝛾 = 0, … , Γ − 1 and 𝜔𝜔 = 0, … ,Ω − 1. 𝜔𝜔 = 𝜋𝜋/Ω is the rotation factor 
and 𝑀𝑀 = (𝑈𝑈ℎ

𝑈𝑈𝑝𝑝
)
1
Γ−1  the scaling factor. 𝑈𝑈ℎ  and 𝑈𝑈𝑤𝑤  determine the frequency 

range of the filter bank and 𝑊𝑊 is a shifting parameter in the frequency 
domain. Our Gaussian function 𝑠𝑠 is defined by: 

𝑠𝑠(𝑥𝑥,𝑠𝑠) = �
1

2𝜋𝜋𝜎𝜎𝑚𝑚𝜎𝜎𝑦𝑦
� 𝑠𝑠𝑥𝑥𝑝𝑝 �−

1
2
�
𝑥𝑥2

𝜎𝜎𝑚𝑚2
+
𝑠𝑠2

𝜎𝜎𝑦𝑦2
� + 2𝜋𝜋𝑗𝑗𝑊𝑊𝑥𝑥� 

where Γ = 6 is the total number of orientations and Ω = 2 the total num-
ber of scales. We obtain 12 texture maps by oriented Gabor filters in six 
orientations (0°, 30°, 60°, 90°, 120° and 150°) and at two scales (1 and 0.5) 
(Mahapatra et al. 2013b). A texture map is a result of the convolution of 
the intensity image patch with the corresponding Gabor filter. 

Shape Asymmetry 
Shape asymmetry for skin lesion identification by Liu et al. (2011) is cal-
culated as bin differences over the principal axis of a feature histogram. 
We show a novel shape asymmetry measure to quantify local orientation 
distributions by entropy. A given intensity patch is radially partitioned 
into 18 sectors by a circle centered in the patch. In each sector, the single 
pixel orientations are calculated and the entropy of the angle distribution 
is determined. The entropy is high for uniform distributions with un-
structured orientation in the sector. Low entropy indicates a peaked dis-
tribution or a structured sector image. Also, a peaked distribution leads 
to a lower shape asymmetry. For a given sector 𝑢𝑢 with its angle distribu-
tion 𝑝𝑝𝜃𝜃𝑝𝑝 , the shape asymmetry is defined by the entropy: 

𝑆𝑆ℎ𝑀𝑀𝑝𝑝𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦
𝑝𝑝 = −� 𝑝𝑝𝜃𝜃𝑝𝑝 ∗ log (𝑝𝑝𝜃𝜃𝑝𝑝)

𝜃𝜃
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7.2 Voxel Based Classification 

Figure 7.3 illustrates the calculation of the shape asymmetry for a dis-
eased example image patch and a healthy example. Interestingly, the 
shape asymmetry feature has a more linear profile for the healthy patch 
than for the diseased patch. This difference might result from the fact that 
healthy regions in the image show a smoother, regular shape, while the 
diseased areas separate by structured shape due to lesions, ulcerations or 
other abnormalities. 

According to the above description, the pixel-wise feature vector com-
prises 70 dimensions (intensity: 4, texture: 4x6x2=48 (mean, variance, 
skewness and kurtosis of texture maps) and shape asymmetry: 18). To 
respect image characteristics over multiple scales, we calculate the fea-
ture vector over three different neighborhood sizes: 25x25, 30x30 and 
35x35, expanding the final feature vector length to 3x70=210. 

7.2.2 Comparison Features 

We compare the performance of our new features with two state-of-the-
art methods: Dual tree complex wavelet transform (DTCWT) (Berks et al. 
2011) and a shape-asymmetry based method (Asy) (Liu et al. 2011), both 
explained in the following sections. 

DTCWT 
Rich descriptors of local structure are dual tree complex wavelet transforms 
(DTCWT), which have extensively been used in various kinds of image 
processing. DTCWT combines two discrete transforms, both shifted in 
their phase by 90°. For 2D images, DTCWT calculates 6 directional sub-
bands oriented at ±15°, ±45° and ±75°. The DTCWT feature is calculated 
from the center pixel of a certain neighborhood. Applying the three 
neighborhoods from above, we obtain a 3x6=18 dimensional feature vec-
tor per pixel. See Berks et al. (2011) for a detailed description of DTCWT. 

Asy 
Based on the reflectional asymmetry measure by Liu et al. (2011) for a pig-
mentation model of skin lesions, we develop a similar shape measure. 
Instead of global point signatures, we use orientation angle information. 
For every image patch, a 40-bin histogram of orientation angles is calcu-
lated with the magnitude of angles lying between -180° and 180° preserv-
ing an equal number of bins for positive and negative magnitudes. Asy 
is then defined as: 

𝑀𝑀𝑠𝑠𝑠𝑠 = � (ℎ𝑝𝑝 − ℎ−𝑝𝑝)
20

𝑝𝑝=1
 

where 𝑖𝑖 is the number of bins of the orientation histogram ℎ of 40 bins. 
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Figure 7.3: Illustration of the new shape asymmetry feature used for 
CD detection. For each pixel in the shown patches (left), the orientation 
angle is calculated (-180°-180°) and displayed as heatmap (right). TOP 
ROW: Diseased image patch. MIDDLE ROW: Normal image patch. 
BOTTOMLEFT: The patches are partitioned into 18 radial segments 
and the entropy of the orientations per segment is calculated. BOT-
TOMRIGHT: The entropy per segment is shown for the two examples 
(red line, diseased patch; blue line, healthy patch). Diseased and 
healthy patches differ in their entropy distribution. 
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From every histogram count with positive orientation magnitude, the 
corresponding histogram count with negative orientation magnitude is 
subtracted (without absolute value). The 20 differences are then summed 
up to Asy. A negative Asy means that the orientation angles have a net 
negative leaning and a positive Asy indicates a net positive leaning, yet 
yielding a measure for asymmetry. 

7.2.3 Dataset 

We used the CD patient MRI data of 26 patients (19-72 years, mean 36 
years, 17 females and 9 males), acquired at the AMC, Amsterdam, The 
Netherlands. The corresponding MRE protocol has been introduced in 
section 3.3. The resulting images have a spatial resolution of 
1.02×1.02×2mm at a dimension of 400×400×100 voxels. 

Two radiologists have annotated regions that show strong wall enhance-
ment as diseased areas as well as normal wall regions. Further, normal 
background (non-intestine) regions have been labeled to provide a su-
pervised gold standard. In total, 6827 pixels from diseased regions, 5156 
pixels from normal regions and 3725 pixels from background regions 
could be extracted from the annotations in all 26 patients. Every pixel 
forms a sample with its calculated feature vector in the three described 
neighborhoods. 

7.2.4 Classification Scenario 

We compare three different feature sets (DCTWT, Asy and Our Features). 
Additionally, we compare three different classifiers to show their ability 
to separate these types of MRI data. Therefore, we incorporated a Ran-
dom Forest (RF), a Support Vector Machine (SVM) and a Bayesian Clas-
sifier (BC). 

Random Forest 
Random Forests are classifier ensembles of decision trees (Breiman 2001). 
They have been successfully been used in various kinds of machine 
learning domains, such as computer vision, medical imaging and bioin-
formatics (Cima et al. 2011; Fuchs et al. 2011b; Soldini et al. 2013). Each 
decision tree is trained on a different subset of the training data, to gen-
eralize the ensemble’s prediction accuracy. For each tree, a different sub-
set of features and feature parameters is significant for prediction. A ma-
jority vote among all trees then forms the probabilistic outcome of the 
forest. We used a RF with 100 trees in our experiments.  
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Support Vector Machine 
Support Vector Machines construct hyper-planes in the feature space 
which separate the data points. The hyper-plane is constructed such that 
the distance to the nearest data points of any class (support vectors) is 
maximum, since this assures best separation also for unseen data. SVM 
are very flexible for classification, since they can be designed with any 
metric distance measure between data (called kernel function), at any di-
mension. This makes them highly favorable for a variety of tasks such as 
brain tumor segmentation (Bauer et al. 2011), chest pathologies (Avni et 
al. 2011) or cell nucleus classification (Schüffler et al. 2010; Schüffler et al. 
2011). We use the publicly available LIBSVM package (Chang et al. 2011) 
with a radial basis kernel function (RBF). 

Bayesian Classifier 
As a third comparison, we chose a Bayesian Classifier as it stresses the 
non-linear nature of our data. We use the default naïve Bayesian Classi-
fier in MATLAB. 

All classifiers and feature sets were tested with 10-fold cross validation. 
In this scenario, the total data are partitioned into 10 equally sized sub-
sets. In each fold, nine of the ten subsets are used to train the classifiers 
and the remaining data part is used to test them. 

To reduce the feature space hierarchically and to obtain better classifica-
tion results, we designed a two-stage classification scenario illustrated in 
Figure 7.4: Stage 1 classifies pixels into intestine and background (trained 
on the full dataset fold). Stage 2 then classifies the intestine samples into 
diseased and normal (trained only on the intestine samples of the fold). 
The classification results are reported in the following sections. 

Since we perform a voxel-wise classification, we record accuracy, sensi-
tivity, specificity and precision of a classifier’s test with the definitions 
via a contingency table given in Table 7.1. Later in section 7.2.8, we will 
also refer to Dice metric and Hausdorff distance as performance measure. 

 

 

Figure 7.4: Hierarchical two-stage classification of voxels for CD seg-
mentation. In stage 1, the samples are classified as intestine and back-
ground to reduce the variability of the following second stage classifi-
cation. Stage 2 only considers diseased and normal intestine. 
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7.2 Voxel Based Classification 

Table 7.1: Definition of accuracy, sensitivity, specificity and precision 
(positive predictive value) used in our experiments via contingency ta-
ble. Indicated are true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN). 

 Gold standard  

Positive Negative 

M
ac

hi
ne

 

Po
sit

iv
e 

TP FP 𝑃𝑃𝑢𝑢𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

N
eg

at
iv

e 

FN TN  

 
= 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 

=
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

𝑆𝑆𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 

=
𝑇𝑇𝑁𝑁

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁
 

𝑀𝑀𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑀𝑀𝑖𝑖𝑠𝑠

=
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑁𝑁
 

 

7.2.5 Results – 1st Stage: Intestine vs. Background 

Each pixel is classified into intestine or background in a 10-fold cross-
validation approach. Our features obtain the highest classification result 
with a support vector machine (RBF kernel). Table 7.2 compares the clas-
sification results. Note that we want to achieve a high sensitivity or true 
positive rate at this stage, even at the cost of a poorer overall accuracy. 
Samples that are classified as intestine are subjected to the subsequent 2nd 
stage classification. We observe background samples wrongly classified 
as intestine are invariably identified as normal. Further, background 
samples which are classified as diseased could easily be discarded by a 
clinician. On the other hand, intestine samples which are classified as 
background in this 1st stage are sorted out for disease classification which 
is highly undesirable. 

The receiver operating characteristic (ROC) curves of the SVM classifiers 
using our features show overall a high sensitivity over 90 % in each cross-
validation run (see Figure 7.5). In contrast, the specificity is considerably 
lower indicating the large number of false positives – background sam-
ples classified to intestine. This type I error is more desired than type II 
error, since the background samples are classified as normal in the 2nd 
classification stage. The naïve Bayesian classifier shows the lowest spec-
ificity (<50 %) and overall accuracy (<75 %), which might result from the 
non-linearity of the data. Naive Bayesian classifiers find optimal decision 
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boundaries on linearly separable data or non-overlapping data, while RF 
and SVM with RBF kernel can handle non-linearities to certain extend. 
Our results suggest that the data show these non-linear characteristics. 
Still, all classifiers perform better than random. 

 

Table 7.2: Quantitative classification results of Stage 1 classification. 
Listed are mean (and standard deviation) of 10-fold cross-validation. 

 Asy DTCWT Our Features 
RF SVM BC RF SVM BC RF SVM BC 

Accuracy 
(%) 

79.9 
(2.2) 

80.4  
(2.6) 

72.0  
(2.3) 

80.1  
(2.5) 

82.2  
(2.4) 

71.3  
(2.9) 

83.3  
(4.1) 

86.4  
(1.5) 

73.2  
(4.4) 

Specificity 
(%) 

68.0  
(1.7) 

67.9  
(1.8) 

41.5  
(1.8) 

67.6  
(1.8) 

68.1  
(1.6) 

42.7  
(1.7) 

70.6  
(2.2) 

71.1  
(1.8) 

49.1  
(2.1) 

Sensitiv-
ity (%) 

84.6  
(1.8) 

86.2  
(1.9) 

81.5  
(1.4) 

85.7  
(1.9) 

93.9  
(2.7) 

88.3  
(2.1) 

92.1  
(4.1) 

96.7  
(1.2) 

90.1  
(6.5) 

Precision 
(%) 

89.6  
(1.3) 

90.1  
(1.1) 

77.9  
(1.8) 

89.5  
(1.1) 

92.1  
(2.1) 

78.8  
(1.7) 

90.9  
(2.9) 

96.3  
(1.8) 

80.4  
(4.2) 

 

 

 

Figure 7.5: ROC curves of the classifiers using our features. Each curve 
consists of 10 data points, each from one cross-validation run. While 
the SVM and RF show both high specificity and sensitivity, the BC 
classifies weigh more false positives. This illustrates non-linear data 
structures which can be handled by SVM and RF. 
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7.2.6 Single Feature Contribution 

We tested the contribution of the single feature components (intensity, 
texture and shape asymmetry). Table 7.3 lists the accuracy and sensitivity 
of the RF classifier using only a subset of features. Interestingly, intensity 
alone shows lowest accuracy as it does incorporate only coarsely struc-
tured information. Incorporating texture or shape features significantly 
improves the classification result. A t-test on the cross-validation for 
Shape+Tex and all features from Table 7.2 with p<0.032 suggests that the 
combination of all three feature vectors clearly improves the classifica-
tion statistically significantly. 

Table 7.3: Quantitative measures for the contribution of individual fea-
ture groups for the RF. Values indicate mean (and std. dev.) of 10-fold 
cross validation. 

 Int Tex Shape Tex  
+ Int 

Shape 
+ Int 

Shape 
+ Tex 

Accuracy 
(%) 

77.1  
(2.3) 

81.6  
(2.1) 

79.1  
(2.7) 

79.2  
(1.3) 

79.5  
(2.4) 

82.3  
(1.3) 

Sensitivity 
(%) 

79.3  
(3.2) 

86.9  
(2.1) 

82.3  
(1.9) 

83.1  
(3.1) 

83.8  
(2.3) 

86.6  
(2.8) 

 

 

7.2.7 Results – 2nd Stage: Diseased vs. Normal Intestine 

Samples which have been classified as intestine in the 1st stage are now 
subjected to classification into diseased or normal. Due to the hierarchical 
classification workflow, it is necessary to detail the definition of perfor-
mance measures for this stage. 

Let 𝑁𝑁 be the number of intestine samples at the beginning of stage 1. 𝑁𝑁𝑒𝑒 
from these are diseased, and 𝑁𝑁𝑠𝑠  are normal, i.e. 𝑁𝑁 = 𝑁𝑁𝑒𝑒 + 𝑁𝑁𝑠𝑠 . After 
stage 1, 𝑁𝑁2 is the number of correctly classified intestine samples, out of 
which 𝑁𝑁𝑒𝑒2 are diseased and 𝑁𝑁𝑠𝑠2 are normal. In stage 1, the sensitivity is 
calculated using 𝑁𝑁2 and 𝑁𝑁. In stage 2,  𝑁𝑁2 is considered: supposed the 
number of correctly classified diseased samples is 𝑁𝑁𝑒𝑒3 and the number 
of correctly classified normal samples is 𝑁𝑁𝑠𝑠3. The performance measures 
of stage 2 are based on the original number of samples at the start of stage 
1, i.e. 𝑁𝑁𝑒𝑒  and 𝑁𝑁𝑠𝑠 . Table 7.4 defines our performance measures 
(Mahapatra et al. 2013b): 
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Table 7.4: Definition of performance measures for stage 2 classification 
classifying exclusively intestine samples. The performance is based on 
the original number of samples 𝑵𝑵. 

Accuracy: 
number of diseased and normal 
samples correctly classified. 

 
𝑵𝑵𝒅𝒅𝟑𝟑 + 𝑵𝑵𝑵𝑵𝟑𝟑

𝑵𝑵
 

True positives (TP):  
number of correctly classified 
diseased samples. 

 𝑁𝑁𝑒𝑒3 

True negatives (TN):  
number of correctly classified 
normal samples. 

 𝑁𝑁𝑠𝑠3 

False positives (FP): 
number of normal samples 
classified as diseased. 

 𝑁𝑁𝑠𝑠 −𝑁𝑁𝑠𝑠3 

False negatives (FN): 
number of diseased samples 
classified as normal. 

 𝑁𝑁𝑒𝑒 − 𝑁𝑁𝑒𝑒3 

True positive rate (TPR): 
same as sensitivity or recall. 

 
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
=
𝑁𝑁𝑒𝑒3
𝑁𝑁𝑒𝑒

 

True negative rate (TNR): 
same as specificity. 

 
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃
=
𝑁𝑁𝑠𝑠3
𝑁𝑁𝑠𝑠

 

Precision: the fraction of re-
trieved diseased instances. 

 
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
=

𝑁𝑁𝑒𝑒3
𝑁𝑁𝑒𝑒3 + 𝑁𝑁𝑠𝑠 − 𝑁𝑁𝑠𝑠3

 

 

The 2nd stage classification performance of all features and classifiers is 
listed in Table 7.5. Again, we observe the SVM to separate the data best. 
All measures reach approximately 90%. On the other hand, we observe 
the BC to drastically loose accuracy compared to stage 1 classification, a 
drop of over 14% in accuracy which is at the same time not observable 
for the other classifiers. Again this indicates that the data are not linearly 
separable, and the data points overlap even more complex when only 
considering diseased and normal samples. The differences between back-
ground and intestine seems to be larger (and more capable for BC) than 
between diseased and normal intestine. Due to the larger differences in 
the first stage, the BC could comparably better classify background and 
intestine. However, SVN and RF still are able to classify the smaller dif-
ferences of diseased and normal bowel enhancement samples at very 
high accuracy around 90%.  
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Table 7.5: Quantitative classification result of Stage 2 classification. 
Listed are mean (and standard deviation) of 10-fold cross-validation. 

 Asy DTCWT Our Features 
RF SV

M 
BC RF SV

M 
BC RF SV

M 
BC 

Accuracy 
(%) 

81.7 
(1.2) 

81.5 
(1.3) 

59.1  
(0.9) 

81.9 
(1.2) 

82.2 
(1.4) 

58.4  
(6.1) 

88.9 
(1.5) 

89.5 
(2.6) 

62.8 
(5.4) 

Specific-
ity (%) 

83.4 
(2.4) 

80.8 
(3.1) 

35.1  
(4.8) 

84.2 
(1.9) 

82.8 
(1.4) 

37.7  
(2.7) 

90.1 
(1.6) 

90.2 
(1.7) 

39.3 
(4.1) 

Sensitiv-
ity (%) 

84.9 
(1.8) 

84.5 
(1.9) 

60.5  
(1.2) 

86.1 
(1.9) 

86.9 
(1.7) 

61.3  
(8.2) 

90.4 
(1.2) 

91.9 
(2.6) 

64.8 
(9.7) 

Precision 
(%) 

82.7 
(1.5) 

82.9 
(1.4) 

59.7  
(1.9) 

84.9 
(1.4) 

85.3 
(1.4) 

59.7  
(5.4) 

88.9 
(1.3) 

90.2 
(2.0) 

63.3 
(4.3) 

 

7.2.8 Whole Patient Classification 

In this section, we demonstrate the visual validation of our approach in 
a leave-one-patient-out cross-validation (LOPO-CV) with whole patient 
classification. The classifiers are trained on the annotations of 25 patients 
as described above. Thereafter, all ROIs of the remaining patient are clas-
sified with the two-stage classification voxel per voxel. Those voxels clas-
sified as diseased constitute then the predicted CD affected region in the 
patient, which is compared to the doctor’s manual annotations. 

For whole patient classification, we apply two post processing steps after 
prediction, since we frequently obtain several small detected diseased re-
gions and one or two larger clusters. We firstly remove all detected dis-
eased regions smaller than 10 pixels (smaller than one cm). Second, we 
transform the larger clusters to connected continuous diseased region us-
ing contour fitting. We show in Figure 7.6 and Figure 7.7 two examples 
of patient 23 with one annotated diseased region (red) and patient 16 
with two annotated diseased regions (red). On the left column, the three 
different features Asy, DTCWT and our features are visually compared for 
whole patient annotation. The suggested prediction is depicted in green. 
Our features produce the best overlap with the annotated red region. On 
the right column of the image, the three classifiers are compared to our 
features. Here, we observe the similar performance of RF and SVM while 
the BC shows its difficulties to especially detect the diseased peripheral 
pixels of the annotation.  

As illustrated in Figure 7.6 and Figure 7.7, we can compute the region-
matching quantifications Dice metric (DM) or Hausdorff distance (HD), 
as explained below. 
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RF + our features 

 
                  RF + Asy 

 
     SVM + our features 

 
              RF + DTCWT 

 
         BC + our features 

Figure 7.6: Visual detection and segmentation results of diseased CD 
regions of patient 23. The gold standard manual annotation of CD ac-
tivity is indicated in red. The computer’s segmentation is delineated in 
green. The left column compares different features with RF. The right 
column compares different classifiers with our features. 
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RF + our features 

 
                  RF + Asy 

 
     SVM + our features 

 
              RF + DTCWT 

 
         BC + our features 

Figure 7.7: Visual detection and segmentation results of diseased CD 
regions of patient 16. The gold standard manual annotation of CD ac-
tivity is indicated in red. The computer’s segmentation is delineated in 
green. The left column compares different features with RF. The right 
column compares different classifiers with our features. 
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Dice Metric 
A measure for the relative amount of overlap of two datasets was pro-
posed by Dice (1945). We use this measure for the evaluation of two over-
lapping areas 𝑀𝑀 (algorithm) and 𝑀𝑀 (manual annotation) (c.f. Figure 7.8). 
The Dice metric 𝐶𝐶𝑀𝑀 is defined as: 

𝐶𝐶𝑀𝑀 =
2 ∗ |𝑀𝑀 ∩ 𝑀𝑀|
|𝑀𝑀| + |𝑀𝑀|  

DM ranges from 0 (no overlap) to 1 (perfect overlap) and might be inter-
preted as F-score for detection. 

Hausdorff Distance 
While DM considers the relative amount of overlap of two segmentation, 
the distance of the boundaries is not reflected. The Hausdorff distance 
𝐻𝐻𝐶𝐶 (Hausdorff 1957) aims to quantify the distance between two corre-
sponding contours. Let 𝑀𝑀 = {𝑀𝑀1,𝑀𝑀2, … } be the set of points of an algorith-
mic contour and 𝑀𝑀 = {𝑠𝑠1,𝑠𝑠2, … } be the set of points of a manually an-
notated contour. For each point 𝑀𝑀𝑝𝑝 ∈ 𝑀𝑀, the distance to the closest point 
(DCP) on 𝑀𝑀 is calculated, and vice versa. We define then 𝐻𝐻𝐶𝐶 ∈ ℝ0

+ as: 

𝐻𝐻𝐶𝐶(𝑀𝑀,𝑀𝑀) = max �max
𝑝𝑝
�𝐶𝐶𝑅𝑅𝑃𝑃(𝑀𝑀𝑝𝑝,𝑀𝑀)� , max

𝑗𝑗
�𝐶𝐶𝑅𝑅𝑃𝑃�𝑠𝑠𝑗𝑗 ,𝑀𝑀��� 

A 𝐻𝐻𝐶𝐶 = 0 indicates perfect overlap of two contours. The larger HD is, the 
more distinct are two contours. 

The manual segmentation serves as gold-standard to which the com-
puted segmentation is to be matched. Table 7.6 summarizes the average 
DM and HD for all regions in our dataset. RF and SVM lead to CD seg-
mentation in MRI scans with highest DM (>90% match) and lowest HD 
(approximately 2 pixels difference at the maximum deviance). BC again 
indicates the difficulty to separate the samples in a linear space. Experi-
ments with a SVM with linear kernel have confirmed the assumption of 
linear non-separable data (data not shown). 

Table 7.6: Average Dice metric (DM) and Hausdorff distance (HD) for 
CD detection with different features and classifiers. Values are mean 
(and standard deviation) of a LOPO-CV. 

 Asy DTCWT Our Features 
 RF SVM BC RF SVM BC RF SVM BC 
DM 
(%) 

84.7 
(1.5) 

84.1 
(1.1) 

79.3 
(2.4) 

85.6 
(1.4) 

85.3 
(2.1) 

80.1 
(2.3) 

90.9 
(1.2) 

90.3 
(2.1) 

81.8 
(2.1) 

HD 
(px) 

3.5 
(1.8) 

3.4 
(2.1) 

6.3 
(2.8) 

3.2 
(2.1) 

3.1 
(1.2) 

6.7 
(2.2) 

2.0 
(1.1) 

2.1 
(1.1) 

4.8 
(1.6) 

 

 

Figure 7.8: Exam-
ple of manual 
segmentation M 
(red) and algo-
rithmic segmen-
tation A (green). 
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7.3 Automated Preprocessing and Post-Processing 

7.3 Automated Preprocessing and Post-Processing 
Manual interventions in the aforementioned segmentation approach ap-
pear mainly in two important time points. Before image processing, a 
ROI respectively VOI has to be identified to reduce the computational 
effort and also to reduce the variable search space to regions which show 
intestine. Our experiments have shown that human anatomic structures 
and neighboring organs such as kidneys, liver, aorta and others often 
show similar voxel signals and structures as the intestine thus complicat-
ing the whole-scan analysis drastically. This effect can significantly be 
scaled down when concentrating on specific ROIs which scheme the 
rough area of the bowel beforehand and therefore exclude a large but 
non-relevant image part. 

Second, after voxel-wise segmentation, the classified voxels are post-pro-
cessed to exclude classification noise and diseased regions smaller than 
10 voxels. Single voxels can be classified as diseased even if they do not 
form spatial clusters with neighboring voxels as our approach does not 
consider smoothness or spatial regularization. 

We expend the method to automate these processes as far as possible 
(Mahapatra et al. 2013a). A method has been developed to detect slices 
and ROIs containing bowel information. For this, the image slices are 
partitioned into 30x30px image patches. A separate RF classifies these 
patches into “bowel” or “non-bowel”, based on similar features as stated 
above (mean, variance, skewness and kurtosis of intensity, texture and 
curvature values (Mahapatra et al. 2013a)). A set of classified “bowel” 
patches defines the ROI and a set of ROIs in adjacent slices defines the 
VOI (see Figure 7.9). For training the RF, the image patches with manual 
segmentation have been used as “bowel” examples. “Non-bowel” 
patches have been sampled by visual inspection (Mahapatra et al. 2013a). 

   

Figure 7.9: Example of localized ROIs in three MRI slices of one pa-
tient. Green are the manual CD annotations of the radiologists. The red 
rectangle indicates the detected ROI around the annotations. 
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7 Shape Features for Automatic Crohn’s Disease Detection and Segmentation 

To incorporate spatial smoothness in the voxel-based classification and 
to reduce the number of singular diseased voxels, a second order Markov 
random field (MRF) energy function 𝑅𝑅  has been introduced which is 
solved by graph-cut (Mahapatra et al. 2013a): 

𝑅𝑅(𝐿𝐿) = �𝐶𝐶(𝐿𝐿𝑝𝑝)
𝑝𝑝∈𝑃𝑃

+ 𝜆𝜆�� 𝑉𝑉(𝐿𝐿𝑝𝑝, 𝐿𝐿𝑝𝑝)
𝑝𝑝∈𝑁𝑁𝑠𝑠𝑝𝑝∈𝑃𝑃

 

where 𝑃𝑃 is the set of pixels 𝑠𝑠 of the patch, 𝐿𝐿𝑝𝑝 is the label of pixel s and 𝑁𝑁𝑝𝑝 
is the neighborhood of s. The cost function is optimized using graph-cuts 
(Boykov et al. 2001). 𝜆𝜆 regularizes the relative contribution of the penalty 
cost 𝐶𝐶 and the smoothness cost 𝑉𝑉.  

The penalty 𝐶𝐶 is defined by: 

𝐶𝐶(𝐿𝐿𝑝𝑝) = −log (Pr(𝐿𝐿𝑝𝑝) + 𝜀𝜀) 

where 𝑃𝑃𝑢𝑢 refers to the probability heatmaps of the pixel 𝑠𝑠 to belong to 
class background, normal or diseased, obtained by the RF classification. 𝜀𝜀 =
0.00001 ensures real logarithm values. 

The smoothness cost function 𝑉𝑉 incorporates semantic information from 
the feature rankings of the RF. The three different feature types intensity, 
texture and curvature are ranked by the RF according to their importance 
providing their semantic information. Let 𝑤𝑤𝑊𝑊 (intensity), 𝑤𝑤𝑇𝑇 (texture) and 
𝑤𝑤𝐶𝐶 (curvature) be the RF weights of the features, then 𝑉𝑉 is defined by: 

𝑉𝑉(𝐿𝐿𝑝𝑝, 𝐿𝐿𝑝𝑝) = �𝑤𝑤𝑊𝑊𝑉𝑉𝑊𝑊 + 𝑤𝑤𝑇𝑇𝑉𝑉𝑇𝑇 + 𝑤𝑤𝐶𝐶𝑉𝑉𝐶𝐶 𝐿𝐿𝑝𝑝 ≠ 𝐿𝐿𝑝𝑝
0 𝐿𝐿𝑝𝑝 = 𝐿𝐿𝑝𝑝

 

where 𝑉𝑉𝑊𝑊, 𝑉𝑉𝑇𝑇, 𝑉𝑉𝐶𝐶 are the contributions by intensity, texture and curvature to 
the smoothness: 

𝑉𝑉𝑊𝑊(𝐿𝐿𝑝𝑝, 𝐿𝐿𝑝𝑝) =
1

‖𝑠𝑠 − 𝑠𝑠‖
∗ 𝑠𝑠−

(𝑊𝑊𝑠𝑠−𝑊𝑊𝑡𝑡)2
2𝜎𝜎2  

where 𝑀𝑀 denotes the intensity of pixels 𝑠𝑠 and 𝑠𝑠 and 𝜎𝜎 is the intensity var-
iance over 𝑁𝑁𝑝𝑝 (8 neighbors of 𝑠𝑠). Analogously are defined 𝑉𝑉𝑇𝑇 and 𝑉𝑉𝐶𝐶 with 
texture and curvature instead of intensity (Mahapatra et al. 2013a). After 
training on a subset of 10 patients, following parameters were deter-
mined: 𝑤𝑤𝑊𝑊 = 0.23, 𝑤𝑤𝑇𝑇 = 0.33, 𝑤𝑤𝐶𝐶 = 0.33 and 𝜆𝜆 = 0.02. 

A further addition in this work is the exploitation of spatial context in-
formation of the voxels (Mahapatra et al. 2013a). Since the human anat-
omy is relatively constant throughout the images (neglecting missing or-
gans), we expect to gain information of the voxels by their relative posi-
tion in the image. Context information has already been shown to im-
prove oriented organ segmentation (Tu and Bai 2010; Mahapatra and 
Buhmann 2012a; Mahapatra and Sun 2012c). We therefore extend a 
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7.4 Novel Context Features Refine Automatic CD Detection 

voxel’s feature vector by image information of remote image areas at dis-
tances of 3, 8, 15 and 22 pixels in eight cardinal directions. On each re-
mote sample point, the mean intensity, texture and curvature values of a 
3x3x3vx region was extracted and concatenated to the original feature 
vector. 

These modifications of the voxel-based method lead to a much more au-
tomated classification design, in which (a) the preprocessing for ROI def-
inition is completely automated and (b) the post-processing for false pos-
itive filtering of small non-connected voxel clusters as minimized due to 
smooth spatial constraints. Our experiments show that we still yield an 
accurate segmentation compared with the original method. In a leave-
one-patient-out cross-validation, the mean DM among 26 patients is 85.5 
% for the more automated method and the mean HD is 3.2 pixels 
(Mahapatra et al. 2013a). 

7.4 Novel Context Features Refine Automatic CD 
Detection 

We study a slightly different workflow for CD detection and segmenta-
tion in MRI images as described in Mahapatra et al. (2013d). We could 
successfully improve the CD segmentation by a redesign of the two stage 
classification. Figure 7.10 illustrates the new classification pipeline: in the 
first stage, the whole image is partitioned into 11x11x7 3D patches from 
which intensity and texture features are extracted as explained below. 
Additionally, spatial context features are incorporated to exploit spatial 
constraints and to smooth the classification. The classification of the im-
age patches replaces the former definition of a ROI. Those patches classi-
fied as diseased are subjected to the second stage, where a voxel-wise 
classification is performed to further segment the proper location of the 
diseased region within the patch (Mahapatra et al. 2013d).  

 

Figure 7.10: Scheme of the modified hierarchical two-stage classifica-
tion framework. In the first stage, larger image patches (11x11x7vx) are 
classified to contain disease information or not. The patches form the 
samples for the first stage classifier. In the second stage, a voxel-wise 
classification sharpens the resolution of disease segmentation. Here, 
one voxel is one sample for the sage 2 classifier. 
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7 Shape Features for Automatic Crohn’s Disease Detection and Segmentation 

   

Figure 7.11: Visual example of the modified classification pipeline. A: 
Image patches of size 11x11x7vx within the green rectangle are classi-
fied as “diseased”. The red area outlines the manual CD affected anno-
tation. B: Within the green VOI of A, a per-voxel classification further 
refines the predicted diseased area (green) which aligns to the manual 
annotation (red). 

With this modification, we achieve with standard RF classifiers a DM of 
91.9% (±1.9%) and a HD of 5.9px (±2.3px) (mean and SD of LOPO-CV) 
(Mahapatra et al. 2013d). Figure 7.11 shows an example patient processed 
with the two new stages. On the left, the diseased image patches are de-
tected as “VOI”. On the right, the voxels inside the VOI are classified as 
normal or diseased and a contour is fitted around the diseased voxels. 

7.5 Supervoxels for VOI Detection 
To scale down the computational load of voxel based classification, the 
definition of a prior volume of interest (VOI) is an essential need. In the 
previous sections, we showed that the use of a VOI as basis for voxel 
classification reduces the number of false positives in the outlying area. 
We proposed a sliding window approach of an 11x11x7vx patch to clas-
sify rectangular coarse diseased areas in the image. A connected set of 
identified diseased areas then forms a VOI. 

This method is now expanded for the use of supervoxels (Mahapatra et 
al. 2013c). We implement the algorithm of SLIC supervoxels (Achanta et 
al. 2012), already used for cell nucleus classification in section 4.2.2, to 
over-segment the whole MRI volumes into areas with homogeneous tex-
ture values. Since supervoxels inherently segment homogeneous regions 
with similar texture or intensity, we expect from the use of supervoxels 
a more accurate VOI detection which is not constrained on rectangular 
shape but rather respect the irregular image structures as boundaries. 

A B 
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7.5 Supervoxels for VOI Detection 

For training, the supervoxels are assigned to the class of the majority of 
comprised manually annotated voxels (diseased, normal or background). 
Although label ambiguities are rare, the best suitable size of superpixels 
has to be determined empirically (see section 7.5.1). Intensity statistics, 
texture anisotropy and curvature anisotropy (analogous to texture) are 
used as features for the supervoxels (Mahapatra et al. 2013c). After super-
voxel classification, we observe following effects: 

First, despite the fact that manually annotated diseased regions com-
monly are only few relatively large clusters in one slice comprising more 
than one supervoxels, single supervoxels are occasionally wrongly de-
tected as diseased. This is not a large drawback since these false positives 
will be classified as normal in the 2nd stage classification. Still, the com-
putational load should be decreased if possible. Therefore, we filter sin-
gle diseased supervoxels only keeping clusters of more than one super-
voxels. In the case exclusively singular supervoxels are detected in an 
image, we keep only the largest supervoxel (Mahapatra et al. 2013c). 

Second, especially when the number of labeled diseased voxels is low, 
the supervoxel tends to be classified as non-diseased, escaping the sub-
sequent voxel-wise segmentation. This is explainable due to the fact that 
the evidence of disease might be small in this supervoxel as well as the 
contribution of the diseased part to the feature vector. Hence, the false 
negative rate will considerably increase after segmentation which is un-
wanted in this medical problem. To overcome this shortcoming, the final 
detected VOI is defined as the detected diseased supervoxels plus their 
immediate neighbor supervoxels. This enlargement of the VOI maxi-
mally reduces the occurrence of false negatives voxels (Mahapatra et al. 
2013c). Figure 7.12 demonstrates particularly well the advantages of the 
proposed VOI detection and processing on an example slice. 

7.5.1 Effect of Supervoxel Size 

As small supervoxels tend to be more homogenous, their features are 
more representative for a single class. However they may not always pro-
vide sufficient number of voxels to estimate stable features.  Large super-
voxels often contain enough voxels to calculate statistically stable fea-
tures but they may contain voxels from more than one class generating 
label ambiguities. Consequently, the extracted features may not be rep-
resentative of one class. Thus, training with features from very large su-
pervoxels leads to low classification accuracy. Table 7.7 summarizes the 
classification accuracy for different supervoxel sizes. Our experiments 
clearly demonstrate that an empirically optimal tradeoff between accu-
racy and homogenous samples is achieved at a number of 1800 – 2200 
voxels per supervoxel. 
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Figure 7.12: VOI detection with SLIC supervoxels on one example 
slice. A: The MRI image is tessellated with supervoxels. The manual 
annotated diseased regions are outlined in red. B: Single supervoxels 
are classified as to be “diseased” with the stage 1 classifier based on 
intensity, texture and curvature features. Detected diseased super-
voxels are drawn yellow. C: Detected supervoxels are filtered: the larg-
est cluster or clusters with more than one connected supervoxels are 
selected for further processing. D: To ensure that the whole diseased 
region is covered, all neighboring supervoxels are added to the de-
tected ones to form the final VOI. 

 

Table 7.7: Classification accuracy for supervoxels of varying size (𝑵𝑵, 
number of voxels per supervoxel). 

N 
 500-
1000 

1000-
1500 

1500-
1800 

1800-
2200 

2200-
2500 

2500-
3000 

Acc 77.9 ±1.6 81.1 ±2.4 83.5 ±2.7 90.3 ±2.9 83.3 ±1.4 79.4 ±3.3 
 

A B 

C D 
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8 A MODEL DEVELOPMENT PIPELINE 

FOR CROHN’S DISEASE SEVERITY 

ASSESSMENT 

In the previous chapter, we studied a two-stage machine learning pipe-
line for the automated CD detection and segmentation in MRI scans. A 
further scientific problem in medical imaging is the development of a CD 
severity representation in MRI. CD occurs as a chronic disease and its se-
verity influences the therapy strategy. The state-of-the-art CD severity 
measurement is the CDEIS derived by a full ileo-colonoscopy (Baumgart 
et al. 2012). The aim of this study is therefore to find a model consisting 
of available MRI features which significantly correlates to the CDEIS. 
To tackle this problem, we will present in this chapter an exhaustive 
search pipeline proposal for elaborate feature selection (Schüffler et al. 
2013c). This pipeline is unspecific, and we showed its generic application 
to various kinds of feature selection problems, such as the discovery of a 
serum biomarker for the diagnosis and prognosis of prostate cancer 
(Cima et al. 2011) or the selection of diagnostic markers for lymphoma 
(Brandt et al. 2013; Soldini et al. 2013). Thereafter in chapter 9, we intro-
duce computational non-standard image features tailored to CD severity 
measurement which have been developed in the scope of the VIGOR++ 
project. These significantly improve the CDEIS correlation. 

8.1 CD Analysis Pipeline with Manually Read 
Features 

For the discovery of highly predictive MRI models with high correlation 
to the endoscopic CD severity CDEIS we set up a model development 
pipeline of four consecutive steps: (1) Feature Extraction, (2) Feature se-
lection, (3) Feature Distribution and (4) Model testing (Figure 8.1). 

8.1.1 Feature Extraction 

Feature extraction as the first step has been performed during dataset 
generation of the retrospective dataset, as described in chapter 3.3: Four 
radiologists independently scored 14 MRI-based CD features in 27 CD 
patients, each patient with 5 bowel segments, yielding a dataset of 488 
bowel segments à 14 features. 
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1.
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4.
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Comparison
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Figure 8.1: Model development pipeline (Schüffler et al. 2013c) for the 
discovery of predictive features and models for CD MRI activity corre-
lating CDEIS. Feature extraction (1) has been done manually at this 
stage as described in section 3.3. The steps (2), (3) and (4) are described 
in the text. 

Dataset Division into Training Set and Test Set 
Regarding the independent model testing in step (4) in the pipeline, the 
dataset is randomly divided into training and test set. The training set 
comprises 332 samples from 18 patients and the independent test set in-
cludes 156 samples of 9 randomly selected patients. Note that the sepa-
ration is performed on patient basis and not on segment basis to account 
for independency of the sets. The following sections referring to model 
development consider exclusively the training set, while we will test the 
models on the test set in section 8.1.8. A further external validation pro-
cedure on the prospective dataset is described in section 8.1.8. 

8.1.2 Feature Selection and Model Training 

Since the task is to find selected features correlating to CDEIS, compara-
ble to the existing MaRIA score, we decide to train linear regression mod-
els which are easy to interpret and highly comparable to other studies 
(Rimola et al. 2009; Rimola et al. 2011; Steward et al. 2012). In an exhaus-
tive search, all feature combinations as potential CDEIS predicting linear 
regression models are built. Since 14 features are available, in total 214-1 
= 16383 models are validated in a 50-fold bootstrapped cross-validation. 
Algorithm 8.1 outlines the bootstrapped cross-validation procedure. 

Thus, every generated model is evaluated with 50 correlation values, 
each developed from a different subset as training set and test set. The 
bootstrapped cross-validation with random sampling method provides 
a realistic mimicry of the heterogeneity in the population, especially for 
biological data, which are often highly variable by nature. 
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8.1 CD Analysis Pipeline with Manually Read Features 

Algorithm 8.1: Bootstrapped cross-validation on patient basis. 

Dataset: Set of patients 𝑃𝑃 = {𝑝𝑝1, … ,𝑝𝑝𝑝𝑝} with features and CDEIS 
Input: Number of folds 𝐾𝐾 = 50; 
            Features 𝐹𝐹 = {𝑓𝑓1, … , 𝑓𝑓𝑝𝑝}, 
Output: Validation of model 𝑀𝑀 consisting of features 𝐹𝐹. 
1    𝑏𝑏𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑀𝑀𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒_𝑠𝑠𝑀𝑀𝑤𝑤𝑖𝑖𝑒𝑒𝑀𝑀𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠_𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠 =  [ ]; 
2    for 𝑖𝑖 = 1. .𝐾𝐾 
3           Draw 18 patients randomly with replacement from the 18 patients; 
4          # Approximately 12 (67%) patients are drawn during this process; 
5        The data of the 6 out-of-bag patients form the fold’s test set; 
6        Train a linear regression model 𝑀𝑀∗ with the features 𝐹𝐹 on the 18 
7                patients; 
8        Predict the CDEIS of the test set with 𝑀𝑀∗; 
9        Append  𝑏𝑏𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑀𝑀𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒_𝑠𝑠𝑀𝑀𝑤𝑤𝑖𝑖𝑒𝑒𝑀𝑀𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠_𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠  by the Person 
10              correla10tion of the CDEIS and the predicted CDEIS; 
11   end 
12   return  𝑏𝑏𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑀𝑀𝑝𝑝𝑝𝑝𝑠𝑠𝑒𝑒_𝑠𝑠𝑀𝑀𝑤𝑤𝑖𝑖𝑒𝑒𝑀𝑀𝑠𝑠𝑖𝑖𝑢𝑢𝑠𝑠_𝑠𝑠𝑖𝑖𝑢𝑢𝑢𝑢𝑠𝑠; 

8.1.3 Results 

We compare three generated models by their cross-validated correlation 
to local CDEIS in Figure 8.2. The top three models (blue) show clearly 
higher CDEIS correlation than the reference models MaRIA (red) and 
CDA (orange). The best correlating model, Model 1 (comb_sign, muralT2), 
has a considerably high median Spearman rank correlation of r=.62. A 
random test reveals that shuffling the local CDEIS before cross-validation 
will destroy the information in the labels and end up in a correlation 
value of r=.04 (no correlation, white box on the left in Figure 8.2). The 
second and third blue model represent the model with a particularly 
small number of features (three features comb_sign, muralT2, abscess), and 
the model with lowest variance (abscess, comb_sign, fistula, muralT2, ul-
cers). The reference models MaRIA and CDA are fully parameterized and 
can be applied on our dataset as they are. Within the same folds as in the 
cross-validation procedure, the MaRIA score has a median correlation of 
r=.46 to the local CDEIS and the CDA a correlation of r=.56. We further 
consider retraining of their weights on our dataset (“MaRIA retrained” 
and “CDA retrained”) to test the performance change when the two 
models would have been newly developed. As expected, the median cor-
relation does not change significantly, and is r=.46 and r=.56 for MaRIA 
and CDA, respectively. As every cross-validation runs on the same folds, 
pairwise Student’s t-test is used to test for statistically significant differ-
ences of the reference models to our new model 1. The tests have been 
corrected for multiple testing with the Bonferroni method (Abdi 2007). 
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Figure 8.2: Cross-validated correlation to CDEIS of different models. 
The blue models 1 and 2 (the best ranked model and the model with 
only three features comb_sign, muralT2 and abscess) show a superior 
median correlation to the CDEIS as the MaRIA and CDA. The third 
blue model (rank 79) uses additionally fistula and ulcers and has low-
est variance of all top models. The models MaRIA (red) and CDA (or-
ange) were either applied as fully parameterized models as reported in 
literature or retrained on our dataset. The P-values below the boxes in-
dicate the difference to the first blue box (pairwise t-test, Bonferroni 
corrected for multiple testing). 

 

8.1.4 First Order Statistics for Feature Selection 

To determine the most relevant features for CDEIS regression, we rank 
them by their relative presence in the best classifiers. First, all 16383 clas-
sifiers are ordered by their median cross-validation performance (Figure 
8.3). This ordering follows a sigmoidal shape with best classifier at a cor-
relation level of r=0.6 and poorest models at r=0.1. Interestingly, the best 
classifiers are not those with most features. E.g., the full model F with all 
14 features appears on rank 10612. This might be due to the fact that some 
features are not indicative for CDEIS or have a larger noise levels, thus 
disturbing the CDEIS regression. Figure 8.3 further depicts the retrained 
MaRIA (rank 7156) and retrained CDA (rank 815), both distributing in 
the middle range of all models. 
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Figure 8.3: Ranking of all models according to their median correlation 
to the CDEIS. The color code indicates the number of features used in 
the model (1-14). Univariate models appear usually in the tail of the 
curve. The model with all 14 features (“Full model” F) ranks on the last 
third. The models with the features of the MaRIA and CDA are on rank 
7156 and 815, respectively. A heuristic approach would suggest model 
H ranking on place 2774 (see section 8.1.6). A gray significance border 
line indicates a class of 147 models which are not distinguishable by 
their cross-validation correlation (pairwise t-test P-value ≥ 0.05).  

 

Significance Border 
Pairwise Student’s t-tests for differences of the top models to model 1, 
Bonferroni-corrected for multiple testing, reveal that the first 147 models 
have a P-value of equal or larger than 0.05. This indicates that these top 
models are statistically not significantly different in their performance. 
On the other hand, they differ in the feature sets they use. In this sense, 
different classifiers result in the same classification performance and the 
question about the best classifier to be reported cannot be answered 
uniquely. To solve this ambiguity, we incorporate a feature ranking 
among the top models under the assumption that relevant features with 
high predictive power will result in better classifiers, which we call first 
order statistics. Figure 8.4 (top left) shows the high frequency of the fea-
tures length and comb_sign among the top 147 models, appearing in 
nearly all of these. Note that every single feature can appear only once in 
a model.  
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Figure 8.4: Feature distribution among top models. A: Almost all 147 models use the 
features length and comb_sign, indicating their importance for CDEIS regression. B: 
A repetition of the model development pipeline. A different feature ranking results 
from a different random seed, which assigns 18 other patients to the training set for 
exhaustive search. After ranking, only 34 models are statistically not significantly dif-
ferent. C: The average rankings over 10 runs with different random seeds are shown. 
comb_sign and muralT2 hold their high ranks. D: The first order statistics over the top 
1000 models instead of top significant models. Features reaching the 50% level are 
length, comb_sign, muralT2 and enhancement_T1. 

Stability of Feature Ranking 
To judge the stability of our pipeline, we repeat the model selection pro-
cedure several times with changed random seed. The seed influences the 
selection of patients for exhaustive search, thus changing the cross-vali-
dated performances. We thereby discover the stability of the model se-
lection pipeline when the data set is altered. Two repetitions are shown 

A B 

C D 
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together with a consensus result of 10 repetitions in Figure 8.4. Although 
slight changes in the rankings are observable, there seems to be a stable 
high ranking of comb_sign and muralT2 and a consistent low ranking of 
enlarged_lymphnodes_pP, rce and wall_thickness. Note that the ranking 
might especially fluctuate for sparse features such as fistula or peri-
mural_T2, since their occurrence in the training data is highly influenced 
by the subset of training patients. 

In biomedical feature selection problems similar to the problem at hand, 
it is often wished to result in a specific feature set which solves the med-
ical task. Although the feature ranking provides a valuable basis for the 
decision which features should be validated in follow-up experiments, 
the decision of a final model is still not unique. Note that we cannot use 
external validation data to select the best performing model there, since 
the validation data must not be used for model selection to avoid over-
fitting. To decide for a specific model, two ideas are considered: 

- A randomly selected model out of the class of best models can be 
reported to be the solution of the medical problem, e.g., model 1 
which is top ranked here. Also most heuristic approaches would 
end up with such a solution, as we will see in section 8.1.6. 

- Further constraints given by the biological problem might be con-
sidered, as e.g. a specific feature should be excluded or included, 
the number of features should be small, or the variance of the 
model should be small. We discuss this idea in section 8.1.7. 

8.1.5 Second Order Statistics for Feature Selection 

While the first order statistics refers to the relative frequency of individ-
ual features, the second order statistics analyses the distribution of pair-
wise occurrences. This analysis can reveal dependences between features 
such as protagonists and antagonists. Analog to the individual distribu-
tion of the features in Figure 8.4, the distribution of pairs of co-occurring 
features in the class of best classifiers is visualized in Figure 8.5. 

One interesting question in biomedical feature selection problems is the 
interaction of features. As known from several biological problems, bio-
logical features commonly depend on each other. For example, expres-
sion patterns of different proteins can be correlated to each other when 
proteins lie in the same biological pathway. Referring to the present 
problem, different Crohn’s disease features might occur together or 
chronologically staggered since they belong to the same disease. A meas-
ure for statistical dependency of feature pairs 𝐹𝐹𝑝𝑝 and 𝐹𝐹𝑗𝑗 is the probability 
of co-occurrence 𝑝𝑝(𝐹𝐹𝑝𝑝,𝐹𝐹𝑗𝑗) in a classifier. Stochastically, two features are 
independent if 𝑝𝑝(𝐹𝐹𝑝𝑝,𝐹𝐹𝑗𝑗) = 𝑝𝑝(𝐹𝐹𝑝𝑝) ∗ 𝑝𝑝(𝐹𝐹𝑗𝑗). 
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Figure 8.5: Frequency of feature pairs in the top 1000 models. Since the 
features length, comb_sign and pseudopolyps occur in nearly 100% of 
the models, also their pairwise combination is prominent in the top 
class. For visibility, only the top 20 pairs are shown. 

Figure 8.6 displays a matrix with the pairwise statistical dependences of 
the features 𝐹𝐹𝑝𝑝. The color of a feature pair (𝐹𝐹𝑝𝑝,𝐹𝐹𝑗𝑗) reflects the value 𝑠𝑠 =
𝑝𝑝(𝐹𝐹𝑝𝑝,𝐹𝐹𝑗𝑗) − 𝑝𝑝(𝐹𝐹𝑝𝑝) ∗ 𝑝𝑝(𝐹𝐹𝑗𝑗). For independent features, 𝑠𝑠 is zero, whereas for 
co-occurring or exclusionary features, 𝑠𝑠 larger than zero (yellow) or less 
than zero (red), respectively. This observation might indicate synergistic 
or antagonistic effects of the corresponding features, respectively. As ob-
served in our dataset, the maximum deviation of observed and expected 
frequency is 𝑠𝑠 = 0.06 for muralT2 and enhancement_T1. This means they 
occur 6% less frequent together as expected. As this is a comparable small 
number, we do not consider specific synergistic or antagonistic depend-
encies in our dataset. 

A second measure for the pairwise interaction between features is given 
by the mutual information. Here, features are considered as random var-
iables with two states 0 and 1. Given a classifier, a feature 𝐹𝐹𝑝𝑝 has the state 
0, if it is not used in the classifier (i.e. its weight equals 0). Otherwise, its 
state is 1. With this notation, the mutual information 𝑀𝑀𝑀𝑀 between two fea-
tures 𝐹𝐹𝑝𝑝 and 𝐹𝐹𝑗𝑗 is defined as: 

𝑀𝑀𝑀𝑀𝑝𝑝,𝑗𝑗 = ∑ ∑ 𝑝𝑝�𝐹𝐹𝑝𝑝,𝐹𝐹𝑗𝑗�log � 𝑝𝑝�𝐹𝐹𝑖𝑖𝐹𝐹𝑗𝑗�
𝑝𝑝(𝐹𝐹𝑖𝑖)𝑝𝑝�𝐹𝐹𝑗𝑗�

�𝐹𝐹𝑗𝑗∈{0,1}𝐹𝐹𝑖𝑖∈{0,1}      , 

where 
𝑝𝑝�𝐹𝐹𝑝𝑝 = 1,𝐹𝐹𝑗𝑗 = 1� is the frequency of models with features 𝑖𝑖 and 𝑗𝑗, 
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Figure 8.6: Statistical independence of all feature pairs in the top 1000 
models. The color of a feature pair (𝑭𝑭𝒊𝒊,𝑭𝑭𝒋𝒋) encodes 𝒑𝒑(𝑭𝑭𝒊𝒊,𝑭𝑭𝒋𝒋) − 𝒑𝒑(𝑭𝑭𝒊𝒊) ∗
𝒑𝒑(𝑭𝑭𝒋𝒋)  (yellow, positive; red, negative). E.g., the features pattern and 
length occur more often together in the classifiers as expected from 
their individual frequency. On the other hand, the features muralT1 
and enhancement_T1 are under-represented according to their individ-
ual frequency. 

 

𝑝𝑝�𝐹𝐹𝑝𝑝 = 1,𝐹𝐹𝑗𝑗 = 0� and 𝑝𝑝�𝐹𝐹𝑝𝑝 = 0,𝐹𝐹𝑗𝑗 = 1� are the frequencies of models with 
either feature 𝑖𝑖 or feature 𝑗𝑗, respectively, and 

𝑝𝑝�𝐹𝐹𝑝𝑝 = 0,𝐹𝐹𝑗𝑗 = 0� is the frequency of models without features 𝑖𝑖 and 𝑗𝑗. 

𝑀𝑀𝑀𝑀𝑝𝑝,𝑗𝑗 is normalized by the maximum Shannon entropy 𝐻𝐻𝑝𝑝𝑝𝑝𝑚𝑚 of the two 
corresponding features 𝐻𝐻𝑝𝑝𝑝𝑝𝑚𝑚 = max (𝐻𝐻𝑝𝑝,𝐻𝐻𝑗𝑗), where 

𝐻𝐻𝑝𝑝 = − �
𝑝𝑝(𝐹𝐹𝑝𝑝)

log (𝑝𝑝(𝐹𝐹𝑝𝑝))
𝐹𝐹𝑖𝑖∈{0,1}

 

Figure 8.7 shows the mutual information graph of our dataset with two 
different thresholds t=0.02 and t=0.01 for graph density regularization. In 
our dataset, the highest mutual information can be found between fea-
tures node_enhancement_pP and pattern with 𝑀𝑀𝑀𝑀 = 0.08. 

𝑝𝑝(
𝐹𝐹 𝑝𝑝

,𝐹𝐹
𝑗𝑗)
−
𝑝𝑝(
𝐹𝐹 𝑝𝑝

)∗
𝑝𝑝(
𝐹𝐹 𝑗𝑗

) 
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Figure 8.7: Mutual information (MI) between all features in the best 147 classifiers 
with two thresholds t=0.02 (LEFT) and t=0.01 (RIGHT). Edges with weight ≥ t are 
shown. The node size is equivalent to −𝒑𝒑(𝑭𝑭𝒊𝒊) ∗ 𝒍𝒍𝒍𝒍𝒍𝒍(𝒑𝒑(𝑭𝑭𝒊𝒊)). Therefore, nodes of fea-
tures which are present in all or none of the 147 classifiers are very small, meaning 
that they cannot carry high mutual information (e.g. conditioned on the knowledge 
about rce, which is never present, we cannot say anything about other features). The 
largest normalized MI is found between comb_sign and length with MI=0.12. Note 
that this is not a typical graphical model, as it does not consider conditional mutual 
information. 

8.1.6 A Heuristic Approach 

In many biological problems, an exhaustive search through all possible 
models might not be feasible due to the computational overload. A com-
binatorial search among a large number of features (e.g. gene expression 
profiles) or a large number of samples (e.g. in micro array based experi-
ments) can be problematic in terms of computational time and memory. 
Since our problem at hand deals with 14 MRI features for 27 Crohn’s dis-
ease patients, an exhaustive search is feasible, especially on a high per-
formance computing cluster for parallel computing. 

Heuristic approaches which successively approximate an optimal solu-
tion of the problem are computationally cheaper as exhaustive search, 
since they do not calculate all possible solutions. On the other hand, they 
can result in locally optimal solutions of the problem and do not allow 
an exhaustive analysis of the solutions as not all solutions are computed. 
We explore a stepwise backward selection method as a heuristic result-
ing in one of the optimal solutions calculated by the exhaustive search 
pipeline. 

𝑠𝑠 = 0.02 

 

 

𝑠𝑠 = 0.01 
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The fast backward variable selection method by Lawless and Singhal (1978) 
is outlined in Algorithm 8.2. Starting from the full linear regression 
model with all predictors, predictors are successively excluded when-
ever the sub-model fits the data better as the larger model. This proce-
dure is repeated until no improvement is achieved. We use the imple-
mentation in R (v3.0.1) package “rms” (Team 2008). Stepwise ordinary 
linear regression selects the “heuristic model” 𝐻𝐻 ranked on position 2774 
of the exhaustive search ranking (see Figure 8.3). The model consists of 
muralT2, comb_sign, length, rce and pattern, of which the first three are 
among the top 4 features in the first order statistics in section 8.1.4. 

Algorithm 8.2: Principal algorithm of stepwise backward selection. 

Input: Set of patients 𝑃𝑃 = {𝑝𝑝1, … ,𝑝𝑝𝑝𝑝}  with features 𝐹𝐹 =
{𝑓𝑓1, … ,𝑓𝑓𝑝𝑝} and CDEIS 
Output: Parameterized model 𝑀𝑀 consisting of features 𝐹𝐹∗ ⊆ 𝐹𝐹. 
1    Train model 𝑀𝑀 on all features 𝐹𝐹; 
2     𝑠𝑠𝑢𝑢𝑒𝑒𝑠𝑠𝑤𝑤_𝑖𝑖𝑠𝑠𝑝𝑝𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑒𝑒 = 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠; 
3     while 𝑠𝑠𝑢𝑢𝑒𝑒𝑠𝑠𝑤𝑤_𝑖𝑖𝑠𝑠𝑝𝑝𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑒𝑒 
4          for 𝐹𝐹𝑝𝑝 ∈ 𝑀𝑀 
5               Train 𝑀𝑀𝑝𝑝

∗ as 𝑀𝑀 ∖ {𝐹𝐹𝑝𝑝}; 
6         end 
7          Select 𝑀𝑀𝑝𝑝𝑝𝑝𝑚𝑚

∗  which improves 𝑀𝑀 best; 
8         if 𝑀𝑀𝑝𝑝𝑝𝑝𝑚𝑚

∗ ≠ ∅ 
9               𝑀𝑀 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑚𝑚

∗ ; 
10             𝑠𝑠𝑢𝑢𝑒𝑒𝑠𝑠𝑤𝑤_𝑖𝑖𝑠𝑠𝑝𝑝𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑒𝑒 = 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠; 
11       else 
12            𝑠𝑠𝑢𝑢𝑒𝑒𝑠𝑠𝑤𝑤_𝑖𝑖𝑠𝑠𝑝𝑝𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑒𝑒 = 𝑓𝑓𝑀𝑀𝑤𝑤𝑠𝑠𝑠𝑠; 
13       end 
14   end 
15   return  𝑀𝑀; 

8.1.7 Biological Constraints for Model Selection 

In section 8.1.4, we reported the top 147 models forming a cluster with 
statistically not distinguishable cross-validated correlations. This set of 
models can be further reduced by additional medical specifications: 

• The final model should preferably consist of a medium number of 
features (4-9 features). If the number of features is too small, the 
model might not be robust for new data. If the number of features 
is too large, the feature extraction might be too costly for daily 
clinic usage. Note that features such as presence of pseudopolyps, 
length of affected disease or mural thickness have to be extracted 
manually by the physician. 
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• The resulting model should preferably not rely on rce (relative 
contrast enhancement). The reading of this feature is highly time 
consuming and subjective (see section 3.3.2). Substituting or ne-
glecting rce in a model would therefore already practically useful 
for daily clinic. 

Considering these specifications, one model carries only one feature 
(length, on rank 35), 9 models carry two features (combinations of length, 
comb_sign, abscess, muralT2, enhancement_T1, pattern, ulcers or edema), 30 
models have three features (again combined with additional features), 43 
models have four features, 38 models have five features, 21 models have 
six features, four models have seven features and one model has eight 
features. All of them belong to the top models and do not rely on rce 
making them clinically interesting for further study. 

8.1.8 Validation of Models on Two Data Sets 

The retrospective dataset has been used for model generation and feature 
selection. A split of this dataset into 18 training patients and 9 test pa-
tients resulted in a specific feature ranking which showed to be unstable 
considering the selection of training patients. Therefore, this split has 
been repeated 10 times, each time with 18 randomly chosen training pa-
tients. The average feature selection in these runs is stable and shown in 
Figure 8.4 (bottom). We decided to validate the features with averaged 
high ranking among the top 1000 models over 10 runs, as it has a mini-
mum number of four features, and employs T1 and T2 MRI sequences. 
The parameterization of this model trained on our full retrospective da-
taset is: 

 

We cross-validate the model on the full retrospective dataset, i.e. all 27 
patients (leave-one-patient-out cross-validation). For this, the model is 
re-trained on the data of 26 patients and four observers, and the last pa-
tient is predicted. This is repeated for all 27 patients to be predicted. The 
overall Spearman correlations of the MRI score with CDEIS are r=.56 on 
a segmental basis and r=.36 on a global per patient score. The global score 
per patient is the mean of all four or five observed bowel segments, re-
spectively. All correlations are significant (p=0) (see Figure 8.8). As com-
parison, Figure 8.9 shows the correlation of the CDEIS to the MaRIA 
score. MaRIA is slightly lower on segmental basis than our MRI score. 
On the other hand, the global MaRIA still outperforms our global MRI 
score. We will show later in chapter 9 that automatic features can signif-
icantly improve the CDEIS correlation. 

𝑀𝑀𝑢𝑢𝑒𝑒𝑠𝑠𝑤𝑤𝑝𝑝𝑣𝑣𝑝𝑝 = 7.6 ∗ 𝑖𝑖𝑢𝑢𝑠𝑠𝑏𝑏_𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 + 2.5 ∗ 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 1.9 ∗ 𝑠𝑠𝑢𝑢𝑢𝑢𝑀𝑀𝑤𝑤𝑇𝑇2 + 0.9
∗ 𝑠𝑠𝑠𝑠ℎ𝑀𝑀𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑇𝑇1 
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Figure 8.8: Leave-one-patient-out cross-validation for CDEIS regression on MRI in 27 
retrospective patients. The average model is trained on 26 patients and all four observ-
ers and the left-out patient is predicted. Each patient is denoted by a number and each 
observer by a color. LEFT: The segmental predictions are plotted for each of the four 
observers. Each bowel segment is denoted by a letter (a, TI; b, CA; c, CT; d, CD; e, RE). 
All correlations are significant (p=0). RIGHT: The segmental scores per patient are av-
eraged to the global CDEIS per patient. The global correlation of the CDEIS with the 
MRI score ranges from r=.18 (observer 3) to r=.56 (observer 1). 

       

Figure 8.9: Correlation of MaRIA to segmental (LEFT) and global (RIGHT) CDEIS in 
27 retrospective patients. The global MaRIA is the sum of the segmental scores. Each 
observer is denoted by a color, each patient by a number and each bowel segment by 
a letter (a, TI; b, CA; c, CT; d, CD; e, RE). While the segmental correlation is slightly 
lower than for our MRI score (r=.52), the global correlation of MaRIA is still larger 
(r=.45) than the correlation of our MRI score. Nevertheless, our MRI score will be sig-
nificantly improved by the new automatic features as shown in chapter 9. 
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As we also want to evaluate the performance of our algorithms on data 
from different patient cohorts, a second validation is employed as the 
prospective dataset. This dataset is completely independent form the ret-
rospective set, as it is collected on a different hospital with different pa-
tients and MRI scanners. 

We report the tested correlations to CDEIS in Figure 8.10 for our MRI 
model and in 11 for the MaRIA score. Our model clearly outperforms 
MaRIA as well on segmental basis (r=.55 vs. r=.46) as on global basis 
(r=.49 vs. r=.27). MaRIA makes use of rce, a difficult MRI feature which is 
prone to error or outliers. E.g. patient 115 (11 RIGHT, top left corner) has 
a very high MaRIA score due a high rce value. Our score does not incor-
porate rce. Further, both scores show a high inter-observer variance 
which might arise from the difference of time spending the two observers 
annotating. 

 

       

Figure 8.10: Spearman correlation of MRI score to CDEIS on 35 prospective test pa-
tients. The patients are numbered starting from 101. The two observers are colored in 
red and black. LEFT: Segmental CDEIS correlation is r=.48 or r=.62 for the two observ-
ers. Each segment is denoted by a letter (a, TI; b, CA; c, CT; d, CD; e, RE). RIGHT: The 
global CDEIS and MRI score are shown. The stars (*) indicate global CDEIS. The cor-
relations are r=.33 or r=.67 for both observers. 
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Figure 8.11:  Spearman correlation of MaRIA to CDEIS on 35 prospective test patients. 
The patients are numbered starting from 101. The two observers are colored in red and 
black. LEFT: Segmental CDEIS correlation is r=.39 or r=.55 for the two observers. Each 
segment is denoted by a letter (a, TI; b, CA; c, CT; d, CD; e, RE). RIGHT: The global 
CDEIS and MaRIA are shown. The stars (*) indicate global CDEIS. The correlations 
are r=.11 or r=.49 for both observers. 
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9 AUTOMATED FEATURE 

EXTRACTION METHODS IMPROVE 

CD SEVERITY ASSESSMENT 

To automate CD severity assessment based on MRI, the VIGOR++ project 
aims to develop CD related features that can be computationally assessed 
in a preferably automated manner. Once such features were established, 
the whole CD MRI assessment pipeline would benefit threefold: (1) the 
readings of MRI scans might be considerable more objective across dif-
ferent clinics and medical doctors, (2) the readouts of MRI scans would 
be reproducible and documented and (3) given a fully automated ap-
proach, MRI scans could be processed overnight much faster and in a 
high throughput manner. Two feature types for automated readout are 
imaginable: 

1. Unspecific or standard image features such as signal intensity, tex-
ture, morphological characteristics or similar features. 

2. CD specific image features that mimic the readouts of trained radi-
ologists, such as wall thickness, relative contrast enhancement or 
similar features. 

Note that the group of specific features might be deducted as to be a spe-
cial case of the first group. The difference of the groups lies more the in-
terpretation of the features and their medical relation. For the proposed 
CD severity assessment model in chapter 8, we exclusively used manual 
CD specific features for the following reasons: 

• There is a lack of whole bowel segmentation in MRI. Since the 
bowel is not as rigid as e.g. a kidney, the localization and segmen-
tation of the bowel and its diseased sites is considerably more dif-
ficult. 

• There is no colon partition it is known for the CDEIS (five seg-
ments terminal ileum, ascend colon, transverse colon, descend and sig-
moid colon and rectum). This partitioning would be needed for seg-
ment wise CDEIS prediction. Implicitly, the medical experts did 
this segmentation in the manual read-outs by eye. 

• Highly diseased areas in the MRI scans annotated by medical do-
main experts have not shown to be mutually related to CDEIS (see 
9.1). We can learn from this experiment that sparse labeling it is 
not sufficient for severity assessment. 
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Nevertheless, research is ongoing to use standard image features for lo-
calization of highly diseased areas in MRI. We showed in chapter 7 on 26 
patients that intensity, texture, curvature and context information might 
be sufficient to detect highly diseased areas in MRI qualitatively: 85.8% 
of the diseased area could be detected. 

Note that in contrast to chapter 8, we use 26 patients in this study (those 
with manual disease segmentation), as well as Pearson correlation as ac-
curacy measure (instead of Spearman). Further, we do not use edema and 
mural_thickness for model development. Therefore, the correlations, 
rankings and top models might slightly change compared to chapter 8. 

9.1 Low Mutual Information between MRI and 
CDEIS 

The relation between unspecific standard image features of MRI and en-
doscopic CDEIS are studied in this section. 26 retrospective 3D-MRI 
scans CD patients (post contrast sequence) of a size of approximately 400 
x 400 x 100 vx per scan have manually been segmented by an expert ra-
diologist. Visible areas of enhanced bowel signal intensity related to CD 
have been outlined extensively in the five bowel segments terminal ileum, 
ascend colon, transverse colon, descend and sigmoid colon and rectum. Figure 
9.1 shows four typical example images with or without found evidence 
of disease in two patients. 

The same patients have undergone endoscopic colonoscopy to assess the 
segment wise CDEIS by an independent medical doctor. The match be-
tween the MRI dataset and the CDEIS dataset covers 117 samples. Two 
patients do not have a visible ascend colon (patients 12 and 14) and five 
patients do not have a visible rectum (patients 13, 15, 18, 26 and 27) (e.g. 
due to resection). Further, the terminal ileum of 6 patients is not accessi-
ble for colonoscopy (patients 11, 20, 21, 24, 28 and 33) (e.g. due to steno-
sis). 16 samples have both a positive CDEIS and a MRI annotation, 17 
samples have a positive CDEIS but no sign of disease in MRI, 10 samples 
have no endoscopic sign of disease but enhancement in MRI and 74 sam-
ples show neither endoscopic nor radiologic evidence of disease (see Ta-
ble 9.1). The mutual information 𝑀𝑀𝑀𝑀 between CDEIS and MRI defined as  

𝑀𝑀𝑀𝑀𝐶𝐶𝑆𝑆𝐵𝐵𝑊𝑊𝑊𝑊,𝑀𝑀𝑂𝑂𝑊𝑊 = � � 𝑝𝑝(𝑅𝑅𝐶𝐶𝑅𝑅𝑀𝑀𝑆𝑆,𝑀𝑀𝑀𝑀𝑀𝑀)log�
𝑝𝑝(𝑅𝑅𝐶𝐶𝑅𝑅𝑀𝑀𝑆𝑆,𝑀𝑀𝑀𝑀𝑀𝑀)
𝑝𝑝(𝑅𝑅𝐶𝐶𝑅𝑅𝑀𝑀𝑆𝑆)𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀)

�
𝑀𝑀𝑂𝑂𝑊𝑊∈{+,−}𝐶𝐶𝑆𝑆𝐵𝐵𝑊𝑊𝑊𝑊∈{>0,=0}

 

equals 10% non-normalized and 12% normalized by the maximum en-
tropy. This indicates we can learn 12% of the MRI enhancement infor-
mation given CDEIS or vice versa, which is less than expected. The 
CDEIS should therefore not be replaced by MRI enhancement solely. 

Differences to 
chapter 8 
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9.1 Low Mutual Information between MRI and CDEIS 

  

  
Figure 9.1: Four example images of MRI scans of two patients with and without radio-
logic signs of disease. A: Patient 4, 3D-slice no. 44. B: Slice no. 33. C: Patient 18, slice 
no. 21. D: Slice no. 26. 100 such slices exist in total for each patient. The local CDEIS 
for these patients are: Patient 4 (top): 26/0/0/0/19 (terminal ileum (TI) / ascend colon 
(AC) / transverse colon / descend and sigmoid colon (DC) / rectum); Patient 18 (bottom): 
0/0/6/26/34. Drawn are manual CD annotations: green, TI; blue, AC; violet, DC. 

Table 9.1: Contingency table for endoscopic disease severity (CDEIS) and MRI signal 
enhancement. 117 bowel segments have independently been labeled for both by a 
medical doctor and radiologist, respectively. 24% of the samples show either endo-
scopic or radiologic signs for disease, while 76% agree on the two assessment methods. 

117 samples MRI + MRI -  
CDEIS > 0 16 (14%) 17 (15%) 33 (29%) 
CDEIS = 0 10 (9%) 74 (62%) 84 (71%) 

 26 (23%) 91 (77%)  

A B 

C D 
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9.2 Automated Bowel Wall Thickness (ABWT) 
Bowel wall thickness is a CD related feature visible in MRI. It is repre-
sented categorical (mural_thickness, 0: 1-3 mm, 1: 3-5 mm, 2: 5-7 mm, 3: >7 
mm) and numerical (wall_thickness, in mm) in our manually annotated 
MRI datasets (see sections 3.3 and 3.4). A separate part of the VIGOR++ 
project is the development of automatic methods for bowel wall thick-
ness (ABWT) measurement in MRI for reproducible, fast and accurate 
feature extraction. The development of such features goes beyond the 
scope of this thesis and is not explained here. Rather, we study in this 
section the quantitative improvement of CD severity assessment for com-
putationally measured bowel wall thickness. 

One method to quantify the bowel wall thickness in MRI is to take the 
difference between outer bowel wall segmentation and inner bowel wall 
segmentation. This method is based on regions of interest (ROI), indicat-
ing the centerline of a bowel section. Within the ROI and starting from 
the inner lumen of the bowel, the inner wall and the outer wall are seg-
mented with intensity gradient based methods. The wall thickness of the 
ROI is then represented by either the minimal thickness in the ROI 
(ABWT.min), the maximum thickness found in the ROI (ABWT.max) or 
the averaged thickness of the ROI (ABWT.mean). 

9.2.1 Retrospective Dataset Expansion 

For CDEIS regression with automated wall thickness measurement, min, 
max and mean ABWT have been measured on all bowel segments with 
endoscopic signs of disease on 26 retrospective patients. For bowel seg-
ments without endoscopic signs of disease, a standard value of 2 mm has 
been used to account for normal wall thickness to complete the dataset.. 
In total, 16 of 117 bowel segments have been explicitly measured, and 
101 bowel segments were considered as normal. 

9.2.2 ABWT Corresponds to Manual Wall Thickness Scoring 

Mural_thickness and wall_thickness both describe the thickness of the rec-
ognized bowel wall. Still, they are scored independently and by human 
eye. On the other side, ABWT.min, ABWT.max and ABWT.mean are com-
putational measurements per region of interest. 

Figure 9.2 shows the segmental correlation of the two manual and the 
three automated wall thickness scores. The two manual scores show an 
almost perfect correlation of r=0.92 (p=2.2e-16). On the other hand, the 
highest achievable correlation of ABWT and manual bowel wall thick-
ness measuring is r=0.63 (ABWT.max). 
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9.2 Automated Bowel Wall Thickness (ABWT) 

 

Figure 9.2: Cross-correlation of all bowel wall thickness related MRI fea-
tures. The two manually scored thickness measures mural_thickness and 
wall_thickness are highly correlated: their Pearson correlation coefficient is 
r=0.92 (p<2.2e-16). Note that these features are not independent from each 
other: Shown are only samples which are measured by the same expert (in-
ter-feature, but not inter-expert). The automatically read features range for 
the correlation to wall_thickness from r=0.37 (ABWT.min, p=0.02) to r=0.63 
(ABWT.max, p=2.0e-08). Note that 484 (121*4) samples have constant ABWT 
values (2mm). Solely 64 (16*4 observers) bowel segments have a measured 
ABWT value larger than 2mm. The correlations are calculated for the latter, 
more interesting part. The bottom left triangle stratifies the manual scores 
features by the four observers (four colors). 

Correlation of wall_thickness and mural_thickness 
Figure 9.2 implies that the inner-expert correlation of wall_thickness and 
mural_thickness is almost perfect, compared to a considerably lower rela-
tion of the automatic measures to mural thickness. But it has to be noted 
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that only samples measured by the same human expert are shown: a ra-
diologist discovering a high wall_thickness is also measuring a high mu-
ral_thickness. On the other hand, ABWT acts as a new, independent “ex-
pert” which is plotted against the human experts. We therefore also com-
pare in Figure 9.3 the inter-expert correlations of wall_thickness to mu-
ral_thickness, considering the human experts as independent labelers. 
Then, the correlation of wall_thickness and mural_thickness drops to r=0.64. 

 

Figure 9.3: Pairwise correlation of mural_thickness and wall_thickness. 
Each pair of human labelers is indicated by a separate color. Six pairs 
of all four labelers are potted in total. The mean correlation is r=.64, and 
the total correlation is r=.63, similar to the correlation of ABWT.max to 
mural_thickness (r=.59, data not shown). 

Inter-Expert and Machine-Expert Variance of wall_thickness 
An inter-expert stability comparison of ABWT and wall_thickness is 
shown in Figure 9.4. For this, the segmental ABWT values are co-related 
to the manual scorings stratified by observer. Each observer is assigned 
to a specific color in the plot and each segment is denoted by a circle. 
Most segments have a normal, unmeasured ABWT of 2 mm and form a 
vertical cluster in these plots. The interesting part of measured segments 
shows a considerable high mean correlation to all four observers, with 
r=0.6 and a particular low standard deviation of 0.06 (ABWT.max). This 
reaches the level of inter-observer discrepancies. In Figure 9.4 top left, 
the pairwise wall thickness measurements from all observer pairs are 
plotted. Each pair is assigned to one color (six pairs in total). Interest-
ingly, trained radiologists occasionally disagree in the observed thick-
ness by the factor four. Still, the averaged correlation over all observers 
is r=0.62 ±0.1 on all cases or r=0.65 ±0.1 on cases with measured ABWT. 
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Figure 9.4: Detailed correlation of ABWT and manual readings. A: The inter-ex-
pert correlation of pairwise wall_thickness correlation is r1=.62±0.1 (mean and 
standard deviation of six possible expert pairs), or r2=.65±.1 on the subset of sam-
ples with measured ABWT or r=0.62 all samples together. Each expert-pair is as-
signed to one color. B, C and D: Detailed view on Figure 9.2, 2nd row (black). The 
automatic features ABWT.min, ABWT.max and ABWT.mean are plotted against 
the wall_thickness measurement of four observers (= four colors). The correlation 
is calculated on cases with measured ABWT (ABWT>2). As highest value, 
ABWT.max shows a correlation of r=0.6±0.06 and reaches range of human experts’ 
discrepancy. o, stratified by observer; a, all observers together. 

A B 

C D 

143 
 



9 Automated Feature Extraction Methods Improve CD Severity Assessment 

 

Figure 9.5: Machine-observer correlation is in the range of inter-ob-
server correlation for wall thickness. LEFT: Median correlation of 
ABWT.max to four observers (Figure 9.4 C). MIDDLE: Median pair-
wise inter-observer correlation of wall_thickness (from Figure 9.4 A). 
RIGHT: Median pairwise inter-observer correlation of wall_thickness 
on same subset as for ABWT.max (see Figure 9.4 A). 

9.2.3 Does ABWT Increase the Correlation to CDEIS? 

To answer the question how far ABWT would influence the CDEIS re-
gression, we first describe the univariate correlation to CDEIS. The max-
imum achievable correlation is r=0.73 (p=2.2e-16) for ABWT.mean (see Fig-
ure 9.6). As expected, this is considerably higher than the correlation of 
the manually assessed wall_thickness by four observers (r=0.43±0.06, Fig-
ure 9.6 top left), since ABWT is only assessed on cases with positive 
CDEIS. ABWT.mean still shows superior correlation to CDEIS on cases 
with raised CDEIS (r=0.56). While radiologists assign thickened 
wall_thickness larger than 3 mm to 53 of 336 normal segments (16%), the 
machine discovers only 7 thickened segments among 84 normal seg-
ments (8%) (Table 9.2). On the other hand, the automatic measurement 
shows a considerable amount of normal bowel wall on segments with 
raised CDEIS (12 of 33 segments (36%) with CDEIS>0 have ABWT.max ≤ 
2). This large “false negative” rate arises mainly from the fact that these 
segments could not explicitly be measured with the automatic method. 

Table 9.2: Summary of severe and normal segments with (+) or without 
(-) manual (wt) or automatic (ABWT) signs of thickened bowel wall. 

 wt - wt +  ABWT - ABWT + 
CDEIS  - 283 (60%) 53 (11%)  77 (66%) 7 (6%) 
CDEIS + 52 (11%) 80 (17%)  12 (10%) 21 (18%) 
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Figure 9.6: Correlation of ABWT features to CDEIS compared to the observer’s 
scored wall_thickness correlation to CDEIS. The correlations r1 and r2 correspond 
to the Pearson correlation on all 117 samples (r1) or on the subset of samples with 
measured ABWT (r2), respectively. 

 

We repeated the CD severity assessment pipeline with and without the 
additional features ABWT.min, ABWT.max and ABWT.mean. The class of 
top models with statistically undistinguishable cross-validated correla-
tion to CDEIS comprises 24 models according to our t-test (p<0.05). The 
predictor distribution among these models clearly suggests high impact 
of ABWT.mean for CDEIS regression (Figure 9.7 left). To support this the-
sis at a larger scale, the predictor distribution of top 1000 models is 
shown Figure 9.7 right. The top seven features including ABWT.mean are 
stable in the ranking.  
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Figure 9.8 shows the significant performance gain in CDEIS correlation 
when including ABWT.mean to a conventional classifier. The basis is the 
best classifier without ABWT, consisting of comb_sign, length, muralT2 
and rce. When adding ABWT.mean, the median correlation to CDEIS sig-
nificantly increases from r=0.65 (p=2.8e-14) to r=0.84 (p=0) (Figure 9.8, mid-
dle box and right box). 

Apparently, ABWT.mean is a favorable predictor on the retrospective da-
taset. The univariate correlation to CDEIS is r=0.73 (p=2.2e-16). With the 
manual features solely, we can achieve a correlation of r=0.65 to CDEIS, 
which is already lower than the univariate correlation of ABWT.mean. 
Therefore, all models using the new feature will most likely drastically 
gain in correlation performance. The plot in Figure 9.9 ranks all models 
of the exhaustive search by their median correlation will therefore show 
a phase transition when models start to use the new features. A heuristic 
approach will select a model including an automatic feature. 

 

 

Figure 9.7: Feature distribution among the top 24 models (LEFT) and top 1000 models 
(RIGHT) with ranking of the automated features ABWT.min, ABWT.mean and 
ABWT.mean in the CDEIS regression pipeline. ABWT.mean is used in all 24 top mod-
els and 70% of top 1000 models indicating its relative importance. 

n=24 n=1000 
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Figure 9.8: Com-
parison of auto-
mated and man-
ual features for 
CDEIS predic-
tion. The top 
ranked model 1 
(LEFT) includes 
ABWT.mean, and 
its median Pear-
son correlation to 
CDEIS outper-
forms the best 
model without 
automated fea-
tures (MIDDLE) 

completely 
(model 1: r=0.89, 

p=0, model 28673: r=0.65, p=2.8e-14). Adding ABWT.mean to the manual 
model (RIGHT) already increases the rank to 3816 (r=0.84, p=0). 

 

Figure 9.9: Rank-
ing of all models 
with and without 
ABWT features as 
CDEIS predictors. 
The first model 
without ABWT is 
on rank 28673 with 
a median Pearson 
correlation to 
CDEIS of r=0.65, 
using comb_sign, 
length, muralT2 
and rce. On the 
neighboring rank 
28672, ABWT.min 
joins the manual 

features and pushes the correlation to r=0.73 (“phase transition”). Also 
shown are ranks of the MaRIA model, AIS model, the full model with 
15 features and the model found with stepwise selection as heuristic 
approach. The color codes the number of features used per model. 
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9.3 Automated Dynamic Contrast Enhancement 
(DCE) 

The MRI protocol for radiologic CD examination comprises the uptake 
of the contrast agent gadobutrol for the dynamic contrast enhancement 
MRI sequence (DCE-MRI). DCE-MRI runs over six minutes scanning 450 
individual recordings while the applied contrast agent distributes in the 
blood vessels. The temporal resolution of DCE-MRI is 0.82s per scan and 
the spatial resolution is 2.78 x 2.78 x 2.5 mm (227 x 227 x 14 px) per slice. 
Gadolinium is commonly used for blood vessel visualization (Lentschig 
et al. 1998). Due to micro lesions in blood vessels and capillaries, the con-
trast agent accumulates in inflamed areas and metabolizes at different 
rates. These effects result in differentiable visible body areas over time 
which are disease-affected and which might clearly be silhouetted 
against the healthy surrounding tissue. DCE-MRI can therefore be used 
to identify inflamed and damaged bowel wall. Figure 9.10 illustrates 
DCE-MRI on one patient. The top left image shows the T1-weighted high-
resolution isotropic volume examination (THRIVE) before contrast agent 
application and the top right image the same after contrast agent appli-
cation. The bottom row shows two DCE-MRI scans before and after con-
trast agent uptake. Note the different resolution of the two sequences. 

A particularity of abdominal DCE-MRI is the movement of the body 
caused by respiratory motion. This movement can blur important struc-
tures in the image and complicate the registration of subsequent images 
which is mandatory for automated feature extraction. Breath-hold tech-
niques, e.g. the continuous volumetric interpolated breath hold examination 
(VIBE), and other respiratory motion compensation techniques try to 
minimize such effects and are a field of current research (Schaffter et al. 
1999; Lin et al. 2008; Yankeelov and Gore 2009).  

9.3.1 DCE as Feature 

Li et al. (2013) developed a new DCE feature extraction method for MRI. 
First, DCE-MRI scans are registered to post-contrast MRI. The change of 
intensity over time in a given region of interest (ROI) describes then the 
time intensity curve (TIC). A bi-exponential model 𝑆𝑆(𝑠𝑠) is fitted to the TIC: 

𝑆𝑆(𝑠𝑠) = 𝑀𝑀1𝑠𝑠−𝜆𝜆1𝑝𝑝 − 𝑀𝑀2𝑠𝑠−𝜆𝜆2𝑝𝑝 

𝑀𝑀1 in this model is related to the steepness of the TIC during agent uptake 
and the steepest ascend reflects the final DCE feature. Figure 9.11 shows 
two typical TICs for a diseased (red) and a normal (green) ROI, each with 
raw values and fitted model. The TIC is usually much steeper for dis-
eased ROIs than for normal ROIs resulting in a larger 𝑀𝑀1 (Li et al. 2013). 
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Figure 9.10: Example of DCE-MRI on patient no 3. TOP LEFT: Single 2D slice no 
35 of the pre-contrast MRI scan (THRIVE) in our dataset. TOP RIGHT: Corre-
sponding post-contrast THRIVE slice no 33 after DCE-MRI. CD affected regions 
show a slightly enhanced signal, as indicated by the arrow. BOTTOM: Two reg-
istered 2D slices of the DCE sequence of the same patient (time frames 1 and 83). 
450 time frames are shot during six minutes. The spatial resolution of DCE-MRI 
is four times smaller (227 x 227 x 14 px) than of THRIVE. During DCE-MRI, a 
contrast agent is applied to the patient.  

DCE Frame 1 DCE Frame 83 

THRIVE pre-contrast THRIVE post-contrast 
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Figure 9.11: Illustration of TIC for a healthy bowel segment (green, bot-
tom) and a CD affected bowel segment (red, top). The mean MR signal 
intensity is measured at a given ROI in all 100 registered DCE frames. 
At time frame 1, the contrast agent is applied to the patient and the 
diseased part has a significantly enhanced drug uptake. The black 
curves represent the fitted bi-exponential models, whose coefficients 
A1 serve as DCE features in our dataset. 

9.3.2 Dataset Expansion 

For automatic DCE extraction in our dataset, the manually drawn con-
tours of enhanced bowel wall signals in the post-contrast sequence serve 
as initial ROIs. The complete data comprise 26 patients or 117 bowel seg-
ments. A trained radiologist outlined and segmented all visible major 
wall enhancements in the post contrast THRIVE sequences of the pa-
tients. In 26 bowel segments (22%), strong evidence of wall enhancement 
is found, while the other segments do not show enhancement of T1 sig-
nal. 17 contours are drawn in terminal ileum, 7 contours in the right colon 
and two contours have been outlined in the left and sigmoid colon. Six 
patients do not show enhancement in any segment and do not have any 
contours drawn in the MRI. 11 bowel segments (9%) could successfully 
be subjected to automatic DCE measurement (see Table 9.3). Problematic 
for 15 segments were poor DCE-MRI registration or mismatch of the field 
of view of DCE-MRI and the drawn contours. A constant value of zero 
(no contrast enhancement) has been assigned to normal or unmeasured 
segments. Similar to the ABWT measures, we estimate the contribution 
of DCE by adding them to the pipeline for model development and fea-
ture selection. 

Table 9.3: 117 bowel segments had 26 ROIs, 11 of which could be used 
for DCE extraction. 

 ROI  - ROI   
DCE  - 91 15 
DCE  0 11 
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9.3.3 DCE Contributes to CD Severity Assessment 

Inter-Feature Variance 
Manually measured enhancement scores are enhancement_T1 and rce. 
While enhancement_T1 categorizes the observed T1-signal into normal, mi-
nor increase, moderate increase and marked increase per segment, the rce (rel-
ative contrast enhancement) quantifies the signal enhancement before and 
after contrast agent application (see section 3.3.2). In contrast to these fea-
tures, the automatic DCE incorporates the DCE-MRI sequence to extract 
the enhancement values. Since all three enhancement measures arise from 
different MRI sequences and measurement protocols, the inter-feature cor-
relation should not be expected to be too high. Figure 9.12 shows that there 
is indeed a statistical correlation between DCE and rce (Pearson r=0.76, 
p=7.8e-8) and DCE and enhancement_T1 (r=0.63, p=4.831e-06). On the 
other hand, the three cases with largest DCE and therefore marked con-
trast enhancement are scored with highly variant rce or consistent lower 
rce by all four radiologists. This nicely illustrates the problematic of an ac-
curate ROI for rce and DCE. 

Figure 9.12: In-
ter-feature re-
lation of the 
two manual 

enhancement 
measures en-
hancement_T1 

and rce and 
the automatic 
method DCE. 
All three 
quantify the 
MRI signal en-
hancement af-
ter gadobutrol 

application 
with different 
methods. Dis-
eased bowel 

wall enhances more than healthy parts. DCE is statistically correlated to 
enhancement_T1 (r=.63 for cases with measured DCE). The correlation to 
rce is r=.33 (r=.76 on cases with DCE<.6). This is slightly higher than rce 
to enhancement_T1: r=.47 (on cases with measured DCE) or r=.41 on all 
cases. All correlations are significant. The four observers are plotted 
with different colors. 
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Inter-Observer Variance 
In the best case, DCE has a correlation to rce stratified by observers of 
r=0.82 ±0.05 on the subset of samples with measured DCE and DCE<0.6 
(see Figure 9.13). On the same set, the inter-observer correlation of rce is 
r=0.9 ±0.08. Figure 9.13 visualizes the inter-observer correlation of rce and 
the correlation of DCE to rce on different subsets of samples (all samples, 
stratified by observer, subset of measured DCE and subset of measured 
DCE without outliers). In all cases, the DCE correlated slightly lower to 
rce than the observers correlate to each other. 

 

Figure 9.13: Inter-observer correlation of rce and correlation of DCE to 
rce, stratified by observer. Each circle identifies a sample. LEFT: Each 
color indicates an observer pair. RIGHT: Each color indicates an ob-
server (DCE is unique for all observers). R1a: Pearson correlation on 
cases with measured DCE, stratified by observer (-pair). R1b: same as r1a 
on cases with DCE<0.6. R2: correlation on all samples. Correlation val-
ues are comparable to each other. 

Univariate CDEIS Correlation 
The univariate correlation of DCE to CDEIS is r1=0.43 (p=1.3e-6) on all 117 
samples and r2=0.64 (p=0.03) on the subset of 11 samples with measured 
DCE (Figure 9.14 right). This is slightly higher than the correlation of rce 
to CDEIS (r1=0.34 ±0.07, p<0.001 on all samples and r2=0.57 ±0.07, p=0.08 
on cases with measured DCE, stratified by observer) (Figure 9.14 left). 

Multivariate CDEIS Correlation 
The new automatic feature DCE can be evaluated as top player for the 
CDEIS estimation when inserted to our feature selection pipeline (see 
Figure 9.15 left). The number of models with statistically not significantly 
different cross-validated performances is 360 and all top models rely on 
DCE as indicated in Figure 9.15 (left). The complete ranking of all models 
is displayed in Figure 9.15 (right). The first model without DCE is on rank 
1049: comb_sign + length + muralT2 + rce. Its cross-validated correlation to 

152 
 



9.3 Automated Dynamic Contrast Enhancement (DCE) 

 

Figure 9.14: Correlation of manual rce (LEFT) and automatic DCE 
(RIGHT) to CDEIS. r1 and r2 correspond to the Pearson correlation on 
all samples (r1) or on the subset of 11 samples with DCE (r2). 

 

  

Figure 9.15: LEFT: Feature distribution of the top 360 models. The automatically meas-
ured DCE feature is present in all top models. RIGHT: Ranking of all models with and 
without DCE as CDEIS predictors. The first model without DCE (comb_sign, length, 
muralT2 and rce) is on rank 1049 with a median correlation to CDEIS of r=0.65. Also 
shown are ranks of the MaRIA model, AIS model, the full model with 13 features and 
the model found with stepwise selection as heuristic approach. The color codes the 
number of features used per model. 

CDEIS (median r=0.65, p=2.8e-14) is shown in Figure 9.16 (middle). When 
DCE is added to this model, it reaches rank 13 (Figure 9.16 right). Inter-
estingly, when rce is replaced by DCE, the model’s rank further increases 
to rank two with r=0.70 (p=0) (Figure 9.16 left), which is a significant im-
provement of approximately 8% to the original model 1049. This strongly 
supports the idea to replace the relatively complex rce measurement by 
the automatic DCE measure, gaining accuracy to CD severity assessment. 
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Figure 9.16: DCE as replacement for rce. The best manual model 1049 
uses the same features as model 2: comb_sign, length and muralT2. Ad-
ditionally, the manual model incorporates rce, while model 2 uses DCE 
instead. The resulting improvement in CDEIS correlation from r=0.65 
to r=0.70 is significant. Further, including rce and DCE together does 
not improve the correlation further (model 13). 

9.3.4 DCE and Manually Annotated Diseased Regions 

In our dataset, all ROIs are provided by a medical expert who identified 
regions with visible bowel wall enhancement. The ROIs show a high cor-
relation to the related feature enhancement_T1, as illustrated in Table 9.4: 
the ROI density is larger in segments with high enhancement_T1. On the 
other hand, there exist few cases where four radiologists scored high en-
hancement_T1, but no ROI could be found or vice versa.  

Since there are 26 ROI available in the dataset of which only 11 could be 
processed by DCE (due to bad registration result or mismatch of ROI 
with field of view of DCE-MRI), we investigated whether a larger 
amount of available data would increase the CDEIS prediction. There-
fore, we used two simple ROI features as new computer-derived meas-
urements: polygon, which is the size of the ROI in voxels, and polymean, a 
simple normalized signal intensity mean from the TRHIVE post contrast 
ROIs. Interestingly, polygon does not contribute at all to CDEIS prediction 
and does not occur in any of the top models. Polymean as a feature with 
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signal intensity information occurs in 28 % of the top models. Putting 
polymean together with DCE will not change the rankings: polymean still 
is a poor predictor, even if it has more data points available than DCE. 
Two conclusions can be drawn from this fact: First, a larger number of  
hand-drawn polygons which are converted to intensity-change features 
result in more CDEIS prediction. Second, DCE comes with a superior in-
formation of intensity change and therefore drastically improves the se-
verity estimation, even if it has fewer data points. A rare good feature is 
better than a frequent bad feature. 

 

Table 9.4: Summary of ROI with relation to all four raters‘ scorings of 
enhancement_T1. Four radiologists scored enhancement_T1 (0, 1, 2 or 3 
for normal, minor, moderate and marked) for every bowel segment. A 
fifth radiologist independently drew ROIs in the bowel segments 
where he identified signal enhancement. E.g. all radiologists agreed on 
74 bowel segments to see no or only minor sign of wall enhancement 
(group 0). Still, the fifth medical expert outlined 8 ROIs (11%) based on 
his personal perception. This ratio (and also the number of ROI) corre-
lates well with the strength of the signal enhancement. 

Group 

Sum of 4 
raters’ 

enhance-
ment_T1 

n seg-
ments  

n 
ROI 

Proportion 
of present 

ROI 

0 
Most raters 
scored ‘0’ 

0 68 4 
11 % 

 
1 6 4 

1 
Mild 
enhance-
ment 

2 12 3 

26 % 
3 8 1 
4 2 1 
5 1 1 

2 
Moderate 
enhance-
ment 

6 5 4 

60% 
7 5 2 
8 2 1 
9 3 2 

3 
Most raters 
scored ‘3’ 

10 3 3 
80 % 11 2 1 

12 0 0 
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9 Automated Feature Extraction Methods Improve CD Severity Assessment 

9.4 Combining ABWT and DCE 
Putting ABWT.mean and DCE together reveals that especially automatic 
bowel wall thickness measurement improves CDEIS regression. Figure 
9.17 shows the classifier with highest CDEIS correlation using 
ABWT.mean and DCE solely with r=0.91 (p=0) which is an improvement 
of 40% compared to the model with manual features (r=0.65).  

 

 

Figure 9.17: Comparison of cross-validated classifiers with and without 
automatic features. Model 1 is the very best model and uses both auto-
matic features solely. Model 9241 is the first model which uses only 
manual features. Models 5555, 8194 and 500 add either ABWT.mean, or 
replace rce by DCE or both.  
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10 CONCLUSION 

Computational interpretation of medical images is a wide research field 
with manifold research questions and applications. Object detection and 
classification is a central process in this field and requires modern ma-
chine learning algorithms. This thesis examines directions in computa-
tional pathology and computational radiology on the example of cancer 
cell classification and Crohn’s disease detection, both with regard to the 
role of the shape of objects for their proper detection and classification. 

10.1 Computational Pathology 
In computational pathology we investigated a new algorithmic work-
flow for histopathological staining estimation on tissue microarrays 
(TMA). In contrast to already existing alternatives which aim to directly 
detect cancerous cell nuclei on the image, our approach separates nu-
cleus detection and classification into two consecutive steps. Thus, each 
individual step can be optimized for accurate predictions. We have 
shown at the example of nucleus classification that improved modules of 
the TMA processing pipeline can also improve the complete staining es-
timation. 

10.1.1 Nucleus Classification 

Considering nucleus classification on TMA, we found nucleus shape to 
be a crucial descriptor for the computer-aided decision of its diseased 
state. Shape descriptors such as 1D-signature, Freeman chain code or 
pyramid histogram of oriented gradients delivered favorable classifica-
tion outcome, regardless of the underlying classifier. Further, the simi-
larity based classification of nuclei turned out to be privileged for classi-
fication accuracy especially when highly nonlinear similarities are con-
sidered and classifier ensembles such as random forests or multiple ker-
nels are used. All these facts together with the observed inter-observer 
agreement of 80% document the non-trivial nature of cell nucleus classi-
fication in medical imaging. Nevertheless, we are currently able to design 
complex automated classification systems with coequal classification 
performance for renal clear cell carcinoma nuclei as trained human 
pathologists.  
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10 Conclusion 

10.1.2 Nucleus Detection 

We pursued the role of shape descriptors to the task of nucleus detection. 
Nucleus segmentation has been performed by the use of graph-cuts or 
superpixels. While graph-cuts presume a prior image patching with cen-
tered nuclei in each patch, both, graph-cuts and superpixels require an 
assumption on the approximate nucleus radius in the images. Once the 
nuclei are segmented, a binary classifier can immediately differentiate 
nuclei from background. While the detection of nuclei in MIB-1 stained 
TMA seems to be more difficult than the subsequent classification, we 
prove also here with an F-score of 0.85-0.93 to reach the performance 
range of trained human pathologists with an F-score of 0.9-0.97. 

10.2 Computational Radiology 

10.2.1 CD Severity Score 

Concerning computational radiology, the aim of this thesis was twofold. 
On the one hand, a Crohn’s disease MRI severity score has been developed 
which clearly correlates to the endoscopic CDEIS. The correlation ranges 
at 70% on a bowel segment basis, when solely manual read-outs are con-
sidered. Further, the score respects the variances among different experts 
by incorporating the data of four radiologists from two hospitals. The 
performance of the proposed models is stable for unseen patients, on a 
segment basis as well as on a per-patient basis, as illustrated on several 
validation experiments. This correlation is already higher than that of the 
literature scores MaRIA and CDA. The appropriate development of the 
new score was possible due to a comprehensive data acquisition with 17 
manually assessed predictor candidates (more than ever before), due to 
an extensive multiple labeling work by four radiologists and due to an 
exhaustive search algorithm through all potential model candidates. 

10.2.2 Multimodal Features for Severity Assessment 

The correlation to endoscopic CD severity can significantly be improved 
by the use of additional patient data such as computer-read features. Es-
pecially the automatically measured bowel wall thickness and the auto-
matically measured contrast enhancement have shown their potential to 
increase the correlation of an MRI model to CDEIS up to 90%, which is 
almost perfect for biomedical research problems. Still, these new auto-
matic features require user interaction to coarsely localize regions of in-
terest for which the features are to be automatically computed. 
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10.2 Computational Radiology 

10.2.3 Exhaustive Search vs. Heuristic 

The proposed pipeline in this thesis for model development of a CD se-
verity assessment model in MRI uses exhaustive search among all possi-
ble feature combinations. This concept is of course only feasible when the 
number of features allows the computational effort, and this is the case 
in our problem. We have shown in parallel how a heuristic approach 
would solve the same task: stepwise selection as feature selection method 
which successively includes features that improve the CDEIS regression. 
In almost all cases, the MRI model selected by the heuristic approach be-
longs either to the class of top models or ranks close by this group. This 
nicely documents the suitability of these types of algorithms. However, 
it also illustrates that the heuristic would not always find the global op-
timum. Also, a heuristic might not make aware of the fact that multiple 
solutions are possible to a given problem. To explore the whole model 
space, we therefore encourage to use exhaustive search algorithms when-
ever possible. 

Our proposed exhaustive search data analysis pipeline reveals several 
favorable characteristics: Due to its generality it can be applied on vari-
ous data types, as we have shown on proteomic and histological datasets 
in a variety of cancer research projects. Additionally, the pipeline allows 
a holistic view on the search space, enabling model and feature rankings 
for easy interpretation of the influence of different features. 

10.2.4 CD Detection with MRI 

On the other hand and as the second aim of this study, we elaborated a 
completely automatic hierarchical classification algorithm for CD detec-
tion and segmentation in MRI. The two main steps in this hierarchy are 
first the coarse localization of diseased regions of interest via supervoxel 
classification, and second the voxel wise classification for precise CD seg-
mentation. The algorithm uses standard image features such as intensity, 
texture and curvature, as well as customized and newly designed fea-
tures tailored to our problem such as higher order statistics, context 
based features and constraints on spatial distribution and smoothness. 
This classification scheme has shown high accuracy in terms of Dice met-
ric (approximately 90%) and Hausdorff distance (2 mm deviance at most) 
to manually segmented areas of CD. The complete algorithm has been 
validated on a leave-one-patient-out cross-validation basis. 

10.2.5 Combining CD Detection and Severity – Outlook 

On the way to automated CD assessment in clinical MRI data, a next step 
would be to combine the qualitative automated CD localization with the 
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10 Conclusion 

quantitative automated CD severity estimation. For this, feature extrac-
tion algorithms such as wall thickness or dynamic contrast enhancement 
have to be aligned with CD segmentation procedures. This is the final 
step in VIGOR++, and several considerations and limitations have to be 
kept in mind: First, the suggested CD detection and segmentation algo-
rithm is trained to recognize enhanced bowel wall MRI signals. The de-
tection of ulcers, stenosis, fistula, edema, different patterns, comb sign, 
and other CD related abnormalities in MRI scans was not intended. The 
manual spatial labeling of such features in MRI is too extensive and are 
therefore not part of the training set. 

Second, the automated wall thickness measurement requires the indica-
tion of the centerline of the bowel on a given segment of interest. Also 
the automated dynamic contrast enhancement measurement requires the 
definition of an appropriate region of interest. These user interactions are 
still needed at this stage, even for automatic processing. 

Finally, the computation of dynamic contrast enhancement might have 
limitations due to the potentially difficult registration of the DCE images 
to the post contrast THRIVE sequence and by the missing DCE image 
data on the specified loci (note that the DCE images have a smaller field 
of view and a lower resolution that prost contrast THRIVE sequences in 
order to enable high temporal resolution). However, this problem might 
be solved in near future, when even higher performing MRI scanners are 
available which allow DCE sequences at higher spatial resolution. 

10.3 Computer Aided CD Assessment with MRI – 
Outlook 

This thesis explores the field of computational approaches in abdominal 
MRI at the example of Crohn’s disease assessment. Both the CD severity 
estimation based on manual MRI features as well as the automatic CD 
detection, segmentation and feature extraction have been investigated. 
For such a difficult problem, where the exact course of the disease is med-
ically not fully understood, and where even trained human experts show 
a considerable discrepancy in judging the patients’ data, this research de-
scribes a first step in the direction of standardized and more objective 
individualized CD treatments being more and more be computer-as-
sisted. The present study clearly contributes to the computational under-
standing of abdominal MRI.  

In the scope of the VIGOR++ project, the further validation of proposed 
algorithms and approaches is suggested on prospective datasets from 
our medical partners. Still, for a computer-aided technique to be adopted 
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10.3 Computer Aided CD Assessment with MRI – Outlook 

by the practical medical community, long term validation on various 
new datasets is necessary.  

The fusion of several data domains such as manual MRI features, endo-
scopic findings and computer-read features has been a major challenge 
in this work. Also in future medical problems, the advent of multiple data 
sources will designate the design of appropriate algorithms for diagnosis 
and grading disease activity. This is the way to account for the manifold 
facets of the underlying biological problems. Further, this particularly re-
flects the medical decision making process of medical doctors, who al-
most always rely on multiple data sources and multiple aspects to build 
a holistic view of the disease status of the patient. 
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ABBREVIATIONS 

ABWT Automated Bowel Wall Thickness Measurement 
AC1 Agreement Coefficient 1 
AIS Transmural Histopathological Scoring of Acute Inflammation 
AMC Academic Medical Center 
CD Crohn’s Disease 
CDAI Crohn’s Disease Activity Index 
CDEIS Crohn’s Disease Endoscopic Index of Severity 
DCE Dynamic Contrast Enhancement 
DM Dice Metric 
eAIS Endoscopic biopsy Acute Inflammatory Score 
e.g. Example given 
ETH Eidgenössische Technische Hochschule 
HD Hausdorff Distance 
IBD Inflammatory Bowel Disease 
ICC Intra-Class-Statistics 
IT Information Theory 
LOPO-CV Leave-One-Patient-Out Cross-Validation 
MaRIA Magnetic Resonance Index of Activity 
MKL Multiple Kernel Learning 
MRE Magnetic Resonance Enterography 
MRI Magnetic Resonance Imaging 
PCa Prostate Cancer 
pLSA Probabilistic Latent Semantic Analysis 
pP Per Patient 
RCC Renal Cell Carcinoma 
RCE Relative Contrast Enhancement 
ROI Region Of Interest 
SD Standard Deviation 
SLIC Simple Linear Iterative Clustering 
SMO Sequential Minimal Optimization 
SPGE Spoiled Gradient Echo, a MRI technique 
SSFSE Single Shot Fast Spin Echo, a MRI technique 
THRIVE T1-weighted high-resolution isotropic volume examination 
TIC Time Intensity Curve 
TMA Tissue Micro Array 
WSI Wall Signal Intensity 
wt Wall Thickness 
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