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Abstract—The calculation of Eddy current losses in foil
windings exposed to a 2-D fringing field is a complex task, due to
the current displacement along the height of the foil. For model
based optimization of magnetic components, the loss calculation
with a 2-D FEM simulation is not an option, due to the high
computational effort. The existing alternative calculation methods,
which allow for loss calculation with low computational effort,
rely on approximations applicable only for a certain geometrical
arrangement of the windings and the air gap. Therefore, a new
semi-numerical method is developed to overcome these limitations.
The method is based on the mirroring method and is applicable
to arbitrary air gaps and winding arrangements. The accuracy
of the new method is verified by measurements and the deviation
of the model to the measured losses is below 15%.

Keywords—Air gap fringing field, Eddy current losses, Foil
winding, Magnetic components

I. INTRODUCTION

Foil windings feature better thermal properties and a higher
copper filling factor than Litz or round wires. On the other
hand, foil windings exposed to a 2-D magnetic fringing field
are subject to current displacement in two directions, along
the thickness as well as the width of the foil (see fig. 1). To
accurately predict the losses in these foil windings, the current
displacement must be taken into account, which requires a
2-D field calculation in the winding window. A finite element
simulation (FEM) is the most commonly applied approach to
perform this 2-D field calculation. Though FEM suffers from
long calculation times and difficult parametrization [1]. The
work in [2], which applied a genetic algorithm to optimize a
transformer with foil windings, reported calculation times of
20 hours even for a simplified FEM model considering only
one harmonic component. However, for most applications it is
inevitable to consider more than one harmonic component for
accurate loss prediction. Therefore, FEM is not considered to
be an ideal option for automatized model based optimization.
Various alternative methods are proposed in literature to con-
sider the effect of 2-D fringing fields. They can be categorized
into two distinct approaches.
The first approach is to derive analytical formulas, which take

into account the losses caused by the fringing field and allow
for very high calculation speed. The derived formulas rely on
an analytical solution of the Maxwell equations in the winding-
window. However, to obtain analytically solvable differential-
equations, approximations and restrictions to simple geometries
are required. The solid-conductor-method proposed in [1],[3]
and the method proposed by [4], [5] are the most known

Figure 1. a) FEM Simulation with COMSOL: Foil windings in a winding
window of a gapped magnetic core (Ifoil=5A/30kHz) b) Non-homogeneous
current density along foil 1 (see cut-line in fig.1a).The homogeneous current
density would be 2.5e6A/m2).

methods of this kind. The solid-conductor-method approximates
the layers of a foil-winding as one unified solid conductor. The
model is shown to be accurate for low frequencies, but at high
frequencies accuracy decreases, because the solid conductor
exhibits different eddy-currents, than a foil winding would
actually have. The method described in [4], [5] approximates
the eddy-current as line-current-density located at the surface
of the foil closest to the gap. This foil is assumed to absorb
the whole fringing field. The air gap is also modelled as line-
current-density (by Fourier-decomposition in space). For either
of these two methods, the air gaps must be located at the inner
core-leg and the area between the air gap and the foil-winding
must be filled with air or a spacer only (no additional round-
conductor winding).
The second approach is often referred to as semi-empirical
or semi-numerical. A closed-form formula for the losses is
derived from a set of prior FEM simulations. This approach



tries to combine the advantages of the FEM-approach - high
accuracy and no geometrical restrictions - and the advantages
of the analytical-approach - high calculation speed. The
squared-field-derivative method, proposed in [6] for round-
wires is an example of such a method. The work in [7]
derives a modified Dowells-formula [8] for losses in the foil-
winding of a high-frequency transformer. The formula contains
additional parameters, used to curve-fit the losses from 2-D
FEM simulations and enables fast calculation of winding losses.
Though, it is restricted to a certain geometry, analyzed prior
by FEM simulations.
To be able to effectively perform model based optimization of
magnetic components with foil windings, a method is needed,
which features much lower calculation times than a FEM-
simulation and on the same time is not subject to restrictions on
air gap and winding arrangement as the existing analytical and
semi-numerical approaches. To fulfil this need, in this work an
alternative, semi-numerical method is developed, which can be
applied to arbitrary winding and air gap geometries. Regarding
calculation times, the new method is in between the FEM- and
the existing semi-empirical approaches. The developed method
can be combined with the mirroring method and is a true 2-D
field approximation for foil windings. The method is described
in section II and its validation is given in section III.

II. FOIL- TO SQUARE-CONDUCTOR METHOD

In the following the principle of the calculation method is
explained with the example of an inductor with foil windings.
Figure 1a) shows a 2-D finite element simulation of an inductor
with a sinusoidal winding current of Iz,foil=5A/30kHz. |H|
is the 2-D magnetic field introduced by the air gap. The x-
component of the H-field, which is perpendicular to the foils,
causes an Eddy current flowing in the y-z plane. The existence
of the Eddy currents results in an inhomogeneous current
distribution Jz , which is shown in fig. 1b) for the foil closest
to the air gap. For accurate loss modelling, the investigated
method must determine the non-homogeneous Jz of every foil
of the winding.
The routine to perform this task, consists of two major parts.
The first part is the calculation of the non-homogeneous current
density Jz,foil in a single foil by the following steps shown in
fig. 2:

1) Transformation to round-conductors: The foil is
transformed into area-equivalent round-conductors.

2) Calculation of Current Jz,round in round-conductors:
The well known formulas for round conductors are
used to calculate the Eddy current in each separate
round conductor. The external magnetic field He

is derived using the mirroring method, as will be
explained in detail later in this section.

3) Calculation of foil current Jz,foil: The current density
in the foil is derived from the current density of the
round conductors, by postulating continuity of Jz,foil
at the boundary of adjacent round conductors.

4) Discretize and average to square-conductors: The
foil is cut into area-equivalent square-conductors. To
each square-conductor a current Iz,sqr,k is attributed
according to Jz,foil, whereas the current density is
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Figure 2. Overview calculation procedure for non-homogeneous current
distribution in a foil, exposed to a 2-D transverse magnetic field: 1) Round-
Conductor Transformation, 2) Calculation of round-conductor current density,
3) Calculation of foil current density, 4) Transformation to square-conductors
and calculation of square-conductor currents.

approximated to be constant over the cross-section
of each square-conductor. Unlike in step 1), a trans-
formation to square-conductors is applied, as they
represent the actual foil-winding more accurately. In
this way, the current displacement in the foil is taken
into account by the square-conductor currents and
the mirroring method can be applied to calculate the
H-field and the losses in the same way as for round-
and Litz-wires [5],[9].

The second part of the routine considers the entire foil-
winding and involves a numerical iteration to determine
Jz,foil in each foil of the winding, starting from the uniform
distribution. The method is applicable to arbitrary air gaps and
winding arrangements. As the mirroring method is based on
a low-frequency approximation ([5] chapter 5.2.1), the model
holds true as long as the foil thickness thck fulfills the following
condition:

thck ≤ 1.6 · δ, (1)

where δ is the so called penetration- or skin-depth. The same
condition can be alternatively expressed as a frequency limit
at a given winding geometry:

fmax =
2.56 · ρc

µ · π · thck2
, (2)

where ρc is the electrical resistivity of the conductor material
and µ the permeability of the material.
The following two sections describe both parts of the routine
in detail.

A. Non-Homogeneous Current Density in a 2-D Transverse
Field

The inhomogeneous foil current density Jz,foil caused by
the 2-D transverse field He is calculated with the procedure
shown in fig. 2, which consists of four steps:
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Figure 3. a) Round-conductor in a transverse H-field b) Linearized Eddy
current density Jz in the round conductor evaluated on the y-axis: (0,−req),
(0,0) and (0,req).

1) Transformation to round-conductors: The foil-winding is
transformed into a series of aligned equivalent round-conductors,
using the equivalent DC-resistance transformation ([5],chapter
5.4.1 and [10]) and postulating equivalent width wdth of the
transformed winding, see fig. 2, 1). The constraints on surface
and width can be expressed by wdth·thck = ncond ·π·(deq/2)2

and ncond · deq = wdth from which follows:

deq =
4 ∗ thck

π
. (3)

2) Calculation of Current Jz,round in round-conductors:
With the foil decomposed into aligned round conductors, the
Eddy-current caused by the external magnetic field

−→
H e in a

round conductor can be calculated using the formula derived
in [11] formula (7-45):

J̄z(r, ϕ) = 4µ2Hej
3
2 k

J1(j
3
2 kr)

F (j
3
2 kreq)

sin(ϕ− ϕHe). (4)

where

F (j
3
2 kreq)=(µ1+µ2)J0(j

3
2 kreq)+(µ1−µ2)J2(j

3
2 kreq) (5)

k =
√

(2πf)ρ1µ1 (6)

and

µ1 magnetic permeability of the conductor material
ρ1 conductivity of the conductor material
µ2 magnetic permeability of material around the

conductor−→
H e sinusoidal transverse magnetic field vector with

amplitude He and ϕHe
f frequency of He.

Figure 3a) illustrates a single round-conductor exposed to
a transverse H-field. The current density is derived on the
y-axis by evaluating the current density at the three points
(Jz(req, π2 −ϕHe), Jz(req,−π2 −ϕHe) and Jz(0, 0)) and linear
interpolation, as shown in fig. 3b). By assuming, that the aligned
round-conductors do not have an electrical connection, the
Eddy-current Jz along the y-axis is calculated separately for
each round-conductor in the transformed foil winding, resulting
in the current density shown in fig. 2, 2).

3) Calculation of foil current Jz,foil: The current density
in the foil J̄z,foil(y) (y = [0, wdth]) is derived from the Eddy
currents of the separated round-conductors. Unlike before, the
aligned round conductors are now assumed to be electrically
connected. Under this condition, the current density must be
continuous at the boundary between two conductors. This can
be expressed as the following condition, which must hold true
for all conductors:

J̄z,k(deq,
π

2
) = J̄z,k+1(deq,−

π

2
); k = [1..ncond − 1] (7)

As a consequence of (7), the derivative of the current density
dJz,foil(y)

dy is fully determined by the current density in the
round conductors:
dJz,foil(y)

dy
=
dJz,k(0, yk)

dy
; yk = mod(y, deq), k = 1+

y

deq
.

(8)

Note that Jz,k is given in cartesian coordinates, for the sake
of simplicity. A second condition for Jz,foil(y) follows from
the total current, flowing through the foil winding:∫

J̄z,foil(y)dA = Īfoil. (9)

The foil current density J̄z,foil(y) can be calculated considering
(8) and (9), which is shown schematically in fig. 2, 3),.

4) Discretize and average to square-conductors: The foil
is transformed into nsqr square-conductors with the size
aeq = thck as shown in fig. 2f). The dimension of the
square-conductors is such, that they fulfill the low frequency
approximation in (1). Hence for the mirroring method [12],
the square-conductors can be treated in the same manner as
windings of round conductors. It is assumed, that the current
density in the foil is approximately linear across the crosssection
of the square conductors. With this assumption the current
in each square conductor can be derived from the current
distribution J̄z,foil(y) by:

Īz,sqr,k = a2
eqJ̄z,foil

(aeq
2

+ aeq(k − 1)
)

; k = [1..nsqr].

(10)

B. Numerical Iteration for entire Foil Winding

In section II-A a single foil exposed to a sinusoidal trans-
verse field is modelled as nsqr aligned square-conductors with
a non-homogeneous current distribution Īz,sqr,k, k = [1..nsqr].
When a magnetic component with an entire foil winding is
modelled, the correct determination of the square-conductor
currents Īz,sqr becomes a non-trivial task. This is due to the
fact, that a certain calculated Īz,sqr actually affects its root
cause, being the external field

−→
H e. A numerical iteration is

applied to determine Īz,sqr.
The numerical iteration will again be explained on the example
of the inductor with foil windings, shown in fig. 1. Each foil is
cut into nsqr square conductors. Thus the whole foil winding is
represented as nsqr,tot = nsqr ·Nfoil square conductors, where
Nfoil is the turns number of the foil winding. For the winding
loss calculation, an arbitrary winding current waveform ifoil(t)
is decomposed into its complex spectrum by means of the



Fourier transform. For each harmonic Īfoil at frequency fh,
the iteration must be performed separately. The complex array
Īsqr of size (1 x nsqr,tot) contains the current amplitudes of
all square conductors. The starting point of the iteration is the
uniform current-distribution:

Īsqr,0 =

[
Īfoil
nsqr

. . .
Īfoil
nsqr

]
. (11)

Figure 4 shows the overview of the numeric iteration. At the
kth iteration, the latest current-distribution Īsqr,k is used as
input to the mirroring method, to calculate the external H-field
at the position of each square conductor H̄e,x and H̄e,y . With
the foil-to-square-conductor method described in section II-A,
the current distribution Īsqr,calc, that is caused by this external
field, is calculated. The expression

Īsqr,k = Īsqr,calc. (12)

is a sufficient condition for the correct current distribution. It
describes the situation, where the physical root cause and its
effect are in balance. Due to the miscellaneous approximations
involved in this method, condition (12) can not be exactly
fulfilled. The goal of the iteration is therefore to minimize the
error

ēsqr =| Īsqr,calc − Īsqr,k | . (13)

This minimization could as well be treated as a purely
mathematical problem and state of the art algorithms could
be used to determine Īsqr. Though the investigation of such
algorithms and the comparison of their performance to the
applied iteration-method is out of scope for this work. The
applied iterative calculation method for Īsqr is based on a
control-loop analogy. Further it is taken advantage of the fact,
that the calculated current distribution Īsqr,calc exhibits, apart
from a proportional scaling factor, approximately the same
waveform as the correct current distribution Īsqr,end. This
makes it possible to adjust Īsqr,k by adding an increment
Īsqr,incr derived from ēsqr at each iteration. Figure 5 illustrates
this on the example of the inductor, shown in fig. 1. The norm
of the current distributions in foil 1, |Īsqr,k| and |Īsqr,calc| , are
shown at the very beginning of the iteration and after 5 and
10 iteration steps. The current distribution, |Īsqr,FEM |, derived
from a 2-D FEM simulation, is shown as comparison. From the
first iteration step on, |Īsqr,calc| and |Īsqr,FEM | exhibit similar
waveforms and |Īsqr,k| approaches |Īsqr,FEM | with advancing
iteration.

The detailed function to determine Īincr from ēsqr is split
into three parts, shown in fig. 4, which will be described in
the following:

• Variable Gain Controller: To iteratively reduce the
error ēsqr, the current distribution is incremented by

∆̄Isqr = pk · ēsqr. (14)

• Gain Adjustment: The proportional gain pk is adjusted
in each iteration step, in order to limit the maximal
current increment per iteration step to Istep,max,k,
hence

pk =
Istep,max,k
max(ēsqr)

. (15)

The limit Istep,max,k is initialized to the uniform
current distribution

Istep,max,0 =
Īfoil
nsqr

. (16)

During iteration Istep,max,k is stepwise reduced to
ensure, that ēsqr converges. If the averaged error over
the whole winding ēsqr,avg,k =

∑
ēsqr,k/nsqr,tot did

not diminish compared to the error at the last iteration
ēsqr,avg,k−1, than Istep,max is adjusted:

(esqr,avg,k > esqr,avg,k−1)⇒

Istep,max,k+1 =
Istep,max,k

2
.

(17)

• Phase Decoupling: Equation 4 of the foil-to-square-
conductor method introduces a phase-shift into the
iteration loop. To ensure, that the current increment
∆̄Isqr will actually compensate for the error ēsqr, the
phase-shift of the current increment must be adjusted
by:

Īincr = ∆̄Isqr · e−jϕcalc . (18)

where ϕcalc is the phase-shift of the foil-to-square-
conductor method given by:

ϕcalc = ∠Īsqr,calc − ∠Īsqr,k. (19)

The iteration loop is executed and the current distribution
is adjusted by

Īsqr,k+1 = Īsqr,k + Īincr (20)

until ēsqr falls below a certain defined limit. In the case,
where the foil-to-square-conductor method is applied for loss-
calculation, the winding losses in the whole foil winding are
taken as alternative convergence criteria.

Pfoil,tot,k =

nsqr,tot∑
k=1

Psqr,k, (21)

∆P,k = 100
|Pfoil,tot,k − Pfoil,tot,k−1|

|Pfoil,tot,k|
(22)

where Psqr,k are the Eddy-current losses in the kth square-
conductor calculated as described in [5]. The iteration is
stopped, if ∆P,k stays below a certain threshold over 5
iterations:

max(∆P,k−5, . . . ,∆P,k) ≤ 0.1%⇒ Stop-Iteration (23)

III. VALIDATION OF THE PROPOSED METHOD

The proposed method is validated on the example of a
flyback-transformer for a PV-inverter. The whole calculation
routine, including the foil-to-square-conductor method, is
implemented in MATLAB. The losses in the conductors are
calculated according to [13], for Litz-wires, and [5], for square-
conductors. The air-gap fringing field is modelled according to
[12]. The Fourier decomposition of the flyback winding-currents
is performed according to [10]. The validation is performed
twofold, first with a FEM simulation and second with measured
losses of a flyback-transformer.
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Table I. PARAMETERS 2-D FLYBACK TRANSFORMER WITH FOILS AND
LITZ-WIRE.

Core a = 15mm,c = 7mm,d = 11mm

Winding Cu foil and Litz wires
N1=5, thckw1=0.2mm,wdthw1=10mm

N2 = 50,ds,w2 = 0.1mm,Ns = 7

Air gap lairgap = 1mm

Figure 6. 2-D Flyback transformer with foils and Litz wires: E-core with air
gap and ’sps’ interleaved windings with foils on the primary and Litz wire for
the secondary.

A. Validation with FEM Simulation

The losses calculated with the MATLAB model are com-
pared to the conduction losses derived from a 2-D FEM
simulation. The specification of the modelled transformer is
given in table I and the 2-D winding arrangement is illustrated in
fig. 6. The range of validity for the low frequency approximation
of the mirroring method given by (2), is fmax,w1=270kHz for
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Figure 7. Flyback-Transformer as specified in tab. I, with sinusoidal excitation
of the foil-winding (Iw1 = 5A) and open circuit on the secondary: Relative
difference between losses derived from the foil-to-square-conductor method
and the 2D FEM simulation.

the foil winding and fmax,w2=1MHz for the Litz-wire winding.
A first validation of the loss calculation is performed for the
case of a sinusoidal current of 5A and various frequencies from
10kHz to 10MHz flowing through the foil winding. Whereas
winding two is an open circuit. Figure 7 shows the deviation
of the MATLAB model from the 2D FEM simulation (in
percentage, normed to the FEM simulation values). The losses
calculated in MATLAB exhibit good accordance to the 2D
FEM simulation. The difference is below 7%, as long as the
low frequency approximation is valid, and up to 15% in the
whole considered frequency range.
The second validation is done by considering actual winding
current waveforms of a DC-DC flyback converter operating in
boundary conduction mode (BCM) at a switching frequency
of 100kHz (8A peak, 0.75 duty cycle). To limit the FEM
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Figure 8. Foil-to-square-conductor Method Iteration, for flyback-transformer
as specified in tab. I: Winding losses in the foil winding Pfoil,totk,k (see 21)
with advancing iteration.

Table II. COMPARISON FOIL-TO-SQUARE-CONDUCTOR METHOD TO
2D FEM SIMULATION FOR FLYBACK TRANSFORMER WINDING LOSSES.

Calculation Method
2D FEM Foil-to-Square-Cond.

(COMSOL) (MATLAB)

Computer
Server 8x paralleled Laptop

Intel-Xeon-CPU Intel-Core
E5-2660@2.2GHz i7-M620@2.67GHz

16GB RAM needed
Calculation time ∼25min 19s 113s

Number of Harmonics 20 20 100
Number of Iterations - 43 42

Winding Losses Pw1 1.32W 1.28W 1.33W
Winding Losses Pw2 0.576W 0.575W 0.67W

calculation time, only harmonics from 100kHz to 2MHz are
considered. Figure 8 shows the convergence of the total winding
losses in the foil winding when the iteration is executed, as
explained in section II-B. After 43 iterations the convergence
criteria (23) is fulfilled and the iteration stops. The winding
losses are listed in table II and compared to the results from the
2D FEM simulation. The difference in calculated winding losses
is lower than 3.5%. To demonstrate the increase in calculation
time, a second calculation-run of the foil-to-square-conductor
method is performed and also listed in table II, taking into
account a larger number of harmonics from 100kHz-10MHz.
The winding losses in the foil increase marginally by 4% due
to the higher order harmonic currents.

B. Validation with Measured Flyback Transformer

The model for foil-winding losses is verified by
measurements on a flyback transformer. The transformer is
built with a gapped RM low-profile core and foil windings
on the primary and Litz wire on the secondary. First, the
measurement setup is described in the following paragraph.
The measurement results and the comparison are presented in
III-B2.

1) Winding Loss Measurement Method and Setup: The
measurement-methods proposed in [14] are applied for this
verification, which allow to derive the losses in the foil-
winding at a sinusoidal winding-current. Figure 9 shows the
measurement setup consisting of the flyback transformer and a
resonance capacitor. The schematic of the entire measurement
setup is shown in fig. 10 and the applied measurement
equipment is listed in table III. The primary winding is put in
series with a capacitor Cres to form a resonant circuit together

Figure 9. Experimental setup for winding loss measurement of the flyback
transformer.

1:1
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Figure 10. Overview measurement method for core- and winding-loss
measurement of a magnetic component, according to [14].

Table III. WINDING LOSS MEASUREMENT SETUP: USED EQUIPMENT

Waveform Generator Agilent 33522A
Power Amplifier AE Techtron 7224

Oscilloscope LeCroy WaveSurfer 24MXSB
Voltage Probes LeCroy PP008
Current Probe LeCroy AP015

50Hz Isolating-Transformer -

with the transformers magnetizing inductance. A sinusoidal
voltage source, realised with a signal generator and a power
amplifier, drives the test current Itest through the primary
winding. The secondary Litz-winding is left open circuit. The
transformer has an additional sensing-winding (0.1mm2 Cu
round-wire) having the same turns-ratio as the primary winding,
which is used for voltage measurements only. Hence no net
current is flowing through the sensing-winding. The losses
in the sensing winding are negligibly small, due to the low
turns-number and the small conductor diameter.

The schematic in fig. 10 shows the T-equivalent circuit of
the transformer, the parasitic cable inductance LCable and the
resonance capacitor series resistance RCESR. The equivalent
components of the sensing winding are not relevant, because
the winding does not carry any current. Lσ and Lmag are
the magnetizing- and stray-inductance referred to the primary
winding. The resistors RCore and Rwdg model the losses in
the core and the primary winding. The aim of the setup is to
determine the resistive losses in Rwdg. This can be achieved
by two distinct measurements.

• The Resonant Method as proposed in [15] and de-
scribed in [14] section 1.2.4, allows to determine the



total resistive losses of the resonant-circuit by operating
the voltage-source at

fr =
1

2π
√

(Lmag + Lσ)Cr
. (24)

At this operating point the voltage over Lσ , Lmag and
Cr cancel out and the voltage measured at the input
of the resonant circuit VLC only contains the resistive
parts:

VLC = VR,wdg + VR,core + VR,C,ESR. (25)

Consequently, the losses in the resonance circuit can
be split into three parts:

PLC = PR,wdg + PR,core + PR,C,ESR. (26)

The losses caused by the resonance current PLC,fr
can be calculated from the measured voltage VLC and
current IT by:

PLC,fr =
1

2
ÎT,frV̂LC,fr cos(ϕI,T,fr−ϕV,LC,fr),

(27)

where ÎT,fr, ϕI,T,fr and V̂LC,fr, ϕV,LC,fr are the
amplitude and phase at the resonance frequency derived
from the fourier transform.

• The Capacitive Cancellation Core Loss Method pro-
posed in [14] section 2.1.2, can be applied to measure
the core losses separately. Unlike the resonant method,
where the winding losses are included in the measured
losses. The voltage Vcore is measured between the
upper port of the sensing winding to ground, as shown
in fig. 10. Note that the lower port of the sensing
winding is connected to the resonance capacitor and
hence Vcore can be expressed as.

Vcore = VR,core + VL,mag + VR,C,ESR + VC,r.
(28)

The frequency of the voltage-source is chosen, such
that VL,mag = −VC,r, which is the case at:

fr =
1

2π
√
LmagCr

. (29)

The measured voltage only contains the resistive parts
Vcore = VR,core + VR,C,ESR and the resistive losses
caused by the resonance current can be calculated by:

Pcore,fr =
1

2
ÎT,frV̂core,fr cos(∆ϕfr), (30)

with

∆ϕfr = ϕI,T,fr − ϕV,core,fr, (31)

The losses consists of the following two parts

Pcore,fr = PR,core,fr + PR,C,ESR,fr. (32)

To obtain the magnetic losses PR,wdg,fm at a certain
frequency fm the losses PLC,fm and Pcore,fm are measured
as explained above. For the measured transformer the stray
inductance Lσ is much smaller than Lmag and hence the same

resonant capacitance Cr can be used for both measurements.
The magnetic losses can be obtained from the measurements
with (27) and (32) by:

PR,wdg,fm ' PLC,fm − Pcore,fm. (33)

The losses in RC,ESR cancel out, though RC,ESR should not
be much higher than Rwdg to obtain a good resolution of the
measurement.

The accuracy of the performed loss measurements caused
by the deviations in the current ∆i, voltage- ∆u and phase-
angle measurements ∆ϕ can be deducted from (27),(30) using
the second-order Taylor-series of the cosine (cos(x) = 1− x2

2 )
and neglecting deviation-coefficients of third order:

∆pmeas = ∆uI + U∆i+ ∆u∆i− P∆ϕ2. (34)

The phase-deviation follows from the time-delay between the
voltage- and current-probe by

∆ϕ = 2π · 16ns · fmeas, (35)

whereas the time-delay is derived from a reference-measurement
using a shunt-resistor. Voltage and current deviation are found
to be

∆u ' 80µV,∆i ' 1mA. (36)

This is above their theoretical resolution-limit of 63µV and
313µA, due to the low signal-to-noise ratio at high scale-factors
of the oscilloscope. An additional measurement error introduced
by the parasitic inter-winding capacitance, described in [14]
(2.11), is found to be negligible small, due to the relatively low
measuring frequencies. The deviation in the measured winding
losses follows from (33)

∆pwdg ' ∆pLC + ∆pcore, (37)

where ∆pcore and ∆pLC are calculated with (34).

2) Loss Measurements and Comparison: The flyback trans-
former loss model in MATLAB is parameterized to model the
measured flyback transformer. The frequency limit, up to which
the low-frequency 2-D field approximation used for winding
loss calculation applies, is determined by (2) and equals

fmax,low,freq = 172kHz (38)

for the investigated flyback transformer geometry. Above this
frequency the modelled winding losses are subject to an
increasing modelling error. In table IV the measured winding
losses are compared to the losses calculated with the model in
MATLAB at three different measuring points: 50kHz, 100kHz
and 200kHz. Further the accuracy of the measured losses is
determined with (37). The model exhibits a good accordance
to the measured losses. The winding losses predicted by the
model show a deviation below 15% for the measuring points
at 50kHz and 100kHz. The measuring frequency of 200kHz
is above fmax,low,freq and accordingly the deviation increases
to a value of 21%.



Table IV. FLYBACK TRANSFORMER WINDING LOSS MODEL
VALIDATION.

Test Conditions: Reference Measurements: Loss Model: Model Deviation:
fmeas Pwdg ∆pwdg Pwdg ∆model,to,meas

50kHz 0.0136W < ±3.9% 0.0132W -2.6%
100kHz 0.0046W < ±6.1% 0.0052W 14.9%
200kHz 0.0022W < ±7.1% 0.0026W 21.3%

C. Calculation Time and Complexity

Calculation speed was a major motivation to develop the foil-
to-square-conductor method. The achieved evaluation time of
the whole MATLAB loss-model of a flyback-transformer in DC-
DC BCM operation (see III-A and table I for specifications), is
19s and 113s for a considered number of higher order harmonics
of nh = 20 and nh = 100 on a laptop computer equiped
with an Intel-Core-i7-620M@2.67GHz. Figure 11 shows the
relative calculation time of the most dominant tasks of the
loss-model, derived from the MATLAB profiler utility. The
calculation complexity of the foil-to-square-conductor method
and the mirroring method scales linearly with nh and the
number of conductors, being nsqr,tot for the foil-to-square
and nsqr,tot + nwdg,2 for the mirroring method (nwdg,2 is
the secondary turns number). Note, that all dominant tasks
are in the iteration loop (see fig. 4). Thus the iteration itself
is the most time-consuming part of the loss-model, whose
calculation time depends linearly on the number of iterations
nnum,it. Evaluations with different parameters showed, that the
developed numerical iteration needs an average of nnum,it ' 45
to converge. To further reduce calculation time, an improved
iteration-method would be most effective. While nsqr,tot and
nwdg,2 follow from the specifications, the number of harmonics
nh can be chosen as low as possible, depending on the
considered current waveform. A further speed improvement can
be achieved in the mirroring method by reducing the number
of mirroring below the currently implemented 11x11 mirrored
basic winding windows.

Rest of Iteration-Loop

Calculation Time (%)
0 20 40 60

Mirroring Method

Foil to
Square Cond. 

Method Rest

Jz,round   Jz,foil

He     Jz,round

Figure 11. Flyback Transformer Model (specification as in table I at DC-DC
BCM operation with harmonics from 100kHz to 2MHz): calculation complexity
analysis with MATLAB profiler.

IV. CONCLUSION

A new semi-numerical method is developed for loss calcula-
tion in foil windings exposed to a 2-D fringing field. Compared
to existing calculation methods it features the advantage of
much faster calculation speed compared to FEM simulations,
while at the same time not being restricted to certain geometric
arrangements as the existing analytical and semi-empirical
methods. The analysis of the calculation complexity discloses
the potential of further speed improvement. The accuracy of the

method is validated on the example of a flyback transformer
by both FEM simulations and measurements on a test-setup.
The method exhibits deviations to the measured losses below
15% .
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