
Doctoral Thesis ETH No. 14987

A Network Implementation of a

Markov Model

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZÜRICH

for the degree of

DOCTOR OF NATURAL SCIENCES

presented by

ALESSANDRO USSEGLIO VIRETTA

Dottore in Fisica, Università degli Studi di Torino - Italy
born September, 15th 1970 in Torino

citizen of Italy

accepted on the recommendation of

Prof. Dr. Rodney Douglas
Dr. Shih-Chii Liu

Prof. Dr. Walter Senn

Dr. Stefano Fusi

2003

Contents

1 Introduction 1

1.1 The associative memory problem 5

1.2 Neural networks for pattern sequences 6

1.2.1 Synapses with dynamic memory 6

1.2.2 Noise-driven temporal association 7

1.2.3 Retrieval, counting, and recognition 10

1.2.4 Grammars inference and prediction 12

1.2.5 Learning input-output relationships 18

1.2.6 Other approaches 19

1.3 Hidden Markov models 23

1.4 Conclusions 23

2 The model network 26

2.1 Introduction 26

2.2 Methods 27

2.2.1 Architecture and dynamics 29

2.2.2 The learning rule 33

2.3 Summary 36

3 Learning Markov processes 37

3.1 Results 37

3.1.1 Learning pattern sequences 39

3.1.2 Performance evaluation 42

3.1.3 Classification of states in a Markov chain 44

3.1.4 The palimpsest property 57

3.1.5 Learning noisy patterns 58

3.1.6 Triggering recall with noisy patterns 63

3.1.7 Limits of the system 65

3.2 The synaptic matrix 67

3.2.1 Variability of the synaptic projections 72

3

4

3.2.2 Transition probabilities as a function of the synaptic

projections 79

3.3 Summary 80

4 Learning non-Markov processes 82

4.1 Learning pattern sequences 83

4.1.1 The encoding network 84

4.1.2 The readout 88

4.1.3 Repeated patterns 94

4.2 Recognizing pattern sequences 94

4.3 Performance of the network 97

4.3.1 Sequences generated by a Markov process 97

4.3.2 Higher order Markov processes 99

4.4 Summary 104

5 Games networks play 105

5.1 Network fun 107

5.2 Summary 116

6 Conclusion 117

6.1 Echoed (liquid) states 119

6.2 Outlook 121

A Code 123

A.l Variables 123

A.2 Field 124

A.3 Glauber dynamics 124

A.4 Dynamic inhibition 125

A.5 Overlaps 126

A.6 Pattern with maximum overlap 127

A.7 Compute transition probabilities 127

A.8 Online learning 129

A.9 Fast learning 131

A.10 Next state of a Markov chain 132

A. 11 Measurement of the transition probabilities in the non-Markov

case 133

A.12 Encoding network 135

A.13 Buffer network 138

Glossary 141

Curriculum Vitae 150

List of Figures

1.1 From [1], simulations of the network 8

1.2 From [2], simulations of the network 9

1.3 From [3], a simple recurrent network 15

1.4 From [3], graph of the RMS error over 12 consecutive input bits. 16

1.5 From [3], graph of the RMS error in the letter prediction task. 17

1.6 From [4], the architecture of the network 20

1.7 From [5], the network architecture 22

2.1 Histograms of fields 32

2.2 Asymptotic value of inhibition 33

2.3 Asymptotic value of activity 34

2.4 Evolution of inhibition 35

3.1 Connection of the input layer to the learning network 38

3.2 Escape time as a function of pseudo-temperature 40

3.3 Evolution in time of the overlaps 41

3.4 Patterns 1 to 7 41

3.5 Evolution in time of the network state over 30 time steps. ...
42

3.6 Difference between the minimum fields on active neurons and

the maximum field on quiescent neurons 43

3.7 Transition probabilities from a starting pattern to two others. 44

3.8 Network transition probabilities as a function of the Markov

transition probabilities for fixed Jo and variable temperature ß. 46

3.9 Network transition probabilities as a function of the Markov

transition probabilities for fixed temperature ß and variable 1$. 47

3.10 Diagram of the performance index and of the mean value of

the transition probabilities (A/ = 0.1 and A& = 0) 48

3.11 Diagram of the performance index and of the mean value of

the transition probabilities (A/ = 0.3 and A& = 0) 49

3.12 Diagram of the performance index and of the mean value of

the transition probabilities (A/ = 0.5 and A& = 0) 50

5

6

3.13 Diagram of the performance index and of the mean value of

the transition probabilities (A/ = 0.08 and Aj = 0.02) 51

3.14 Diagram of the performance index and of the mean value of

the transition probabilities (A/ = 0.06 and Aj = 0.04) 52

3.15 Transition probabilities as a function of the Markov transition

probabilities, for A/ = 0.1, ß = 15 and I0 = 0.02 53

3.16 Transition probabilities as a function of the Markov transition

probabilities, A/ = 0.1, ß = 15 and I0 = 0.03 54

3.17 Values of the elements of the transition probability matrix

plotted against the corresponding values of the Markov matrix

for six different values of I0 56

3.18 Performance of the network in generating a pattern sequence

(I) 59

3.19 Performance of the network in generating a pattern sequence

(II) 60

3.20 Performance of the network as a function of the noise level (I) 62

3.21 Performance of the network as a function of the noise level (II). 63

3.22 Number of projections between neurons active in noiseless pat¬

terns as a function of the noise level applied to the patterns

used in the training 64

3.23 Number of projections between neurons active in noiseless pat¬

terns as a function of the number of presentations of single
transitions during the learning phase 65

3.24 Performance of the network in reproducing the transition statis¬

tics of the training sequence (I) 66

3.25 Performance of the network in reproducing the transition statis¬

tics of the training sequence (II) 67

3.26 Fraction of successfully recalled sequences as a function of the

noise level of the start pattern 68

3.27 Fraction of successfully recalled sequences as a function of the

length of the sequence 69

3.28 Synaptic matrix 71

3.29 Histogram of the mean synaptic input from the group of neu¬

rons corresponding to one pattern to the group of neurons

corresponding to a different pattern (I) 73

3.30 Histogram of the mean synaptic input from the group of neu¬

rons corresponding to one pattern to the group of neurons

corresponding to a different pattern (II) 73

3.31 Histogram of the mean synaptic input from the group of neu¬

rons corresponding to one pattern to the group of neurons

corresponding to a different pattern (III) 74

7

3.32 Histogram of the mean synaptic input from the group of neu¬

rons corresponding to one pattern to the group of neurons

corresponding to a different pattern (IV) 76

3.33 Histogram of the mean synaptic input from the group of neu¬

rons corresponding to one pattern to the group of neurons

corresponding to a different pattern (V) 78

3.34 Mean synaptic input as a function of the Markov transition

probability 80

3.35 Ratio of the mean synaptic input and its standard deviation.
.

81

4.1 Schematic showing the connection of the input layer to the

encoding layer 87

4.2 External inputs corresponding to three different patterns and

mechanism of encoding 91

4.3 Histogram of the activity of the learning network neurons,

corresponding to the activity of the encoding layer (I) 93

4.4 Histogram of the activity of the learning network neurons,

corresponding to the activity of the encoding layer (II) 95

4.5 Histogram of the activity of the learning network neurons,

corresponding to the activity of the encoding layer (III). ...
96

4.6 Network transition probabilities as a function of the Markov

transition probabilities 99

4.7 Transition probabilities of the network equipped with encoding
network as a function of the Markov transition probabilities. .

101

5.1 Performance of the network in playing the 'scissors, paper,

stone' game as a function of the number of presented patterns

(I) 109

5.2 Performance of the network in playing the 'scissors, paper,

stone' game as a function of the number of presented patterns

(II) 110

5.3 Performance of the network in playing the 'scissors, paper,

stone' game as a function of the number of presented patterns

for two network temperatures Ill

5.4 Performance of the network in playing the 'scissors, paper,

stone' game as a function of the number of presented patterns

(III) 112

5.5 Performance of the network in playing the 'scissors, paper,

stone' game as a function of the number of presented patterns

(IV) 113

8

5.6 Performance of the network in playing the 'scissors, paper,

stone' game as a function of the number of presented patterns

(V) 115

5.7 Performance of the network at the beginning of the fourth sub¬

sequence as a function of the length of the third sub-sequence. 116

List of Tables

3.1 Markov matrix ({0.1,0.2,0.3,0.4}) 45

3.2 Markov matrix used to study the effects of the palimpsest

property 58

3.3 Markov matrix used to study the performance of the network. 68

4.1 Markov matrix obtained by augmenting the state space of a

non-Markov process 83

4.2 Markov matrix used to study the performance of the network

in learning and reproducing the same transition probabilities
used in the tests described in Chapter 3 100

4.3 Markov matrix used to generate an input training sequence

corresponding to a Markov process of order 2 102

4.4 Transition probability matrix for I0 = 0.03, ß = 103, and 900

neurons 102

4.5 Markov matrix used to generate an input training sequence

corresponding to a Markov process of order 3 103

4.6 Transition probability matrix for I0 = 0.03, ß = 103, and 900

neurons 103

6.1 Formal similarities between neural and gene networks 118

9

List of Boxes

2.1 Glauber dynamics 30

2.2 Dynamic inhibition 31

2.3 Overlaps and transitions 34

4.1 Dynamics of the encoding network 89

10

1

Abstract

The processing of spatiotemporal patterns plays an important role in the

life of humans and animals. However, the mechanisms that allow biological

systems to learn, generate, recognize and predict sequences are poorly un¬

derstood. In this thesis we show that a Hopfield-like network can emulate a

Markov model of a sequence of stimuli. Various researchers have proposed
that sequences of stimuli create, in the cerebral cortex, attractors of network

dynamics. These attractors have spatial correlations with the patterns of

activity elicited by temporally adjacent stimuli, so that temporal correla¬

tions are transformed into spatial correlations. Because of their simplicity
and flexibility, Hopfield-like networks have been extensively used to model

several of these phenomena. Simulations showed that transitions between

attractors that are highly correlated are faster than the transition between

less correlated attractors. A similar mechanism might underlie the effect of

priming, where a stimulus is recognized in a shorter time if it is preceded

by a cognitively correlated stimulus rather than by a non-correlated one. In

the presence of noise, transitions can occur spontaneously. In this case, the

probability of transition between different attractors is supposed to increase

with the correlation of the attractors. The dependence of the transition

probabilities between attractors as a function of the attractors correlation

and network parameters is an important and interesting issue that has not

yet been given careful consideration. For this reason, we investigated the

properties of a Hopfield-like neural network, consisting of binary neurons

and binary stochastic synapses. The states of the neurons are updated using
the Glauber's dynamics, and the synaptic weights are potentiated or de¬

pressed according to a Hebbian learning rule. The learning rule includes an

asymmetric term that links patterns of activity elicited by successive stimuli.

When the noise level is within a given range, the attractors are metastable

and the overlaps of the network state with the attractors change in time.

We show that the network can learn, in an unsupervised way, the transition

probabilities from a sequence of stimuli. The unsupervised network extracts

the transition statistics of input sequences generated by a Markov process

and encodes them in its synaptic matrix. When an input triggers the recall

process, the network generates a temporal pattern sequence whose transition

statistics reflects those of the input sequences used in training. A sequence

generated by a non-Markov process can also be learned, provided that the

input sequence is pre-processed. The pre-processing involves the mixing of

the external stimuli with the current activity state of the network. This

mechanism codes the temporal history of the input sequence, thus allowing
the network to process history-dependent sequences. Our detailed study of

11

the transition probabilities of the network state show that a Hopfield-like
network with a stochastic learning rule, in the presence of noise can capture

the temporal correlation statistics of input sequences.

Ill

Zusammenfassung

Die Verarbeitung von raumzeitlichen Mustern spielt eine wichtige Rolle im

Leben von Menschen und Tieren. Trotzdem sind die Mechanismen, die es

biologischen Systemen erlauben, Sequenzen zu erlernen, zu generieren und

vorherzusagen, wenig verstanden. In dieser Arbeit zeigen wir, dass einem

Hopfieldähnlichen Netzwerk ein Markov-Modell von Stimulisequenzen nach¬

ahmen kann. Mehrere Forscher haben vorgeschlagen, dass Sequenzen von

Stimuli im cerebralen Kortex Attraktoren der Netzwerkdynamik erzeugen.

Solche Attraktoren zeigen räumliche Korrelationen, mit denen durch zeitlich

anliegende Stimuli hervorgerufene Aktivitätsmuster in räumliche Korrelatio¬

nen transformiert werden. Wegen ihrer Einfachheit und Flexibilität wurden

Hopfieldähnliche Netzwerke schon mehrfach benutzt, um viele dieser Phä¬

nomene zu modellieren. Diese Simulationen haben ergeben, dass Übergän¬
ge zwischen stark korrelierten Attraktoren schneller geschehen als Übergän¬
ge zwischen schwach korrelierten Attraktoren. Ein ähnlicher Mechanismus

könnte dem Effekt des 'Priming' unterliegen: Ein Stimulus wird, wenn ihm

ein kognitiv korrelierter Stimulus vorausgeht, in einer kürzeren Zeit erkannt

als bei einem nicht korrelierten Stimulus. Wenn Rauschen vorhanden ist, kön¬

nen Übergänge spontan geschehen. In diesem Fall nimmt man an, dass sich

die Übergangswahrscheinlichkeit zwischen verschiedenen Attraktoren mit der

Attraktorenkorrelation erhöht. Die Abhängigkeit der Übergangswahrschein¬
lichkeit zwischen Attraktoren von Attraktorenkorrelation und Netzwerkpara¬
metern ist eine wichtige und interessante Frage, die jedoch noch nicht sorg¬

fältig untersucht wurde. Aus diesem Grunde haben wir die Eigenschaften
eines Hopfieldähnlichen Netzwerks, das aus binären Neuronen und binären

stochastischen Synapsen besteht, untersucht. Die Zustände der Neuronen

unterliegen der Glauber-Dynamik, und die synaptischen Gewichte werden

nach einer Hebb'schen Lernregel potenziert oder abgeschwächt. Die Lernre¬

gel beinhaltet einen zeitlich asymmetrischen Teil, der Aktivitätsmuster, die

durch darauffolgende Stimuli hervorgerufen werden, verbindet. Wenn der

Rauschpegel innerhalb eines bestimmten Bereichs liegt, dann sind die At¬

traktoren metastabil, und die Überlappung des Netzwerkzustandes mit den

Attraktoren verändert sich mit der Zeit. Wir zeigen, dass das Netzwerk die

Übergangswahrscheinlichkeiten von einer Stimulussequenz unsupervised ler¬

nen kann. Das unbetreute Netzwerk extrahiert die Übergangsstatistik von

Stimulussequenzen, die von einem Markov-Prozess generiert werden, und ko¬

diert sie in seiner synaptischen Matrix. Wenn ein Stimulus den Erinnerungs-

prozess startet, generiert das Netzwerk eine zeitliche Mustersequenz, dessen

Übergangsstatistik jene aus dem Training benutzte Stimulussequenzen reflek¬

tiert. Auch eine von einem nicht Markov'schen Prozess generierte Sequenz

IV

kann gelernt werden, vorausgesetzt dass die Stimulussequenz vorbearbeitet

wird. Die Vorbearbeitung beinhaltet das Mischen der externen Stimuli mit

dem aktuellen Aktivitätszustand des Netzwerks. Dieser Mechanismus kodiert

den zeitlichen Ablauf der Inputsequenz und ermöglicht so dem Netzwerk die

Bearbeitung von Sequenzen in Abhängigkeit der Vorgeschichte. Unsere de¬

taillierte Studie über die Netzwerkübergangswahrscheinlichkeiten zeigt, dass

ein Hopfieldähnliches Netzwerk mit einer stochastischen Lernregel, bei Vor¬

handensein von Rauschen, die zeitliche Korrelationsstatistik von Stimulusse¬

quenzen gewinnen kann.

Chapter 1

Introduction

In his paper "Can People Predict Chaotic Sequences?", the Australian psy¬

chologist Richard Heath [6] claims that some people can identify patterns in

chaotic systems and predict their behavior. Although Heath's finding still

need confirmation, it is clear that the processing of spatiotemporal patterns

plays an important role in the life of humans and animals. For this reason,

we believe that the neural structures that perform such tasks deserve a spe¬

cial attention. The mechanisms which let biological systems learn, recognize,

generate, and predict spatiotemporal patterns are still poorly understood.

Spatiotemporal patterns are here considered to be sequences of activity pat¬

terns of a set of neurons providing input to a neural network. Typically, re¬

search on artificial neural networks has focused on learning fixed sequences.

Our work, inspired by the seminal paper by Griniasty et al. [7], focuses in¬

stead on the extraction of transition probabilities and their encoding in the

connectivity pattern of a network. Griniasty showed that a Hopfield-type
network provided with a slightly modified connectivity matrix, has attrac¬

tors that are correlated with several learned patterns. The classical Hopfield

synaptic matrix stores a set of patterns, which become attractors of the dy¬
namics [8]. The modification introduced by Griniasty store in the matrix a

fixed sequence of uncorrelated patterns. In this case, the network dynamics
relax to attractors that have non-zero overlap with more than one pattern.

This result provides a possible explanation to the phenomena observed by

Miyashita and collaborators.

In the first experiment by Miyashita [9], a monkey is trained to recognize
and match a set of visual stimuli. As a result, a stimulus-selective delay

activity of neurons from the anterior ventral part of the temporal cortex

was measured. The delay activity started in some neurons up to a few sec¬

onds after the presentation of the stimulus and lasted, sometimes without

decline, up to 16 seconds. Moreover, the firing frequencies of the measured

1

2

neurons during the delay activity were not necessarily correlated with those

measured during the presentation. For these reasons, the delay activity prob¬

ably represents a sort of memory trace, and not only a continuation of the

stimulus-induced activity. The second study by Miyashita [10] discovered

spatial correlations among the delay activity firing patterns. Being the vi¬

sual stimuli spatially uncorrelated, the correlations were explained as being
a consequence of the fixed temporal order of the presentations. So, the mon¬

key's brain is apparently able to convert temporal correlations (in this case,

temporal proximity) into spatial correlations of the attractors of the network

dynamics. The delay activities were found to be stimulus-dependent, and the

stimuli eliciting activity in a neuron were usually nearest neighbors in the

presentation sequence during the training. These two facts made the authors

hypothesize that the "selectivity acquired by these cells represents a neuronal

correlate of associative long-term memory of pictures" [10].
Griniasty showed that the overlap of the attractor with the patterns is

a function of the separation, in the presentation sequence, from the pattern

having maximum overlap. Griniasty additionally showed that this function

has the same qualitative behavior as showed by Miyashita [10]. Yakovlev

et al. [11] went one step further in the modeling of these phenomena, by

proposing a possible mechanism for the formation of the delay activities and

correlations observed. In the model presented, the memories are formed in

three stages: During the first one, uncorrelated attractors are built up. The

attractors of the dynamics allow for the sustained level of firing rate observed

during the delay activity. During the second stage, the delay activity leads to

correlations between the delay activity patterns elicited by the presentation
of stimuli contiguous in time. Eventually, the delay activity corresponding
to neighboring stimuli show a higher level of correlations than the activities

elicited by patterns more apart in the training sequence. Yakovlev uses a net¬

work of excitatory and inhibitory neurons. The presentation of visual stimuli

in Miyashita's experiments corresponds in his model to an extra current in¬

jected in a sub-population of neurons. The activity produced by the external

input, in combination with a Hebbian learning rule, strengthens the synaptic
links between neurons active in correspondence to the same stimulus. After

enough repetitions of the same stimulus, an attractor is formed, and the net¬

work can sustain an enhanced level of activity even in absence of an external

input current. The formation of attractors can be observed as a stimulus-

specific delay activity. Because of the presence of a global inhibition, the

delay activity ends with the presentation of a different stimulus. The short

(< 100ms) overlap of the delay activity induced by a stimulus and the activity
induced by the following one is sufficient to allow Hebbian strengthening of

the synapses between the two neuron sub-populations. The final result is

1. Introduction

3

that, after a sufficient number of repetitions of the stimuli sequence, the neu¬

rons show a sustained level of activity also for the stimuli nearest neighbor of

their preferred one. It is important to notice that this chain of events occurs

automatically, independently from the relevance of the behavioral task. In

this context, the simulation by means of an artificial neural network is key for

the understanding of the mechanism leading to the formation of attractors

and associative memories, and sheds light on the ways by which informa¬

tion about the temporal order of stimuli can be encoded in the activity of

populations of neurons.

Griniasty ends his paper [7] with some speculations about the computa¬

tional and behavioral utility of such synaptic development. One interesting

suggestion is that the correlations between attractors and patterns might
underlie the effect of priming. Priming is an effect commonly encountered

in experiments involving the recognition of stimuli. The reaction time can

be shortened if the stimulus to be recognized is preceded by a cognitively
correlated pattern. This effect can be translated into the language of net¬

work dynamics: Let us suppose the network is presented a stimulus, after

which the network relaxes to an attractor. When a new stimulus is presented,
the network will move to another basin of attraction and eventually relax to

another attractor. The transitions between attractors that are highly corre¬

lated is faster than the transition between less correlated attractors [12, 13].
In experiments of the Miyashita type, one would expect the transitions time

between attractors to increase with the distance in the stimulus presentation

sequence. An important extension is that, in the presence of noise, transi¬

tions can occur spontaneously, as described by Buhmann and Schulten [2]. In

this case, the probability of transition between different attractors increases

with the correlation of the attractors. Finally, Griniasty theorizes about the

possibility to provoke transitions by random activation of the neural network.

We followed this track by investigating further the properties of a stochas¬

tic Hopfield-like neural network, with particular regard to the probabilities
of transition between different attractors and their dependence on the net¬

work parameters. In the next chapters, we show that a neural network can

learn in unsupervised manner the transition probabilities from a sequence of

stimuli. If the network is provided with a suitable level of noise, it can gener¬

ate sequences of patterns (each pattern corresponding to a stimulus) whose

transition probabilities closely reflect those of the sequence used during the

training.

Learning stimuli sequences is a behaviorally relevant task: For example,
when navigating in an unfamiliar environment, we can find the correct path

by remembering a sequence of landmarks. Each landmark is used as a cue to

lead us to the next one. Another relevant example is described by Bartlett

1. Introduction

4

and Sejnowski, in their paper about "learning viewpoint invariant face rep¬

resentations from visual experience in an attractor network" [14]: Here they
show how learning temporal sequences of stimuli can lead to viewpoint in¬

variant representations of faces. Normally different views of an object (or a

face, in this case) are perceived in close temporal proximity, as the object is

manipulated or the face moves or changes expression. The authors devised

an attractor neural network learning rule by which temporally neighboring
stimuli are associated into the same basin of attraction. In this way, multiple
views lead the network into the same attractor. This is equivalent to say the

system has, within a certain approximation, a viewpoint invariant represen¬

tation of the object (or face).
It would be easy to include several other examples: Indeed, the processing
of temporal sequences of stimuli has a high relevance for animal and human

behavior. Language, musical, manual, and more abstract skills rely on the

learning, recognition, prediction, and generation of temporal sequences of

stimuli. For this reason, we designed and analysed the properties of an ex¬

tension of the known models [7, 11]. The network is shown to be able to learn

in unsupervised manner sequences of stimuli, and generate sequences with

statistical properties similar to those used during the training. Prediction

and recognition abilities are two other features of the system that will be

described in the next chapters.

Sequences can be better understood using the formalism of Markov pro¬

cesses and chains: Given a random variable X and the arbitrary times

... <n — 2 < n — 1 < n, a stochastic process is a Markov process if [15]

prob(Xn = x\Xn_t = y, Xn_2 = z,...) = prob(Xn = x\Xn_t = y). (1.1)

A process is a non-Markov process or a Markov process of order k > 1 if

prob(Xn = xn) = prob(X„ = x|Xn_i = xn-U ..., Xn_k = xn-k).

We have developed a recurrent network that is able to extract the transition

statistics from pattern sequences. The unsupervised network extracts the

transition statistics of an input sequence generated by either a Markov or

non-Markov process. When an input triggers the recall process, the transition

statistics of the pattern of activity of the network reflect those of the input

sequences.

In the following we review the use of neural network for the processing
of pattern sequences. Firstly, Hopfield-like networks are described. Both

networks with dynamic synapses and noise driven networks with instanta¬

neous synapses are reviewed in Sections 1.2.1 and 1.2.2. Attempts have been

done to solve grammar inference and prediction tasks using neural networks.

1. Introduction

5

Some approaches are reviewed in Section 1.2.4. Section 1.2.5 presents an

overview of the mostly used connectionist architectures used in conjunction
with sequences generated by Markov and non-Markov processes. Two recent

and innovative connectionist models are described in Section 1.2.6, including

Hopfield's most recent work. The algorithmic touchstone for the processing of

temporal sequences of pattern is provided by hidden Markov models. Hidden

Markov models are the most efficient algorithmic method to model temporal

sequences. In Section 1.3 hidden Markov models are briefly reviewed.

1.1 The associative memory problem

The associative memory problem, as defined by Hertz et al. [16] is to :

Store a set of patterns £f in such a way that when presented with

a new pattern £,, the network responds by producing whichever

one of the stored patterns most closely resembles &.

There is, of course, more then one way to solve this problem. One simple
solution requires the definition of a distance between two patterns and an

algorithm finding the pattern ^ minimally distant from £4. Our interest

does not focus on algorithms, but on dynamical systems capable of solving
this sort of problems. In particular, we are interested in systems of relatively

simple interconnected units, called neural networks. Each neuron is, by itself,
able to solve only one simple task, but, when several of them are connected

to each other, the system as a whole develops emergent properties which are

not to be found in the single components.

In the basic Hopfield [8] model of associative memory, the neurons can

be in either of two states: £ = +1 (firing) and £ = —1 (quiescent, or not

firing)1. The dynamics of the network is defined in this way:

Si(t + 6t) := sgn y^2wlJSl(t) - 9

l j

(1.2)

where the sign function sgn is

sgn(x) = {+j
**>°

(1.3)

The update rule 1.2 can be applied sequentially to all neurons (asynchronous
update) or to all neurons at the same time (synchronous update).

1
Alternatively, one can chose to assign the firing and not firing state to, respectively,

r] = +1 and r] = 0.

1. Introduction 1.1. The associative memory problem

6

The condition of stability for one pattern £ is sgn[^ uy^] = £j, Vz.

This condition is satisfied for wv oc £j£r If fewer of the half of the bits of

the starting pattern Sr are wrong, the network will relax to £z, correcting
in this way the initial errors. The pattern £4 is called an attractor of the

dynamics. In the case of p patterns, the synaptic matrix wv can be written

as the superposition of the term to be used in the case of single patterns [16]:

11=1

1.2 Neural networks for pattern sequences

In the following, we will mainly deal with the processing of pattern sequences.

Hertz et al. (see [16], page 177) distinguish three different tasks: Sequence

recognition, association and reproduction. Patterns recognition and associ¬

ation consist in the production of, respectively, a certain output pattern or

pattern sequence after a specific sequence is presented to the network. A

network can reproduce a pattern sequence, if it is able to generate the whole

sequence after having been shown a part of it, working in this way as a sort

of content-addressable memory for pattern sequences.

1.2.1 Synapses with dynamic memory

The Hopfield network can only be used as content-addressable memory for

static patterns. Sompolinsky and Kanter [1] were the first to propose a neu¬

ral network, based on the Hopfield model, capable of temporal association2.

Sompolinsky and Kanter designed a network with symmetric bonds between

neurons and synapses with dynamic memory. The network state moves along
a sequence of temporarily stable states. Each state is stable over an aver¬

age time period r, which is the characteristic time constant of the synapse

memory. In this model, the neurons are coupled by synapses described by
two synaptic matrices. The first is the synaptic matrix w^ described in

equation 1.4. The second is the asymmetric matrix

ii=i

The last pattern can be followed by first one by defining t^+1 = ^. In this

way, a pattern loop is created.

2A similar model was independently developed by Kleinfeld [17].

1. Introduction 1.2. Neural networks for pattern sequences

7

The use of the weight matrix defined in equation 1.5 had been proposed

by Hopfield [8] too. The network dynamics can be described by two regimes
that depend on the magnitude of A. For small A, all patterns are stable and

no transitions occur. For large A, the transitions do occur, but they are too

fast and eventually the network ends up in a state which has overlaps with all

patterns. Sompolinsky and Kanter solve this problem by splitting the fields

on the neurons in an instantaneous component h\, (t) = S7w| ^(t), and

in a retarded component h[a'(t) = V w)° Sj(t), where Sj(t) = f_oom(t —

t')S3(t')dt'. The function m(i) represents the memory of the synapses and is

characterized by a time-decay constant r. If the networks state 5* corresponds
at time to to the pattern £,, a transition from pattern £, to pattern £î+i will

be induced only after a period of time At = t — t0 ~ r (See Figure 1.1).
Peretto and Niez [18], Nebenzahl [19] and Dehaene et al [20] have proposed
different solutions. Instead of delayed synapses, they make use of synapses

that operate after a delay. The result is similar to that of Sompolinsky and

Kanter, that is, the network moves along a sequence of metastable attractors.

1.2.2 Noise-driven temporal association

Synapses provided with memory or delayed synapses are not necessary for

storing and retrieving temporal sequences. Buhmann and Schulten [2] de¬

scribe a Hopfield-like neural network with nonsymmetric static synaptic in¬

teractions capable of recalling temporal sequences. The only two conditions

are the synaptic interactions to be sufficiently nonsymmetric and the pres¬

ence of noise. The nonsymmetric projections define the order of the pattern

sequence and the noise triggers the transitions between consecutive patterns.

The frequency of the transitions is affected by noise and cannot be precisely
set as in the model by described Sompolinsky and Kanter. Its fluctuations

can anyway be decreased by using a larger number of neurons.

The network proposed by Buhmann and Schulten is composed by N neu¬

rons that can be in either of two states St = 1 (firing) or St = 0 (not firing).
Sl=l with probability

1 + exp(—2ph)

where ß is the inverse of the temperature T of the network, h% = V Jl3Sj —I
the synaptic input, or field, to neuron i, where J is the synaptic matrix, and /

the threshold potential. The patterns used in the network are biased, that is,

only a small fraction of the neurons are active. The patterns are supposed to

be orthogonal, that is ^2l£l/S^S^ = 8Vß, where ev is a normalization factor.

1. Introduction 1.2. Neural networks for pattern sequences

8

Figure 1.1: From [1], simulations of the network provided with symmetric instanta¬

neous synapses and asymmetric synapses with memory, as described in Section 1.2.

Number of neurons: 500, number of patterns: 10, r = 8, A = 2.5. (a) m(t) = r_1

for t < t and m(t) = 0 otherwise, (b) m(t) = r~1e~t/T'. The curves represent the

overlaps mv(t) = TV-1 J^fS^t) of the network state with the patterns as a func¬

tion of time. The numbers denote the index v. The explanation for the parameters

used can be found in the text.

Like the Sompolinsky and Kanter's model, the synaptic weight matrix is

composed by a symmetric and a asymmetric part. The symmetric part

w. E ^;sr -E -rfats- (1.7)

ß ¥= "

contains an excitatory term in common with equation 1.4 and an additional

inhibitory term. The former stabilizes pattern v, by providing excitation

to all active neurons belonging to it. The latter inhibits the neurons not

belonging to pattern v. In this way, a sort of competition is created be¬

tween all stored patterns. The network dynamics selects the pattern that

1. Introduction 1.2. Neural networks for pattern sequences

9

has maximum overlap with the starting network state.

The asymmetric part

w.
(a)
_

y
= E

/

V
'S] -EtNSi+a -l£u- 'sr ^+1^+1^+1 si

i* =

I A" " v\ > 1

shows two additional terms that provide an excitatory projection from each

pattern (Sv~1) to its successor (Su) pattern and add an inhibitory projection
from each pattern to its predecessor. If the network is initialized with a

state with maximum overlap with pattern S'7, the network dynamics will

move the network through a sequence of states with maximum overlap with

patterns S17*1, Sa+2, ...,
Sa+P (See Figure 1.2). The time required to make

40 80

f{MCS)

i- OflO MC5 f=3?.?5MCS

(«17.50MCS f-43.?5MCS

2'r 74~
f=23.50MCS f=60.5OMCS

Inf ' i;.
t=28.00MCS i= 70A9MCS

p'2 ••: 6

Figure 1.2: From [2], simulations of the network. In the left-hand part of the figure,
the evolution of the overlaps xv(t) = ^ £%Si(t) of the network state with the stored

patterns as a function of time are showed. The overlaps (see also Figure 1.1) have

a small resting value, except for brief periods, when they reach a value close to one

(y = 8, e" = 0.001, av = 0.1, ßv = l.OVv, T=± = 0.1, I = 0.35). The right-hand

part of the figure shows the network state, as a 2-dimensional matrix, as a function

of time, during the retrieval of a sequence of six patterns representing the number

1, 2,... ,6. The second and fourth network states show the transition between two

patterns (a" = 0.1, ßv = 1.0, T = ^ = 0.1, U = 0.35).The explanation for the

parameters used can be found in the text.

a transition from one patterns to the next one depends on the parameter au

and increases with decreasing a"'. The temperature, which is directly linked

to the noise of the systems, plays an important role. If the temperature

is lower than a critical value T*, any stored pattern becomes stable for an

infinite time, and no transition can occur.

1. Introduction 1.2. Neural networks for pattern sequences

10

Buhmann's conditions concerning the orthogonality of the patterns and

the presence of noise have been relaxed by Nishimori and Nakamura [21], who
show that an asynchronous deterministic (i.e., noise-free) neural network can

retrieve sequences of random patterns. The network used by Nishimori and

Nakamura is formed by N neurons. The state St of each neurons can be

either active (St = +1) or inactive (Sz = —1). The synaptic matrix has the

form:

^ = ^E^ec (1-9)

where Çf represents the state of neuron i of pattern \i, \x = 1,... ,p. The

overlap m" between the network state S and the pattern £" is defined, as

usual, as m"(t) = N_1 ^^S^t). The overlap mv evolves in time following
the equation:

dm"
„

1

im
„

l v^ »
—— = —m + — > 7? tann
dt N *-i

'

{v} L v,n

/^E7^m" (1.10)

where ß = 1/T is the pseudo temperature of the network. Equation 1.10 is

valid in the limit N —> oo and for a finite number of patterns. The Hopfield's

learning rule corresponds to the choice 7^ = Sßl,. In this case, equation 1.10

describes a dynamical system with a set of stable attractors, corresponding
to the patterns embedded in the synaptic matrix. For a suitable choice of

the coefficients 7^ (see [21]), Nishimori and Nakamura demonstrate that

the networks evolves along a limit cycle, formed by the ordered sequence of

stored pattern, even for T = 0.

1.2.3 Retrieval, counting, and recognition

An interesting application based on Sompolinsky's [1] and Kleinfeld's [17]
models is described by Gutfreund and Mezard [22]. They also use two sets

of interactions (see equations 1.4 and 1.5) and a stochastic updating rule at

finite temperature (see equation 1.6). The authors distinguish three modali¬

ties of use of the network: retrieval, counting, and recognition. After having
been in a state v for a certain time and if A (in equation 1.5) is sufficiently

large, the network state will make a transition to state v + 1, as described

in Section 1.2.1. In this way, the network can retrieve a temporal sequence

in response to an external stimulus corresponding to the first pattern of the

sequence. If the parameter A is too small to induce a transition from state

v to state v + 1, the transition can be provoked by an external signal pro¬

portional to pattern v + 1, that is by using an additional external field on

1. Introduction 1.2. Neural networks for pattern sequences

11

the i-ih neuron ht = hR t^+ .
In this way, the pattern £"+ is recognized by

the network. If the additional external field is proportional to a pattern t?j

uncorrelated with £j, \/i, the network makes a transition to the next pattern

each time the external field h% = hcrjz is present. In this case, the network

is said to be counting the number of external signals. The authors then ex¬

tend the recognition mechanism to a case in which each state is connected

to more then one possible successor. The field on the i-ih neuron due to the

asymmetric synaptic matrix w£ is

h{:] = A E(^+1 + C^lSi,» + S2,ß] (1.11)

(see Section 1.2.1), where ^l,tJ,+1 and t^,ll+1 are two possible successors of

4'^ and 4'^, which belong to two intersecting sequences (4'^} and {4'^}-
Which transition occurs is determined by the external signal, which is there¬

fore recognized. It is possible to choose the network parameters so that the

network, which is in state v, will not make a transition if the external signal
is not correlated with any successive pattern v + 1. This means that it is

possible to choose the network parameter so that the network recognizes the

sequences without counting the number of external signals. Gutfreund and

Mezard recognize the importance of noise. For a low noise level, the network

remains in the initial state. When the noise is increased over a critical value,
the network enters a region in which the external signals are recognized. A

further increase in noise does not improve the performance. The overlaps
with the successive patterns get more and more similar, as can be expected

by inspection of the update equation 1.6. The external signal has to arrive

before the combined action of the asymmetric synaptic links and noise in¬

duces a transition to one of the two successive patterns, or to a mixture of

the two. In our study, we will analyze the link between the strength of the

asymmetric synaptic weights, the level of noise (directly related to the pseudo

temperature l/ß = T), and the probability of a spontaneous transition from

a state to a number of possible successive states.

Complex patterns

In all the mentioned cases, any pattern can occur only once in a given se¬

quence. That means that the sequences cannot intersect by having a common

pattern and no pattern can be repeated in any sequence. Guyon et al [23]
addressed this problem, which was previously analyzed, in the context of

bird-song learning, by Dehaene [20]. Guyon proposed to embed the patterns

of the sequence at different times in a larger space, to be able to write the

fields on the network neurons using the usual expression h(t) = wy(t), where

1. Introduction 1.2. Neural networks for pattern sequences

12

w is the synaptic matrix and 7 the vector obtained by concatenating the

input patterns at different times. The number of input pattern vectors con¬

catenated corresponds to the minimal memory span required to disambiguate
a sequence in which at least one pattern appears twice. Guyon's work in¬

cludes a description of a number of non-local and local learning rules, the

latter only valid if the set of input pattern are linearly independent vectors.

Kühn et al. [24] proposed a different solution to the same problem. The

disambiguation of sequences with repeated patterns, or even repeated sub¬

sequences, is accomplished with the use of synapses with multiple time delays.
The model is based on three-neuron interactions, the first and the second

provided by symmetric (equation 1.4) and asymmetric synaptic links with

memory (see Section 1.2.1). The third set of synapses are also provided of

dynamic memory, but with a memory kernel characterized by a longer time

constant and thus suitable for the disambiguation of sequences containing

repetitions not only of single patterns but also of sub-sequences.

1.2.4 Grammars inference and prediction

A grammar is defined as a 4-tuple (Af, V,V,S) where Af and V are finite

sets of variables and terminals (an alphabet), V is a finite set of production
rules and S is the start symbol [25]. It is possible to associate a language to

each grammar, corresponding to the set of strings the grammar can generate,
and an automaton, a machine that that recognizes the grammar's strings. A

simple example of a grammar is given in [25], page 81: V = {S}, V = {a, b},
V = {S —> aSb, S —> ab}. By applying the first production rule n — 1 times,
and then the second production rule, starting from S, one obtains

S => aSb => aaSbb => a3Sb3 =*=* a""1^""1 => anbn (1.12)

So, the strings belonging to the language associated to this simple grammar

are the set {anbn} for n > 1.

Originally, grammars were seen as possible models for natural languages.
For a number of reasons, natural languages ended up being harder than

expected to model using this formalism. Anyway, context-free grammars

were adopted by computer scientists to model computer languages. Context-

free languages are now of great practical importance in the definition of

programming languages, in the formalization of the notion of parsing, in

the translation of programming languages, and in other string-processing

applications.
Grammar inference and prediction are fields in which the connectionist

approach has been widely used. Grammar inference [26] is defined as the

1. Introduction 1.2. Neural networks for pattern sequences

13

problem of finding or learning a grammar from a finite set of strings which

results in the ability to classify strings as belonging to the grammar-generated

language or not. The possibility of solving this problem using neural networks

has been studied by a number of investigators: Elman [27, 3], Pollack [28],
Giles et al. [29, 30], Lawrence et al. [31, 32], Hadley and Cardei [33], Das [34],
Rodriguez et al. [35, 36], and Williams and Zipser [37], just to cite a few. Far

from trying to review the subject, I just intend to point out some similarities

grammar prediction bears with my research project. I have considered only
those papers dealing with grammar prediction but not inference3. I have

chosen the three papers whose goal and methods can be best compared with

ours. In the first paper, by Williams and Zipser [37], a completely recurrent

neural network is used in conjunction with a gradient-following learning rule

for temporal supervised learning tasks. The network is shown to be able to

learn complex tasks requiring the retention of information over time peri¬
ods. The second paper, by Jeffrey L. Elman [3], illustrates the features of a

recurrent neural network and its ability in solving the prediction task with,
for example, a temporal version of the XOR problem. The third and last

paper, by Paul Rodriguez, Janet Wiles and Jeffrey Elman [35] shows how a

recurrent neural network can learn a language of the form anbn.

A learning algorithm for continually running fully recurrent neural

networks

The network used by Williams and Zipser has n units and m external inputs.
Let y(t) be the vector of length n of the outputs of the network at time t

and x(t) the vector of length m of external inputs to the network at time t.

Let z(t) be the concatenation, of length n + mof the vectors x and y. If U

is the set of indices k for which zk is an output of the network and / the set

of indices for which zk is an external input, we have

(+\ \ xk(t) ük E I
. .

The input sk to the k-ih unit at time t, for k G U is

Sk{t) = E wk3z3(t) (1.14)
jeuui

where wkj is the weight matrix, and its output at the next time step is

mit +1) = fk(sk(t)) (1.15)

3Pollack [28] describes how to turn the recognizer network into a generator, but the

method is trivial and consists in enumerating strings and filter out those the recognizer

rejects.

1. Introduction 1.2. Neural networks for pattern sequences

14

where fk is a squashing function. The learning algorithm for this network

adjustes the weight matrix w to match the units' output values with speci¬
fied target values at each timestep. This is done by minimizing the network

error by a gradient descent procedure. The learning can be done by accumu¬

lating the values of the weight matrix modifications for all timesteps (batch
learning) or make the weights change while the network is running (real-time
learning). The network has been tested on several tasks, two of which are

summarized in the following.

Pipelined XOR For this task, two external inputs are used, each of which

carry a randomly selected bit. The network is trained to match, at time t, a

teacher signal being the XOR of the input bits at time t — r, with r, with r

integer and r > 2. The network is showed to learn the task by configuring
itself as a multilayer network.

Simple sequence recognition For this task, 2 or more units are used.

Only two inputs, a and b are used, whereas the others are used as distractors.

The task consist in having one output unit to be set to 1 each time activity on

the b input is followed by activity on the a input, regardless of the time span

between the two activity changes. The learning algorithm can accomplish
the task by developing a flip-flop and a AND gate. The learning algorithm is

not local, as each weight needs to have access to the weight matrix and the

whole vector of errors.

Finding structure in time

Jeffrey Elman introduces this paper with a remark on the representation
of time in parallel processing models. Usually, time is given an additional

dimension in the input (see the Window in Time model in Kremer's re¬

view [38]). In this way, time can be treated like any other spatial input.
Several drawbacks to this approach are described. For example, there must

be some system buffering the inputs, to let the networks use them all at the

same time, which is, physiologically speaking, not very realistic. Another

problem lies in the size of the buffer, which limits the number of timesteps
which can be used for computation. The author claims that time needs to

be represented implicitly by the effects it has on processing, eliminating in

this way the need to increase the dimensionality of the input. In a nutshell,
the memory of the network should not be artificially introduced by using a

buffer, but should be a result of the dynamics of the network itself.

An open question regarding this approach is the degree of dependence of

the present state of the network on the past inputs. Systems whose com-

1. Introduction 1.2. Neural networks for pattern sequences

15

putation at any point in time is modified by the present input can have a

exceedingly high sensitivity to the inputs. That means that small differences

in the presented sequences bring to network states with low correlation with

each other. Low robustness with respect to noise in the input patterns is

an important drawback of this way of encoding time. Unfortunately, the

author does not mention these issues and limits its study to noiseless input

sequences.

Architecture and learning rule Figure 1.3 shows the schematics of the

network used by Elman. The recurrent connections allow the network's hid-

OUTPUT UNITS

T*-
HIDDEN UNITS

INPUT UNITS CONTEXT UNITS

Figure 1.3: From [3], a simple recurrent network in which the activity pattern of

the hidden units at any time t is used to form the activity of the hidden layer at

time t + 1. To do that, the hidden layer's activity pattern is copied at each timestep

to the context layer.

den units to see their own previous output, so that the output at any time t

is shaped by the input at time t and the output at time t — 1. In this sense,

the memory of the network is a feature of the dynamics of the network itself

and does not need to be added as a separate system. In the learning phase
the output of the network is compared with a teacher input and the synap¬

tic weights are adjusted using backpropagation of error. The weights of the

recurrent connections have a fixed value and are not subject to adjustment.
The network has been tested on several tasks, two of which are described in

the following.

1. Introduction 1.2. Neural networks for pattern sequences

16

Exclusive-OR This problem usually involves a two-bit input and a one-

bit output. In this case, the problem has been translated into a temporal
domain by constructing a sequence in which triplets of bits represent the

first, the second and the answer bit in this order. A sample sequence is

101000011110101 In this sequence, the first and the second

bits (1 and 0) are the input to the XOR, the third bit the result (1) and so

on. An input sequence, in which the input bit (the first and second bits)
are randomly chosen, was presented to a network made by 1 input unit, 2

hidden units, 1 output units and 2 context units, one bit a time. The task the

network had to learn was to predict the next bit in the sequence. It must be

remarked that the network has no way of knowing whether a bit is an input

input bit or an output (answer) bit and will try to make predict the next

bit at all timesteps. After the learning phase, the network has acquired the

ability to (partially) predict the bit sequence, as it is showed in Figure 1.4.

0.4 -i

0.35 -

0.3 -

o

LU

0.25 -

0.2 -

0.15 -

0.1 -

0.05 -

0 -I 1 1 1 1 1 1

0 2 4 6 8 10 12 14

Cycle (mod 12)

Figure 1.4: From [3], graph of the RMS error over 12 consecutive input bits. Data

points are averaged over 1200 trials. The network tries to predict the sequence

at each timestep. The error is low at the output (result) bits positions, where a

correct prediction is possible.

Structure in letter sequences This task has a higher level of complexity:
The sequence is composed by six different 6-bit binary vectors and requires a

memory extending more than one timestep back time. The sequence used in

the learning process is created in two steps. First, three consonants, b, d, and

g were combined in random order, then each consonant is expanded using

1. Introduction 1.2. Neural networks for pattern sequences

17

the rule b—)-ba, d—>-dii and g—)-guuu. So, for example, the sequence dbgbddg
would become diibaguuubadiidiiguuu, where each letter is represented by a

6-bit vector. It is easy to see that the consonants appear randomly, but

the vowels are correlated to the appearance of the consonants. The network

used had 6 input units, 20 hidden units, 6 output units and 20 context units.

The task of the network was to predict the next element in the sequence, by

extracting the regularities used in forming the sequence from the sequence

itself. Figure 1.5 shows the root mean squared error in this prediction task.

The goal was to show that this class of problems can at all be solved by

Figure 1.5: From [3], graph of the RMS error in the letter prediction task. The

network tries to predict the sequence at each timestep. The error is high at the con¬

sonants, whose order is random, and low at the vowels, where a correct prediction

is possible. Error is computed over the entire 6-bit vector.

using a neural network. In facts, the paper lacks a thorough analysis of

the network's features and limits. Its capacity and the dependence of the

capacity on the networks parameters are not examined. The learning rule

is not local and is supervised. For this reason a direct comparison with our

results is difficult.

A recurrent neural network that learns to count

In this paper, Rodriguez et al. try to answer two fundamental questions.

Firstly, they explore the ability of recurrent neural networks in learning to

1. Introduction 1.2. Neural networks for pattern sequences

18

predict a simple context-free language. Secondly they try to explain, by using
the language of dynamical systems theory, the reasons for the results they

got.

Architecture and learning rule The neural network used has two input

units, two hidden units, two copy (context) units, two output units, and one

bias unit. The architecture is thus the same as in Elman's paper [3] as well

as the learning rule used, that is, backpropagation in time.

Task The task was to learn the context-free language anbn (see page 12).
The sequences used in the learning phase had 1 < n < 11. The sequences

used in the evaluation of the networks included strings with n > 11 too, and

a network was considered to have generalized if it had properly learned the

training set and correctly predicted the strings with n > 11. The maximum

length of the correctly predicted strings was used to quantify the performance
of the network.

Results Out of 50 trials, the authors found that only 8 networks learned the

task and were able to generalize. The only difference between the networks

that could learn the task and those that could not is the initial weight set.

The networks that successfully learned the task could properly predict strings

up to n = 16.

1.2.5 Learning input-output relationships

The network reviewed in Section 1.2.4 can be considered as an instance of

a large class of network developed to handle spatiotemporal patterns. Kre-

mer [38] has carefully reviewed and classified a large number of recurrent

and non-recurrent networks used to learn input-output relationships in the

case of input data being a spatiotemporal pattern. His classification is based

on the fundamental parts making up any spatio-temporal processing system.

The state vector, the output function and the way they are computed, the

parameters of the network (the so-called long term memory), the way they
are updated (the learning rule), and the definition of the initial state of the

system.

All the reviewed networks are characterized by a supervised learning rule.

This means that the network parameters are updated with the aim of min¬

imizing the difference between the actual output state of the network and a

given target output.

1. Introduction 1.2. Neural networks for pattern sequences

19

An interesting part of Kremer's review is the one devoted to computing
the present state vector from its past states and inputs. Thirteen alterna¬

tives are described. The importance of this part comes from the fact that

we were confronted with same class of problems when designing a suitable

way to merge past and present information to create a suitable input for

the learning network. The problem, which will described in more detail in

Chapter 5, originates from the necessity to incrementally compute the state

of the network, without either storing the past states of the network or the

external inputs to it.

1.2.6 Other approaches

A few models, because of the peculiar approach used, do not fit in any

of the above mentioned classes. For example, the networks described by

Natschläger, Maas and Zador [39] that make use of dynamic synapses, and a

backpropagation-like algorithm to adjust the synaptic parameters. Natschläger
and colleagues take inspiration from the activity-dependent forms of short-

term plasticity such as facilitation and depression. In their framework, synap¬

tic strengths change on a short time scale during performance and not only

during the learning phase. In this way, a single synapse can produce quite
different outputs for the same input, depending from the synapse parameters.

By using a generalized form of the backpropagation learning algorithm, they
succeeded in training the network to mimic the features of a quadratic filter

of the form

m m

£x(t)=^2^2hklx(t-kA)x(t-lA) (1.16)
i=i k=i

where t is time, A is some time delay, x(t) is the input, and the filter coeffi¬

cient hki form an arbitrary symmetric m x m matrix.

In another work, Natschläger and Ruf [40] describe a network of spiking
neurons capable of finding clusters in a high dimensional input space and

recognizing temporal sequences, even if distorted in time. The network is

based on a set of synapses with learnable weights connected to delay lines.

The physiological realism of the network's architecture is questionable, as

such use of delay lines has not been observed yet in living systems.

The following two approaches distinguish themselves for the novelty and

originality. Both approaches are able to recognize spatiotemporal patterns,

but are unable to generate or predict them.

1. Introduction 1.2. Neural networks for pattern sequences

20

Transient synchrony

Hopfield and Brody's model network is probably the most innovative model

proposed in the last few years. The main question the authors try to answer

is how can a biologically plausible neural network integrate information over

times of the order of, at least, 500 msec. The model described in [4] makes

use of a network of spiking neurons whose activities decay with time. A

spatiotemporal pattern is recognized by the transient synchrony of a set of

neurons having, for a short lapse of time, similar spike frequencies.

Architecture and learning rule Hopfield's network is arranged in three

groups (see Figure 1.6).

Layers '2+3'

Area A

Figure 1 6 From [4], the architecture of the network The thick dashed line sepa¬

rates area A from area W, the thm dotted line separates layers 2 and 3 from layer 4

m area W Small filled circles indicate excitatory connections, whereas small open

circles indicate inhibitory connections

The input neurons belong to area A: Each neuron in this area is characterized

by an initial firing rate and a decaying activity, whose time constant is the

same for all the events that are able to trigger that neuron. Neurons of

area A project to what has been called "layer 4" of area W. Layer 4 of

area W contains two type of cells, a-type cells (excitatory) and ß-type cells

(inhibitory). Both a and ß cells receive excitatory input from area A afférents

1. Introduction 1.2. Neural networks for pattern sequences

21

and are found in similar quantities. Cells in layer 4 of area W connect to

each other: approximately half of the connections from each cell are onto a

cells, the other half are onto ß cells. Both type of cells project onto layer 2

and 3, where they contact the output 7 cells. The number of 7 cells is about

3% of the number of cells in layer 4 and they do not feed back to them.

Input cells are sensitive to different features of the input patterns. These

cells respond to stimuli with activities decaying with a variety of different

timescales. Synaptic connections between neurons with similar firing rates

often produce synchrony between the action potentials of these neurons. So,
if a and ß neurons are properly connected to each other, that is, after the

learning procedure has finished, if the input pattern matches the stored pat¬

tern, the a and ß neurons driven by the input neurons will synchronize and

the 7 cells will receive a high-amplitude oscillating input current that drives

them to fire.

No learning rule has been developed yet for this network. A learning

"procedure" is described instead. This procedure simply consist in selecting
those a and ß cells that have similar firing rates in response to the target

spatiotemporal pattern and creating all-to-all connections between this set.

The same set of neurons also need to be connected to an output 7 neuron.

The network has been successfully applied to the recognition of spoken words.

Liquid and 'echoed' states

Herbert Jaeger [5] and Wolfgang Mass et al. [41] arrived independently at

a novel way of exploiting the features of the networks of neurons to encode

spatiotemporal patterns. Jaeger [42] noticed how difficult it is to understand

high-dimensional, nonlinear dynamical systems and, in particular, recurrent

neural networks. Moreover, neural networks need a suitable learning rule, to

solve tasks like associating an output data set given an input data set. For

example, the backpropagation through time is one popular learning rule that

has been widely used as a general-purpose supervised training algorithm.
Some drawbacks of this algorithm are the computational cost and the lack

of biological realism, as non-local information are needed. Another problem
involved in learning in recurrent neural networks is that, in general, each

unit can influence, directly or indirectly, any other unit. So, it is difficult to

have old memories not being disrupted by the new ones. Jeager solves this

problem avoiding learning from the outset. His idea is to use large recurrent

networks as 'dynamical reservoir' from which an output set of units can

tap information about the input spatiotemporal pattern. In this way, only

network-to-output connection weights need to be learned. This can be done

with known, highly efficient algorithms.

1. Introduction 1.2. Neural networks for pattern sequences

22

Architecture and learning rule Jaeger's model is a discrete-time neural

network with K input units, Af internal units and L output units. Activations

of input units at time step n are u(n) = (u\(n),..., uk(u)), of internal units

are x (n) = (x\ (n),..., xn (n)), and of output units y(n) = (yi (n),..., y^ (n)).
The network is updated according to

x(n + l) = f(W[nu(n + 1) + Wx(n) + Wbacky(n)) (1.17)

where / = (fi, ,/n) are the internal unit's output functions (typically
sigmoidal functions) and Wm, W, and Whack, respectively &NxK,aNxN
and a L x (K+N+ L) weight matrix. The output of the network is computed

according to

y(n + 1) = r\u(n + l),x(n + 1), y(n)) (1.18)

where /out = (f°ut,..., flut) are the output unit's output functions and

(u(n+l), x(n+l), y(nj) the concatenation of the input, internal and previous

output activation vectors (see Figure 1.2.6). In this way, the state x(n) can

K input N internal units L output

Figure 1.7: From [5], the network architecture. Dashed arrows indicate connections

that are possible but not required.

be considered as an "echo" of the input history as well as the output of the

network y(n), which can be written

y(n + 1) = G(..., u(n), u(n + 1);..., y(n - l),y(n)) (1.19)

Jaeger's model avoids the necessity to convert a time series into a static input

pattern by using windows in time or shift buffers.

1. Introduction 1.2. Neural networks for pattern sequences

23

The learning procedure minimizes the mean square error of the difference

between the network's output and a training signal. Learning is applied only
to the weights connecting to the output units; all other connections remain

unchanged. Jaeger illustrates the features of his model in several examples.
One particularly interesting example regards text learning and generation.
In this example, the task is to process a text and recall it. The values of

the output units are used to randomly draw the next character in the output

sequence, which is then used as next input to the network.

1.3 Hidden Markov models

Hidden Markov models are statistical models of sequential data. A drawback

of Markov models of order k (see equation 1.1) is that they become intractable

for large k. Hidden Markov models do not assume that the observed data

sequence has a Markov property of low order, which is, in general, not true.

They are based instead on the assumption that a hidden (unobserved) state

variable exists, which summarizes all the relevant past values of the observed

and hidden variables. In this way, the values of the state variable can be

used in the prediction of the value of the observed variable yt or of the next

state qt+i-

A hidden Markov model is completely specified by the initial state prob¬
abilities P(qi), the transition probabilities P(qt\qt-i), and the emission prob¬
abilities P(yt\qt). The probability of observing a given sequence y[as the

result of a sequence of hidden states q\ is given by

T-l T

t=i t=i

A review of the most commonly used learning methods can be found in the

paper by Ghahramani [43] and in the one by Bengio [44], who also reviews

some extensions of hidden Markov models like, for example, hybrids of hidden

Markov models and neural networks.

1.4 Conclusions

The processing of temporal sequences of patterns is a task common to several

fields. Brains are good at learning, recognizing, generating, and predicting

patterns. Anyway, not much is known about the neuronal circuitry needed

to implement such behaviors. Hopfield's model first gave an insight about

the structure and dynamics of a network that is able to perform simple

1. Introduction 1.3. Hidden Markov models

24

tasks like the content-address recall of static patterns and pattern sequences.

Hopfield's model was later augmented and enhanced by the use of dynamic
'non-instantaneous' synapses, which keep a short-term memory of the activ¬

ity history of the network. Dynamic synapses can make the recall process

dependent not only on the present state of the network, but also on its state

back in time.

In neural networks, noise can play an important role. A stochastic update
rule for single neurons can make a network show features that are not present

in the deterministic version. Buhmann and Shulten showed that dynamic

synapses are superfluous if a high enough level of noise is introduced into the

system.

A Hopfield-like network is not the only architecture capable of processing

pattern sequences. Kremer published a whole taxonomy of networks that,
more or less successfully, can learn pattern sequences. The synaptic links of

the networks reviewed are updated with a supervised learning rule, whereas

an unsupervised rule would make these models more suitable for a comparison
with the dynamics and mechanisms found in brains.

The problems tackled in the field of grammar inference and prediction
also imply the processing of sequences of patterns. If, superficially, the tasks

in neurosciences and grammar inference bear several resemblances, a closer

analysis reveals that the goals are distinct. The use of neural network in

grammar inference and prediction has been mainly aimed to the design of

systems able to extract the production rules of the grammar rather than

learn the sequences by creating an internal representation of them. The

results are however of interest, as the use of neural networks to solve this

class of problems might give an insight about the mechanism used by brains

to solve similar tasks.

Hopfield's latest work is undoubtedly one of the most promising models

for the processing of temporal sequences of patterns by physiologically real¬

istic neurons. The development of a suitable, possibly unsupervised learning
rule (only a learning 'procedure' is described) is probably going to be the

next challenge, whose solution will determine the future development of this

approach.
Another recent model is the so-called 'liquid states' [41]or 'echoed states'

[5] network. In a nutshell, these networks use a set of neurons as a 'reservoir',

containing memory traces of the past inputs to the network. The readout,
which extracts information from the reservoir, is the core of the system. In

some aspects, the 'echoed states' network is similar to the one we developed.
In the following we wil maily refer to the Jeager's version of the network,

being Maass' one substantially similar. Like our network, Jaeger's network

is a dynamical system capable, of learning pattern sequences. The weights

1. Introduction 1.4. Conclusions

25

of the connections between at least some of its units can be modified by a

learning rule. It encodes the history of the input stimuli (patterns) in the

activity pattern of the network, by incremental modifications of the present

activity, as it will be explained in detail in Chapter 4. The main differences

between Jaeger's network and ours are described in Chapter 6.

We show how our network, based on a simpler architecture and on well-

known dynamics and learning rule, displays a performance similar to the

one of Jaeger's model. The most evident advantage of our model lie in the

ability to generalize to time-warped stimuli sequences (or even to sequences

with random inter-stimulus times), the unsupervised learning rule, and an

architecture that, being based on binary synapses and neurons, is particu¬

larly simple to be implemented in hardware. The encoding mechanism (see
Chapter 4) that mixes the present activity pattern of the network with the

new stimulus is perhaps the part of our model that mostly needs improve¬
ments. In particular the buffer network, described in Section 4.1.1, should

be considered as a placeholder for a not yet developed system: such a system

should perform in a way very similar to the buffer network, but its properties
should emerge from the network dynamics, instead of having been designed
on purpose. Even if this might make many neuroscientists' eyebrow raise,
we have anyway accomplished the task of implementing a Markov model as

a dynamical system, suitable for aVLSI implementation. Our systems can

also be employed for the modeling of brain functions, although to a limited

extent, and represent a solid starting point for further research in this field.

1. Introduction 1.4. Conclusions

Chapter 2

The model network

In Chapter 1, we showed how storing and recalling a temporal sequence

of stimuli in a neuronal network can be achieved by creating associations

between pairs of stimuli that are contiguous in time. This idea is illustrated

by studying the behavior of a neural network model with binary neurons and

binary stochastic synapses, whose architecture, dynamics, and learning rule

we are going to describe in this chapter. The network is shown in Chapter 3

to be able to extract in unsupervised way the temporal statistics of the

sequence of input stimuli. When a stimulus triggers the recalling process, the

statistics of the output patterns reflects those of sequence used during the

training. If the sequence of stimuli is generated through a Markov process,

then the network faithfully reproduces all the transition probabilities. In

Chapter 4 we show that, using a suitable pre-processing of the input stimuli,
the network is also able to learn and generate stimuli sequences generated by
a non-Markov process.

2.1 Introduction

Our current understanding of the neuronal mechanisms that allow biological

systems to encode and recall temporal sequences of stimuli is still marginal.
In the last decade many studies attempted to relate the problem of encoding

temporal sequences to the generation of associations between visual stimuli

[45, 2, 7]. Interestingly, in one simple case [10], in which the stimuli were pre¬

sented in a fixed temporal order, it was possible to study the neural correlate

of this kind of associative memory. Cortical recordings displayed significant
correlations between the patterns of activity elicited by neighboring stimuli

in the temporal sequence. Hence these internal representations of the vi¬

sual stimuli encode the temporal context in which stimuli were repeatedly

26

27

presented during training. These patterns of activity were stable through¬
out long time intervals and have been interpreted as global attractors of the

network dynamics [7]. These attractors are correlated up to a distance of

5 in the temporal sequence, similar to that observed in the experiment of

Miyashita [10], despite the fact that the learning rule makes use only of the

information about the contiguity of two successive stimuli [7, 11]. Here we

try to extend these mechanisms to a more general situation. First, we show

that the network, in the presence of noise with a suitable amplitude, can

spontaneously jump to a correlated pattern of activity representing a differ¬

ent stimulus. The degree of correlation between the internal representations
of the stimuli encodes the transition probability, and the presentation of a

single stimulus can trigger the recalling of a sequence of temporally corre¬

lated patterns of activity. Second, the spatial structure of the attractors,

that encodes the transition probabilities, can be learned when the network is

exposed repeatedly to the temporal statistics of the stimuli. The transition

probabilities are automatically extracted during this training phase and en¬

coded in the synaptic matrix, which, in turn, determines the structure of the

attractors. The learning rule was inspired by the one introduced in [7] and it

makes use of the information carried by the current stimulus and by the pat¬

tern of activity elicited by the previous stimulus. A possible mechanism for

making this rule completely local in time has been suggested in [46, 11] and

relies on the stable activity that is sustained by the network in the interval

between two successive stimuli.

2.2 Methods

Concerning the choice of the architecture, we were guided by the wish to

keep our model as simple as possible. For this reason, we employed a fully
connected network of binary neurons linked by binary synapses, which is

also a network model often employed by various researchers in this area.

The dynamics of the network is stochastic, as described in [16]. Learning
is also implemented as a stochastic process, in which the final probability
for a synapse to be potentiated depends on the whole sequence of patterns

to which the network was exposed during the learning phase. An adapting,

dynamic global inhibition keeps the average activity of the network constant.

By using binary neurons with only two values (+1 and 0), excitation and

inhibition have been kept separated. All neurons only provide an excitatory

input to other neurons. The global activity is kept, on average, constant by
the negative feedback provided by a global inhibition, which can be thought
to be provided by a population of inhibitory neurons whose activity is propor-

2. The model network 2.2. Methods

28

tional to the activity of the excitatory neurons population. Stochasticity was

introduced in the dynamics of the network by means of the so called Glauber

dynamics (see, for example, [47]). The Glauber dynamics is a popular way

of updating the state of the neurons of a network: it depends on a parameter

(the pseudo-temperature T, or its inverse ß) and on the synaptic input to

the neuron being updated. The stochasticity introduced by this dynamics
reflects the noise which is normally present in brains. Far from being just a

nuisance, noise is an essential component of the network. In the next chapter
it will be shown how the performance of the network can be maximized by

acting on the level of noise. Fedoroff and Fontana [48], on an article about

gene networks, observed that

The deterministic view of stable states [...] requires exogenous

agents of change to initiate transitions, whether these transitions

be developmental or adaptive. If stochasticity is a fact of life,
states are by definition metastable, and fluctuations can cause

transitions between them.

In this view, noise in neural networks, gene networks, and, in general, in

biological systems, might play an important role in enabling the adjustments
needed to cope with an ever-changing internal and external environment.

Learning was also implemented as a stochastic process in the sense that the

potentiation or depression of the synapses is a probabilistic function of the

activity of the pre- and post-synaptic neurons.

For a wide class of networks, when the maximum storage capacity is

reached, the network can no more retrieve information about any of the

learned stimuli [47]. This problem can be avoided by allowing the network to

forget. Our network, like a large class of networks [49], shows the 'palimpsest'

property. This implies that information about old stimuli is forgotten to

make room for the new ones. Of course, too fast forgetting is not a desirable

feature. Remembered stimuli belong to a 'sliding window' in time: Stimuli

laying outside the window are forgotten by the network. The width of the

window depend on the learning rule, and namely, on the fraction of synapses

that is changed in correspondence to any stimulus presentation. If only a

small fraction of neurons is changed each time, learning is a slow process,

and the window in time of the memory span is large. If the fraction is

large, the network can quickly learn new stimuli, but the window width is

relatively small. So, the speed by which information about old stimuli is

forgotten can be tuned by changing the fraction of synapses taking part to

the learning process each time a stimulus is presented. Additionally, Fusi [49]
showed that this learning rule, in the case of slow learning and patterns with

low activity, can reach the optimal storage capacity. This means that the

2. The model network 2.2. Methods

29

information content of the pattern scales in the same way as the information

content of the synapses. The maximum number of different patterns that can

be stored and retrieved without errors is N2/(\ogN)2, if the mean activity
of the network scales as log N/N.

In our network, we chose, for simplicity, to have binary neurons. This

choice will ease the implementation of a simulation based on integrate-and-
fire neurons, which will eventually lead to a hardware (aVLSI) implementa¬
tion. In general, the performance of the network does not improve with the

number of stable synaptic states if several neurons in the patterns of activ¬

ity of the network have the same spiking rate, and so encode for the same

information. As only two levels of neuronal activity are elicited by exter¬

nal stimuli, we chose binary synapses for our network, without worsening its

performance. This choice in not physiologically implausible. Petersen [50]
showed that individual synapses appear to have all-or-none potentiation. His

results raise the possibility that some forms of synaptic memory may be

stored in a digital manner in the brain.

At this point, it is natural to ask which is the mechanism that provokes
the stochastic potentiation or depression of the synapses. Fusi [49] showed

that the needed source of noise can be found in the inter-spike interval vari¬

ability. His solutions finds justification in the irregularity of the spike trains

recorded in vivo (see, for example, the work by Softy and Koch [51]). Fusi

demonstrates that this source of noise can be used to achieve the stochastic

potentiation or depression of any synapse, even if the synapses themselves

are deterministic. The method described in [49] is shown to be suitable for

implementation in hardware (aVLSI).

2.2.1 Architecture and dynamics

We implemented a recurrent neural network with N neurons, labeled by in¬

dex i, i = 1... N. The state of neuron i is described by the variable St:

St = 1 (St = 0) corresponds to a firing (quiescent) neuron. The network is

fully connected with binary synapses Jl3 from neuron j to neuron i [46]. The

fraction F = -^ J^fe Sk of neurons that are active, corresponding to the level

of neural activity, is generally lower than 0.5. The neuron's state is updated

using the Glauber dynamics, in which St=l with probability

»(A) S l+exp't-W <2'1)

where ß is the pseudo temperature of the network and h% = ^ JijSj ~ I the

synaptic input, or field, to the neuron. The global inhibition / dynamically

adjusts the activity of the network. The computed value / for the inhibition

2. The model network 2.2. Methods

30

Box 2.1 Glauber dynamics.
The network is composed by N neurons. Neurons are labeled by index i, i = I...N.

The state of neuron i is described by St: St = I (active neuron) or St = 0 (non
active neuron). The synaptic (weight) matrix is 3iy Each synapse can be potentiated

(JtJ = 1) or depressed (Jl3 = 0).

ht = 2_^ J%jSj — I

3

is the synaptic input, or field to neuron i (see code in Section A.2) and I the global
inhibition. Neurons are updated using the Glauber dynamics: The probability for a

neuron with synaptic input h to be active when its state is updated is

9ß{k) S
1+expHOT

where ß is the inverse of the pseudo temperature (see code in Section A.3). One

timestep of simulation corresponds to the update of all neurons of the network in

random order.

as a function of the global network activity F is expressed by the following

equation:

_

/ HHt) - s0(F - 8l)) If s0(F - Sl) > Im
-

\ \(I(t) - In) If s0(F - Sl) < Im
[Z-Z)

where typically 1/r = 0.02, Im is a minimum activity, euristically chosen to

be Jo/5, and so and s\ are chosen so that srj(/o — si) = -^o and so(^fo —

si) = 0, where tipically k = 0.7. so and si are kept fixed during the whole

simulation. IQ is usually chosen between the maximum value of the field on

quiescent neurons and the minimum value of the field on active neurons when

the network state corresponds to a learned pattern of activity (Figure 2.1),
and /o is the average activity of the learned patterns. The value of L =

sq(F — Si) represents the target inhibition for the network. The inhibition

is not immediately set to L but slowly adjusted. The inhibition is typically

adjusted once per timestep, where one timestep corresponds to the update
of all neurons of the network. If I(t) is the present value of the inhibition,

I(t + 1) its value after the adjustment and L the target value,

I(t+l) = ±(I(t)-L) (2.3)

(typically, 1/r = 0.02) shows how the inhibition is actually a low-pass filtered

version of the function L = L(F). This is made to let the system variables

2. The model network 2.2. Methods

31

change continuously and to avoid the oscillations that might be caused by a

too prompt response of the dynamic inhibition to changes in network activity.
Different values of Jo lead to different asymptotic value of the inhibition /,

Box 2.2 Dynamic inhibition

The network is composed by N neurons. Neurons are labeled by index i, i = I... N.

The state of neuron i is described by St: St = 1 (active neuron) or St = 0 (non
active neuron). F, the global actvity of the network, is defined as the fraction of active

neurons:

k

Each time the inhibition is updated, its value is modified according to the difference

equation

m +
n-J Hnt)-so(F-Sl)) iis0(F-Sl)>im

['
{Hn^-Im) Iis0(F-Sl)<Im

where typically 1/r = 0.02, Im is a minimum activity, euristically chosen to be Iq/5,
and so and s\ are chosen so that

so(/o - Sl) = ^0

so(k/o - si) = 0

where tipically k = 0.7. sq and s\ are kept fixed during the whole simulation. Iq is

chosen between the maximum value of the field on quiescent neurons and the minimum

value of the field on active neurons when the network state corresponds to a learned

pattern of activity (see Figure 2.1), and /o is the average activity of the learned patterns

(see code in Section A.4).

as shown in Figure 2.2. The asymptotic value of the activity depends on

the chosen I0, as it is shown in Figure 2.3. The temporal evolution of the

inhibition, plotted in Figure 2.4 for several choices of I0, shows that 5 updates
of the network are sufficient to let the network's inhibition and activity relax.

Definition of overlaps and transitions

The overlaps mß(t) of the current state of the network with a pattern /j,

(?yf = 1, 0) are defined as mß = jf^S^ [47]. Given a set of n patterns

and the set of integers A4 = {1,..., n}, if, at time t, ma > m/J', V/i G A4 \ a

and, at time t + 1, mP > m^, V/i G A4 \ ß, a network is said to have made

a transition from pattern a to pattern ß. This definition does not depend
on the definition of timestep, which can correspond to the update of any

number of neurons. The element TUß of a transition probability matrix for

2. The model network 2.2. Methods

32

Figure 2.1: Histogram of the non-zero fields (synaptic inputs) on the neurons of a

network of 490 neurons after the learning of 7 random patterns with activity 1/7.
The network state has overlap 1 with one of the 7 learned patterns. The values

of the bars of the histogram represent an average over 100 similar networks, which

differ only in the synaptic matrix. The left-hand peak corresponds to the synaptic

input to quiescent neurons, the right-hand peak to the synaptic input to active

neurons. The inset shows a magnification of the central part of the histogram.

a network can be computed by measuring the probability for a network to

make a transition from a pattern /i to pattern v. The transition probabilities
matrix can be calculated using the following protocol:

1. The network state is set to have overlap 1 with pattern \i: S% = r/f.

2. The network is left free to evolve for a maximum time tmax.

3. If the network makes a transition to pattern v, increase the element

TVß of the transition probability matrix by a fixed quantity.

4. If the network makes a transition or if t > tmax, reset the network state

to pattern /i + 1, modulus the number of patterns.

5. Eventually normalize the transition probability matrix.

Error on the probability estimation

The probability of a set of mutually exclusive events can be estimated by di¬

rect measurement. Given the total number of observations m, the estimated

probability P and the width of the confidence interval in standard deviations

k, the upper and lower bound of the estimated probabilities are given by

2. The model network 2.2. Methods

33

c

o

Measured data

Diagonal
Field histogram

06 .08 .10 .12 .14 .16

Inhibition L

Figure 2.2: Asymptotic value of the inhibition / as a function of the initial inhibi¬

tion Iq. All curves represent average values over 100 networks (the same networks

used to produce Figure 2.1 have been used). The arrows point to the absolute

maximum value of the fields on quiescent neurons and to the absolute minimum

value of the fields on active neurons. When Iq is chosen between these two values,

the asymptotic value I of the inhibition (i.e., the value of the inhibition after a

large number of updates of the whole network, 30 in our case. See also Figure 2.3)
is a linear function of the initial inhibition Iq for all networks. A good linearity is

preserved for values of Iq chosen outside the shown interval, but still in the range

[0.05; 0.09]. The dashed line is the diagonal of the plot, which can be used as a

reference. The dotted line corresponds to the histogram shown in Figure 2.1. For

values of Iq higher than 0.09, I eventually settles to a value close to 0.09. If Iq is

chosen lower than 0.05, I can be oscillating and its average value is always higher
than Iq (7 = ^, 1/r = 0.02, f0 = 1/7 « 0.14).

Meyer [52]

Pi

Pm + ^-Tk
low/high

P(l-P)m +

m + k2
(2.4)

2.2.2 The learning rule

Learning is also implemented as a stochastic process, in which the final prob¬

ability for a synapse to be potentiated depends on the whole sequence of

patterns to which the network was exposed during the learning phase. A

pattern rft is presented to the network by setting the neuron states St = r/f
and it is learned, according to [53], by applying the following rule:

• If J%3 = 0 and the neurons rçf and rf3 are both active, then a transition

of the synaptic weight J%3 : 0 —) 1 occurs with a probability q+.

If J%3 = 1 and only one of the neurons r/f and rf is active, then a

2. The model network 2.2. Methods

34

l>«>ttllt»lleet

!o6 !08 JÖ A2 A4 .16

'o

Figure 2.3: Asymptotic value of the activity / as a function of the initial inhibition

Iq (Jo = 1/7 pa 0.14). For Iq greater than the maximum field on quiescent neurons

(see Figure 2.2), the dynamic inhibition keeps the global activity (i.e., the value

of the activity after a large number of updates of the whole network, 30 in our

case, see also Figure 2.2) close to the desired value Jq. If 7o is smaller than the

maximum field on quiescent neurons, the asymptotic inhibition is greater than the

desired activity /o-

Box 2.3 Overlaps and transitions

The overlap of the network state S with a pattern if is

(see code in Section A.5). Given a set of n patterns and the set of integers M =

{1,..., n}, if, at time t, ma > m^, V a G M\a and, at time t + \,mP > mfl, V/x E

M \ ß, a network is said to have made a transition from pattern a to pattern ß (see
code in Sections A.6 and A.7). The element TVjl of a transition probability matrix

is computed by measuring the probability for a network to make a transition from a

pattern jj, to pattern v.

transition of the synaptic weight J%3 : 1 —>• 0 occurs with a probability

q-

• If both the neurons 7/f and rft are inactive, the corresponding synapses

are left unchanged.

A transition from pattern rf to pattern rf is learned using the additional

rule [46, 11]:

• If J%3 = 0 and the neurons n" and n] are both active, then a transition

of the synaptic weight Jt3 : 0 —>• 1 occurs with a probability qx =

Xq+, where A < 1: 77!^ is usually the present activity pattern, and r/]

2. The model network 2.2. Methods

35

Timesteps

Figure 2.4: Evolution of the inhibition for different inhibitions Iq (see Figures 2.2

and 2.3). One timestep corresponds to the update of a single neuron. The full

network is evolved 5 times. For Iq greater than 0.09, I oscillates and eventually
settles to a value close to 0.09, as can be seen in Figure 2.2.

the activity pattern before the presentation of the latest stimulus. In

Section 3.1.2 an extension of this rule has been used: if J%3 = 0 and the

neurons rf/ and rf3 are both active, then a transition of the synaptic

weight J%3 : 0 —> 1 occurs with a probability qx = Af q+ and a transition

of the synaptic weight J3% : 0 —> 1 occurs with a probability qx = AbÇ+,

A0)/<1.

The learning process needs to be repeated several times for each pattern and

pattern pair. The number of times L the learning has to be repeated must

be large enough to let the synaptic matrix relax to stable asymptotic con¬

figuration. To achieve that, L ^> — > — is needed. In the case of random
o '

qx q+

patterns, if the average fraction of active neurons (activity) is /, the proba¬

bility for two randomly chosen neurons to be both active is f2, whereas the

probability for the two neurons to have different activity is 2/(1 — /). In

order that the probability for long term depression is approximately equal to

the probability of long term potentiation, we choose </_ = Ji-f) The result

of a single pattern learning is to have the active neurons belonging to a pat¬

tern providing a synaptic input to neurons belonging to the same pattern. In

this way stable attractors are created. The learning of a transition results in

making neurons belonging to a pattern have a finite probability of providing
a nonzero synaptic input to neurons belonging to a different pattern. Let us

suppose the network has learned the transition from pattern rft to pattern

rj". If the network state is made to correspond to pattern r/f (St = 7/f) and

then let free to evolve, there will be a nonzero probability for the network

to make a transition from pattern rft to pattern rj". In case several patterns

2. The model network 2.2. Methods

36

and transitions have been learned, the transition probability is shown, for a

suitable choice of the network parameters, to be a monotonically increasing
function of the relative frequency of presentation of the patterns during the

learning phase.

2.3 Summary

Learning temporally neighboring stimuli form correlated attractors in the cor¬

tical network dynamics. These correlations have been suggested to influence
the probability for the network to make transitions between different attrac¬

tors. To study such phenomena, we employed a Hopfield-like network with

binary synapses and binary neurons. Noise is included in the model as the

pseudo-temperature of the Glauber dynamics. When the network is exposed

repeatedly to a sequence of stimuli, the synaptic matrix is modified according
to a Hebbian learning rule.

2. The model network 2.3. Summary

Chapter 3

Learning Markov processes

A Markov process is a random process in which the probability for a cer¬

tain state to occur depends only on the present state of the system, and not

on the events leading up to the present state. Given a Markov matrix M,
the element MVfl is the probability of transition from state sß to state sv.

To teach the network a pattern sequence generated by a Markov process, a

pattern rçf is randomly chosen from a pool of p patterns and presented to

the network, which learns it. The next pattern rf/ is chosen according to

the transition probability of the Markov process from state ji to state v (see
code in Section A. 10). The two patterns are subsequently presented to the

network, which thus learns the transition from the first to the second. This

process is repeated until the synaptic matrix has reached its asymptotic con¬

figuration. Alternatively, the probability for each synapse to be potentiated
can be analytically calculated in the limit for a pattern sequence of infinite

length [54]. Calculating the weight matrix in this way is computationally
less expensive than on-line learning. Given the auxiliary variables P%3 and

Q%3, which are respectively proportional to the number of events leading to

synapse potentiation and depression (see code in Section A.9),

pv = EÏ=ifaW?+ + ELiW^aç+))
Qv = e;=i((i - tfx?-+«-»zra - <))

['

the probability for the synapse J%3 to be 1 is given by pt3 = p !_}Q .

3.1 Results

We start demonstrating the network's ability in learning and recalling a single

sequence of patterns. The setup used now and in the following Sections is

showed in Figure 3.1. A input layer of neurons is directly connected to the

37

38

Input layer •••

Learning
network

v

£ jêèêèè t»,

Figure 3.1: Schematic showing the direct connection of the input layer to the

learning network for learning the transition statistic of a pattern sequence generated

by a Markov process. The input layer does not play any active role, and is only
used for clarity. The input layer neurons make a one-to-one synaptic contact with

the learning network neurons. Input patterns provide a non-zero input to a fraction

/ (on average) of the learning network neurons. The input from the input layer is

strong enough to drive the dynamics of the learning network neurons.

3. Learning Markov processes 3.1. Results

39

learning network. The input weights from the learning network to the input

layer are all set to zero and the weights from the input layer to the learning

input are set to dominate the network's dynamics, when an external input
is present. A set of orthogonal patterns and a set of partially overlapping

patterns have been chosen to illustrate some of the network features in two

examples. The partially overlapping patterns were created to look like integer
numbers. The network was able to reproduce the sequences. The effects

of an external input on the network's dynamics are briefly examined: The

external input affected the behavior of the network, by biasing its transition

probabilities. The performance of the network was then evaluated in the

case, where a Markov chain was used to generate the input sequence used

in the learning phase. The network was able to reproduce the statistics of

the input sequence, and its performance depended on ß and Iq. The on-line

learning procedure and the analytical derivation of the synaptic matrix led

to equivalent results.

3.1.1 Learning pattern sequences

Our model neural network was able to learn a set of patterns rft, fi = 1.. .p,

using the learning rule described in Section 2.2.2. The learning process cre¬

ated a set of stable attractors of the network's dynamics. When the tran¬

sitions between patterns are learned, the attractors created are metastable.

Let us consider a network that learned the transitions from pattern ryf to

pattern ?yf for /j, < p and from pattern rf% to pattern n\. The learning

process has formed a closed chain of metastable attractors, where attractor

/i corresponds to pattern rçf. When it os left free to evolve, the network has,
at each timestep, a finite probability of making a transitions from attractor

fj, to attractor \i + 1 for /i < p and from attractor p to attractor 1.

The role of the pseudo-temperature

The pseudo-temperature, appearing as its inverse ß (see Section 2.2.1), can

alter the recall process by influencing the escape rate from the attractors

of the dynamics. A low pseudo-temperature (high ß) decreases the escape

rate (increase the escape time) and so prevents the transition of the network

to another attractor. The relationship between escape time and tempera¬

ture is shown in Figure 3.2. Figure 3.3 shows the evolution in time of the

overlaps mß(t) of the network state with the patterns ?yf, /i = 1.. .p (see
Section 2.2.1). Each time the plot lines cross each other, we say a transition

has occurred (see definition in Section 2.2.1). As the network learned a closed

chain of seven patterns, after seven transitions the network state has again

3. Learning Markov processes 3.1. Results

40

50

W40H
o.

"tö
<D

.i3o^
i—

\

E

-20
<D

Û.
o
o
V)

u 10 H
n

-5- - - a - - -H- -E> • ° 's' • -° • "a" " 'H' "
-H---D

..-G---E1-"

~~I T~

40 60

1/Temperature
0 20 80 100

Figure 3.2: Escape time (one timestep corresponds to one update of the whole

network) is plotted as a function of ß (see Section 2.2.1). The escape time increases

monotonically with the decreasing temperature. The values are averages over all

learned transitions for 10 networks with different synaptic matrices but otherwise

identical (490 neurons, 7 orthogonal patterns, activity = 1/7, A = 0.4).

maximum overlap with the starting pattern.

About (non-) orthogonal patterns

In Section 3.1.1 we used both orthogonal and non-orthogonal patterns. In

general, patterns can be randomly generated, while keeping the fraction of

active neurons (activity) constant
.
In this case, some neurons belong to more

than one pattern, making the attractors less stable. When the networks state

corresponds to one attractor, the difference between the minimum field on

active neurons and the maximum field on quiescent neurons is a function of

the overlaps between patterns (figure 3.6). When this difference is negative, it

is impossible to find a suitable fixed point for the inhibition (see Section 2.2.1)
and no stable attractors can be formed. Figure 3.4 represents one familiar-

looking set of non-orthogonal patterns. A network learned a sequence of

these patterns, with the same protocol previously described. The evolution

of the network state is displayed in figure 3.5.

3. Learning Markov processes 3.1. Results

41

1.0

0.8

g- 0.6

> 0.4

"
^ A^ 1 —*—

/ '• ' "H .'' "'• /' '•

"

•• •' \ H' '• ••' '+ *

: : "•• * '•• ' \ /

a <>/

•-. P.
*-.

"* .' [1

V •..p

X È. «' +. #'
•. .*• \ / *-. X---;

.* *, * *' »'* '*

m '-m m m
'

-m -M A- - 11

0 5

10 15 20

0.2

0.0
0 5

Timesteps

Figure 3.3: Evolution in time (timesteps correspond to one update of the whole

network) of the overlaps m^it) of the network state with the learned patterns r?(\
One timestep corresponds to the update of all network neurons. When the plot
lines cross each other, we say a transition has occurred. When one overlap reaches

its maximum, the network state has also a non-zero overlap with the previous and

the next pattern. The escape time is consistent with those showed in figure 3.2

for the same temperature (490 neurons, 7 orthogonal patterns, activity = 1/7,
ß = 50).

1 2 3 4 5
6 7

Figure 3.4: Seven patterns, embedded in a 35 x 23 matrix. In each matrix, only 50

elements are nonzero (activity = 0.062). The output of a network after learning
this sequence is showed in figure 3.5.

Influence of external input

An external input consists of an additive term e, to the fields ht. External

inputs can have a strong influence on the dynamics of the network. Figure 3.7

shows the influence of an external input on the transition probabilities for the

generated pattern sequence of a network after having learned the transition

probabilities from one pattern to two others. The Markov process used to

generate the training sequence assigns the same transition probability (0.5)
to the two possible transitions which can occur. An external input on the

neurons belonging to one of the two patterns to which the transition can be

made, biases the transition probability in favor of that pattern.

3. Learning Markov processes 3.1. Results

42

1 "1 1='' sS —r —. -> *"* Z*

^, ^V

*** r-^ î'-ïs j-H * «

"

: > ^— -* -

j-. -'_=- -=t r" "• *-< ^--^ ^^ f—^ v' *

^ "Y t ,
* ; ' : F- *: — ^-. - J. -<

r'h i ./

Figure 3 5 Evolution m time of the network state over 30 time steps, after having
learned the sequence of patterns shown m figure 3.4. The network starts from

pattern 1 The network state goes through the sequence three times (805 neurons,

activity = 0.062).

3.1.2 Performance evaluation

The Markov matrix M used to generate the input patterns was compared
with the transition probability matrix of the network T. The closer the

elements of the transition probability matrix T are to the corresponding
values of the Markov matrix M, the better the network is reproducing the

statistics of the Markov process. We have analyzed the performance of the

network with varying Jo and ß using a Markov matrix whose nonzero elements

of the rows belong to the set {0.1, 0.2, 0.3, 0.4} (see Table 3.1 and figures 3.9,
and 3.8).

fj,= l 2

was chosen as the performance index of a network, where m\,... ,mq are all

possible non-zero values of the elements of the transition probability matrix

(in our case m,\ = 0.1, m2 = 0.2, 777-3 = 0.3, and 7774 = 0.4), and t\,..., tq are

the average values of the elements of the transition probability matrix corre¬

sponding to elements of the Markov matrix equal to mi,..., mq. Figures 3.8

and 3.9 show the performance of the network for different combinations of

ß and J0- Figures 3.10, 3.11, 3.12, 3.13, and 3.14 show the the performance
index II and the mean value of the transition probabilities as a function of

Iq and ß for different combinations of \f and A& (see Section 2.2.2).

3. Learning Markov processes 3.1. Results

43

1.0

0.8-

(0

© 0.6 -

o

» 0.4-
o
c
(D

S 0.2 H

0.0-

-0.2

D.,

•O.r

*D-c

-D-D.
D. D.

EJ-.Q-.Q..
^-B-G-B

••Q-o-ir

1 1 1—

10 15 20

Number of stored patterns
25 30

Figure 3.6: Difference between the minimum fields on active neurons and the max¬

imum field on quiescent neurons, when the network state corresponds to one at¬

tractor of the dynamics. This difference corresponds to the width between the

two peaks of the bimodal histogram plotted in Figure 2.1. The plotted values are

averages over all attractors (stored patterns) and for 10 networks with different

synaptic matrices, but otherwise identical (490 neurons, activity = 1/7).

Online learning

On page 37 we said that the analytical derivation of the synaptic matrix

is equivalent to the learning rule described in Section 2.2.2, in the limit

for the presentation of an infinite number of patterns and slow learning.

Figures 3.15 and 3.16 qualitatively show this equivalence. The two figures
show the transition probabilities of the network as a function of the Markov

process transition probabilities, after learning using two different learning

procedures. In each figure, one plot corresponds to a network trained using
the learning rule described in Section 2.2.2, which we call online learning (see
Section 3.1.3 for some remarks about the use of this learning procedure). In

the same figure, the other plot corresponds to a network whose synaptic
matrix has been analytically calculated using Equation 3.1, for the same Xf,
ß and Iq.

3. Learning Markov processes 3.1. Results

44

O
.Q
O

C

#o

*OT
c

Ö
1_

1.0-
i i

.i-'----'-
i i è

0.8-
r ,' r

—

_'

0.6- . ,i r -

[

<

f
.

i.

0.4- "(

)

-

-1-

0.2-
r-

-

1 -*..
"-? »

u.u 1 i I I I I ?

.00 .02 .04 .06 .08 .10 .12 .14 .16

External Input/Maximum recurrent input

Figure 3.7: Transition probabilities from a starting pattern to two others. The

neurons belonging to one pattern are receiving an external input, all others are

not. With a zero external field intensity, the transition probabilities are the same

(within the measurement error). When the external input is switched on, the

transitions are biased toward the pattern whose neurons are receiving an input

(490 neurons, 7 patterns, A = 0.1, ß = 60, 70 = 0.03).

3.1.3 Classification of states in a Markov chain

Given a Markov matrix, the states of the corresponding Markov process (in
this case, Markov chain), can be classified in distinct classes, depending on

the behavior in the limit for an infinite number of transitions [15]. Given

an initial state, if the process will return to this state with probability 1,
the state is called recurrent. The time of first return is a stochastic variable

called the recurrence time, and the state is called positive-recurrent or null-

recurrent if the recurrence time is, respectively, finite or infinite. If the return

to a state has probability less than 1, the state is called transient. If a state

cannot be reached by any other state, it is called ephemeral. An ephemeral
state can only happen to be a starting state. If the chain starts from a state

a, which is then occupied at times iT, i = 1, 2, 3,..., the state is said to be

periodic. A state which is not periodic is called aperiodic, and a state which

is positive recurrent and aperiodic is called ergodic.
To teach a network all transition probabilities of a given Markov matrix,

3. Learning Markov processes 3.1. Results

45

0.0 0.0 0.3 0.0 0.2 0.4 0.1

0.4 0.0 0.2 0.0 0.1 0.0 0.3

0.3 0.1 0.0 0.2 0.0 0.0 0.4

0.2 0.4 0.0 0.0 0.3 0.1 0.0

0.1 0.3 0.0 0.4 0.0 0.2 0.0

0.0 0.0 0.4 0.1 0.0 0.0 0.2

0.0 0.2 0.1 0.3 0.4 0.3 0.0

Table 3.1: Markov matrix used to study the performance of the network. Nonzero

elements in a row belong to the set {0.1,0.2,0.3,0.4} with no repetitions.

it is necessary to generate a pattern sequence in which all possible transi¬

tions occur with a frequency sufficient to have the synaptic matrix reach its

asymptotic configuration (see Section 3). The only kind of states suitable

for the generation of the training pattern sequences are the ergodic and peri¬
odic states. Markov processes containing null-recurrent and ephemeral states

cannot, per definition, produce a suitable training sequence. To go around

this problem, it is possible to create patterns in pairs: The first pattern

is chosen randomly with uniform probability among the available patterns,

the second one is chosen according to the Markov matrix probabilities. To

avoid the potentiation of the synapses between the neurons active before

the presentation of the first pattern and the neurons activated by the first

pattern (corresponding to a non-existing transition), all neurons are set to

the quiescent state. The two patterns are then presented to the network,
one after the other. The network learns the transition probability between

the first pattern and the second one by potentiating the synapses connecting
the neurons active after the presentation of the first pattern to the neurons

active after the presentation of the second pattern. This process is repeated
a number of time sufficient to have the synaptic matrix reach its asymptotic

configuration. The minimum number of times depends on the average net¬

work activity / (that corresponds to the activity of the input patterns), the

minimum probability m in the Markov matrix, and on the the learning rates

q+, q-, and qx. As ç_ and qx are proportional to q+, the minimum number

of presentations is l/(f2\q+m), where A is the minimum of Aj and Aj.

If all states of a Markov process are ergodic or periodic, all transition

probabilities are present in a sequence generated by the Markov process. So,
the sequence can be directly used to train a network.

3. Learning Markov processes 3.1. Results

46

CO

-Q

D
.Q
O

.6

.5-

.4-

£ -3"

(0

c

o

o

D-E-D 0=5, l0=0.015
XXX 0=15, l0=0.015
O-O-O 0=20, l0=0.015

Reference diagonal

Q

X

.2-

-1-E3—-"

.-•a-

:.-x-

.-.»•;;,
.-B-

<^ ^r , r

.1 .2 .3

Markov transition probabilities

-EÏ

.0

Figure 3.8: Network transition probabilities as a function of the Markov transition

probabilities for fixed Iq and variable temperature ß. The error bars have been

calculated using Equation 2.4
,
with k = 1 and n = 7000, and are not visible be¬

cause smaller than the symbols used in the plot. If compared with the case ,0 = 15,

an increase in ß (decrease in temperature) decreases the network transition prob¬

abilities corresponding to low Markov transition probabilities and increases those

corresponding to high Markov probabilities. A decrease in ß (increase in tem¬

perature) makes the network transition probabilities depend less on the Markov

transition probabilities. The corresponding plot is more shallow, indicating a re¬

duced capability in reproducing the statistics of the input sequences (490 neurons,

7 patterns, activity / = 1/7, Xf = 0.1, values are averages over 10 trials.)

Random Markov matrix

Until now we have used the Markov matrix showed in Table 3.1. The reason

for that is our intention to separate the effects linked to the choice of the

parameters from those linked to the Markov matrix. Keeping the Markov

matrix constant is a way to enforce that. Figure 3.17 shows the transition

probabilities of the network as a function of the Markov transition probabil¬
ities for different Iq and constant A and ß, when using a Markov matrix with

randomly generated elements. From Figure 3.17 one can notice that a de¬

creasing Iq tends to make the distribution more shallow and so the transition

probabilities less dependent on the Markov probabilities. This is, qualita-

3. Learning Markov processes 3.1. Results

47

to

2

i .4-1
.Q
o
.Q
o

C

#o

*tô
c

o

o

"5

.2-

.1<>

O-G-O 0=15, l0=0.00
X-X-X 0=15, l0=0.015
A--A-A 0=15, l0=0.03

Reference diagonal

A-

^ .A-

.-A

-O

^..&::'"' -o-

:.-x

.1 .2 .3

Markov transition probabilities

Figure 3.9: Network transition probabilities as a function of the Markov transition

probabilities for fixed temperature ß and variable 7o- The error bars have been

calculated using Equation 2.4
,
with k = 1 and n = 7000, and are not visible

because smaller than the symbols used in the plot.. If compared with the case

Iq = 0.015, both an increase and a decrease in Iq make the network transition

probabilities depend less on the Markov transition probabilities. The corresponding

plots are more shallow, indicating a reduced capability in reproducing the statistics

of the input sequences (490 neurons, 7 patterns, activity / = 1/7, Aj = 0.1, values

are averages over 10 trials).

3. Learning Markov processes 3.1. Results

48

Performance index Mean value of the transition probabilities

Inhibition Inhibition

Figure 3.10: Diagram of the performance index and of the mean value of the

transition probabilities. Left: Diagram of the performance index II as a function

of Iq and ß. Right: Diagram of the mean value of the transition probabilities as

a function of Iq and ß (Aj = 0.1 and Xf, = 0). Both diagrams show the average

over 10 networks with different synaptic configurations, but otherwise identical.

The transition probability matrix was measured by sampling the transitions 100

times per pattern. The performance of the network is maximal in a region around

Iq = 0.01, ß = 14. The optimal ß is roughly proportional to the square root of

Iq, and for Iq > 0.04, the best performance lies in the area just above the sudden

change in performance. The change in performance goes together (see the right-
hand plot) with a sudden decrease of the mean value of the transition probability
for an increasing ß. For any Iq, very low temperatures trap the network in the

basin of attractions in which it is initially set. This can be seen in the diagrams for

Iq > 0.03. The same behavior can be observed for ß > 25 and increasing Iq (490

neurons, 7 patterns, activity 1/7).

3. Learning Markov processes 3.1. Results

49

Inhibition Inhibition

Figure 3.11: Same as Figure 3.10, but with Xf = 0.3 and A;, = 0. If compared

to Figure 3.10, the area corresponding to the best performance is shifted toward

lower ß and higher Iq and the sudden change in performance for a given Iq can be

found at a higher ß. In this case too, the change in performance goes together (see
the right-hand plot) with a sudden decrease of the mean value of the transition

probability for an increasing ß. (see also Figure 3.10). The optimal ß is still

roughly proportional to the square root of Iq.

3. Learning Markov processes 3.1. Results

50

Performance index Mean value of the transition probabilities

Figure 3.12: Same as Figure 3.10, but with Aj = 0.5 and A& = 0. If compared to

Figure 3.10 and Figure 3.11, the area corresponding to the best performance is even

more shifted toward lower ß and higher Iq, and the sudden change in performance
for a given Iq can be found at a even higher ß. In this case too, the change in

performance goes together (see the right-hand plot) with a sudden decrease of the

mean value of the transition probability for an increasing ß. The optimal ß is in

this case roughly proportional to 7o- This might be due to the shift of the best

performance area toward higher Iq.

3. Learning Markov processes 3.1. Results

51

Performance index Mean value of the transition probabilities

¥ 100-

1000L
0 025 0 05

Inhibition

0 075

¥ 100

1000

0 025 0 05

Inhibition

0 075

0 02 0 04 0 06 0 08 0 1 0 12 0 14

Figure 3.13: Same as Figure 3.10, but with Xf = 0.08 and A& = 0.02. The behavior

is indeed very similar to the one produced with Xf = 0.1 and A& = 0, which is

showed in figure 3.10.

3. Learning Markov processes 3.1. Results

52

Performance index Mean value of the transition probabilities

1000 t-

0 025 0 05

Inhibition

0 075

¥ 100

1000

0 025 0 05 0 075

Inhibition

0 5 1 15 2 0 02 0 04 0 06 0 08 01 012 014

Figure 3.14: Same as Figure 3.13, but with A; = 0.06 and A6 = 0.04.

3. Learning Markov processes 3.1. Results

53

J3
o

o

c
o

c

o

o

"5

.5

.4-

.3-

.2-

.1-

X=0.1, 0=15, l0=0.02
•D-D Online learning

Reference diagonal
o-o-o Theorical synaptic matrix

A)

#

.0 .1 .2 .3

Markov chain transition probabilities
.4

Figure 3.15: Transition probabilities as a function of the Markov transition prob¬
abilities for a network trained with the online learning rule described on page 37

and for a network whose synaptic matrix has been analytically calculated using

Equation 3.1, for Aj = 0.1, ß = 15 and Iq = 0.02. In both plots, upper and lower

error bars have been calculated using Equation 2.4
,
with k = 1 and n = 700 (490

neurons, 7 patterns).

3. Learning Markov processes 3.1. Results

54

S .4
o
.Q
O

C
o

CO
c 2

i-1

X=0.1, 0=15, l0=0.03
-Q-D Online learning

Reference diagonal
o-o-o Theorical synaptic matrix

i i r

.1 .2 .3

Markov chain transition probabilities
.4

Figure 3.16: Transition probabilities of the networks as a function of the Markov

transition probabilities for a network trained with the online learning rule described

on page 37 and for a network whose synaptic matrix has been analytically calcu¬

lated using Equation 3.1, for Xf = 0.1, ß = 15 and Iq = 0.03. In both plots, upper

and lower error bars have been calculated using Equation 2.4
,
with k = 1 and

n = 700 (490 neurons, 7 patterns).

3. Learning Markov processes 3.1. Results

55

1 Oi
TO

O

O

tn
c 0

I =0.01

r-.*

.
•' : •...

08

06

l0=0.02

'4

3*':. •

• •

05

-i—*

1 Oi
TO

O

06

o

-I—'

in
c 0.

I0=0.03

1

08

06

04

02

0

'o=0 .04

« "r*M
. .•

'

.* ; .'• \ •;> •. «s» •

1

08

06

04

02

0

• /

'o==0.05
y.

• • 'A ••
"

.
.•><;••-.^v-

• „• » «V 5* h* "if

•

••
•s

• •*

•

• "*£ Ess£ya> ayi > ;,••
JîjH

Hü?-. •.

0 05

Markov transition probabilities

1

08

06

04

02

0

l0=0.06
/ ••

05 1

Markov transition probabilities

3. Learning Markov processes 3.1. Results

56

Figure 3.17: Values of the elements of the transition probability matrix T plotted

against the corresponding values of the Markov matrix M for six different values

of Iq (ß = 15, Xf = 0.1, A;, = 0). The distributions show the same qualitative
behavior showed in Figure 3.9.

3. Learning Markov processes 3.1. Results

57

tively, the same behavior showed in Figure 3.9.

3.1.4 The palimpsest property

The neural network we employ shows the palimpsest property: During the

learning process, information about stimuli that occurred earlier in time are

forgotten as new information is accommodated in the synaptic matrix [49].
How long a stimulus is remembered by the network depends on how many

synapses are changed after the presentation of a stimulus. The learning
rule we use is implemented as a stochastic process: Synaptic long term po¬

tentiation and depression depend on the network state before and after the

presentation of the last stimulus (pattern). As it is described in Section 2.2.2,
the modification of the state of a synapse depends on the three parameters

q+, q-, and qx (both ç_ and qx are proportional to q+). The effects of the

palimpsest property can easily be shown by teaching one network several

patterns, one after the other. After the learning of one pattern is complete,
each neuron that is active for that pattern will receive a synaptic input from

no more than n = fN — 1 neurons, where N is the total number of neurons

and / the activity of the network. If the patterns are randomly chosen, that

is, if the activities of each neuron for each pattern are not correlated, then

n will decrease as the learning of other patterns progresses. The pattern

remembered by the network belongs to a window in time, whose width is a

function of the fraction of synapses updated after the presentation of a new

stimulus, and thus is inversely proportional to q+.

Another way to show the effects of the palimpsest property is to show how

it affects the performance of the network. The test consists of two parts: In

the first part, the network is trained, with a pattern sequence generated by
the Markov process described by the Markov matrix 3.1. Then, the Markov

matrix is slightly modified, by changing the position of some transition prob¬
abilities (see Table 3.2) A pattern sequence was then generated using the new

Markov matrix. The pattern sequence was used to train the network. At reg¬

ular intervals (every 100 presentations), the performance of the network was

tested. The performance was computed against the original Markov matrix

(Table 3.1). The results are showed in Figure 3.18 and 3.19 for different

numbers of presentations. The performance of the network worsened as the

learning of the pattern sequence generated by the new Markov matrix pro¬

ceeded. After about 1500 presentations, the average performance converged
to its asymptotic value. The asymptotic value of the performance is not

much different from the original one due to the high similarity of the two

Markov matrices used.

The role of the learning rate becomes evident when the network is trained

3. Learning Markov processes 3.1. Results

58

0.4 0.0 0.3 0.0 0.2 0.4 0.1

0.0 0.4 0.2 0.0 0.1 0.0 0.3

0.3 0.1 0.0 0.2 0.0 0.0 0.4

0.2 0.0 0.4 0.0 0.3 0.1 0.0

0.1 0.3 0.0 0.0 0.0 0.2 0.0

0.0 0.0 0.0 0.1 0.0 0.0 0.2

0.0 0.2 0.1 0.3 0.4 0.3 0.0

Table 3.2: Markov matrix used to study the effects of the palimpsest property on

the performance of the network. The matrix is a modified version of the matrix

showed in Table 3.1, where the elements in boldface in the same column have been

swapped.

by presenting it patterns from a sequence produced by a stochastic process.

In this case, q+ is proportional to the number of synapses whose states are

changed after each presentation of a new stimulus. The width of the memory

temporal window of the network, as it has been explained above, depends
on the magnitude of q+. The larger the value of q+, the narrower the time

window. So, a large q+ makes the network forget faster old stimuli and

give more weight to the more recent ones. When learning the transition

statistics of a pattern sequence, it is desirable to a have a learning rule that

averages out information from a large number of presentations. This can be

accomplished by choosing a small learning rate, which corresponds to a slow

learning process. Euristically, a learning rate q+ = 0.01 was found to be a

good choice. A learning rate of this order of magnitude is also in accord with

the learning rates measured by Miyashita [55]. It needs to be remarked that

the choice of the learning rate is not critical. As q+ = 0.01 represents a good

choice, any smaller value will also do, and possibly also higher values, up to

a limit which can be evaluated with numerical methods. In this sense, out

learning rule is robust with respect to the learning rate.

3.1.5 Learning noisy patterns

Noise is ubiquitous in nature. Apparently, the nervous system is able to

cope with noise and provides reliable responses to noisy inputs. A realistic

model of brain functionality should show the same kind of robustness. In all

our previous examples, we used only noise-free inputs. The input patterns

correspond to patterns of activity of a layer of input neurons. Each pattern

is imposed to the network, without errors or variability. It is reasonable

to expect from a neural network some sort of robustness with respect to

3. Learning Markov processes 3.1. Results

59

CL

.4-

<D

ë .3
o

E

.2-

.1-

>r-Q.
$•-

.0--A
D--Ö

Y V D'

.Ö"-D'

.P •'?•••?

5"

"O-.J

1 1 1

200 400 600

Number of presentations
0 800

Figure 3.18: Performance of the network in generating a pattern sequence with

statistics similar to those of the Markov process described by the matrix showed

in Table 3.1 as a function of the number of presentations from a pattern sequence

generated by a Markov process described by the matrix showed in Table 3.2 (ß =

15, 7 orthogonal patterns, Xf = 0.1, Iq = 0.015, 490 neurons, data points are

averages over 10 trials).

noisy inputs, although it would be excessive to expect the performance of

the network to be unaffected by the level of noise in the activity patterns

used as input. A performance that is 'gracefully decaying' with an increasing
noise level would be a more sensible expectation.

We tested the performance of our network using input patterns corrupted

by noise. The network was tested with increasing levels of noise. The noise

level C is expressed as the probability for each neuron of the input layer to

have its state flipped from 1 to 0 or viceversa. One of the effects of noise is to

modify the activity of the input pattern. The activity / of the input patterns

is defined as the fraction of active neurons, averaged over all instances of all

patterns. Let us suppose the activity of a network after being presented with

noiseless patterns is /0 (the total number of neurons is N). The expected
number of neurons going, becuase of the noise, from S = 1 to S = 0 is foNC,
and the expected number of neurons going from state S = 0 to S = 1 is

3. Learning Markov processes 3.1. Results

60

n 1 r

1000 1500 2000

Number of presentations
2500 3000

Figure 3.19: Performance of the network in generating a pattern sequence with

statistics similar to those of the Markov process described by the matrix showed

in Table 3.1 as a function of the number of presentations from a pattern sequence

generated by a Markov process described by the matrix showed in Table 3.2 (ß =

15, 7 orthogonal patterns, Xf = 0.1, Iq = 0.015, 490 neurons, data points are

averages over 10 trials).

(l — f0)NC. Finally, the number of active neurons is fQN— fQN£+(l —f0)N£
and the expected activity is £(l — 2/0) + f0. For a starting activity f0 lower

than 0.5, noise will tend to make more inactive neurons active than viceversa,
and the activity will increase toward the asymptotic value / = 0.5. For this

activity level, the probability to have an active neuron going inactive equals
the probability of having an inactive neuron going active. In this way, the

average activity is constant.

To train the network, we used the learning rule described in Section 2.2.2.

Instead of a single pattern sequence, we used the Markov matrix in Table 3.1

to generate pairs of patterns (a, b). Pattern a is chosen randomly and pattern

b is chosen according to the transition probabilities of the Markov matrix.

Pattern a is presented to the network, and then pattern b. In this way, the

network learns the transition from pattern a and pattern b. After the synaptic
matrix is updated, the memory of the previous pattern is erased, so that the

3. Learning Markov processes 3.1. Results

61

network will not learn the transition from pattern b to the next pattern.

The reasons for this protocol are the following: If the sequence is generated
from a start pattern according to the transition probabilities of a Markov

matrix, there is no guarantee that the generated sequence will contain all

transitions described by the Markov matrix, as explained in Section 3.1.3.

A possible solutions is to generate a sequence of patterns a06oai^i; • • •

-, anbn,
where patterns a% are randomly chosen and patterns b% are chosen according
to the Markov transition probabilities. In this case the network learns the

transition probabilities (data not shown), but some noise is introduced in

the synaptic matrix because of the transitions from pattern b% to pattern

al+\ which do not reflect the transition probabilities of the Markov matrix.

The method we use let us isolate the effects of the noise in the input patterns

from other sources of noise.

Figure 3.20 shows the performance of the network, as defined in Equa¬
tion 3.2 for noise levels going from 0 (no noise) to 0.033. Figure 3.21 shows

the performance on a wider range of noise levels, between 0 (no noise) and

0.33. The performance quickly degrades for a noise level up to 0.02, where

each neuron has a 2% probability of having its state flipped. For higher noise

levels, the performance slowly approaches the value 0.4687, which is the per¬

formance of the network in the case in which all transitions have the same

probability of occurring (1/7 in our case). The transition probabilities of the

network depend on the inhibition Iq, the pseudo-temperature l/ß, and, of

course, on the synaptic matrix. At the beginning of the learning process, the

synaptic matrix is set to a random state, where each synapse has the same

probability of being potentiated (1) or depressed (0). The learning rule (see
Section 2.2.2) modifies the synaptic links to encode information about the

transition probabilities of the pattern sequence presented to the network dur¬

ing the learning phase. Normally, several thousand presentations are needed

(see page 45). We can monitor the learning process by building a suitable

set of observables. Given a synaptic matrix J and a pair of patterns rf and

rf, ^2t n\ V J%3rf is the number of active neurons in pattern rf connected to

active neurons of pattern rf. The number of connections between any pair
of patterns changes during the learning process and when it reaches a stable

value, the synaptic matrix is said to have reached an asymptotic configura¬
tion and the learning process can be terminated. If the learning process goes

on, the synaptic matrix will still be modified, but the number of connections

between active neurons of all patterns will be, on average, constant.

If noisy patterns are presented to the network during the learning phase,
two effects of noise on the number of connections between neurons can be

seen. The first one is a general increase of the number of connections between

3. Learning Markov processes 3.1. Results

62

0)
o
c

o

E

<D

0.000 0.005 0.010
n r

0.015 0.020

Noise level

0.025 0.030

Figure 3.20: Performance of the network as a function of the noise level. The

performance for a network for which all transition occur with the same probability

(1/7) in our case) can be calculated from Equation 3.2 to be 0.4687. The values

and error bars are calculated over 11 trials. (490 neurons, 7 patterns, / = 1/7,

Xf = 0.1, Iq = 0.01, Markov matrix showed in Table 3.1, ß = 14, 20000 transition

presented during the learning phase).

all neurons. The second one is a convergence of the number of connections

between any pattern toward a common value, independent of the transition

probabilities of the pattern sequence presented during the learning phase.
This value is reached for a high level of noise, for which the synaptic links

are potentiated or depressed with the same probability. These two effects

can be seen in Figure 3.22, which shows the number of connections or pro¬

jections between patterns. One consequence of the fact that the number

of connections between patterns converges toward a common value is that

the transition probabilities of the network will be less and less dependent on

the Markov transition probabilities used for generating the training pattern

sequence. This decreases the performance of the network, as it is shown in

Figure 3.20 and 3.21.

Given a fixed noise level, the evolution of the number of connections

between patterns as a function of the number of presentations of single tran¬

sitions is showed in Figure 3.23. After about 20000 presentations, the number

of connections relaxes to an asymptotic value. This indicates that the learn-

3. Learning Markov processes 3.1. Results

63

'

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Noise level

Figure 3.21: Same as Figure 3.20, but for a wider range of noise levels.

ing process can be terminated. The asymptotic values for the number of

connections depend on the level of noise, as it can be seen in Figure 3.22.

3.1.6 Triggering recall with noisy patterns

In Section 3.1.5 we argued that natural systems, in particular brains, show a

high degree of robustness with respect to noise. We showed that the artificial

network we designed can be used with noisy patterns. Noisy input patterns

can be used during the learning phase. The network's robustness consists

in a 'graceful decay' of its performance with increasing noise. For all tests,

the recall of the learned sequences was triggered using noiseless patterns, in

order to isolate the effects of noise during the learning phase and during the

recall phase. In this section we show how the performance of the network

degrades when the recall is triggered by a noisy input. Again, to avoid mixing
the effects of noise on the learning phase and on the recall phase, noiseless

patterns have been used for training the network.

The level of noise is defined, as in Section 3.1.5 as the probability for

each neuron of a given pattern to have its state flipped from 1 to 0 or vice

versa. The network is trained using Equation 3.1, as described on page 37.

Noiseless patterns were used in the learning phase. We tested the ability of

the network in reproducing the transition statistics of the pattern sequence

3. Learning Markov processes 3.1. Results

64

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Noise level

Figure 3.22: Number of projections (connections) between neurons active in (noise¬
less) patterns as a function of the noise level applied to the patterns used in the

training. The number of projections are averaged over all pairs of patterns whose

Markov transition probability is, respectively, 0.1, 0.2, 0.3, and 0.4. The number of

projections increases with noise and, for all 4 values of the Markov transition prob¬

abilities, it converges toward a common value (490 neurons, 7 patterns, / = 1/7,

Xf = 0.1, Iq = 0.01, Markov matrix showed in Table 3.1, ß = 14, 20000 transition

presented for each noise level during the learning phase).

used in the learning phase for two different cases. In the first case, the Markov

matrix in Table 3.1 is used in generating the training pattern sequence. The

performance II of the network is evaluated by triggering the recall process

with noisy patterns. Each transition probability is measured by setting the

network state to a starting pattern and letting the network evolve until it

makes a transition. The starting patterns used are noisy versions of the

patterns used in the learning phase. The results are showed, for two different

network pseudo-temperatures, in Figure 3.24 and 3.25. A second test was

performed, by using a different Markov matrix (showed in Table 3.3) for

generating the pattern sequence used in the learning phase. The generated

sequence is a simple looping sequence going through seven different patterns.

The network was trained with noiseless patterns. After the end of the learning

phase, we tested the ability of the network in reproducing the whole sequence,

from pattern 0 to pattern 6 and back to 0. The network state was initially
set to correspond to an activity pattern that was obtained by corrupting

3. Learning Markov processes 3.1. Results

65

2400

-B- 0.1

h- 0.2

-- 0.3

-e- 0.4

a Fi a a a

10 10'

Number of presentations

10

Figure 3.23: Number of projections (connections) between neurons active in (noise¬
less) patterns as a function of the number of presentations of single transitions

during the learning phase. The starting value of the projections is obtained from a

synaptic matrix in which synapses have the same probability of being potentiated

or depressed. The number of projections are averaged over all pairs of patterns

whose Markov transition probability is, respectively, 0.1, 0.2, 0.3, and 0.4. The

number of projections decreases with the number of presentations and reaches an

asymptotic value that is roughly proportional to the transition probability between

patterns (490 neurons, 7 patterns, / = 1/7, Xf = 0.1, Iq = 0.01, Markov matrix

showed in Table 3.1, ß = 14, noise level=0.01, averages over 40 trials).

pattern 0 with increasing levels of noise (because of the symmetry between

all patterns, pattern 0 can be chosen without losing generality). The result

is showed in Figure 3.26.

3.1.7 Limits of the system

Up to now, the network was studied in a regime supposedly distant from

its capacity limits. This means that the number of patterns used, as single

patterns or in a sequence, was always much smaller than the number of pat¬

terns that could be stored by network. The theoretical maximum number

of patterns that can be stored in a Hopfield network, called capacity, can

be analytically calculated to be about 0.14JV [47], where N is the number

of neurons. We are not aware of any theoretical derivation of the network

3. Learning Markov processes 3.1. Results

66

.7-

.6-

I I

0=15

ÏÏTlTOlfiWfp
.5- X "ÛÉHjl ül 1 -

Q)
ü

i .4-
T 1 tTÎ0 1

E T A 'i

ë.3- T Y

-

Q_

.2-
i

.1-

TT

-

0.0 0.2 0.4 0.6 0.8 1.0

Noise level

Figure 3.24: Performance of the network in reproducing the transition statistics

of the training sequence generated by the Markov matrix showed in Table 3.1 as

a function of the noise level. The performance improves (the performance index

decreases) with the increasing noise up to a level of about 0.3. If the noise level

is higher, the network is less able to generate a transition to one of the next

patterns with the right transition probability. The minimum of the performance
index around for a noise level close to 0.3 indicates that the pseudo- temperature of

the network (ß = 15) does not maximize the performance. Figure 3.25 shows the

same plot for a higher pseudo-temperature (ß = 5). In this case the performance
index monotonically increases with the increasing noise level (,5 = 15,7 orthogonal

patterns, Xf = 0.1, Iq = 0.015, / = 1/7, 490 neurons).

capacity for simple pattern sequences nor for the more general case of several

patterns linked by different transition probabilities. We show instead how

the performance of the network in recalling a pattern sequence decreases with

an increasing number of patterns. A sequence of patterns was generated us¬

ing the Markov matrix showed in Table 3.3. The network was trained using

Equation 3.1, using sequences of different lengths. For each step, the net¬

work was trained and its performance in recalling the sequence was tested.

Partially recalled sequences were considered as failed recalls. Figure 3.27

shows the result of the test as the fraction of successful recalls as a function

3. Learning Markov processes 3.1. Results

67

"i r

0.4 0.6

Noise level

Figure 3.25: Performance of the network in reproducing the transition statistics of

the training sequence generated by the Markov matrix showed in Table 3.1 as a

function of the noise level. The performance index monotonically increases with

the increasing noise level. To be compared with Figure 3.24 (ß = 5, 7 orthogonal

patterns, A^- = 0.1, Iq = 0.015, / = 1/7, 490 neurons).

of the number of patterns in the sequence. The fraction of correctly recalled

sequences decreases with the number of patterns. The network is unable to

correctly recall a sequence of 16 patterns, or a longer one. In general, the

number of patterns and the Markov matrix used in generating the training

sequence will affect the capacity of the network. The results showed in Fig¬
ure 3.27 are valid only for the Markov matrix used. While it is clear that

the performance of the network, for a fixed number of neurons, will certainly

decay with the number of patterns, it is not clear how the Markov matrix

influences the decay, and in which amount.

3.2 The synaptic matrix

For a given network temperature l/ß and inhibition l0, the network's dy¬
namics is solely determined by the synaptic matrix J. This matrix describes

3. Learning Markov processes 3.2. The synaptic matrix

68

0.0 0.0 0.0 0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0

Table 3.3: Markov matrix used to study the performance of the network.

_OT .6
D
O
d>
l_

.5

D
M-

OT
m

d> .4
o
o

3
(0

.3
M-

o

c

o .2
ll_
u
D

P. a

'biOD .• a
ta' '.

a-a

.1-

;'.

d
n ',

fern
0 a

ÖD
•' z

a a a

,DE1

~i r

.2 .3

Noise level

.4.0

Figure 3.26: Fraction of successfully recalled sequences as a function of the noise

level of the start pattern. The network was started from a pattern of activity
obtained from pattern 0 by flipping the state of the neurons with a probability

corresponding to the noise level. The sequence was considered to have been suc¬

cessfully recalled if the network made 6 transitions to patterns 1... 6. Partially
recalled sequences are not counted as successfully recalled (ß = 15, 7 orthogonal

patterns, Xf = 0.1, Iq = 0.015, / = 1/7, 490 neurons, data points obtained from

100 trials for each noise level).

3. Learning Markov processes 3.2. The synaptic matrix

69

sa

"5
o

m
m

(D
o
o

3
V)

C

o

0.8

3 0.6-

0.4-

tj 0.2-

0.0

..
•

• •Q-

"D. .-•E].

D----0

"I 1 1 1

8 10 12 14

Length of the sequence

16 18

Figure 3.27: Fraction of successfully recalled sequences as a function of the length of

the sequence, expressed in number of patterns. Data point are fractions measured

over 100 trials. During each trial the network was trained and then its ability to

correctly recall the sequence was tested. Partially recalled sequences were counted

as failures, (ß = 15, random patterns, Xf = 0.1, Iq = 0.015, 490 neurons, activity

/ = 0.1).

3. Learning Markov processes 3.2. The synaptic matrix

70

50

100

150

200

250

300

350

400

450

L£rt&&i

mm
<>?*& ^-^-->

_ îvv-+.£ '-£?- yirfj >-

7"v
"' V
?,:

- "J <

• ^-i

. < - ,

t:"'S"f
y - ';'X l"-

:V .:>;

*«<

\î,

ä*W&?&
&

£*-'i*i&M 'J1'
^*i^;Ê"
^

&ft

iV-'
r;X%.

'.'.-^:.:..X

A

..;.V-'tT-

"îïL

'-^ :k

.i. :VJ

i-2

3£r;*f.

àaffi;^^«ia
50 100 150 200 250 300 350 400 450

3. Learning Markov processes 3.2. The synaptic matrix

71

Figure 3.28: Synaptic matrix obtained applying the learning rule described in

Section 2.2.2 using the Markov matrix showed in Table 3.1, as described on page 37.

Potentiated synapses appear as black squares. This matrix describes the synaptic
links between the 490 neurons of a network. The neurons are logically divided

into 7 patterns, and each pattern corresponds to a group of neurons. Neuron

numbers from 1 to 70 belong to pattern number 1, neuron numbers from 71 to 140

to pattern 2, and so on. The synaptic links appearing as black squares along the

main diagonal correspond to the connections of each group of neurons with itself,

as described on page 72. Column % corresponds to the axon of neuron i. The first

70 columns correspond to the axons of the group neurons belonging to pattern 1.

By inspection of the first column of the Markov matrix used to generate the input

sequence, it can be inferred that pattern 1 has been followed by pattern 2 with

probability 0.4, by pattern 3 with probability 0.3, by pattern 4 with probability
0.2 and by pattern 5 with probability 0.1. These transition probabilities affect the

ratio of potentiated over depressed synaptic links, which is mirrored in the figure

by a correspondingly decreasing density of black spots. The same applies to the

other 6 patterns.

3. Learning Markov processes 3.2. The synaptic matrix

72

how the neurons of the network are connected to each other. The element of

the synaptic matrix J%3 corresponds to the strength of the connection from

neuron j to neuron i and can have only the two values +1 and 0. As described

in Section 2.2.1, we have used a network with N neurons. Each neuron can

be either active or quiescent, and its state variable can be assigned the values

Sl = 1 and St = 0 respectively. If the j-th neuron is active, the z-th neuron

will receive a synaptic input hl3 proportional to Jl3, where h%3 = jjJt3S3.
The probability for a neuron i to be active at a time t depends, for a given

ß and Iq, from the synaptic input h% = ^ h%3 = -^ ^23=i J%jS3 from all other

neurons, and is calculated according to Equation 2.1. The synaptic matrix is

built using the learning rule described in Section 2.2.2 applied to a sequence

of external input patterns. After the synaptic matrix has reached its asymp¬

totic configuration, by inspection of the synaptic matrix (see Figure 3.28) we

notice that:

1. Neurons belonging to a pattern project onto all neurons belonging to

the same pattern. In absence of other synaptic links, this would guar¬

antee that the pattern is a stable attractor of the dynamics of the

network.

2. Neurons belonging to each pattern project to neurons belonging to

other patterns too.

3. The number of connections from the neurons associated to pattern i to

the neurons associated to pattern j increases with the corresponding
element of the Markov probability matrix M. The average field ht^3
from the neurons of pattern i to the neurons of pattern j is defined

as the average field on the neurons belonging to pattern j, when the

network state has overlap 1 with pattern i. h%^3 is roughly proportional
to the corresponding element M3% of the Markov probability matrix.

3.2.1 Variability of the synaptic projections

The learning rule described in Section 2.2.2 is stochastic. This choice makes

the network learning rule more realistic, as the events that bring to synaptic

potentiation and depression—like anything else happening in living cells—are

stochastic in nature. One consequence of having implemented the learning
rule as a stochastic process is that the average fields from pattern % to pattern

j hi^j are not constant within a sample of synaptic matrices learned for the

same network and the Markov matrix. Figures 3.29, 3.30, 3.31, 3.32, and

3.33, show the histograms of the mean synaptic input to all neurons of the

network. The values used to fill the histogram have been generated by setting

3. Learning Markov processes 3.2. The synaptic matrix

73

Field

Figure 3.29: Histogram of the mean synaptic input hv^ß from the group of neurons

corresponding to pattern v to the group of neurons corresponding to pattern u

(Left-hand scale). The four peaks correspond to the four possible nonzero values

of the corresponding element MVil of the Markov transition probability, 0.1, 0.2,

0.3 and 0.4. The mean value u and the standard deviation a of the distributions

corresponding to each of the four values of MVß are printed close to the peaks of the

distributions. The performance (right-hand scale) of the network in reproducing
the transition probabilities in the Markov matrix (see Section 3.1.2) is plotted
with filled squares . The performance was evaluated for each single element of

the Markov matrix Mßl, and transition probability matrix TßV. The mean value

plotted above each bin of the histogram was computed on those elements for which

hv-tft belongs to that bin (Xf = 0.1 and Xf, = 0.0).

Figure 3.30: Same as Figure 3.29, but with Xf = 0.3 and A& = 0.0.

3. Learning Markov processes 3.2. The synaptic matrix

74

TJ
CD

3
Q
3
n
CD

5'
Q.
CD
X

Field

Figure 3.31: Same as Figure 3.29, but with Xf = 0.5 and A& = 0.0.

3. Learning Markov processes 3.2. The synaptic matrix

c
o

t-
1

C
D g O
q o <: o o C
D
C
O
C
O

C
D
C
O

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

c
o

C
D

C
O

<<
!

£
0

N
ï

-
N

O
)

0
0
O

N
>

O
O

O
O

O
O

O

i
i

i
i

i

N
>
-

S
L

Q
.

1
1

1
r

O
-

r
-

N
»

ü
i

O
O
i

b

x
e
p
u
i

e
o
u
D
L
U
J
O
i
J
S
d

N
>

-
N

O
l

0
0
O

N
>

O
O

O
O

O
O

O

_
l

I
I

I
L

N
>

-
N

O
l

0
0
O

N
3

O
O

O
O

O
O

O

_
i

i
i

i
i
_

I
O
^

O
l

0
0
O

K
l

O
O

O
O

O
O

O

J
I

I
I

l
_

C
n

x
e
p
u
i

a
o
u
D
u
i
J
o
i
j
a
d

x
a
p
u
i

e
o
u
D
U
J
J
o
i
j
e
d

o
i

b

X
S
p
U
|

S
O
U
D
L
U
J
O
l
J
B
c
l

Figure 3.32: Same as Figure 3.29, but with A; = 0.08 and A& = 0.02.

3. Learning Markov processes 3.2. The synaptic matrix

c
o

t-
1

C
D

2
3 g O
q O < O o C
D
C
O
C
O

C
D
C
O

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

c
o

i
f

C
D

C
O

<<
!

P
3

N
ï

-
N

O
)

0
0
O

N
>

O
O

O
O

O
O

O

_
i

i
i

i
i
_

N
>

-
N

O
l

0
0
O

N
>

O
O

O
O

O
O

O

_
l

I
I

I
L

N
>

-
N

O
l

0
0
O

N
3

O
O

O
O

O
O

O

j
i

i
i

i
_

N
^

œ
o
o

o
o

o
o

o

_
l

I
I

l
_

i
1

1
r

O
-

r
-

N
»

ü
i

O
O
i

b

x
a
p
u
i

e
o
u
D
L
U
J
O
i
J
S
d

x
a
p
u
i

a
o
u
D
u
i
J
o
i
j
a
d

x
a
p
u
i

a
o
u
D
U
J
J
o
i
j
a
d

o
i

b

X
a
p
U
|

S
O
U
D
L
U
J
O
l
J
B
c
l

Figure 3.33: Same as Figure 3.29, but with Aj = 0.06 and A& = 0.04.

3. Learning Markov processes 3.2. The synaptic matrix

79

the network state 5* to pattern /i, that is St = n1/ with /i = 1,... ,p, where

p is the number of patterns used, and then calculating the average synaptic

input to pattern \i from pattern v expressed as the number of active neurons

belonging to pattern v providing an input to neurons belonging to pattern

/i: hv^.ß = Yll=i Vi Sj=i JijV3] where Af is the number of neurons, and /i

and v have been chosen so that the element of the Markov matrix MVfl ^ 0.

The data are obtained from 100 synaptic matrices trained with the same set

of orthogonal patterns and the same Markov matrix. The number of poten¬

tiated synapses connecting a set of neurons corresponding to patterns i to

the set of neurons corresponding to pattern j depends on the corresponding
value of the element of the Markov matrix M3l. The larger the value of the

matrix element, the larger the number of potentiated synapses connecting
the first group of neurons to the second.

The four peaks in Figures 3.29-3.31 correspond to the four possible non¬

zero transition probabilities (0.1, 0.2, 0.3 and 0.4) in the Markov matrix

(Table 3.1) used to generate the training sequence. The histograms in Fig¬
ures 3.32 and 3.33 have been separated in four parts for clarity. Each part

shows the histogram of the average fields h„^ß for a different value of MßU.
The average value of the field for each possible value of the element of the

Markov matrix is roughly proportional to it (Figure 3.34). As expected (it
follows from basic statistics), the ratio of the standard deviation of the distri¬

butions over its mean value decreases with an increasing Markov transition

probability and Xf (Figure 3.35).

3.2.2 Transition probabilities as a function of the synap¬

tic projections

In Section 3.1.2 we showed how the pseudo-temperature l/ß and the inhibi¬

tion Iq influence the performance of the network. The performance index II,
defined in Equation 3.2 is a measure of the network's ability in reproducing
the transition probabilities of the patterns sequence used during the learning

phase. To study how the variability in the number of potentiated synapses

from the group of neurons corresponding to pattern /i to the group of neu¬

rons corresponding to pattern v influences the performance of the network,
we calculated the performance of the network in reproducing the transition

probabilities in the Markov matrix for each single element of the Markov

matrix M and transition probability matrix T. We have then grouped the

data according to the average field of the synaptic input hß^.v, using the

same binning used in histogramming hß_>v in Figures 3.29-3.33. The aver¬

age of the data points falling in the same bins are plotted as filled squares

3. Learning Markov processes 3.2. The synaptic matrix

80

in Figure 3.29-3.33. The data does not show a strong dependence of the

performance on the number of synaptic projections. This indicates a good
amount of robustness of the network's dynamics with respect to fluctuations

in the number of potentiated synapses, which are unavoidable, due to the

stochastic nature of the learning rule.

30

25-

20-

* 15 H

10-

5-

0

-G X=0.1

x Xf=0.3
+ X=0.5

A X=.08

o X=.06

.+

x

+

X'

85-"

.0

.+

.X'

:&

X

•g
o

~i 1 1 r

.1 .2 .3 .4

Markov transition probability

Figure 3.34: Mean synaptic input //, as printed in figures 3.29-3.33, as a function

of the Markov transition probability, for all four choices of Aj. The mean field

is roughly proportional to the Markov transition probability, and the constant of

proportionality decreases with Xf.

3.3 Summary

The network introduced in Chapter 2 can learn in an unsupervised way the

transition probabilities of a pattern sequence generated by a Markov process.

The performance of the network is evaluated by comparing the Markov matrix

used in generating the training sequence with the transition probability matrix

measured from the pattern sequence generated by the network after the learn¬

ing phase. The network can learn also the transition probabilities of patterns

3. Learning Markov processes 3.3. Summary

81

partially corrupted by noise. The performance of the network depends on the

pseudo-temperature and the function defining the dynamic inhibition.

.3-

b

.1-

.0

o.

x>

A
O-

.

X

+ §•

A-.

D - -

.0

- X=0.1

x- X=0.3

+- X=0.5

A- X=.08

o- X=.06

-A

•

-*

~i 1 1 r

.1 .2 .3 .4

Markov transition probability

Figure 3.35: Ratio of the mean synaptic input u, and its standard deviation a, as

printed in figures 3.29-3.33. For a fixed Xf, the ratio decreases with the increasing
Markov transition probability, and, for a given Markov transition probability, it de¬

creases with the increasing Xf. This behavior is readily explained by the stochastic

nature of the learning rule, for which the number of potentiated synapses between

two groups of neurons corresponding to two patterns is proportional to the product
of the corresponding Markov transition probability and Xf.

3. Learning Markov processes 3.3. Summary

Chapter 4

Learning non-Markov processes

Several phenomena can be modeled with Markov models. In general, the

state of a system can be modeled using a Markov model if its states at any

arbitrary time in the future only depend on the present state. The system

state is said to be a Markov process. Some phenomena cannot be properly
modeled by Markov models. For example, if the future state of a system

cannot be predicted by knowing its state at the present time, but information

about its states at past times are needed. In this case, the state taken by
the system can be modeled by a non-Markov process, or, equivalently, by a

Markov process of order higher than 1 (see page 1).
A way to cope with non-Markov processes is to transform them in Markov

processes by redefining the state space [15]. For example, let us suppose that

a given system can be in either of two states 1 and 0, and let Xn be the state

of the system at time n. The process described by the pair of equations,

prob(Xn+1 = l\Xn = 1, Xn_x = 1) = 0

prob(Xn+1 = l\Xn = 1, Xn_x = 0) = 1

with all other possible transition probabilities at zero, is clearly non-Markov.

The probability for the system to remain in state X = 1 does not only

depend from the present state Xn, but also on the state one timestep earlier

(Xn_i). This non-Markov process can be converted into a Markov process by

extending the state space. For example, the original state 1 can be divided

into two states {1,1} and {1,0}, where {1,1} is the state corresponding to

Xn = 1, Xn_i = 1 and {1, 0} the state corresponding to Xn = 1, Xn_i = 0.

By using these newly defined states, the process is Markov and it is possible
to describe it by using a Markov matrix, as it is showed in Table 4.1.

A Markov process can be described by a Markov matrix whose columns

correspond to the transition probabilities from any state to any other state.

It is possible to define a non-Markov process by using a Markov matrix whose

82

83

(1,1) (1,0) (0,1) (0,0)

(1,1) 0 1 0 0

(1,0) 0 0 0 0

(0,1) 0 0 0 0

(0,0) 0 0 0 0

Table 4.1: Markov matrix: The columns describe the transition probabilities be¬

tween all combinations of states. This matrix has been obtained by augmenting
the state space of a non-Markov process to convert it into a Markov process. Con¬

versely, such a matrix can be used to define a non-Markov process by using a

Markov matrix.

elements are the transition probabilities between composed states, following
the opposite reasoning used above. An example of how this can be done is

given by the same Markov matrix showed in Table 4.1. The process it defines

is non-Markov and the sequence of states generated by such a process cannot

be modeled by a Markov model.

4.1 Learning pattern sequences

The synapses of the network we have described in Section 2 and used in

Section 3 are instantaneous. One consequence is that the state of the net¬

work after each single neuron update just depends on its state before the

update is done. It also follows that the transition probabilities only depend
on the starting state of the network. In particular, the transition probabili¬
ties cannot depend on the previous history of the network. For this reason,

the sequence of states taken by the network can be thought to be generated

by a Markov process. We have used several times this assumption in Sec¬

tion 3 while computing the transition probabilities matrix of the network,
for evaluating its performance in generating pattern sequences with a given
transition statistics.

The fact that the transition probabilities for the network do not depend
on the history of the network state, but only on its present state, makes

it impossible for the network to deal with pattern sequences generated by
non-Markov processes. Information about the past states must be explicitly
encoded in the network state to make the transition probabilities depend
not only on the present state but also on earlier states. The performance of

the network in learning and generating pattern sequences produced by non-

Markov processes depends on the width of the 'window in time' provided

4. Learning non-Markov processes 4.1. Learning pattern sequences

84

by the encoding mechanism, and by the weights assigned to the patterns

presented at different times. For example, a shift register has a width equal
to the number of memory slots, where all patterns in memory are given the

same weight. Another, more natural way to encode the state history in a

single pattern of activity, might be to assign more weight to recent patterns.

4.1.1 The encoding network

The problem of encoding the temporal history of the input sequence in a pat¬

tern of activity has more than one solution. A suitable solution will normally
have to satisfy a set of requirements. Such requirements can be arbitrarily
chosen by the experimenter or satisfy experimental constraints. We exam¬

ined several approaches: All tests were aimed to combine the present state

and the external input in some way to produce a pattern of activity to be

used as the input to the learning network. Our first attempts focused on

sequences with one single pattern in common. For example, let us consider

the pattern sequences n\ = A,n2 = B', nf = C and nf = D,n2 = B,rf% = E,

r]i = 0, +1, leading to the formation of the attractors A', B', C and D', B", E'

respectively. After having presented both sequences a sufficient number of

times, the network synaptic matrix encodes the transition probabilities be¬

tween the presented patterns. If B' and B" are sufficiently uncorrelated,
when the network is triggered by the external input patterns A or D, it

should preferentially make a transition to, respectively, B' followed by C

or B" followed by E'. This would demonstrate the ability of the network

in learning and generating history-dependent pattern sequences. One of our

very first approaches combined the network state at time t, St(t), and the

external input et using two matrices M and N. The two matrices had ele¬

ments randomly chosen to be either +1 or —1 with the same probability. The

resulting input vector r% = (M • Sz + N • ez) is a combination of Sl and et. The

state at time t +1, St(t + 1) is obtained by thresholding rt. A fixed threshold

was heuristically chosen to keep the average activity of the network constant.

The same result might have been reached using a dynamic threshold, with a

mechanism similar to the dynamic inhibition described in Section 2.2.1. For

the two sequences described above, the patterns B' and B" have an aver¬

age overlap of about 0.7. This means that information about past stimuli

is quickly forgotten, and the patterns depends much on the lastest pattern

showed. The variability in the activity of the produced patterns is quite high,

and, more importantly, it is difficult to set the system to forget more slowly.
For these reasons, this solution was considered impractical and abandoned.

In the search for a method to produce patterns B' and B" with the least

overlap possible, we had to abandon physiological realism. The following

4. Learning non-Markov processes 4.1. Learning pattern sequences

85

method is illustrated only to explain its pathological behavior. A matrix

M(t = 0) is used at time t = 0, with elements +1 or -1, randomly chosen

with the same probability. Given that the external input at time t = 0,

et(t = 0), the resulting input vector is r%(t = 0) = M(t — 0) • et. A new

matrix M(t = 1) is then computed for the next external input et(t = 1).
M(t = 1) = MetrJ, where all factors on the right-hand side are calculated at

t = 0. In this case, the patterns B' and B" have a very small average overlap.
The system produces patterns of activity r% that are highly dependent on the

stimuli history. Unfortunately, the dependence is so high that a very low

level of noise can be catastrophic. At the limit, flipping the activity of one

single neuron creates, for the same input stimuli sequence, states with small

overlaps. Some robustness to noise is a requirement which cannot be left out,

both in view of a possible implementation in hardware or use in the modeling
of brain function. For this reason, also this method was abandoned.

A more physiologically realistic approach exploits the dynamics of the

learning network itself. During the presentation of the stimuli, attractors of

the network dynamics start to form. This corresponds to the 'first state' de¬

scribed on page 2. Once the attractors are formed, the network can sustain a

pattern of activity without any external input. This corresponds to the delay

activity described in Section 1. The delay activity represents a memory of

the previous external input to the network. This memory can be combined

with the external input pattern to create a pattern of activity coding for,
at least, a few stimuli of the sequence being presented to the network. The

induced, mixed, patterns of activity were studied for different external in¬

put pattern strengths. When setting the strength of the external input to

be roughly equal to the recurrent synaptic input, the resulting mixed state

was composed by about 50% of neurons already active (delay activity) and

50% of neurons selected among those receiving an external input. Due to

the asynchronous, stochastic update of the neurons, the neurons selected to

form the mixed state were picked in random order. Following different pre¬

sentations, all neurons that are members of the active set during the delay

activity and of the set receiving an external input participate in the mixed

state. The resulting attractor involves twice as many neurons as it should

be, that is all neurons active during the delay activity and those receiving an

external input. When the network tries to relax to this attractor, the activity

raises, and the dynamic inhibition randomly shuts down a number of neu¬

rons. Eventually, the patterns learned are just a function of two temporally

adjacent stimuli. This does not fulfill the requirement of having patterns

encoding the temporal history of the input sequence.

After several trials, on the base of the experience acquired, we decided

to encode the state history using an implementation satisfying these two

4. Learning non-Markov processes 4.1. Learning pattern sequences

86

requirements:

• Information should be local in time. Past states of the network or past

external inputs should not be explicitly stored. No buffer needs to keep
track of past activity patterns, but the whole history needs to be coded

in one single activity pattern. Only the present and the immediately

preceding network state should be available to the synapses.

• The width of the 'window in time' should be adjustable. This means

that it should be possible to adjust the forgetting rate and so the num¬

ber of neurons coding for the present input pattern, the last one, the

second last, and so on. Equivalently, it should be possible to adjust
the weights assigned to the various patterns presented to the network

in different points in time.

The encoding we decided to use is accomplished by combining the exter¬

nal input and the present activity pattern of the network. The encoding is

such that the pattern of activity of the network carries information about

the external input pattern at the present time and a temporally weighted
influence of the network states from previous timesteps. Figure 4.1 shows

the setup for the processing of pattern sequences generated by non-Markov

processes. The input layer is connected to the encoding layer (compare with

Figure 3.1), which provides synaptic input to the learning network. Alterna¬

tively, the learning network can receive input from the buffer network, the

only difference being the time interval during which the activity pattern is

preserved. The activity in the encoding layer is preserved only as long as the

input layer provides an input. The activity in the buffer network sustains

itself for the whole interval between the presentation of two different stimuli.

The input layer serves no functional purpose and is only used for clarity. Each

neuron in the input layer connects to only one other neuron in the encoding

layer. The encoding layer is composed of a set of uncoupled binary neurons.

The neurons receive input both from the input layer and the buffer network.

The buffer network is a fully connected Hopfield network with fast learning
non-stochastic synapses. It needs to be initialized with a random pattern of

activity / before the first input pattern is presented. If both a pre-synaptic
neuron j and a post-synaptic neuron i are active, then a transition to the

potentiated state of the synaptic weight J%3 : 0 —>• 1 occurs with a proba¬

bility 1. If only one of the two neurons connected to the synapse is active,
then a transition to the depressed state of the synaptic weight J%3 : 1 —> 0

occurs with a probability 1. If both neurons are inactive, the synapse is

left unchanged. The buffer network receives input from the encoding layer.
The synaptic weights between the encoding layer and the buffer network are

4. Learning non-Markov processes 4.1. Learning pattern sequences

87

Input layer

v

Encoding layer

Learning /

subnetwork 1

Buffer

Figure 4.1: Schematic showing the connection of the input layer to the encoding

layer, which is mutually connected to the buffer network. The encoding layer also

drives the learning network.

all positive and equal and the weight value is set so that, when an input is

present, the dynamics of the buffer network is completely dominated by the

input from the encoding layer. The buffer network in return provides input
to the encoding layer. The synaptic weights of the connections between the

buffer network and the encoding layer are also all equal (see Box 4.1).
In our simulations, the connectivity was chosen so that, on average, 50%

of the neurons code for the last pattern presented to the network, 25% for

the second last, and so on. This choice is arbitrary and the temporal weights
could have been chosen in a different way, thus making the window in time

wider or narrower. Each input pattern sequence generates a unique pattern

of activity in the encoding layer. By observing the state of the encoding layer
it is possible, in principle, to associate the patterns of activity with the input

pattern sequence presented to the network, as it is described in Section 4.1.2.

On average, there will be at least one neuron encoding a pattern that occurred

t timesteps earlier if N/2t+1 > 1. The number of neurons coding for a given

pattern decreases as new patterns are presented to the network. Eventually,
the number of neurons encoding a given pattern goes to zero and no traces

of it are left in the network state. This considerations can be used to roughly
evaluate the number of neurons needed to learn and generate successfully

pattern sequences generated by non-Markov processes of any order.

4. Learning non-Markov processes 4.1. Learning pattern sequences

88

Although it satisfies our requirements, the encoding mechanism is not

optimal and should be seen as a placeholder for a functionally equivalent
mechanism. A better mechanism should be more simple. For example, al¬

though the function of the buffer network can be justified by the presence in

neural circuits of the delay activities described in Chapter 1, it would make

sense to design a system in which this functionality emerges from the dynam¬
ics of the system, instead of having an ad-hoc external network implementing
it. This lack indicates the way toward improvements that might be developed
in the future. The implementation we used shows, at least, that the system

is capable of dealing with non-Markov sequences. The implementation itself

needs improvements as also discussed in Chapter 6.

The input layer provides the encoding layer with two kinds of input. A

subset of fN/2 neurons receives a super-threshold synaptic input that always
drives the neurons active. These subsets of neurons, uniquely assigned to each

pattern, are normally chosen to be non-overlapping. In addition to the super-

threshold input, the input layer also provides a sub-threshold to one half of

the remaining neurons in the encoding layer. The neurons in the encoding

layer can only become active if they receive either a super-threshold input or

a sub-threshold input from both the buffer network and the input layer. In

this way the number of active neurons of the encoding layer is, on average,

fN-
The synaptic matrix from the encoding layer to the buffer network con¬

tains only one nonzero element on each column and row. The synaptic matrix

from the buffer network to the encoding layer is generated by randomly per¬

muting the columns of the first one. The neurons in the encoding layer and

in the buffer network are updated synchronously, as well as the synapses in

the buffer network. The only condition on the dynamics is that the duration

of the input presented by the input layer should allow one only synchronous

update of all neurons in the encoding layer and the buffer network.

The workings of the encoding networks are exemplified in Figure 4.2,
which shows pictorially the external inputs, the inputs from the buffer net¬

work, and the states of the encoding network during the presentation of three

different external input patterns.

4.1.2 The readout

On page 31 we have defined the overlap of the network state S (Si = 1, 0)
with a generic pattern \i (nf = 1, 0). The overlaps were calculated using the

same patterns used in the training phase. The knowledge of the patterns nf
was taken for granted. In general, the number of possible external stimuli

is unknown. In Section 1.4 we stated our intention to build a system that

4. Learning non-Markov processes 4.1. Learning pattern sequences

89

Box 4.1 Dynamics of the encoding network

The encoding and buffer networks are composed of N neurons. The neurons are

labeled by index /, i = 1... N. The state of neuron i of the encoding (buffer) network

is described by Et (Bt). The buffer network is initialized to a random pattern of activity

/ (fN neurons are active). The inputs from the buffer to the encoding network are

ef^E, the total synaptic inputs to the neurons of the encoding layer are hf, the

synaptic input to the neurons of the network buffer (only from the encoding network)
are hf, the inputs fro the input layer to the encoding layer are ef^E The synapses

connecting the buffer network to the encoding network are low-passed filtered with

a time constant r&. The neurons of the encoding layer go active or inactive with a

time constant re. The neurons of the buffer network respond instantaneously to the

external input from the encoding layer. This is justified by the fact that their output is

low-pass filtered with a time constant 10 times larger than their response time constant

(see code in Section A.12, time constants ty and tz). The set of difference equations

implementing the encoding is:

ef-E(t + 1) = ef-E(t) + J-(S, - ef^(t))
TB

This set of equations low-pass filters the input from the buffer layer to the encoding

layer. B% corresponds to the activity of the buffer during the presentation of the previous
stimulus. The buffer works as a one-shot learning fully connected Hopfield network with

binary synapses and binary neurons (see code in Section A.13)

hf = e{-E + \efCE
where R is a random permutation of the set of integers 1,..., N. e\~^E can be either

a (in the code a=3, over threshold) or b (in the code b = §, below threshold). Both

a and b can be arbitrarily chosen. Finally, the state of the encoding buffer can be

described by the difference equation

Et(t + 1) = Et(t) + —(Q(hf - 9) - Et(t))
TE

where O is the Heaviside function, and 9 can be arbitrarily chosen to discriminate

neurons either getting super-threshold input from the input layer or a dual sub-threshold

inputs from the input layer and the buffer network (in the code 9 = 2). The optimal

dynamic inhibition parameter Iq depends on the order of the Markov model the network

should emulate. For example, let us consider a second order Markov model and the

two sequences S = A,B,C, and U = D,B,E. Let hx^y^z the mean synaptic input

provided by the neurons active (as explained on Page 4.1.2) after the presentation of

the sub-sequence W = x, y to the neurons corresponding to pattern z. The optimal

Iq is the average value of hA,B->c, hA,B->E, hD,B->c, and hDjB^E-

4. Learning non-Markov processes 4.1. Learning pattern sequences

oC
i

0
i
n
d
u
;
j
e
i
j
v

L

j
e
n
n
q

u
i
o
j
j
y
i
d
u
i

-
g

g
i
n
d
u
;
j
e
u
v

'fr

j
e
i
i
n
q

u
i
o
j
j
y
i
d
u
i
£

V
i
n
d
u
!
j
e
u
v
'
3

j
e
i
i
n
q

u
i
o
j
j
}
n
d
u
|

i

g
i
n
d
u
j
|
B
U
j
e
i
x
e
i
o
u
o
j
i
e
j
e
q
j
e
A
e
j

'
j
e
ü
n
q

u
j
o
j
i
i
n
d
u
j
p
i
o
q
s
e
j
q
i
q
n
s
B

V
i
n
d
u
j
|
B
U
j
e
i
x
e
i
o
u
o
j
i
e
j
e
q
j
e
A
e
j

'
j
e
ü
n
q

u
j
o
j
i
i
n
d
u
j
p
i
o
q
s
e
j
q
i
q
n
s
B

j
e
ü
n
q

u
j
o
j
i
i
n
d
u
j
p
i
o
q
s
e
j
q
i
q
n
s
H

u
o
j
n
e
u
e
A
j
i
o
y

j
e
ü
n
q

u
j
o
j
i
i
n
d
u
j
p
u
e

(
O

'S
V
)

i
n
d
u
j
|
B
U
j
e
i
x
e
u
j
o
j
i
p
i
o
q
s
e
j
q
i
q
n
s
^

e
i
q
n
o
p
j
o
(
q

'g
'v)

i
n
d
u
j
|
B
U
j
e
i
x
e
B

p
i
o
q
s
e
j
q
y
e
d
n
s
i
o
e
s
n
B
o
e
q

e
A
j
i
o
B

u
o
j
n
e
|
\
|
g

M
1
1
^
M
M
M
M
M

1
1
^
n
M
M
M
M
M
M
n

1
M

M
k
k
k
k
k
k

A

m
?

ß
*

*
*

r
r
r
r
r
?

^
à

i
n
i
l
l
l
i
n
i
l
I
B
B
I
I
I
I
I
I
I
I
I
I
i
r
i
H
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

\
A
A
A
A
A
A
M
I
N
I

^
i

^
i
l

i
•

^
1
1
1
1
1
1

^

M
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
M

1
1

1
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
^
^
^

i
l
l
l
^
l

i
n
d
u
j
|
B
U
j
e
i
x
e
p
i
o
u
.
s
e
j
u
.
i
q
n
s
Q

s
i
n
d
u
j
|
B
U
j
e
i
x
e
p
i
o
q
s
e
j
q
u
e
d
n
s
B
B
S

0
u
j
e
w
B
d
m

n

g
u
j
e
w
B
d

l
\
n

l
l

V
U
j
e
w
B
d

I
I
m
m

n

n
n

i
m
m
^

i
m

m
m

i
n

\
*
w

n
n

i
m
q
r

m
i
m

r
w
r
r

m
m
m
m

n
i
m

m
m

i
u
m
n
^

e
n
:

i
M
M

i
m

t
t
^
-
m
m
M

n
~
T
T

H
m

c
d

c
d

Gc
d

c
r

C
D
C
O

C
D

+
i

+
i

o
3
d
<

b
c
Ö

'Sc
e
C
D

^

c
o

C
D
c
o
c
o

C
D
oO=f
t

>oaosb
J
D
s

'
aC
Ö
C
D

91

Figure 4.2: a: Schematic showing the structure of the external inputs corresponding
to three different patterns (A, B, and C). Six neurons (see legend) receive a super-

threshold input. On average, one half of the neurons also receive a sub-threshold

input.

b: Schematic showing the input from the buffer, external input, and activity of the

encoding layer during the presentation of three external input patterns. The first

three rows are, from top to bottom, the input from the buffer, the external input

pattern (same as in a), and the activity of the encoding layer. The buffer delivers

only a sub-threshold input to the encoding layer. Neurons in the encoding layer
can become active only if they either get a super-threshold external input or both

a sub-threshold external input and a sub-threshold input from the buffer. In the

absence of an input from the input layer, then no neurons of the encoding layer

are active. The encoding layer provides an input to the learning network and to

the buffer network. The strength of the inputs to these two networks is such that

the external inputs dominate the network dynamics (in other words, the external

input provided by the encoding network is higher than the recurrent input). The

learning network learns the patterns and the transition probabilities between them,

as previously described. The buffer network learns the pattern of activity provided

as external input from the encoding layer. The input from the buffer network to the

encoding layer is a shuffled version of the learned pattern of activity (see page 88).
In the lines corresponding to the input from the buffer (first, fourth, and seventh

rows), it is possible to distinguish the inputs from the buffer caused by the memory

trace of the activity evoked by the initial random input from the buffer and by all

external input patterns. The same structure is repeated three times, once for each

of the input patterns A, B and C.

4. Learning non-Markov processes 4.1. Learning pattern sequences

92

uses only information local in space and time. This property gives the system

some sort of biological realism. In a real brain, no subsystem has a 'privileged'

point of view, from which it can observe the state of areas other than those

that it has synaptic contact with. For this reason, we cannot rely on the

possibility of inspecting the inner workings of the system.

Computationally speaking, it is likely to be more convenient to use the

knowledge of the internal connectivity and structure of a network to identify
the output pattern(s) corresponding to a given input pattern(s). The goals we

set forbid this kind of shortcuts and require all relevant information necessary

for the functioning of the system to be available without a priori knowledge
of the inner structure and dynamics of the system itself.

Reading out information from the network consists in the operation de¬

scribed on page 31. Project the network state onto a suitable set of patterns

(vectors). The elements needed are the network state 5* and the external

inputs. We want to show that, by simple observation of the output of the

network, that is, of its state S, it is possible to infer the network state elicited

by any pattern or pattern sequence presented as input to the network. The

only knowledge needed is which pattern is presented to the network at any

point in time. No information is needed about the synaptic input provided

by a pattern, nor it is necessary to use the network in a regime different from

its normal one.

Let us suppose that we want to measure the pattern of activity generated

by a given input pattern sequence S. For a sequence S = A, B, C, the task

consists in finding those neurons which are always active after the presen¬

tation of patterns A, B, and C, in this order. Not all active neurons code

for the sequence S. Some of the neurons active after the presentation of the

sequence code for some of the patterns presented to the network before pre¬

senting the sequence S. The neurons coding only for the pattern sequence

S can be found by averaging over the initial state of the buffer. The initial

state of the buffer codes for the input patterns presented to the network be¬

fore the presentation of the sequence S. Averaging over the initial state of

the buffer network means presenting the pattern sequence S starting from

several different uncorrelated initial states of the buffer, which is equivalent
to presenting the sequence S after the presentation of a randomized sequence

of patterns. After having presented the sequence, the neurons coding the se¬

quence S will have probability 1 of being active, all other neurons will have

a lower probability. By histogramming the number of times each neuron has

been active after the presentation of the sequence, it is possible to classify
those neurons always responding to the given pattern sequence. Figure 4.3

shows the histogram of the activity of the learning network or, equivalently, of

the encoding layer, after the presentation of the pattern sequence T = A,B,

4. Learning non-Markov processes 4.1. Learning pattern sequences

93

starting from a random initial states of the buffer. The neurons that are more

often active code for the sequence T In the upper part of the plot we show,
for comparison purposes, the 'theoretical' pattern of activity, elicited in the

encoding network by the same pattern sequence. This pattern of activity was

easily obtained using information about the connectivity of the network and

the structure of the network. The matching between the theoretical pattern

of activity and the (thresholded) histogram of the activity shows that all the

information needed about the network state can be found without inspection
of the system. Our network makes only use of information local in space and

time, which is available to single neurons.

200 300 400

Neurons

500

Figure 4.3: Histogram of the activity of the learning network, corresponding to

the activity of the encoding layer, after the presentation of the pattern sequence

T = A, B starting from 100 randomly selected initial states of the buffer. The

learning and the buffer networks and the encoding and input layers are composed by
500 neurons. The average activity of the networks and layers is 0.1. For comparison

purposes, the top plot shows the theoretical pattern of activity elicited in the

encoding layer by the same pattern sequence. The encoding mechanism assigns
about 50% of the active neurons to the last pattern, 25% to the second last, and

so on. The expected number of neurons coding the sequence T therefore is 500 •

0.1 • (0.5 + 0.25) = 37.5. The actual number of active neurons is 37.

Figure 4.4 shows the same plot for a sequence of the kind U = A, x, where

4. Learning non-Markov processes 4.1. Learning pattern sequences

94

the x indicates a randomly chosen input pattern. In this case, the task con¬

sists in finding those neurons which are always active after the presentation
of A as second last pattern, or, in other words, finding those neurons which

are always active after the presentation of A followed by any other pattern.

The neurons that code exclusively for the pattern sequence can be found by

averaging the encoding network activity over the initial state of the buffer (it
should be randomly chosen) and over the pattern following A (all possible

patterns should be used). The theoretical activity pattern can be computed

analogously to the previous case. The theoretical pattern is plotted in the top

part of Figure 4.4. It must be remarked that the theoretical pattern shows

all neurons that can take part to the pattern coding for U = A, x. Each time

the sequence is presented to the network, on average only one half of those

neurons will go active, randomly selected by means of the last, random input

pattern.

4.1.3 Repeated patterns

Because of the definition of transition given in Section 2.2.1, the network can¬

not generate sequences with repeated patterns. For this reason, the diagonal
elements of the Markov and transition probabilities matrix are always zero.

Anyway, the encoding mechanism allows the creation of patterns of activity

corresponding to the repeated presentation of the same input pattern. The

pattern generation occurs with the same modalities as for different patterns.

Figure 4.5 shows those neurons responding to the presentation of the pat¬

tern sequence V = A,A. The data plotted have been computed as explained
above for the other two cases. Unfortunately, the use of these patterns of

activity is impractical. The transition a network should make would be be¬

tween a pattern of activity / and a pattern of activity / + 1/4 /, the latter

being the pattern of activity elicited by the pattern sequence V = A,A. The

detection of this transition is problematic, as the global activity is kept close

to a fixed value / by the dynamic inhibition of the network.

4.2 Recognizing pattern sequences

From what has been explained in Section 4.1.2, it follows that, without need

for modifications or additional elements, the encoding network provides all

necessary information to recognize pattern sequences. The recognition of

pattern sequences can be done by computing the overlaps of the encoding

layer state with the patterns of activity described in Section 4.1.2, corre¬

sponding to the activity elicited by the input pattern sequences.

4. Learning non-Markov processes 4.2. Recognizing pattern sequences

95

70

60 H

>^ 50-
Ü

(D 40-
3

Ö- 30-
(1)
i

j_ 20-

10-

0^
100 200 300

Neurons

400 500

Figure 4.4: Histogram of the activity of the learning network, corresponding to

the activity of the encoding layer, after the presentation of the pattern sequence

U = A, x starting from 100 randomly selected initial states of the buffer, where the

x indicates a randomly selected pattern. The learning and the buffer networks and

the encoding and input layers are composed by 500 neurons. The average activity
of the networks and layers is 0.1. For comparison purposes, the top plot shows

all possible neurons (25) which can contribute to the pattern of activity elicited

in the encoding layer by the same pattern sequence. The encoding mechanism

assigns about 50% of the active neurons to the last pattern, 25% to the second

last, and so on. The expected number of neurons coding the sequence U therefore

is 500 • 0.1 • 0.25 = 12.5. The active neurons after each presentations are a subset

of the active neurons showed in the top plot.

Let us suppose that the pattern sequence A elicits in the encoding layer the

pattern of activity a, and the sequence B elicits the pattern of activity ß,
both averaged over several initial states of the buffer network, as explained
in Section 4.1.2. If the state of the encoding layer is S% (i = l,...,N),
where Af is the number of neurons, the overlap of S with the pattern a (ß)
is a =

jj Yli=i Siai (b =

jv Sî=i Stßz). When the pattern sequence A is

presented to the network, we have that a > b. Conversely, when pattern

sequence B is presented to the network, we have b > a. A readout system

implemented with a trained perceptron and a winner-take-all (as explained

4. Learning non-Markov processes 4.2. Recognizing pattern sequences

96

200 300

Neurons

Figure 4.5: Histogram of the activity of the learning network, corresponding to

the activity of the encoding layer, after the presentation of the pattern sequence

V = A, A starting from 100 randomly selected initial states of the buffer. The

learning and the buffer networks and the encoding and input layers are composed by
500 neurons. The average activity of the networks and layers is 0.1. For comparison

purposes, the top plot shows the theoretical pattern of activity elicited by the

same pattern sequence. The encoding mechanism assigns about 50% of the active

neurons to the last pattern, 25% to the second last, and so on. The expected

number of neurons coding the sequence V therefore is 500 • 0.1(0.5 + 0.25) = 37.5.

The actual number of active neurons is 38.

by Jeager [56]), can in this way recognize pattern sequences.

As an example, we assign five different input patterns to the letters /,

o, w, I, and b. Using the encoding network (no learning is necessary at

this point), we analyze the encoding layer states Si and s2 elicited after

presenting the pattern sequences fowl and bowl several times starting with

different, randomly chosen, buffer states. The two sequences have the last

three patterns (out of four) in common. This means that we cannot expect

a difference in the overlaps greater than 1/16 • N = 1/16 • 1000 = 6.25. The

average overlaps (over 100 trials) of the state of the encoding layer after one

single presentation of the pattern sequences fowl and bowl with the patterns

Si and s2 are:

4. Learning non-Markov processes 4.2. Recognizing pattern sequences

97

• (si,/ow/)=87.0

• (st,bowl)=82.2

• (s2,bowl)=8S.O

• (s2,fowl)=82.2

The differences, albeit small, are large enough for distinguishing the two

pattern sequences.

Jaeger's 'echoed states network' [56] has functionalities that are very close

to our encoding network. In this model, at any point in time, the state of the

network reflects the sequence of input patterns presented to the network. A

set of linear output units is trained to predict the next pattern. The output

is then used to predict the next pattern in a sequence. For example, when

presented with the first 3 letters fow of the sequence fowl, the overlap of the

network state with the learned pattern for fow is maximum. This indicates

that the next pattern is a /.

In one of his examples, Jaeger turns the output vector into a probability vec¬

tor and the next pattern in the sequence is predicted by a weighted random

draw. One of the advantages of our network over Jaeger's model is that the

learning network itself predicts the next pattern in a sequence when presented
with a partial sequence. The pattern selection mechanism is stochastic, and

is based on the transition probabilities of the pattern sequence used in the

learning phase. The selection mechanism is intrinsic to the network dynam¬

ics, in this way, there is no need for an external system that randomly selects

the next pattern.

4.3 Performance of the network

4.3.1 Sequences generated by a Markov process

Before starting testing the network capability in processing pattern sequences

generated by a non-Markov process, we want to verify that the network, in its

new, extended configuration, is still able to learn pattern sequences generated

by a Markov process. The answer is not trivial. Because of the way the cod¬

ing mechanism works, the active neurons in the encoding layer, that provide

input to the learning network, code for different patterns. More precisely,
on average 50% of the neurons code for the last pattern, 25% for the second

last, and so on. If the pattern sequence is generated by a Markov process,

the probability for the next pattern in the sequence just depends on the last

pattern. All information about previous patterns is not relevant. It follows

4. Learning non-Markov processes 4.3. Performance of the network

98

that only about one half of the neurons code for useful information, the rest

being noise that affects the dynamics of the system by increasing the rate of

unsuccessful recalls. The decrease in the performance of the network can be

numerically computed by training the network with a pattern sequence gen¬

erated by a Markov process. As explained in Section 3.1.3, the patterns are

created in pairs, using again the matrix showed in Table 3.1. The first pattern

is chosen randomly with uniform probability, the second pattern is chosen

according to the Markov matrix. The two patterns are then presented to the

network, one after the other. The network learns the transition probability
between the first pattern and the second one by potentiating the synapses

connecting the neurons active after the presentation of the first pattern to

the neurons active after the presentation of the second pattern, as described

in Section 2.2.2. Some synapses that connect neurons active before the pre¬

sentation of the first pattern to neurons active after the presentation of the

first pattern will be potentiated as well. The state of the network before

the presentation of the first pattern reflects the sequence of patterns previ¬

ously presented to the network. In the case of pattern sequences generated

by Markov processes, and for the training procedure described above, the

patterns previously presented to the network are uncorrelated with the pat¬

tern presented next. This means that the pattern of activity of the network

before the presentation of the first pattern is uncorrelated with the pattern

that is going to be presented, and that the long term potentiation that will

occur just represents a noise term in the synaptic matrix. Figure 4.6 shows

the network transition probabilities as a function of the Markov transition

probabilities for IQ = 0.015 and ß = 15 (compare with Figures 3.8 and 3.9

and see code in Section A.11). The plot is almost horizontal. The network is

not able to generate pattern sequences with statistics similar to those of the

input sequence. The fact that the four measured transition probabilities are

quite similar to each other indicates that the transition happens with almost

the same probability. The same effects can also be observed for high pseudo-

temperatures (low ß) for the network used in Chapter 3 in combination with

sequences produced by Markov processes. A lower pseudo-temperature does

not improve the performance. The intrinsic noise dominated the dynamics
and does not allow the network to properly learn the transition statistics of

the input sequence.

The Markov process described by the matrix showed in Table 4.2 produces

a pattern sequence with 3 periodic states and 4 positive-recurrent states.

The sequence is of the kind S=A, (B, C, D, E)F, G, A, where the pattern

following A can be any of the set A, B, C, D, with different probabilities.
As it has been explained above, the network state at any point in time,

depends on the patterns previously presented to the network. When the

4. Learning non-Markov processes 4.3. Performance of the network

99

W

o

c

I .2

"(0
c

o

o
.1 -ED

y

y

y

D-Q-D 0=15, l0=0.015

Reference diagonal

y

y

y

y

y

y

y

..Q-
y

y

y
-D-

/

y

y

y

y

y

y

<L-

•E]

.0 .1 .2 .3

Markov transition probabilities
.4

Figure 4.6: Network transition probabilities as a function of the Markov transition

probabilities. The error bars are smaller than the plot symbols (data points aver¬

aged over 15 trials, Iq = 0.015, ß = 15, 20000 presentations during the training,

Xf = 0.3, Markov matrix showed in Table 3.1).

pattern sequence F, G, A is presented, 50%+25%+12.5%=87.5% of the active

neurons of the encoding network are active and code for the past three inputs.
The remaining 12.5% code the pattern presented previously to the network.

The activity of the network state has a smaller random component than

in the more general case described at the beginning of this Section. As a

consequence, the network will perform better in generating pattern sequences

with transition statistics similar to those of the training sequence. Figure 4.7

shows the measured transition probabilities of the generated pattern sequence

as a function of the Markov transition probabilities. The performance of the

network is similar to that of the network described in Chapter 3 in the case

of sequences generated by Markov processes.

4.3.2 Higher order Markov processes

The evaluation of the network performance for pattern sequences generated

by a non-Markov process is analogous to the evaluation for pattern sequences

generated by a Markov process, as described in Section 3.1.2. On page 83

4. Learning non-Markov processes 4.3. Performance of the network

100

0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.4 0.0 0.0 0.0 0.0 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 1.0 1.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0

Table 4.2: Markov matrix used to study the performance of the network showed

in Figure 4.1 in learning and reproducing the same transition probabilities used in

the tests described in Chapter 3.

we showed how a Markov matrix can be used to describe a non-Markov pro¬

cess. This can be done if the matrix elements correspond to the transition

probabilities between composed states, instead of single states. Given a suit¬

able Markov matrix M and a set of states, the corresponding process can be

used to generate a pattern sequence. The pattern sequence is then presented
to the network that modifies its synaptic matrix according to the learning
rule described in Section 2.2.2. After the learning process is ended, the net¬

work is left free to run, by updating the neurons using the rule described in

Section 2.2.1.

The parameter Iq of the dynamic inhibition should be assigned a suitable

value. Let us suppose the network is taught the sequences S = A,B,C, and

U = D, B,E. Let hX;V^.z the mean synaptic input provided by the neurons

active (as explained on Page 4.1.2) after the presentation of the sub-sequence
W = x, y to the neurons corresponding to pattern z. In our specific case,

the maximum performance in generating the learned sequences correctly can

be achieved by choosing I0 as the mean value of the four mean synaptic

inputs hA,B-^C: h>A,B^-Ei ho,B-ïC, and ho,B^E- This is clearly the best way

to maximize the probability for the neurons belonging to the right pattern in

the sequence to go active and for the others to be inactive. This is another

shortcoming of our mechanism for the encoding. The optimal I0 is a function

of the order of the Markov model that should be emulated by the network.

The higher the number of stimuli back in the past the network should be

sensitive to, the lower the I0 that should be chosen.

When left free to run, the network generates a sequence of patterns,

whose transition statistics can be measured and represented in a transition

probability matrix T. The matrices M and T are then compared to evaluate

the ability of the network in capturing the transition probabilities of the input

sequence and generating a sequence with similar transition statistics. The

4. Learning non-Markov processes 4.3. Performance of the network

101

W

.5
i= 4

o
-Q
O
i_

°- .3-1
c

o

OT

c

o

.2-

.1-

.0

D-Q-O 0=50, l0=0.015

Reference diagonal

.[]

'

.-'

.a-"

./**•

.1 .2 .3

Markov transition probabilities
.4

Figure 4.7: Transition probabilities of the networks as a function of the Markov

transition probabilities for a network trained with a pattern sequence generated by
a Markov process defined by the matrix showed in Table 4.2 (Xf = 0.1, ß = 55

and Iq = 0.015, 1200 neurons, 7 patterns, 15000 pattern pair presented during
the training). The temperature used is lower than the one used, for example, to

produce the data showed in Figure 3.8 and 3.9, where ß = 15. This partially

compensate for the residual noise in the encoding mechanism.

more similar the matrices M and T are, the better the network performs.

Second order Markov process

A second order Markov process is a non-Markov process for which the prob¬

ability for the next state (pattern, in our case) not only depends on the

present pattern, but also on one pattern earlier. A second order Markov pro¬

cess can be described by a Markov matrix whose elements correspond to the

transition probabilities between single patterns or couple of patterns. For

example, given the five states A, B, C, D, and E, the Markov matrix showed

in Table 4.3 describes a Markov process of order 2. The sequence generated

by this process is ABCDBEABC With the sole knowledge of the last

pattern generated, it is not possible to correctly predict the transition proba¬
bilities to the next patterns. In fact, information about the previous pattern

4. Learning non-Markov processes 4.3. Performance of the network

102

AB c DB E

AB 0 0 0 1

C 1 0 0 0

DB 0 1 0 0

E 0 0 1 0

Table 4.3: Markov matrix used to generate an input training sequence correspond¬

ing to a Markov process of order 2.

AB C DB E

AB 0.0001 0 0.0265 0.9994

C 0.9931 0 0.0248 0.0004

DB 0.0069 0.9999 0.0019 0.0002

E 0 0 0.9469 0

Table 4.4: Transition probability matrix obtained from the pattern sequence gen¬

erated by the learning network after the end of the learning phase. The Markov

matrix used to generate the training sequence is displayed in Table 4.3 (1000 neu¬

rons, Iq = 0.03, ß = 103, q+ = 0.01, A = 0.3, and / = 0.05, 750 neurons). The

1-sigma lower and upper bounds calculated with Equation 2.4 are all lower than

5%.

is necessary for correctly predicting the next one. From the matrix showed

in Table 4.3, if the last two patterns are 'AB', then the probability for the

next pattern to be 'C will be one. If the last two patterns are 'DB', the

probability for the next pattern to be 'E' will be one. A pattern sequence

generated by the Markov process defined by the matrix showed in Table 4.3

was used to train the network. The transition probability matrix of the pat¬

tern sequence generated by the network after the learning phase is showed in

Table 4.4. The transition probabilities match quite closely the corresponding

probabilities of the Markov matrix used to generated the training sequence.

This indicates a very good ability of the network in capturing the transition

statistics of the training sequence, and in generating a pattern sequence with

similar transition statistics.

Third order Markov process

Analogous to the second order Markov case, described in Section 4.3.2, a

third order Markov process is a non-Markov process for which the probabil¬

ity for the next pattern not only depends on the latest pattern, but also on

4. Learning non-Markov processes 4.3. Performance of the network

103

ABC D EBC F

ABC 0 0 0 1

D 1 0 0 0

EBC 0 1 0 0

F 0 0 1 0

Table 4.5: Markov matrix used to generate an input training sequence correspond¬

ing to a Markov process of order 3.

ABC D EBC F

ABC

D

EBC

F

0.017

0.9007

0.0454

0.0522

0.0003

0

0.9991

0.0006

0.0238

0.0588

0.0040

0.9134

0.9997

0

0.0003

0

Table 4.6: Transition probability matrix obtained from the pattern sequence gen¬

erated by the learning network after the end of the learning phase. The Markov

matrix used to generate the training sequence is displayed in Table 4.5. (900 neu¬

rons, Iq = 0.03, ß = 103, q+ = 0.01, A = 0.3, and / = 0.05). The 1-sigma lower

and upper bounds calculated with Equation 2.4 are all lower than 5%.

the two preceding patterns. A third order Markov process can be described

by a Markov matrix whose elements correspond to the transition probabili¬
ties between single patterns or couple of patterns, or triplets of patterns. For

example, given the five patterns A, B, C, D, E, and F, the Markov matrix

showed in Table 4.5 describes a Markov process of order 3. The sequence gen¬

erated by this process is ABCDEBCFABC The knowledge of the latest

or of the last two patterns is not enough to correctly predict the transition

probabilities to the next patterns. To correctly associate a pattern with a

probability of being followed by any other pattern, it is necessary to know

the last three patterns generated. The performance of the network has been

evaluated as in the case of the second order Markov process. The transition

probabilities of the generated pattern sequence are showed in Table 4.6.

The transition probability matrix clearly shows that the network can learn

in an unsupervised way a Markov process of order greater than 1, up to at

least order 3. The network dynamics can store the information provided by
the encoding network in the synaptic matrix to correctly generate a sequence

whose transition probabilities reflect those of the input sequence.

4. Learning non-Markov processes 4.3. Performance of the network

104

4.4 Summary

The network introduced in Chapter 2, together with a pre-processing layer
named 'encoding network', can learn m an unsupervised manner the transi¬

tion probabilities from a pattern sequence generated by a non-Markov process

(Markov process of order higher than 1). The performance of the network

is showed for sequences generated by Markov processes of second and third

order. One way of recognizing pattern sequences, which does not make use

of the learning network, is also described. The problems posed by the readout

system and by the occurrence of repeated patterns are also discussed.

4. Learning non-Markov processes 4.4. Summary

Chapter 5

Games networks play

Playing is normally regarded as a sign of intelligence. Animals which are

usually regarded as most intelligent, mammals, spend quite a lot of time

playing. There is little or no evidence that fishes, reptiles, or amphibians,
which are normally considered less intelligent than mammals, are ever en¬

gaged in playful activities. The problem might lie in the difficulty of telling
what it means for a lizard to play. We would not even expect insects or bac¬

teria to be able to play and probably they do not, even if, due to the lack of

experimental evidence, this is only an hypothesis. The length of the juvenile

period might also be linked to propensity to play. Animals that take longer
to reach maturity have longer to learn and practice new behaviors, without

needing to care about adult life. Human children have the longest juvenile

period in the animal kingdom, and they happen to have the highest intelli¬

gence. Playing is for young animals a way to train skills that will be then

needed in adult life, for example motor, social, and manual skills. Human

children also show to like games that develop skills linked to more abstract

thinking, for example symbol processing and verbal abilities.

There is not really an unique definition of intelligence. One possible defi¬

nition could be the ability to learn or understand or deal with new situations.

Such a definition just shifts the problem to the definition of what it means,

for example, to understand a situation. I will not even try to review the

subject or to propose myself a new definition. The concept of intelligence is

anyway so loose that even bacteria, viruses or computer programs might be

seen as being provided with some degree of intelligence. Even atoms might
be considered to have some intelligence, in the way they plug together to,

for example, form a crystal. In this sense, intelligence is a vaguely defined

feature of systems governed by laws that make them act in way we like to

define as 'intelligent'. Often, this feature is an 'emerging' feature, in the

sense given to this term by complex systems science. An emerging feature

105

106

does not belong to the single parts of a system, but emerges from the in¬

teractions of these parts (For a pleasant introduction to this sort of issues,

see Hofstadter and Dennet's book 'The mind's I' [57]) Single neurons are

not able of abstract thinking, but human brains do Single ants cannot do

much, but an ant nest has abilities that ants, by themselves, do not have.

The slime molds Dictyostehum discoideum usually live as free-living amoe¬

bae Upon starvation they undergo a complex developmental cycle in which

about 10 000-50.000 individual amoebae aggregate to form a multicellular

body around a few amoebae acting as the aggregation center Somehow, this

slime mold is dealing 'intelligently' with a new situation The fact that this

is the only behavior with which D. Discoideum reacts to food shortage does

not really matter. We are here concerned about quality, not quantity On

another scale, the whole gene network in living cells displays some degree
of intelligence, adaptation, sociality, and fault tolerance that are proper to

more complex systems

In this chapter I will show how the network I have described in the previous

chapters is able to play a simple game Several conclusions can be drawn from

this Firstly, my network is still in a very juvenile phase of development. Sec¬

ondly, following the very loose definition of intelligence we have given above,

we claim that our network displays some sort of intelligence, as an emerging
feature of the interacting units (neurons) composing the network

The game we have chosen, is the widely known 'scissors, paper, stone'

game1. Two players at the same time display one of three hand symbols,

signifying a stone (player keeps the hand in a fist), a piece of paper (player
holds the hand open and flat) ,

or a pair of scissors (player holds the hand

in partial fist with two fingers sticking out) A stone beats the scissors (it
blunts). A piece of paper beats the stone (it wraps). Lastly, the scissors

beat the paper (they cut). In Japan, the game is called "Jan-ken-pon", and

presents a small variation- When one player wins, he says "achi muite hoi!"

("Look that way now!") and points up, down, left or right When the winner

says "hoi'"the other player must look in one of the four directions, trying to

avoid looking in the same direction the winner points at. If the loser looks

in the same direction as the winner points, he is even more disgraced, and

the game is over If he doesn't look in the same direction, the rock paper

scissors game continues [59]

1In north America, it is also known as 'rock, paper, scissors game [58]

5. Games networks play

107

5.1 Network fun

Playing the 'scissors, paper, stone' game with the network consists in pre¬

senting to the network a sequence of patterns taken to from the pattern set

{^4 = scissors, B = paper, C = stone}. During the game, the network con¬

tinuously learns. In this way, the network extracts the transition statistics

of the presented sequences and, given the last 3 or more patterns, tries to

predict the next pattern in the sequence. A correct prediction allows the

network to win the game, by presenting stone (pattern C) in response to a

predicted scissors (pattern A), scissors (pattern A) in response to a predicted

paper (pattern B), and paper (pattern B) to a predicted stone (pattern C).
The game is played as follows:

1. The synaptic weights are initialized by setting them to 0 and 1 with

the same probability. Another possibility is to set all weights to 0.

2. The network is updated up to a maximum number of times (20 times

in the following tests) until a transition occurs. The pattern to which

the transition is made is used as prediction for the next pattern in the

sequence.

3. A suitable pattern is played, as explained above, and the prediction
is compared to the played pattern to evaluate the performance of the

network.

4. The network learns the transition from the starting pattern to the pat¬

tern that had to be predicted, independently on the fact that the pat¬

tern has been correctly predicted or not. The played pattern becomes

the new starting pattern.

5. The procedure is repeated from point 2.

Three different sequence orderings were used in the game, A, B, and C cor¬

responding to, respectively, scissors, paper, and stone:

S = A, B, C, A, B, C, ... The network is expected to be able to predict
all patterns.

T — C, B, A, C, B, A, ... The network is expected to be able to predict
all patterns.

U = A, B, C, B, A, C, ... Sequence in which each triplet of patterns is a

permutation of the set {A, B, C}. As in the case of the sequence U, the

network is expected to correctly predict the patterns with probability

1/3-(1/3+ 1/2 + 1) = 0.61.

5. Games networks play 5.1. Network fun

108

The expected prediction rates correspond to the case in which the network

makes a transition to a pattern. This happens when the maximum number

of times the network is updated is substantially higher than the escape time

of the network state from any attractor of the dynamics. If the maximum

number of updates is not large enough, the network does not always make

a transition to another pattern. In this case, the starting pattern, that is

the pattern the network state has maximum overlap with, is used as a pre¬

diction of the played pattern. Because of the way the pattern sequences are

generated, any pattern can happen to be used in a sequence twice in a row.

For example, it can happen when using the sequence ordering tl, if the last

pattern of a triplet is the same as the first pattern of the next triplet, e.g.,

..., A, B, C, C, A, B, Anyhow, because of the definition of transition,
the network cannot make a transition to the same pattern, and so it can¬

not correctly predict the occurrence of the same pattern in a sequence twice

in a row. A correct prediction can happen if the network parameters and

the maximum number of updates are set in such a way that the network

does not always make a transition to a different pattern, as explained above.

In this case, the performance can be increased, in the best case, by up to

1/9, in correspondence to the correct prediction of all first patterns of the

triplets composing the pattern sequence. In this case, the maximum possible

performance is 0.72.

The sequences S, T, and U were generated and presented to the net¬

work. The performance of the network in predicting the next pattern in the

sequence, and so in winning the game, is plotted in Figures 5.1, 5.2, 5.4,
and 5.5. The sequences used to produce the data showed in all figures start

with a short sub-sequence in which the patterns are randomly chosen. In

all cases, the network is expected to be able to correctly predict the ran¬

dom sub-sequences with a probability 1/3. Figure 5.3 shows the effects of an

increased (or decreased) temperature on the performance of the network.

Figure 5.5 shows the performance of the network when the presented

sequences are generated by alternating two orderings, and namely, ordering S

and ordering T When the network is presented for the second time the sub¬

sequences ordered according to S, the performance does not drop to a value

close to zero, as when the network is presented for the first time a non-

random sequence. This indicates that some memory about the past learned

transition probabilities is still present in the synaptic matrix. This effect is

due to the stochastic learning rule, which slowly replaces old memories with

the new one, as explained in Section 2.2.2 (see Figures 5.6, and 5.7).

5. Games networks play 5.1. Network fun

109

a)
o
c

o

E

0_

4000 6000

Presentation number

10000

Figure 5.1: Performance of the network in playing the 'scissors, paper, stone' game

as a function of the number of presented patterns. The maximum performance,

1, corresponds to 100% of correctly predicted patterns. The presented sequence

is composed by 10000 patterns. Patterns from 0 to 499 are randomly chosen.

Patterns 500 to 10000 are ordered according to S. The synaptic matrix weights

were initialized to 1 and 0 with the same (0.5) probability. As the learning modifies

the synaptic matrix, the network performance increases toward the asymptotic,

expected value 1. The figure shows the cumulative average (window width: 20

patterns) of the average of the performance calculated over 16 trials (800 neurons,

/ = 0.05, Xf = 0.3, A& = 0, IQ = 0.015, ß = 100).

5. Games networks play 5.1. Network fun

110

©
U
C

D

E

(D
CL

n 1 r

500 1000 1500

Presentation number

2000

Figure 5.2: Performance of the network in playing the 'scissors, paper, stone' game

as a function of the number of presented patterns. The maximum performance,

1, corresponds to 100% of correctly predicted patterns. The presented sequence

is composed by 10000 patterns. Patterns from 0 to 499 are randomly chosen.

Patterns 500 to 10000 are ordered according to S. The synaptic matrix weights

were all initialized to 0. As the learning modifies the synaptic matrix, the network

performance increases toward the asymptotic, expected value 1. The performance

increases more rapidly with the number of presentations than in the case showed

in Figure 5.1. This is due to the different initialization of the synaptic matrices.

In the case showed in Figure 5.1, the network dynamics is affected by the noise

related to the random initialization of the synaptic matrix. The noise slows down

the response of the network dynamics to the on-going learning process. The figure
shows the cumulative average (window width: 20 patterns) of the average of the

performance calculated over 16 trials (800 neurons, / = 0.05, Xf = 0.3, Xg = 0,

70 = 0.015, ß= 100).

5. Games networks play 5.1. Network fun

Ill

d)
u
c

o

E

Q)
CL

0.8-

0.6-

0.4-

0.2 n 1 r

500 1000 1500

Presentation number

2000

Figure 5.3: Performance of the network in playing the 'scissors, paper, stone' game

as a function of the number of presented patterns for two network temperatures,

ß = 50 and ß = 300, to be compared with the plot showed in Figure 5.3. A

decrease in temperature (increase in ß) does not significantly affect the learning,
whereas an increase in the temperature (decrease in ß) slows down the learning.
This result is consistent with the fact that an increased level of noise increases the

time necessary to reach the asymptotic configuration of the synaptic matrix.

5. Games networks play 5.1. Network fun

112

(D
U
C

o

E

Q-

1000

Presentation number

2000

Figure 5.4: Performance of the network in playing the 'scissors, paper, stone' game

as a function of the number of presented patterns. The maximum performance,

1, corresponds to 100% of correctly predicted patterns. The presented sequence is

composed by 2000 patterns. Patterns from 0 to 499 are randomly chosen. Patterns

500 to 2000 are ordered according to U. The synaptic matrix weights were initial¬

ized to 0. As the learning modifies the synaptic matrix, the network performance
increases toward is average asymptotic value. The figure shows the cumulative

average (window width: 20 patterns) of the average of the performance calculated

over 16 trials (800 neurons, / = 0.05, A; = 0.3, Xg = 0, I0 = 0.015, ß = 100).

5. Games networks play 5.1. Network fun

113

2000
n 1 r

4000 6000 8000

Presentation number

10000

Figure 5.5: Performance of the network in playing the 'scissors, paper, stone' game

as a function of the number of presented patterns. The maximum performance,

1, corresponds to 100% of correctly predicted patterns. The presented sequence is

composed by 2000 patterns. Patterns from 0 to 499 are randomly chosen. Patterns

500 to 1999 are ordered according to <S, from 2000 to 4999 according to T, from

5000 to 7999 again according to <S), and finally, patterns from 8000 to 11000 are

ordered again according to T Each time the pattern ordering of the pattern

sequence is changed, the performance drops to a value which is directly related

to the memory of the presented sequence the network still has. The fact that the

performance does not drop to a value close to zero indicates that still some memory

of the previously presented sequence ordering is encoded in the synaptic matrix.

This is a feature of the stochastic learning rule, which slowly removes old memories,

replacing them with newer ones. This effect is more clearly showed in Figures 5.6,

and 5.7.

5. Games networks play 5.1. Network fun

114

1.0

I 0&

I 0.6

| 0.4

£ 0.2

OJOi

7?"

W^'

to-

8 0.8

I 0.6

| 0.4

£ 0.2

O-Oj

Y#*/K

to-

8 0.8-

I 0.6

I 0.4

£ 0.2

0.0:

to

5 as

I 0.6

I 0.4

£ 0.2

0J0{

1.0

8 0.8-

I 0.6

| 0.4

£ 0.2

OJOi

-jT—

V**f

v*"m'

W&

r

WW

S*
.w*"

UIÄ^w*wvJ-«^w'
.%JAI-,Jrfl.,4M,»~«.>.>l'Wf^»'

"äSxT ~4Ö6Ö~ löbö" 8000

••"

löbT ~4Ö6Ö~ löbö" 8000

/*"
mtS**r}ft*'*ir**f.

i/*
^tf*^

j4c\^K"w**V*'H

L/
~2Ö5Ö~ ~4Ö6Ö~ löbö" 8000

y
j****-**1^"

/
f

l-AM^I

löbT "iöbö" löbö" 8000

««•^im/wW.
^^AWw'Am'^M'V

jf

xn

•

2000 4Ö5Ö 6000

Präsentation number

8000

5. Games networks play 5.1. Network fun

115

Figure 5.6: Performance of the network in playing the 'scissors, paper, stone' game

as a function of the number of presented patterns. The maximum performance,

1, corresponds to 100% of correctly predicted patterns. The presented sequences

are composed by 2000 patterns. The five plots show the performance of the net¬

work for five different pattern sequences. Each sequence is composed by three

sub-sequences. The first sub-sequence, from pattern 0 to pattern 499, is generated

by choosing the patterns in random order. The second sub-sequence, ranging from

pattern 500 to pattern 1999 was generated choosing the sequence ordering S. After

this sub-sequence is presented to the network, the network is able to correctly pre¬

dict the patterns in the sequence with a probability very close to 1. The five plots

corresponds to five different lengths of the third and fourth sub-sequences. In the

top plot, the third sub-sequence, generated using the ordering T, is 1000 patterns

long. In the other plots, the third sub-sequence is increasingly long: 2000 pat¬

terns for the second plot (from the top), 3000 patterns for the third plot, 4000 for

the fourth plot, and 5000 patterns for the bottom plot. The fourth sub-sequence,

generated using the ordering <S again, lasts the number of patterns necessary to

have a sequence length equal to 8000 patterns. In all plot, the performance drops

to a value close to zero at the beginning of the third sub-sequence. This is due

to the fact that, in all five cases, the network has never been exposed to a se¬

quence ordered according to the sequence ordering T When presented with the

third sub-sequence, the learning process gradually modifies the synaptic matrix,

accommodating information regarding its transition probabilities. In this way, the

performance of the network gradually increases. After a variable number of pre¬

sentations, at the beginning of the fourth sub-sequence, the sequence ordering is

switched back to S. In this case, the performance does not drop down a value close

to zero. This fact shows that some memory traces of the transition probabilities

previously learned is still present in the synaptic matrix. This is a characteristic

of the stochastic learning rule (see Section 2.2.2), which slowly removes old memo¬

ries to make room for information about the transition probabilities of the pattern

sequence being showed.

5. Games networks play 5.1. Network fun

116

a>
o
c

o

E
L.

O
M-

(D
û_

i 1 r

2000 3000 4000

Number of presentations
5000

Figure 5.7: Performance of the network at the beginning of the fourth sub-sequence

(see Figure 5.6), as a function of the length of the third sub-sequence. The decreas¬

ing performance is consistent with the fact that the longer the third sub-sequence

is, the more the memories related to the second sub-sequence are forgotten

5.2 Summary

We show that our network is able to play the 'scissors, paper, stone' game.

The increasing performance of the network during the course of the game

goes together with the amount of information encoded by the learning rule

m the synaptic matrix of the network. The game is played with different

sequences and the theoretical, maximum performance is compared with the

actual performance. The actual performance of the network well approaches
the theoretical one with the given tranmg set.

5. Games networks play 5.2. Summary

Chapter 6

Conclusion

We have showed how a Hopfield-like network can learn in unsupervised way

temporal sequences of stimuli consisting of patterns of activity of a set of neu¬

rons (the input layer). When presented with a sequence of stimuli, a Hebbian

learning rule modifies the synaptic matrix. The learning rule creates attrac¬

tors corresponding to the patterns of activity elicited by the external inputs.

Additionally, the learning rule creates projection from the neurons partici¬

pating in the pattern of activity of one attractor to the neurons participating
in the pattern of activity of the attractors following the first one. The num¬

ber of projection between attractors is roughly proportional to the frequency

by which patterns follows each other in the input sequence.

In the presence of noise, the attractors are metastable. We showed that the

transition probabilities between attractors depend on relative frequencies of

presentation of the stimuli and so on the number of projections between neu¬

rons participating in the activity pattern of different attractors. This finding

represents one step forward in the understanding of the mechanisms by which

brains process temporal stimuli. Our results complement the research done

by various researchers in this field, many of which were mentioned in the

previous chapters. The dependence of the transition probabilities from the

correlations of the attractors and, indirectly, from the temporal correlations

of the presented stimuli, was only supposed. We carefully investigated these

phenomena and showed under which conditions the network dynamics can

better replicate the statistics of the sequence used in the training. The de¬

pendence on the level of noise could indicate a possible important role of

fluctuations in real neural circuits. The same principles might more gener¬

ally apply to other kinds of network, as, for example, gene or metabolic net¬

works. The formal similarities between neural networks and gene networks,

schematically shown in Table 6.1. Cell cycle, determination, differentiation,
and the so-called cell memory can be easily modeled with the kind of net-

117

118

Neural networks Genetic networks

Neurons Genes

Dendrites Regulatory regions

Synapses Operators
Axons Operons

Neurotransmitters Regulatory proteins
Attractors Cell memory

Population coding Combinatorial control

Trained by experience Trained by evolution

Table 6.1: Formal similarities between neural and gene networks.

work we employed. The fact the an optimal level of noise exists that optimize
the performance suggests that natural networks might be tuned to correctly
work in some range of noise. This conjecture might be worth some serious

thought.

The network can only work for pattern sequences generated by Markov

processes. This is because the transition probabilities at any point in time

only depend on the present state of the network, that is, on its present

activity pattern. One way to allow the network to learn and generate patterns

sequences generated by non-Markov processes is to make the state of the

network at any point in time dependent on more than one pattern. If the

network state is made dependent on several input stimuli, the network can

process sequences generated by non-Markov processes.

In our approach, the network state is incrementally built by mixing the

present state of the network with the pattern of activity of the input layer.
This mixing mechanism allows to slowly forget old input patterns. A certain

fraction of the active neurons code for the latest pattern presented to the

network, and a decreasing number of neurons for patterns presented earlier

in time. The encoding layer together with the buffer network provides for

this kind of pre-processing of the input pattern sequence. The encoding
mechanism is good enough to show that the kind of preprocessing we devised

is sufficient to allow the network to learn and generate stimuli sequences

generated by non-Markov processes. Unfortunately, its implementation does

not meet some basic requirements of simplicity. In particular, the buffer

network was introduced to provide a functionality that we were not able

to generate otherwise. A better approach could use the delay activity of

the network as a memory of the pattern of activity elicited by the previous
stimulus. So, instead of combining the inputs from the buffer network and

the input layer, one would combine the recurrent input of the encoding layer

6. Conclusion

119

(of course, a fully connected network should be used in place of a simple

neuron layer) and the input from the input layer. A similar approach failed,
as explained in Section 4.1.1. However, its simplicity might look appealing

enough to make someone go on investigating this possible solution.

6.1 Echoed (liquid) states

The approach that most resembles our network is the one described by

Jaeger [5] (A similar model has been developed by Maass and colleagues [41]).
Jaeger uses a large recurrent neural network as a dynamics "reservoir" to store

information about the temporal pattern sequence presented to the network.

Output units tap from this reservoir. The network-to-output connection

weights between the reservoir and the output units are trained using highly
efficient linear regression algorithms. Our model differs from Jaeger's net¬

work in three ways:

Learning The learning procedure used by Jaeger is supervised. This means

that the weights from the reservoir to the output units are adjusted
to minimize the error between the trajectory described by the output

units and a given trajectory. The need for supervision does not allow

one to model, for example, the experimental findings of Miyashita. The

phenomena described by Miyashita occur 'automatically', without the

necessity of an explicit comparison between the output of the network

and a target output. Our model extracts, in an unsupervised man¬

ner, the transition probabilities from a temporal sequence of patterns,

without the need of an external target function.

Generation Jaeger's model is not able to autonomously generate the next

point of a learned trajectory. The values of the output units are used,
after normalization, as probabilities for the generation of the next pat¬

tern. An external system 'tosses the coin' and selects the next pattern.

Our model does not need such a system: the dynamics of the network

itself generates the next pattern of activity. The transition probabil¬
ities do not need to be read out, they are embedded in the synaptic
matrix of the network. In a sense, the network dynamics reads out

these information and produces the transitions.

Inter-stimulus time Probably, the most significative difference lies in the

sensitivity to inter-stimulus times. Given a sequence of patterns, our

model will produce the same results independently of the time interval

between subsequent patterns. This is possible because of the buffer

6. Conclusion 6.1. Echoed (liquid) states

120

network, whose fast learning synapses allow it to keep a memory of

the last pattern of activity of the encoding network. The buffer is a

Hopfield network, with a Hebbian learning rule (q+ = 1, ç_ = qx = 0,

see Section 2.2.2) and the Glauber's dynamics with a very low temper¬

ature (high ß) for the neuron update. The old memory in the buffer

is updated every time a new pattern is presented to the network. The

presentation of a new pattern does not only trigger the update of the

memory of the buffer, but also the generation of a new pattern of ac¬

tivity by the encoding network.

Jaeger's reservoir consists of a set of integrate-and-fire neurons with

different time constants, that are randomly connected to each other.

The activity produced by an input pattern reverberates in the reservoir.

These reverberations are a function of a part of the pattern sequence.

The patterns influencing the reverberations of the reservoir belong to

a window in time, whose width depends, in some unknown way, on

the number of neurons composing the network, on their connectivity,
and on their time constants. The pattern of activity of the reservoir

depends on the time intervals between subsequent patterns. In this

way, two identical sequences of patterns that only differ in the inter-

spike intervals, will produce two completely different activity patterns

reverberating in the reservoir. In order to generalize to any inter-spike

interval, the readout should be trained with all possible combinations

of intervals (the number would depend on the temporal resolution of

the readout), which is, of course, impractical. On the other hand, such

a behavior might be desired in a task that requires the recognition of

the patterns and the inter-spike intervals. It must be noted that these

considerations are only valid for a recognition task. When the pat¬

terns sequences are generated, both networks ingnore the information

about the inter-stimulus intervals. This information is not stored in the

synaptic matrix of our network, or in the reservoir of Jaeger's network,
which has fixed synaptic weights.

Our network uses a learning rule that is local in time and space. This

makes it suitable for the modeling of cortical circuits and their functional¬

ities. The ability to ignore the inter-spike intervals is consistent with the

generalization abilities we normally experience. Brains can learn, recognize,
and generate stimuli sequences (e.g., sequences of images) even if the tempo¬

ral scale is changed. Likewise, our network ignores any information regarding
the inter-stimulus intervals. Jaeger's network is less suitable for the model¬

ing of the brain functionalities, but it can be employed in applications that

require temporal precision. The functionalities of the buffer network and the

6. Conclusion 6.1. Echoed (liquid) states

121

reservoir almost completely overlap, being the most notable difference the

use we make of stable attractors to store the memory of the previous pattern

of activity of the network. This difference accounts for the different ways of

dealing with time intervals during the recognition task. The generation of

patterns is accomplished in a more elegant way by our implementation, wtich

does not need an external system performing a random draw to choose the

next pattern. Again, this detail makes our network a more plausible model

of the processing of temporal sequences in natural neuronal circuits.

6.2 Outlook

A recent paper by Orlov et al. [60] suggests a possible extension of our model.

In a task involving recalling the order in which some images had been seen,

the Macaque monkeys' most common error was touching the distractor image

(1 distractor out of 4 images) when it had the same ordinal position as the

correct image. This finding suggests that monkeys associate images to the

ordinal number of appearance in a sequence. The neural mechanisms under¬

lying this phenomenon are not yet clear. A possible explanation involves the

independent activation of a population of neurons selective to the ordinal

position of the image presented. The learning rule would associate in the

same attractor this population of neurons to the population active upon the

presentation of the image. After learning is completed, the presentation of an

image would then elicit the activity of the neurons selective for that image,
which would then provoke a partial activation of the neurons selective to the

next image and those selective to the ordinal position of the next image. The

neurons selective to an ordinal position are in common with all attractors re¬

lated to images occurred in the same ordinal position. This might explain

why, when recalling the order of a given set of images, monkeys often mistake

an image with another image that occurred, during the training, in the same

ordinal position. Work on this hypothesis might represent a way to extend

the model we developed.

Along the same line, the same mechanism described above could be ex¬

tended to associate neurons selective to external stimuli with neurons repre¬

senting 'internal states'. In this way, our model could find its way to become

a sort of 'behavioral engine', where the sequence of internal state (metastable
attractors) is both influenced by external stimuli (sensorial inputs) and inter¬

nal states. Examples of internal states are the level of glucose in the blood,
the need for sleep, or the battery charge level. Such states can provide stimuli

to the network just like external stimuli. For example, the stimulus corre¬

sponding to some kind of food might be associated to an increased level of

6. Conclusion 6.2. Outlook

122

glucose. Seeing the same kind of food again and again would create a strong

association between it and its nutritional properties, which could accordingly

modify the behavior of an agent. The behavior could be implemented by a

system recognizing the state of the network, and linking it to behavioral or

motor patterns.

A weak external input was shown to influence the transition probabilities.
This suggests a way to create 'modalities' in the dynamics of the network.

A modality would correspond to a weak input to a subset of the neurons.

The transition probabilities would in this way be altered to provide a spe¬

cialized behavioral response to external stimuli and internal states, such as,

for example, emotions (happiness, fear, etc.).
A major improvements would come from mapping the whole network to a

network of integrate-and-fire neurons. As it has been explained in Section 2.2,
the variability of the interspike intervals provide for the stochasticity needed

by the learning process, without the need to invoke an external mechanism.

Integrate-and-fire neurons and binary synapses represent an excellent choice

for aVLSI implementation [61]. This technology is leading us toward the

design of very small, lightweight, and low-power-consumption devices capable
of real-time computation. The principles for the construction of such devices

are inspired by brain function. The fact brains show a performance not yet

attained by any artificial device, justifies these efforts both from the point of

view of Science and technological advancement.

6. Conclusion 6.2. Outlook

Appendix A

Code

All simulation were written in Java, run using the IBM Java2 virtual machine

version 1.3 for Linux on x86 processors, and Matlab1. We made extensive

use of the Java scripting language Pnuts2. We also used the Open Source

Libraries for High Performance Scientific and Technical Computing in Java

(COLT)3. Data were usually analyzed using Matlab. Figures where produced

using the plotting package PHYSICA4 and Matlab.

A.l Variables

This is a list of some variables used in the following sections. Several variables

have been omitted, whose name is usually self explanatory.

beta float; pseudo-temperature of the network.

externallnput ID float array; array of the external synaptic inputs to the

neurons.

fields ID float vector; vector of synaptic input to the neurons of the net¬

work.

globalActivity float; fraction of active neurons of the network.

inhibition float; dynamically adjusted inhibition to the neurons.

mininhibition float; minimum inhibition that the netowrk is allowed to

have.

1The MathWorks, Inc.

2
http://javacenter.sun.co.jp/pnuts/index.html

3http://tilde-hoschek.home.cern.ch/ hoschek/colt/index.htm
4
http://www.triumf.ca/people/chuma/physica/homepage.html

123

124

networkState ID byte vector; vector of the activities of all neurons. Ele¬

ments can be either 1 or 0.

numberOfNeurons integer; number of neurons conmposing the network.

weightMatrix 2D byte matrix; synaptic matrix of the network.

A.2 Field

Method computing the fields (synaptic inputs) to the neurons of the network.

/**

* Return fields for the actual network state. External field

* is not considered.

* ©return float[] Fields to the neurons

*/

public float [] getFieldsO {

float [][] weightMatrix = network. getWeightMatrix () ;

byte[] networkState = network.getNetworkState();
float[] fields = new float[numberOfNodes];

for (int i = 0; i < numberOfNodes ; i++) {

for (int j = 0; j < numberOfNodes; j++) i

fields[i] += weightMatrix[i][j] * networkState[j];
}

fields[i] /= numberOfNodes ;

}

return fields;

}

A.3 Glauber dynamics

Method updating all neurons in random order. The order is randomized

each time the method is called. The method adaptlnhibition is described

in Section A.4.

/*

* Update all neurons of the network in random order.

* The order is randomized each time this method is called.

* ial is a cern.colt.list.IntArrayList. It must be initialized

* with the set of integers 1...N, where N is the number

* of neurons. Its method shuffle() makes a random

A. Code A.2. Field

125

* permutation of the list of integers with which it was initialized.

*/

public void evolve() {

float field; // Synaptic input

ial.shuffle(); // Randomize neurons update order

int randomNeuron;

for (int i = 0; i < numberOfNeurons ; i++) {

randomNeuron = ial.get(i);
field = O.Of; // reset synaptic input
for (int j = 0; j < numberOfNeurons ; j++) {

field += weightMatrix[randomNeuron][j] *

networkState[j];
}

field /= numberOfNeurons ;

field += externallnput[randomNeuron];
// Glauber dynamics
float prob = (float) (1.0 / (1.0 + Math.exp(-2.0 *

(field - inhibition) * beta)));

networkState [randomNeuron] = (mt .nextFloatO < prob) ?

(byte) 1 : (byte) 0;

// Call the method implementing the dynamic inhibition

adaptlnhibitionToActivityO ;

}

}

A.4 Dynamic inhibition

Method adapting the ihhibition to all neurons of the network to the level of

activity of the network.

/**

* Set inhibition to a value dependent on the global
* network activity.
* Inhibition I has the form

* I=slope*(activity-intercept) where the intercept is the

* intersection point of the inhibition curve with the 1=0 axis.

* 'activity' and 'intercept' correspond, in the text, to

* <s_0' and 's_l' in the text.

*/

public void setlnhibitionO {

float globalActivity = O.Of;

A. Code A.4. Dynamic inhibition

126

// Compute activity of the network

for (int i = 0; i < numberOfNodes ; i++) {

globalActivity += networkState[i];

}

globalActivity /= numberOfNodes;

float targetlnhibition = slope * (globalActivity - intercept);
float newlnhibition = inhibition+

0.02f*(targetlnhibition-inhibition); // 0.02

if (newlnhibition >= minlnhibition)

setlnhibition(newlnhibition);

/** Avoid a too low inhibition: if the network activity
* is too low, then it should go to zero activity.
* This can happen when the network does cannot

* recognize a pattern.

*/

else setlnhibition(minlnhibition);

}

A. 5 Overlaps

Method returning the overlaps of the present network state with all the pat¬

terns given in the rows of the input matrix.

/**

* Return an array containing the overlaps of the network

* state with the given patterns.
* ©return float[] Overlaps
* @param patterns byte[][] Patterns (in the rows)

*/

public float [] observeOverlaps(byte[] [] patterns) {

int numberOfPatterns = patterns.length;

float[] overlaps = new float[numberOfPatterns];

for (int m = 0; m < numberOfPattems; m++) {

overlaps [m] = observeOverlap(patterns[m]);
}

return overlaps ;

}

A. Code A.5. Overlaps

127

A.6 Pattern with maximum overlap

Method returning the index of the pattern having maximum overlap with

the present network state. Patterns are provided as rows of the argument

matrix.

/**

* Return index of the pattern whose overlap with the network

* state is maximal.

* ©return int Pattern number

* @param patterns Patterns to be used in calculating overlaps

*/

public int patternWithMaxOverlap(byte[][] patterns) {

int numberOfPatterns = patterns.length;
float overlap;
int winningPattern = -1; // lower than any possible value

float maxOverlap = -1; // lower than any possible value

for (int m = 0; m < numberOfPatterns ; m++) [

overlap = 0.Of ;

for (int i = 0; i < numberOfNodes ; i++) {.

overlap += patterns[m][i] * networkState[i];

}

overlap /= numberOfNodes;

if (overlap > maxOverlap) {

maxOverlap = overlap;

winningPattern = m;

}

}

return winningPattern;

}

A.7 Compute transition probabilities

Method computing the transition probabilities for a network, usually after

the training phase is finished.

Note: This method describes a way to compute the transition probability
matrix for a network. The network state is never reset during the compu¬

tation. In some cases (see Section 3.1.3), to uniformly sample all transition

probabilities, it is better to set the network state to a new starting state after

a transition has occured.

A. Code A.6. Pattern with maximum overlap

128

/**

* Compute the transition probabilités. All neurons are updated
* in random order once; after that, the index of the pattern
* having maximum overlap with the network state is calculated.

* The corresponding element of the transition probability matrix

* is incremented by 1. At the end, the matrix is normalized so

* that the cumulative sum of all rows equals 1.

* The whole process is repeated a given number of times.

* ©return ale.nn.FloatMatrix

* @param timesteps int Number of times the network update
* has to be done

*/

public FloatMatrix computeTransitionProbabilities(int timesteps) {

int winningPattern = network.patternWithMaxOverlap(patterns);
int oldWinningPattern = winningPattern;

float[][] transitionProbabilityMatrix =

new float[numberOfPatterns][numberOfPatterns];

for (int t = 0; t < timesteps; t++) {

network.evolve(); // update all neurons once

oldWinningPattern = winningPattern;

winningPattern = network.patternWithMaxOverlap(patterns);
if (winningPattern != oldWinningPattern) {

// a transition occured

transitionProbabilityMatrix[oldWinningPattern]

[winningPattern] += 1.Of ;

} else {

// the network is still sitting in the same attractor

transitionProbabilityMatrix[winningPattern]

[winningPattern] += 1.Of ;

}

}

// normalization of the transitionProbabilityMatrix

float[][] normalizedTransitionProbabilityMatrix =

new float[numberOfPatterns][numberOfPatterns];

for (int irow = 0; irow < numberOfPatterns ; irow++) {

float sum = O.Of;

for (int icolumn = 0; icolumn < numberOfPatterns ; icolumn++)

sum += transitionProbabilityMatrix[irow][icolumn];
if (sum != O.Of) {

float normalisation = 1.Of/sum;

for (int icolumn = 0; icolumn < numberOfPatterns; icolumn++)

A. Code A.7. Compute transition probabilities

129

normalizedTransitionProbabilityMatrix[irow][icolumn] =

transitionProbabilityMatrix[irow][icolumn] * normalisation;

} else {

for (int icolumn = 0; icolumn < numberOfPatterns; icolumn++)

normalizedTransitionProbabilityMatrix[irow][icolumn] = O.Of;

}

}

return new FloatMatrix(normalizedTransitionProbabilityMatrix);
}

A.8 Online learning

Method modifying the synaptic matrix using a Hebbian-like learning rule.

/**

* Stochastically modify the synaptic weights using a

* Hebbian-like learning rule.

* @param previousNetworkState byte[] Previous state of

* the network. The learning rule algorithms can potentiate
* the synapses connecting neurons active in this vector

* and neurons which are active in the present state of

* the network.

* @param probability float Probability of potentiating a

* synapse connecting two active neurons

* @param weightMatrix Weight matrix

* @param activity float Mean global activity of the network

* @param lambdas Lambda_f and lambda_b

*/

public stochasticallyUpdateWeightMatrix(

byte[] previousNetworkState, float probability, float activity,

float[][] weightMatrix, float[] lambdas) {

/** The probability of potentiating a synapses between

* 2 active neurons is qll*activity"2

*/

float qll = probability;

/**

* the probability of depressing a synapses connecting
* 2 neurons with different activity is

* 2f(1-f)*probability_of„depression (f is the activity of

* the network).

A. Code A.8. Online learning

130

* The probabilty of depression must be chosen to

* equilibrate the number of potentiations and depressions.
*/

float qlO = (activity * qll) / (2 * (1 - activity));

byte[] networkState = network.getNetworkState();
int i, j;
for (i = 0; i < numberOfNodes; i++) {

for (j =0; j< numberOfNodes ; j++) {

if (lambdas[0]!=0 && previousNetworkState[i] *

networkState[j] >= 1 && weightMatrix[j][i] == 0 &&

i != j) {

if (mt.nextFloatO < (qll * lambdas [0])) {

weightMatrix[j][i] = 1;

}

}

if (lambdas[1]!=0 && previousNetworkState[j] *

networkState[i] >= 1 && weightMatrix[j][i] == 0

&& i != j) {

if (mt.nextFloatO < (qll * lambdas [1])) {

weightMatrix[j][i] =1;

}

}

if (weightMatrix[j][i] == 0 && networkState[i] *

networkState[j] >= 1 && i != j) {

if (mt.nextFloatO < qll) {

weightMatrix[j][i] = 1;

}

} else if (weightMatrix[j][i] >= 1 &&

networkState[i] == 1

&& networkState[j] == 0 && i != j) {

if (mt.nextFloatO < qlO) {

weightMatrix[j][i] =0;

}

}

}

}

}

A. Code A.8. Online learning

131

A.9 Fast learning

Method teaching the network a Markov process by computing the probability
for each synapse to be potentiated or depressed, without having to present

the network a pattern sequence generated by the markov process.

/* Create weight matrix calculating the theorical probability
* for each synapse to be potentiated or depressed.
* @param patterns byte[][] Patterns to be taught in the rows.

* @param probability float Probability of potentiating a

* synapse connecting two active neurons

* @param lambda float[][] Lambda_f and lambda_b

* @param linkMatrix float[][] Matrix with links between patterns
* (Markov matrix)

* @param activity float Activity of the network

*/

public void stochasticallyComputeWeightMatrix(byte[][] patterns,

float probability, float [] lambda, float [] [] linkMatrix, float

activity) {

/** The probability of potentiating a synapses between

* 2 active neurons is qll*activity~2

*/

float qll = probability;

/**

* The probability qlO of depressing a synapses connecting 2 neurons

* with different activity is 2f(1-f)*probability_of.depression
* (f is the activity of the network).

* The probabilty of depression must be chosen to equilibrate
* the number of potentiations and depressions.
*/

float qlO = 2.Of*(activity * qll) / (2 * (1 - activity));
float p; // probability for a synapse to be 1

float q; // probability for a synapse to be 0

for (int irow=0; irow<patterns[0].length; irow++) {

for (int icolumn=0; icolumn<patterns[0].length; icolumn++) [

p
= O.Of;

q
= O.Of;

for (int mu=0; mu<patterns.length; mu++) {

II compute p

p += patterns[mu][irow]*patterns[mu][icolumn]*

qll*frequencies[mu];

A. Code A.9. Fast learning

132

for (int nu=0; nu<patterns.length; nu++) {

if (nu!=mu) {

p += patterns[mu][irow]*patterns[nu][icolumn]*

linkMatrix[nu][mu]*lambda[0]*frequencies[mu]*qll;

p += patterns[nu][irow]*patterns[mu][icolumn]*

linkMatrix[nu][mu]*lambda[l]*frequencies[nu]*qll;
}

}

// compute q

q += (1-patterns[mu][irow])*patterns[mu][icolumn]*

qlO*frequencies[mu];

q += (1-patterns[mu][icolumn])*patterns [mu] [irow]*

qlO*frequencies[mu];
}

weightMatrix[irow][icolumn] =

(mt.nextFloat()<(p/(p+q)))? 1:0;

}

}

}

A. 10 Next state of a Markov chain

Method returning the next state of a Markov chain. It is used to generated

pattern sequences.

/* Return the next state in a Markov chain

* @param m float [][] Markov matrix (sums of columns are

* normalized to 1)

* ©param start int Starting state

*

* mt: random number generator

*/

public int getNextState(float[][] m, int start) i

float f = mt.nextFloatO;

int index = 0;

float sum = O.Of;

for (int i =0; i<mm[start].length; i++) {

sum += mm[start][i];

if (f<sum) {

index = i;

break;

A. Code A. 10. Next state of a Markov chain

133

}

}

return index;

}

A. 11 Measurement of the transition probabili¬

ties in the non-Markov case

This method computes the transition probability matrix from a sequence of

integers. Integers correspond to the pattern with which the network had

maximum overlap when overlaps were measured. This method is used when

measuring the performance of the network in learning sequences generated

by a non-Markov process. In the case of Markov processes, the code in

Section A.7 is usually used.

/** Return the Markov matrix extracted from the sequence .
The

* transition probabilities calculated are between the states of

* subsequences of states in the 2D integer matrix 'states'.

* @param sequence int[] Sequence (pattern sequence)
* ©return float [][] Transition probability matrix

*/

public float[][] sequenceToMatrix(int [] sequence) {

public static int [] [] states =

{{0},

{2},

{3},

{0,1},

{3,1}};

// tp: transition probabilities

float[][] tp = new float [states, length] [states, length] ;

int [] fromState;

int [] toState;

int fromStateLength;
int toStateLength;
for (int i=0; Kstates .length; i++) {

fromStateLength = states[i].length;
fromState = new int[fromStateLength];
for (int j=0; j<states.length; j++) {

toStateLength = states[j].length;

A.AIÎibEeMeasurement of the transition probabilities in the non-Markov case

134

toState = new int[toStateLength];
for (int k=0; k<sequence.length; k++) {

if ((k+fromStateLength+toStateLength)>

sequence.length) break ;

for (int ifrom=0; ifrom<fromStateLength; ifrom++) {

fromState[ifrom] = sequence[k+ifrom];
}

for (int ito=0; ito<toStateLength; ito++) {

toState[ito] = sequence[k+fromStateLength+ito];
}

// the helper function match can be found at

// the end of this section

if (match(fromState, states[i]) &&

match(toState, states[j])) {

tp[i][j]++;
}

}

}

}

/* Normalization */

float sum;

for (int i=0; i<tp.length; i++) {

sum = 0. Of ;

for (int j=0; j<tp[i].length; j++) {

sum += tp[i] [j] ;

}

for (int j=0; j<tp[i].length; j++) {

tp[i] [j] /= sum;

}

}

return tp;

}

/* Helper function: return true if the input
* arrays are the same */

public boolean match(int[] a, int [] b) {

boolean output = true;

for (int i=0; i<a.length; i++) {

output = output && (a[i] == b[i]);

}

return output ;

}

A.ACèEeMeasurement of the transition probabilities in the non-Markov case

135

A. 12 Encoding network

clear; rehash

activity = 0.1;

% Number of neurons

N = 500;

% Number of active neurons

fN = activity*N;

% Total number of timesteps
totalT = 3000;

R = randperm(N);
% Weight matrix of the buffer network

wm = zeros(N);

inhibition = 0.05; °/0 starting inhibition of the buffer

% Total number of timesteps The number of timesteps during which an

% external input is present (200) is 1/2 of the time constant of the

% synapses between the buffer network and the encoding network. This

% to avoid the encoding layer to see the changing state of the buffer

% before all neurons are updated in the encoding layer.

inputT = [[1,200];[1000,1200];[2000,2200]] ;

% Input over threshold

inputOver = zeros(3,N);

% Prepare input over threshold

for k = 1 : size(inputOver,1)

input0ver(k,fN/2*(k-l)+l:fN/2*k) = 3;

end

inputSub = zeros(3,N); % Input below threshold

% Prepare input over threshold

for k = 1 : size(inputSub,1)
r = randperm(size(inputSub,2));

inputSub(k,r(l:size(inputSub,2)/2)) = 1.5;

end

% Prepare input to the encoding network

input = zeros(totalT,N);

for k = 1 : size(input,1)
for p

= 1 : size(inputT,1)
if (k>=inputT(p,l) & k<=inputT(p,2))

input(k,:) = input(k,:)+input0ver(p,:);

input(k,:) = input(k,:)+inputSub(p,:);
end

end

A. Code A. 12. Encoding network

136

end

% State of buffer network

buffer = zeros(1,N);

r = randperm(size(buffer,2));
% Initializes network

buffer(l,r(l:fN)) = 1;

% Actual input from buffer network to

% the encoding network

feltBuffer = buffer;

% Save initialization state of the buffer

startBuffer = buffer;

% Time constant of the neurons of the

% encoding layer

ty = 40; '/, tau_e

% Time constant of the synapses between

% the buffer network and the encoding layer
tz = 400; % tau_b

% State of the encoding layer
state = zeros(l,N);

% Helper variables for monitor output

output = zeros(size(input));

output2 = zeros(size(input));

outputi = zeros(1,size(input,1));

'/, Main loop
for t=l: size(input,1)

output(t,:) = state; °/0 Log

output2(t,:) = feltBuffer;% Log

outputi(t) = inhibition;0/. Log

feltBuffer = feltBuffer+(l/tz)*(buffer-feltBuffer);

% Field (synaptic input) to the encoding layer
fields = input(t,:)+feltBuffer(R)*l.5;
% R is a random permutation

% active neurons

f = fields>2;

state = state+(l/ty)*(f-state);
% Buffer receives input from encoding layer only if state>0.9

[buffer,wm,inhibition] = evolveBuffer(buffer,state>0.9

,wm,inhibition);

end

A. Code A.12. Encoding network

137

'/, Plot data

subplot(5,1,1); imagesc(output)
title('State dynamical system')

subplot(5,1,2); imagesc(output2)
title('Buffer dynamical system')

oy oy oy oy o / oy oy oy oy oy oy oy oy oy o / oy

/o /o

'/, Repeat everything using an algorithm and not

'/, difference equations

state = zeros(l,N);

buffer = startBuffer;

output3 = zeros(size(inputOver,1),N);

output4 = zeros(size(inputOver,1),N);

for k=l:size(inputOver,1)
fields = inputOver(k,:)+inputSub(k,:)+buffer(R)*1.5;
state = fields>2;

buffer = state;

output3(k,:) = state;

end

subplot(5,1,3); imagesc(output3)
title('State algorithm')

oy oy

/o /o

% Compares the two methods: if output5-output3 are all zeros,

y the two methods are equivalent

outputö = zeros(3,N);

output5(l,:) = output(199,:)>0.8;

output5(2,:) = output(1199,:)>0.8;

output5(3,:) = output(2199,:)>0.8;

subplot(5,1,1); imagesc(output5)
title('State dynamical system: detail')

subplot (5,1,5) ; imagesc (output5-output3) °/0 deve essere zero

A. Code A. 12. Encoding network

138

title('Difference dynamical system - algorithm')

A. 13 Buffer network

function [buffer,wm,inhibition] =

evolveBuffer(presentBuffer,input,wm,inhibition)
state = presentBuffer;
N = length (presentBuffer) ; °/0 Number of neurons

for t=l:3

wm = state'*state; °/0 one-shot learning
fields = (wm*state')'/N+input; °/0 recurrent+external inut

state = fields-inhibition>0; % Heaviside function

% very simple dynamic inhibition

activity = sum(state)/N;

if (activity>0.15)
inhibition = 0.5;

else

inhibition = 0.05;

end

end

buffer = state;

A. Code A.13. Buffer network

Index

activity, 40

patterns, 1

amoebae, 106

associative memory, 26

attractor, 1, 27, 39, 40, 85, 108

aVLSI, 29

buffer network, 86, 88, 92

capacity, 65, 67

delay activity, 1, 85, 88

Dictyostelium discoideum, 106

dynamic

inhibition, 84

threshold, 84

echoed states, 21, 97

emerging feature, 105

encoding, 86

layer, 86, 88, 97

mechanism, 84, 88, 94

network, 94, 97, 99

ephemeral, 44

gene network, 28, 106

Glauber dynamics, 28, 29

global inhibition, 2, 27

Hebbian learning rule, 2

hidden Markov model, 5

inhibition, 40

global, 27

inhibition, dynamic, 27

inhibition, global, 2, 27

input layer, 86, 88

intelligence, 105

learning

network, 39, 86, 92, 97

phase, 39, 61, 63, 97

rule, 27, 43, 57

rule, Hebbian, 2

Markov

chain, 4, 39

matrix, 37, 42, 44, 60, 64, 67,

79, 82

model, 82

order of a process, 82, 87

order of the process, 103

process, 4, 26, 37, 41-43, 82,

83, 97, 99

process of second order, 101

process of third order, 102

Markov state

aperiodic, 44

ergodic, 44

periodic, 44

mixed state, 85

noise, 3, 7, 9, 11, 24, 27-29, 58, 61,

63

non-Markov process, 26, 82, 97, 99,
101

null-recurrent, 44

overlap, 31, 39, 40, 88, 108

palimpsest, 28, 57

139

140

pattern of activity, 92

pattern sequence, 83

performance index, 42

positive-recurrent, 44

priming, 3

recurrent, 44

sequence, 1

shift register, 84

state of the network, 31

state space, 82

stimulus, 2, 86

synapse

binary, 26, 29

stochastic, 26

synaptic

matrix, 1, 37, 43, 60, 61

weights, 86

temporal context, 26

temporal sequences, 26

training phase, 27

transient, 44

transition, 31, 34, 35, 37, 108

probability, 1, 26, 27, 37, 41-

44, 61, 64, 79, 83, 97, 98

weight matrix, 37

window in time, 83, 87

INDEX INDEX

Glossary

A

activity Fraction of active neurons in a set of neurons. Activity is a real

number between 0 and 1.

activity pattern Configuration of the activities of the neurons composing
a network at any point in time. Neurons can be either active or

quiescent (non-active).

attractor Sets to which all nearby trajectories in the variable space con¬

verge. A system which is moved away from one of its attractors

will tend to go back to it. For a neural network, the variable space

is the space of the activity patterns.

aVLSI Analog Very Large-Scale Integration: VLSI is the current level

of computer microchip miniaturization; Analog is meant as 'con¬

tinually changing', as opposed to the binary behavior of digital

computing.

G

global inhibition Inhibition provided to all neurons of a network. It is the

same for all network neurons and is used to limit the activity of

a network.

inhibition Negative synaptic input to a neuron. It is usually provided by a

single or a population of inhibitory neurons.

input pattern Configuration of the synaptic input provided to the neurons

of a network.

141

142

L

learning phase A part in the process of the employment of a network dis¬

tinguished from the part in which the network is used to generate

pattern sequences. During this part, stimuli sequences elicit in a

network patterns of activity that are used, in combination with a

learning rule, to modify the synaptic matrix.

N

network state See also activity pattern. Used as synonymous of 'activity

pattern of the network'.

P

palimpsest Property exhibited by neural networks for which old stimuli are

forgotten to make room for the most recent ones. The palimpsest

property depends from the learning rule used.

S

spatiotemporal patterns Activity pattern that changes in time. Also used

for a sequence of activity patterns.

state Configuration of the activity of a set of neurons or network.

state of the network See network state.

stimulus An agent that influences the activity of a set of neurons. Nor¬

mally, stimuli are completely identified with the pattern of activity

they elicit in the network or in the input layer.

stochastic synapses Synapse whose state (potentiated or depressed) is a

stochastic function of the activity of the pre- and postsynaptic

neuron. This means that, given the activity of the pre- and post¬

synaptic neurons, only a probability can be assigned to the state

of synapse.

sub-threshold Said of a synaptic input to a neuron not capable of making
a neuron go to an active state.

super-threshold Said of a synaptic input to a neuron capable of making a

neuron go to an active state.

GLOSSARY GLOSSARY

143

synaptic matrix Bidimensional matrix containing the weights of the synap¬

tic links between any two neurons of a neural network. The

columns of the matrix represent the axons of the neurons, the

rows the dendrites. FOr example, the weight at row x and col¬

umn y is the weight connecting neuron y to neuron x.

synaptic strengths See synaptic matrix.

T

transition probabilities Probability for the passage of a network state from

an activity configuration of its neurons that has maximum over¬

lap with a pattern, to another configuration that has maximum

overlap with another pattern.

w

weight matrix See synaptic matrix.

GLOSSARY GLOSSARY

Bibliography

[1] H. Sompolinsky and I. Kanter. Temporal association in asymmetric
neural netoworks. Physical Review Letters, 57(22):2861-2864, 1986.

[2] J. Buhmann and K. Schulten. Noise-driven temporal association in neu¬

ral networks. Europhysics Letters, 4(10):1205-1209, 1987.

[3] J. L. Elman. Finding structure in time. Cognitive Science, 14:179-211,
1990.

[4] J.J. Hopfield and CD. Brody. What is a moment? transient synchrony

as a collective mechanism for spatiotemporal integration. Proceedings of
the National Academy of Sciences, USA, 98(3):1282-1287, January 2001.

[5] H. Jaeger. The "echo state" approach to analysing and training recur¬

rent neural networks. GMD 148, Fraunhofer Institute for Autonomous

Intelligent Systems, December 2001.

[6] R. Heath. Can people predict chaotic sequences? Nonlinear Dynamics,

Psychology, & Life Sciences, 6(1), January 2002.

[7] M. Griniasty, M. V. Tsodyks, and D. J. Amit. Conversion of temporal
correlations between stimuli to spatial correlations between attractors.

Neural Computation, 5:1-17, 1993.

[8] J. J. Hopfield. Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the National Academy

of Sciences, USA, 1982.

[9] Y. Miyashita and H. S. Chang. Neuronal correlate of pictorial short-term

memory in the primate temporal cortex. Nature, 331:68-70, January
1988.

[10] Y. Miyashita. Neuronal correlate of visual associative long-term memory
in the primate temporal cortex. Nature, 335(6193):817-820, October

1988.

144

145

[11] V. Yakovlev, S. Fusi, E. Berman, and E. Zohary. Inter-trial neuronal

activity in inferior temporal cortex: a putative vehicle to generate long-
term visual associations. Nature neuroscience, 1(4):310-317, August
1998.

[12] D. J. Amit and M. V. Tsodyks. Quantitative study of attractor neu¬

ral network retrieving at low spike rates i: Substrate-spikes, rates and

neuronal gain. Network: Computation in neural systems, 2:259-273,
1991.

[13] D. J. Amit and M. V. Tsodyks. Quantitative study of attractor neural

network retrieving at low spike rates ii: Low-rate retrieval in symmetric
networks. Network: Computation in neural systems, 2:275-294, 1991.

[14] M. S. Bartlett and T. J. Sejnowski. Learning viewpoint invariant face

representations from visual experience in an attractor network. Network:

Computation in neural systems, 9(3):399-417, 1998.

[15] D. R. Cox and H. D. Miller. The theory of stochastic processes. Chapman
& Hall, 1967.

[16] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of
neural computation. Santa Fe Institute Studies in the Sciences of Com¬

plexity. Perseus Books, 1991.

[17] D. Kleinfeld. Sequential state generation by model neural networks.

Proceedings of the National Academy of Sciences, USA, 83(24) :9469-

9473, December 1986.

[18] P. Peretto and J. J. Niez. Collective properties of neuronal networks.

In E. Bienenstock and F. Fogelman-Soulie, editors, Disordered systems

and biological organisation. Springer-Verlag, 1986.

[19] I. Nebenzahl. Recall of associated memories. Journal of Mathematical

Biology, 25:511-519, 1987.

[20] S. Dehaene, J. P. Changeux, and J. P. Nadal. Neural networks that learn

temporal sequences by selection. Proceedings of the National Academy

of Sciences, USA, 84:2727-2731, 1987.

[21] H. Nishimori and T. Nakamura. Retrieval of spatio-temporal sequence

in asynchronous neural network. Physical Review A, 41(6):3346-3354,
March 1990.

BIBLIOGRAPHY BIBLIOGRAPHY

146

[22] H. Gutfreund and M. Mezard. Processing of temporal sequences in

neural networks. Physical Review Letters, 61(2):235-238, 1988.

[23] I. Guyon, L. Personnaz, J. P. Nadal, and G. Dreyfus. Storage and

retrieval of complex sequences in neural networks. Physical Review A,

38(12):6365-6372, December 1988.

[24] R. Kühn, J. L. van Hemmen, and U. Riedel. Complex temporal associ¬

ation in neural networks. Journal of Physics A: Math. Gen., 22:3123-

3135, 1989.

[25] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory,

languages and computation. Addison Wesley, 1979.

[26] K. S. Fu. Syntactic patterns recognition and applications. Prentice-Hall,
1982.

[27] J. L. Elman. Distributed representations, simple recurrent networks,
and grammatical structure. Machine Learning, 7:195-235, 1991.

[28] J. B. Pollack. The induction of dynamical recognizers. Machine Learn¬

ing, 7:227-252, 1991.

[29] C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee.

Extracting and learning an unknown grammar with recurrent neural

networks. In J. E. Moody, S.J. Hanson, and R.P Lippmann, editors,
Advances in Neural Information Processing Systems, volume 4, pages

317-324, 1992.

[30] C. L. Giles and C. W. Omlin. Learning, representation, and synthesis of

discrete dynamical systems in continuous recurrent neural networks. In

Proceedings of the IEEE Workshop on Architectures for Semwtic Mod¬

eling and Situation Analysis in Large Complex Systems, 1995.

[31] S. Lawrence, S. Fong, and C. Lee. "natural language grammatical infer¬

ence: A comparison of recurrent neural networks and machine learning
methods. In S. Wermter, E. Riloff, and G. Scheler, editors, Symbolic,

Connectionist, and Statistical Approaches to Learning for Natural Lan¬

guage Processing, pages 33-47. Springer Verlag, 1996.

[32] S. Lawrence, C. L.Giles, and S. Fong. Natural language grammati¬
cal inference with recurrent neural networks. IEEE Transactions on

Knowledge and Data Engineering, 12(1):126-140, 2000.

BIBLIOGRAPHY BIBLIOGRAPHY

147

[33] R. F. Hadley and V. C. Cardei. Language acquisition from sparse input
without error feedback. Neural Networks, 12:217-235, 1999.

[34] S. Das, C. L. Giles, and G. Z. Sun. Learning context-free grammars: Ca¬

pabilities and limitations of a recurrent neural network with an external

stack memory. In The Fourteenth Annual Conference of the Cognitive
Science Society, pages 791-795. Morgan Kauffman, 1992.

[35] P. Rodriguez, J. Wiles, and J L. Elman. A recurrent neural network

that learns to count. Connection Science, ll(l):5-40, 1999.

[36] P. Rodriguez. Simple recurrent networks learn context-free and context-

sensitive languages by counting. Neural Computation, 13:2093-2118,

2001.

[37] R. J. Williams and D. Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural Computation, 1:270-

280, 1989.

[38] S. C. Kremer. Spatio-temporal connectionist networks: A taxonomy

and review. Neural Computation, 13(2):249-306, February 2001.

[39] T. Natschläger, W.äMaass, and A.äZador. Efficient temporal processing
with biologically realistic dynamic synapses. Network: Computation in

Neural Systems, 12:75-87, 2001.

[40] T.äNatschläger and B.äRuf. Spatial and temporal pattern analysis via

spiking neurons. Network: Computation in Neural Systems, 9(3):319-
332, 1998.

[41] W.äMaass, T.äNatschläger, ,
and H.äMarkram. Real-time computing

without stable states: A new framework for neural computation based

on perturbations. Neural Computation, 14(ll):2531-2560, 2002.

[42] H. Jaeger. Beautiful beasts: Recurrent neural networks. Collo¬

quium of the Institute of Neuroinformatics Uni/ETH Zurich, 2002.

http://www.ais.fraunhofer.de/INDY.

[43] Z. Ghahramani. An introduction to hidden markov models and bayesian
networks. International Journal of Pattern Recognition and Artificial

INtelligence, 15(l):9-42, 2001.

[44] Y. Bengio. Markovian models for sequential data. Neural Computing

Surveys, 2:129-162, 1999.

BIBLIOGRAPHY BIBLIOGRAPHY

[45

[46

[47

[48

[49

[50

[51

[52

[53

[54

[55

[56

[57;

[58

148

D. Kleinfeld and H. Sompolinsky. Associative neural network model for

the generation of temporal patterns. Biophysical Journal, 54:1039-1051,
1988.

N. Brunei. Hebbian learning of context in recurrent neural networks.

Neural Computation, 8:1677-1710, 1996.

D. J. Amit. Modeling brain function. Cambridge University Press, New

York, 1989.

N. Fedoroff and W. Fontana. Small numbers of small molecules. Science,

297:1129-1131, August 2002.

S. Fusi. Hebbian spike-driven synaptic plasticity for learning patterns

of mean firing rates. Biological Cybernetics, 82:459-470, 2002.

C. C. Petersen, R. C. Malenka, R. A. Nicoll, and J. J. Hopfield. All-

or-none potentiation at ca3-cal synapses. Proceedings of the National

Academy of Sciences, USA, 95(8):4732-4737, April 1998.

W. R. Softy and C. Koch. The highly irregular firing of cortical cells

is inconsistent with temporal intergation of random epsps. Journal of

neuroscience, 1:334-350, 1993.

P. L. Meyer. Introductory probability and statistical applications.

Addison-Wesley, Reading, MA, 1965.

D. J. Amit and S. Fusi. Learning in neural networks with material

synapses. Neural Computation, 6:957-982, 1994.

N. Brunei, F. Carusi, and S. Fusi. Slow stochastic Hebbian learning of

classes of stimuli in a recurrent neural network. Network, 9:123-152,

1998.

Y. Miyashita. Inferior temporal cortex: where visual perception meets

memory. Annual Review of Neurosciences, 16:245-263, 1993.

H. Jaeger. Short term memory in echo state networks. Technical Report
GMD Report 152, German National Research Center for Information

Technology, 2002.

D. R. Hofstadter and D. C. Dennet. The mind's I: Fantasies and reflec¬
tions on self and soul. Basic Book, Inc., New York, 1981.

Wikipedia. http://www.wikipedia.com/.

BIBLIOGRAPHY BIBLIOGRAPHY

149

[59] Gamers.com. http://www.gamers.com/game/75123/.

[60] T. Orlov, V. Yakovlev, D. Amit, S. Hochstein, and E. Zohary. Serial

memory strategies in macaque monkeys: Behavioral and theoretical as¬

pects. Cerebral cortex, 12:306-317, March 2002.

[61] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D.J. Amit. Spike-
driven synaptic plasticity: theory, simulation, vlsi implementation. Neu¬

ral Computation, 12:2227-2258, 2000.

BIBLIOGRAPHY BIBLIOGRAPHY

Curriculum Vitœ

General Information

Name: Alessandro Usseglio Viretta

Date of birth: 15 Sept. 1970

Nationality: Italian

Education

October 1998-Present PhD student at the Institute for Neuroinformatics,
Center for Neurosciences, University and Institute of Technology (ETH) of

Zurich. April 1997 to September 1998 PhD student at ETH Zurich,
Lab for electron microscopy, under the supervision of Prof. Peter Schurten-

berger. July 1996 Graduated Summa cum Laude in Physics. April 1993

to September 1993 Student at the Ruprecht-Karls-Universität in Heidel¬

berg (ERASMUS exchange program). September 1989 Physics student at

the University of Torino (Italy).

Experience

October 1996 to April 1997 Scientific assistant (employed by the Institut

für Kernphysik-Frankfurt). Working at CERN (Geneva). July 1995 to

September 1996 Technical student at CERN. Prepared my diploma thesis

working on a prototype of particle detector. March 1995 to June 1995

Lab assistant at the University of Torino. July 1994 to September 1994

Summer student at CERN.

150

