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ABSTRACT

Bayesian multilevel modeling establishes a convenient framework to account for

aleatory variability and epistemic uncertainty in inverse problems. In view of engineer-

ing applications we will place this framework into the context of classical and proba-

bilistic inversion and demonstrate its additional potential to infer material properties as

intermediate variables within a hierarchically defined Bayesian multilevel model. The

objective of probabilistic inversion is to infer such probability distributions that describe

the variability of model inputs across a number of experiments. Inference therefore

focuses on so-called hyperparameters that parametrize population distributions. To that

end intermediate or latent variables are considered nuisance and commonly marginal-

ized out from the problem. But instead of integrating out intermediate quantities, one

can just as well fade the hyperparameters from the inferential spotlight and marginalize

them out. This allows for an “optimal” inference of the intermediate quantities with

respect to the available prior information, structural assumptions and the acquired

data. We will devise a simple academic example within the domain of mechanical

engineering that will be used to study this optimal kind of inference. The system

under consideration is an ensemble of simply supported beams with uncertain material

properties. Over the sample of beams, Young’s moduli are subject to aleatory variabil-

ity, while the knowledge about the true hyperparameter values suffers from epistemic

uncertainty. We will show how individual Young’s moduli can be optimally estimated

in a series of three-point bending experiments. It will be shown that in hierarchically

defined models one can learn more about a specific specimen than what is encoded in

dedicated data directly associated with that single specimen. One can indirectly utilize

information from different specimens, within the same sample, in order to improve the

assessment of a specific one. In this contribution we will demonstrate the potential and

challenge of this learning mechanism and we will investigate the underlying flow of

information.



PARAMETER ESTIMATION & PROBABILISTIC INVERSION

Inversion is the inference of model parameters from noisy and limited data and is often

formulated as statistical estimation. This formulation encompasses a wide range of dif-

ferent problems with parameter estimation and probabilistic inversion being particular

instances.

Classical parameter estimation aims at inferring unknown parameters x of a phys-

ical forward model M that predicts the outcome M(x,di) of an experiment under

known experimental conditions di. Discrepancy between model predictions and ac-

quired data yi = M(x,di) + εi for i = 1, . . . , n is accounted for by a residual term

εi ∼ fE(εi) that captures the variability in the data that is due to measurement errors,

numerical approximations as well as model inadequacies. A widespread probabilistic

residual model is a Gaussian distribution fE = N (0,Σi) with a covariance matrices

Σi. Bayesian inversion of the data yi is to identify the fixed albeit unknown model

parameter x by updating a priorly elicited epistemic knowledge π(x) about the true pa-

rameter value. With a likelihood function L(y1, . . . ,yn |x) =
∏n

i=1 fE(yi−M(xi,di))
the Bayesian rationale is based on the construction of a posterior probability density

π(x|y1, . . . ,yn) ∝ L(y1, . . . ,yn |x) π(x) that describes the knowledge about the

unknown parameter after conditioning on the data. Apart from some exceptional cases

this posterior density has no analytical closed-form solution, thus more often than not

the challenge posed lies in sampling the posterior by means of Markov chain Monte

Carlo (MCMC) methods (Robert 2004).

Another type of inverse problem is posed when variation in the data yi =
M(xi,di) + εi is not only attributed to different experimental conditions di and a

residual discrepancy εi, but to inherently varying model inputs (xi |θ) ∼ fX |Θ(xi |θ)
throughout the experiments for i = 1, . . . , n. The random variables xi are conditionally

independent and follow a density function fX |Θ. The objective of probabilistic inver-

sion focuses on the estimation of the hyperparameters θ. Application examples can be

found in (Rocquigny 2009; Celeux 2010; Barbillon 2011). A likelihood for this class of

problems can be obtained by the marginalization L(y1, . . . ,yn |θ) =
∏

i

∫

xi

fE(yi −
M(xi,di)) fX |Θ(xi |θ) dxi. If one is able to quantify prior knowledge π(θ) about the

unknown hyperparameters θ, the posterior π(θ |y1, . . . ,yn) ∝ L(y1, . . . ,yn |θ) π(θ)
is the result of Bayesian data analysis.

MULTILEVEL MODELING

As there seems to be no universally valid definition of a multilevel or a hierarchical

model we define it as “an assembly of submodels at different levels of a hierarchy”,

where the hierarchical structure can be given by conditional dependencies and deter-

ministic maps between the quantities involved. While multilevel models have been

studied from a frequentist point of view (Davidian 2003; Banks 2012), the problem

outlined as probabilistic inversion is indeed a Bayesian multilevel problem. Summing



it up we obtain the following hierarchically nested model specification

(yi |xi) ∼ fE
(

yi −M(xi,di)
)

, (1a)

(xi |θ) ∼ fX |Θ(xi |θ), (1b)

θ ∼ π(θ). (1c)

Models of such a kind can be intuitively represented by directed acyclic graphs (DAG)

such as in Fig. 1. The Bayesian paradigm offers a uniquely elegant solution to inversion

by formulating a joint posterior density of all unknowns (x1, . . . ,xn, θ) conditioned on

all knowns (y1, . . . ,yn). Up to a normalization constant it is given as

π(x1, . . . ,xn, θ |y1, . . . ,yn) ∝

(

n
∏

i=1

fE
(

yi −M(xi,di)
)

fX |Θ(xi |θ)

)

π(θ). (2)

Standard MCMC techniques for sampling this posterior are readily available and easy

to implement. However, the possibly high-dimensional parameter space is a serious

challenge that may necessitate more advanced MCMC sampling schemes. What is

considered nuisance to the proclaimed inferential objective becomes marginalized out

from the posterior. Classically the hyperparameters θ are of interest and the interme-

diate parameters xi will be marginalized out (Nagel and Sudret 2013). Instead we

will herein declare individual realizations xi as being the quantities of interest. The

Bayesian approach to multilevel problems suggests an optimal strategy of estimating

individual realizations xi that goes beyond separate parameter estimations. Indeed the

crude alternative to inference within a hierarchical model would be to solve n different

inverse problems of inferring xi with dedicated data yi, respectively.

Figure 1. A DAG of the multilevel model is shown. Nodes represent known ( ) and unknown ( )

quantities. Directed edges represent their probabilistic ( ) and deterministic ( ) relations. Data yi,

intermediate variables xi and the hyperparameters θ constitute the hierarchical levels.



COMBINATION OF INFORMATION

Information-wise the estimation of the various unknown parameters in Eq. (1) can

be based on the observed data yi, the Bayesian prior π(θ), the structural knowledge

fX |Θ(xi |θ) and the information being encoded in fE
(

yi −M(xi,di)
)

. We will now

focus on the optimal inference of individual parameters xi for i = 1, . . . , n. Instead of

merely inverting each of the observations yi for the corresponding xi, we will solve

one joint multilevel problem. As already mentioned, it will turn out that in doing so one

can learn more about xi than what is encapsulated in yi. In order to demonstrate the

effect and the underlying mechanism of this “optimal combination of information” or

“borrowing strength” (Draper et al 1992), we will pursue the following three strategies

for the inference of one specific parameter xi, say with i = i0.

Bayesian Updating

In this first approach we base inference of xi0 solely on the data yi0 , the available

structural knowledge fX |Θ(xi0 |θ) and the prior belief π(θ). By marginalizing the

joint prior density fX |Θ(xi0 |θ) π(θ) over the hyperparameter θ, the marginal prior

information available about xi0 is given as

π(xi0) =

∫

fX |Θ(xi0 |θ) π(θ) dθ. (3)

This mixture or compound probability distribution represents the uncertainty about xi0

prior to any data analysis. The result of simple Bayesian updating of the prior π(xi0)
with the data yi0 is the posterior π(xi0 |yi0). While the direct information yi0 about

the parameter xi0 has entered the analysis, additional information yi 6=i0 being available

about θ has been neglected. In other words, the hierarchical problem structure has been

recognized but has not yet been utilized.

Multilevel Analysis

The joint multilevel analysis for estimating xi0 is accomplished by constructing

the joint posterior Eq. (2) and subsequently integrating out nuisance. Hence when

inferential attention is not directed to parameters xi 6=i0 and hyperparameters θ, those

will be marginalized over. The posterior knowledge about xi0 is then given as

π(xi0 |y1, . . . ,yn) =

∫

· · ·

∫

π(x1, . . . ,xn, θ |y1, . . . ,yn) dθ dx∼i0, (4)

where the simplifying notation x∼i0 = (x1, . . . ,xi0−1,xi0+1, . . . ,xn) has been intro-

duced. Apart from the structural knowledge fX |Θ(xi |θ) and the hyperprior π(θ), the

total data yi for i = 1, . . . , n has now contributed to the estimation of xi0 . Beyond

just yi0 the estimation of xi0 has exploited information from y∼i0 in a joint learning

process.



Bayesian Filtering

In order to give some insight into the aforementioned joint learning mechanism we

propose a form of sequential Bayesian filtering. Initially we will infer the hyperparam-

eters θ by probabilistic inversion of the data y∼i0 . The posterior π(θ |y∼i0) obtained in

this first step can be translated into the prior distribution

π(xi0 |y∼i0) =

∫

fX |Θ(xi0 |θ) π(θ |y∼i0) dθ. (5)

It represents the available knowledge about xi0 following the analysis of y∼i0 but prior

to analyzing yi0 . With the prior π(xi0 |y∼i0) the data yi0 will be inverted for xi0 in a

subsequent parameter estimation step. The result is a Bayesian posterior distribution

π(xi0 |y∼i0,yi0). In a sequential way the estimation of xi0 has been based on nearly the

the total amount of available information.

NUMERICAL EXPERIMENT

In order to demonstrate the optimal inference of individual parameters, we devise a

simple example within the domain of structural engineering for which we will conduct

a simulated computer experiment. It should be understood as a benchmark application

for the optimal combination of information in data analysis of engineering systems. The

system under consideration is chosen to be a set of beams i = 1, . . . , n with well-known

lengths Li, widths bi and heights hi. Beams i are composed out of a material which is

subject to aleatory uncertainty in its material properties, say the Young’s modulus Ei.

For each individual beam i the Young’s modulus Ei is assumed to be constant along

the main beam axis. Across the sample of beams Young’s moduli Ei are assumed

to be distributed according to a lognormal distribution LN (λ, ζ) with mean value

µE = exp (λ+ ζ2/2) and standard deviation σE = (exp (2λ+ ζ2)(exp (ζ2)− 1))
1/2

.

At positions sj with 0 ≤ sj ≤ Li/2 and for j = 1, . . . , ni the deflections vi(sj) of

individual beams under a concentrated point load Fi at midspan are given as

vi(sj) =
Fisj
48EiIi

(

3L2
i − 4s2j

)

. (6)

The moment of inertia is given as Ii = bih
3
i /12. A symmetric expression holds for

positions sj with Li/2 ≤ sj ≤ Li. In a series of experiments beam deflections can be

measured and used to estimate individual Young’s moduli xi ≡ Ei or the hyperparame-

ters θ ≡ (µE, σE). We will herein consider the problem of inferring individual Young’s

moduli Ei that will be exemplified through the inference of a specific Ei0 .

To that end a simulated computer experiment is conducted as described below. We

choose a set of n = 100 beams having well-known and constant dimensions Li =
1m and bi = hi = 10 cm and being subjected to loads Fi = 30 kN. “True” elastic

moduli Ei are randomly sampled from a lognormal distribution with “true” mean µE =
15GPa and standard deviation σE = 3GPa. These “true” values will be treated as



“unknowns” for the simulated experimental identification of the Young’s modulus Ei0

of a beam i0. For identifying Ei0 we simulate a synthetic set of pseudo-data {yi =
(yi1, yi2, yi3)} for each beam i = 1, . . . , 100. Pseudo-observations yij = vi(sj) + ǫij
with j = 1, 2, 3 are therefore generated for positions di = (s1, s2, s3) with s1 = 25 cm,

s2 = 50 cm and s3 = 75 cm by perturbing the corresponding model predictions Eq. (6)

with independently sampled residuals εij ∼ N (0, σ2
ij). We choose comparably small

residual standard deviations σij = 0.01 cm for i 6= i0 and comparably large deviations

σi0j = 0.1 cm to clearly illustrate the inferential mechanisms of the three proposed

estimation programs.

We assume that the “true” hyperparameter values (µE , σE) are not known, though,

prior knowledge is available. The available inferential prior distribution of the hyperpa-

rameters is set priorly independent π(θ) = π(µE) π(σE) with only weakly informative

but proper uniform distributions π(µE) = U(0, 100) and π(σE) ∼ U(0, 100) (in GPa)

as marginals. The hyperparameters θ = (µE, σE) will be considered nuisance to the

inference of xi = Ei0 . Within this simulated experimental setup we will study the three

proposed estimation strategies, i.e. simple Bayesian updating, joint multilevel analysis

and sequential Bayesian filtering.

EXPERIMENTAL RESULTS

In the following we will conduct inference of the “unknown” Young’s modulus Ei0 =
17.01GPa of a beam i0 by means of simple Bayesian updating based on the prior

Eq. (3), a full multilevel analysis based on the marginalization of a joint posterior

Eq. (4) and a Bayesian filtering program based on the prior Eq. (5). Results from

simple Bayesian inversion of yi0 to estimate Ei0 serves as a reference for assess-

ing the results from the full hierarchical treatment of the whole set of data yi with

i = 1, . . . , 100. These analyses will indicate the amount of information that can

be additionally extracted by multilevel modeling. The sequential Bayesian filtering

estimation will provide insight into the inferential mechanism involved.

Bayesian Updating

The compound prior Eq. (3) may not be available in analytical form, however, one

can draw samples from the prior by the method of composition. To that end one draws

K samples θ(k) from the hyperparameter distribution π(θ). Subsequently one draws

one sample E
(k)
i0

from each of the parameter distributions fE |Θ(Ei0 |θ
(k)) corresponding

to θ(k). As desired the sample of parameter values E
(k)
i0

is then distributed according to

the compound distribution Eq. (3). We draw N = 105 samples of the mixture prior

Eq. (3) which is shown in Fig. 2. A lognormal fit to the sample is shown as well as an

approximation of the mixture prior by simple one-dimensional kernel smoothing with

a Gaussian kernel. It is seen that the mixture is not well described by a lognormal

shape and is more adequately approximated by the kernel density estimate. In the

following MCMC analysis the prior knowledge about Ei0 is therefore represented by

the abovementioned kernel density estimate.
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Figure 2. Bayesian updating: mixture prior
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Figure 3. Bayesian updating: posterior

We accomplish simple Bayesian inversion by sampling the posterior π(Ei0 |yi0)
with a simple random walk Metropolis MCMC that uses a Gaussian proposal distribu-

tion. Although being a delicate issue we do not discuss convergence or its diagnostics

at this place. With a chosen stepsize of εEi0
= 5GPa, i.e. the standard deviation of

the Gaussian proposal distribution, the acceptance rate amounted to 63%. The total

program runtime for simulating N = 105 posterior samples amounted to t = 3267 s,
which is comparably long due to evaluations of the mixture prior by kernel smoothing.

The autocorrelation of MCMC posterior samples approaches zero after ca. 40 algorithm

iterations. In Fig. 3 the resulting simulated posterior is shown.

Multilevel Analysis

While sampling the posterior π(Ei0 |yi0) as above involved a 1-dim. parameter

space, sampling the multilevel posterior π(E1, . . . , E100, µE, σE |y1, . . . ,yn) involves

a 102-dim. parameter space. In terms of MCMC sampling this generally demands

dedicated schemes. We propose the Hamiltonian Monte Carlo (HMC) sampler (Neal

2011) in order to overcome this multilevel-typical challenge. An extensive presentation

of the HMC and detailed description of our specific implementation is beyond the scope

of this paper. In summary it can be said that the HMC is a highly efficient MCMC

sampler for high-dimensional parameter spaces and highly correlated posteriors. It

ensures superior mixing properties while maintaining high MCMC acceptance rates.

However, it features additional algorithmic parameters that have to be tuned. With our

final algorithm we draw N = 105 posterior samples within a total execution time of

t = 167 s With the HMC we achieve rapid maxing while maintaining an acceptance

rate of 99.99%. The autocorrelation of MCMC samples drops down to zero within

ca. five MCMC iterations. Samples from the marginal posterior Eq. (4) can be easily

extracted by sampling the joint posterior Eq. (2) and discarding samples of E∼i0 and

(µE , σE). The simulated marginal density π(Ei0 |y1, . . . ,y100) is shown in Fig. 4.

By comparison with the posterior π(Ei0 |yi0) in Fig. 3 resulting from simple

Bayesian updating, the additional amount of information that has been gained by solv-

ing the joint multilevel problem becomes manifest. The whole available information,



including the full set of observations yi for i = 1, . . . , 100, has been utilized for

estimating Ei0 . Comparing Fig. 4 to Fig. 3 we observe the occurrence of a certain

shrinkage effect. Note that while Fig. 4 shows only the single posterior marginal of Ei0 ,

MCMC sampling the joint posterior π(E1, . . . , E100, µE, σE |y1, . . . ,yn) incidentally

provides the marginal posterior information about (µE, σE) and E∼i0 .

Young’s modulus Ei0
[GPa]

p
ro
b
a
b
il
it
y
d
en

si
ty

 

 

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2
posterior samples
mixture prior
true value

Figure 4. Multilevel analysis: posterior
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Figure 5. Summary

Bayesian Filtering

First we conduct probabilistic inversion to infer the hyperparameters (µE, σE) with

data y∼i0 . By means of the devised HMC sampler within a total runtime of t = 167 s
we draw N = 105 samples from the posterior π(µE , σE |y∼i0). We use this sample

to draw samples from π(Ei0 |y∼i0) by the method of composition as described in the

context of Eq. (5). The resulting sample is shown in Fig. 6 along with a lognormal

fit to the sample and a kernel density estimate. Both the lognormal fit and the kernel

density estimate reproduce the original population distribution LN (λ, ζ) with µE =
15GPa and σE = 3GPa quite well. With a lognormal fit of the 105 samples one obtains

µ̂E = 15.04GPa and σ̂E = 2.96GPa as hyperparameters. Fig. 7 show the results of

a subsequent sampling from the posterior π(Ei0 |y∼i0,yi0) with the abovementioned

lognormal fit of the mixture π(Ei0 |y∼i0) being the prior knowledge. The total sample

of size N = 105 is produced with a total runtime of t = 25 s with a stepsize 5GPa
and a resulting acceptance rate 44%. Execution time is comparably short because of

evaluating the mixture prior by the fitted lognormal distribution.

Altogether the hyperprior π(µE, σE), the structural knowledge fE |Θ(Ei0 |µE, σE)
and the observations y∼i0 have had influence on the estimation of π(Ei0 |y∼i0). In the

subsequent updating step this knowledge has been updated by inversion of data yi0 .

This shows the flow of information from data y∼i0 to the multilevel estimate of Ei0 .

The information exchange takes place in an indirect way involving the hyperparameters

(µE , σE) located at a “higher” level of the multilevel model. As a summary the simu-

lated posteriors π(Ei0 |yi0), π(Ei0 |y∼i0,yi0) and π(Ei0 |y1, . . . ,y100) that are relevant

to the identification of Ei0 , are shown in Fig. 5. Table 1 provides a short statistical
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Figure 6. Bayesian filtering: updated prior
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Figure 7. Bayesian filtering: posterior

summary of these posterior distributions that are obtained by simple updating, Bayesian

filtering and multilevel analysis, respectively.

Table 1. Posterior summary of estimating Ei0 = 17.01GPa

method mean [GPa] mode [GPa] s.d. [GPa]

Bayesian updating 21.30 19.00 5.01
multilevel analysis 17.52 16.81 2.31
Bayesian filtering 17.45 17.78 2.17

CONCLUSION & OUTLOOK

We demonstrated the potential, the challenge and the mechanism of optimally estimat-

ing material properties as being intermediate quantities within a hierarchically defined

Bayesian model. When the available information is a set of observations and prior

knowledge about higher-level hyperparameters, multilevel modeling allows to obtain

more information about the quantities of interest than classical Bayesian updating. The

simple beam application has served as a benchmark example of Bayesian hierarchical

modeling and optimal combination of information in engineering applications. Future

research work will include attempts to apply the presented framework to more complex

inverse problems, e.g. with additional forward model inputs that are subject to a

prescribed aleatory uncertainty. Moreover a systematic investigation of how optimal

combination of information influences epistemic uncertainty, e.g. with respect to the

number of observations and their measurement error, is in progress.
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