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Abstract 

An adequate representation of the technological trend component of yield time series 
is of crucial importance for the successful design of risk management instruments. 
However, for many transition and developing countries, the estimation of the techno-
logical trend is complicated by the joint occurrence of three phenomena: (i) a high 
level of heterogeneity among different farms in a region; (ii) non-linear development 
of technological change; and (iii) high yield variations as a consequence of high 
exposure of rainfed agriculture to extreme weather events. Under these situations, the 
usually applied approach to detrend crop yield data using Ordinary Least Squares is 
known to be biased. Based on a unique data set of 47 farm yield data from northern 
Kazakhstan, we evaluated different alternative approaches. First, we consider the use 
of the MM-estimator, a robust regression technique for detrending. Second, we evaluate 
the effect of adding information on extreme climate events as an additional regressor. 
Finally, we consider combinations of the two former approaches and compare the 
implications of the different aggregation level on trend estimations. The results reveal 
the importance of using single farm yield data for detrending, because technical trends 
in Kazakh wheat yields are highly farm-specific. Furthermore, our analysis shows that 
the estimation of technological trends can be improved by incorporating weather 
information in the regression model if time series of crop yield data contain severe 
fluctuations due to occurrence of climatic extreme events. Thus, the presented analysis 
contributes to an improved crop yield analysis for many developing and transition 
countries facing similar conditions. 

Keywords: detrending yield data, MM estimator, weather information, Kazakhstan 
JEL: G22, C01, Q14 
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1 Introduction 

Multiple risks are present in agricultural production and thus numerous non-formal 
and formal risk management strategies exist to deal with them. Major events such as 
severe weather shocks require formal approaches to transfer risks out of local 
communities, regions or even a country. The measurement of production risks and the 
development of such risk management instruments strongly rely on the availability and 
quality of historical data. Besides the volatility caused by adverse weather events and 
other risks, agricultural yields are strongly driven by technological adjustments. This 
additional source of observed changes and variability in crop yields explained by 
technological change has to be removed from the time series to quantify risk exposure. 
Thus historical yield data is “detrended” for many actuarial applications (SKEES et al., 
1997). In most countries, fast diffusion of innovations leads to a rather homogeneous 
pattern of technological change across farms. Thus, many empirical studies use higher 
aggregation levels to represent technological trends in farm level yields, assuming that 
the trend on the aggregated level resembles the trend of a single farm (ATWOOD et al., 
2003). Such a procedure allows to reduce the scope of the outliers’ problem and 
represents a pragmatic approach where long-term individual farm data does not exist 
(OZAKI and SILVA, 2009). At these aggregated levels, crop yield development exhibits 
a linear trend over time for the majority of empirical problems (for a review, see 
FINGER, 2010a; HAFNER, 2003, and TANNURA et al., 2008).  

However, for many transition and developing countries, the estimation of a tech-
nological trend is complicated by the joint occurrence of three phenomena: (i) a high 
level of heterogeneity among the different farms in a region; (ii) non-linear develop-
ment of technological change; and (iii) high yield variations as a consequence of high 
exposure of rainfed agriculture to extreme weather events. Under these situations, the 
usually applied approach to detrend crop yield data based on Ordinary Least Squares 
(OLS) is known to be biased (DOUGHERTY, 2011). Differences in accessibility to 
factor and credit markets, educational level, and managerial abilities contribute to 
rather slow and uneven technology diffusion. This in turn causes a rather high 
variation in farm productivity and a heterogeneous technological trend across farms. 
Moreover, farms in transition countries have been subjected to several restructuring 
and privatisation rounds, which seriously affected their investment behaviour and led 
to alternating periods of investments and dis-investments (BOKUSHEVA et al., 2009). 
Accordingly, a linear trend might not be sufficient to represent technological trends, 
and the use of higher level, e.g. quadratic or cubic polynomial functions might be 
required. However, determining an adequate polynomial degree is often ambiguous. In 
addition, the often harsh climatic conditions and the rainfed agriculture (LEBLOIS and 
QUIRION, 2013) increases the dependence of the farms’ production output on weather 
conditions, which in turn leads to many extreme yield observations, thereby complicating 
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the selection of outliers. Although challenging under such situations, a careful trend 
analysis is essential because neglecting or misspecifications of trends lead to biased 
estimations and impede the development of meaningful risk management instruments 
(see also BOKUSHEVA and BREUSTEDT, 2012).  

All these characteristics are relevant for our case study Kazakhstan. A harsh climate, 
with regular droughts leads to extensive yield losses and a high year-to-year yield 
variability representing a non-diversified systemic risk. Thus, production risks from 
the rainfed spring wheat regions of northern Kazakhstan underlying our empirical 
analysis are particularly distinct.  

In this paper we investigate the performance of various approaches to crop yield data 
detrending for selecting an adequate trend model and obtaining consistent trend 
parameter estimates under (i) a high level of heterogeneity among different farms in a 
region; (ii) non-linear development of technological change; and (iii) high yield 
variations as a consequence of high exposure of rainfed agriculture to extreme weather 
events. We combine three elements in our analysis in order to improve the specifica-
tion of technological trends in crop yield data in this context: first, we test the 
applicability of aggregated yields to capture yield variation caused by technological 
change. Second, we employ MM – a robust regression technique used in addition to 
OLS. Third, we investigate how using additional information in the form of an index 
representing weather conditions might improve a model’s predictive power with 
respect to yield trend identification. Finally, we analyse whether this additional 
information is also required for trend estimations using the robust MM estimator. 

The remainder of this paper is structured as follows. Section 2 provides an overview of 
the literature. Section 3 describes the data and methods used in the analysis. Our 
research findings are presented in section 4. In the last section we discuss the results 
and draw conclusions.  

2 Literature Review 

An important finding of earlier research is that farm yield data are more volatile than 
county or even national yield data (MARRA and SCHURLE, 1994; FINGER, 2012; 
COOPER et al., 2009). Idiosyncratic events such as a local disease affect only a small 
area and are thus only observable in the individual farm yield data. This “noise” may 
interfere with the underlying trend pattern and impede a consistent technological trend 
estimation. Aggregation smoothes the yield pattern and thus only systemic events are 
reflected. Farm-specific variation is “averaged” across a region or a whole country and 
consequently with an increasing number of aggregated farms the individual impact of 
a farm is reduced. This effect already takes place while aggregating very small units, 
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i.e., the yield of a single field. MARRA and SCHURLE (1994) find a reinforcing 
relationship between size of the aggregated unit and farm-level yield risk. Hence, 
increasing the aggregation level (i.e. enlarging acreage) leads to a decreasing rate of 
yield variability. Consequently, a stable estimation of the prevailing trend pattern may 
be obtained by using higher aggregation levels. Thus, estimates for underlying trends 
in crop yields are often derived from data at the regional or national level. However, 
the use of aggregated data for detrending may oversimplify analysis not only in cases 
of very high farm-level heterogeneity. For instance, CLAASSEN and JUST (2011) 
investigate the impact of aggregation on systematic and random yield variation; their 
finding from a large data set of non-irrigated corn in the US Corn Belt and Northern 
Plains suggest that both random as well systematic variation may be severely reduced 
by county-level aggregation. A more precise analysis of both study regions reveals that 
the largest share of systematic variation (“the trend component”) is within-country 
variation. Consequently, aggregated data poorly represent the farm yield variability 
and the risk faced on the farm unit level. Similarly, JUST and WENINGER (1999) 
conclude that “farm-specific estimation of the deterministic component is necessary to 
reflect heterogeneity of soil, production practices, and technology among farms”. 
However, this is only possible when long-term farm data are available, otherwise few 
observations may provoke severely biased results (ATWOOD et al., 2003).  

Various approaches to yield trend estimations are present in the literature. For instance, 
BESSLER (1980), GOODWIN and KER (1998), and KER and GOODWIN (2000) use an 
autoregressive integrated moving average (ARIMA) model to account for carry-over 
effects from previous years, such as exceptionally dry or wet weather conditions. 
CHEN and MIRANDA (2006) use piecewise linear splines to model yield trends by 
allowing for two distinct linear trends, and by using nonlinear least squares to estimate 
model parameters and the breakpoint. Similarly, various piecewise linear regression 
models were tested by RONDANINI et al. (2012) and MOSS and SHONKWILER (1993) 
proposed a stochastic trend model. In most cases, however, polynomial regression is 
used (MIRANDA and GLAUBER, 1997; JUST and WENINGER, 1999) and trend 
parameters are estimated using OLS (SWINTON and KING, 1991). However, OLS is a 
non-robust estimation method and is thus highly sensitive to outliers, especially at the 
beginning and at the end of the yield series. Therefore, robust regression techniques 
that are not influenced by outlying observations, e.g. extremely low yield due to a 
drought event, have been suggested for crop yield data detrending (SWINTON and 
KING, 1991; FINGER, 2010b). SWINTON and KING (1991) compare OLS with six 
robust regression methods, and their findings suggest that robust regression may not 
lead to more reliable estimates. A later study by FINGER (2010b) revisits robust 
techniques by incorporating further developments in this field. FINGER (2010b) uses 
Monte Carlo simulations and shows that the robust MM estimator clearly outperforms 
OLS estimations for outlier-contaminated samples, and is similarly reliable for non-
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contaminated samples. These two studies, however, focused on stochastic simulation 
of yield data rather than on the application of these methods to empirical data. To the 
authors’ best knowledge, there is no study analysing (and validating) the capacity of 
this robust regression technique in the framework of empirical yield time series. 

Besides using robust regression, another procedure to deal with high yield variability 
is proposed by BREUSTEDT et al. (2008). These authors include weather information as 
a proxy in their regression model to account for periods with both severe technological 
regress and adverse weather conditions. Thus, separating these two components by 
explicitly including a weather index as regressor, which represents the prevailing 
weather conditions during the crop growing season, may lead to more adequate trend 
estimations. As argued by BREUSTEDT et al. (2008), this procedure may be especially 
promising for longer yield time series and transition countries, where restructuring of 
economy also influences agricultural investments and outputs and accordingly, trends 
have to be described with e.g. quadratic or cubic polynomial functions. BREUSTEDT et 
al. (2008) applied OLS estimations in their analysis and did not explicitly evaluate the 
effect of the inclusion of additional information on trend estimates. Building upon this 
background, we contribute filling this gap in existing research by analysing the effect 
of this inclusion and evaluating whether a weather proxy reduces bias in trend 
estimations using robust MM estimator.  

3 Data and Empirical Procedure 

In this section, we first present the yield and weather data and then explain the model 
selection procedure applied in the study.  

3.1 Data 

Agricultural production is an important sector for Kazakhstan (see e.g. TUBETOV et al., 
2012; WORLD BANK, 2012) both, in terms of employment and countries economic 
performance. The main grain producing regions are situated in the northern parts and 
are predominantly extensive and low-cost production systems. Our data come from 
these regions and include 47 non-irrigated farms from five different counties 
(“rayons”). In addition, we use regional (“oblast”) as well as national data (for an 
overview see Figure 1). Summary statistics are provided in Appendix A1. The 
structure of the data is as follows: rayons 1-3 are located in oblast 1 (Akmola oblast 
with capital Astana), and rayons 4 and 5 are situated in oblast 2 (Kostanai oblast). 
However, there are more rayons in each oblast than those used in the analysis. More 
precisely, there are 12 sample farms situated in rayon 1, 10 sample farms in rayon 2, 7 
farms in rayon 3, 10 farms in rayon 4, and 7 farms in rayon 5. Once again, there are 
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These two indices, SI for oblast 1 and CR for oblast 2, are used as a proxy for droughts, 
one of the main natural hazards for Kazakhstani grain production. An overview of the 
weather indices is provided in Appendix A2.  

3.2 Empirical Procedure 

To estimate the technological trend component, we apply Ordinary Least Squares 
(OLS) and the MM-estimator (Modified M-estimator), a robust regression technique 
proposed by YOHAI et al. (1991). The aim of robust regression methods is to provide 
unbiased estimations under situations, where non-robust methods, such as OLS, fail. 
This is for instance the case for outlier-contaminated data. The resistance of an 
estimator towards outliers can be described using the breakdown point. The MM-
estimator has a breakdown point of 0.5, which means that MM can deal with an outlier 
contamination up to 50%, the highest possible value. In contrast, OLS has a 
breakdown point of 0, as one single outlier can have unconfined influence on the 
estimations. This is due to the different loss functions ρ, representing the residual 
weighting scheme: Whereas OLS minimizes a quadratic function, the MM estimator 
uses a less rapidly increasing function (bi-square re-descending score function).  

The MM-estimator is based on an iterative algorithm which combines a highly robust 
but inefficient S-estimator with a highly efficient but non-robust M-estimator.2 The  
M-estimator is defined as:   = arg ∑ ( ) 	  (3)

where (β) denotes the regression residuals and the robust residual scale σ is used to 
standardize the residuals.  

The S-estimator is given by:  = arg ( ( ))	  (4)

                                                   
2  To improve the estimation of the starting values determined by the S-estimator and to allow for 

some improvements concerning the redescending psi-function of the M-estimator, we use the 
specification setting=”KS2011” in the function lmrob of the R-package robustbase (R 
DEVELOPMENT CORE TEAM, 2013). In cases of high parameters to sample size ratio, the S-scale 
estimate suffers bias, and KOLLER and STAHEL (2011) propose a “novel scale estimate based on the 
MM-estimate’s residuals”, called the “D-scale”. While specifying setting=”KS2011” in R, this D-
estimation of scale step is included in the algorithm and referred to as the “SMDM” method (i.e. 
the combination of a S-estimation, M-estimation and D-estimation procedure).  
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The iterative algorithm starts with the S-estimator to provide initial residuals and a 
scale value (  and σ, equation 4). These initial estimates are then used to compute the 
first iteration of the regression coefficients (	 , equation (3)) using the M-estimator. 
These steps are reiterated until convergence is reached. 

More information on the MM-estimator and the specifications are provided by KOLLER 
and STAHEL (2011), MARONNA et al. (2006) and YOHAI (1987). 

Using these regression techniques, we construct two trend models. The first model, 
referred to as ‘reduced model’, does not account for weather effects (equation (5)), 
whereas the second model, the ‘full model’, includes weather effects as an additional 
regressor (equation (6)). The weather variable is used as a proxy3 and we compare and 
analyse the estimated technological trend component of these two models. Both the 
full and the reduced models are tested for a trend up to a cubic polynomial degree by 
comparing the nested models. The most appropriate polynomial degree within each 
technique is determined using F-tests for OLS, and a robust Wald-type test for MM.4 
We considered cubic trends in our analysis because Kazakh wheat production was 
facing a phase of yield reductions due to disinvestment during the 1990s (during the 
transition period) that was enclosed by phases of technical improvements and 
significant yield increases until the late 1980s, and from the beginning of the 21st 
century. Against this background, we disregarded a higher polynomial degree, which, 
in addition, would severely increase the risk of overfitting due to the high parameter-
to-sample ratio. To avoid model misspecification and not to undermine the ability of 
OLS for efficient estimations, we tested the statistical model assumption of 
independent and normally distributed error terms.5   

                                                   
3   The p-values of the weather index are highly significant for all farms. 
4  We used a 5 % significance level for each test.  
5   To test for structural breaks we use three different methods: the Chow-test; the Rec-CUSUM test; 

and the Nyblom-Hansen test of the R package “strucchange”. The different tests do not agree on 
the farms having structural breaks, and we thus do not exclude farms from our sample. We found 
the following structural breaks for OLS: a) Full model: Chow-test: farm numbers 1 and 2; Rec-
CUSUM test: farm number 14; Nyblom-Hansen test: farm number 25. b) Reduced model: Chow-
test: farm number 24 and 26; no significant structural breaks for Rec-CUSUM and Nyblom-Hansen 
test. In addition, we test for autocorrelation using the Breusch-Godfrey test. The reduced and full 
model show significant autocorrelation for farm numbers 2 and 30. We examine the residuals with 
the autocorrelation function and partial autocorrelation function for lag k, and visualize the results 
using a correlogram. We specify an Autoregressive Moving Average model ARMA(1,0) for farm 2 
and ARMA (0,1) for farm 30 using Generalized Least Squares. We re-estimate the model selection 
procedure and find the same trend as with OLS, where the residuals are assumed to be 
stochastically independent.  
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Reduced model  =  

F-test / Wald test (5)
= + ∙  = + ∙ + ∙  = + ∙ + ∙ + ∙

Full model  = ∙ ℎ +  

F-test / Wald test (6)
= ∙ ℎ + + ∙= ∙ ℎ + + ∙ +  = ∙ ℎ + + ∙ + + , 

where 	 indicates predicted yield of farm / county i at time t, and  is the time index 
with = 1980,… ,2010;  represents the intercept for farm / county i,  is the 
parameter estimate for farm / county i and ℎ  stands for a weather index for 
each county c at time t. 

Following GOODWIN and MAHUL (2004), we normalize the detrended yields to the last 
year 6. Thus, we add the error term of each year and farm to the detrended yield 
level at ,  as shown in equation (7) (reduced model). In addition, for the full 
model, we have to account for the weather index of the corresponding rayon, see 
equation (8).  = +   (7)= − ∙ ℎ + + ∙ ℎ   (8)

Based on these detrended yields, we calculate their variance and refer to it as 
“remaining yield variance” to evaluate the effect of the aggregation level on a basic 
statistical measure of risk.  

                                                   
6  More precisely we did not normalised our data to the year  but to the year , since = 2010 was an extreme drought year and thus does not adequately represent today’s yield 

level. 
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4 Results 

We used different aggregation levels to analyse the effect of aggregation on trend 
estimations. More precisely, we compared the estimations based on single farms, 
rayons (counties), oblasts (regions) and national data (see Table 1). The number in the 
table represents the number of farms with the respective estimated trend. For instance, 
8 farms of the 12 sample farms situated in rayon 1 (“12 farms - Rayon 1”) show no 
significant trend when using the reduced form model for OLS. The trends determined 
from single farm data show strong differences, varying from no trend up to a cubic 
trend. Rayon 5 shows no significant trend for all 7 sample farms located in this area 
for OLS and MM as well for the full and reduced model. On the higher aggregation 
level, i.e. the rayon and the oblast, no significant trend was found for either estimators. 
In contrast, the full model determines a significant quadratic trend for OLS and MM 
for rayon 4 and oblast 2, and a significant MM cubic trend for rayon 1. Across the 
different aggregation levels and for both models, MM and OLS determine a rather 
similar trend pattern.  

Table 1.  Trend estimations for OLS and MM reduced form models,  
4 aggregation levels 

 OLS reduced / MM reduced OLS full / MM full 

Aggregation level 
No 

trend 
Linear 
trend 

Quadratic 
trend 

Cubic 
trend 

No 
trend 

Linear 
trend 

Quadratic 
trend 

Cubic 
trend 

National -/- -/- 1/1 -/- *)    

Oblast 1 1/1 -/- -/- -/- 1/1 -/- -/- -/- 

Oblast 2 1/1 -/- -/- -/- -/- -/- 1/1 -/- 

Rayon 1 - Oblast 1 1/1 -/- -/- -/- 1/- -/- -/- - /1 

Rayon 2 - Oblast 1 1/1 -/- -/- -/- 1/1 -/- -/- -/- 

Rayon 3 - Oblast 1 1/1 -/- -/- -/- 1/1 -/- -/- -/- 

Rayon 4 - Oblast 2 1/1 -/- -/- -/- -/- -/- 1/1 -/- 

Rayon 5 - Oblast 2 1/1 -/- -/- -/- 1/1 -/- -/- -/- 

12 farms - Rayon 1 8/7 1/1 1/1 2/3 3/3 2/3 3/3 4/3 

11 farms - Rayon 2 10/10 -/- -/- 1/1 8/8 1/1 -/- 2/2 

7 farms - Rayon 3 5/5 2/2 -/- -/- 5/4 2/2 -/1 -/- 

10 farms - Rayon 4 3/4 6/5 1/1 -/- -/- 3/3 7/7 -/- 

7 farms - Rayon 5 7/7 -/- -/- -/- 7/7 -/- -/- -/- 

Note: numbers in the table indicate the number of farms with the respective trend estimation. *) Not 
estimated because the national agricultural area is too large to be adequately represented by the 
weather information of a regional weather station.  

Source: authors 
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Table 2 compares the results of the trend estimations determined by OLS for the 
reduced and full models. For about 30% of the farms (14 of the 47 farms), the trend 
estimations differed for the two models. Additionally, the trend estimations of the 
reduced form model have generally a lower polynomial degree than the ones of the full 
model. For instance, “no trend” was determined for 33 farms for the reduced model 
compared to 23 farms for the full model. Similarly, higher trend estimations, i.e. 
quadratic or cubic trends, were favoured for 16 farms for the full model in contrast to 
5 farms for the reduced form model. Moreover, for “7 farms - Rayon 5”, no significant 
trend was determined for either model.  

Table 2.  Trend estimation results for OLS full and reduced form model,  
farm-level data 

 OLS full / OLS reduced OLS full and reduced 
comparison: Identical / 
no identical time trend  

No  
trend 

Linear 
trend 

Quadratic 
trend 

Cubic 
trend 

12 farms - Rayon 1 3/8 2/1 3/1 4/2 7/5 

11 farms - Rayon 2 8/10 1/0 0/0 2/1 9/2 

7 farms - Rayon 3 5/5 2/2 0/0 0/0 7/0 

10 farms - Rayon 4 0/3 3/6 7/1 0/0 3/7 

7 farms - Rayon 5 7/7 0/0 0/0 0/0 7/0 

Total 23/33 8/9 10/2 6/3 33/14 

Note: numbers in the table indicate the number of farms with the respective trend estimation.  

Source: authors 

 

Table 3 summarizes the estimates of the robust MM estimator. Similar to OLS (Table 2), 
for about 30% of the farms the estimated time trends of the full and reduced model 
differed (i.e. 14 of the 47 farms). Likewise, lower polynomial trends are more 
frequently estimated with the reduced compared to the full model. For instance, the 
full model determined 16 farms with a quadratic or cubic trend, whereas the reduced 
form model identified only 6 farms having these trends.  
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Table 3.  Trend estimation results for MM full and reduced form model,  
farm-level data 

 MM full / MM reduced MM full and reduced 
comparison: Identical / 
no identical time trend  

No  
trend 

Linear 
trend 

Quadratic 
trend 

Cubic 
trend 

12 farms - Rayon 1 3/8 3/1 3/1 3/2 8/4 

11 farms - Rayon 2 8/10 1/0 0/0 2/1 9/2 

7 farms - Rayon 3 4/5 2/2 1/0 0/0 6/1 

10 farms - Rayon 4 0/4 3/5 7/1 0/0 3/7 

7 farms - Rayon 5 7/7 0/0 0/0 0/0 7/0 

Total 22/34 9/8 11/2 5/3 33/14 

Note: numbers in the table indicate the numbers of farms with the respective trend estimation.  

Source: authors 

 

In Table 4 the trend estimations of the full OLS model are compared to the reduced 
MM detrending model. For more than 30% of the farms (15 of 47 farms), the trend 
estimations differed. We again find a tendency for higher trend estimations for the 
OLS full model compared to the MM reduced model. For example the OLS full model 
determines 16 farms to have a quadratic or cubic polynomial degree compared to only 
6 farms for the MM reduced model. 

Table 4.  Trend estimation results for OLS full model and MM reduced form 
model, farm-level data 

 OLS full / MM reduced OLS full and MM 
reduced comparison:  

 
No  

trend 
Linear 
trend 

Quadratic 
trend 

Cubic 
trend 

Identical / no identical 
time trend 

12 farms - Rayon 1 3/7 2/1 3/2 4/2 7/5 

11 farms - Rayon 2 8/11 1/0 0/0 2/0 9/2 

7 farms - Rayon 3 5/4 2/2 0/1 0/0 6/1 

10 farms - Rayon 4 0/6 3/3 7/1 0/0 3/7 

7 farms - Rayon 5 7/7 0/0 0/0 0/0 7/0 

Total 23/35 8/6 10/4 6/2 32/15 

Note: numbers in the table indicate the numbers of farms with the respective trend estimation.  

Source: authors 
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5 Discussion 

In our investigation about an adequate representation of the technological trend 
component, we used a unique data set from farms, rayons (counties) and oblasts 
(regions) from northern Kazakhstan. For historic reasons, farm size in this region 
averages about 16 000 ha. This means that even for the smallest examined unit of this 
analysis, i.e. the single farm, yields are aggregated across these large farming areas. 
The trend estimations based on the farm-level data vary considerably among farms and 
regions. Hence, some farms had no significant trend, whereas others revealed a linear, 
quadratic or cubic trend pattern. However, for the higher aggregation level, i.e. the 
rayon and oblast level, especially for the reduced form model, no significant trend was 
determined. This indicates that by using farm-level data we either highly overestimated 
the technological trend component, or underestimated the trend effect by applying 
rayon or oblast data. The specific impact of aggregation is, besides the extent of 
aggregated hectares, dependent on the uniformity of weather conditions. In our case 
study region, the high yield volatility is a consequence of widely-spread droughts, thus 
reflecting a systemic risk component. This means that there is, with respect to the 
weather conditions, a rather high homogeneity among the farms and among the regions. 
Hence, aggregation will only slightly reduce the complexity of the yield pattern, as the 
main yield volatility does not originate from an idiosyncratic component. Another 
important presupposition for using aggregated data is a homogeneous pattern of 
technological change. The Kazakh agricultural system was subject to restructuring and 
privatisation, which especially during the transition period in the 1990s, lead to strong 
differences across farms with respect to factor endowment, resource availability and 
investment possibilities. Thus, the underlying patterns of the technological trend are 
heterogeneous, causing diverse patterns of trend estimate observations at the farm-
level. Unifying the trends may thus lead researchers to model severe misspecifications, 
causing over- or underestimation of production risk. We evaluated this effect by 
comparing the remaining yield variance, i.e. the variance after detrending. We, there-
fore, compared the variance for trend estimations based on farm, rayon and oblast data, 
and found a decreasing variance with an increasing aggregation level of the trend 
estimation. This finding indicates that using aggregated data may severely under-
estimate the risk borne by Kazakh farmers. 

Furthermore, we analysed and compared the use of the MM estimator, a robust 
detrending technique. Robust estimators give less weight to outliers in the data set. In 
contrast, non-robust estimators such as Ordinary Least Squares (OLS) are much more 
sensitive to outlying observations. This is especially pronounced for short yield series, 
which are predominantly used in risk assessment due to data constraints. In settings 
where yields vary substantially and trend estimations are not stable, extending or 
shortening the time series for a few years may shift the deterministic trend. In these 
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cases, using robust regression techniques in addition to OLS can reveal potential 
problems in data analysis. Observations that deviate from the relationship described by 
the majority of the data can be detected, and the influence of these outliers can be 
bounded. However, the Kazakh data contain many outlying observations because 
droughts are such a frequent event. Indeed, about one-third of the years can be referred 
to as drought or severe drought years (see also Figure 2). Thus, these extreme obser-
vations are part of the general pattern and can no longer be denoted as “outliers”. In 
addition, we had no extreme values at the very beginning or end of the time series, 
which would have amplified outlier effects. This may explain why we found only 
slight differences in the detrended yield estimations of MM and OLS. For our specific 
case study, the robust estimator did not seem to produce more reliable trend estimations. 
However, this finding cannot be generalised, and depends on the data set. For instance, 
none of the 7 farms located in rayon 5 exhibit any significant trend, and visualization 
shows a white noise sequence with a mean shift. Consequently, detrending results are 
stable and neither additional regressors nor the choice of the estimation technique have 
any influence on the results. This is contrary to farms from e.g. the first rayon, where 
trend patterns are more diverse, and the technique as well as the additional regressor 
have an effect on the trend estimations. Thus, the detrending technique has to be 
tailored to the particular data set.  

Finally, we investigated the inclusion of a weather index as a regressor in detrending. 
We found that the trend estimations differed (i.e. different trend models have been 
found) for about one-third of the farms for the reduced and full model. Thus, our 
findings suggest that trend estimations require a simultaneous consideration of both, 
the effects of technology and the effect of weather. This is not only the case for the 
non-robust OLS estimator, but also for the robust MM estimator. It could be that the 
simultaneous occurrence of consecutive years of very low yields due to adverse 
weather events and technological decline due to disinvestments might constrain adequate 
trend estimation. The omitted but highly relevant weather variable provokes severe 
model misspecifications and leads to an omitted variable bias. In addition, depending 
on the length of the time series, weather variables might themselves exhibit a significant 
trend due to climate change. Ignoring such a trend by reducing the regression model to 
time variables might lead to inconsistent estimates of the trend parameters because the 
model residuals would not be independent from trend model regressors, i.e. time 
variable(s). In this case, the “weather” trend component will be captured in the tech-
nological trend component, thereby increasing the omitted variable bias. Thus, adding 
a weather variable representing prevailing weather conditions during the crop growing 
season as an additional regressor may help to reduce over- and underestimation of 
technological trends. Underestimating the deterministic trend may be the prevailing 
challenge in the case of Kazakh wheat production, since the non-inclusion of weather 
information led to lower trend estimations in our study. 



 Yield Trend Estimation in the Presence of Farm Heterogeneity 137 

Quarterly Journal of International Agriculture 53 (2014), No. 2; DLG-Verlag Frankfurt/M. 

6 Conclusions 

Due to data constraints, many empirical applications apply aggregated yields such as 
county or regional data for risk analysis and actuarial applications. However, we show 
that for these highly heterogenic yield data, aggregation may oversimplify trend 
analysis and provoke biased results. Consequently, aggregated data poorly represent 
farm yield variability and the risk faced on the farm unit level. As shown in the 
literature, the choice of the estimation technique is also relevant for obtaining 
consistent estimates of technological trends, since deviations from OLS model 
assumptions such as outliers may have a substantial effect on trend estimation results. 
In addition to the non-robust OLS estimator, we applied the MM-estimator, a robust 
regression technique. This fills a gap in the literature by testing potential gains from 
using this estimator with observed instead of simulated crop yield data. Our finding 
suggests that the MM estimator did not produce more reliable trend estimations 
compared to OLS. This is due to the specific pattern of our data and cannot be 
generalised. About one-third of the yields are extreme and thus outlying observations 
are part of the general pattern. Consequently even the robust MM estimator requires 
additional information e.g. in our study in form of a weather index. By accounting for 
weather-related variance, the variance that is not related to the technological trend is 
reduced and consequently a more stable trend is estimated.  

To summarise, the presented analysis contributes to an improved crop yield analysis 
for many developing and transition countries that face similar conditions. A careful trend 
analysis under such conditions is essential, because neglecting or misspecifications of 
trends lead to biased estimations and impede the development of powerful risk manage-
ment instruments. Hence, a better assessment of farmers’ yield risks allows the imple-
mentation of more efficient risk management strategies at the farm- and county level.  
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Appendix 

Appendix 1. Description of yield data 

Table A1. Summary statistics: yield data 1980-2010 

Aggregation level Mean 0.1 t/haa)  Min. 0.1 t/ha Max. 0.1 t/ha sdb) 

12 farms - Rayon 1 8.9 0.2 24.0 3.8 

11 farms - Rayon 2 8.8 0.8 21.0 3. 8 

7 farms - Rayon 3 8.3 1.2 19.3 3.4 

10 farms - Rayon 4 10.7 0.9 25.6 5.1 

7 farms - Rayon 5 9.2 0.3 22.1 3.9 

Rayon 1 9.4 4.2 19.7 3.5 

Rayon 2 9.4 2.8 16.2 3.4 

Rayon 3 8.7 2.9 15.9 3.0 

Rayon 4 9.8 1.5 17.6 4.1 

Rayon 5 9.0 1.0 16.0 4.0 

National  9.8 5.2 14.8 2.7 

Note: a)Unit: tons per hectare. b)sd refers to standard deviation.  

Source: regional statistical offices of Kazakhstan  

 

Appendix 2. Description of weather indices 

Table A2.  Summary statistics: weather indices, 1980-2010 

Rayon 
CR April-July, mm SI 3rd decade May-July  

Mean Min. Max CVa) Mean Min.  Max. CVa) 

1 141 94 215 0.26 0.72 0.26 1.38 0.38 

2 133 33 234 0.34 0.71 0.14 1.57 0.47 

3 127 46 267 0.38 0.65 0.22 1.74 0.55 

4 164 83 269 0.35 0.87 0.30 1.93 0.50 

5 148 70 297 0.39 0.75 0.22 1.82 0.48 

Note: a) CV refers to coefficient of variation, CR denotes cumulative rainfall and SI stands for Selyaninov 
index.  

Source: National Hydro-Meteorological Agency of Kazakhstan 

 


