
DISS. ETH NO. 21863

The Cloud, Paper Planes, and the Cube

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

GAJAMOHAN MOHANARAJAH

M.Eng. in Mech. and Env. Informatics, Tokyo Institute of Technology
B.Eng. in Control and Systems, Tokyo Institute of Technology

born June 29, 1980
citizen of Sri Lanka

accepted on the recommendation of

Prof. Dr. Raffaello D’Andrea, ETH Zurich, examiner
Prof. Dr. Andreas Krause, ETH Zurich, co-examiner
Prof. Dr. Jonas Buchli, ETH Zurich, co-examiner

Prof. Dr. Bradley Nelson, ETH Zurich, co-examiner

2014

The Cloud, Paper Planes, and the Cube
Gajamohan Mohanarajah

Institute for Dynamic Systems and Control
ETH Zurich

Zurich, March 2014

Cover illustration by Gajamohan Mohanarajah

Institute for Dynamic Systems and Control
ETH Zurich
Switzerland

c© 2014 Gajamohan Mohanarajah.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in Switzerland.

Abstract
This dissertation covers two independent topics. The first topic, cloud robotics, is split
into two subtopics, respectively titled The Cloud, and Paper Planes. The Cloud covers
the development of a novel cloud infrastructure for robotics, and Paper Planes builds on
this infrastructure by presenting algorithms that recognize patterns and learn from the
data accumulated by robots that are connected to the cloud. The second independent
topic, titled The Cube, features the development of a small cube-shaped device that can
jump up and balance on its edge or corner.

Cloud Robotics

The Cloud : This section describes a robotics-specific Platform-as-a-Service (PaaS) frame-
work, called Rapyuta, that helps robots offload heavy computation by providing secured,
customizable computing environments in the cloud. These computing environments allow
robots to easily access knowledge repositories that contain data accumulated from other
robots; the tight interconnection of these environments thus paves the way for the deploy-
ment of robotic teams. A concrete demonstrator - wherein multiple low-cost robots use
Rapyuta to perform collaborative 3D mapping in real-time - showcase the framework’s
key communication and computational features.
Paper Planes : This section features several learning algorithms that were developed to
recognize patterns and learn from data accumulated by robots that are connected to a
cloud-based framework like Rapyuta. This dissertation focuses specifically on the method
of Gaussian process optimization-based learning for trajectory tracking. This work pro-
poses a reinforcement learning algorithm, proves its convergence for trajectory tracking,
and shows that a significant amount of knowledge can be transferred even in cases where
the reference trajectories are not the same. Simulated flying vehicles are used to numer-
ically illustrate the theoretic results of this work, hence the reference to paper planes in
this section’s title.

Development of a self-erecting 3D inverted pendulum

The Cube: This section describes the development of a 15 cm sided cube shaped device
called the Cubli (Swiss-German for ’small cube’), that can jump up and balance on its
edge or corner. Reaction wheels mounted on three faces of the Cubli rotate at high angular
velocities and then brake suddenly, allowing the Cubli to jump up, first to its edge, and
then to its corner. Once the Cubli has almost reached the balancing position, controlled
motor torques are applied to make it balance.

Zusammenfassung

Diese Dissertation behandelt zwei voneinander unabhängige Themen mit den Titeln
Cloud Robotics und The Cube. Das erste Thema ist in zwei Unterbereiche mit den Titeln
The Cloud und Paper Planes unterteilt. The Cloud behandelt die Entwicklung einer neu-
en Cloud Infrastruktur für Roboter während Paper Planes auf diese Infrastruktur aufbaut
und Algorithmen beschreibt, die es ermöglichen Muster zu erkennen und von Daten zu
lernen, die Roboter, welche mit der Cloud verbunden sind, gesammelt haben. Das zweite
Thema beschreibt die Entwicklung eines würfelartigen Objekts, das sich selbst aufrichten
kann und auf einer seiner Kanten oder Ecken balanciert.

Cloud Robotics

The Cloud : Dieser Abschnitt beschreibt ein Platform-as-a-Service (PaaS) Framework mit
dem Namen Rapyuta, welches auf Roboter zugeschnitten ist und diese dabei unterstützt
aufwendige Rechenaufgaben auszulagern indem es gesicherte und anpassbare Rechenum-
gebungen in der Cloud zur Verfügung stellt. Die verschiedenen Rechenumgebungen erlau-
ben es Robotern einfach auf Datenbanken, die das gesammelte Wissen anderer Roboter
enthalten, zuzugreifen; die enge Kopplung dieser Umgebungen ermöglicht demnach den
Einsatz von Roboter Teams. Ein konkretes Beispiel in dem mehrere kostengünstige Robo-
ter Rapyuta nutzen um im Verbund eine 3D Karte in Echtzeit zu zeichnen demonstriert
die wesentlichen Kommunikations- und Rechenmerkmale des Frameworks.

Paper Planes : Dieser Abschnitt behandelt verschiedene Algorithmen, die entwickelt wur-
den um Muster zu erkennen und aus Daten zu lernen, die von Robotern, welche über
ein Cloud-basiertes Framework wie Rapyuta verbunden sind, gesammelt wurden. Diese
Dissertation konzentriert sich dabei speziell auf Lernmethoden für die Trajektorienver-
folgung, die auf der Gauss’schen Prozess Optimierung basieren. Diese Arbeit präsentiert
einen Algorithmus für bestärkendes Lernen, beweist seine Konvergenz bei der Trajekto-
rienverfolgung und zeigt dass ein signifikanter Teil des Wissens sogar dann transferiert
werden kann wenn die Referenztrajektorien nicht gleich sind. Simulierte fliegende Vehikel
werden benutzt um die theoretischen Resultate dieser Arbeit darzulegen, was die Referenz
im Titel dieses Abschnitts erklärt.

Entwicklung eines sich selbst aufrichtenden umgekehrten 3D Pendel

The Cube: Dieser Abschnitt beschreibt die Entwicklung eines würfelartigen Objekts mit
dem Namen Cubli (angelehnt an den schweizerdeutschen Diminutiv um einen kleinen
Cube zu bezeichnen), das sich selbst aufrichten kann und auf einer seiner Kanten oder
Ecken balanciert. Dafür sind an drei Seiten des Cubli Schwungräder befestigt, die mit
hoher Geschwindigkeit rotieren und schlagartig bremsen so dass der Cubli sich selbst
zunächst auf eine seiner Kanten und dann auf eine seiner Ecken aufrichtet. Sobald sich
der Cubli in der Nähe seiner aufrechten Position befindet werden die Motordrehmomente
so geregelt dass der Cubli balanciert.

Acknowledgements

This work would not have been possible without the support and contribution from a
number of individuals, and here I extend to them my sincerest gratitude.

I owe my deepest gratitude to my advisor Prof. Raffaello D’Andrea for giving me the
opportunity to work in his group, introducing me to creative and challenging projects,
giving me so much freedom to explore my own ideas, and for helping me to recalibrate
my standards on details, mathematical rigor, and simplicity. I feel honoured to be one of
Raff’s students and I cherish all the interactions I had with him. My gratitude extends
to my co-advisor, Prof. Andreas Krause, for taking the time to patiently introduce me
to new concepts and ideas in machine learning, as I had a great passion for the field but
did not have a strong background in it. Along these lines, I would also like to thank my
examiners Prof. Bradley Nelson and Prof. Jonas Buchli for their valuable comments on
my thesis.

Next, I would like to thank the RoboEarth team at ETH Zurich, Nico Hubel and
Markus Waibel, for the support and memorable times. Nico was the best office mate one
could have. Thank you Nico for all the help that extended beyond the research work, and
thank you for the wonderful times. My family is going to miss you a lot. Markus was my
unofficial advisor. We had hours and hours of exciting discussions on Cloud Robotics and
related topics, and we co-organized workshops and wrote many papers together. Thank
you, Markus, for your great enthusiasm and support.

I would like to thank all my colleagues at the Institute of Dynamic Systems and
Control (IDSC) for the wonderful time and support. Raymond (Ray) Oung and I had some
really good times: jogging every week, discussing each other’s research, and sharing our
personal stories. Thank you, Ray, for being a great trainer and a true friend; you are one of
the best things that happened to me in the last four years. Sebastian Trimpe was my role
model and a good friend from the beginning, when I first began my internship at IDSC.
We were the ’cube’ guys, and I am grateful for the many long discussions on balancing
cubes, and for your wonderful tilt estimation algorithm. Philipp Reist hosted me at his
place when I first arrived in Zurich, was a very helpful friend; Philip, your happy aura
and warm hugs always helped me a lot, especially when I was feeling down. Thank you
Max Kriegleder, for the fun times at J44 and for the interesting discussions on embedded

11

systems. Thank you Igor Thommen, Marc-Andre Corzillius, and Hans Ulrich Honegger
for all the help with the Cubli.; it would have been impossible without you three. Thank
you, Carolina, for your help in making such stand-out graphics and video for the Cubli. I
also extend my thanks to the other members of IDSC for for being an inspiration and for
the good times, including Angela Schoellig, Sergei Lupashin, Mark Mueller, Markus Hehn,
Luca Gherardi, Dario Brescianini, Robin Ritz, and Michael Hammer, my awesome new
office-mate after PhD. A special thanks goes to our institute secretary Katharina Munz
for all the help, care, and the fun times we had outside the lab training for the SOLA
race. I would also like to say a big thanks to Hallie Siegel for patiently going through
almost all my writings (including this acknowledgement) and giving valuable feedback.
And finally, I would like to thank Raff once again for giving me the opportunity to spend
time with such a great team for four years.

One of my greatest joys during my PhD was collaborating with students. Dominique
Hunziker and Okan Koc somehow managed to spend two years with me. I really enjoyed
the time with these two and I learned a lot from both. Thank you, Vlad, for giving a boost
to Rapyuta with the mapping demonstrator. Thank you, Michael Merz, for giving Cubli
a great start, Tobias Widmer for making it balancing, and Christof Dubs for a great
finish with 4 million views. Thank you, Michael Mulebach, for the strong theoretical
contribution to the Cubli project and the in-depth discussions. I will never forget our
emergency meeting on non-zero dynamics for the CDC deadline at the university hospital
when Kalai was trying to give birth.

I would also like to express my gratitude to ETH Zurich and the European Commission
for their support and funding of my research.

In addition to the above, there were many people who educated me, motivated me,
and helped me along the way.

Among those, I would like to thank the people of Japan for giving me a full scholarship
to study in their country and making my robotics dream come true. Specifically, I would
like to thank my Japanese language teachers Kusakari-sensei and Tachizono-sensei and
many others who, in just one year, taught me to understand my university lectures. Next, I
would like to thank all the teachers of Kurume National College of Technology. Thank you,
Esaki-sensei, Kuroki-sensei, Kumamaru-sensei, Fukuda-sensei, Kawaguchi-sensei, Ayabe-
sensei, Sakuragi-sensei, Amafuji-sensei, and Noda-san for teaching me strong basics and
for the huge mental support in the early years. Thank you Teoh and Daniel for the great
company. I would also like to thank all my teachers at Tokyo Institute of Technology. I
especially would like to thank Hayakawa-sensei, my bachelor and master thesis supervisor,
for the time he patiently spent to introduce me to the world of research and scientific
writing. I feel very privileged to be one of his first students and had a very memorable
and educational time in his laboratory. I would also like to thank my friends in Japan,
especially Sriram Iyer, for being a great senpai (senior), friend, and a role model for me
to go to Japan. I would also like the thank Arul, for being an awesome flat-mate and my
AOL buddies, Nikhil, Keeru, Amit, Mohan-san,Meena-san, Ani, Ajith, Shubra, Naveen,
Sangeetha-san, Poornima-san, Shreya, Kyoko-san, Neela-san, and my Japanese okasan

Kayo-san. Thanks to you guys, Japan was like my second home.
A big thanks also goes to all my teachers in Sri Lanka. Starting with Ms. Sumathy

Ranjakumar, for being a lovely and supportive class teacher, Mr. Gnanasundaram and
Mr. Premnath my math gurus, and Mr. Soundararajan my physics teacher. My deepest
gratitude goes to Ms. Velupillai, my chemistry teacher, who voluntarily gave me intense
private lessons free of charge after noticing my poor performance in the trial exams. This
was very pivotal step in my career and I would like to dedicate this thesis to her.

I would like thank my family for always being with me. Amma and Appa, thank you
for your selfless effort to give Latha and me the best education, and for your unconditional
love. Latha, thank you being an inspiration to me. The biggest contribution to this thesis is
comes from my better half, Kalai. Thank you, Kalai, for your continuous care, motivation,
and love. Without you, I would not have enjoyed life in Zurich and this thesis would not
have been possible in its present form. Finally, Atchuthan (I know you still can not read)
for being the big bundle of joy that kept me going during the last year of my PhD.

Contents

1. Introduction . 19
Cloud Robotics . 19
Development of a Self-erecting 3D Inverted Pendulum 23
Contribution and Organization . 25

2. Rapyuta: A Cloud Robotics Framework 31
2.1 Introduction . 31
2.2 Main Components . 34
2.3 Communication Protocols . 37
2.4 Deployment . 40
2.5 Performance and Benchmarking . 45
2.6 Demonstratros . 49
2.7 Conclusion and Outlook . 53
Acknowledgment . 54
References . 55

3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots . . 59
3.1 Introduction . 59
3.2 System Architecture . 61
3.3 Onboard Visual Odometry . 64
3.4 Map Representation and Communication Protocol 67
3.5 Map Optimization and Merging . 68
3.6 Evaluation . 71
3.7 Conclusion . 72
Acknowledgement . 76
References . 76

4. Gaussian Process Optimization-based Learning for Trajectroy Track-
ing . 83
4.1 Introduction . 83
4.2 Problem Statement and Background 85
4.3 Algorithm TGP . 88

4.4 Experimental Results . 94
4.5 Conclusion . 96
References . 98

5. The Cubli . 101
5.1 Introduction . 101
5.2 Mechatronic Design . 102
5.3 Modelling . 105
5.4 State Estimation . 109
5.5 System Identification . 111
5.6 Balancing Control . 116
5.7 Jump-Up . 119
5.8 Experimental Results . 123
5.9 Conclusions and Future Work . 124
5.10 Acknowledgements . 125
References . 125

6. Conclusions and Future Directions . 131

A. Appendix: Paper Planes . 137
A.1 Proof of Proposition 4.3.1 . 137
A.2 Numerical Examples . 138

1
Introduction

This dissertation describes the work done in two distinct topic areas: 1) cloud robotics
and associated learning algorithms, as described in The Cloud and in Paper Planes1

subsections, and 2) development of a self-erecting 3D inverted pendulum, as described in
The Cube subsection.

Cloud Robotics

The past decade has seen the first successful, large-scale use of mobile robots. However,
the vast majority of these robots continue to either use simple control strategies (e.g.,
robot vacuum cleaners) or be operated remotely by humans (e.g., drones, unmanned
ground vehicles, telepresence robots). One reason these mobile robots lack intelligence is
because the costs of onboard computation and storage are high; this affects not only the
robot’s price point, but also results in the need for additional space and extra weight,
which constrain the robot’s mobility and operation time. Another reason is the absence of
a common mechanism and medium to communicate and share knowledge between robots
with potentially different hardware and software components.

Cloud robotics is an emerging sub-discipline that aims to solve some of the aforemen-
tioned challenges. It is a field rooted in cloud computing, cloud storage, and other internet
technologies that are centered around the benefits of converged infrastructure and shared
resources. It allows the robots to benefit from the powerful computational, storage, and
communication resources of modern data centers. In addition, it removes overheads for
maintenance and updates, and reduces dependence on custom middleware.

RoboEarth [1], a pioneering cloud robotics initiative, focuses on the following three
topics and related questions in order to build an internet for robots:

• Knowledge representation: What types of knowledge should be shared between
robots? How can knowledge be represented in a platform-independent manner?

1One of the learning methods used simulated flying vehicles to numerically illustrate the theoretical
results, thus the name paper planes.

19

Cloud Robotics

How can this knowledge be used for reasoning? How can common knowledge be
used across heterogeneous platforms?

• Storage: What is the best infrastructure to store the semantic and binary forms
of data/knowledge? How can new knowledge be created from data gathered from
different robots? How can knowledge be transferred between two robots?

• Computation: How can a scalable cloud-based architecture that allows robots to
offload some of their computation to the cloud be built? What are the tradeoffs
between onboard and cloud-based execution?

This dissertation contributed to the general knowledge of cloud robotics by 1) devel-
oping a novel cloud robotics platform, as described below in The Cloud, and 2) developing
new algorithms that are able to learn from a robots’ accumulated experience and transfer
the learnt knowledge between robots, as described below in Paper Planes.

The Cloud

Cloud Robotics allows robots to take advantage of the rapid increase in data transfer rates
to offload computationally expensive tasks, see Fig. 1.1. This is of particular interest for
mobile robots where on-board computation entails additional power requirements that
may reduce operating time, constrain robot mobility, and increase costs.

Running robotics applications in the cloud falls into the Platform-as-a-Service (PaaS)
model [2] of the cloud computing literature. In PaaS the cloud computing platform typi-
cally includes an operating system, an execution environment, a database, and a commu-
nication server. Many existing cloud computing building blocks - including much of the
existing hardware and software infrastructure for computation, storage, network access,
and load balancing - can be directly leveraged for robotics. However, specific require-
ments (such as the need for multi-process applications, asynchronous communication,
and compatibility with existing robotics application frameworks) limit the applicability
of existing cloud computing platforms to robot application scenarios.

The idea of having a remote brain for the robots can be traced back to the 90s [3,4].
During the past few years, this idea has gained traction (mainly due the availability
of computational/cloud infrastructures), and several efforts to build a cloud computing
framework for robotics have emerged [5]–[7]. The open source project Rapyuta2 attempts
to solve some of the remaining challenges of building a complete cloud robotics platform.

Rapyuta allows to outsource some or all of a robot’s onboard computational pro-
cesses to a commercial data center. It is distinguished from other similar frameworks
(like the Google App Engine) in that it is specifically tailored to multi-process, high-
bandwidth robotics applications and middleware, and provides a well-documented open
source implementation that can be modified to cover a large variety of robotic scenar-
ios. Rapyuta supports out-of-the-box outsourcing of almost all the current 3000+ ROS

2The name is inspired from the movie Tenku no Shiro Rapyuta (English title: Castle in the Sky) by
Hayao Miyazaki, where Rapyuta is the castle in the sky inhabited by robots.

20

Chapter 1. Introduction

packages and is easily extensible to other robotic middleware. A pre-installed Amazon
Machine Image (AMI) allows Rapyuta to be launched in any of Amazon’s data centers
within minutes. Once launched, robots can authenticate themselves to Rapyuta, create
one or more secured computational environments in the cloud, and launch the desired
nodes/processes. The computational environments can also be arbitrarily connected to
build parallel computational architectures on the fly. The WebSocket-based communica-
tion protocol, which provides synchronous and asynchronous communication mechanisms,
allows not only ROS-based robots to connect to the ecosystem, but also browsers and
mobile phones to connect as well. Target applications include collaborative 3D mapping,
task/grasp planning, object recognition, localization, and teleoperation, among others.
Rapyuta provides secure, private computing environments and optimized data through-
put. However, its performance is in large part determined by the latency and quality of
the network connection and the performance of the data center. Optimizing performance
under these constraints is typically highly application-specific. In Chapter 3, this disser-
tation demonstrates performance optimization for a collaborative 3D real-time mapping
scenario.

Paper Planes

Within a cloud-based computation and storage framework, learning algorithms play a
crucial part in accumulating all the data, recognizing patterns, and producing knowl-
edge. The ability to transfer knowledge between different robots and contexts (environ-
ments/problems) will significantly improve the performance of future robots connected
to a RoboEarth-like system.

For example, consider a robot learning how to pour tea into a cup and over time
perfecting its motions. The learned pouring motion can be uploaded to a central database,
annotated with the hardware-specifics of the particular robot as well as the size and
shape of the teapot as context. Another robot with slightly different hardware, holding a
different teapot, can download the stored motion as a prior and adapt it to its particular
context, thereby eliminating the need to learn the motion from scratch.

Systems that work in a repetitive manner, such as robotic manipulators and chemical
plants, use Iterative Learning Control (ILC) to iteratively improve the performance over
a given repeated task or trajectory. The feed-forward control signal is modified in each
iteration to reduce the error or the deviation from the given reference trajectory. A good
analogy is a basketball player shooting a free throw from a fixed position: during each
shot the basketball player can observe the trajectory of the ball and alter the shooting
motion in the next attempt [12]. A key limitation with ILC is that it assumes the task or
the trajectory to be fixed (constant) over iterations. While this is a reasonable assumption
for some repeated tasks, ILC cannot handle the cases when the trajectory is modified or
changing over time, and the controller must start learning from scratch. It is shown in
Chapter 4 that a significant amount of knowledge can be transferred even between cases
where the reference trajectories are not the same. Basketball players do not have to learn
the free throw motion from scratch each time they find themselves in a slightly different

21

Cloud Robotics

0 100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

1.5

2

2.5

3

3.5

4
· 107

Clou
d
Ex

ec
ut

ion

Onb
oa

rd
Ex

ec
ut

ion

Obstacle Avoidance

Mapping and Localization
Grasp Planning

Motion Planning

Time Delay [ms]

D
at
a
Si
ze

[b
it
s]

LTE Uplink 50%
RGB-D compressed @30 FPS
Energy Efficiency

Figure 1.1: Consumed data size against the delay deadline of various robotics applica-
tions [8]–[10]. The data transfer rate (dashed line) is an important factor for deciding if an
application is feasible for deployment in the cloud. Increased data rates (depicted by an
increased slope in the dashed line) indicate improved feasibility of the cloud application.
In terms of energy consumption, cloud execution is favourable to onboard execution for
any task or application lying above the dotted line. For details on energy consumption
see [11].

position. We call these cases or reference trajectories contexts. Context can change in a
given task, and it is the responsibility of the autonomous agent or the learning controller
to adapt to different contexts.

In Chapter 4, this dissertation introduces a reinforcement-learning (RL) algorithm
that learns to track trajectories in state space online. Specifically, the proposed algorithm
uses Gaussian Process optimization in the bandit setting to track a given trajectory. It
implicitly learns the dynamics of the system, and in addition to improving the tracking
performance, it facilitates knowledge transfer between different trajectories.

22

Chapter 1. Introduction

Development of a Self-erecting 3D Inverted Pendulum

The Cube

The Cubli is a 15×15×15 cm cube that can jump up and balance on its corner. Reaction
wheels mounted on three faces of the cube rotate at high angular velocities and then brake
suddenly, causing the Cubli to jump up. Once the Cubli has almost reached the corner
stand up position, controlled motor torques are applied to make it balance on its edge
or corner. In addition to balancing, the motor torques can also be used to achieve a
controlled fall, such that the Cubli can be commanded to fall in any arbitrary direction.
Combining these three abilities – jumping up, balancing, and controlled falling – the
Cubli is able to move across a surface using only internal actuation. To date, Cubli is the
smallest 3D inverted pendulum, and the first 3D inverted pendulum that can self erect.
See Chapter 5 for more information on the Cubli’s mechatronic and algorithmic design.

Figure 1.2: The Cubli balancing on its corner.

23

Development of a Self-erecting 3D Inverted Pendulum

References

[1] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez,
K. Haussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schiessle, M. Tenorth,
O. Zweigle, and R. van de Molengraft, “RoboEarth,” Robotics Automation Mag.,
IEEE, vol. 18, no. 2, pp. 69 –82, June 2011.

[2] P. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute
of Standards and Technology, Special Publication 800-145, 2011, available http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[3] K. Goldberg and R. Siegwart, Eds., Beyond webcams: an introduction to online
robots. Cambridge, MA, USA: MIT Press, 2002.

[4] M. Inaba, S. Kagami, F. Kanehiro, Y. Hoshino, and H. Inoue, “A platform for robotics
research based on the remote-brained robot approach.” I. J. Robotic Res., vol. 19,
no. 10, pp. 933–954, 2000.

[5] R. Arumugam, V. R. Enti, K. Baskaran, and A. S. Kumar, “DAvinCi: A cloud
computing framework for service robots,” in Proc. IEEE Int. Conf. Robotics and
Automation. IEEE, May 2010, pp. 3084–3089.

[6] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud Networked Robotics,” Network,
IEEE, vol. 26, no. 3, pp. 28–34, May-June 2012.

[7] M. Sato, K. Kamei, S. Nishio, and N. Hagita, “The ubiquitous network robot
platform: Common platform for continuous daily robotic services,” in System
Integration (SII), 2011 IEEE/SICE Int. Symp., Dec 2011, pp. 318 –323.

[8] B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with zero-
slip push grasps,” pp. 576–583, May 2012.

[9] M. Tenorth, U. Klank, D. Pangercic, and M. Beetz, “Web-enabled robots,” Robotics
& Automation Magazine, IEEE, vol. 18, no. 2, pp. 58–68, 2011.

[10] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Learning, planning,
and control for quadruped locomotion over challenging terrain,” no. 2, pp. 236–258,
2010.

[11] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges and
applications,” Network, IEEE, vol. 26, no. 3, pp. 21–28, May-June 2012.

[12] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning control,”
Control Systems, IEEE, vol. 26, no. 3, pp. 96 – 114, June 2006.

24

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Chapter 1. Introduction

Contribution and Organization

The bulk of this dissertation is comprised of four main chapters, Chapters 2-5, which can
be read independently. The chapters draw their information mainly from the author’s
publications and technical reports. The specific contributions made in each of the subse-
quent chapters, as well as their references, are listed below.

Chapter 2: Rapyuta
This chapter details the design and implementation of Rapyuta, an open source Platform-
as-a-Service (PaaS) framework designed specifically for cloud robotics applications. Rapyuta
helps robots to offload heavy computation by providing secured customizable computing
environments in the cloud. The computing environments also allow the robots to easily
access the RoboEarth knowledge repository. Furthermore, these computing environments
are tightly interconnected, paving the way for deployment of robotic teams. The chapter
also describes three typical use cases, some benchmarking and performance results, and
two proof-of-concept demonstrators.

Major contributions described in this chapter include:

• Design and implementation of an open-source cloud robotics platform

• Benchmarking of the system’s functionalities with other platforms

• Two proof-of-concept demonstrators

The framework developed under this work was extensively used in the RoboEarth
project by other partner institutions. During the final demonstration of the project, the
framework was used to run the following components:

• WIRE, world modelling component, Eindhoven University of Technology,

• C2TAM, cloud-based mapping components, University of Zaragoza,

• Multi-robot planning component, University of Stuttgart,

• Human Machine Interface Components, Technical University of Munich, and

• KnowRob Reasoning Engine, University of Bremen.

In addition, the framework is used by 10+ researchers/corporate research groups/start-
ups around the world. The work in this chapter was disseminated via several talks and
workshops:

• Invited Talk: ICRA 2013 Workshop on Long-Term Autonomy, “The RoboEarth
Cloud: Powering Long-term Autonomy,” Karlsruhe, Germany, May 2013, Gajamo-
han Mohanarajah (ETH Zurich)

• Invited Talk: Oracle Partner Network Lounge, “Cloud Robotics,” Geneva/Zurich,
Switzerland, June 2013, Gajamohan Mohanarajah/Dominique Hunziker (ETH Zurich)

25

Contribution and Organization

• ROSCon 2013, “Understanding the RoboEarth Cloud,” Stuttgart, Germany, May
2013, Gajamohan Mohanarajah (ETH Zurich)

• euRobotics Forum 2013, Cloud Robotics Workshop, Gajamohan Moha-
narajah (ETH Zurich), Oliver Zweigle (University of Stuttgart), Alexander Perzylo
(Technical University of Munich), Markus Waibel (ETH Zurich), (Lyon, France)

• IROS 2013, Cloud Robotics Workshop, Organizers: Markus Waibel, (ETH
Zurich-main organizer), Ken Goldberg (UC Berkeley), Javier Civera (Uni. Zaragoza),
Alper Aydemir (NASA JPL), Matei Ciocarlie (Willow Garage), Gajamohan Moha-
narajah (ETH Zurich) (Tokyo, Japan)

Finally, this work was awarded the Amazon Web Services in education grant award
for its pioneering role in cloud robotics. The results contained in this chapter were pub-
lished in

[1] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta: A cloud
robotics platform,” IEEE Transactions on Automation Science and Engineering
(accepted), February 2014.

[2] D. Hunziker, G. Mohanarajah, M. Waibel, and R. D’Andrea, “Rapyuta: The
RoboEarth Cloud Engine,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), Karlsruhe, Germany, 2013, pp. 438–444.

Chapter 3: Cloud-based collaborative mapping in real-time with low-cost
robots
This chapter describes a concrete robotics application that was built to demonstrate var-
ious functionalities of the Rapyuta framework described in Chapter 2. More specifically,
this chapter describes an architecture, protocol, and parallel algorithms for collabora-
tive 3D mapping in the cloud. The robots run a dense visual odometry algorithm on a
smartphone-class processor. Key-frames from the visual odometry are sent to the cloud
for parallel optimization and merging with maps produced by other robots. After opti-
mization the cloud pushes the updated poses of the local key-frames back to the robots.
All processes are managed by Rapyuta, a cloud robotics framework, running in a commer-
cial data center. Finally, this chapter presents qualitative visualization of collaboratively
built maps, as well as quantitative evaluation of localization accuracy, bandwidth usage,
processing speeds, and map storage.

Major contributions described in this chapter include:

• Open source parallel implementation of dense visual odometry on a smartphone-
class ARM multi-core CPU

• A cloud-based SLAM architecture and protocol that significantly reduces the band-
width usage

26

Chapter 1. Introduction

• Techniques for parallel map optimization and merging over multiple machines in a
commercial data center

• An experimental demonstrator for quantitative and qualitative evaluation of the
proposed methods

The results contained in this chapter will be submitted to:

[1] G. Mohanarajah, V. Usenko, M. Singh, M. Waibel, and R. D’Andrea, “Cloud-based
collaborative 3D mapping in real-time with low-cost robots,” IEEE Transactions on
Automation Science and Engineering (accepted), March 2014.

Chapter 4: Learning Methods
The following two learning methods were motivated by and developed for RoboEarth.
The first of these methods is described in detail in this chapter.

• Gaussian Process Optimization-based Learning for Trajectory Tracking:
Systems that work in a repetitive manner use Iterative Learning Control (ILC)
algorithms to iteratively improve the performance of a given task or trajectory over
time. The limitation with ILC is that it assumes the task or the trajectory to be fixed
over iterations. ILC cannot handle cases when the trajectory is modified or changing
over time, and the iterative learning controller must start learning from scratch.
This work presents a reinforcement learning algorithm, proves its convergence for
trajectory tracking, and shows that a significant amount of knowledge can even be
transferred between cases where the reference trajectories are not the same.

• Indirect Object Search: The Indirect Object Search algorithm developed in this
work provides two models for predicting the occurrence and location probabilities
of small and hard-to-detect object classes based on the occurrence and location of
large, easy-to-detect object classes. All relationship models were trained with a large
dataset, which consisted of 1449 well-annotated images of indoor scenes captured
with a Microsoft Kinect. The software implementation of this algorithm was used
in RoboEarth’s final demonstrator to assist the service robots by giving a prior on
the likely locations of small hard-to-detect objects. This method is not covered in
this dissertation. For details on this method see [2].

Other algorithmic work done under this topic include, articulation model learning and
Iterative Learning Control. In articulation model learning (2011) the robots learnt the
articulation models of various furniture items and shared the learnt models with other
robots using RoboEarth. Iterative Learning Control was used for trajectory tracking in
mobile soccer robots during the first demonstrator (2010) of the RoboEarth project.
Chapter 5: The Cubli
This chapter focuses on the Cubli and describes the mechatronic design, state estimation
algorithm, system identification procedure, nonlinear control design, learning strategy

27

Contribution and Organization

for jump up, and finally, the experimental results of the system. Major contributions
described in this chapter include:

• State-of-the-art mechatronic design of what is to date the smallest 3D inverted
pendulum

• A system identification technique that does not require additional apparatus

• A non-linear control design

• The first set of experimental results demonstrating internally actuated motion under
earth’s gravity

The results contained in this chapter were published and/or will be submitted to:

[1] G. Mohanarajah, C. Dubs, and R. D’Andrea, “The Cubli,” Mechatronics (in
preparation), December 2014.

[2] M. Muehlebach, G. Mohanarajah, and R. D’Andrea, “Nonlinear analysis and control of
a reaction wheel-based 3D inverted pendulum,” in Proc. IEEE Conference on Decision
and Control (CDC), Florence, Italy, 2013, pp. 1283–1288.

[3] G. Mohanarajah, M. Muehlebach, T. Widmer, and R. D’Andrea, “The Cubli: A
reaction wheel-based 3D inverted pendulum,” in Proc. European Control Conference
(ECC), Zurich, Switzerland, 2013, pp. 268–274.

[4] G. Mohanarajah, M. Merz, I. Thommen, and R. D’Andrea, “The Cubli: A cube that
can jump up and balance,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura-Algarve, Portugal, 2012, pp. 3722–3727.

This dissertation concludes with Chapter 6 by taking a retrospective of the work
accomplished. It discusses in a broad sense open problems, both practical and theoretical,
and future research directions. Conclusions that summarize the specific contributions
and/or provide direct extensions to the work are presented at the end of each chapter.

28

2
Rapyuta: A Cloud Robotics
Framework

2.1 Introduction

The past decade has seen the first successful, large-scale use of mobile robots. However,
the vast majority of these robots either continue to use simple control strategies (e.g.,
robot vacuum cleaners) or are operated remotely by humans (e.g., drones, unmanned
ground vehicles, telepresence robots). One reason these mobile robots lack intelligence is
because the costs of onboard computation and storage are high; this affects not only the
robot’s price point, but also results in the need for additional space and extra weight,
which constrain the robot’s mobility and operation time. Another reason is the absence of
a common mechanism and medium to communicate and share knowledge between robots
with potentially different hardware and software components.

The rapid progress of wireless technology and availability of data centers hold the
potential for robots to tap into the cloud. Using the web as a powerful computational
resource, a communication medium, and a source of shared information could allow de-
velopers to overcome these current limitations by building powerful cloud robotics appli-
cations. Example applications include map building [1], task/grasp planning [2], object
recognition, localization, and many others. Cloud robotics applications hold the potential
for lighter, smarter and more cost-effective robots.

Running robotics applications in the cloud falls into the Platform-as-a-Service (PaaS)
model [4] of the cloud computing literature. In PaaS the cloud computing platform typi-
cally includes an operating system, an execution environment, a database, and a commu-
nication server. Many existing cloud computing building blocks, including much of the
existing hardware and software infrastructure for computation, storage, network access,

This paper is accepted for publication in the IEEE Transactions on Automation Science and Engi-
neering, February 2014.

31

2.1 Introduction

Figure 2.1: Simplified overview of the Rapyuta framework: Each robot connected to
Rapyuta has one or more secured computing environments (rectangular boxes) giving
them the ability to move their heavy computation into the cloud. In addition, the comput-
ing environments are tightly interconnected with each other and have a high bandwidth
connection to the RoboEarth [3] knowledge repository (stacked circular disks).

and load balancing, can be directly leveraged for robotics. However, specific requirements
(such as the need for multi-process applications, asynchronous communication, and com-
patibility with existing robotics application frameworks) limit the applicability of existing
cloud computing platforms to robot application scenarios. For example, a general PaaS
platform such as the popular Google App Engine [5] is not well suited for robotics ap-
plications since it exposes only a limited subset of program APIs required for a specific
web application, allows only a single process, and does not expose sockets, which are
indispensable for robotic middlewares such as ROS [6].

The popular PaaS framework Heroku [7] overcomes some of these limitations, but
lacks features required for many robotics applications, such as multi-directional data
flow between robots and their computing environments. Other PaaS frameworks such as
Cloud Foundry [8] and OpenShift [9] offer more flexibility and may prove useful for some
robotics applications in the future. However, fundamental differences in the requirements
of human vs. robot users, such as typical uplink rates and speeds, may lead to different
trade-offs and design choices, and may ultimately result in different software solutions for
cloud computing and cloud robotics platforms.

The idea of having a remote brain for the robots can be traced back to the 90s [10,11].
During the past few years, this idea has gained traction (mainly due the availability

Please see http://goo.gl/XGjsT for a detailed discussion on Rapyuta vs. non-specific PaaS.

32

http://goo.gl/XGjsT

Chapter 2. Rapyuta: A Cloud Robotics Framework

of computational/cloud infrastructures), and several efforts to build a cloud computing
framework for robotics have emerged. The DAvinCi Project [1] used ROS as the messag-
ing framework to get data into a Hadoop cluster, and showed the advantages of cloud
computing by parallelizing the FastSLAM algorithm [12]. It used a single computing en-
vironment without process separation or security; all inter-process communications were
managed by a single ROS master. Unfortunately, the DAvinCi Project is not publicly
available. While the main focus of DAvinCi was computation, the ubiquitous network
robot platform (UNR-PF) [13, 14] focused on using the cloud as a medium for estab-
lishing a network between robots, sensors, and mobile devices. The project also made a
significant contribution to the standardization of data-structures and interfaces. Finally,
rosbridge [15], an open source project, focused on the external communication between a
robot and a single ROS environment in the cloud.

With the open source project Rapyuta we attempt to solve some of the remain-
ing challenges of building a complete cloud robotics platform. Rapyuta is based on an
elastic computing model that dynamically allocates secure computing environments (or
clones [16]) for robots. These computing environments are tightly interconnected, allow-
ing robots to share all or a subset of their services and information with other robots.
This interconnection makes Rapyuta a useful platform for multi-robot deployments such
as those described in [17].

Furthermore, Rapyuta’s computing environments provide high bandwidth access to
the RoboEarth [3] knowledge repository, enabling robots to benefit from the experience
of other robots. Note that until now robots directly submitted and queried data in the
RoboEarth repository, and all the processing, planning, and reasoning on this data hap-
pened locally on the robot. With Rapyuta, robots can perform these tasks in the cloud by
having a corresponding software agent/clone. Thus, Rapyuta is also called the RoboEarth
Cloud Engine.

Rapyuta’s ROS-compatible computing environments allow it to run almost all open
source ROS packages (there are currently more than 3000) without any modifications
while sidestepping the severe drawbacks of client-side robotics applications, including re-
quirements for expensive and/or power-hungry hardware, configuration/setup overheads,
dependence on custom middleware, as well as often failure-prone maintenance and up-
dates. In addition to its out-of-the-box ROS compatibility, Rapyuta can also be cus-
tomized for other robotics middlewares.

Finally, Rapyuta’s WebSocket-based communication server provides bidirectional, full
duplex communications with the physical robot. Note that this design choice also allows
the server to initiate the communication and send data or commands to the robot.

The remainder of this paper is structured as follows: Taking a bottom-up approach we
present each of the main components of the architecture individually along with our design
choices in Sec. 2.2 and Rapyuta’s communication protocols in Sec. 2.3. Sec. 2.4 returns
to a general picture and presents several use cases that combine the previous components

Rapyuta is part of the RoboEarth initiative aimed at building a world wide web for robots. Visit
http://www.roboearth.org/ for details.

33

2.2 Main Components

and the communication protocols in different ways to fit a variety of deployment scenarios.
Then, performance and benchmarking results are presented in Sec. 2.5. This is followed
by two robotics demonstrators that highlight various aspects of Rapyuta in Sec. 2.6. We
conclude in Sec. 4.5 with a with a brief outlook on Rapyuta’s future developments and
the potential future of cloud robotics in general.

2.2 Main Components

Rapyuta’s four main components are: the computing environments onto which robots
offload their tasks, a set of communication protocols, four core task sets to administer
the system, and a command data structure to organize the system administration.

Computing Environments

Rapyuta’s computing environments are implemented using Linux Containers [18], which
provide a lightweight and customizable solution for process separation, security, and
scaling. In principle, Linux Containers can be thought of as an extended version of
chroot [19], which isolates processes and system resources within a single host machine.
Since Linux Containers do not emulate hardware (similar to platform virtualization tech-
nologies), and since all processes share the same kernel provided by the host, applications
run at native speed.

Furthermore, Linux Containers also allow easy configuration of disk quotas, memory
limits, I/O rate limits, and CPU quotas, which enables a single environment to be scaled
up to fit the biggest machine instance of the IaaS [4] provider, or scaled down to simply
relay data to the Hadoop [20] backend, similar to the DAvinCI [1] framework.

Each computing environment is set up to run any process that is a ROS node, and
all processes within a single environment communicate with each other using the ROS
inter-process communication. Having the well-established ROS protocol inside the envi-
ronments allows them to run all existing ROS packages without any modifications, and
lowers the hurdle for application developers.

Communication and Protocols

One of the basic building blocks of Rapyuta’s communication architecture is the Endpoint,
which represents a process that consists of Ports and Interfaces. Figure 2.2 shows these
building blocks and the basic communication channels of Rapyuta.

Interfaces are used for communication between a Rapyuta process and a non-Rapyuta
process running either on the robot or in the computing environment. They provide
a synchronous (service-based) or an asynchronous (topic-based) transport mechanisms.
Interfaces used for communication with robots provide converters, which convert a data
message from the internal communication format to a desired external communication
format and vice versa. Ports are used for communication between Rapyuta processes.

34

Chapter 2. Rapyuta: A Cloud Robotics Framework

Rapyuta
BoundaryMaster

Task Set

EP
I

I

P

P

RPC

Robot

Robot

EP
I

I

P

P

RPC

ROS
Node

ROS
Node

Figure 2.2: The basic communication channels of Rapyuta: The Endpoints (EP) are con-
nected to the Master task set using a two-way remote procedure call (RPC) protocol.
Additionally, the Endpoints have Interfaces (I) for connections to robots or (ROS) nodes,
as well as Ports (P) for communication between Endpoints. The dotted lines represent the
external communication, dashed lines represent the ROS-based communication between
ROS nodes and Rapyuta, and finally all solid lines represent the internal communication
between Rapyuta’s processes.

The Endpoints allow the communication protocols to be split into three parts. The
first part is the internal communication protocol, which covers all communication be-
tween Rapytua’s processes. The next part is the external communication protocol, which
covers the data transfer between the physical robot and the cloud infrastructure running
Rapyuta. The last part consists of the communication between Rapyuta and the applica-
tions running inside the containers. Each of these protocols are presented in more detail
in Sec. 2.3.

Core Task Sets

This sub-section presents the four Rapyuta task sets that administer the system. A task
set is a set of functionalities and one or more of these sets can be put together to run as
a process depending on the use case (see Sec. 2.4)

Master Task Set The Master task set is the main controller that monitors and main-
tains the command data structure, which includes:

• organization of connections between robots and Rapyuta,

• processing of all configuration requests from robots, and

• monitoring the network of other task sets.

As opposed to the other task sets, only a single copy of the Master task set runs inside
Rapyuta.

35

2.2 Main Components

Robot Task Set The robot task set is defined by the capabilities necessary to commu-
nicate with a robot. It includes:

• forwarding of configuration requests to the Master,

• conversion of data messages, and

• communication with robots and other Endpoints.

Environment Task Set The environment task set is defined by the capabilities nec-
essary to communicate with a computing environment. It includes:

• communication with ROS nodes and other Endpoints,

• launching/stopping ROS nodes, and

• adding/removing parameters.

A process containing the environment task set runs inside every computing environment.

Container Task Set The container task set is defined by the capabilities necessary
to start/stop computing environments. A process containing the container task set runs
inside every machine.

Command Data Structure

Rapyuta is organized in a centralized command data structure. This data structure is
managed by the Master task set and it consists of the four components shown in Fig. 2.3.

Rapyuta

Network
1

User
0..n

1

LoadBalancer
1

Distributor
1

Figure 2.3: Simplified UML diagram of Rapyuta’s top level command data structure.

The Network (see Fig. 2.4) is the most complex part of the data structure. Its elements
are used to provide the basic abstraction of the whole platform and are referenced by the
User, LoadBalancer, and Distributor components. The Network is also used to organize
the internal and external communication, which will be discussed in detail in Sec. 2.3.
The addition of Namespaces in the command data structure enables an Endpoint to
group Interfaces of a single robot or a computing environment and the addition of the
connection classes (EndpointConnection, InterfaceConnection, and Connection) simplifies
the reference counting for the connections.

The User (see Fig. 2.5) generally represents a human who has one or more robots
that need to be connected to the cloud. Each User has a unique API key, which is used

36

Chapter 2. Rapyuta: A Cloud Robotics Framework

Connection
0..n

2

InterfaceConnection
0..n

1

Port

0..n
1

Interface
0..n

1

Namespace

0..n

0..n

1

0..n

1
0..n

1
Endpoint

2

2
EndpointConnection

0..n
10..n

Network

Figure 2.4: Simplified UML diagram of Rapyuta’s top level component Network.

User
apiKey: str

0..n

1
Namespace

0..n

1
Interface

type

Robot Container

Figure 2.5: Simplified UML diagram of Rapyuta’s top level component User.

by the robots for authentication. The User can have multiple Namespaces which, in turn,
can have several Interfaces.

The LoadBalancer (see Fig. 2.6) is used to manage theMachines which are intended to
run the computing environments. To allow these computing environments to communicate
directly with each other without Rapyuta (see Sec. 2.3) the computing environments can
be added to a NetworkGroup. Therefore the NetworkGroups have a representation of each
Container included in the group and references to the participating Machines. Similarly,
the Machines have a reference of each Container they are running. Additionally, the
LoadBalancer is used to assign new containers to the appropriate machine.

Finally, theDistributor is used to distribute incoming connections from robots between
available robot Endpoints.

2.3 Communication Protocols

This section presents Rapyuta’s internal and external communication protocols in more
detail.

37

2.3 Communication Protocols

NetworkGroup
0..n

1

LoadBalancer
0..n

1

Container
0..n

0..n

1
0..n

1
Machine

Figure 2.6: Simplified UML diagram of Rapyuta’s top level component LoadBalancer.

Internal Communication Protocol

All Rapyuta processes communicate with each other over UNIX sockets and the protocol
is built using the Twisted framework [21], an event-driven networking engine that uses
asynchronous messaging. The type of messages used for the internal communication can
be split into two categories. The first type consists of all administrative messages used to
configure Rapyuta. All these messages either originate or end in the Master process (runs
the Master task set) containing the command data structure. The Perspective Broker,
a two-way RPC implementation for the Twisted framework, is used as the protocol for
administrative messages. The second and the most frequent type is the data protocol.
For this type of communication, a length prefixed protocol is used. The content of a
data message is a serialized ROS message. For Rapyuta, an additional header containing
the ID of the sending Interface, an optional destination ID (necessary for service type
interfaces), and the message ID (which is used also for the external communication) is
added. This results in a header length of 22 or 38 bytes plus the message ID, which has
a length upper bounded by 255 bytes.

External Communication Protocol

The robots connect to Rapyuta using the WebSockets protocol [22], similar to ros-
bridge [15]. The protocol was implemented using the Autobahn tools [23], which is also
based on the Twisted framework [21]. Unlike a common web server, which uses pull tech-
nology, the use of WebSockets allows Rapyuta to push results. Note that this protocol is
very general compared to the ROS protocol used in the DAvinCI [1] framework, allow-
ing easy integration of non-ROS robots, mobile devices and even web browsers into the
system.

The messages between the robot and Rapyuta are pure ASCII JSON messages that
have the following top level structure:

{ "type":"...", "data": ... },

RPC (Remote Procedure Call) is a communication protocol that allows a process to execute a
procedure in another process.

JSON (JavaScript Object Notation) is a lightweight data-interchange format with a focus on human
readability.

38

Chapter 2. Rapyuta: A Cloud Robotics Framework

which is an unordered collection of key/value pairs. Note that a value can, in turn, be a
collection of key/values. The value of the type key is a string and denotes the type of
message found in data:

• CC - The create container message that creates a secure computing environment in
the cloud;

• DC - The destroy container message destroys an existing computing environment;

• CN - The configure components message enables the launching/stopping of ROS
nodes, the setting/removal of parameters in the ROS parameter server, and the
adding/removal of Interfaces ;

• CX - The configure connections message enables the connection/disconnection of
Interfaces ;

• DM - The data messages are used to send/receive any kind of messages to/from
application nodes (for more examples see Sec. 2.4);

• ST - Status messages are pushed from Rapyuta to the robot; and

• ER - Error messages are also pushed from Rapyuta to the robot.

Handling Large Binary Messages

The WebSocket interface supports transportation of binary blobs and, for some types of
data, it is better to transport them as a binary blob instead of using their corresponding
ROS message type encoded as a JSON string. For example, the RoboEarth logo (RGBA,
842× 595), if transported as PNG (lossless data compression), takes 18 kB in bandwidth
but uses approximately 2.0 MBwhen transported as a serialized ROS message. Converting
the ROS message into a JSON string would result in an even larger message size.

To exploit this method of transportation, special converters between the binary format
and the corresponding ROS message must be provided on the Rapyuta’s interface side.
Rapyuta provides a default PNG-to-sensor_msgs/Image converter as an example of how
to build new converters.

When sending a binary message, first a standard data message is sent as a JSON
string with a reference to the binary blob that will follow. The message is a DM type
message having a data key with value:

"iTag" : "converter_modifyImage",
"type" : "sensor_msgs/Image",
"msgID" : "msgID_0",
"msg*" : "f9612e9b3c7945ef8643f9f590f0033a"

The ’*’ in the last line indicates that the value/resource will follow as a binary blob
with the given ID as header. Note that the ID must be unique only within the current
connection.

39

2.4 Deployment

Communication with RoboEarth

By default, every container has a py_re_comm node running inside it. This ROS node ex-
poses the RoboEarth repository by providing services to download, upload, update, delete,
and query action recipes, object models, and environments stored in the RoboEarth repos-
itory. Since the RoboEarth repository is also typically hosted in the same data center, all
applications running on Rapyuta have high bandwidth access to the data, unlike appli-
cations running on board the robot.

Virtual Networks

As described in Sec. 2.3, processes running in different computing environments (con-
tainers) communicate through Rapyuta’s internal communication protocol built on top
of ROS. However, some applications that are distributed over multiple containers, may
require a less abstracted version of the network to use different protocols such as Open
MPI [24]. Containers within a common host could communicate using the LXC bridge,
which is the default network interface for containers. However, the LXC bridges of differ-
ent host machines cannot be connected directly. Therefore, the current version of Rapyuta
includes the functionality to create a virtual network with an arbitrary topology between
containers that belong to a specific user. The virtual network is realized using Open
vSwitch [25], which is connected to an additional network interface of the container.
See benchmarking results in Sec. 2.5 for comparisons between the virtual networks and
Rapyuta’s internal communication protocol.

2.4 Deployment

The core components and communication protocols described in the previous sections
can be combined in different ways to meet the specifications of a robotic scenario. This
section presents three typical use cases, a basic example of the communication process
and some useful tools.

Use cases

Figure 2.7 shows the standard use case where the four task sets are split up into the four
processes (the Master process, RobotEndpoint process, EnvironmentEndpoint process,
and the Container process), and combined with interconnected computing environments
to build a PaaS framework. The Master process runs on a single dedicated machine.
Other machines each run both a RobotEndpoint and a Container process. The two task
sets are run separately, since the Container process requires super user privileges to start
and stop containers which could pose a severe security risk when combined with the open

See http://github.com/IDSCETHZurich/re_comm_core for more details.
See http://rapyuta.org/install and http://rapyuta.org/usage for more details on the setup

and usage of the standard use case.

40

http://github.com/IDSCETHZurich/re_comm_core
http://rapyuta.org/install
http://rapyuta.org/usage

Chapter 2. Rapyuta: A Cloud Robotics Framework

Master
Task Set

Container
Task Set

Robot
EPI

I

P

P

P

LXC

LXC

Container
Task Set

Robot
EPP I

P

P

LXC

Robot

Robot Robot

Environment EPP

I I

ROS
Node

ROS
Node

To
Ro

bo
Ea

rth
Re

po
sit

or
y

py
re

comm

Figure 2.7: Use Case 1: The typical use case of Rapyuta processes deployed on three
machines (light-gray blocks) to build a PaaS framework with interconnected computing
environments (LXC, dark-gray blocks). Here the Master task set runs as a single process
on one of the machines and the other two machines are used to deploy containers. Inside
each machine that hosts containers, the robot task set runs as a single process, and
inside each container the environment task set runs as a single process. The computing
environment denoted by LXC (Linux Containers) is enlarged in the right side of the
figure. Note that the dashed arrow from the py_re_comm node denotes the connection to
the RoboEarth knowledge repository within the same cluster/data center, thus providing
a high bandwidth access.

accessible RobotEndpoint process. The fourth process, the EnvironmentEndpoint process,
is running inside every computing environment. Note that this configuration allows all
three elastic computing models to be deployed for cloud robotics, as proposed in [16];
the peer-based, proxy-based, and the clone-based model. From an administrative point
of view, the standard use case can be deployed in the following ways:

• Private cloud: Rapyuta, the applications running on it, and the robots belong to
a single entity. This is better suited for some commercial entities where trust and
security is the highest concern.

• Software-as-a-Service: Rapyuta and the applications running on it belong to a single
entity, and several users connect and use the applications. This allows the single
entity to better protect its intellectual property, keep the software up to date, and
provide better support.

• Platform-as-a-Service: Here, only the Rapyuta platform is managed by a single
entity, while a community of developers develop and share/host the applications.
In addition to the advantages stated above, this allows for easy benchmarking and
ranking of various solutions to robotics.

41

2.4 Deployment

The second use case is an extreme case of the standard use case where everything runs
on a single machine with one container. This mimics a rosbridge [15] system and can be
used as a sandbox to develop cloud robotics applications and investigate latencies.

Finally, the third use case presented in Fig. 2.8 shows how to set up a network of
robots using the RobotEndpoint and Master processes. Although Fig. 2.8 shows a single
machine, multiple machines with interconnected Endpoint processes are also feasible.

Master
Task Set

Robot
EPI

I

I

I

Robot

Robot

Robot

Robot

Figure 2.8: Use Case 2: Process configuration for setting up a network of robots running
a RobotEndpoint and Master process in a single machine (light-gray block).

Note that the machines mentioned in all three use cases (light-gray blocks in Figs. 2.7
and 2.8) can also be instances of an IaaS [4] provider such as Amazon EC2 [26] or
Rackspace [27].

Basic Communication Example

In order to illustrate the usage and communication protocols, this subsection provides a
simple example of a communication process with Rapyuta’s standard use case setup (See
Fig. 2.7). Here a Roomba vacuum cleaning robot with a wireless connection uses Rapyuta
to record/log its 2D pose. The communication takes place in the following order:

Initialization The first step for the Roomba is to contact the process running the
Master task set using the user ID roombaOwner to get the address of a RobotEndpoint.
This is done with the following HTTP request:

http ://[domain]:[port]? userID=roombaOwner&version =[version]

A RobotEndpoint is selected of the available Endpoints and the Endpoint ’s URL is re-
turned to the Roomba as a JSON encoded response.

{
"url":"ws://[domain]:[port]/"

}

In the second step of initialization, Roomba makes a connection using the received URL
of the assigned robot Endpoint, registers using the robot ID roomba, and logs in using
the API key secret. This is done with the following HTTP request:

42

Chapter 2. Rapyuta: A Cloud Robotics Framework

ws://[domain]:[port]/? userID=roombaOwner&robotID=roomba&key=secret

Container Creation The Roomba creates a computing environment and tags it with
a CC-type message having a data key with value:

"containerTag" : "roombaClone"

Note that the tag must be unique within the robots that use the same user ID. Container
creation also automatically starts the necessary Rapyuta processes inside the container.

Configure Nodes The Roomba launches the logging node (posRecorder.py) and starts
two Interfaces with tags using a CN-type message having a data key with value:

"addNodes" : [{
"containerTag" : "roombaClone",
"nodeTag" : "positionRecorder",
"pkg" : "testPkg",
"exe" : "posRecorder.py"

}],
"addInterfaces" : [{

"endpointTag" : "roomba",
"interfaceTag" : "pos",
"interfaceType" : "SubscriberConverter",
"className" : "geometry_msgs/Pose2D"

}, {
"endpointTag" : "roombaClone",
"interfaceTag" : "pos",
"interfaceType" : "PublisherInterface",
"className" : "geometry_msgs/Pose2D",
"addr" : "/posPub"

}]

Note that the above complex message can be split into multiple messages that launches
the node and start Interfaces separately.

Binding Interfaces Before the Roomba can use the added node the two Interfaces
must be connected. This is achieved with a CX-type message having a data key with
value:

"connect" : [{
"tagA" : "roomba/pos",
"tagB" : "roombaClone/pos"

}]

Data Finally, the Roomba starts sending the data message that contains the 2D pose
information, i.e., a DM-type message having a data key with value:

43

2.4 Deployment

"iTag" : "pos",
"type" : "geometry_msgs/Pose2D",
"msgID" : "id",
"msg" : {

"x" : 3.57,
"y" : -44.5,
"theta" : 0.581

}

This data message (ASCII JSON) is converted to a ROS message at the Interface roomba/pos
and is sent to the Interface roombaClone/pos. The Interface roombaClone/pos then
transfers the message to the posRecorder.py node via the ROS environment. Now, by
adding Interfaces of type PublisherConverter and SubscriberInterface, a topic can
also be transferred from the nodes running in RoombaClone to the robot roomba.

Tools

Managing a cloud-based environment is a complex and cumbersome task. To simplify
the management of Rapyuta, a console client for administrators and users is provided.
This tool allows users to monitor Rapyuta’s components based on their privileges and to
interact with Rapyuta similar to the external protocol described in Sec. 2.3.

Setting up Rapyuta can be the first and the biggest hurdle for a beginner. To ad-
dress this issue, Rapyuta provides a provisioning script for users who want to setup and
use Rapyuta in their own hardware. The script sets up the full system, including the
networking, containers, and their file system. This provisioning script is compatible with
almost all of the recent Ubuntu (12.04,12.10,13.04) and ROS (Fuerte, Groovy) variants.
For Amazon EC2 users, Rapyuta provides an Amazon Machine Image (AMI) with the
latest stable version, which they can copy and start using within minutes.

Administrative Tools

Managing a cloud-based environment is a complex and cumbersome task. The computing
environments often lie distributed across several hundred machines. Each machine in turn
has numerous parameters and components such as containers, endpoints, interfaces, nodes
and processes to name a few. Rapyuta provides a console client for administrators and
users to monitor Rapyuta’s components based on their privileges and to interact with
them similar to the external protocol described in Sec. 2.3.

Setup Tools

Setting up Rapyuta, a relatively complex system in the robotics domain, was the first and
the biggest hurdle for a beginner . Rapyuta now provides two relatively easy ways to setup.
For users who want to use Rapyuta in their own hardware can use the provisioning scripts

For more details on the console client see http://rapyuta.org/Console
For more details on the setup tools for installation see http://rapyuta.org/Install
For more details on the console client see http://rapyuta.org/Console

44

http://rapyuta.org/Console
http://rapyuta.org/Install
http://rapyuta.org/Console

Chapter 2. Rapyuta: A Cloud Robotics Framework

to setup the full system including the networking, containers, and theirfile system. Note
that there provisioning scripts cover all most all of the recent Ubuntu and ROS variants.
For Amazon EC2 users, Rapyuta provides an Amazon Machine Image (AMI) with the
latest stable version, which they can copy and start using within minutes.

2.5 Performance and Benchmarking

In this section we provide various performance measures of Rapyuta under different con-
figurations and provide benchmarking results with rosbridge. All experiments were con-
ducted by measuring the round-trip times (RTTs) of different sized messages between
two processes. Note that all experiments are a variation of: where the two processes were
running, their communication route, and the transport mechanism. A topic-based and
a service-based transport mechanism were used. For each experiment, 25 message sizes
(log-uniformly distributed between 10 B and 10 MB) were selected and, for each size, 20
samples were measured. All experiments, except for the remote process/robot case, were
performed on a machine instance in Amazon’s Ireland data center. A machine located at
ETH Zurich, Switzerland was used to replicate the remote process/robot.

In addition to the transmission delays (message size/bandwidth), round-trip times
also contain other factors such as queuing time, processing time and propagation delay
(distance/propagation speed). For smaller messages, the influence of these other factors
diminish the effects of transmission delays, giving a flat RTT for message of sizes up to
10 kB.

For interpretation and comparison, note that a tf-typed message that contains the
relationship between multiple coordinate frames of the robot shown in Fig. 3.3 is around
100 B; whereas and an RGB-D frame, which contains a PNG compressed RGB and depth
images in VGA resolution, is around 500 kB.

Rapyuta Core

In this part, we compare RTTs for all the core data routes of the standard use case as
shown in Fig. 2.7. The results of the experiments are shown in Fig. 2.9 for the topic-based
transport mechanism and Fig. 2.10 for the service-based transport mechanism. Since a
new connection must be established for every service call that is made, services show a
higher latency than topics. However, the trends with respect to RTTs of different routes
remain the same under both transport mechanisms.

The results in Figs. 2.9 and 2.10 show:

• Communication with an external process (R2C) is the biggest constraint of Rapyuta’s
throughput.

• The difference between containers running in the same machine (C2C-1) and differ-
ent machines (C2C-2), resulting from the iptables and port forwarding overheads,

For more details on the setup tools for installation see http://rapyuta.org/Install

45

http://rapyuta.org/Install

2.5 Performance and Benchmarking

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
ou

nd
-t
ri
p
ti
m
e
[m

s]
Rapyuta - Topic

R2C - Topic
C2C-2 - Topic
C2C-1 - Topic
N2N - Topic

Figure 2.9: RTTs for different data routes in a standard use case (see Fig. 2.7) under the
topic transport mechanism. N2N denotes the communication of two processes (nodes)
within the same ROS environment inside a container; C2C denotes two processes in two
different containers, where for C2C-1 the containers are running on the same machine and
for C2C-2 on different host machines. Finally R2C denotes the communication between
a remote process and a process running inside Rapyuta’s containers.

can be neglected in comparison to the difference to the communication between two
nodes in the same ROS environment (N2N).

• Rapyuta introduces an overhead of < 2 ms for topics and 5 ms for services for data
sizes up to 10 kB (see Fig. 2.9), which can be seen from the differences between
C2C-1 and N2N.

rosbridge

Here we compare Rapyuta with rosbridge with respect to RTTs. Figures 2.11 and 2.12
show Round-trip times (RTTs) for communication with an external non-Rapyuta process
that runs on the same machine where the framework (Rapyuta/rosbridge) is running, and
on a remote machine respectively. In both cases, communication speeds remain almost
constant for small message sizes up to 10 kB, and increase linearly for larger sizes.

46

Chapter 2. Rapyuta: A Cloud Robotics Framework

101 102 103 104 105 106 107
100

101

102

103

104

Data Size [bytes]

R
ou

nd
-t
ri
p
ti
m
e
[m

s]
Rapyuta - Service

N2N - Service
R2C - Service
C2C-1 - Service
C2C-2 - Service

Figure 2.10: RTTs for different data routes in a standard use case (see Fig. 2.7) under
the service transport mechanism.

For external processes running on the same machine (Fig. 2.11), RTTs are dom-
inated by the queuing and processing times. For small message sizes, both Services
and Topics show lower RTTs for rosbridge compared to Rapyuta. Conversely, Rapyuta
shows lower RTTs than rosbridge for larger message sizes. Note that while optimization
allows Rapyuta to improve communication speeds for larger messages, the additional
inter-process communication hops required in a multiple computing environment slow
down Rapyuta’s speed when delivering small messages. For remote external processes
(Fig. 2.12), RTTs are dominated by the transmission delays of the Internet connection.
These transmission delays diminish rosbridge’s advantage over small message, and results
in a similar performance between Rapyuta and rosbridge. For larger messages (10− 300

kB) rosbridge RTTs are lower for topics compared to Rapyuta, but higher for services.
For message sizes larger than 500 kB, Rapyuta offers lower RTTs. Differences in the Web-
Socket libraries used by rosbridge and Rapyuta, and C optimizations done for Rapyuta’s
AutoBahn WebSocket library account for these RTT discrepancies.

47

2.5 Performance and Benchmarking

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
ou

nd
-t
ri
p
ti
m
e
[m

s]
Rapyuta - local

Service - rosbridge
Service - Rapyuta
Topic - rosbridge
Topic - Rapyuta

Figure 2.11: RTTs with the external process running on the same host machine that is
running Rapyuta/rosbridge.

Virtual Network-based Internal Communications

Here we compare the virtual networks discussed in 2.3 to Rapyuta’s internal communi-
cation protocol. Note that all virtual network-based experiments between two containers
had one single ROS master managing the communications as opposed to one ROS master
per container in a typical Rapyuta use case. Figs. 2.13 and 2.14 compare the communica-
tion between two containers under the virtual network using ROS and Rapyuta’s internal
communication protocol. Except for LXC bridge’s artifact for service calls with larger
messages, the virtual networks are superior to Rapyuta’s internal communication proto-
col. Note that this comes at the cost of loosing security and encapsulation, and is thus
only allowed within a single user’s computing environments.

48

Chapter 2. Rapyuta: A Cloud Robotics Framework

101 102 103 104 105 106 107
101

102

103

104

Data Size [bytes]

R
ou

nd
-t
ri
p
ti
m
e
[m

s]
Rapyuta - remote

Service - rosbridge
Service - Rapyuta
Topic - rosbridge
Topic - Rapyuta

Figure 2.12: RTTs with a remote external process running at ETH Zurich, Switzerland
while Rapyuta and rosbridge ran on Amazon’s Ireland data center.

2.6 Demonstratros

In addition to the tutorial applications that come with the source code, we also developed
two typical robotic applications to highlight various aspects of Rapyuta.

Demonstrator: Cloud-based Mapping

As a first proof-of-concept demonstrator, we implemented a cloud-based collaborative
mapping service in Rapyuta. The robots shown in Fig. 3.3 consist mainly of off-the-
shelf components. They use the iRobot Create as their base, and this differential drive
base provides a serial interface to send control commands and receive sensor information.
PrimeSense CARMIN 1.08 is used for the RGB-D sensing. A 48×52 mm embedded board
with a smartphone-class multi-core ARM processor is used for onboard computation.
The embedded board runs a standard Linux operating system and connects to the cloud
through a dual-band USB wireless device. This hardware setup was used with different
software configurations to highlight different aspects of the challenges and opportunities.

49

2.6 Demonstratros

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
ou

nd
-t
ri
p
ti
m
e
[m

s]
C2C - 1 machine

Service - LXC bridge
Service - Rapyuta
Topic - LXC bridge
Topic - Rapyuta

Figure 2.13: RTTs with LXC bridge-based virtual networks and Rapyuta. The two con-
tainers that were running the communication processes were hosted by a single host
machine.

Complete Offloading In this setup almost all of the processing was moved Rapyuta
and the only computation on board was the compression of RGB-D data. At ROSCON
2013 (Stuttgart, Germany) this setup was demonstrated by doing a frame-by-frame com-
pression onboard and doing all the rest in Rapyuta at Amazon’s data center in Ire-
land, which resulted in a 5 MB/s throughput at 30Hz in QVGA resolution. This setup
demonstrated the practical limits of off-the-shelf wireless devices and helped us stress test
Rapyuta in terms of throughput. Under this frame-by-frame compression, any resolution
higher than the QVGA resulted in dropped frames due to the bandwidth limitation. For
more effective ways of sending visual and depth information see Sec.2.6 below and Sec.2.6.

Local Visual Odometry In this setup, a dense visual odometry algorithm [28] was
run on board the local system, and only the RGB-D key-frames were sent to Rapyuta
for the global optimization. This setup used a bandwidth of 300-500 kB/s with QVGA-

The source code of the dense visual odometry-based mapping demonstrator is available at http:
//github.com/IDSCETHZurich/rapyuta-mapping under the Apache 2.0 license.

50

http://github.com/IDSCETHZurich/rapyuta-mapping
http://github.com/IDSCETHZurich/rapyuta-mapping

Chapter 2. Rapyuta: A Cloud Robotics Framework

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
ou

nd
-t
ri
p
ti
m
e
[m

s]
C2C - 2 machines

Service - OVS bridge
Service - Rapyuta
Topic - OVS bridge
Topic - Rapyuta

Figure 2.14: RTTs with Open vSwitch [25]-based virtual networks and Rapyuta. The two
containers that were running the communication processes were hosted separately on two
host machines.

resolution key frames. This setup demonstrated a good trade off between the data rates
and computation given the wireless speed, and the robots’ speed and available compu-
tation. Furthermore, this setup also had a component running on Rapyuta that directed
the robot to its next exploration point based on predefined set points. This component
can be extended to automatically provide set points based on the map being built.

Collaborative Mapping In this setup, multiple robots were used to collaboratively
build a 3D map of an environment. This setup demonstrated that the cloud can serve not
only as a computational resource, but also as a common medium for collaborative tasks.
A 3D model of an environment created by this method is shown in Fig. 3.1.

Demonstrator: Dense Mapping with Rapyuta

As a second demonstrator we implemented a dense mapping service, which compressed
and streamed all of the depth sensor data at VGA resolution to the GPU processes
running on Rapyuta. This demonstrator used the point cloud library’s (PCL) [29] imple-

51

2.6 Demonstratros

Figure 2.15: The two low-cost (∼ 600$) robots used in our demonstrators: Each robot
consists mainly of a differential drive base (iRobot Create), an RGB-D sensor (Prime-
Sense), an ARM-based single board computer (ODROID-U2), and a dual band USB
wireless device.

mentation of the KinectFusion [30] algorithm, which does not rely on keyframes as in the
previous demonstrator, but utilizes all images and all of their pixels to reconstruct the
map. This prevents the mapping algorithm from being split up (as suggested previously)
to reduce the necessary bandwidth, and is therefore used as an example for an applica-
tion where a large amount of data must be exchanged. Libav [31] (an open-source video
and audio processing library) was used to compress the RGB-D stream as two separate
video streams. For this demonstrator we compressed the color images using the common
compression scheme h264. For the depth images we used the FFV1 video codec, since
FFV1 natively supports the lossless compression of a 16-bit monochrome image stream,
whereas h264 does not support this type of pixel format.

Figure 2.16 shows a sample frame of the KinectFusion output. The bandwidth usage
of the RGB images in this particular case was 1.1 MB/s for the dynamic scene and 800

kB/s for a static scene. Compared to 27.6 MB/s (which is the bandwidth requirement of
raw RGB images) the compression results in a reduction of 96%. Similarly, the bandwidth
required for the depth images was 1.6 MB/s for a dynamic scene and 1.4 MB/s for a static

The source code of the depth mapping demonstrator can be found at http://github.com/
IDSCETHZurich/rapyuta-kinfu. under the Apache 2.0 license.

52

http://github.com/IDSCETHZurich/rapyuta-kinfu
http://github.com/IDSCETHZurich/rapyuta-kinfu

Chapter 2. Rapyuta: A Cloud Robotics Framework

Figure 2.16: A frame of the KinectFusion output running on an Amazon GPU instance
in Ireland.

scene. This resulted in a reduction of 92%, compared to the 18.4 MB/s requirement of
the raw depth images. Note that all values are for a frame rate of 30 frames per second.

The second notable aspect of this demonstrator is that it uses the GPU to process
the incoming data in a timely manner. This allow us to demonstrate that although the
algorithm runs isolated in a virtual machine, the container is flexible enough to allow
direct access to the GPU, a hardware component of the host machine.

2.7 Conclusion and Outlook

In this paper we described the design, implementation, benchmarking results, and the first
demonstrators of Rapyuta, a PaaS framework for robots. Rapyuta, based on an elastic
computing model, dynamically allocates secured computing environments for robots.

We showed how the computing environments and the communications protocols allow
robots to easily offload their computation to the cloud. We also described how Rapyuta’s
computing environments can be interconnected to share specific resources with other

53

Acknowledgment

environments, making it a suitable framework for multi-robot control and coordination.
Our choice of communication protocols were explained, and an example was provided

to clarify the different types of messages and to show how they work together. With
respect to communication, we also provided some benchmarking results for different pro-
tocols.

Next, we showed the flexibility of Rapyuta’s modular design by giving three spe-
cific use cases as a guide. Finally, two example robotic demonstrators were presented to
highlight various aspects of Rapyuta and cloud robotics in general. These demonstrators
also provided practical examples on how to handle application-specific tradeoffs between
available onboard computation, the application’s bandwidth and real-time requirements,
the reliability of communication with the cloud, and the available cloud infrastructure.

Together with the RoboEarth Knowledge Repository, Rapyuta provides an appropri-
ate cloud robotics platform that has the potential to improve robotics in the following
ways:

• provides massively-parallel computation on demand for sample-based statistical
modelling and motion planning [32],

• leverages the cloud as a real-time communication medium for collaborative task
performance and information sharing,

• serves as a global repository to store and share object models, environment maps,
and actions recipes between various robotic platforms; enabling life-long learning,

• Robotic Application-as-a-Service: eliminates setup and update overhead for the end
users, serves as a better model for protecting intellectual property for the develop-
ers, and functions as a common platform to benchmark different algorithms and
solutions, and

• allows humans to monitor or intervene and help robots when they are lost; this not
only makes the robotic system more robust but also provides a lot of labelled data
to learn from as an intermediary step before humans are taken out of the loop.

Many more applications can be found in the field of intelligent transportation, envi-
ronmental monitoring, smart homes and defence [16].

Acknowledgment

This research was funded by the European Union Seventh Framework Programme FP7/2007-
2013 under grant agreement no. 248942 RoboEarth and was supported by AWS (Amazon
Web Services) in Education Grant award. The authors would like to express their grat-
itude towards Vladyslav Usenko (TUM) for help building the mapping demonstrator,
Dhananjay Sathe and Mayank Singh for their help with the software development, Car-
olina Flores and Christine Waibel for helping with the promotional video, Matei Ciocarlie

54

Chapter 2. Rapyuta: A Cloud Robotics Framework

(Willow Garage) for the excellent feedback on the draft, and all RoboEarth colleagues
for their support and feedback.

References

[1] R. Arumugam, V. R. Enti, K. Baskaran, and A. S. Kumar, “DAvinCi: A cloud
computing framework for service robots,” in Proc. IEEE Int. Conf. Robotics and
Automation. IEEE, May 2010, pp. 3084–3089.

[2] B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with zero-
slip push grasps.” in Proc. IEEE Int. Conf. Robotics and Automation. IEEE, May
2012, pp. 576–583.

[3] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez,
K. Haussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schiessle, M. Tenorth,
O. Zweigle, and R. van de Molengraft, “Roboearth,” Robotics Automation Mag.,
IEEE, vol. 18, no. 2, pp. 69 –82, june 2011.

[4] P. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute
of Standards and Technology, Special Publication 800-145, 2011, available http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[5] Google, “Google App Engine,” 2008. [Online]. Available: https://developers.google.
com/appengine/

[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on
Open Source Software, 2009.

[7] J. Lindenbaum, A. Wiggins, and O. Henry, “Heroku,” 2007. [Online]. Available:
http://www.heroku.com/

[8] VMware, Inc., “Cloud Foundry,” 2013. [Online]. Available: http://www.
cloudfoundry.com/

[9] Red Hat, Inc, “OpenShift,” 2013. [Online]. Available: https://openshift.com/

[10] K. Goldberg and R. Siegwart, Eds., Beyond webcams: an introduction to online
robots. Cambridge, MA, USA: MIT Press, 2002.

[11] M. Inaba, S. Kagami, F. Kanehiro, Y. Hoshino, and H. Inoue, “A platform for robotics
research based on the remote-brained robot approach.” I. J. Robotic Res., vol. 19,
no. 10, pp. 933–954, 2000.

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2005.

55

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://developers.google.com/appengine/
https://developers.google.com/appengine/
http://www.heroku.com/
http://www.cloudfoundry.com/
http://www.cloudfoundry.com/
https://openshift.com/

References

[13] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud Networked Robotics,” Network,
IEEE, vol. 26, no. 3, pp. 28–34, May-June 2012.

[14] M. Sato, K. Kamei, S. Nishio, and N. Hagita, “The ubiquitous network robot
platform: Common platform for continuous daily robotic services,” in System
Integration (SII), 2011 IEEE/SICE Int. Symp., Dec 2011, pp. 318 –323.

[15] G. T. Jay, “brown_remotelab: rosbridge,” 2012. [Online]. Available:
http://www.rosbridge.org/

[16] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges and
applications,” Network, IEEE, vol. 26, no. 3, pp. 21–28, May-June 2012.

[17] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating Hundreds of Cooper-
ative, Autonomous Vehicles in Warehouses,” AI Magazine, vol. 29, no. 1, pp. 9–20,
2008.

[18] “Linux Containers,” 2012. [Online]. Available: http://lxc.sourceforge.net/

[19] “chroot, Linux programmer’s manual,” 2012. [Online]. Available: http:
//www.kernel.org/doc/man-pages/online/pages/man2/chroot.2.html

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file
system,” in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. IEEE, 2010, pp. 1–10.

[21] G. Lefkowitz, “Twisted,” 2012. [Online]. Available: http://twistedmatrix.com/

[22] I. Fette and A. Melnikov, “The WebSocket Protocol, RFC 6455,” 2011. [Online].
Available: http://tools.ietf.org/html/rfc6455

[23] Tavendo GmbH, “Autobahn WebSockets,” 2012. [Online]. Available: http:
//autobahn.ws/

[24] Community Project, “Open MPI: Open Source High Performance Computing,”
2013. [Online]. Available: http://www.open-mpi.org/

[25] ——, “Open vSwitch,” 2013. [Online]. Available: http://openvswitch.org/

[26] Amazon.com Inc., “Amazon Elastic Compute Cloud,” 2012. [Online]. Available:
http://aws.amazon.com/ec2/am

[27] Rackspace US, Inc., “The Rackspace Open Cloud,” 2012. [Online]. Available:
http://www.rackspace.com/

[28] F. Steinbrucker, J. Sturm, and D. Cremers, “Real-time visual odometry from dense
RGB-D images,” in ICCV Computer Vision Workshop, 2011, pp. 719—-722.

[29] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China,
May 9-13 2011.

56

http://www.rosbridge.org/
http://lxc.sourceforge.net/
http://www.kernel.org/doc/man-pages/online/pages/man2/chroot.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/chroot.2.html
http://twistedmatrix.com/
http://tools.ietf.org/html/rfc6455
http://autobahn.ws/
http://autobahn.ws/
http://www.open-mpi.org/
http://openvswitch.org/
http://aws.amazon.com/ec2/am
http://www.rackspace.com/

Chapter 2. Rapyuta: A Cloud Robotics Framework

[30] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-time
dense surface mapping and tracking,” in Mixed and Augmented Reality (ISMAR),
2011 10th IEEE International Symposium on, 2011, pp. 127–136.

[31] “libav,” 2013. [Online]. Available: http://libav.org/

[32] USA Robotics VO, “A Roadmap for U.S. Robotics, From Internet to Robotics, 2013
Edition,” 2013.

57

http://libav.org/

3
Cloud-based Collaborative
3D Mapping with Low-Cost
Robots

3.1 Introduction

The past decade has seen the first successful, large-scale use of mobile robots. However,
a large proportion of these robots continue to either use simple control strategies (e.g.
robot vacuum cleaners) or be remotely operated by humans (e.g. drones, telepresence
robots). A primary reason for the lack of more complex algorithms in such systems is the
cost (both direct and indirect) of onboard computation and storage.

The rapid progress of wireless technologies and the availability of commercial data
centers, with high-bandwidth connections and highly scalable computation, storage, and
communication infrastructures (‘the cloud’ [1]) may allow robots to overcome many of the
current bottlenecks. Currently, several frameworks [2], [3], [4], [5] and robotic applications
[6], [7] are being developed to exploit the cloud’s potential for creating light, fast, and
intelligent low-cost robots.

In this paper, we focus on using the cloud for mapping and localization – two of
the most important tasks for any mobile robot. The process of simultaneously building
a map and localizing a robot, also known as Simultaneous Localization and Mapping
(SLAM), has been a research topic for many years and many SLAM algorithms have been
proposed. Although the algorithms are increasing in precision, they require substantial
onboard computation and often become infeasible when used for making larger maps over
a long period of time. Furthermore, running everything locally also limits the potential
for collaborative mapping.

This paper is submitted to the IEEE Transactions on Automation Science and Engineering, March
2014.

59

3.1 Introduction

(a) Top view

(b) Side view with a photo taken in a similar perspective.

Figure 3.1: A point cloud map of a room at ETH Zurich built in real-time by the two
robots shown in Fig. 3.3. The individual maps generated by the two robots are merged
and optimized by processes running on a datacenter in Ireland. The robots are re-localized
and the robot models are overlaid in the merged map [2].

A cloud-based parallel implementation of Fast-SLAM [8] was presented in [4] and
showed a significant reduction in computation time. In this work, the authors presented
a cloud infrastructure based on Hadoop [9] and received data from the robot using a
common Robot Operating System (ROS) [10] master that managed all communications.
Similar to [4], authors of [11] proposed a collaborative mapping framework where they
moved the computationally intensive bundle adjustment process of the Parallel Tracking
and Mapping (PTAM) [12] algorithm to a high performance server connected to the client
computer. In addition to the above robotic scenarios, the Kinect@Home project [13] aims
to develop a collection of RGB-D datasets through the use of crowdsourcing, by allowing
any user with a Kinect and an appropriate web browser plugin to scan their environment.
Once the dataset is uploaded, Kinect@Home performs a batch optimization and generates
a 3D representation of the map for the user in the web browser.

60

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

Matterport [14] is now developing a commercial system with custom cameras (similar
to Kinect@Home), with the goal of making it easy for anyone to create 3D images of real-
world spaces and share them online. Several centralized collaborative approaches that
have the potential to run in a decentralized manner also exist. A 2D mapping system using
manifold representation was introduced in [15], where the problem of map optimization
and merging maps from different robots has been discussed. However, loop closure and
map merging were only possible when another robot was recognized visually. In [16] the
authors present a collaborative visual SLAM system for dynamic environments that is
capable of tracking camera pose over time and deciding if some of the cameras observe
the same scene; information is combined into groups that run the tracking together.
More recently, several visual-inertial odometry systems [17], including Google’s Project
Tango [18] that runs on a custom cellphone with specialized hardware, has shown superior
accuracy and consistency over the other approaches. But scalability, global optimization,
and map merging remains open in the above mentioned visual-inertial systems.

This paper shows that low-cost robot platforms with a smartphone-class processor
and a wireless connection are able to collaboratively map relatively large environments
at quality levels comparable to the current SLAMmethods. Furthermore, this paper shows
a scalable approach to map optimization, storage, and merging of maps from different
sources.

The main contributions of this paper are:

• Open source parallel implementation of dense visual odometry on a smartphone-
class ARM multi-core CPU

• A novel cloud-based SLAM architecture and protocol, which significantly reduces
the bandwidth usage

• Techniques for parallel map optimization and merging over multiple machines in a
commercial data center

• An experimental demonstrator for quantitative and qualitative evaluation of the
proposed methods

The remainder of this paper is organized as follows: We first give an overview of
the system architecture in Sec. 3.2. Onboard algorithms are presented in Sec. 3.3. After
presenting the data representation and communication protocol in Sec. 3.4 we introduce
the optimization and merging algorithms in Sec. 3.5. Finally, the evaluation results of our
implementation are presented in Sec. 3.6 and we conclude in Sec. 4.5.

3.2 System Architecture

Real-time constrains, data I/O, network bandwidth, and computational requirements
played an important role in the design choices of the proposed architecture. Generally,

61

3.2 System Architecture

processes that were sensitive to network delays or which connected high-bandwidth sen-
sors were run on the robot, while computation- or memory-intensive processes without
hard realtime constraints were run in the cloud.

Our architecture, see Fig. 3.2, mainly consists of

• mobile robot : low-cost robots, each with an RGB-D sensor, smartphone-class pro-
cessor and a wireless connection to the data center, see Fig. 3.3.

• robot clone: A set of processes for each robot connected to the cloud that manages
key-frames and other data accumulation tasks, while updating the robot with opti-
mized (or post-processed) maps. Currently, the robot clone sends the pre-programmed
motion commands to the robot. This ‘cloud-based control’ functionality can be ex-
tended in the future to do motion planning based on the map being built, see
Fig. 3.2.

• database: a database for storing maps. A relational (MySQL) database and a non-
relational database (MongoDB) was used for comparison.

• map optimizer : Parallel optimization algorithm to find the optimal pose graph based
on all accumulated key-frames. After each optimization cycle, the map optimizer
updates the database and triggers the robot clone to update the robot with the new
map.

• map merger : This process tries to match frames from different maps. Once a match
is found, transformations between two maps are computed and the two maps are
merged into a single map.

All computational processes run on Rapyuta [2], a cloud Robotic platform that man-
ages the computational processes and handles the robots’ bidirectional communication
and authentication. See Sec. 3.2 for more details.

Robot

Our robots, shown in Fig. 3.3, consist mainly of off-the-shelf components. The differential
drive base of the iRobot Create provides the serial interface for sending control commands
and receiving sensor information. PrimeSense CARMIN 1.08 is used for the RGB-D sens-
ing, and provides two registered depth and color images in VGA resolution at 30 frames
per second. A 48 × 52 mm embedded board with a smartphone-class multi-core ARM
processor is used for onboard computation. The embedded board runs a standard Linux
operating system and connects to the cloud through a dual-band USB wireless device.
In addition to running the RGB-D sensor driver and controlling the robot, the onboard
processor also runs a dense visual odometry algorithm to estimate the current pose of the
robot. The key-frames produced by the visual odometry are sent to the cloud processes
through the wireless device. See Sec. 3.3 for more information on the visual odometry
algorithm. For a voxel-based approach see [19].

62

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

Rapyuta

map map merger

robot robot

robot clone robot clone

da
ta

ce
nt
er

database optimizer
lo
ca
l

en
vi
ro
nm

en
t

Figure 3.2: The overview of the proposed architecture based on Rapyuta: Each robot has a
corresponding clone in the cloud. The clone is a set of processes (light-gray circles) running
under a secured computational environment (rectangular boxes). Every computational
environment has its own ROS master (dashed circles) and Rapyuta acts as a multi-
master connecting processes running in different environments. Map optimization and
merging are parallelized using multiple computational environments (stacked rectangles).
All processes running inside the computational environments have a high bandwidth
access to the database (cylinders). Robots have a WebSocket-based bidirectional full
duplex connection (dotted curved lines) to their corresponding clones in the cloud.

The Cloud and Software

We use Rapyuta [2], a cloud robotics platform we developed previously, to run all our
processes in the cloud. Since Rapyuta uses the WebSocket protocol to communicate with
the robots, the robots and mapping processes need not be in the same network as they
were in [4] and [11]. This allows us to seamlessly connect our robots in Zurich, Switzerland
to a commercial Amazon [20] data center in Ireland. Furthermore, since WebSockets allow
for persistent connection between processes, the processes running in the cloud can push
data/updates to the robots without the robots having to periodically poll for updates.

Rapyuta can spawn multiple secure ROS-compatible computing environments, launch
processes inside these computing environments, and facilitate the communication between
these processes (even across different computing environments). This allowed graceful
scaling of map optimizer and map merger processes in experiments. Moreover, Rapyuta
enables custom message converters to be employed between the robot and the cloud. This
flexibility enabled us to use optimal compression schemes, compared to the standard ROS

63

3.3 Onboard Visual Odometry

Figure 3.3: The two low-cost (< 600$) robots used in our evaluations: Each robot consists
mainly of a differential drive base (iRobot Create), an RGB-D sensor (PrimeSense), an
ARM-based single board computer (ODROID-U2), and a dual band USB wireless device.

Figure 3.4: The onboard processor Odroid-U2: 48 × 52 mm embedded board with a
smartphone-class quad core ARM Cortex-A9 processor.

message used in [11]. Visit http://rapyuta.org/ for more details on Rapyuta.

3.3 Onboard Visual Odometry

In order to build a map of the environment it is necessary to track the position of the
robot over time. Although several methods (such as wheel odometry, visual odometry,
and the use of Inertial Measurement Units) provide information on the relative motion
of the robot, only a few of these (i.e. visual odometry) provide the option to remove the
accumulated errors with global optimization. The dense visual odometry algorithm used

64

http://rapyuta.org/

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

on board the robots is largely inspired by [21], [22], and [23].

Preliminaries

This subsection defines some concepts and introduces the symbols used throughout the
paper. Let

I :R2 → [0, 1]3,

Z :R2 → R+,

represent the (color) intensity image and depth image of the camera respectively. To
represent the camera’s rigid body motion we use the twist vector ξ ∈ R6 and define ξ̂ as

ξ̂ :=

0 −ξ(3) ξ(2) ξ(4)

ξ(3) 0 −ξ(1) ξ(5)

−ξ(2) ξ(1) 0 ξ(6)

0 0 0 0

 .

The over parametrized transformation matrix T can now be expressed as

T =

(
R ∈ SO(3) t ∈ R3

01×3 1

)
= exp(ξ̂).

Using a pinhole camera model, the projection π, and the inverse projection π−1 be-
tween the 3D point p := (X, Y, Z) and its corresponding pixel representation, x = (x, y)

is given by

x = π(p) =

(
Xfx
Z

+ ox,
Y fy
Z

+ oy

)
,

p = π−1(x, Z) =

(
x− ox
fx

Z,
y − oy
fy

Z,Z

)
,

where fx, fy denotes the focal lengths and ox, oy denotes the image center. Note that
the second argument of inverse projection for our scenario comes from the corresponding
depth pixel Z(x).

Given a frame, a tuple consisting of I, Z and some other information (See Sec. 3.4),
the warp of its pixel x to a frame with the relative pose M is given by

w(x,M) := π
(
Mπ−1(x,Z(x))

)
.

Finally, Key-frames are a subset of frames that in a way summarizes the full set. The

65

3.3 Onboard Visual Odometry

key-frames are also used as a base/reference to represent the pose of other frames.

Dense Visual Odometry Algorithm

The dense visual odometry algorithm starts with an empty set of key-frames. When it
receives the first pair of color and depth images, they are added to the map as an initial
key-frame with the initial pose. A map in our scenario consists of key-frames and their
corresponding poses.

After initialization, the dense visual odometry algorithm estimates the pose of the
camera based on each incoming frame from the camera. This pose estimation is done by
minimizing the photometric error between the intensity images of the current frame and
the key-frame given by

Rk(Mk) =
∑
x∈Ω

(I(x)− Ik(w(x,Mk)))
2,

=:
∑
x∈Ω

r2
x(Mk), (3.1)

where Ω is a set of all pixels that are available in both frames that were not occluded
while warped, and Mk is the relative pose of the key-frame with respect to the current
frame. The key-frame that is closest to the last estimate of camera pose is used as the
current key-frame.

To minimize the non-linear cost function given in (3.1) with respect to Mk we use the
Gauss-Newton method for solving non-linear least-squares problems [24]. Here, the jth

iteration is given by

Mj+1 = exp(ξ̄)Mj,

ξ̄ = −(JT
j Jj)

−1JT
j r(Mj),

where Jj is the Jacobian of the residual

r(Mj) := [rx(Mj)]x∈Ω

and Mj is initialized with

M0 =

[
I3×3 03×1

01×3 1

]
.

This iteration converges to

arg min
Mk

Rk(Mk) = lim
j→∞

Mj.

66

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

At every iteration the Jacobian Jj can be calculated using the following chain rule

Jj = − ∂Ik(w(·))
∂w

· ∂w(· , exp(ξ̂)Mj)

∂ exp(ξ̂)
· ∂ exp ξ̂

∂ξ

∣∣∣∣∣
ξ=0

.

Note that the first term in the right-hand side is the color gradient and the other terms
can be calculated analytically. The implementation of this algorithm was optimized to run
on a multi-core ARM processor. All operations, such as color conversion, sub-sampling,
image gradient computation, and 3D point re-projection are parallelized. These operations
involve independent per pixel operations, so they can be easily parallelized by splitting
all pixels between several CPU cores. To achieve this we use a Threading Building Blocks
library [25], which provides templates for easy code parallelization. In particular the
parallel_for and parallel_reduce templates are used heavily in our implementation. We
also use the auto-vectorization tools of the GCC compiler, which automatically replaces
the regular instructions with specialized vector instructions where possible.

Since 3D point positions and image gradients are needed only for key-frames, they
are computed only when a new key-frame is added (0-2 FPS depending on the robot
speed). All images are stored in fixed-point values format (8-bit for intensity images and
16-bit for depth images), which may decrease the accuracy due to the rounding errors,
but significantly improves the computational efficiency compared to processing images
represented with floating-point values. With our implementation we were able to achieve
a processing time of 15-20 [ms] for QVGA depth and color images with all 4 cores of CPU
where loaded at approximately 60%. During this process, the visual odometry algorithm
adds a new key-frame when the distance or the angle to the nearest key-frame in the map
exceeds a predefined threshold.

3.4 Map Representation and Communication Protocol

Every map is a set of key-frames and a key-frame is a tuple represented as

(k, Ik,Zk, qk, tk, Ik),

where k is a global index of the key-frame, Ik is the intrinsic parameters of the camera, qk
the unit quaternion and tk the translation vector. Note that qk and tk together represent
the pose of the key-frame in the coordinate system of the current robot map. In the
current implementation the global index k is a 64-bit integer, where the first 32-bits are
used to identify the robot and the rest are used to index the key-frames collected by
that robot. This indexing scheme saves approximately 4 billion key-frames from 4 billion
robots, which is far beyond current needs.

The map is synchronized using the protocol shown in Fig. 3.5. When the visual odome-

67

3.5 Map Optimization and Merging

try adds a new key-frame to the local map, it also sends one to the robot clone. All depth
and color images are compressed with PNG for transmission. PNG is a lossless image
compression that supports RGB and gray-scale images with up to 16-bit per pixel.

Once the key-frame has reached the robot clone, it is added to the database; the map
optimizer process includes this key-frame in its next cycle. The map optimizer triggers
the robot clones after the end of each cycle in order to update the local map on the
robot. Once triggered, the robot clone gets the key-frame IDs of the local map on the
robot, retrieves the updated key-frame pose from the database, and sends it back to the
robot. The bandwidth requirement of this map update protocol is relatively low, since
the update does not include any images/key-frame transmissions.

robot robot clone back-end

init

new key-frame
add key-frame

update trigger
get key-frames
key-frame ids

key-frame ids
poses

poses

Figure 3.5: Sequence diagram of the proposed map synchronization protocol: All key-
frames from the robot are sent to the robot clone, processed and saved to the back-end
database. After every cycle of back-end optimization, the robot clone gets the local key-
frame IDs from the robot and updates the local key-frame poses.

3.5 Map Optimization and Merging

The visual odometry that runs on the robot accumulates errors over time and causes a
drift in the key-frame pose. This section presents the optimization techniques used to
reduce the accumulated errors; these techniques work by minimizing error measures that
include all acquired key-frames.

68

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

Map Initialization

Although this map initialization step is optional, it is recommended since it allows for the
calibration of the camera intrinsic parameters. Further, where map initialization was used
in experiments, the highly optimized initial map resulted in increased tracking stability.

During initialization the robot makes a 360 [◦] in-place rotation. Assuming pure ro-
tation allows to use well-established methods such as panorama optimization to be used.
Our map-initialization is based on [26] and it globally optimizes all key-frame poses and
the intrinsic camera parameters. When pure rotation is assumed, pixels from k′-th key-
frame can be transformed to k-th key-frame by simply multiplying with the homography
matrix

Hkk′ = KR−1
k Rk′K

−1,

where Rk and Rk′ are rotation matrices of the key-frames k and k′ with respect to a
common reference, and K is an intrinsic calibration matrix parametrized by fx, fy, ox,
and oy (see Sec. 3.3). In order to find the optimal key-frame orientations and the intrinsic
parameters, one must find the parameter vector

p = (fx, fy, ox, oy, R0, ...RN),

that minimizes the per-pixel error of each overlapping pair of frames k, k′ given by

E(p) =
∑
k,k′

∑
x∈Ωi

(Ik(x)− Ik′(H(p)x))2

where Ik and Ik′ are intensity images of the overlapping key-frames k and k′. The mini-
mization of E(p) with respect to p was performed using the Gauss-Newton method after
parametrizing the updates using the Lie Algebra (see [26] for details). After the optimiza-
tion, the floor of the map is selected using RANSAC and the XY -plane of the (world)
coordinate frame was aligned with the floor.

Map Optimization

The global optimization of a map reduces errors accumulated during visual odometry,
and consists of two main steps:

• Step 1: Construct a graph G where: 1) every key-frame of the map has a correspond-
ing node; and 2) an edge between two nodes exists if the corresponding key-frames
overlap and a relative transformation can be determined from the image data.

• Step 2: Solve the graph-based non-linear least squares problem given by:

p∗ = arg max
p

∑
i,j∈G

‖ e(pi, pj, pij) ‖2
2,

69

3.5 Map Optimization and Merging

where p = [pi]i∈G is the pose vector of all key-frames, pij is the constraint due to the
overlap of key-frames i and j (calculated in Step 1), and e is an appropriate error
measure that describes how well the pair pi, pj satisfy the constraint pij. In our
case we are using the error function that minimizes the translational error and the
rotational error (magnitude of the real part of the unit quaternion that represents
the rotational error) both equally weighted.

Once the graph is constructed, several state-of-the-art open source frameworks such
as g2o [27] and Ceres [28] can be used to solve Step 2. Our architecture uses g2o for step
2. Since construction of the graph G in Step 1 involves the matching of key-frames, which
is a computationally expensive task, we parallelize this process over multiple machines as
shown in Fig. 3.6.

map optimizer

database

graph
optimization

worker node

worker node

worker node

worker node

worker node

Figure 3.6: Map optimization architecture: Pose graph construction is distributed among
worker nodes and the constructed graph is optimized in the graph optimization node.

The graph optimization node retrieves pairs of key-frame indexes from the database,
which don’t have a transformation yet, and distributes these between worker nodes. Note
that the graph optimization node only selects the key-frame pairs that are within a dis-
tance threshold in order to limit the exponential increase of the number of key-frame
pairs.

The worker nodes try to compute the transformation between each pair of key-frames
they receive. To compute the transformation, worker node loads the precomputed SURF
keypoints for these key-frames and their respective 3D positions from the database and
tries to find a transformation between them using RANSAC. If it succeeds, it saves the
transformation to the database and proceeds to the next pair. Once all worker nodes have
finished, the optimization node optimizes the error function, completing the optimization
cycle. After every optimization cycle, key-frame poses are updated in the database and
an update trigger is sent to the robot clones to update the local map on the robot. The

70

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

graph structure of each map is stored as a table of pairs in a database and updated every
time the new key-frames are added.

Map Merging

During collaborative mapping the robots can enter areas that have already been already
explored by other robots. Being aware of the overlaps significantly decreases the mapping
time and increases the map accuracy.

For the collaborative mapping, no prior knowledge on the initial robot poses is as-
sumed and robots starts out with a separate map. The map merging runs as background
process, continuously selecting a random key-frame from a map in the database and trying
to find a matching key-frame from the other map. The process extracts SURF key-points
from these key-frames and tries to match them using RANSAC. If a valid transformation
is found, all key-frame poses of the smaller map are transformed into to the coordinate
system of the other and the database entries are updated with the new values. Note that
except for a minor difference in database update logic, the same worker nodes of the map
optimization can be reused to parallelize map merging. Figure 3.1 shows a map merged
from two robots and the re-localized robots in the new map.

3.6 Evaluation

The experimental setup for evaluation consisted of two low-cost robots (Fig 3.3) in Zurich,
Switzerland and the cloud-based architecture (Fig. 3.2) running in Amazon’s data center
in Ireland. In addition to qualitatively evaluating the building and merging of maps
created in different environments as shown in Figs 3.1 (72 key-frames) and 3.7 (423 key-
frames), we quantitatively evaluated network usage, localization accuracy, and global map
optimization times.

Figures 3.8 and 3.9 show the network usage of the robot executing a 360 [◦] in-
place rotation and a 2 [m] straight motion with different speeds. It is clearly visible that
bandwidth is proportional to the velocity of the robot, with the highest bandwidth about
500 [KB/s]. For purposes of comparison, note that our cloud-based KinectFusion [29], a
dense mapping algorithm, uses around 3.5 [MB/s] since all frames must be sent to the
cloud for processing. For more details on this demonstrator and the video compressions
used visit https://github.com/IDSCETHZurich/rapyuta-kinfu.

To evaluate the accuracy of visual odometry and influence of the global optimization,
a high precision commercial motion tracking system was used. Figures 3.10 and 3.11 show
the translation and rotation(yaw) errors error of the visual odometry with and without
the cloud-based global optimization during a 360 [◦] in-place rotation. Figure 3.12 shows
translation error for a 2 [m] straight line motion. The yaw error during the straight
line motion was below 0.01 [rad] for both the optimized and the non-optimized visual
odometry. In all cases (Figs.3.10-3.12) the cloud-based optimization was able to reduce

71

https://github.com/IDSCETHZurich/rapyuta-kinfu

3.7 Conclusion

the errors significantly, especially when there is a loop closure, such as in Figs. 3.10 and
3.11. Note that, due to the relatively low visual features in the motion capture space, the
maps of this space were of low quality compared to the ones given in Figs 3.1 and 3.7.

Finally, Fig. 3.13 shows the time taken for map optimization against the number of
worker nodes. Although the processing time initially decreases with the number of worker
nodes, this decrease later vanishes due to communication latencies. The measurements
also show that the gain due to parallelization is significantly more for larger sets of key-
frames. To reduce latencies due to database access during map optimization, we compared
a relational and a non-relational database with respect to their I/O speeds. MySQL was
used to represent relational databases, whereas MongoDB was used to represent non-
relational databases and the results are shown in Figs. 3.13a and 3.13b. Although both
databases gave a similar performance with respect to speed, using the JOIN clause of
MySQL (join clause combines records from two or more tables in a database), a significant
amount of computation was offloaded from the graph optimization node to the database
during the key-frame pair selection (see Sec. 3.5).

3.7 Conclusion

We presented first steps towards a scalable cloud robotics service for mapping and local-
ization using Rapyuta [2], an open-source cloud robotics framework we developed in our
previous work.

First, we provided an open source implementation of a state-of-the art, dense visual
odometry algorithm on a smartphone-class ARMmulti-core CPU. Second, we developed a
data protocol that sends only compressed key-frames to the cloud, reducing the bandwidth
requirements . In addition, the protocol allows the cloud processes to push key-frame pose
updates back to the robots without the need for constant polling. Third, we presented
techniques for parallelizing the computationally expensive operations of map optimization
and map merging in a commercial data center, and provided a corresponding open source
software implementation1.

As illustrated by our demonstrator, this cloud-based architecture holds the potential
to greatly increase the number of mobile robot platforms capable of creating large, high-
quality maps and performing accurate localization. The robots used were entirely built
using low-cost, off-the-shelf components, i.e., an Odroid-U2 board (USD 90), a Prime-
Sense CARMIN RGB-D sensor (USD 200), a simple iRobot Create robot base (USD 220),
and a USB wireless device (USD 40)). Further, the commercial cloud-infrastructure pro-

http://github.com/IDSCETHZurich/rapyuta-mapping
Note that the bandwidth depends on many factors such as the speed of the robot and thresholds

used for generating key-frames. Therefore it is hard to do a rigorous comparison with other works such
as [11]. However, our advantage compared to [11] include scalability, the non-requirement for the robot
and the server to be in the same network, and our PNG-based custom converters to achieve a better
compression compared to the ROS standard messages.

72

http://github.com/IDSCETHZurich/rapyuta-mapping

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

Figure 3.7: A point cloud map of a 40m-long corridor. The map was collaboratively built
by two robots, and consists of 423 key-frames. Different colors in the right image show
parts of the map built by different robots.

vides computational services at very low cost (USD 0.130 per hour for every m1.medium
instance (∼2×1.7 GHz, 3.75 GB) [20].

Finally, we showed both qualitative and first quantitative results achieved with the
architecture. As shown in Figs. 3.1 and 3.7 as well as in the accompanying video, our
implementation yields maps comparable to those obtained with more expensive robot
hardware. First quantitative experiments confirmed that bandwidth requirements are well
within those typically available in modern wireless networks (< 0.5 [MB/s]). They also
confirmed that map optimization provided via the cloud significantly reduces uncertainty
of the robot’s visual odometry. Moreover, they confirmed the computational advantage

73

3.7 Conclusion

0 10 20 30 40 50 60 70 80 90 100 110 120

1

2

3

4

5

· 105

Time [s]

B
ad

nw
id
th

U
sa
ge

[B
/s
]

0.3 rad/s
0.2 rad/s
0.1 rad/s

Figure 3.8: Network usage in bytes per second for a single robot performing a 360 [◦]
in-place rotation.

0 10 20 30 40 50 60 70

1

2

3

· 105

Time [s]

B
ad

nw
id
th

U
sa
ge

[B
/s
]

0.5 m/s
0.3 m/s
0.1 m/s

Figure 3.9: Network usage in bytes per second for a single robot performing a 2 [m]
straight motion.

74

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

Tr
an

s.
E
rr
or

[m
]

w/o optimization
with optimization

Figure 3.10: Translation error of key-frames extracted by visual odometry during a 360
[◦] in-place rotation with and without map optimization. The errors are based on the
ground truth measurements from VICON, a high-precision motion capture system.

0 5 10 15 20 25 30 35 40

0.1

0.2

0.25

Time [s]

Y
aw

E
rr
or

[r
ad

]

w/o optimization
with optimization

Figure 3.11: Rotation error of key-frames extracted by visual odometry during 360 [◦] in-
place rotation with and without map optimization. The errors are based on the ground
truth measurements from VICON, a high-precision motion capture system.

75

Acknowledgement

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0.1

0.2

0.3

Time [s]

Tr
an

s.
E
rr
or

[m
]

w/o optimization
with optimization

Figure 3.12: Translation error of key-frames extracted by visual odometry during a 2 [m]
forward motion with and without map optimization. The errors are based on the ground
truth measurements from VICON, a high-precision motion capture system.

of parallelization for map optimization in the cloud.
Possible future improvements include the incorporation of the depth error into visual

odometry [22], substituting the current naive bag-of-words-based place recognition to a
more probabilistic approach such as FAB-MAP [31] for map merging, and the creation
of larger maps using more robots.

Acknowledgement

This research was funded by the European Union Seventh Framework Programme FP7/2007-
2013 under grant agreement no. 248942 RoboEarth. This work also received support
from AWS (Amazon Web Services) in Education Grant award. The authors would like to
thank Dejan Pangercic for his continuous support and motivation, and their colleagues
Dominique Hunziker and Dhananjay Sathe for their support with Rapyuta.

References

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute
of Standards and Technology, Special Publication 800-145, 2014, available http:

76

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

0 2 4 6 8 10 12 14 16
0

200

400

600

800

worker nodes

T
im

e
[s
]

loop_merged (423)
loop1 (230)
loop0 (193)

fr2_desk (118)

(a) MySQL

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

worker nodes

T
im

e
[s
]

loop_merged (423)
loop1 (230)
loop0 (193)

fr2_desk (118)

(b) MongoDB

Figure 3.13: Map optimization times against the number of worker nodes. The numbers
in parenthesis in the legend denote the number of key-frames. loop0 and loop1 are the two
loops of the corridor shown in Fig. 3.7. loop_merged is a combination of both. fr2_desk
is a public data set obtained from [30].

77

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

References

//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[2] G. Mohanarajah, D. Hunziker, M. Waibel, and R. D’Andrea, “Rapyuta: A cloud
robotics platform,” IEEE Trans. Automation Science and Engineering, February
2014, accepted.

[3] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez,
K. Haussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schiessle, M. Tenorth,
O. Zweigle, and R. van de Molengraft, “RoboEarth,” Robotics Automation Mag.,
IEEE, vol. 18, no. 2, pp. 69–82, June 2011.

[4] R. Arumugam, V. R. Enti, B. Liu, X. Wu, K. Baskaran, F. K. Foong, A. S. Kumar,
D. M. Kang, and W. K. Goh, “Davinci: A cloud computing framework for service
robots.” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), May 2010,
pp. 3084–3089.

[5] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud Networked Robotics,” IEEE
Network, vol. 26, no. 3, pp. 28–34, May-June 2012.

[6] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg, “Cloud-based
robot grasping with the google object recognition engine,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), May 2013, pp. 4263–4270.

[7] B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with zero-
slip push grasps,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), May
2012, pp. 576–583.

[8] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2005.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file
system,” in Proc. IEEE Sym. Mass Storage Systems and Technologies (MSST).
IEEE, May 2010, pp. 1–10.

[10] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on
Open Source Software, May 2009.

[11] L. Riazuelo, J. Civera, and J. M. M. Montiel, “C2TAM: A cloud framework
for cooperative tracking and mapping,” Robotics and Autonomous Systems, 2013,
accepted for publication.

[12] G. Klein and D. Murray, “Parallel tracking and mapping on a camera phone,” in
Proc. IEEE Int. Symp. Mixed and Augmented Reality, October 2009, pp. 83–86.

[13] R. Goransson, A. Aydemir, and P. Jensfelt, “Kinect@Home: Crowdsourced
RGB-D data,” in IROS Workshop on Cloud Robotics, 2013. [Online]. Available:
http://www.kinectathome.com/

78

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.kinectathome.com/

Chapter 3. Cloud-based Collaborative 3D Mapping with Low-Cost Robots

[14] “Matterport,” 2013. [Online]. Available: http://matterport.com/

[15] A. Howard, S. Gaurav S., and M. Maja J., “Multi-robot mapping using manifold
representations,” in Proc. IEEE Int. Conf. Robotics Automation (ICRA), vol. 4,
May 2004, pp. 4198—-4203.

[16] D. Zou and P. Tan, “Coslam: Collaborative visual slam in dynamic environments,”
IEEE Tran. Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 354–366,
2013.

[17] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Camera-imu-based
localization: Observability analysis and consistency improvement,” Int. J. Rob. Res.,
vol. 33, no. 1, pp. 182–201, Jan. 2014.

[18] Google Inc., “Project Tango,” 2014. [Online]. Available: http://www.google.com/
atap/projecttango/

[19] J. Chen, D. Bautembach, and S. Izadi, “Scalable real-time volumetric surface
reconstruction,” ACM Trans. Graph., vol. 32, no. 4, pp. 113:1–113:16, Jul. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2461912.2461940

[20] Amazon.com Inc., “Amazon Elastic Compute Cloud,” 2013. [Online]. Available:
http://aws.amazon.com/ec2/am

[21] F. Steinbrucker, J. Sturm, and D. Cremers, “Real-time visual odometry from dense
RGB-D images,” in ICCV Computer Vision Workshop, November 2011, pp. 719—-
722.

[22] C. Kerl, J. Sturm, and D. Cremers, “Robust Odometry Estimation for RGB-D
Cameras,” in Proc Int. Conf. Robotics and Automation (ICRA), May 2013, pp. 3748–
3754.

[23] T. Tykkala, C. Audras, and A. I. Comport, “Direct iterative closest point for real-
time visual odometry,” in ICCV Computer Vision Workshop, November 2011, pp.
2050—-2056.

[24] K. Madsen, H. B. Nielsen, and O. Tingleff, “Methods for non-
linear least squares problems (2nd ed.),” 2004. [Online]. Available: http:
//www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf

[25] J. Reinders, Intel Threading Building Blocks, 1st ed. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2007.

[26] S. Lovegrove and A. J. Davison, “Real-time spherical mosaicing using whole image
alignment,” in Proc. 11th Euro. Conf. Computer Vision, September 2010, pp. 73–86.

[27] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A
general framework for graph optimization,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), May 2011, pp. 3607–3613.

79

http://matterport.com/
http://www.google.com/atap/projecttango/
http://www.google.com/atap/projecttango/
http://doi.acm.org/10.1145/2461912.2461940
http://aws.amazon.com/ec2/am
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf

References

[28] S. Agarwal and K. Mierle, “Ceres solver,” 2014. [Online]. Available:
http://code.google.com/p/ceres-solver/

[29] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-time dense
surface mapping and tracking,” in Proc. IEEE Int. Symp. Mixed and Augmented
Reality (ISMAR), October 2011, pp. 127–136.

[30] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark
for the evaluation of rgb-d slam systems,” in Proc. Int. Conf. on Intelligent Robot
Systems (IROS), Oct. 2012.

[31] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization and
Mapping in the Space of Appearance,” The International Journal of
Robotics Research, vol. 27, no. 6, pp. 647–665, 2008. [Online]. Available:
http://ijr.sagepub.com/cgi/content/abstract/27/6/647

80

http://code.google.com/p/ceres-solver/
http://ijr.sagepub.com/cgi/content/abstract/27/6/647

4
Gaussian Process
Optimization-based
Learning for Trajectroy
Tracking

4.1 Introduction

Control systems are designed to regulate the behavior of dynamical systems and make
them follow a human-assigned task or trajectory. They base their regulation on a physical
nominal model, often derived from first principles. However, whenever there is an uncer-
tainty in the model, such as repeating disturbances not taken into account in a complex
environment, the control system will need to learn from its past behavior and compensate
for the inaccuracy of the nominal model. Machine Learning tools can be employed in an
Adaptive Control fashion to guide this learning process.

For systems that work in a repetitive manner, such as robotic manipulators and chem-
ical plants, Iterative Learning Control (ILC) algorithms are used to improve on the per-
formance. In ILC, the feed-forward control signal is modified in each iteration to reduce
the error or the deviation from the given task or reference trajectory. A good analogy
is a basketball player shooting a free throw from a fixed position: during each shot the
basketball player can observe the trajectory of the ball and alter the shooting motion in
the next attempt [1].

The limitation with ILC is that it assumes a fixed task or trajectory. While this is a
reasonable assumption to make in some repeated tasks, ILC is not learning in the proper
sense: it fails to generalize over different tasks and cannot handle the cases when the
trajectories are modified. In all such cases, the Iterative Learning Controller will need to

This paper is submitted to the 31st International Conference on Machine Learning, January 2014.

83

4.1 Introduction

start from scratch, throwing away useful data. Data from different tasks can be used to
generalize, a matter of paramount importance in complex tasks.

We therefore look at the problem of generalization and show that a significant amount
of knowledge can be transferred even between cases where the reference trajectories are
not the same. A basketball player does not have to learn the free throw motion from
scratch each time he finds himself in a slightly different position. We call these cases or
reference trajectories contexts. Context can change in a given task and it is the responsi-
bility of the autonomous agent or the learning controller to adapt to different contexts.

The motivation for transfer learning under different contexts comes mainly from the
RoboEarth project [2], a robot specific knowledge repository where robots share and
learn from each others’ experience. The ability to transfer knowledge even under different
contexts will significantly improve the performance of future robots. For example, consider
a robot learning to pour tea into a cup and over time perfecting the motion. The learned
pouring motion can be uploaded to a central database, marked with the hardware-specifics
of the particular robot as well as the size and shape of the teapot as context. Another
robot with slightly different hardware, holding a different teapot, can download the stored
motion as a prior and adapt it to its particular context, thereby eliminating the need to
learn the motion from scratch.

In this paper, we introduce a reinforcement-learning (RL) algorithm called TGP that
learns to track trajectories in state space online. TGP stands for (trajectory) tracking
with Gaussian Processes. Specifically, the proposed algorithm uses Gaussian Process Op-
timization (GPO) in the bandit setting to track a given trajectory. It implicitly learns
the dynamics of the system, and in addition to improving the tracking performance, it
facilitates knowledge transfer between different trajectories.

Related Work

Gaussian Processes (GP) are increasingly applied in control theory, where they are used
to learn the unknown system dynamics. In [3] the authors propose a hybrid-GP approach
combined with reinforcement learning to control an autonomous blimp. Their framework
requires them to learn the dynamics itself with multiple GP regressions whereas we use
GPO to track the global minimum of an unknown, scalar cost function, as will be detailed
in the next sections. In [4,5] the authors first learn the dynamics with GP regression. In the
second step policies for a parameterized controller are learnt by propagating through the
GP model. This algorithm, called PILCO, involves necessarily long offline calculations and
does not have a guarantee for convergence. Unlike PILCO, TGP incorporates feedback
and can generalize over different trajectories. Furthermore we prove that TGP converges
to the tracked trajectory under mild assumptions.

Gaussian process optimization literature proposes several heuristics such as Expected
Improvement [6] and Most Probable Improvement [7] for trading off exploration and
exploitation. The first method with provable sublinear regret was proposed in [8] and
extended to the contextual setting in [9]. We apply this approach to dynamical systems
in this paper.

84

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

Summary

Our main contributions are as follows:

• We propose TGP, a reinforcement learning algorithm that efficiently learns to track
a given trajectory.

• We prove that TGP under mild assumptions, learns to track the given trajectory
arbitrarily well.

• With TGP we establish a novel connection with transfer learning and present a
metric to quantify knowledge transfer.

• We show in numerical examples, the proposed approach and evaluate its perfor-
mance both in trajectory tracking and in transfer learning by comparing with the
state of the art control algorithms.

4.2 Problem Statement and Background

Consider the following discrete dynamics:

xt+1 = f(xt, ut), t = 0, 1, . . . , N, (4.1)

where f is Lipschitz continuous in both arguments, xt ∈ X ⊂ Rn is the state of the
system at time stage t and ut ∈ U ⊂ Rm is the control input.

In discrete time trajectory tracking, the control objective is to minimize the cost
functional

J(π) =
N∑
t=1

d(xt, st) (4.2)

where the desired states st belong to a given trajectory Σ = {s0, s1, . . . , sN} at each time
stage, π = {u0, . . . , uN−1}, and d(xt, st) is a suitably chosen semimetric, e.g. squared
Euclidean distance. Note that this minimization should be done considering the state
and input constraints and should satisfy (4.1). In general minimizing (4.2) is impractical
and in Model Predictive Control (MPC), a very popular technique in control theory, the
objective to minimize is instead

∑M
t=1 d(xt, st) with M typically much less than N , i.e.

M � N .
However such receding horizon approaches may perform badly or suffer from instabil-

ity when the dynamics f is not known very well. More precisely, consider the following
dynamics typically derived from first principles:

x̂t+1 = fnom(xt, ut), t = 0, 1, . . . , N, (4.3)

We discard here the penalties on the inputs ut.

85

4.2 Problem Statement and Background

where fnom is again Lipschitz continuous in both arguments. This nominal model may not
be quite accurate when there are unmodelled dynamical effects or repeating disturbances
not taken into consideration: (4.3) can fail to predict the future states. The foremost aim
of this work is to develop a framework that can learn these unmodelled dynamical effects
efficiently. To do this we learn to track at each time stage t the (global) minimum of an
unknown scalar cost function qt = d(xt, st).

The unknown cost function qt = d(xt, st) at each time stage t ≥ 1 depends on the
previous state xt−1 and the desired state st as the context, the previously applied input
ut−1 as the action. The contexts ct = (xt, st+1) for t ≥ 0 in a more general setting
can be imagined as revealed by an adversary from C = X 2, i.e. environmental variables
independent of the input ut to be applied. For brevity we sometimes use the notation
z = (u; c) for the variables in the joint input-context space D = U × C.

Regret.

A natural performance metric for an algorithm tracking the (global) minimum of a func-
tion q(u; c) is the cumulative regret RT = ΣT

t=1rt or equivalently the cumulative reward
(the negative of cumulative regret). Here rt = q(ut; ct) − q∗ is the instantaneous regret
where ut is the action taken at time t, q∗ = minu∈U q(u; ct).

A desired feature of such an algorithm is to have asymptotically no-regret : limT→∞RT/T =

0 because then a subsequence of actions taken converge to the optimal action. Further-
more, any bounds on the average regret RT/T after T rounds imply a convergence rate
for this subsequence since the minimum mint≤T q(ut; ct) is sandwiched between q∗ and
the average.

Gaussian Processes and RKHS.

In order to guarantee no-regret, it is necessary to impose some sort of smoothness assump-
tions on the function q(u; c). We can implicitly enforce smoothness on the function by
assuming that q(u; c) has low complexity as measured under an RKHS norm. Reproduc-
ing kernel Hilbert spaces [10] are intimately tied to GPs and their covariance functions
k(z, z′). A Gaussian Process (GP) is a collection of dependent random variables, any
finite number of which has a joint Gaussian distribution [11].

Gaussian processes, completely specified by a mean function µ(z) and a covariance
function k(z, z′), can be seen as a prior distribution over the space of functions. For
yi = q(zi) + εi, εi ∼ N (0, σ2

n) with noisy observations yT = {y1, . . . , yT} at sample points
ZT = {z1, . . . , zT}, the posterior over q(z) is again a Gaussian Process distribution with
mean µT (z) and covariance kT (z, z′) given by the following simple analytic equations:

µT (z∗) = µ(z∗) + kT (z∗)
T[KT + σ2

nI]
−1(yT − µT) (4.4)

kT (z∗, z
′
∗) = k(z∗, z

′
∗)− kT (z∗)

T[KT + σ2
nI]
−1kT (z′∗) (4.5)

σ2
T (z∗) = kT (z∗, z∗) (4.6)

86

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

where µT = [µ(z1), . . . , µ(zT)]T is the prior mean at the sample points, kT (z∗) =
[k(z1, z∗), . . . , k(zT , z∗)]

T is the vector of covariances between the sample points and the
test point z∗ and KT = [k(z, z′)]z,z′∈ZT

� 0.

With these update equations, Gaussian processes can be used in nonparametric regres-
sion to predict the mean and variance of unknown test points. Nonparametric regression
methods have the advantage of avoiding rigidity encountered typically in regression with
finite basis functions.

The RKHS Hk(D) corresponding to the GP covariance function k(z, z′) is a com-
plete subspace of L2(D) with an inner product 〈 · , · 〉k obeying the reproducing property:
〈q(·), k(z, ·)〉k = q(z) for all q(u; c) ∈ Hk(D). The induced RKHS norm ‖q(u; c)‖k <∞
measures the smoothness of q(u; c).

Bandits.

In the general reinforcement learning problem, contexts depend on the actions taken. In
particular, in trajectory tracking, next states are determined by the previously applied
input sequence. A simpler setting where the actions do not influence the contexts is known
as multi-armed bandits, where in order to find the global minimum of an unknown noisy
function, it must be explored by sampling at promising points u and must be exploited
at the current minimum values. Using upper confidence bounds (UCB) is a particularly
simple and intuitive heuristic to balance the exploration/exploitation tradeoff and works
by keeping track of upper confidence bounds of the sample points [8].

In [9] the authors discuss such a learning algorithm which maintains a GP-estimate
of the function to be optimized with (4.7):

ut = arg min
u∈U

(
µt−1(u; c)− β1/2

t σt−1(u; c)
)

(4.7)

where βt is the parameter that balances exploration-exploitation at each time stage t.
They show that the performance of this algorithm can be linked to the maximal infor-
mation gain for the particular cost function to be learned:

γT = max
A⊂D:|A|=T

I(yA; q) (4.8)

= max
A⊂D:|A|=T

H(yA)−H(yA|q) (4.9)

where I(yA; q) is the information gain due to sampling A. For a Gaussian, the entropy
H(N (µ,K)) = 1

2
log |2πeK| using which we get: γT = 1

2
log |I + σ−2

n KA|.
The cumulative regret of (4.7) can be bounded if q(u; c) ∈ Hk(D), i.e. ‖q(u; c)‖2

k ≤ B

for some B <∞, where the kernel generating the RKHS is any valid combination of linear
or squared exponential covariance function k(z, z′). The valid combinations of kernels

Matérn kernels with ν > 1 can also be considered.

87

4.3 Algorithm TGP

are summarized in [12]. In particular, tensor products and sums of linear and squared
exponential kernels are allowed in our case. The bound on the cumulative regret is as
follows:

RT =
T∑
t=1

q(ut; ct)− q∗ ≤
√
κTβTγT (4.10)

with high probability p ≥ 1 − δ. Here κ = 8/ log(1 + σ−2
b) with σb a uniform bound

on the noise. Note that unlike in the Bayesian update equations (4.4) – (4.6), [9] makes
distribution-free assumptions on the noise variables εt if q(u; c) ∈ Hk(D): they can be an
arbitrary martingale difference sequence (E[εt|ε<t] = 0 for all t ∈ N) uniformly bounded
by σb.

The exploration-exploitation parameter βT = 2B + 300γT log3(T/δ) depends on γT ,
the free parameter δ and the bound B. The intuition behind these dependencies is that
as the cost function q(u; c) starts to vary more often with respect to the actions u or the
contexts c, the RKHS-bound penalizing this function will increase. βT will increase and
(4.7) will end up exploring U more frequently to track the global minimum of this cost
function. We will be more sure of finding the global minimum if we decrease δ: this will
likewise correspond to an increasing exploration rate as βT increases.

4.3 Algorithm TGP

The scalar cost q(u; c) is a function of inputs and contexts, and learning to minimize
this function from scratch can be very impractical in most cases, due to the high-
dimensionality of the state space. If we have a nominal model (4.3) at hand however,
we can use the costs predicted by the nominal model. Hence the strategy that we fol-
low in TGP strikes a different balance between exploration and exploitation as opposed
to (4.7): we exploit (4.3) from the very start, using the nominal model predicted cost
q̂(ut; ct) = d(x̂t+1, st+1), a known function of ut, as a prior. We explore only the difference
in cost predicted by the nominal model and the actual cost:

δqt+1 = d(xt+1, st+1)− d(x̂t+1, st+1) (4.11)

With TGP we adapt the greedy approach of (4.7) to the reinforcement learning case,
and analyze its performance in trajectory tracking. See Figure 4.1 for an illustration.
Pseudocode for TGP is provided in Algorithm 1. TGP at each time stage t ≥ 0 uses
the GP-update equations (4.4) – (4.6) over the joint input-context space D = U × C.
It is conditioned on the sets ZT−1 and yT−1 acquired through sampling (4.7) at t =

(0, 1, . . . , T − 1) with q̂(u; c) added as a known mean function µ(z) in (4.4).
TGP is an episodic algorithm: the system will continue at each episode ` to track the

88

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

st

xt−1

st+1

q∗t

q∗t+1qt

xt

Σ

Figure 4.1: Illustrating trajectory tracking: x pursuing s. The gray areas depict the reach-
able regions from the states xt−1 and xt.

Algorithm 1 TGP
Input: εs > 0, q̂(z), k(z, z′), Σ = {s0, s1, . . . , sN}
Initialize ` = 1, T = 0, Z = ∅, y = ∅
repeat

Initialize t = 0, x0` = s0

repeat
ct` ← (xt`, st+1)

ut` ← arg minu∈U µT (u; ct`)− β1/2
T σT (u; ct`)

Z ← Z ∪ (ut`; ct`)
Observe δq(t+1)` = q(t+1)` − q̂(t+1)`

y← y ∪ δq(t+1)`

t← t+ 1
until d(xt`, st) ≥ εs
T ← T + t
`← `+ 1

until t = N

given trajectory to a maximum of N time stages and then will reset back to its initial
state, ready to embark on the next episode ` + 1. Furthermore TGP continues with an
episode ` as long as the system’s trajectory stays within a certain threshold εs of the
desired state, i.e., d(xt`, st) < εs. If the trajectory exceeds this bound, i.e. d(xt`, st) ≥ εs,
the system is reset to its initial state. The stopping time is denoted by τ and the total
number of time steps (throughout the episodes) by T . To differentiate the episodes, we
add a further subscript to x, u, c and q. For example, the state at time stage t in episode
` is shown by xt`.

In order to start TGP we need to estimate the GP hyperparameters using any gathered

89

4.3 Algorithm TGP

data. Trial trajectory runs can be used to gather the necessary evaluations for hyperpa-
rameter estimation: contexts c, actions u, and costs q. Actions in these trial runs are the
feed-forward control inputs calculated using a nominal model. See [13] for feed-forward
control signal generation of a differential flat system using splines. With maximum likeli-
hood, we can estimate the hyperparameters θ of a specified kernel structure k(z, z′). For
example, if the kernel is squared exponential:

k(z, z′) = σ2
s exp−1/2(z−z′)TΘ−1

z (z−z′)

then θ = (σs, ϑc, ϑu) ∈ R2n+m+1, where for the diagonal block matrix Θz =
(

Θc 0
0 Θu

)
ϑc = diag(Θc) and ϑu = diag(Θu).

Analysis

In this subsection, we prove the convergence of the proposed algorithm TGP under the
following three assumptions: trackability, controllability, and smooth perturbations of the
nominal model.

Trackability. We can view trajectory tracking as tracking a point s that moves with
a certain input sequence v(t) on Σ. We assume that the trajectory Σ is trackable, i.e.
∀t ∃v(t) ∈ U s.t. st+1 = f(st, v(t)). We believe this is a fair assumption to make, otherwise
no algorithm can come up with an input sequence v(t) to track Σ. In general a trajectory
generation algorithm has access to the nominal model (4.3) and the trajectory generation
must be performed robustly so that the system can still follow it under the perturbed
model (4.1).

Furthermore, we assume that we can start the system at s0 ∈ Σ, i.e. q0` = 0 ∀`.
Otherwise, the trajectory Σ must be recomputed to accommodate for the variation in x0.

Controllability. The stopping time τ(`) for every episode ` denotes, as previously
introduced, the time stage when the cost function exceeds a certain εs > 0:

q1` = r1`

q2` = r1` + r2` − λ(x1`)

...

qτ` =

τ(`)∑
i=1

(
ri` − λ(x(i−1)`)

)
≥ εs (4.12)

where we define the maximum decrease of the cost function as:

λ(ct) = qt − q∗t+1 = qt −min
u∈U

qt+1(u; ct) (4.13)

As noted in section 4.2 we can only prove the convergence of a subsequence of inputs.

90

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

st

st+1

Σ

xt xt+1 qt+1
qt

B(st, εs)

Figure 4.2: Illustrating the controllability assumption: for all states xt ∈ B(st, εs) there
exists a u such that xt+1 does not move away from st+1 as a result of the nonexpansive
mapping, i.e. qt+1 ≤ qt ≤ εs < εmax.

We assume this to be nonnegative throughout the state space: λ(c) ≥ 0,∀x ∈ B(st, εmax)

where we take εmax > 0. This is an important assumption that lets us focus exclusively
on the next desired state. One way to relate it to control theory is to assert that the
cost functions q(u; c) are discrete-time weak Control Lyapunov Functions for all xt ∈
B(st, εmax), i.e.

min
u∈U

qt − qt+1(u;xt, st+1) ≤ 0 (4.14)

Geometrically this means that the dynamics (4.1) must be a nonexpansive mapping
with respect to the semimetric defining the cost function. That is, ∀xt ∈ B(st, εmax),
∃φt(xt) ∈ U s.t. φt(st) = v(t):

d(xt+1, st+1) ≤ L(u) d(xt, st) (4.15)

where L(u) ≤ 1 for u = φt(xt). Note that both enforce the relaxed condition: λ(c) ≥ 0.
Inequality is not needed since we assume that we can start at x0 = s0. See Figure 4.2
for an illustration of the nonexpansive mapping principle. The contractability of the balls
B(st, εs) for any εs < εmax around the trajectory points st imply the existence of a control
input u, for every state xt inside these balls, which will bring the state closer to the next
desired state st+1 ∈ Σ.

Smooth perturbations. We assume the cost function difference δq is sufficiently smooth:
its RKHS-norm must be bounded in order to put a (sublinear) bound on the (cumula-
tive) regret: ‖δq(u; c)‖2

k ≤ B for some B < ∞ where k(z, z′) is any valid combination
of linear and squared exponential kernels. This assumption directly carries over from [9]:
the sublinear regret bound for minimizing δq holds if

Pr{∀T, ‖µT − δq‖2
kT
≤ βT+1} ≥ 1− δ (4.16)

91

4.3 Algorithm TGP

for βT = 2‖δq‖2
k + 300γT log3(T/δ) after sampling ZT by following (4.7) T times. The

bounds in (4.16) depend on γT which quantifies the worst-case-scenario for GP-optimization
and hence they still hold for TGP after sampling Z ′T , different from ZT due to the addition
of the nominal model predicted cost q̂(u; c) as a known function of inputs and contexts
to (4.7).

Under these assumptions we have the following result:

Theorem 4.1 Let st ∈ Σ be trackable for t = 1, . . . , N . If λ(ct) ≥ 0 for some εmax > 0

around Σ and ‖δq(u; c)‖2
k ≤ B for any valid combination k(z, z′) of linear or squared expo-

nential kernels then the following holds with high probability: ∀ε > 0, ∃` ∈ N s.t. J` ≤ ε.

Proof. Let L be the total number of episodes. The total number of time stages is denoted
by T =

∑L
`=1 τ(`). Picking any positive εs < εmax we can rewrite (4.12) for a fixed ` as:

τ(`)∑
i=1

ri` ≥ εs +

τ(`)−1∑
i=0

λ(ci`)︸ ︷︷ ︸
=:Λ`

(4.17)

L(T)∑
`=1

τ(`)∑
i=1

ri`︸ ︷︷ ︸
RT

≥ εsL+

L(T)∑
`=1

Λ` (4.18)

Using the sublinearity of cumulative regret, and taking the limit:

K(T)∑
`=1

Λ` + εsL ≤ RT ≤
√
κTβTγT (4.19)

lim
T→∞

∑L(T)
`=1 Λ` + εsL

T
= 0 (4.20)

holds with high probability p ≥ 1 − δ. Assume that as T → ∞, τ(`) never exceeds N .
Then L ≥ T/N . Since Λ` ≥ 0, ∀` = 1, . . . , L, we have:

∑L(T)
`=1 Λ` + εsL

T
≥ εs
N

(4.21)

which when taken the limit T →∞ contradicts (4.20). Hence if (4.10) holds there must
be an episode ` where τ(`) exceeds N . This means that for every ε > 0, taking εs <
min(ε/N, εmax), if we try long enough w.h.p. there will be an episode ` where (4.2) drops

92

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

below ε:

J` =
N∑
t=1

qt` ≤ N
ε

N
= ε (4.22)

Furthermore, the following proposition gives a bound on the total time stage T when
J` ≤ ε.

Proposition 4.3.1
Under the same assumptions as in Theorem 4.1, the following holds with high probability:
∀ε > 0, ∃` ∈ N s.t. J` ≤ ε before T ≤ Tmax =

(
Nα
εs

)4 where α <∞ s.t. βTγT ≤ αT 1/4.

Proof. See Appendix A

Transfer Learning

Transfer learning is the transfer of knowledge from one domain or problem to another.
Transfer learning is one of the advantages that a GP-based optimization algorithm such
as TGP has over more conventional learning methods like ILC, where the dynamics
are linearized around a trajectory. After linearization, the geometric structure of the
differential equation is often lost. If the disturbance dynamics is sufficiently smooth over
the state space of different trajectories, or the trajectories are sufficiently close, we expect
TGP to transfer learned dynamics between similar contexts.

To investigate the degree of transfer in this setting, consider two different cases a and
b. In case a a learning algorithm runs on trajectory Σ1 for a duration of T1 steps, sampling
ZT1 = {z1, . . . , zT1} and then continuing on a different trajectory Σ2 for T2 steps; while
in case b, it runs from scratch on Σ2 for T2 steps.

As a way to measure the performance gain with TGP, we could look at the reduction
in cumulative regret for this problem: RT2−RT2|ZT1

where RT |Z stands for the cumulative
regret after conditioning on observations ZT1 before t = 0. However we only have sublinear
regret bounds and can not quantify this degree of transfer any further. Instead we propose
to look at the bounds of cumulative regret, which leads us to the following proposition:

Proposition 4.3.2
The sublinear bounds BT (Z) =

√
κTβT |ZγT |Z bounding the cumulative regret RT |Z after

sampling Z ⊂ D are nonincreasing, i.e., for any Z ⊂ Z ′, BT (Z) ≥ BT (Z ′).

93

4.4 Experimental Results

Proof. The cumulative regret is bounded as RT |Z ≤ BT (Z) =
√
κTβT |ZγT |Z where:

γT |Z = max
A⊂D\Z:|A|=T

I(yA; q|Z)

= max
A⊂D\Z:|A|=T

H(yA|Z)−H(yA|q),

I(yA; q|Z) is the conditional information gain due to sampling A after sampling Z. Now
since H(yA|Z) ≥ H(yA|Z ′) for Gaussians when Z ′ ⊃ Z, γT |Z ≥ γT |Z′ . This means that
BT (Z), monotonically increasing with respect to γT , is also nonincreasing.

In our previous problem formulation, with the help of this proposition we can immediately
infer that the transfer gain from case a to case b is nonnegative, i.e. Gab = BT2(ZT1) −
BT2(∅) ≥ 0.

4.4 Experimental Results

In this section we evaluate the performance of the proposed algorithm using a two dimen-
sional model of a quadrotor platform, where the task is to follow predefined trajectories.
After defining the numerical model, we first look at the performance of the proposed
algorithm when there is a gravity mismatch. In the next step, we investigate knowledge
transfer between two different trajectories. Note that for hyperparameter estimation, we
use five different wave trajectories and the corresponding feed-forward control signals as
examples. These examples are then discarded to avoid overfitting.

Numerical Model

As an example consider the two-dimensional model of a quadrotor given by [13]:

ÿ = −fcoll sinφ

z̈ = fcoll cosφ− g

φ̇ = ωx

(4.23)

where state x = (y, ẏ, z, ż, φ). The states y, z are trajectories to be tracked, corresponding
to the horizontal and vertical axes and the control input u = (fcoll, ωx), where fcoll =∑4

i=1 fi is the collective thrust and ωx is rate of change of the angle of attack w.r.t. the
x-axis. Input constraints are given by:

fmin ≤ fi ≤ fmax,

|ḟi| ≤ḟmax,

Source code for generating the experimental results can be downloaded from bitbucket/icml_tgp.

94

https://icml_tgp@bitbucket.org/icml_tgp/icml_tgp.git

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

|φ̇| ≤φ̇max,

|φ̈| ≤φ̈max.

The values used throughout the numerical examples are given in the Appendix in Table
A.1. Unmodeled dynamics in quadrotors could be due to parameter mismatch (e.g. gravity
difference) or a more general repeating disturbance (e.g. a fan). See Appendix for two
examples.

Learning under Model Mismatch

Here we show the TGP learning results for the quadrocopter operating under a gravity
mismatch. The gravity is taken to be guranus = 10.5, but the nominal dynamics is assuming
earth gravity, gearth = 9.81. We model the cost function (A.7) as having bounded RKHS-
norm, ‖q(u; c)‖2

k < B under the following covariance function:

k(z, z′) = ku(u, u
′)kc(c, c

′) + σ2
nδaa′

ku(u, u
′) = uTΛ−2

u u′

kc(c, c
′) = σ2

s exp(−1

2
(c− c′)TΛ−2

c (c− c′))

where z = (u; c). Diagonal matrices Λu and Λci transform anisotropic coordinates into
isotropic coordinates or they can be motivated from Automatic Relevance Determination
(ARD) point of view where Λ2

u and Λ2
c encode the relevance of inputs and contexts,

respectively [11]. The bound on the noise, σb was set to 0.15 during the simulations.
In Figure 4.3 we compare the performance of TGP with ILC and (nonlinear) MPC

with horizon M = 5. Weighted Sum of Squares (SSE) errors in (4.2) are plotted to
show learning during the first 6 episodes. A weighted squared Euclidean distance is used
as the cost function where the diagonal matrix with entries (1, 1, 1, 1, 0.01) is taken as
the weighting matrix Q. The best results for the three algorithms during the episodes
are shown in Table 4.1. Figure 4.3 clearly shows that the method can outperform more
conventional methods like MPC when disturbances in the form of unknown dynamics are
present, and can compare favorably with feedforward learning controllers like ILC. The
yz-trajectories followed during these episodes are plotted in Figure 4.4.

Table 4.1: SSE errors

Method / Episode No. SSE

MPC, horizon = 5 0.0617
ILC, episode 6 0.0306
TGP, episode 6 0.0271

95

4.5 Conclusion

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10−2

10−1

100

101

Episodes

Su
m

of
Sq

ua
re
s
E
rr
or

(S
SE

)
ILC
MPC
TGP

Figure 4.3: Comparison of TGP, ILC and MPC.

Transfer Learning

Here we show the transfer learning performance of TGP. We implement the scenario
considered in section 4.3 three times using three random wave trajectories: we first run
TGP on an initial fixed wave trajectory Σ0 and then switch to a different trajectory Σi,
i ∈ 1, 2, 3. Figure 4.5 shows the tracking error of Σi under the transfer learning setting.
We compare with TGP running with no prior knowledge and with ILC.

4.5 Conclusion

In this paper, we have proposed and analyzed TGP, a GP-optimization based RL-
algorithm, demonstrating its effectiveness in learning unknown dynamics and knowledge
transfer between different contexts. We have validated its performance in numerical exam-
ples. Unknown dynamics, if severe, can prevent more conventional methods such as Model
Predictive Control or Iterative Learning Control from tracking any given trajectory. TGP
on the other hand learns to track online a scalar cost function, and converges to a given
trajectory under mild assumptions. It works by solving the exploration-exploitation prob-
lem: it explores new control inputs when the uncertainty of that input is high enough,

96

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

ILC
0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

TGP

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

MPC

Figure 4.4: Trajectories {(yt, zt)} followed by a quadrotor under TGP, ILC and MPC:
the dashed lines represent the trajectory that needs to be tracked. Solid lines represent
the trajectories of the quadrotor tracked by the algorithms. Increasing shades of gray
represent increasing episodes.

97

References

1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Trajectory Index

SS
E

-
E
pi
so
de

1
ILC
TGP
TGP-with transfer

Figure 4.5: Comparison of ILC, TGP with and without transfer (from scratch). In the
case of TGP with transfer the algorithm was first run on a different trajectory.

and it exploits the learned dynamics as it gets better at predicting the cost function.
The sublinear regret proofs presented in [8, 9] hold only when the hyperparameters

of the GP from which the function to be optimized is drawn are known. In practice
estimation of hyperparameters can be performed using Maximum Likelihood and its
variants but we are currently unaware of any results on the sensitivity analysis. We have
evidence to believe that under mild mismatch only the speed of convergence is affected,
however changes in the kernel structure can hinder learning. This leads to the problem
of adaptive estimation of the covariance functions [14], which will play an increasing role
in learning under unpredictable environments, such as those studied in RoboEarth [2].

References

[1] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning control,”
Control Systems, IEEE, vol. 26, no. 3, pp. 96 – 114, june 2006.

98

Chapter 4. Gaussian Process Optimization-based Learning for Trajectroy Tracking

[2] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez,
K. Haussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schiessle, M. Tenorth,
O. Zweigle, and R. van de Molengraft, “RoboEarth,” Robotics & Automation
Magazine, IEEE, vol. 18, no. 2, pp. 69–82, 2011.

[3] J. Ko, D. Klein, D. Fox, and D. Haehnel, “Gaussian processes and reinforcement
learning for identification and control of an autonomous blimp,” in Robotics and
Automation, 2007 IEEE International Conference on, april 2007, pp. 742 –747.

[4] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient
approach to policy search,” in In Proceedings of the International Conference on
Machine Learning, 2011.

[5] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control a low-cost
manipulator using data-efficient reinforcement learning,” in Robotics: Science and
Systems, 2011.

[6] D. R. Jones, “A taxonomy of global optimization methods based on response
surfaces,” Journal of Global Optimization, vol. 21, pp. 345–383, 2001.

[7] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans, “Automatic gait optimization
with gaussian process regression,” in in Proc. of IJCAI, 2007, pp. 944–949.

[8] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process bandits
without regret: An experimental design approach,” CoRR, vol. abs/0912.3995, 2009.

[9] A. Krause and C. S. Ong, “Contextual gaussian process bandit optimization,” in
NIPS’11, 2011, pp. 2447–2455.

[10] G. Wahba, Spline Models for Observational Data. SIAM, 1990.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.
MIT Press, 2006.

[12] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics), 1st ed. Springer, 2007.

[13] A. P. Schoellig, F. L. Mueller, and R. D’Andrea, “Optimization-based iterative
learning for precise quadrocopter trajectory tracking,” Autonomous Robots, vol. 33,
pp. 103–127, 2012. [Online]. Available: http://dx.doi.org/10.1007/s10514-012-9283-2

[14] D. Ginsbourger, C. Helbert, and L. Carraro, “Discrete mixtures of kernels for kriging-
based optimization,” Quality and Reliability Engineering International, vol. 24,
no. 6, pp. 681–691, 2008. [Online]. Available: http://dx.doi.org/10.1002/qre.945

99

http://dx.doi.org/10.1007/s10514-012-9283-2
http://dx.doi.org/10.1002/qre.945

5
The Cubli

5.1 Introduction

Inverted pendulum systems have a very rich history [1] and have been widely used to
test, demonstrate and benchmark new control concepts and theories [2]. Furthermore,
development of new control algorithms for the pendulum system itself is still an active
area of research [3]–[5].

The Cubli is a 3D inverted pendulum when balancing on its corner, see Fig. 5.1, and
it becomes a 1D pendulum when balancing on its edge. The Cubli has two features that
set it apart from other 3D inverted pendulum testbeds [6, 7]: one is its relatively small
footprint - hence the name "Cubli," which is derived from the Swiss German diminutive
for "cube"; the other is its ability to jump up from a resting position without any external
support - a feature that not only poses an interesting engineering challenge, but also serves
as a compelling demonstration of mechanics and control concepts for the general public.

Fig. 5.2 shows the Cubli’s jump-up strategy. The Cubli begins lying flat on one of
its faces. It then accelerates and rapidly brakes one of its reaction wheels, allowing it to
jump up to one of its edges. Once it is balancing on an edge, the Cubli accelerates and
then rapidly brakes its next two reaction wheels, allowing it to jump up on its corner.
Now in the corner-balancing position, the Cubli applies controlled torques to its reaction
wheels in order to maintain this upright state.

Reaction wheel-based internal actuation for micro gravity environments was first pre-
sented in [8] and further investigated in [9] for planetary exploration in the absence
of strong traction forces [10]. Although motor torques are sufficient for overcoming the
weight of a device in microgravity environments like outer space, large amounts of torque
are necessary to do so within earth’s gravitational pull. The Cubli achieves this by spin-
ning its reaction wheels at high angular velocities and then rapidly braking them. This
rapid braking produces torques that are well beyond the limitation of the motors, and

This paper is submitted to Mechatronics (Elsevier), March 2014.

101

5.2 Mechatronic Design

Figure 5.1: Cubli balancing on its corner. Every 20 ms, measurements from the 6 inertial
measurement units (IMUs) are fused to get an estimate of the state and based on this
estimate the necessary reaction torques to balance are calculated and sent to the motor
controllers.

are what allow the Cubli to actuate internally - or self-actuate - without any external
support. This concept of braking was recently used for self-assembly in the M-blocks [11]
modular robot platform.

5.2 Mechatronic Design

The three-dimensional Cubli design started off with the following question:

How to build a 15 cm sided cube that can jump up and balance on its corner,
using off-the-shelf motors, batteries, and electronic components?

Mechanical Design

The Cubli’s mechanical design was dominated by the need for structural rigidity and
off-the-shelf components. Fig. 5.3 shows a CAD model of the Cubli, which consists of
aluminum housing (denoted by h in the following sections) that holds the three reaction
wheels and their respective motors. Although light-weight housing would result in high
recovery angles during balancing, the housing must be strong enough to withstand large
forces/torques during rapid braking.

The required angular velocity for jump-up can be reduced by increasing the wheel
inertia. Since the wheel size is constrained, increasing the wheel inertia would result

102

Chapter 5. The Cubli

(a) (b)

Figure 5.2: The Cubli’s jump-up strategy. (a) Flat-to-Edge: Initially lying flat on its
face, the Cubli jumps up to stand on its edge. (b) Edge-to-Corner: The Cubli goes from
balancing on an edge to balancing on a corner.

primarily in a higher wheel mass - ultimately reducing the recovery angles during the
balancing phase. Hence the wheel inertia was a trade-off between the recovery angle
needed for balancing, and the angular velocity needed for the jump-up. A gear chain
between the wheel and the motor was avoided since it would not allow the high angular
velocities for jump-up and would add extra weight and volume. Although the balancing
maneuver, which requires high torques, was affected by the choice of not including any
gears, the brushless DC motors were still able provide enough torque for recovery angles
up to 6◦. Figure 5.4 shows the latest iteration of the braking mechanism, which is based
on bicycle brake pads. An RC servo (stall torque 0.18 Nm) with an elliptic head was used
to drive the bicycle brake pad and produced a maximum torque of around 3.5 Nm on the
reaction wheels.

Electrical Design

A simplified diagram of the electronics is presented in Fig. 5.5. The STM32 discovery
board (ARM7 Cortex-M4, 168 MHz) from STMicroelectronics is used as the Cubli’s main
controller. Six IMUs (MPU-6050, InvenSense), attached to the Cubli housing, are used
to estimate the tilt and angular velocity of the housing. Each IMU consists of a rate gyro
and an accelerometer, and is connected to the main controller through the I2C bus. A 50
W brushless DC motor, EC-45-flat, from Maxon Motor AG is used to drive the reaction
wheels. The three brushless DC motors are controlled by three DEC 36/2 modules, digital
four quadrant brushless DC motor controllers. The motor controller and main controller
communicate over the CANopen protocol. PWM signals drive the breaking mechanism’s

103

5.2 Mechatronic Design

Figure 5.3: CAD drawing of the Cubli, with three of its faces and some of its electronics
and wiring removed in order to illustrate.

Figure 5.4: The latest iteration of the braking mechanism, which is based on bicycle
brakes. An RC servo with an elliptic head drives the top brake pad. Due to the slight
play in the reaction wheel’s bearing, the wheel tilts and touches the (static) bottom pad
when braking, thus increasing the braking friction.

104

Chapter 5. The Cubli

RC Servo (HSG-5084MG), see Fig. 5.4.
The FreeRTOS scheduler’s STM32 port was used in the software framework to mul-

titask the estimation and control algorithms. A completely open source and a free devel-
opment environment for embedded systems named (named ODeV [13], and based on the
Eclipse IDE) was used for the software development.

M microcontroller

I2
C
1

I2
C
2

I2
C
3

CAN

2×
IM

U
2
×
IM

U
2×

IM
U

3
×
M
ot
or

C
on

tr
ol
le
r

3×
B
ru
sh
le
ss

M
ot
or

3×servo

PWM

Figure 5.5: The Cubli electronics schematic. Six IMUs (rate-gyro and accelerometer) are
connected to the ARM7 microcontroller with three I2C buses. The three motor controllers
communicate with the microcontroller over the CAN bus.

5.3 Modelling

Edge Balancing

This subsection presents the modelling of a 1D reaction wheel-based inverted pendulum,
i.e., the Cubli balancing on an edge as shown in Fig. 5.6. Due to the similarity of some
key properties in both the 1D and 3D cases, this subsection sets the stage for the analysis
of the 3D inverted pendulum in the later sections.

Let ϕ denote the tilt angle of the Cubli’s housing and ψ denote angular position of the
reaction wheel, see Fig. 5.6. Next, let Θw denote the reaction wheel’s moment of inertia,
Θ0 denote the system’s total moment of inertia around the pivot point in the body fixed
coordinate frame, and mtot and l represent the total mass and distance between the pivot
point to the center of gravity of the whole system.

105

5.3 Modelling

ψ

ϕ

Figure 5.6: Cubli balancing on an edge.

The Lagrangian [12] of the system is given by

L =
1

2
Θ̂0ϕ̇

2 +
1

2
Θw(ϕ̇+ ψ̇)2 −mg cosϕ, (5.1)

where Θ̂0 = Θ0 − Θw > 0, m = mtotl and g is the constant gravitational acceleration.
The generalized momenta are defined as

pϕ :=
∂L
∂ϕ̇

= Θ0ϕ̇+ Θwψ̇, (5.2)

pψ :=
∂L
∂ψ̇

= Θw(ϕ̇+ ψ̇). (5.3)

Let T denote the torque applied to the reaction wheel by the motor. The equations
of motion can be derived using the Euler-Lagrange equations with the torque T as a
non-potential force. This yields

ṗϕ =
∂L
∂ϕ

= mg sinϕ, (5.4)

106

Chapter 5. The Cubli

ṗψ =
∂L
∂ψ

+ T = T. (5.5)

Note that the introduction of the generalized momenta in (5.2) and (5.3) leads to a simpli-
fied representation of the system, where (5.4) resembles an inverted pendulum augmented
by an integrator in (5.5).

Since the actual position of the reaction wheel is not of interest, we introduce x :=

(ϕ, pϕ, pψ) to represent the reduced set of states, and describe the dynamics of the me-
chanical system as follows:

ẋ =

ϕ̇

ṗϕ

ṗψ

 = f(x, T) =

Θ̂−1

0 (pϕ − pψ)

mg sinϕ

T

 . (5.6)

Since the measured quantities are y := (ϕ, ϕ̇, ψ̇), the output equations are given by

y =

ϕ

ϕ̇

ψ̇

 =

1 0 0

0 Θ̂−1
0 −Θ̂−1

0

0 −Θ̂−1
0 Θ−1

w + Θ̂−1
0

x =: Cx. (5.7)

Linearizing equations (5.6) and (5.7) around the equilibrium xeq = (0, 0, 0) yields

ẋ = Ax+Bu (5.8)

y = Cx, (5.9)

with

A =

0 Θ̂−1

0 −Θ̂−1
0

mg 0 0

0 0 0

 , B =

0

0

1

 , and u = T.

Corner Balancing

This subsection presents the modelling of the Cubli balancing on a corner as shown in
Fig. 5.7. Let Θ0 denote the total moment of inertia of the full Cubli around the pivot point
O (see Fig. 5.7), Θwi, i = 1, 2, 3 denote the moment of inertia of each reaction wheel (in
the direction of the corresponding rotation axis), and define Θw := diag(Θw1,Θw2,Θw3),
Θ̂0 := Θ0−Θw. Next, let ~m denote the position vector from the pivot point to the center
of gravity multiplied by the total mass and let ~g denote the gravity vector. The projection
of a tensor onto a particular coordinate frame is denoted by a preceding superscript, i.e.
BΘ0 ∈ R3×3, B(~m) = Bm ∈ R3. The arrow notation is used to emphasize that a vector

107

5.3 Modelling

Be1

Be2

Be3

O

{B}

{I} Ie1

Ie2

Ie3

Figure 5.7: Cubli balancing on the corner. Be∗ and Ie∗ denote the principle axis of the
body fixed frame {B} and inertial frame {I}. The pivot point O is the common origin of
coordinate frames {I} and {B}.

(and tensor) should be a priori thought of as a linear object in a normed vector space
detached from its coordinate representation with respect to a particular coordinate frame.
Since the body fixed coordinate frame {B} is the most commonly projected coordinate
frame, we usually remove its preceding superscript for the sake of simplicity. Note further
that BΘ̂0 = Θ̂0 ∈ R3×3 is positive definite.

The Lagrangian of the system is given by

L(ωh, g, ωw, φ) =
1

2
ωh

TΘ̂0ωh +
1

2
(ωh + ωw)T

Θw(ωh + ωw) +mTg, (5.10)

where B(~ωh) = ωh ∈ R3 denotes the body angular velocity and B(~ωw) = ωw ∈ R3 denotes
the reaction wheel’s angular velocity. The components of T ∈ R3 contain the torques
as applied to the reaction wheels. In the body fixed coordinate frame, the vector m is

108

Chapter 5. The Cubli

constant, whereas the time derivative of g is given by B(~̇g) = 0 = ġ + ωh × g = ġ + ω̃hg.
The tilde operator applied to the vector v ∈ R3, i.e ṽ, denotes the skew symmetric matrix
for which ṽa = v × a holds for all a ∈ R3.

Using the generalized momenta defined as

pωh
=:

∂L
∂ωh

T

= Θ0ωh + Θwωw, (5.11)

pωw =:
∂L
∂ωw

T

= Θw(ωh + ωw) (5.12)

results in the equations of motion given by

ġ = −ω̃hg, (5.13)

ṗωh
= −ω̃hpωh

+ m̃g, (5.14)

ṗωw = T. (5.15)

Note that there are several ways of deriving the equations of motion; for example in [13]
the concept of virtual power has been used. A derivation using the Lagrangian formalism
is shown in the appendix of [14] and highlights the similarities between the 1D and
3D case. The Lagrangian formalism also motivates the introduction of the generalized
momenta.

Using ~̇v = v̇ + ωh × v, the time derivative of a vector in a rotating coordinate frame,
(5.13)-(5.15) can be further simplified to

~̇g = 0, (5.16)

~̇pωh
= ~m× ~g, (5.17)

ṗωw = T. (5.18)

This highlights, in particular, the similarity between the 1D and 3D inverted pendula.
Since the norm of a vector is independent of its representation in a coordinate frame,
the 2-norm of the impulse change is given by ||~̇pωh

||2 = ||~m||2||~g||2 sinφ. In this case, φ
denotes the angle between the vectors ~m and ~g. Additionally, as in the 1D case, pωw is
the integral of the applied torque T .

5.4 State Estimation

The angular velocity of the Cubli’s housing ωh is estimated by averaging the six rate-
gyro measurements. The estimates of wheel velocity ωw comes directly from the motor

http://www.idsc.ethz.ch/Research_DAndrea/Cubli/cubliCDC13-appendix.pdf

109

http://www.idsc.ethz.ch/Research_DAndrea/Cubli/cubliCDC13-appendix.pdf

5.4 State Estimation

controller. This section gives an brief overview of the Cubli’s accelerometer-based tilt
estimation algorithm developed in [15] for the Balancing Cube [7] project.

A one dimensional tilt estimation using two accelerometers is shown in Fig. 5.8. The
Cubli uses six accelerometers to estimate its tilt, or more precisely, to estimate the gravity
vector Bg expressed in its body fixed frame. Each accelerometer is rigidly attached to the
Cubli’s housing and its positions in the body fixed frame {B} is known and denoted by
pi ∈ R3, i = 1, . . . , 6.

ϕ

r2

r1

ex1

ey1

ex2

ey2

Figure 5.8: 1D tilt (ϕ) estimation using two accelerometers. The noise free measurement
mi, i ∈ 1, 2 of the accelerometer is given by (riϕ̈ + g sinϕ,−riϕ̇2 − g cosϕ, 0). The dy-
namic terms (ϕ̇, ϕ̈) can be eliminated by m1 − µm2 = ((1− µ)g sinϕ,−(1− µ)g cosϕ, 0)
=: (mx,my), where µ = r1/r2 and the estimate of the tilt angle is given by ϕ̂ :=
tan−1(−mx/my).

A noise-free accelerometer measurement Âimi of accelerometer i is given by

Âim1 = Âi
B R

B
I R (IBR̈

Bpi +I g), (5.19)

where {Âi} denotes the local frame of the ith sensor, Ig is the gravity vector expressed in
the inertial frame {I}, and I

BR̈ is the second derivative of IBR satisfying

I p̈i =I
B R̈

Bpi. (5.20)

110

Chapter 5. The Cubli

Now, changing the reference frames to the body fixed frame {B} in (5.19) by multiplying
both sides by B

Âi
R gives

Bmi = R̃ Bpi +B g, (5.21)

where R̃ = B
I R

I
BR̈.

Using all accelerometer measurements (5.21) can be expressed as a matrix equation
of the following form:

M = QP, (5.22)

where

M :=
[
Bm1

Bm2 · · · Bm6

]
∈ R3×6,

Q :=
[
Bg R̃

]
∈ R3×4,

P :=

[
1 1 · · · 1

p1 p2 · · · p6

]
∈ R4×6.

The optimal estimate of Q under noisy measurements, while Q is restricted to linear
combinations of measurements M , is given by [15]

Q̂ = MX̂, X̂ := PT(PPT)−1. (5.23)

Finally, this gives the gravity vector estimate

B ĝ = MX̂(:, 1) (5.24)

as a linear combination of measurements M . Note that, since X̂ in (5.24) depends only
on the sensor positions, it can be calculated offline to improve the speed of the estima-
tion process. In a further step, B ĝ from (5.24) are fused with the integrated rate-gyro
measurements to reduce the noise levels. See [15] for more details.

In contrast to many standard methods for state estimation, the above tilt estimator
does not require a model of the system’s dynamics; the only required information is the
location of the sensors on the rigid body. Since no near-equilibrium assumption is made,
the estimator above can be used during both the balancing and the jump-up maneuvers.

5.5 System Identification

This section describes an offline frequency domain-based approach for identifying the
parameters of the Cubli. This section focuses on the edge-balancing-based identification
procedure, a procedure that excites the Cubli when it is balancing on a edge under a linear

111

5.5 System Identification

controller. If this identification procedure is repeated for all three axes of the Cubli’s body
fixed frame {B}, see Fig. 5.7, all parameters except the off-diagonal entries of Θ̂0 can be
identified.

Edge Balancing

This subsection describes the identification of the parameters

ηeb = (Θ̂0,Θw,m)T ∈ R3 (5.25)

of equations (5.8) and (5.9). Let G(s, ηeb) denote the parametric transfer function from
the input u to the output y, given by

G(s, ηeb) = C(sI − A)−1B. (5.26)

While balancing on its edge, the Cubli is excited by the following random phase multisine
signal:

r(t) =
F∑
k=1

Ak sin(2πf0kt+ χk), Ak ∈ R+, (5.27)

where the signal is sampled with 50 Hz and χk is uniformly distributed in [0, 2π). A
realization is defined by the set {χk}, k ∈ {1, 2, ..., F}, i.e. F draws from a uniform
distribution. The identification experiment of the Cubli is set up by choosing F = 20,
f0 = 0.2 Hz and Ak = 10 for k ∈ {1, 2, ..., F}, such that frequencies from 0.2 up to 4

Hz are excited. This choice is motivated by the observation that the unstable pole of the
open loop system, given by equation (5.8), lies at around 1.4 Hz.

Note that, due to its periodicity, the above random phase multisine signal prevents
spectral leakage and allows strongly consistent estimates even in the feedback set up [16].
Also, due to its randomness, the impact of the nonlinearities can be estimated by com-
paring averages over consecutive periods and different realizations, see [17].

Figure 5.9 depicts the block diagram of the set up, where the excitation r(t) is given by
equation (5.27). A total number of P = 10 periods is recorded containing R = 4 different
realizations. Let Y (ω)[r,p] denote the Fourier transformation of the pth output period
of y(t) when the rth multisine realization is exciting the system. Analogously, U(ω)[r,p]

denotes the Fourier transform of the pth input period of u(t) of the rth realization.
The averages Y (ω)[r] and U(ω)[r] over one realization are given by

Y (ω)[r] =
1

P

P∑
p=1

Y (ω)[r,p]e−jχω and (5.28)

U(ω)[r] =
1

P

P∑
p=1

U(ω)[r,p]e−jχω , (5.29)

112

Chapter 5. The Cubli

G

K

r

ni no

u y

Figure 5.9: The block diagram of the system identification procedure. The Cubli (G) is
controlled by a nominal linear feedback controller K and is excited by the random phase
multisine signal r. ni and n0 denote the Gaussian white noise on the input and output of
the system.

together with the sample covariances,

σ̂2
XZ(ω)[r] =

1

P (P − 1)

P∑
p=1

[
(X(ω)[r,p] −X(ω)[r])(Z(ω)[r,p] − Z(ω)[r])∗

]
, (5.30)

where X and Z can be Y or U and ∗ denotes the complex conjugate. Equations (5.28) and
(5.29) account for the different phases of each multisine realization, allows the calculation
of the means

Y (ω) =
1

R

R∑
r=1

Y (ω)[r], and (5.31)

U(ω) =
1

R

R∑
r=1

U(ω)[r]. (5.32)

Since the underlying system is nonlinear, different realizations of the excitation signal r(t)
will lead to different FRF estimates. Hence, by comparing the covariance over different
realizations to the covariance within one realization, the impact of nonlinearities can be
evaluated.

The uncertainty due to noise is computed by [17]

σ̂2
XZ,n(ω) =

1

R2

R∑
r=1

σ̂2
XZ(ω)[r]

113

5.5 System Identification

and can be compared to the total covariance

σ̂2
XZ(ω) =

1

R(R− 1)

R∑
r=1

[
(X(ω)[r] −X(ω))(Z(ω)[r] − Z(ω))∗

]
in order to approximate the effect of nonlinearities.

The parameters ηeb are identified by minimizing the prediction error

e(ηeb, ω) = Y (ω)−G(ηeb, ω)U(ω), (5.33)

weighted by the inverse of its covariance, namely

Ce(ηeb, ω) = σ̂2
Y Y (ω) +G(ηeb, ω)σ̂2

UU(ω)G(ηeb, ω)∗

− σ̂2
Y U(ω)G(ηeb, ω)∗ −G(ηeb, ω)σ̂2

Y U(ω)∗. (5.34)

This results in the sample maximum likelihood estimator [16] of the parameters ηeb, for
which the cost function is given by

VSML(ηeb) =
∑

∀ω:Aω 6=0

e(ηeb, ω)∗C−1
e (ηeb, ω)e(ηeb, ω). (5.35)

The cost function VSML(ηeb) is minimized using the Levenberg-Marquardt method. Com-
pared to other optimization methods, only the computation of the gradient is required.
Furthermore the gradient can be used to provide a covariance estimate of the parame-
ters [18].

Figure 5.10 is an exemplary identification result of the transfer function from the input
torque to the angular velocity ϕ̇. Note that the residuals, i.e. the absolute differences
between the parametric fit and the measurement result, are of the same order as the
noise level, indicating a good fit.

Finally, the parametric model is validated by using an extra dataset containing 10
periods of 1 multisine realization. Figure 5.11 shows a section of one output period. Note
that the predicted output, depicted in black, stays in between the two sigma bounds of
the measured output and confirms the accuracy of the model on the validation set. The
variance is approximated by the sample covariance over the 10 validation periods.

Corner Balancing

Repeating the identification on three perpendicular edges allows the assessment of the
center of mass, the inertia tensor Θw and the diagonal elements of the inertia tensor Θ̂0.
These estimates can be used to design a feedback controller for stabilizing the Cubli on
its corner.

In order to refine the estimates and to determine the off-diagonal entries of the inertia

114

Chapter 5. The Cubli

10−0.610−0.510−0.410−0.310−0.210−0.1 100 100.1 100.2 100.3 100.4 100.5 100.6
−60

−40

−20

0

20

frequency [Hz]

m
ag

ni
tu
de

[d
B
]

10−0.610−0.510−0.410−0.310−0.210−0.1 100 100.1 100.2 100.3 100.4 100.5 100.6
40

60

80

100

frequency [Hz]

ph
as
e
[d
eg
]

Figure 5.10: Frequency response related to the transfer function G2, where the input
represents the torque applied to the reaction wheel and the output represents the angular
velocity ϕ̇. The magnitude and phase of the measured transfer function is depicted in
blue. The parametric fit is shown by black crosses, whereas the standard deviation of
the transfer function measurement is depicted in light green. The absolute error between
the parametric model and the measured response is indicated by black dots. Finally, the
standard deviation due to the measurement noise is depicted by red stars.

tensor Θ̂0, the identification procedure is repeated when the Cubli balances on its corner.
The approach parallels exactly the methodology delineated in the previous subsection

and is therefore not presented. Because a full MIMO system must be identified in this
case, more data is needed and minimizing the sample maximum likelihood cost function
requires a greater computational effort. Nevertheless, it provides parameter estimates of
around 1% accuracy (95% confidence interval) and contributes to a reasonable control
performance, see Sec. 5.8.

115

5.6 Balancing Control

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−4

−2

0

2

4

6
· 10−2

times [s]

ϕ̇
[r
ad

/s
]

Figure 5.11: Validation in the time domain. Depicted in blue is the average of the angular
velocity ϕ̇ over 10 validation periods together with its 95% confidence interval. The output
predicted by the parametric model is shown in black.

5.6 Balancing Control

Edge Balancing

The continuous time dynamics of the Cubli balancing on an edge is given in equations
(5.8) and (5.9). A 20 ms sampling time was selected for the digital control, considering
the open loop unstable pole of (5.8) (700 ms) and a safety factor of around 35. Using this
sampling time the continuous time system was discretized using zero-order hold and the
resulting discrete time model is given by

x[k + 1] = Adx[k] +Bdu[k], y[k] = Cx[k] k ∈ N0, (5.36)

where Ad and Bd are the discrete-time counterparts of the continuous time state matrix
A and input matrix B. For the sake of simplicity we use the same notation to represent
the continuous and discrete time versions of the state x and input u.

116

Chapter 5. The Cubli

Using the above discrete time model, a Linear Quadratic Regulator (LQR) feedback
controller of the form

u[k] = −Kdy[k] (5.37)

was designed, where Kd ∈ R3 is the LQR feedback gain that minimizes the cost function

J(u) :=
∞∑
k=1

xT[k]Qx[k] + uT[k]Ru[k], Q > 0, R > 0.

A nonlinear edge balancing controller is presented in [14].

Corner Balancing

Conservation of Angular Momentum From (5.17) it follows that the rate of change
of ~pωh

lies always orthogonal to ~m and ~g. Since ~g is constant, ~pωh
will never change

its component in direction ~g throughout the trajectory. Expressed in the Cubli’s body
fixed coordinate frame, it can be written as d

dt
(pT
ωh
g) ≡ 0, and this is nothing but the

conservation of angular momentum around the axis ~g.
This has a very important consequence for the control design: independent of the

control input applied, the momentum around ~g is conserved and, depending on the initial
condition, it may be impossible to bring the system to rest. For example, a yaw motion in
the upright position can be slowed down by increasing the velocity of the reaction wheels.
The yaw motion and the reaction wheel velocity can not both be driven to zero at the
same time.

State Space Since the subsequent analysis and control will be carried out in the fixed
body coordinate frame, the state space is defined by the set X = {x = (g, pωh

, pωw) ∈
R9 | ||g||2 = 9.81}. Note that ωh = Θ̂−1

0 (pωh
− pωw).

Equilibria As can be seen from (5.17), the condition ~̇pωh
= 0 is fullfilled only if m ‖ g,

i.e., g = ± m
||m||2 ||g||2. Note that additional relative equilibria exist, but are not considered

in the following. From (5.18) it follows that pωw is constant and T is zero. Using (5.13)
and (5.14) leads to ωh = Θ̂−1

0 (pωh
− pωw) ‖ g and pωh

‖ g, which corresponds exactly to
the conserved part of pωh

. Note that a ‖ b implies that the two vectors a ∈ R3 and b ∈ R3

are parallel. Combining everything together results in the following equilibria:

E1 = {(x, T) ∈ X × R3 | gTm = −||g||2||m||2,

pωh
‖ m, Θ̂−1

0 (pωh
− pωw) ‖ m, T = 0},

E2 = {(x, T) ∈ X × R3 | gTm = ||g||2||m||2,

pωh
‖ m, Θ̂−1

0 (pωh
− pωw) ‖ m, T = 0}.

117

5.6 Balancing Control

Linearization reveals that the upright equilibria E1 is unstable, while the hanging equi-
libria E2 is stable in the Lyapunov [19] sense.

Nonlinear Control of the Reaction Wheel-based 3D Inverted Pendulum Let
us first define the control objective. Since the angular momentum ~pωh

is conserved in the
direction of ~g, the controller may only bring the component of ~pωh

that is orthogonal to ~g
to zero. Hence it is convenient to split the vector ~pωh

into two parts: one in the direction
of ~g, and one orthogonal to it, i.e.

~pωh
= ~p ⊥ωh

+ ~p g
ωh

and ~p g
ωh

= (~p T
ωh
~g)

~g

||~g||22
.

From (5.17) and the conservation of angular momentum, it follows directly that

B(~̇p ⊥ωh
) = ṗ ⊥ωh

+ ω̃hp
⊥
ωh

= m̃g. (5.38)

Another reasonable addition to the control objective is the asymptotic convergence
of the angular velocity of the Cubli, ωh, to zero. Consequently, the control objective can
be formulated as driving the system to the closed invariant set T = {x ∈ X | gTm =

−||g||2||m||2, ωh = Θ̂−1
0 (pωh

− pωw) = 0, p⊥ωh
= 0}.

In order to prove asymptotic stability, the hanging equilibrium must be excluded (as
will become clear later). This can be done by introducing the set X− = X \ x−, where
x− denotes the hanging equilibrium with ωh = 0:

x− = {x ∈ X | g =
||g||2
||m||2

m, p ⊥ωh
= 0, pωh

= pωw}.

Next, consider the controller

u = K1m̃g +K2ωh +K3pωh
−K4pωw , (5.39)

where

K1 =(1 + βγ + δ)I + αΘ̂0,

K2 =αΘ̂0p̃
⊥
ωh

+ βm̃g̃ + p̃ωh
,

K3 =γ(I + αΘ̂0(I − ggT

||g||22
)),

K4 =γI, α, β, γ, δ > 0,

and I ∈ R3×3 is the identity matrix.

118

Chapter 5. The Cubli

Theorem 5.1 The controller given in (5.39) makes the closed invariant set T of the
system defined by (5.16)-(5.18) stable and asymptotically stable on x ∈ X−.

Proof. See [14].

5.7 Jump-Up

The jump-up can refer to either: 1) the movement from the lying flat position to the
balancing on an edge position (face-to-edge jump); or 2) the movement from the balancing
on an edge position to the balancing on a corner position (edge-to-corner jump). The huge
amount of torque required to achieve these motions is produced by rapidly braking the
reaction wheels, which are rotating at high angular velocities. More details on the braking
mechanism can be found in Sec. 5.2 and Fig. 5.4.

Figure 5.12 shows the velocity profile of a reaction wheel during the rapid braking
phase, where the braking command is sent to the RC servo at t = 0. The fixed time delay
between sending the command and the brake pads touching the wheel can be acquired
by observing a velocity profile as in Fig. 5.12. Once the brake pads start to squeeze in,
after a brief transient phase (20 ms), an almost constant torque is applied to the reaction
wheel.

Face-to-Edge Jump

In order to perform a face-to-edge jump, the reaction wheel with its axis parallel to the
edge is accelerated to a desired angular velocity using a PI controller, and then rapidly
braked. Due to the limitations in the motor torques that are used for balancing (low
recovery angles), the jump is required to bring the Cubli sufficiently close to equilibrium
state. However, the first principle model that is used to calculate ψ̇0, the desired angular
velocity of the reaction wheel before braking, is not accurate and fails to give an appro-
priate value for the angular velocity. In order to solve this issue, this subsection presents
a learning strategy that learns the appropriate angular velocity ψ̇0 with multiple trials,
assuming that the Cubli as a system is time invariant.

The learning strategy is based on evaluating the difference in the total energy of
the Cubli at the equilibrium (ϕ, ϕ̇) = (0, 0) and at a position ϕc that is closest to the
equilibrium given by

∆E =
1

2
Θ̂0ϕ̇

2
c −mg (1− cosϕc) , (5.40)

where ϕ̇c is the angular velocity of the Cubli at ϕ = ϕc. Using ∆E, ψ̇0, the angular
velocity of the reaction wheel before braking, is adjusted by ∆ψ̇0 = − sgn(ψ̇0) kE ·∆E.

The total energy at any position after the brakes are released remains constant, since no further
input torque is applied. Picking the position closest to the equilibrium allows the formulation of another
evaluation criterion for the jump-up in the edge-to-corner case that is discussed later.

119

5.7 Jump-Up

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

50

100

150

200

250

300

350

400

450

500

550

Time [ms]

A
ng

ul
ar

V
el
oc
ity

[r
ad

/s
]

Figure 5.12: Braking profile.

Assume that the braking torque remains constant after the brief transient phase as
shown in Fig. 5.12. This assumption gives ∆E ≈ ϕ̇0Θw∆ψ̇0, where ϕ̇0 is the angular
velocity of the Cubli right after brakes are released. This fact can now be used to determine
an appropriate value for kE, giving kE = 1

Θwϕ̇0
.

Catching Controller In addition to finding the appropriate angular velocity ψ̇0, once
the brakes are released, the motor torques can be used to guide the Cubli along an ideal
trajectory that will take it to the equilibrium. One ideal trajectory would be the one that
takes the Cubli to the equilibrium position with out any control input. Since the absence
of input will conserve energy, the above ideal trajectory (ϕ∗, ϕ̇∗) satisfies

1

2
Θ̂0ϕ̇

∗2 −mg (1− cosϕ∗) = 0. (5.41)

Now using the approximation cosϕ ≈ 1−ϕ2/2 gives ϕ̇∗ ≈ −
√

mg

Θ̂0
·ϕ∗; this can be used to

design the following linear state feedback controller, which can be used for both guiding

120

Chapter 5. The Cubli

the Cubli and making it balance:

T = k1 ·

ϕ+

√
Θ̂0

mg
· ϕ̇

+ k2 · ψ̇. (5.42)

The above controller will not take any action while following the ideal trajectory, and will
bring the Cubli towards the ideal trajectory if perturbed. The controller gains k1 and k2

can be tuned using pole placement for instance. Note that, for the sake of simplicity and
because the value is negligible in practice, the above energy-based analsyis ignores the
energy of the reaction wheels caused by their relative motion to the frame after braking.

Edge-to-Corner Jump

Assume, without loss of generality, that the Cubli is balancing on the edge coinciding
with the Be2 axis as shown in Fig. 5.13. In order to jump up to the corner balancing
position, a torque in the direction of Ie1 is required. This torque can only achieved by
a combined rapid braking of the reaction wheels with axes parallel to Be1 and Be3. For
the same reasons as in the face-to-edge jump-up, the first principle model fails to provide
appropriate angular velocities for the reaction wheels.

This subsection proposes a learning algorithm that learns the appropriate angular
velocities of both reaction wheels through repeated trials. At every iteration, the quality
of the jump-up trajectory, see Fig. 5.14, is quantified using the following two measures
and, based on these measures, the wheel velocities are adjusted accordingly.

• Energy Measure: Similar to the face-to-edge jump, this measure focuses on the
energy difference ∆E between Cubli’s equilibrium position and the position that is
closest to the equilibrium, denoted by c in Fig. 5.14. Note that the component of
the Cubli’s angular velocity parallel to m is not considered in the energy measure
since it has almost no influence in taking the Cubli up towards the equilibrium.

• Divergence Measure: An ideal edge-to-corner jump-up trajectory will lie on the
plane that contains ~m0 and ~g, see Fig 5.14. The divergence measure quantifies the
deviation of the trajectory from this plane with the following quantity:

∆D =
(
~̇m× ~δc

)T ~mc

‖ m ‖
,

=
(

(~ωh × ~m)× ~δc
)T ~mc

‖ m ‖
,

where ~δc = −~g/ ‖ g ‖ −~m/ ‖ m ‖.

Using the above two measures, the angular velocity of the two reaction wheels ωw0(i)

121

5.7 Jump-Up

Ie1

Ie2 = Be2

Be3

Ie3

Be1

~m

Face to Edge

Edge to Corner

Figure 5.13: The Cubli is balancing on the edge parallel to the Be2 axis. In order to jump
up to the corner balancing position, a torque in the direction of Ie1 is required. This
torque can only be achieved by a combined rapid braking of the reaction wheels with
axes parallel to Be1 and Be3.

i = 1, 3 are updated with

∆ωw0(i) = − sgn(ωw(i)) kE∆E − kD∆D, (5.43)

where kE ≈ 1
Θw · (ωb0(1)+ωb0(3))

, kD is huristicly chosen constant, and ωb0(i) i = 1, 3 is the ith
component of ωb right after the brakes are released. Figure 5.15 shows the performance
of the above learning algorithm, when the system started from different initial wheel
velocity pairs that can not make the edge-to-corner jump.

122

Chapter 5. The Cubli

~mc

‖m‖

−~g
‖g‖

~m0

‖m‖

0

c

~δc

Figure 5.14: An exemplary trajectory (blue) of an edge-to-corner jump. The trajectory
is defined by the motion of the normalized m vector. The point 0 denotes the position
when the Cubli was balancing on an edge, and the point c denotes the position that is
closest to the tip of the normalized g, the gravity vector.

5.8 Experimental Results

Balancing

This subsection presents disturbance rejection measurements of the Cubli balancing on
its corner. Disturbance rejection measurements for the edge balancing case can be found
in [20]. The controller given in (5.39) is implemented on the Cubli with a sampling time
of Ts = 20 ms along with the algorithm proposed in [15] for state estimation.

Figures 5.16, 5.17, and 5.18 show disturbance rejection plots of the closed loop system
with the proposed controller. A disturbance of roughly 0.1 Nm was simultaneously applied
for 60 ms on each of the reaction wheels simultaneously. The control input is shown in
Figure 5.19, where the controller reaches the steady state control input in less than 1 s.
Finally, the controller attained a root mean square (RMS) inclination error of less than
0.025 ◦ at steady state.

Jump-Up

This subsection presents the evolution of the Cubli’s states during a jump-up, where it
first jumped up lying flat on its face to its edge and then it went from its edge to its

123

5.9 Conclusions and Future Work

−550 −500 −450 −400 −350 −300 −250
300

350

400

450

ωw0(3)

ω
w

0(
1)

Figure 5.15: Learning the edge-to-corner jump. Each trajectory (black dashed line) shows
the evolution of reaction wheel velocities ωw0(1) and ωw0(3) starting from different ini-
tial velocity pairs that can not make the edge-to-corner jump. Green squares show the
converged values for the different initial velocity pairs. The experimentally found region
inside the blue dotted ellipse contains all the velocity pairs that can make the edge-to-
corner jump.

corner. Figure 5.20 shows the evolution of the Cubli’s orientation in Euler angles and
Fig. 5.21 shows the evolution of the reaction wheel velocities.

5.9 Conclusions and Future Work

This paper presented the design and implementation of, what is to date, the smallest 3D
inverted pendulum and the first that can self erect. The paper started off with explaining
the compact design that is based on off-the-shelf motors, motor controllers, brake-pads,
etc. Then, the system was modelled using Lagrangian formalism. Introducing the concept
of generalized momenta showed a clear relationship between the 1D and the 3D version.
After the modelling was explained, a system identification procedure that does not re-
quire any external setup was described. Then a novel, back-stepping-based, nonlinear
controller was proposed, before presenting the jump-up strategy along with a heuristic
tuning method. Finally the results from several experiments were shown.

Future work includes, a rigorous tuning method for the nonlinear controller and the
design of controllers that guide the Cubli along an optimal trajectory during the edge-
to-corner jump-up.

124

Chapter 5. The Cubli

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time[s]

in
cl
in
at
io
n
an

gl
e
[d
eg
]

Figure 5.16: Disturbance rejection measurements. Inclination angle of the closed loop
system versus time when approximately 0.1 Nm of torque was applied simultaneously on
two reaction wheels for 60 ms as a disturbance.

5.10 Acknowledgements

The authors would like to express their gratitude towards Igor Thommen, Marc-Andrea
Corzillius, Hans Ulrich Honegger, Alex Braun, Tobias Widmer, Felix Berkenkamp, Sonja
Segmueller, and Michael Merz for their significant contribution to the mechanical and
electronic design of the Cubli. We also thank Carolina Flores, Christine Pachinger, and
Markus Waibel for their great help with graphics, media, and proof reading.

References

[1] A. Stephenson, “On a new type of dynamical stability,” Memoirs and Proceedings of
the Manchester Literary and Philosophical Society, vol. 52, no. 8, pp. 1–10, 1908.

[2] P. Reist and R. Tedrake, “Simulation-based LQR-trees with input and state con-
straints,” in IEEE International Conference on Robotics and Automation (ICRA),
2010, pp. 5504–5510.

125

References

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

· 10−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

· 10−3

x [m]

y
[m

]

Figure 5.17: Disturbance rejection measurements. Trajectory of the center of mass pro-
jected onto the x-y plane in the inertial coordinate frame. The color gradient indicates
the evolution over time. The blue circle highlights the starting point of the trajectory
(t = 80 ms), right after the disturbance.

[3] D. Alonso, E. Paolini, and J. Moiola, “Controlling an inverted pendulum with
bounded controls,” in Dynamics, Bifurcations, and Control, ser. Lecture Notes in
Control and Information Sciences, F. Colonius and L. Grüne, Eds. Springer Berlin
Heidelberg, 2002, vol. 273, pp. 3–16.

[4] M. V. Bartuccelli, G. Gentile, and K. V. Georgiou, “On the stability of the
upside-down pendulum with damping,” Proceedings: Mathematical, Physical and
Engineering Sciences, pp. 255–269, 2002.

[5] J. Meyer, N. Delson, and R. de Callafon, “Design, modeling and stabilization of a
moment exchange based inverted pendulum,” in 15h IFAC Symposium on System
Identification, Saint-Malo, France, 2009, pp. 462–467.

[6] D. Bernstein, N. McClamroch, and A. Bloch, “Development of air spindle and triaxial
air bearing testbeds for spacecraft dynamics and control experiments,” in American
Control Conference, 2001, pp. 3967–3972.

126

Chapter 5. The Cubli

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

time [s]

bo
dy

an
gu

la
r
ve
lo
ci
ty

[r
ad

/s
]

Figure 5.18: Disturbance rejection measurements. Angular velocity of the housing ωh
versus time. The different colors depict the different vector components of ωh. Here,
approximately 0.1 Nm of torque was applied simultaneously on two reaction wheels for
60 ms as a disturbance.

[7] S. Trimpe and R. D’Andrea, “The balancing cube: A dynamic sculpture as test bed
for distributed estimation and control,” Control Systems, IEEE, vol. 32, no. 6, pp.
48–75, Dec 2012.

[8] T. Yoshimitsu, T. Kubota, I. Nakatani, T. Adachi, and H. Saito, “Micro-hopping
robot for asteroid exploration,” Acta Astronautica, vol. 52, no. 2–6, pp. 441 – 446,
2003, selected Proceedings of the 4th {IAA} International conference on Low Cost
Planetary Missions.

[9] M. Pavone, J. Castillo-Rogez, I. Nesnas, J. Hoffman, and N. Strange, “Space-
craft/rover hybrids for the exploration of small solar system bodies,” in 2013 IEEE
Aerospace Conference, March 2013, pp. 1–11.

[10] R. Jones, “The muses cn rover and asteroid exploration mission,” in Proc. 22nd
International Symposium on Space Technology and Science, 2000, pp. 2403–2410.

[11] J. Romanishin, K. Gilpin, and D. Rus, “M-blocks: Momentum-driven, magnetic

127

References

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

time [s]

to
rq
ue

[N
m
]

Figure 5.19: Disturbance rejection measurements. Depicted is the resulting control input
of the nonlinear controller. The different colors depict the different vector components
of T . Here, approximately 0.1 Nm of torque was applied simultaneously on two reaction
wheels for 60 ms as a disturbance.

modular robots,” in Proc. 2013 IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), Nov 2013, pp. 4288–4295.

[12] L. Cornelius, The variational principles of mechanics, 4th ed. University of Toronto
Press Toronto, 1970.

[13] M. Gajamohan, M. Muehlebach, T. Widmer, and R. D’Andrea, “The cubli: A
reaction wheel based 3d inverted pendulum,” in proc. European Control Conference,
2013, pp. 268–274.

[14] M. Muehlebach, G. Mohanarajah, and R. D’Andrea, “Nonlinear analysis and control
of a reaction wheel-based 3D inverted pendulum,” in Proc. IEEE Conference on
Decision and Control (CDC), Florence, Italy, 2013, pp. 1283–1288.

[15] S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation of a rigid body with
only rotational degrees of freedom,” in IEEE International Conference on Robotics
and Automation (ICRA), 2010, pp. 2630–2636.

128

Chapter 5. The Cubli

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

an
gl
e
[r
ad

]

roll
pitch
yaw

Figure 5.20: Evolution of the Cubli’s orientation in Euler angles during the face-to-edge
jump (t ∼ 6 s) and edge-to-corner jump (t ∼ 11 s).

[16] R. Pintelon and J. Schoukens, System identification: a frequency domain approach.
John Wiley & Sons, 2004, ch. 8, pp. 285–287,301.

[17] ——, System identification: a frequency domain approach. John Wiley & Sons,
2004, ch. 3, pp. 86–88.

[18] ——, System identification: a frequency domain approach. John Wiley & Sons,
2004, ch. 7, pp. 212–217.

[19] H. Khalil, Nonlinear Systems. Upper Saddle River, New Jersey: Prentice Hall, 1996.

[20] M. Gajamohan, M. Merz, I. Thommen, and R. D’Andrea, “The Cubli: A cube that
can jump up and balance,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012, pp. 3722–3727.

129

0 2 4 6 8 10 12 14 16 18 20
−600

−400

−200

0

200

400

600

800

time [s]

an
gu

la
r
ve
lo
ci
ty

[r
ad

/s
]

ωw(1)
ωw(2)
ωw(3)

Figure 5.21: Evolution of the Cubli’s reaction wheel velocities during the face-to-edge
jump (t ∼ 6 s) and edge-to-corner jump (t ∼ 11 s).

6
Conclusions and Future
Directions

This dissertation described the work on:

• The cloud : the design and implementation of a cloud robotics platform and a demon-
strator for cloud-based collaborative 3D mapping

• Paper planes : algorithms to aggregate and learn from data gathered by various
robots connected to the cloud

• The cube: a reaction wheel-based 3D inverted pendulum with a small foot print
that can self erect

Conclusions that summarize the specific contributions and/or provide direct exten-
sions to the work are presented at the end of Chapters 2-5. The following presents a
retrospective of the work accomplished, some of the lessons learned, and future direc-
tions.

The Cloud

Major contributions of this work include:

• Design and implementation of a novel robotics-specific Platform-as-a-Service frame-
work that helps robots to offload some of their heavy computation and acts as a
communication medium between robots.

• Cloud-based collaborative 3D mapping in real-time: The developed system uses
half the bandwidth of other comparable systems [1], and to date has the lowest cost
(USD 500 per robot).

The biggest challenge in building the Rapyuta cloud robotics platform was in satis-
fying all the design constraints: simplicity for the end-user, good reactivity, extensibil-
ity, and compatibility with existing robotics software. Rapyuta is currently in its fourth
design iteration, each of which involved substantial redesigns even though technology
choices (such as WebSockets, Twisted asynchronous programming, and Linux containers)

131

remained largely unchanged. Each iteration introduced new functionalities to enhance
the usability, security, and extensibility of the system. Because cloud robotics is still a
relatively young and untested field, generating interest in and convincing roboticists of
the advantages of such a system was another significant challenge. A concrete collabora-
tive mapping demonstrator was built using low-cost robots to help overcome this problem
(see Chapter 3).

The main future challenges include:

• Semantics : Although ROS provides standard message types for the information
exchange between robotic software components, there is no semantic layer that gives
meaning and grounding to a commonly agreed upon corpus such as WordNet [2]
or KnowRob [3]. Having additional semantic information for messages and software
components will allow software agents to perform reasoning on the configuration
and pave the way towards fully autonomous systems.

• Cloud-based configuration/control : Currently, Rapyuta can only control the applica-
tions running in the cloud. Having the ability to configure and launch applications
on the robot as well will facilitate highly configurable robotics systems. The chal-
lenge here lies in providing sufficient security such that control of the robot cannot
be taken over by an unauthorized access.

• Wireless connectivity : Nowadays, robust high-bandwidth wireless connectivity is in
general not an issue indoors due to ample number of access points provided by the
infrastructure. However, outdoor connectivity remains an open question. Mobile
broadband technologies such as LTE show promise in solving some of the issues.
Additionally, mobile adaptive networks [4] - where access points are mounted on
mobile robots that move around to provide the necessary bandwidth and robustness
- also show promise for solving the outdoor connectivity issue.

Rapyuta will continue its development as an open source community project, with
more than 10 active research groups using the platform and providing valuable feedback.
The open source effort will be partially supported by the Amazon Web Services grant.

Paper Planes

Major contributions of this work include:

• Proposed a reinforcement learning algorithm, proved its convergence for trajectory
tracking, and showed that a significant amount of knowledge can be transferred
even between cases where the reference trajectories are not the same.

• Developed and implemented an Indirect Object Search algorithm that predicts oc-
currence and location probabilities of small and hard-to-detect object classes based
on the occurrence and location of large, easy-to-detect object classes.

This work included the development of algorithms that aggregate and learn from the
data gathered from various robots. High-level learning algorithms such as the Indirect

132

Chapter 6. Conclusions and Future Directions

Object Search were implemented with relative ease compared to the hardware-dependent
low-level algorithms such as Iterative Learning Control (ILC) or articulation model learn-
ing. The biggest challenge with respect to the low-level algorithms was to make them work
across multiple hardware platforms and their various low-level software ecosystems.

The algorithmic work done under this dissertation just scrapes the surface of the
realm of open issues. Learning should happen at various levels, starting from trajectories
to semantic reasoning. Furthermore, learning algorithms can be used in the following
ways to facilitate an internet for robots:

• Imitation learning : Learning a task by observing a teacher, typically a human, doing
that specific task. These methods will help bootstrap the RoboEarth knowledge
repository with useful high quality knowledge.

• Learning from the World Wide Web: Learning from pre-existing web-based informa-
tion. Since the knowledge was originally meant to be used by humans, in order to
use this information on a robot, the learning algorithm must augment the existing
information with additional knowledge and remove uncertainties.

• Anomaly detection: Algorithms should be developed to detect anomalies in the data
coming in from different robots in order to avoid misbehavior resulting from the
use of accumulated data; such misbehavior could pose a threat to the robots and
their surrounding environment.

The Cube

Major contributions of this work include:

• The smallest 3D inverted pendulum to date, and the first 3D pendulum that can
self erect

• A novel nonlinear control design with intuitive tuning parameters

The Cubli is an ideal platform for research and education in nonlinear controls and
state estimation. Application examples include: hybrid rovers for planetary exploration
[5, 6] or self assembling robots [7].

The biggest challenge in terms of building the Cubli was the braking mechanism. Our
initial proposal [8] used for the 1D prototype, shown in Fig. 6.1, was not suitable for
the 3D version. Due to the high inertia/mass of the 3D prototype, the required angular
velocities of the reaction wheels were very high. Instantaneously stopping these high
speed wheels created a large impulsive force that caused the structure to deform and/or
break. This issue was resolved by a complete redesign of the braking mechanism described
in Chapter 5. Other features of this project include a nonlinear controller design with
intuitive tuning parameters, and a system identification technique that does not require
any additional apparatus.

For future work, multiple Cublis can be combined to build a testbed for studying
simultaneous stabilization and synchronization in a distributed setting, see Fig 6.2. This

133

Figure 6.1: CAD drawing of the RC servo-based braking mechanism used at the project’s
outset: An RC servo is used to collide a metal barrier (blue) with the bolt head (red)
attached to the momentum wheel. The sudden impact of the high speed wheel with the
brake’s metal barrier caused the structure to deform and/or break.

testbed can be conceptualized as a choreographed dance performance of Cublis that
can balance autonomously on an edge or corner. The control system on each cube must
achieve two simultaneous objectives: (1) stabilization of individual Cublis, and (2) motion
synchronization of each Cubli with its peers through wireless communication links.

Figure 6.2: An illustration of multiple Cublis trying to synchronize their attitude and
angular velocities while balancing on their corners.

References

[1] L. Riazuelo, J. Civera, and J. M. M. Montiel, “C2tam: A cloud framework for cooper-
ative tracking and mapping,” Robotics and Autonomous Systems, 2013, accepted for
publication.

[2] G. A. Miller, “Wordnet: A lexical database for english,” COMMUNICATIONS OF
THE ACM, vol. 38, pp. 39–41, 1995.

[3] M. Tenorth and M. Beetz, “Knowrob — knowledge processing for autonomous
personal robots,” in in IEEE/RSJ International Conference on Intelligent RObots
and Systems, 2009.

[4] S. Gil, D. Feldman, and D. Rus, “Communication coverage for independently moving
robots,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, Oct 2012, pp. 4865–4872.

134

Chapter 6. Conclusions and Future Directions

[5] M. Pavone, J. Castillo-Rogez, I. Nesnas, J. Hoffman, and N. Strange, “Spacecraft/rover
hybrids for the exploration of small solar system bodies,” in Aerospace Conference,
2013 IEEE, March 2013, pp. 1–11.

[6] T. Yoshimitsu, T. Kubota, I. Nakatani, T. Adachi, and H. Saito, “Micro-
hopping robot for asteroid exploration,” Acta Astronautica, vol. 52, no.
2–6, pp. 441 – 446, 2003, selected Proceedings of the 4th {IAA}
International conference on L ow Cost Planetary Missions. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0094576502001868

[7] J. Romanishin, K. Gilpin, and D. Rus, “M-blocks: Momentum-driven, magnetic
modular robots,” in Proc. 2013 IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), Nov 2013, pp. 4288–4295.

[8] G. Mohanarajah, M. Merz, I. Thommen, and R. D’Andrea, “The Cubli: A cube that
can jump up and balance,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura-Algarve, Portugal, 2012, pp. 3722–3727.

135

http://www.sciencedirect.com/science/article/pii/S0094576502001868

A
Appendix: Paper Planes

A.1 Proof of Proposition 4.3.1

To prove proposition 4.3.1 we start with the following lemma:

Lemma A.1
∀ε > 0 ∃ α0(ε, d) <∞ s.t. if ωT = O((log T)d), then ωT ≤ α0T

ε, T ≥ 1.

Proof. ∃ a < ∞ s.t. ωT ≤ a(log T)d. Take α0 = amaxT−ε(log T)d. Taking the
derivative of g(T) = T−ε(log T)d:

d(log T)d−1 − ε(log T)d

T 1+ε
= 0 (A.1)

The function g(T) is continuous for T ≥ 1 with g(1) = 0 and as T → ∞, g(T) → 0.
Hence the only optimum attained in (1,∞) at Topt = exp(d/ε) with g(Topt) =

(
d
eε

)d is a
global maximum. Taking α0(ε, d) = a

(
d
eε

)d then we can see that

ωT ≤ a(log T)d ≤ α0T
ε, T ≥ 1. (A.2)

Equipped with this lemma, we can prove Proposition 4.3.1 for the squared exponential
kernel 1:

1The proof is the same for the linear kernel, but the exponent of the bound (A.3) changes for Matérn
kernels with 1 < ν <∞.

137

A.2 Numerical Examples

Proof. We can bound (4.19) using the previous lemma:

L(T)∑
`=1

Λ` + εsL ≤ RT ≤
√
κTβTγT ≤ αT 3/4 (A.3)

where ω2
T = κβTγT = 2BκγT + 300κγ2

T log3(T/δ) = O((log T)2d+5) and α = α0(1/4, (2d+

5)/2) for the squared exponential kernel. Since Λ` ≥ 0, ` = 1, . . . , L we get w.h.p.
p ≥ 1− δ:

L ≤ α T 3/4

εs
(A.4)

τm =
T

L
≥ εs T

1/4

α
(A.5)

where τm denotes the average of the stopping times τ(`), ` = 1, . . . , L. But this means
∃` ≤ L s.t. τ(`) ≥ τm ≥ (εs/α)T 1/4 ≥ N before T ≤ Tmax =

(
Nα
εs

)4.

A.2 Numerical Examples

Table A.1: Quadrocopter dynamical constraints

Constraints Values

fmin 0.25 m/s2

fmax 5.5 m/s2

ḟmax 51 m/s3

φ̇max 25 rad/s

φ̈max 200 rad/s2

Example 1. As an example consider the effect of wind on the quadrotor operation. As-
suming the wind, coming at an angle of θ from the horizontal axis, exerts a pressure Pwind
on the quadrotor with area A, the dynamics is modified as follows:

ÿ = −fcoll sinφ+ PwindAsin(θ + φ)cosθ

z̈ = fcoll cosφ− g + PwindAsin(θ + φ)sinθ

φ̇ = ωx

(A.6)

Mismatch in this case is only in the drift term. Using squared Euclidean distance and
forward Euler integration with time discretization h the cost disturbance δqt(u;x, s) =

138

Appendix A. Appendix: Paper Planes

qt − q̂t for the simple case of a perfectly horizontal wind, θ = 0, can be calculated as
follows:

δqt(u;x, s) = (h2P 2
windA

2 − 2h2PwindA fcoll) sin2 x(5)

+ 2hPwindA(x(2)− s(2)) sinx(5)
(A.7)

In this case we effectively learn to compensate for this repeating disturbance δqt(u;x, s) :

R2 × R× R 7→ R, as we do online TGP optimization along the trajectory.
Example 2. As another example consider mismatch in the quadrotor actuators. If the

actual applied force is fcoll(1 + a) for some small unknown a the cost difference can be
calculated as before:

δqt(u;x, s) = (h2a2 + 2ha)f 2
coll

− 2h(x(2)− s(2))afcoll sinx(5)

+ 2h(x(4)− s(4)− g)afcoll cosx(5)

(A.8)

139

	Introduction
	Cloud Robotics
	Development of a Self-erecting 3D Inverted Pendulum
	Contribution and Organization

	Rapyuta: A Cloud Robotics Framework
	Introduction
	Main Components
	Communication Protocols
	Deployment
	Performance and Benchmarking
	Demonstratros
	Conclusion and Outlook
	Acknowledgment
	References

	Cloud-based Collaborative 3D Mapping with Low-Cost Robots
	Introduction
	System Architecture
	Onboard Visual Odometry
	Map Representation and Communication Protocol
	Map Optimization and Merging
	Evaluation
	Conclusion
	Acknowledgement
	References

	Gaussian Process Optimization-based Learning for Trajectroy Tracking
	Introduction
	Problem Statement and Background
	Algorithm TGP
	Experimental Results
	Conclusion
	References

	The Cubli
	Introduction
	Mechatronic Design
	Modelling
	State Estimation
	System Identification
	Balancing Control
	Jump-Up
	Experimental Results
	Conclusions and Future Work
	Acknowledgements
	References

	Conclusions and Future Directions
	Appendix: Paper Planes
	Proof of Proposition 4.3.1
	Numerical Examples

