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Abstract

Dielectric spectroscopy is a technique for non-invasive probing of materials, e.g. bio-
logical tissue. Especially in case of biological tissue many physical and physiological
parameters influence the dielectric properties so the unique relation between variations
in properties of the bulk material and the origin of a specific change becomes difficult to
assess. In order to better understand and investigate the effective dielectric properties
and certain mechanisms influencing them computational models of the material exposed
to the electric field might provide a deeper insight. However, biological material is inho-
mogeneous, anisotropic and dispersive. In addition, large aspect ratios occurring on the
cellular as well as on the macroscopic level often lead to a high computational demand
in numerical simulations. Consequently, modeling of the effective dielectric properties is
rather challenging. The aim of this work is to overcome the mentioned challenges and
to enable the computational reproduction of the dielectric behaviour of cell suspensions
and tissues.

First, the most important spectral features are identified using semi-analytical mixing
formulas. Cell suspensions and tissues are assumed having a quasi-periodic microstruc-
ture with a three-phase unit cell consisting of a shelled particle (cytoplasm and cell
membrane) embedded in extracellular medium. Then, more advanced models including
a versatile parametrization method of the cell shape are implemented using the Finite
Element Method. Additionally, thin geometrical domains are successfully replaced by
boundary conditions leading to a significant computational speedup. Focusing on the
microsctrucure it is shown that for frequecies up to at least 10 − 100 MHz shape and
volume fraction of cells strongly influence the dielectric spectra of biological bulk mate-
rial. Above the center frequency of the β-dispersion caused by the shorting of the cell
membrane, shape and volume fraction lose their importance and the principal charac-
teristic in effective properties of the cell model is determined by the volume fractions of
the different constituents only. Consequently, for dielectric modeling of biological tissue
below 100 MHz cell shape and cellular volume fraction have to be accurately taken into
account in the model. Mixing formulas can serve as a first approximation, but for more
realistic scenarios only numerical simulations offer the required flexiblity and accuracy.
Furthermore, as some tissues exhibit a layered substructure on the macro- or submacro-
scopic scale semi-analytical and numerical models of multilayer structures are developed.
Since non-invasiveness often involves the use of coplanar electrodes the multilayer struc-
tures are exposed to an inhomogeneous electric field, an additional challenge for a po-
tential reconstruction. The uniqueness as well as the sensitivity and selectivity of the
effective properties to parameter changes are investigated using the mentioned models.
Generally, the reconstruction is an ill-posed problem. However, it is shown that if the
number of unknowns is sufficiently small one can potentially assign the origin of a change
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in the effective parameters to a specific varying parameter. The needed information is
obtained from the difference spectra of permittivity and conductivity and their first and
second derivative assuming a certain parameter oscillating around a referece value.
Combining the findings a versatile and flexible computational framework is implemented.
For the first time a dielectric multiscale model of biological tissue in the MHz range is
established, fully based on material composition and morphological parameters of the
micro- and macrostructure. Finally, the approach is successfully validated with mea-
surements on human skin.

The presented framework is extendable and can be used for identification of mecha-
nisms causing dielectric changes as well as for optimization of sensing devices. The use
of the basic approach is not limited to biological tissue but suitable for the modeling of
dielectric properties of composite materials with a similar substructure in general.
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Zusammenfassung

Dielektrische Spektroskopie ist eine Methode für nicht-invasive Untersuchungen an Ma-
terialien, wie zum Beispiel an biologischem Gewebe. Vor allem im Falle von biologischem
Gewebe existieren viele physikalische und physiologische Parameter, welche die dielek-
trischen Eigenschaften beeinflussen. Somit gestaltet sich eine eindeutige Zuordnung zwis-
chen Variationen der Eigenschaften des Bulkmaterials und einer spezifischen Änderung
eher schwierig. Eine Möglichkeit um die effektiven dielektrischen Eigenschaften eines
Materials zu untersuchen und etwaige Änderungen besser zu verstehen stellen rechn-
ergestützte Modelle dar. Allerdings ist biologisches Material inhomogen, anisotrop und
dispersiv. Zusätzlich führen grosse Längenverhältnisse sowohl auf der mikro- als auch
auf der makroskopischen Skala häufig zu einem grossen rechnerischen Aufwand in nu-
merischen Simulationen. Das Ziel der vorliegenden Arbeit besteht darin, die erwähnten
Herausforderungen zu überwinden und die computergestützte Berechnung vom dielek-
trischen Verhalten von Zellsuspensionen und biologischem Gewebe zu ermöglichen.

Zuerst werden die wichtigsten spektralen Besonderheiten mittels semi-analytischen Misch-
formeln identifiziert. Dabei wird angenommen, dass Zellsuspensionen und Gewebe eine
quasi-periodische Struktur aufweisen. Die Einheitszelle besteht aus einem Einschluss,
dem Zytoplasma umhüllt von einer Zellmebran, eingebettet im extracellulären Medium.
Anschliessend werden erweiterte Modelle mit Hilfe der Methode der Finiten Elemente
unter Verwendung einer vielseitigen Oberflächenparametrisierungsmethode implemen-
tiert. Dabei können dünne geometrische Domänen durch Grenzbedingungen ersetzt
werden, was zu einer signifikanten Verkürzung der Rechenzeit führt. Es wird gezeigt,
dass sowohl Zellform als auch der Volumenbruch, welchen die (biologische) Zelle in der
Einheitszelle annimmt, das Frequenzspektrum der effektiven Materialparameter bis 10 −
100 MHz stark beeinflussen. Über der Relaxationsfrequenz der β-Dispersion, verursacht
durch den Kurzschluss der Zellmembran verlieren Zellform und Volumenbruch weitge-
hend ihre Bedeutung und die effektiven Eigenschaften werden hauptsächlich durch die
Volumenbrüche der einzelnen Konstituenten bestimmt. Daraus folgt, dass in dielek-
trischen Modellen von Zellen und Geweben für Frequenzen unter 100 MHz Zellform und
Volumenbruch angemessen Rechnung getragen werden muss. Mischformeln können hi-
erfür als Approximation dienen, allerdings bieten nur numerische Simulationen die nötige
Flexibiliät und Genauigkeit.
Im Weiteren werden semi-analytische und numerische Modelle von Mehrschichtensyste-
men erstellt, da einige Gewebearten auf der makroskopischen oder submakroskopischen
Skala geschichtete Unterstrukturen aufweisen. Da bei nicht-invasiven Messanordnungen
häufig koplanare Elektroden zum Einsatz kommen, ist das Mehrschichtensystem einem
inhomogenen elektrischen Feld ausgesetzt, also einer zusätzlichen Herausforderung für
eine potentielle Rekonstruktion. Mit den erwähnten Modellen wird sowohl Eindeutigkeit
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der effektiven Eigenschaften als auch Sensitivität und Selektivität bezüglich Parame-
teränderungen untersucht. Im Allgemeinen ist die Rekonstruktion ein schlecht kondi-
tioniertes Problem. Es wird allerdings gezeigt, dass der Ursprung einer Änderung in
den effektiven Parametern einem spezifischen, variierdenen Parameter zugeordnet wer-
den kann, wenn die Anzahl Unbekannter klein genug ist. Die nötige Information wird
aus den Differenzspektren von Permittivität und Leitfähigkeit sowie deren erster und
zweiter Ableitung erhalten.
Anschliessend werden die Erkenntnisse kombiniert und es wird eine vielseitige und flex-
ible Berechnungsprozedur implementiert. Das erste Mal überhaupt wird ein dielek-
trisches Multiskalen-Modell für biologisches Gewebe in der MHz-Region erstellt, welches
auf Materialzusammensetzung und Morphologie der Mikro- und Makrostruktur basiert.
Schliesslich wird der Ansatz erfolgreich mit Messungen auf der menschlichen Haut vali-
diert.

Die vorgestellte Berechnungsprozedur ist erweiterbar und kann sowohl für die Identifika-
tion von Mechanismen, welche Änderungen in effektiven dielektrischen Eigenschaften zur
Folge haben, als auch für die Optimierung von Messanordungen und Sensoren verwendet
werden. Der grundlegende Ansatz beschränkt sich nicht nur auf biologisches Gewebe,
sondern eignet sich auch für Modellierung von Materialgemischen mit ähnlicher Sub-
struktur im Allgemeinen.
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1 Introduction
1.1 Motivation

Dielectric spectroscopy allows for monitoring changes in material properties of regions
within the material under test which are not in direct contact with the electrode. There-
fore, it offers the potential of non-invasive monitoring, a notion that gained increased
attention in daily clinical routine as well as in material testing. Applications for the
latter of non-invasive dielectric spectroscopy range from moisture measurement in food,
pharmaceutical products, paper pulp to cure state monitoring in the resin transfer mold-
ing process [1] or the reconstruction of sample thicknesses e.g. of keratinocyte stem cells
grown on an array of coplanar electrodes [2].
The dielectric properties of biological tissue strongly depend on frequency over a broad
range of the electromagnetic spectrum and are a target for monitoring as well. In the
field of medical applications dielectric spectroscopy and electric impedance spectroscopy
is already used for inspection of cervical squamous tissue since the cell shape is subse-
quently modified with advancing precancerous stage [3], skin cancer [4], skin irritations
[5], non-invasive glucose monitoring [6], ischemia detection [7], measurement of oedema in
irritant-exposed skin [8], monitoring of in vitro tissue engineering [9] or tumor characteri-
zation [10]. On the microscopic scale specific techniques based on dielectric spectroscopy
such as microfluidic cytometry, dielectrophoresis and electrorotation [11], [12], [13], [14],
[15] and [16] are employed for the investigation of single cells.
However, dielectric spectroscopy did not manage the area-wide breakthrough in daily
clinical use so far. Despite the mentioned applications most types of biological tissues
exhibit very similar characteristics and small changes ocurring in measured effective di-
electric properties cannot easily be correlated to specific changes. In living cells there is
no dominant mechanism causing large variations, rather the opposite is the case: Since
the effective dielectric properties depend on many factors such as the structural, physi-
cal and physiological state small variations mask each other and cumulate to a sort of a
‘noise’. Therefore, it is difficult to assign an observed change in the measured signal to
the underlying mechanism. Consequently, the question arises under which circumstances
dielectric spectroscopy can actually be applied in patient monitoring.
One possibility in order to find out the relation between a signal change and the specific
parameter variation would be to establish a model containing all features and mecha-
nisms responsible for dielectric changes. Up to some years ago dielectric models were
either rather simple or when reached for an appropriate complexity the computational
demand would simply have exploded due to large aspect ratios within a cell as well as
between cells and environment, as e.g. electrodes.

The goal of this work is to establish an efficient and flexible computational framework in
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1 Introduction

order to be able to model the effective dielectric properties of biological tissue, mainly in
the MHz range and explicitly without the a priori use of fitting algorithms. In terms of
explanatory power such a framework would clearly outperform a black-box model. Even
though the availability of computational resources is constantly increasing it is aimed
for an additional strategy for the transfer of information across several spatial scales.
An advantage of such a modular build-up would enable to fine-tune the overall model
complexity as e.g. the inclusion of physiological parameters.
Several research fields would certainly benefit from such a dielectric tissue model. Besides
optimizations of sensing instruments, setups and configurations arising in biomedical
research achievable measurement accuracy and the interactions between various mech-
anisms could be studied. Furthermore, such a model would substantially improve the
quality of security assessements for passive exposure to electromagnetic fields (specific
absorpiton rate (SAR) calculations, dosimetry).

1.2 Outline

The fundamentals of dielectric spectroscopy and the underlying mechanisms with the
focus on biological tissues are presented in Chapter 2. Besides the introduction of dielec-
tric relaxation, an overview of the dielectric behaviour and the underlying mechanisms of
tissue over a wide frequency range is given. Measurement techniques as well as a review
on existing models for effective dielectric properties are also introduced. However, the
description of existing models is intentionally kept rather short since details for some
models will follow throughout this work.

The first step towards modeling of dielectric properties is the application of the quasi-
static approximation and field averaging on the microscopic scale. Cells are described
as (shelled) spheres or ellipsoids exposed to a homogeneous electric field and the ef-
fective dielectric properties are calculated using different mixing formulas introduced
by Maxwell-Garnett, Hanai-Bruggeman and Landau-Lifshitz-Looyenga. The focus of
the Chapter 3 lies first, on a flexible implementation of the formulas allowing for a
parametrization which is as flexible as possible and second, on initial studies concerning
shape, volume fraction and some material parameter variation and their impact on the
effective dielectric spectra. Simultaneously, the implementation of the formulas is vali-
dated using existing models from literature.

In a next step the concept of considering cell suspensions and tissues as a quasi-periodic
structure from Chapter 3 is transferred to Chapter 4. A unit cell and its effective prop-
erties are numerically simulated as Finite-Element Method (FEM) models. The use of
a very flexible shape parametrization method allows for the analytical generation of a
wide variety of shapes and therefore volume fractions. Additionally, a body centered
unit cell packing is also introduced. Since the implementation of the numerical model is
not trivial due to large aspect ratios in the geometry some details on how to overcome
numerical problems are mentioned. The numerical models are checked against mixing
formulas from Chapter 3, also quantifying the influence of deviations from spherical and
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1.2 Outline

ellipsoidal shapes and other simplifications.

In order to overcome problems with computational memory while still being able to
include information from the microscopic in the macroscopic scale a multiscale approach
is introduced. The main idea consists of the representation of the material as a quasi-
periodic structure not only on one but on several scales. One starts at the smallest scale,
calculates the effective dielectric tensor (numerically or analyticallly) and passes it to
the next-higher scale under the assumption that the external field can be considered as
more or less uniform. However, in the final step the field can be inhomogeneous, which
is the topic of Chapter 6. Some issues concerning scaling, such as the replacement of
a compartement of a cell (e.g. cytoplasm and nucleus) by its effective properties and
the comparison to the actual geometrical inclusion or the required size of a cell array in
presence of statistical variations in cell orientation are investigated.

In non-invasive applications or material testing the electrodes are often coplanar. As
such configuration generates inhomogeneous fringing fields and tissue like human skin
− usually the ‘interface’ to deeper-lying body tissue when the latter are sensed − often
consists of layers this class of problems is tackeled in Chapter 6. Besides the adaption of
a known analytical technique for arbitrary number of layers, sensitivity and specificity of
effective dielectric parameters with respect to parameter changes in layers not in contact
with the electrodes for diffferent probe geometries are assessed using numerical models.

Finally, in Chapter 7 the findings from Chapters 3 to 6 are condensed and applied
to a multiscale dielectric model of the human skin probed by a fringing field sensor.
Models with different degrees of complexity are evaluated and discussed.
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2 Dielectric spectroscopy of
biological tissue

Some parts of the contents of this chapter, especially Section 2.1 is adapted from [17]
and [18].

2.1 Fundamentals

The interaction of electromagnetic fields with matter is described by macroscopic Maxwell’s
equations, given in their derivative form in Equations 2.1 to 2.4.

∇×E = −∂B
∂t

(2.1)

∇×H = J +
∂D

∂t
(2.2)

∇ ·D = % (2.3)

∇ ·B = 0 (2.4)

D is the electric flux density, E the electric field, B the magnetic flux density, H the
magnetic field, J the current density and % the charge density. For a region containing
a source (charge or current) which is small compared to the wavelength λ and only the
fields in the immediate vicinity of the source are considered, they are called quasi-static.
The fields still vary with time, but the frequency is sufficiently low so that propagation
effects are not important for the range of interest. In other words the sources the electro-
magnetic field vary so slowly with time that the electric and magnetic fields are at every
instant the same as they were generated by stationary sources and the terms containing
∂
∂t can be neglected.

For small electric field strenghts the electric flux density D can be expressed as

D = ε(E + P) = ε∗ε0E (2.5)

where the polarization P designates the induced dipole moment per unit volume of the
material with relative complex dielectric permittivity ε∗ and the dielectric permittivity
of vacuum ε0. In general ε∗ is a tensor, given by Equation 2.6.

ε∗ = ε̄∗ =

 ε∗xx ε∗xy ε∗xz
ε∗yx ε∗yy ε∗yz
ε∗zx ε∗zy ε∗zz

 (2.6)
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2 Dielectric spectroscopy of biological tissue

In non-magnetic materials ε̄∗ is a diagonal matrix. ‘True’ off-diagonal elements are only
introduced in case of induced currents in magnetic materials with appropriate symmetry,
as e.g. given in [19]. The relation between the polarization P and ε∗ is given by

P = D−D0 = (ε∗ − 1)ε0E (2.7)

with D0 being the electric flux density of vacuum. The microscopic dipole moments
can be either permanent or induced. In the latter case a previously equilibrated charge
distribution is distorted by an external electric field, forming a dipole moment

p = αEloc. (2.8)

with the local electric field Eloc. The polarizability α is a measure for the displacement of
positive and negative charges. Since it is not possible to polarize molecules isotropically
α is a tensor. In molecules the induced dipole moment p is formed by the displacement
of the electron cloud relative to the positively charged nucleus. In Figure 2.2 the term
electronic polarization refers to charge displacement in single atoms, e.g. in noble
gases. Atomic polarization occurs in originally apolar molecules. This displacement
polarization Pind in a volume δV is given by

Pind =
1

δV

∑
p. (2.9)

In addition to the described displacement polarization polar molecules with permanent
dipole moments are subject to orientational polarization due to their alignment with
respect to the external electric field. Molecules (or particles) have a permanent dipole
moment if the electric centres of gravity of positive and negative charges do not match.
For any distribution of charges %e(r) the dipole moment can be expressed as

µ =

∫
V

r%e(r)d3r. (2.10)

Permanent dipole moments µ are generally orders of magnitude larger than induced
dipoles p. The most prominent example of a permanent dipole is the H2O-molecule.
The total orientational polarization Por, related to microscopic dipole moments µ of the
molecules or particles within a volume V and is given by

Por =
1

δV

N∑
1

µ =
N

δV
〈µ〉 (2.11)

where N denotes the number of dipoles in the system and 〈µ〉 the mean dipole mo-
ment. Pind is practically temperature-independent and follows the external field up to
high frequencies due to the smaller inertia of the displacement, whereas the temperature
and frequency dependency of Por is strongly determined by the dynamics of the inter-
molecular (or interparticle) interactions. Due to thermal fluctuations not all dipoles are
aligned with the applied electric field but the orientation has a statistical distribution.
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2.1 Fundamentals

Under the simplifying assumption that the dipoles do not interact with each other and
if µE� kBT , a mean permanent dipole moment 〈µ〉 is given by Equation 2.12

〈µ〉 =
µ2

3kBT
E (2.12)

by applying Boltzmann statistics. kB denotes the Boltzmann constant and T the abso-
lute temperature.

One of the most important polarization mechanisms in biological tissue is the inter-
facial polarization. It occurs at material interfaces due to the build-up of surface
charge densities in each material. Consequently, materials containing conducting parti-
cles can be polarized due to charge transfer, not only on molecular or sub-molecular but
also on meso- or even macroscale which is of great importance in biological tissue.
Finally, at low frequencies and in presence of such mobile charge carriers the charge
density at the electrode rises and an electrical double-layer is formed, acting as a thin
isolating barrier. This phenomenon is called electrode polarization and manifestates
itself by a steep rise of ε′r. Electrode polarization is usually unwanted, since it masks
other effects potentially occurring in the material under investigation.

According to Equations 2.1 to 2.2 ε∗ is time (or frequency) dependent if time-dependent
processes take place within a material region with the dimensions δ. In general, time
dependent processes within a material lead to a difference of the time dependencies of
the outer electric field E(t) and the resulting dielectric displacement D(t). For a periodic
electric field E(t) = E0e

−jωt, with the angular frequency ω = 2πf and the imaginary
unit j =

√
−1 the complex dielectric function ε∗ is defined by

ε∗(ω) = ε
′
(ω)− jε′′(ω). (2.13)

The dielectric spectrum contains information on the dynamic behaviour of a material.
An overview over the entire frequency region is shown in Figure 2.1. In the major part of
the entire frequency spectrum relaxation phenomena occur due to various polarization
mechanisms. Resonance phenomena due to molecular, atomic or electronic vibrations
manifestate themselves in the IR and optical frequency range. The real part of the
permittivity, ε′ accounts for the the internal displacement of charge systems in the ma-
terial. With increasing frequency of the exciting electric field the amount of polarization
induced by the field is reduced, because the system is less and less able to align with the
field.
ε′′ is a measure for dissipation in a material. It gives the rate of attenuation that is
encountered by a propagating wave. In a lossy medium the electromagnetic energy is
gradually converted into heat due to friction caused by the displacement of the charges
in an alternating electric field. Dielectric losses are related to the displacement current
of the dipoles orienting according to the time-dependent external field. Ohmic losses
occur due to drift motion of mobile charge carriers (electrons, ions or charged defects),
also present at zero frequency. The Ohm’s law in Equation 2.14 gives the relationship
between the electric field E and the current density J

J = σ∗E (2.14)
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2 Dielectric spectroscopy of biological tissue

Figure 2.1: Frequency regions of the various polarization and resonance phenomena and the
corresponding real and imaginary part of the permittivity.

where σ∗ is the complex electric conductivity σ∗(ω) = σ
′
(ω) − jσ′′(ω). It is related to

the permittivity by Equation 2.15.

σ∗ = jωε0ε
∗ (2.15)

Both, ε′ and ε′′ contain the same amount of information since they can be transformed
into each other with the Kramers-Kronig relations.

ε
′
(ω) = ε∞ +

1

π

∞∮
−∞

ε
′′
(ω)

ω − ω0
dω = ε∞ +

2

π

∞∮
0

ωε
′′
(ω)

ω2 − ω2
0

dω (2.16)

ε
′′
(ω) =

1

π

∞∮
−∞

ε
′
(ω)

ω − ω0
dω = ε∞ +

2

π

∞∮
0

ωε
′
(ω)

ω2 − ω2
0

dω (2.17)

If inertia effects are neglected, the time-dependent behaviour of the polarization P can
be described by the first-order differential equation given in Equation 2.18 under the
assumption that the change in polarization is proportional to its current value and τ0
being the characteristic relaxation time.

dP(t)

dt
= − 1

τ0
P(t) (2.18)
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Figure 2.2: Polarization mechanisms causing relaxations and resonances in the dielectric spec-
trum displayed in Figure 2.1. Adapted and modified from [20].

The equation has the solution F (t) given in Equation 2.19, which provides the differ-
ence between the polarization P(t) at a certain time t and the limit at very long time
P(t → ∞).

F (t) = e−
t
τ0 (2.19)

After Fourier transformation of Equation 2.18 and the relation in Equation 2.5 one
obtains the frequency-dependent permittivity for an ideal relaxation, also known as
Debye-relaxation given by

ε∗(ω) = ε∞ +
εstat − ε∞
1 + jωτ0

. (2.20)

However, in real, non-ideal systems relaxation processes deviate from the Debye function
and exhibit a distribution of relaxation times g(τ). The mathematical decription is
given by the superposition of ideal Debye relaxation processes (and the substitution
∆ε = εstat − ε∞) in Equation 2.21.

ε∗(ω) = ε∞ + (δε)

∞∫
0

g(τ)

1 + jωτ
dτ (2.21)

Since g(τ) is usually not known Havriliak and Negami suggested an empirical formula
to describe non-Debye relaxation processes given in Equation 2.22. The fractional shape
parameters α and γ describe symmetric and asymmetric broadening of the complex
dielectric function at low and high frequencies.

ε∗(ω) = ε∞ +
∆ε

(1 + (jωτ)α)γ
(2.22)
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2 Dielectric spectroscopy of biological tissue

2.2 Dielectric properties of biological tissue

The dielectric properties of biological tissue are determined by the interaction of an
electric current with the tissue at the cellular and molecular level. In biological tissues,
ions are the main current carriers whereas in electrical circuits the current results from
the movement of electrons. Since ions are the major charge carriers, the conductiv-
ity of biological tissue is highly dependent on factors such as concentrations, effective
charge, diffusion coefficients, and the types of ions involved in the process. The linear-
ity of the tissue properties is considered to hold as long as the current injected does
not exceed a certain value [21]. A detailed non-linearity assessement of the dielectric
properties of skin was performed in [22]. Higher currents and fields can also influence
enzyme function or cell membrane stability [23]. A technique called electroporation is
based on the latter effect: With pulsed electromagnetic fields holes are punched into the
cell membrane enormously facilitating the introduction of drugs or other substances [24].

There is also a significant difference in dielectric properties of living and post mortem
tissues. Post mortem tissues additionally exhibit a time-dependent characteristic. First,
the conductivity drops due to depolarization and swelling of cells, but as soon as the
metabolism and therefore ion channel activity breaks down and released enzymes start
to degrade the cell membrane the conductivity value rises again [25].

2.2.1 Dispersion mechanisms

As introduced in Section 2.1 a significant change in dielectric properties can happen
due to different interaction mechanisms, each governed by its own kinetics on the corre-
sponding time scales. These changes are called dielectric dispersions by convention [26].
Dielectric dispersions directly relate to the structure, physical and physiological state of
the tissue.

The α-dispersion is generally considered to be associated with the properties of the
cell membranes and their interactions with the intra and extra cellular media. The α-
dispersion is characterized by the very large permittivity values produced by diffusion
processes of counterions at the site of the cellular membrane at very low frequencies. In
other words, the low-frequency behaviour of the biological tissues can be characterised
by their non-homogeneous structure and the ionic activities inside the tissues. The pre-
cise mechanism responsible for the α-dispersion is the least well understood of the three
main dispersions [26].

The β-dispersion occurs at radio frequencies and is mainly due to the polarization,
charging and short-circuiting of cell membranes, which separate the well-conducting ex-
tracellular medium and the cytoplasm. The membrane structure blocks ion movement
under an external electric field, preventing the flow of ions between the intra- and ex-
tracellular media. It is also believed that a smaller contribution to the β-dispersion is
from the dipolar relaxation of proteins and other organic macromolecules in the tissue.
β-dispersion can be largely affected by water content. Tissues with less water content

10



2.2 Dielectric properties of biological tissue

have more air gaps or dry components, which will also block ion passage in the same
way as the membranes, thus reducing the strength of the β-dispersion significantly [26].

As the frequency increases to the GHz regions, the rotational properties of polar molecules,
especially those of water become important. The relaxation of free water molecules
causes the γ-dispersion. Since water constitutes 70-80% of the volume of most soft tis-
sues, the γ-dispersion is of importance in the study of dielectric properties of biological
tissues [26].

In addition to the three major dispersions discussed above, there is a very small dis-
persion, called δ-dispersion, occurring between the β- and γ-dispersion regions. It is
believed that δ-dispersion originates from the relaxation of the water molecules bound to
the surface of macromolecules and relaxation of small dipolar segments of biomolecules
(e.g. proteins). There is no single, dominant relaxation process for this dispersion and
this lack of a single domain mechanism makes the analysis of this dispersion region in
tissues rather difficult [26], [27] and [28].

2.2.2 Measurement techniques

Dielectric properties of materials can be measured with various techniques either in
time- or frequency domain. In any specific range of frequency a suitable technique
for that range must be used. Generally, dielectric properties are obtained by using
transmission line theory applied on a circuit in which the sample of interest is a linear
and time invariant component. At low frequency regions (< 100 MHz), common circuit
elements may be used to measure the dielectric constant and conductivity of materials.
These kinds of techniques employ a parallel plate capacitor, which serves as a sample
holder. The impedance (capacitance and conductance) of the assembly is measured with
and without the sample by using sensitive bridges, vector impedance analyzer or other
similar instrumentation. The change in the impedance introduced by the sample is a
measure of its dielectric properties. Although the parallel plate configuration is very
common, coaxial and other capacitor designs are also used [26]. At frequencies above
100 MHz, transmission lines are employed. In this case the sample is incorporated in
a transmission line assembly and the experimental set-up is organized to measure one
or more of its S-parameters. The setup must contain a source to provide an incident
signal, a sample holder, a detection system (such as a network analyzer) to measure
the response of the sample to the signal, and finally transmission line components to
guide the electromagnetic signal from one point to another. As mentioned, in these
techniques, the reflection and/or transmission coefficients of the sample are determined.
These parameters are both functions of the dielectric properties of the sample. The
different measurement techniques are usually distinguished according to the design of
the sample holder, which also determines the size and shape of the sample as well as
the degree of sample handling required. The transmission line techniques are generally
subdivided into waveguides and coaxial lines. In the waveguide technique, a sample of
well-defined shape and volume is packed into a waveguide terminated by a short circuit.
A slotted line is used to characterize the standing wave formed by superposition of
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2 Dielectric spectroscopy of biological tissue

the incident and reflected waves. This technique is complex but it self-calibrates and
can give accurate results over a narrow range of frequencies determined by the ratio
of sample thickness to the propagating wavelength. Coaxial contact probes are open-
ended transmission line sections terminated by an impedance matched lossless window.
The sample is placed in contact with the probe and a network analyzer or equivalent
instrumentation measures its admittance or reflection coefficient. Such techniques are
broadband, non-destructive and require minimal sample handling. The success of this
technique depends on the theoretical model, which relates the measured quantity to the
dielectric properties of the sample, as well as on the calibration procedure [26].

2.2.3 Uncertainty and sources of error

The uncertainties in the measurements of complex relative permittivity depend on the
uncertainty in the measured reflection coefficients from which it is calculated. In other
words, it depends on the sensitivity of the admittance model used, which is a function
of electrode surface roughness, sample properties, dimensions of the sensor and the mea-
surement frequency This seems to be rather a complex situation, and there are different
approaches to evaluate these uncertainties [26], [29], [30] and [31]. Another issue is
the aforementioned electrode polarization occuring at frequencies up to 100 kHz. The
electrode polarization obscures the dielectric properties of the sample by masking the
α-dispersion to a large extent and the β-dispersion partially. The electrode polarization
can be reduced using certain probe geometries (four-point-measurements) or the effect
can be accounted for by numerical correction of the measured data. However, for the
latter either the relaxation function for the effective dielectric dispersion and a function
modeling the electrode polarization have to be known. The electrode polarization is
often described by a constant phase angle element in series with the sample admittance
[32].

2.3 Modeling approaches

The major part of this work deals with modeling of dielectric properties of biological tis-
sue. As in the case of measurements the choice of the modeling method is purpose- and
frequency dependent. Besides the modeling techniques summarized in this Section and
increasingly, also statistical approaches are being applied in order to correlate dielectric
parameters to structural, compositional or physiological aspects of biological material
[27]. Particularly, this is the case if the physical mechanism generating the observed
change is not elucidated or masked by noise.

The electrical behaviour of biological tissue is often described as an equivalent circuit
containing concentrated elements. Then, Cole-Cole or Havriliak-Negami parameters in-
troduced in Equation 2.22 are fitted to dielectric data extracted from measurements. An
example of such an equivalent circuit is shown in Figure 2.3.
The resistances of the extracellular medium and cytoplasm are denoted by Rext and
Rcytoplasm, the membrane capacitance as Cmembrane. Cmembrane is a pseudo-capacitance,
a so-called constant phase element. The electrode-electrolyte (extracellular medium)
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Figure 2.3: Half-cell equivalent circuit of a cell suspension or biological tissue. The parallel
circuit in brackets denotes the electrode-electrolyte (extracellular medium) interface.

interface is denoted by a parallel circuit of the double-layer capacitance at the electrode
Celectrode and the electrode resistance Relectrode in series with the cell circuit. At high
frequencies the resistance of the tissue can be defined as the parallel combination of Rext

and Rcytoplasm and is denoted as R∞. R0 denotes the resistance at f = 0 Hz. Without
taking the electrode-electrolyte interface (in brackets in Figure 2.3) into account the
impedance can be written based on Equation 2.22 with γ = 1 as

Z = R∞ +
R0 −R∞

1 + (1 + jωτ)α
. (2.23)

This approach presented e.g. in [13], [32], [33], [34], [35], [36], [37], [38], [39] and [40]
[41], [42] and [43] enabels a computationally relatively inexpensive reproduction of the
dielectric spectra since it only involves least-square fitting or an optimization for εeff and
σeff . However, using this kind of representation the assignment of spectral features to
specific tissue microstructure parameters is difficult, if not impossible, even in presence of
pronounced differences among tissue types. Very different combinations of dielectric and
geometric parameters can generate the same spectra of the effective dielectric parame-
ters, therefore the models have a rather descriptive character. Nevertheless, equivalent
circuit models can serve as placeholders as long as no better models are available. This
is e. g. the case in Chapter 6.

The use of semi-analytical mixing formulas signifies a first step towards the incorpo-
ration of material properties and partly also microstructure of tissue or cell suspensions.
Chapter 3 provides a deeper insight into the description of cells and tissue by mixing
formulas as well as the implementation of the latter.
Finally, the dielectric properties of tissue on microscale can also be numerically calcu-
lated. The geometry setting corresponds to the one employed for mixing formulas but
offers far more flexibility in terms of the cell’s geometry variations.

2.4 Conclusion

To date no general procedure for the modeling of biological tissue, especially in the MHz
region exists. If a model has to refer to the physical and physiological state a certain de-
gree of complexity will be indispensable. Mixing formulas can provide first estimations,
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2 Dielectric spectroscopy of biological tissue

but presumably only numerical techniques will offer the largest flexibility. However, so-
lutions how to overcome problems with model size and large aspect ratios have to be
found.
In order to do so the procedure will be as follows: First, small volumes with large com-
plexity are considered and the relevant parameters are identified. After identification of
the relevant parameters the model complexity is reduced if possible. Then, a modeling
approach for larger volumes is introduced. Finally, the findings from the dielectric rep-
resentation of small and large volumes are combined in a multiscale procedure providing
a tissue model.
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3 Modeling of tissue as a
composite material

The main idea of effective medium or mixing theory in general consists of somehow
obtaining a homogeneous replacement, effective or bulk material for a morphologically
complex, highly structured multiphase material − such as biological tissue − with the
same behaviour when exposed to an electric field. The simplest example is the calcu-
lation of the effective dielectric properties of a layered structure whereby the applied
electric field is parallel or perpendicular to the layer boundaries.

Biological tissue is first of all built up from cells as e.g. in Figure 3.1 embedded in
extracellular medium. The very first step towards a dielectric model consists of con-
sidering cell suspensions and tissues being quasi-periodically built up from unit cells
containing a single biological cell. Simplifying this scenario to the consideration of a
spherical or ellipsoidal inclusion in a host material exposed to a homogeneous external
electric field, the two having homogeneous but different dielectric properties one arrives
at one of the fundamental scenarios for effective medium theory, the calculation of the
polarizability of this sphere generating an electric dipole. The result is an average electric
field and flux density. In this chapter three different mixing formulas for ellipsoidal and

Figure 3.1: Eukaryotic cell with its components. Adapted from [44].
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3 Modeling of tissue as a composite material

unstructured inclusions are investigated focusing on shape and inclusion volume fraction.
An intensive study on those and other mixing formulas and their validity bounds are
given in [45] and [46].

As concentric spheres and confocal ellipsoids belong to the group of calculable shapes
simple single-shelled spherical cell models were introduced e.g. in [12], [15], [47], [48],
[49] and [50] to name only a few. The advantage of confocal ellipsoidal shapes is that
dielectric spectra can be calculated analytically. The Maxwell-Garnett formula (MG)
formula provides a good approximation for dilute solutions, meaning for an inclusion vol-
ume fraction limit of ϕ ≤ 0.1 [51], [47], [52] and [53]. Other single shelled sphere models
are presented in [12], [15], [49] and [50]. Double-shelled [54], [55] and multishelled models
including bound water to the cell membrane and including the nucleus [56] have also
been investigated.
For higher volume fractions as usually occurring in tissue the MG formula is less accu-
rate since interparticle interactions are neglected. The Hanai-Bruggeman formula (HB)
formula, taking mutual particle interactions into account was shown to provide good
agreement with measurements for ϕ < 0.8 [47]. The HB formula for multi-shelled el-
lipsoids was e.g. employed for modeling of the dielectric parameters of the e. Coli
bacterium [57], [58] or rat liver tissue [59].
In [60] the Landau-Lifshitz-Looyenga formula (LLL) formula provides the effective di-
electric parameters for two different types of lymphocyte models at two different volume
fractions.

3.1 General description

If a material with a certain microstructre is exposed to an electric field oscillating with
the frequency f and the corresponding wavelength λ is much larger than the size of
the microstructure δ the quasi-static regime can be applied and the composite behaves
as a homogeneous material with effective material properties εeff . On the microscale
the electric field strength E and the electric flux density D both fields are related by
Equation 2.5. On the microscale the fields oscillate rapidly, while on macroscopic level
the fields are averaged over a volume much larger than δ, oscillations smooth out and
only retain slow variations. The averaged fields 〈D〉 and 〈E〉 are related via the effective
permittivity matrix εeff

〈D〉 = 〈εE〉 = εeff〈E〉. (3.1)

The complex effective permittivity tensor ε̄∗eff has form given by Equation 2.6.

3.2 Mixing formulas

One way how to obtain the effective dielectric properties for the scenario is to solve the
Laplace equation in spherical coordinates with respect to a single particle. The approach
can be generalized for ellipsoids and cylinders and even inhomogeneous particles of the
mentioned shapes as long as the variation of the dielectric contrast happens along the
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3.2 Mixing formulas

r-coordinate in spherical and ξ-coordinate in ellipsoidal coordinate systems. This re-
quirement has to be fulfilled because the Laplace equation has to be separable within
the various regions of the problem in order to obtain an analytical solution [46].
Strictly speaking, the solutions given in Subsection 3.2.1, 3.2.2 and Section 3.3 would
only be analytical when considering the entire infinite sum of Legendre polynomials.
Here, only the first-order term is taken into account.

3.2.1 Maxwell-Garnett formula

The electric field distribution after a spherical particle (inclusion) with a permittivity of
ε1 is introduced into a host material with the permittivity εh exposed to a previously
homogeneous electric field can be described analytically. The effective permittivity of
the inclusion/host system, the inclusion occupying a volume fraction ϕ is then given by
the Maxwell-Garnett (MG) formula.

εeff − εh

εeff − 2εh
= ϕ

ε1 − εh

ε1 + 2εh
(3.2)

If the particles are far enough from eachother (low volume fraction, ϕ < 0.1), then these
effective parameters hold for the entire medium. The concept can be extended for a
confocal multishelled ellipsoidal and even cylindrical inclusion, since the entire particle
can always be replaced by a homogeneous one with an effective permittivity. As long as
the coordinate system is such that the Laplace equation ∇2ϕ(r) = 0 is separable in the
various regions of the problem the general form of the MG formula provides an exact
solution for the effective permittivity [46].
The εeff of a spherical particle is constant for all orientations relative to the applied field
due to symmetry. For ellipsoids this is not the case anymore. The shape dependence
of the polarizability of an ellipsoid is a function of its principal axes lengths (or ratios,
respectively) ax, ay and az and is expressed with the depolarization factor Lj , j indicating
the spatial direction. The depolarization factor is related to the shape factor with u =
1−Lj
Lj

.

Lj =
axayaz

2

∞∫
0

1

(s+ a2
j )
√

(s+ a2
x)(s+ a2

y)(s+ a2
z)
ds j = x, y, z (3.3)

The depolarization factor of a sphere is L = 1
3 , the shape factor u = 2 contained in

Equation 3.2. The depolarization factors of a cylinder with an ellipsoidal cross-section
and the axis parallel to the z-axis are Lx, Ly = 1 − Ly and Lz = 0. Knowing the
depolarization factors Lj and the volumes of all k ≤ n ellipsoids Vk = 4π

3 ak,xak,yak,z,
while Vk is the volume of the ellipsoid inside the boundary between permittivities εk−1

and εk, εeff of arbitrary ellipsoidal or cylindrical n-shelled particles can be calculated
according to Equations 3.4 to 3.7 via the polarizability component in j-th direction αj
[61].

αj
εh

= ϕ
X

Y
(3.4)
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X =(ε1 − εh) + [ε1 + Lj,1(εh − ε1)]·

(ε2 − ε1)V2

V1
+ [ε2 + Lj,2(ε1 − ε2)]

(ε3−ε2)
V3
V1

+...

[ε2+Lj,3(ε3−ε2)]+...

ε1 + Lj,2(ε2 − ε1) + Lj,2(1− Lj,2)(ε2 − ε1)
(ε3−ε2)

V3
V2

+...

[ε2+Lj,3(ε3−ε2)]+..

(3.5)

Y =[εh + Lj,1(ε1 − εh)] + Lj,1(1− Lj,1)(ε1 − εh)·

(ε2 − ε1)V2

V1
+ [ε2 + Lk,2(ε1 − ε2)]

(ε3−ε2)
V3
V1

+...

[ε2+Lj,3(ε3−ε2)]+...

ε1 + Lj,2(ε2 − ε1) + Lj,2(1− Lj,2)(ε2 − ε1)
(ε3−ε2)

V3
V2

+...

[ε2+Lj,3(ε3−ε2)]+..

(3.6)

εeff,j = εh +
αj

1− Lj,1 αjεh
(3.7)

In case of randomly oriented ellipsoidal particles the effective permittivity reduces to a
scalar and is given by

εeff = εh +
1
3

∑
j=x,y,z αj

1− 1
3

∑
j=x,y,z Lj,1

αj
εh

. (3.8)

Since the MG formula does not take interparticle interactions into account the validity
of the analytical expression is reported to be limited up to a particle volume fraction of
ϕ < 0.1. The MG formula also provides the exact solution for the effective permittivity of
Hashin’s structure, the space-filling coated spheres. The size distribution of the spheres
ranges to infinitely small.

3.2.2 Hanai-Bruggeman formula

Another description of the effective properties of a two-phase mixture is given by Equa-
tion 3.9, the Bruggeman formula (BR) [62].

ϕ1
εi − εeff

εi + 2εeff
= ϕh

εh − εeff

εh + 2εeff
(3.9)

with ϕh and ϕi being the volume fractions of host and inclusion, respectively. If one
has to deal with concentrated particle suspensions or systems the interactions between
induced dipoles of particles have to be taken into account. Bruggeman approached this
rather difficult task with his effective medium theory. The initially low volume fraction is
gradually increased by an infinitesimal addition of particles [63]. When a small amount
of particles of εi is added to the particle suspension which is regarded as an effective
medium of εeff , Equation 3.10 known as the Hanai-Bruggeman (HB) formula delivers an
expression for εeff of randomly oriented inclusions. In case of n-shelled ellipsoids εeff,i(k)

of the k-th core particle consisting of the core (n-th material) and n − k − 1 shells is
given by Equation 3.11.

−
ϕ∫

0

dϕ′

1− ϕ′ =

εeff∫
εh

3

εeff

[ ∑
j=x,y,z

εeff − εi

εeff + (εi − εeff)Lj

]−1

dεeff (3.10)
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εeff,i(k) = εk

(
1 +

ax,k+1ay,k+1az,k+1

ax,kay,kaz,k
(εk+1 − εk)

εk + (εk+1 − εk)Lk+1 − ax,k+1ay,k+1az,k+1

ax,kay,kaz,k
(εk+1 − εk)Lk

)
(3.11)

The j-th component (j = x, y, z) of effective permittivity of ellipsoids aligned to the
electric field is given by Equation 3.12.

1− ϕ =

(
εeff,j − εi,j

εh,j − εi,j

)(
εh,j

εeff,j

)Lj
(3.12)

The HB formula, for two phases is said to provide excellent agreement with experiments
for volume fractions up to ϕ < 0.8 for colloidal suspensions containing homogeneous
spherical particles [47].

3.2.3 Landau-Lifshitz-Looyenga formula

The Landau-Lifshitz-Looyenga formula (LLL) was independently developed by Landau
and Lifshitz [64] and Looyenga [65], respecitvely using different approaches. In contrary
to the MG or HB, the LLL formula does not take the geometry of the inclusion into
account. In case of multiphase particles (e.g. shelled ellipsoids) the effective permittivity
of the particle is calculated according to the MG or HB formulas (Equation 3.11). LLL
is a special case of Lichtenecker’s formula [46] with m = 1/3. For an isotropic inclusion
results

εeff =
(
ϕi

3
√
εi + (1− ϕi) 3

√
εh

)3

(3.13)

and for an anisotropic one

εeff =

(
1

3

∑
j=x,y,z

ϕi
3
√
εi,j + (1− ϕi) 3

√
εh

)3

. (3.14)

Similarly to the MG, the LLL formula does not take any interparticle interactions into
account, therefore one would expect a validity limit around ϕ < 0.1. However, it was
shown in experiments that for certain biphasic mixtures with statistically distributed
particle size the LLL formula provides good agreement for almost any particle volume
fraction [66].

3.2.4 Spectral density function approach

Another analytical method for modeling various kinds of shapes is the spectral decom-
position method or spectral density function approach developed in [45] This method is
based on the separation of geometry and material properties. The general formulation
is given by Equation 3.15 with g(x) the spectral density function (topological or geo-

metrical term) and p(x) = (s+ x)−1 (dielectric term). Additionally,
∫ 1

0
g(x)dx = 1 and∫ 1

0
xg(x)dx = (1− ϕ)/d, while d denotes the dimension. It can be noted, that Equation
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3.15, similarly to Equation 2.21 refers to the distribution of relaxation times [67].

εeff = ε0

(
1 + ϕ

1∫
0

g(x)p(x)dx

)
(3.15)

The spectral density method is relatively fast, since it does not require a discretization
of the geometry. However, it was shown that one can separate the geometrical con-
tributions from the pure dielectric response of a composite if and only if the dielectric
properties of the constituents are known [67]. In practice experimental data (∆ε1

∆ε2
in

[68]) is used to determine the spectral density function. This procedure belongs to the
class of the so-called ill-posed problems and a correct solution is possible only with the
use of stabilization techniques [69]. Mention may be also made of the work based on an
expansion of the modified spectral density function in terms of Legendre polynomials,
the reconstruction of the spectral density function using Padé approximation derived
from a constrained minimization problem as well as the approach based on the Monte
Carlo integration and constrained least-squares algorithm [70]. The spectral density ap-
proach has been applied to the calculation of effective dielectric properties of cells in e.g.
[53], [68], [69] and [71]). Depending on the choice/determination of g(x) it is possible to
extract a binary mixture equation, as e.g. the MG [72] or the LLL formula [67].
An important drawback of the approach is the fact, that the analytical description gets
very cumbersome with increasing complexity of the shape of the inclusion [73] and num-
ber of phases − a situation clearly occuring in biological tissue.

3.3 Percolation

The two-phase MG formula and the Bruggeman formula provide exact solutions for the
Hashin and Milton structure, respectively shown in Figure 3.2.
The Hashin structure consists of space-filling shelled spheres which are identical up to
their sizes, having a constant shell thickness/outer radius ratio. The cores of the spheres
and host/background are from the same, but different from the shell material. The size
distribution of the spheres filling the entire space ranges from a certain maximal size to
infinitesimally small.
The Milton structure consists again of space-filling homogeneous spheres of two different
materials which are well-separated on a specific length scale, embedded in a host con-
sisting of much smaller well-separated spheres of the two materials, and so on [74]. For
the following purpose the MG and BR formulas are written in terms of complex conduc-
tivites instead of complex permittivities. According to the Kramers-Kroning-relations
the two expressions are interchangeable. Consequently, the MG and BR formulas for
conductivities are given by

σeff − σ1

σeff − 2σ1
= ϕ2

σ2 − σ1

σ2 + 2σ1
(3.16)

and

ϕ1
σ1 − σeff

σ1 + 2σeff
= ϕ2

σ2 − σeff

σ2 + 2σeff
. (3.17)
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(a) (b)

Figure 3.2: The Hashin (a) and the Milton structure (b), adapted from [74].

Looking at the form of the MG and BR formulas a fundamental difference can be ob-
served: The MG formula is unsymmetric with respect to material 1 and material 2,
meaning an interchange would result in two different effective permittivities, whereas
the BR formula is symmetric. With the two described structures in mind, the volume
fraction limits of both formulas can be explained from a toplogical point of view: The
materials in the Hashin structure always stay separated, meaning they do not form con-
nected paths and the MG formula is suitable for dilute suspensions with well-separated
particles. In contrast, above a critical volume fraction of material 2 (ϕ2 = 1/3) the ma-
terials in the Milton structure form connected paths, a phenomenon called percolation.
As a consequence above this volume fraction limit the BR mixture is conductive for the
case σ1 = 0 and σ2 6= 0 while the MG formula, where the effective material exhibits a
non-zero conductivity only if ϕ2 = 1 at f = 0 Hz. Composites exhibit a drastic change in
dielectric properties if the inclusion exceeds the percolation limit yielding the formation
of connected regions [46].

Percolation [75], [76] is of certain importance when it comes to biological tissue since
cells are not always well-separated from each other but connected via gap junctions.
A similar situation also occurs during mitosis. Tissue types, such as liver tissue have
already been modeled as a porous medium using percolation theory [77]. Since other
physical properties of tissue often relate to dielectric properties description of e.g. vis-
coelastic properties of collagen and mesenchymal tissue [78] or in-vitro capillary growth
[79] within the percolation theory are worth to be mentioned.

3.4 Analysis, results and discussion

The main focus of this chapter consisted in the implementation of three mixing formulas
in MATLABr while being able to vary any available parameter (including consequent
as well as simultaneous variation of more than one parameter). For further informa-
tion and codes see Appendix B.1. Besides the implementation of the mixing formulas a
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Table 3.1: Geometrical and material parameters of spherical and ellipsoidal cell models.

System (dx dy dz) ρm εh σDC,h ε1 σDC,1 ε2 σDC,2

[µm] [nm] [S/m] [S/m] [S/m]

Sphere S1 (10 10 10) 80 1.2 9.04 10−6

Shelled sphere 1 SS1 (0.075 0.075 0.075) 5.5 80 1.2 9.04 10−6 50 0.5

Shelled sphere 2 SS2 (10 10 10) 7 80 1.2 9.04 10−6 50 0.5

Ellipsoid E1 (0.075 0.075 0.1) 80 1.2 9.04 10−6

Shelled ellipsoid 1 ES1 (5 15 50) 7 80 1.2 9.04 10−6 50 0.5

Shelled ellipsoid 2 ES2 (0.075 0.075 0.1) 5.5 80 1.2 9.04 10−6 50 0.5

Cylinder C (0.5 0.5 ∞) 80 1.2 9.04 10−6

first analysis of the obtained spectra with respect to parameter variations relevant for
biological tissue can already be made. The focus lies on the comparison of the three
formulas, especially the difference between MG and HB formula for different volume
fractions: ϕ = 0.1 limit of MG, ϕ = 0.5 above the MG limit, ϕ = π/6, the maximal
volume fraction of an ellipsoidal inclusion in a simple cubic unit cell and ϕ = 0.8, the
validity limit of the HB formula. Further parameter variations are performed for the
shape, the particle inhomogeneity (number of shells) and finally for material parameters
of the shell in an specific particle. The material and dielectric parameters of all models
are listed in Table 3.1 unless the specific reference papers are mentioned.

Here, the most important spectral feature is the β-dispersion around 1 MHz which is
caused by the combination of dimensions and dielectric contrast and therefore contained
in the model. The frequency range was chosen to be relatively broad between 1 kHz and
1 GHz bearing in mind, that at the lower and higher end of the spectrum other dispersion
mechanisms which are not modeled take place as well.

3.4.1 Spherical inclusions

First, a simple single-shelled sphere model is introduced. Single-shelled models were e.g.
presented in [12],[15], [49] and [50]. Figure 3.3 shows a comparison between the three
different mixing formulas at three different volume fractions. It can be seen that the
largest variations occur for low frequencies and high volume fractions. Especially the
LLL formula deviates from the MG and HB formula. This clearly indicates the signifi-
cance of the shape of the inclusion.

Whereas the permittivity of the cell membrane will not alter very much since the
phospholipid bilayer structure itself is very stable and inert to physiological and non-
pathological changes, the conductivity can vary mainly depending on the ion channel
density and activity as well as on the state of the cell membrane. The translation these
physiological facts into parameters of a dielectric model is subject of the next scenario:
The membrane conductivity is varied over several orders of magnitude while keeping the
membrane permittivity constant. The dielectric spectra in Figure 3.4 also exhibit varia-
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Figure 3.3: Effective permittivity (a) and conductivity (b) of a shelled spherical inclusion SS1
(for parameters see Table 3.1). The effective properties were calculated using the MG, HB
and LLL formulas at three different volume fractions.

tions over several orders of magnitude at low and high frequencies. The center frequency
of the dispersion shifts as well. This can be explained with the drastic variation of the
dielectric contrast between cytoplasm, membrane and extracellular medium. The larger
the contrast between the thin membrane the larger the capacitive charging responsible
for the dispersion. The effect is even more pronounced at high volume fractions. The
case with the highest constrast, the distinction between living and dead cells has been
performed in [25].
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Figure 3.4: Effective permittivity (a) and conductivity (b) of a shelled spherical inclusion SS1
(for parameters see Table 3.1) calculated with the HB formula. Variation of the membrane
conductivity σm for two different volume fractions.
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3 Modeling of tissue as a composite material

However, smaller changes caused by varying ion channel activity are a possible target for
monitoring. However, in that case the impactof only small variations of ± 10 % would
have to be investigated.

Double-shelled spherical inclusions were already used in order to model lymphocytes
[54] and other cells [55]. In [56] a five-shelled model with a bound water layer of 0.5
nm at the cytosolic and extracellular site of the cell membrane as well as a seven-shelled
model including bound water within the cell membrane as well. Here, the starting point
is given by the reference single-shelled sphere. The effect of the bound water, nucleus
and both is shown in Figure 3.5 for two different volume fractions. The geometrical
and material parameters for the nuclear membrane and nucleus were taken from [80],
the parameters for the bound water from [81]. The spectra for the effective dielectric
parameters are given in Figure 3.5, the relative deviations with respect to the single-
shelled spherical model in Figure 3.6. At ϕ = 0.1 almost no effect occurs but at ϕ = π/6
significant deviations of up to 40% with respect to the reference sphere can be observed.
The three models exhibit very similar behaviour, the variations among them being under
5% in the chosen frequency range. Surprisingly, the model including nucleus and bound
water deviates only by a fraction of a percent from the model only containing the bound
water layers.

ε e
ff

f [Hz]

103 104 105 106 107 108 109

102

103

104

(a)

 

 

nucleus and
bound water

bound water
nucleus

ϕ = π/6
only membrane

nucleus and
bound water

bound water
nucleus

ϕ = 0.1
only membrane

σ
eff
[S
/m

]

f [Hz]

103 104 105 106 107 108 109
10−2

10−1

100

(b)

Figure 3.5: Effective permittivity (a) and conductivity (b) for the shelled spherical inclusion
SS1 (for parameters see Table 3.1), triple-shelled sphere (SS1 including nuclear membrane
and nucleus), triple-shelled sphere (SS1 including a bound water layer on each side of the cell
membrane) and five-shelled sphere (reference sphere with nucleus and bound water to cell
membrane) for two different volume fractions.
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Figure 3.6: Relative deviations of the effective permittivity (a) and conductivity (b) of multi-
shelled spherical inclusions from Figure 3.5 with respect to the values for the reference sphere
SS1.

3.4.2 Ellipsoidal inclusions

In order to see the impact of anisotropy all calculable effective properties of an arbitrary
ellipsoid with a 6= b 6= c (parameters given in Table 3.1) for ϕ = 0.1 are given in Figure
3.7. The spectra are obtained with the MG formula. Displayed are the different cases
where the external field is applied in x-direction (parallel to the principal axis of the
ellipsoid ax; case ‘xx’), y- and z-direction, respectively (cases ‘yy’ and ‘zz’). Those three
cases ε∗xx, ε∗yy and ε∗zz provide the diagonal dielectric tensor ε̄∗ of the ellipsoidal inclusion
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Figure 3.7: Effective permittivity (a) and conductivity (b) of a shelled ellipsoidal inclusion ES1
(for parameters see Table 3.1) at ϕ = 0.1 calculated with the MG formula. Shown are
different orientations of the particle with respect to the external electric field.
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3 Modeling of tissue as a composite material

(a) (b)

Figure 3.8: Confocal (a) and concentric (b) ellipsoid.
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Figure 3.9: Relative deviations of effective dielectric parameters between a concentric and con-
focal ellipsoidal inclusion ES1 (for parameters see Table 3.1) calculated with the HB and
MG formulas. In the concentric case the membrane thickness corresponds to the membrane
thickness in x-direction of the confocal model. Shown are the volume fractions ϕ = 0.1 in
(a) and (b) and ϕ = 0.5 in (c) and (d).
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Figure 3.10: Effective permittivity ((a), (c) and (e)) and conductivity ((b), (d) and (f)) of a
shelled ellipsoidal inclusion (concentric approximation) ES1 calculated with the MG and HB
formula as a function of volume fraction ϕ at three different frequencies.

27



3 Modeling of tissue as a composite material

embedded in the host medium. In the ‘xy-isotropic’ case the ellipsoids are randomly
oriented in the x − y-plane while the field is oriented in x- (or y-) direction. The cases
‘xz-isotropic’ and ‘yz-isotropic’ are set up correspondingly. In the ‘isotropic’ case the
ellipsoids are randomly oriented in all three space directions. Another interesting as-
pect is the difference between the exact solution for shelled confocal ellipsoids and the
concentric approximation for an arbitrary ellipsoid with a 6= b 6= c. The two shapes are
shown in Figure 3.8. The approximation seems feasible due to the small thickness of the
cell membrane. Obviously, again the influence of the geometry manifests itself at the
lower end of the considered frequency range. However, it is difficult to judge the error
of the approximation, i.e. how much the values differ from those of the ’real’ concentric
structure without having an exact, numerical simulation. This comparison will be pro-
vided in the Chapter 4.
Relative deviations between the exact solution of the MG and HB formulas for confocal
ellipsoids and the concentric approximation where the overall shell thickness corresponds
to the shell thickness in x-direction from the confocal case are displayed in Figure 3.9.
Significant variations are limited to frequencies < 100 kHz. However, the error largely
increases with increasing volume fraction. The variations for different volume fractions
is again frequency dependent exhibiting the largest variations for low frequencies again
as shown in Figure 3.10. The vanishing influence of the geometry can be nicely seen in
Figure 3.10(e) and 3.10(f).
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Figure 3.11: Effective permittivity (a) and conductivity (b) of the double-shell [51] (Asami) and
triple-shell [58] (Bai) elllipsoidal model of the E. coli bacterium at ϕ = 0.4 calculated with
the HB formula (concentric approximation) and LLL formula.

A popular case for modeling by mixing formulas is the E. coli bacterium and red blood
cell, the erythrocyte. In Figure 3.11 and 3.12 spectra of three-shelled and single shelled
ellipsoids from [51], [58] and [82] are reproduced. The model in [58] has an inner and outer
membrane additional to the cell membrane, with dielectric parameters in between those
of the membrane and cytoplasm/extracellular medium. Especially the triple-shell model
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Figure 3.12: Effective permittivity (a) and conductivity (b) of the erythrocyte model from
[82]. EC denotes the biphasic mixture without membrane (only cytoplasm and extracellular
medium).

shows a decrease in the permittivity increment due to the reduced dielectric contrast.

3.4.3 Cylindrical inclusions

Finally, the dielectric spectra for homogeneous cylindrical inclusions with an ellipsoidal
cross-section and the axis in z-direction for a volume fraction of ϕ = 0.3 and parameters
given in Table 3.1 calculated with both, the MG and HB formula are given in Figure
3.13. This geometrical case is e.g. related to structures occuring in tissue on a larger
scale, such as blood vessels. Since the particle is homogeneous the capacitive charging
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Figure 3.13: Effective permittivity (a) and conductivity (b) of a homogeneous cylindrical inclu-
sion with a circular cross-section calculated with three different mixture formulas.
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3 Modeling of tissue as a composite material

does not happen on such a small scale as in the case of shelled particles. Therefore,
the dispersion is only very weak. Again, the influence of interparticle interactions and
the consequent difference between spectra obtained from the MG and HB formulas is
obvious for the dielectric parameters in x- and y-direction.

3.5 Conclusion

The fact that an initial approximation of such a complex system as a biological cell
by a shelled spherical particle without any other features leads to the correct track is
not completely self-evident, but turns out to be reasonable in the end. The Maxwell-
Garnett, Hanai-Bruggeman and Landau-Lifshitz-Looyenga formulas allowing for arbi-
trary parameter variations such as arbitrary numbers of shells were successfully imple-
mented. Analytical approximations provide a good start for modeling of composites with
microscopic shelled particles since the main feature of spectra of biological cell models
in the MHz range, the capacitive charging of an insulating shell with good conducting
high-permittivity media in- and outside is part of the model. The MG is an efficient way
to calculate effective dielectric properties at small volume fractions for spherical, ellip-
soidal and cylindrical inclusions. For volume fractions larger than 0.1 the HB formula is
more appropriate.

The case of cell membrane conductivity variation has to be investigated further. An
extension of the presented simple model by the inclusion of ion channels might be re-
quired. However, it is possible that the ion channel activity exhibits large variations and
oscillations but the time scale is such that the effects average out in the bulk material.

Overall it can be stated the effective properties for cell-like structures below the center
frequency of the β-dispersion are sensitive to geometrical variations and volume fraction.
The question to which extent the MG and HB formulas can be used in order to approx-
imate concentric ellipsoidal inclusions in an environment, and also other questions have
to be clarified with the help of numerical models. But it can be stated, that within a
certain defined parameter range mixing formulas can serve as a basis for assessing the
necessary degree of complexity. Those findings are not only relevant for biological cells
but all similar types of comopsites such as e.g. soils [83].
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composite materials

Although being computationally inexpensive the mixing formulas imply restrictions on
shape and volume fraction of cells in tissue or suspensions. A way how to overcome
those limitations are numerical models. However, the major issue when modeling cells
numerically is the large aspect ratio between the size of the entire cell (few µm) and the
dimensions of the cell membrane (few nm). Since it is required to accurately solve the
electric potential in regions with a large gradient − up to the short-circuit frequency this
is the case near the cell membrane this region has to be sufficiently discretized. Often,
the system matrix of such models will contain several millions of elements. Due to the
increased availability of computational resources even the solution of large problems
becomes realisitic. Unfortunately, large aspect ratios are a challenge not only in terms
of computational power but also for numerical precision in geometry generation and
discretization. Therefore, workarounds have to be found in order to reduce the sensitivity
towards numerical errors in geometry and mesh generation besides the reduction of the
matrix size and the choice of efficient solvers. Numerical models are e.g. provided in
[82], [3], [52], [53], [84], [85], [86], [87] and [88].

Mixing formulas are a useful tool in order to calculate the effective dielectric properties
of cell suspensions but restricted in terms of shape and volume fraction. As the shape of
inclusion shows a clear impact on the dielectric spectrum in the MHz region numerical
models of realistically shaped biological cells are needed in order to assess the range of
observable deviations due to certain changes in cellular geometry. Besides the develop-
ment of an efficient and flexible modeling framework, the main target of this chapter is
the quantification of changes in the geometric properties such as cellular volume fraction
and cell shape. The investigations are carried out in order to estimate how, at which
frequencies and with which magnitude the dielectric spectra depend on shape variations
only. Before realizing a measurement setup this knowledge is advantageous in order to
optimize it or to answer the question if an effect is measurable at all. Especially for the
development of instrumentation for single-cell monitoring also the probe geometry and
the specific measurement configuration become relevant.

4.1 Concept

As introduced in Chapter 2 and demonstrated in Chapter 3 the dominating feature in
dielectric spectra of biological cell suspensions and tissues in the MHz range is the β-
dispersion caused by interfacial polarization of the cell membrane. However, even as the
expected changes due to variations in microstructure are smaller compared to the men-
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Figure 4.1: Flow diagram for the numerical modeling of a composite material.

tioned general characteristic variation of cellular volume fraction, dielectric properties of
intra- and extracellular medium (e.g. ion concentration, presence of organelles) or cell
shape still have a measurable influence on the dielectric spectrum. In order to uniquely
correlate cellular features and features of the dielectric spectrum a sophisticated model
of cell suspensions or tissues is required.

Besides the theoretical validity bounds in practice the spherical or ellipsoidal shapes
imply an upper volume fraction limit of the inclusion. The volume fraction limit for
simple cubic (SCU) packing of spheres and ellipsoids is ϕ = π/6 ≈ 0.5236. A higher
limit of ϕ = π/

√
18 ≈ 0.7405 is obtained by spheres forming lattices with hexagonal close

packed (HCP), face centered cubic (FCC) or body centered cubic (BCC) unit cells. The
so far known maximum of ϕ = 0.7707 can be reached with a specific crystal (i.e. non-
random) packing of ellipsoids with certain semi-axis ratios [89]. These volume fraction
limits are often exceeded in tissues since cells often do not have spherical or ellipsoidal
geometry and are tightly packed. For example in the basal layer of the human epidermis
the volume fraction of cells is ϕ = 0.83 [90].
Deviations from spherical shape clearly have an impact on the dielectric spectra. These
and other shape effects were already studied in [52], [53], [84], [85], [86] and [82]. In [3]
and [88] a piece of tissue was modeled as a brick-like structure.

The largest flexibility concerning shape generation provide numerical simulations. More-
over, implementation of inter-particle interactions is straight-forward: Stacking and
packing of single cells enables the calculation of the dielectric tensor of cell suspen-
sions. The first step is the generation of a geometry and a mesh. Unfortunately, the
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expectiation that available computer memory will be the only limitation is not correct.
In systems with large aspect ratios as presented here the occurrence of small distances
can cause numerical problems potentially leading to a failure of geometry and/or mesh
generation. However, once the geometry and a corresponding mesh is set up the cal-
culation of the cell’s properties is almost entirely limited by the size of the system of
equations and therefore by the available computer memory.
In this work we propose a new framework in order to efficiently model cell-like structures
comprising the steps depicted in Figure 4.1. The principal approach consists of implicitly
representing the cell suspension as a periodic assembly of unit cells, each containing a
single centered particle (biological cell). The unit cell is consecutively exposed to an ex-
ternal homogeneous electric field in all three spatial directions followed by the extraction
of the dielectric tensor ε̄∗ of the unit cell.

4.2 Numerical method

The solution of differential or partial differential equations as the introduced Maxwell
equations (Equations 2.1 to 2.4) usually requires numerical methods. In the past, cells
exposed to electromagnetic fields were usually modeled numerically using the Finite-
Differenc Method (FDM) [91], [92], [93] or the Finite Integration Technique (Finite-
Integration Technique (FIT)) [88]. Another method, not to be confused with equivalent
circuit representation by Cole-Cole type material models is the equivalent circuit method.
In this approach, e. g. employed in [94] for cell modeling each discretization cell is rep-
resented by an equivalent circuit and the solution is obtained without solving partial
differential equations as in most other methods. The Finite-Element Method (FEM)
was also employed for biological cells [14], [52] and [87] and dielectric mixtures in gen-
eral [95] and [96].
Here, FEM is preferred to FDM because FEM can handle the most delicate part of
the model, the cell membrane. In FEM material boundaries coincide with element
boundaries and therefore each element belongs to a defined medium. No averaging or
interpolation of material parameters is needed and the only error concerning this aspect
is caused by the domain discretization error [97], [98]. Furthermore, FEM provides a
more flexible approximation of curved boundaries by an unstructured grid, nonuniform
element sizes and locally enhanced mesh densities better resolving small features [99].
Non-regular, non-cartesian grid refinement is usually not implemented in FDM software
on a standard basis [100]. The mentioned issues can cause accuracy problems, especially
in case of thin layers with curved boundaries, which are present in form of cell mem-
branes. Even though FEM requires larger computational effort compared to FDM the
former is preferred since it offers higher accuracy [101].

As the dimensions of the geometry are much smaller than the smallest wavelength of the
electromagnetic field and the skin depth is much larger than the geometry, a quasi-static
approximation of the problem can be applied and only the electric potential V has to be
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evaluated according to

−∇ ·
(
ε∗∇ ∂

∂t
V

)
= 0. (4.1)

For the numerical evaluation of Equation 4.1 the FEM based commercial simulation
software COMSOL Multiphysicsr version 3.5a with the module ‘quasi-statics for elec-
tromagnetics’ was used.

A cell, no matter which shape has to be placed in a unit cell filled with extracellu-
lar medium. The absolute dimensions of the (biological) cell and the desired volume
fraction determine the dimensions of the unit cell. The biological cell is centered in
the unit cell. In other words, the walls of the unit cell in x-direction are equidistant
from xmin and xmax of the biological cell, the same applies for the y- and z-direction.
An electric field is applied between unit cell walls placed oppositely to each other, the
remaining four walls are perfect magnetic conductors (PMCs). This corresponds to the
cell being in an idealized parallel plate capacitor setup. The effective dielectric properties
of the biological cell in in x-, y- and z-direction are obtained from the admittance. The
components ε∗xx, ε∗yy and ε∗zz form the diagonal complex dielectric tensor ε̄∗ of the single
cell.
Now, the PMC boundary condition not only prevents a potentially emerging fringing
of the electric field but together with the electrodes set to perfectly electric conductors
(PECs) also imply a periodic structure in the plane perpendicular to the electric field.
Consequently, if non-spherical cells in suspensions or tissues have a preferred orientation
and the periodicity is given by mentioned unit cell, the macroscopic effective dielectric
properties of such a composite material are described by the dielectric tensor ε̄∗. Elec-
tric fields of non-invasive probes (e.g. coaxial probes [34], [33] or fringing field sensors)
are usually inhomogeneous on the macroscopic scale but homogeneous on the scale of
a single cell. Consequently, the measurement of the material properties of the compos-
ite can provide information on the microstructure of the material under test [102]. Vice
versa, modeling of a single cell can be sufficient in order to describe macroscopic effective
dielectric properties.

4.3 Geometry

Since the parameter space can be arbitrarily large it would be convenient to describe e.g.
the cell shape with as few parameters as possible while being able to cover a wide vari-
ety of cell morphologies. Parametrization of cells (red blood cells (RBCs), fission yeast
cells) from images has already been described in [103] and [104] with appropriate com-
binations of spherical harmonics. Another analytical parametrization of an echinocyte,
a particularly shaped RBC was given in [91]. Discocytes, also a form of RBCs, were
represented by rotated Jacobi elliptic functions e.g. in [93] or [87] and references therein.
[84] and [85] used rotated Cassini curves in order to model RBCs and rotation of com-
bined trigonometric functions provided pear-shaped models of cells during division. In
[85] the effect of geometrical variations of the cell shape on dielectric spectra has been
explicitly investigated. Except of the method in [104] the mentioned parameterizations
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4.3 Geometry

have rather restricted flexibility in shape variation, i.e. they offer only a small number
of symmetry groups compared to the method presented in this work.

Another aspect already mentioned in Section 4.1 is the large aspect ratio between cell
size and membrane thickness. Therefore, implementation issues are addressed separately
in Section 4.7.

4.3.1 Surface parametrization

An approach to model biological structures was suggested in [105] and [106]. The pre-
sented so-called superformula (SF) is a simple geometric equation able to reproduce the
morphology of many plants, flowers, animals (e.g. snail shells) generating a wide variety
of surfaces that are dependent on only six parameters. The SF is a generalization of
superquadrics and superellipses. Each point p(φ, θ) = (x, y, z) where φ ∈ [−π, π] and
θ ∈ [−π/2, π/2] since the 2D SF can be extended to 3D using the spherical product [105]:

p1 =
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(4.2)
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θ
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(4.3)

r1 =
1

n1

√
|p1|

(4.4)

r2 =
1

n1

√
|p2|

(4.5)

x = r1 cos(φ)r2 cos(θ) (4.6)

y = r1 sin(φ)r2 cos(θ) (4.7)

z = r2 sin(θ) (4.8)

The number of discretization points d (see Figure 4.3) is chosen to be equal in the φ-
and θ-intervals, therefore the distribution in the φ-interval is half as dense as in the θ
interval which is considered to be sufficient.
By adjusting the parameters many different cell shapes can be generated, e.g. different
types of RBCs, box-shaped tissue cells, oval cells and as a special case the simple spheres
or ellipsoids. Also a filling of the space beyond the mentioned limit for randomly oriented
tightly packed ellipsoids can be obtained: Setting the parameters to [a b m n1 n2 n3] =
[1 1 4 n1 n2 n3] the shape of a sphere (n1 = n2 = n3 = 2) can be smoothly modified
to a superellipsoid, a cube with rounded corners by increasing n. This shape transition
can occur when e.g. applying external pressure on cell. For the parameter set [a b m n1

n2 n3] = [1 1 4 n1 4 4] the edges can be bent inwards by setting 0 < n1 < 4 creating an
even more realistic representation of a tissue cell shown in Figure 4.4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.2: Various types of biological cells: (a) Adipocyte [107]. (b) Cuboidal epithelium cell
in the kidney [108]. (c) Columnar epithelial cell [108]. (d) Stratified squamous epithelial
cell of the tongue [108]. (e) Muscle cell [109]. (f) Neuron [110]. (g) RBC, transition state
between discocyte (normal state) and echinocyte [111]. (h) RBC, echinocyte form [112]. (i)
to (p) Supershape approximations of the cell types depicted in (a) to (h).
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(a) (b)

Figure 4.3: Variation of the discretization parameter d: d = 20 in (a) and d = 50 in (b) for the
shape [a b m n1 n2 n3] = [1 1 2 -0.1 2 3].

(a) (b) (c) (d) (e)

Figure 4.4: Variation of the shape parameter n1 for the shape [a b m n1 n2 n3] = [1 1 4 n1 4
4]. n1 = 2 (a), n1 = 3 (b), n1 = 4 (c), n1 = 5 (d) and n1 = 6 (e).

Although the SF cannot produce fully asymmetrical shapes, if e.g. all parameters [a
b m n1 n2 n3] ≥ 1 it provides surfaces with a reflection plane (x-y-plane) as the only
symmetry element. Consequently, the lowest symmetry group is C2v, compared to D∞h
for functions in the x-y-plane rotated around the z-axis [85] and [87].

4.3.2 Offset surface

Modeling of biological cells not only requires the generation of the principle shape but
also the modeling of the cell membrane represented by an additional equidistant offset
surface. The distance is given by the cell membrane thickness ρ. Since the cell shape is
given in parametric form it is straight-forward to obtain this offset surface via shifting
each point p of the original surface by a constant value along the normal vector n [93].
The parametric equation of a point p′ of the offset surface is given by

p′(φ, θ) = p(φ, θ) + ρn(φ, θ) (4.9)

where

n(φ, θ) =

∂p
∂θ ×

∂p
∂φ

‖∂p∂θ ×
∂p
∂φ‖

. (4.10)
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Table 4.1: Supershape parameters for selected cells. The parametrizations with an ‘*’ were
used in calculations.

Cell type Supershape parameters Figure

a b m n1 n2 n3 d

Spherical∗ 1 1 2 2 2 2 32 4.2(i)

Cuboidal∗ 1 1 4 5 4 4 32 4.2(j)

Columnar 1 0.5 4 4 4 4 50 4.2(k)

Squamous 1 1 4 5 4 4 50 4.2(l)

Muscular 0.2 1 2 1 2 2 50 4.2(m)

Nerve 2 1 7 1 1 1 150 4.2(n)

Pre-Echinocyte 2 2 8 3 3 3 80 4.2(o)

Echinocyte 1 1 8 8 20 6 80 4.2(p)

Echinocyte∗ 1 1 8 4 4 5 48 −
Keratinocyte∗ 0.5 0.5 4 4 4 4 30 4.10(a)

In order to ensure that the new surface is not self-intersecting ρ has to be smaller than
the distance from an arbitrary point to the medial axis (for a definition of the medial
axis see [113]) illustrated in Figure 4.5 as a simplified 2D sketch. In other words, the
theoretical minimal radius of curvature of such features is thus ρ. At the ρ-limit two
parts of the inner membrane surface touch each other. If the radius increases the protu-
berance also contains a small volume of cytoplasm. If the diameter of this small volume
is on the same scale as ρ or even smaller, model geometry and/or mesh generation might
potentially fail due to numerical problems. Although the a priori determination of ρ
from the supershape parameters is difficult, ρ is about two orders of magnitude smaller
than the actual cell dimensions. Most cells tend to have a flat surface and the offset sur-
face can be easily generated by aforementioned simple linear translations. Exceptions
might be cells with stellae, such as muscle cells or neurons shown in Figures 4.2(m) and
(n).

After obtaining the cell’s inner and outer surface this geometry has to be introduced into
the FEM software. Although some FEM solvers as e.g. COMSOL Multiphysicsr and
HFSSTM are capable to generate parametric surfaces in 2D and 3D the “singularities”,
points with coordinates (0, 0,±z), may cause problems. For the mentioned φ and θ inter-
vals the locations (0, 0,+z) and (0, 0,−z) are degenerated according to the roots of sin
and cos. While visual representation of the surface is straight-forward, problems with the
mentioned singular points occur if the surface has to be transformed into a “water-tight”
boundary or solid geometry object and used for further calculations. Since COMSOL
Multiphysicsr provides appropriate functions (after removal of π/2 and −π/2 from the
θ-interval) a valid geometry for further processing can be obtained using a procedure
similar to the one suggested for generating solid models from magnetic resonance imag-
ing (MRI) or CT scan data [114]. For further details and code see appendix B.3.
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Figure 4.5: Original surface S (black solid line) with its medial axis (also a surface in 3D, here
represented by the black dot-dashed line) and a valid offset surface S′ (light-grey solid line)
obtained from Equations 4.9 and 4.10. The dashed light-grey line represents an invalid offset
surface, generated if ρ is larger than the distance of a point from S to the medial axis.

If the FEM software does not contain high-level geometry modeling functions a pos-
sibility is to reconstruct the shape from a surface triangulation. A very simple but
efficient way to do so is presented in the next section.

It has to be mentioned that the SF allows the generation of shapes with non-spherical
topology, depending on the choice of the parameters. This can e.g. happen if non-integer
values are chosen. Also ’sharp’ corners can be produced setting n1 < 1 or n2, n3 < 2.
Even though the cell shape might be appropriate to approximate a certain cell shape,
e.g. a neuron depicted in Figures 4.2(f) and 4.2(n) one has to be aware of numerical
problems when establishing the mesh as well as with the field solution due to bad-quality
tetrahedrons.

4.4 Discretization

In FEM software it is often the case that the choice of geometrical elements is restricted
to a few basic shapes such as ellipsoid, block or cone. A very wide variety of objects
can be created using the mentioned shapes in combination with boolean and other geo-
metrical operations as revolving, lofting, extruding, etc. However, complicated objects
often require numerous steps until the final form is elaborated. Additionally, even if
automatized in a script the procedure has limited flexibility with respect to the shape of
the final object.
The representation of an object by an analytical formula drastically reduces the above-
mentioned effort. In the case of COMSOL Multiphysicsr and HFSSTM it is possible to
generate parametric surfaces in 2D as well as in 3D. Extracting only the unique vertices
as a list removes the singularities mentioned in Section 4.3.2 but also causes the loss of
connectivity information. From this moment on the shape is purely represented by the
x-,y-, and z-coordinate of its points.
Nevertheless, the representation of the surface as a 3D point cloud is a step towards
a possible solution. Since most commercial FEM software packages are able to import
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a mesh, the point cloud can be triangulated externally and then passed to the FEM
software as a mesh. However, calculating a topologically correct surface triangulation of
an arbitrarily-shaped closed object is a highly non-trivial task and a research field on its
own [115]. In the following two triangulation algorithms are presented: A general one
and a simple, effective triangulation algorithm applicable to supershapes generated with
the mentioned restrictions on the input parameters.
Many triangulation methods are based on criteria concerning the input point cloud.
If those criteria are met the particular procedure theoretically provides a ‘correct’ tri-
angulation. Two terms have been suggested by [113] and [116] in order to quantify a
’sufficiently’ dense sampling: The r-sample and least feature size (LFS).
A sample (point cloud) S is an r-sample of a surface F when the Euclidean distance
from any point p ∈ F to the nearest sample point is at most r times the distance from
p to the nearest point of the medial axis of F .

4.4.1 Triangulation algorithm

In some cases numerical software packages are able to directly import tetrahedral meshes
and create the corresponding geometry. An example for a triangulation algorithm for
mesh generation for 3D point clouds of non-convex surfaces is e.g. given in the ap-
pendix A. However, in the case of parametric surfaces the idea from the general algorithm
of obtaining ‘inner’ and ‘outer’ points and computing the Delaunay diagram of the latter
and S can be simplified: With supershapes calcualted under the mentioned restrictions
an offset surface S′ replacing the ‘outer’ (or ‘inner’) poles can be generated. The more
concave regions S possesses the denser should be S′. Depending on the density of S′ the
simple algorithm requires just one Delaunay triangulation of approximately 2n when n
is the number of points and very little postprocessing if at all. Generally, in surface tri-
angulation algorithms the Delaunay triangulation is still the most time-consuming step
[117] and [118].
The quality of the calculated tesselation depends on the distance of the offset surface for
a given discretization d, which again depends on the complexity of the shape.
Compared to the general algorithm from appendix A or to other surface triangulations
the presented simple algorithm only requires the following implementation steps:

1. Generate offset surface S′ (already performed in Section 4.3).

2. Compute the Delaunay triangulation of S ∪ S′.
3. Keep only those tetrahedrons with one vertex from S′ and three from S. Remove

slivers by normal filtering [113] if needed.

4. The triangles of tetrahedrons obtained in 3. whose vertices all belong to S represent
the final triangulation.

5. If required remove edge triangles (and repair holes) or adjust the stretching factor
δ and retriangulate as long as triangulation is not edge- and hole-free (function
available).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Surface triangulations of the parametrized biological cells from Figure 4.2 generated
with the algorithm introduced in Section 4.4.1.

4.4.2 Meshing issues

Similar to the geometry generation also the meshing of the volume causes problems
due to the large aspect ratio. In COMSOL Multiphysicsr the most frequently occurring
issues are failed insertion of points, generation of empty cavities, and so on. In order to
resolve this rather unsatisfactory situation and to anyhow obtain an adequate mesh the
following can be tried:

1. Mesh edges, boundaries and subdomains in that order

2. Define location of mesh points on edges and boundaries manually

3. Rescale mesh in a certain spatial direction in case of flat/narrow geometries

4. Start with a coarse mesh and perform one or more refinement steps

5. Perform local refinement on subdomains

6. Adaptive mesh refinement would be a good solution but takes extremely long

7. Swept mesh requires sectioning of particle into octants in order to avoid ambiguities
for sweep direction

Besides software-specific meshing issues also general ones exist, such as the optimal mesh
size for a problem. A too coarse mesh resolution within regions with large gradients of
the solution variable (as e.g near the cell membrane in case of cell models) leads to errors.
On the other hand, if the mesh is too fine in some regions again the large aspect ratio
between the smallest and largest mesh element leads to a high matrix condition number
responsible for numerical imprecisions in the solution.
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In the case of supershapes with an offset surface close to the original one and the resulting
large aspect ratios the ability of COMSOL Multiphysicsr to generate a mesh also depends
on the choice of the discretization parameter d of the original surface. If the discretization
is too coarse small features as e.g. the spicules of the echinocyte cannot be properly
resolved and the resulting shape will have unwanted sharp corners. On the other hand,
if the points are too dense the meshing tool of COMSOL Multiphysicsr fails in some
cases due to internal numerical errors, meaning a distance between two points cannot
be resolved. Consequently and unfortunately, one has to try different values for d ‘by
hand’.

4.5 Packing of unit cells

Depending on their sizes and electronic interactions atoms in a crystal always form an
ordered assembly or packing. A selection of basic lattice structures is given in Figure
4.7. In order to overcome volume fraction limits imposed by allowing a unit cell to only
contain a single particle within a unit cell one can borrow the concept for the modeling
of the dielectric tensor of periodic structures introduced in Section 4.1. For the specific
problem of tissue or cell suspension exposed to a homogeneous external field only the
cubic packings are relevant because only those have the appropriate symmetry in order
to provide the correct diagonal effective dielectric tensor ε̄∗eff .

Besides the simple cubic the body-centered cubic packing will be used in this work
in order to model densely packed cells in tissue.

BCC FCCSCU HCP

Figure 4.7: Lattices structures: simple cubic (SCU), body centered cubic (BCC), face centered
cubic (FCC) and hexagonal close packed (HCP).

4.6 Analysis, results and discussion

4.6.1 Model validation and accuracy of analytical approximations

The numerical model was validated for a shelled ellipsoidal inclusion (for parameters
see Table 3.1) at a volume fraction of ϕ = 0.1. The corresponding deviations of the
numerical model to the MG and HB formulas are depicted in Figure 4.8.
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Figure 4.8: Deviations between numerically modeled effective dielectric parameters and those
obtained by mixing formulas. Confocal ((a) and (b)) and concentric ((c) and (d)) shelled
ellipsoidal inclusion ES2 (for parameters see Table 3.1) for ϕ = 0.1.

4.6.2 Sensitivity to parameter variations

Three different cell types out of the overview in Figure 4.2 are chosen in order to in-
vesitgate the irregularity in cell shape. The first two cell types occur in the human
body on a regular basis. The subcutaneous fat or adipose tissue consists of spherical or
slightly deformed fat cells as shown in 4.2(a). Epithelial tissue lines almost the entire
body from inside as well as from the outside. An example is the cuboidal epithelium cell
in the kidney given in 4.2(b). The third example in 4.2(h) depicts a special form of an
RBC, an echinocyte . Echinocytes are crenated RBCs characterized by convex rounded
protrusions or spicules. The shape transformation from normal RBCs (discocytes) is
e.g. induced by anionic amphipaths, high salt concentration, high pH, ATP depletion,
cholesterol enrichment, and proximity to a glass surface [111]. The dielectric parameters
for the phases of the cell models were assumed to be frequency independent with ε = 80
and σ = 0.12 [S/m] for the extracellular medium, ε = 9.04 and σ = 1 · 10−6 [S/m] for
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Figure 4.9: Echinocyte from Figure 4.2(p) and box-shaped cell from Figure 4.2(j) and their
spherical approximation, approximation by a series circuit of cytoplasm and extracellular
medium (EC) and extracellular medium only (E). Absolute dielectric spectra in (a) and (b)
and relative deviations of the EC and E approximations with respect to the cell model in (c)
and (d).

the membrane and ε = 50 and σ = 0.53 [S/m] for the cytoplasm [48]. The dielectric
parameters were kept fixed for all models.
Simulated dielectric spectra for the box-shaped, echinocyte-like and spherical cell and
the analytically calculated spectra obtained from the MG formula for the spherical cell
for volume fractions ϕ = 0.1 and ϕ = 0.4 are given in Figure 4.9. The purpose of the
displayed spectra is to show occurring differences on a larger scale.
In order to quantify deviations between the non-spherical shapes and the spherical cell
shows the relative difference of permittivity and conductivity of the box-shaped cell and
echinocyte with respect to the spherical cell. Furthermore, the error is quantified for the
cases when the three-phase cell model is replaced by a simple series circuit of extracel-
lular medium and cytoplasm and by extracellular medium only.
Another example where a supershape, a keratinocyte ocurring in the human epidermis,
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(a) (b) (c) (d)

Figure 4.10: Keratinocyte shape (a) and (c) and ellipsoid (b) and (d) with equal semi-axis
ratios.
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Figure 4.11: Keratinocyte and its ellipsoidal approximation. Absolute dielectric spectra in (a)
and (b) and relative deviations of the ellipsoidal approximation with respect to the exact
keratinocyte shape in (c) and (d).
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is compared to its volume-fraction equivalent ellipsoid is given in Figure 4.10. The cor-
responding spectra, calculated using the MG and HB formulas for the ellipsoid as well
as the numerical simulations of the keratinocyte are given in Figure 4.11.

4.6.3 Unit cell

The comparison between dielectric spectra of a particle in a SCU or BCC unit cell is given
in Figure 4.12. The models with the box-shaped cell from Figure 4.4(c) were established
using the replacement of the cell membrane by a boundary condition described in the
next section. This was necessary since at the volume fraction of ϕ = 0.8 in the BCC
model the center particle and the corner particle-eights are very close together causing
an additional large aspect ratio. A significant difference between the values for the SCU
and BCC can be seen. However, the BCC model was established using a relatively coarse
mesh which is responsible for the large deviation between the parameters in x-direction
compared to those in y- and z-direction. This should not be the case since the shape has
cubic symmetry. For further use this BCC model would have to be recalculated using
a finer mesh, because otherwise the differences among the spatial directions in the BCC
model are even larger than between the SCU and BCC model.
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Figure 4.12: Box-shaped cell from Figure 4.4(c) with semi-axes lengths dx = dy = dz = 45 µm
and a membrane thickness of ρm = 7 nm. Effective permittivity (a) and conductivity (b) of
a box-shaped cell. Comparison between a SCU and BCC unit cell at ϕ = 0.8.

4.7 Replacement of the cell membrane by boundary conditions

The representation of the shelled spherical geometry as a supershape and the implemen-
tation in COMSOL Multiphysicsr showed to be less prone to numerical errors during
mesh generation for the thin membrane than the ellipsoidal geometry object available
directrly in COMSOL Multiphysicsr .
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Unfortunately, it can happen that a large model cannot be solved even if the required
computer memory is available. This can happen if e.g. the PARDISO solver is not
able to handle the matrix anymore due to internal problems. Therefore, a way has to be
found how to reduce the number of elements. One possibility is to replace the membrane
with a boundary condition which allows the solution variable, the electric potential V
to be discontinuous across the boundary. Software-specific implementional details are
given in Section B.4. An example comparing the MG and HB formulas with the numer-
ical solution for a shelled spherical inclusion SS1 (for parameters see Table 3.1) is given
Figure 4.13 for two different volume fractions of ϕ = 1 and ϕ = 0.5. The deviations are
larger for the higher volume fraction. This is due to the fact that the spherical shape
was created using the SF: For both volume fractions the same discretization was used
and therefore the piecewise linear approximation has a larger impact in the case of the
higher volume fraction. Overall it can be stated that the replacement of the membrane
by a boundary condition was successful.
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Figure 4.13: Shelled spherical inclusion (SS1) at ϕ = 0.1 in (a) and (b) and ϕ = 0.5 in (c) and
(d). Numerical model with replacement of the membrane by a boundary and the deviations
to the MG and HB formulas.
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Some models presented later in Chapter 7 are only possible to establish using this re-
placement of the cell membrane by a boundary condititon. It leads to a reduction of the
mesh size by a factor of 10.
Several examples on solving of large problems are given in [119] or for the octree multigrid
solver in [120]. A rather sophisticated method is the immersed FEM used for biological
systems [121].

4.8 Anisotropy in a shell

Due to the rotation of the hydrophilic head groups of the phospholipid bilayer the cell
membrane exhibits different dielectric parameters in normal and tangential direction
to its surface [48], [81]. This means that the dielectric tensor is diagonal in the local
coordinate system

ε̄∗ =

 ε∗⊥ 0 0

0 ε∗|| 0

0 0 ε∗||

 , (4.11)

but will contain off-diagonal elements in the global coordinate system. The tensor can
be transformed from the local to the global coordinate system by multiplication with
the rotation matrix R and its transpose RT according to

ε̄∗ = Rε̄∗localR
T . (4.12)

With the Euler angles φ, θ and ψ depicted in Figure 4.14 the rotation matrix is defined
as

R =

 cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

 .

(4.13)

The resulting ε̄∗ contains off-diagonal elements but is symmetric. In terms of imple-
mentation for each membrane element the closest boundary element (outer or inner, but
same for all membrane elements) has to be found. Then the normal vector of this boun-

Figure 4.14: Euler angles.
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dary triangle ABC, ~nABC , e.g.
−−→
BC and a second tangential vector calculated by the

cross product forn a right-handed basis set for the local coordinate system. After deter-
mination of the Euler angles the application of Equation 4.12 delivers the permittivity
tensor for a specific membrane element in the global coordiate system.
Parameters for an anisotropic cell membrane can be e.g. obtained from [122].

4.9 Conclusion

The validity of the numerical models was shown using several examples. The replace-
ment of the cell membrane by a boundary provides a computational speedup of approx.
5-10 times with an error smaller than 5% for a volume fraction of ϕ = 0.1 and smaller
than 15% for a volume fraction of ϕ = 0.5. Furthermore, the non-negligible influence
of the intercellular interactions was demonstrated simulating a box-shaped cell in a SC
and BCC unit cell.

The results from the numerical simulations again emphasize that shape clearly has an
influence on the dielectric spectra in the lower MHz region and has to be accounted for
in modeling, depending on the desired accuracy. In contrast to most other works where
the shape effects are investigated in terms of quantities derived from the Cole-Cole re-
laxation model (such as e.g. ∆ε) the presented quantitative study is more general due
to its very emphasis on the actual cell geometry.
For the given overall shape and volume parameter range the presented work provides a
robust and flexible method for the calculation of dielectric spectra of cells. Nevertheless,
certain limitations have to be mentioned. The large aspect-ratio between cell membrane
thickness and cell dimensions requires a high mesh resolution and therefore large com-
putational power. A model incorporating the cell membrane only in terms of boundary
conditions is in preparation. Another issue, advantage and limitation at the same time
concerns the large parameter ranges for a, b,m, n1, n2 and n3. Sharp edges and non-
spherical topologies can both be easily generated. Spike-like features may occur e.g.
in neurons, which are likely to cause problems in numerical simulations and eventually
require some special care, such as removal of points. Certain parameter combinations
lead to self-intersection or other modifications (n1 and n3 < 0) so the topology is not
spherical anymore. Both issues can be avoided indicating a certain parameter range if
modeling biological cells. Since the computational effort for the generation of a solid ob-
ject with the described software-specific procedure depends on the number of points the
discretization parameter d should be chosen as small as possible but as large as necessary
in order to properly reproduce the curvatures of the corresponding cell shape. Generally,
it can be stated that the higher m (while n1, n2 and n3 > 2) the more protuberances or
spikes a supershape will posess and the larger d has to be chosen.
From a general point of view the few parameters required in the shape representation, the
flexible discretization and robustness make the procedure suitable in shape optimization
of any kind. The multi-scale modeling concept for tissues can be extended by setting up
minimal-size cell arrays in order to include and control interparticle interactions.
Using the presented framework for cell shape generation, the influence of geometrical
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variations as well as the cell volume fraction on dielectric spectra was investigated be-
tween 100 kHz and 1 GHz. The quantification of the cell shape’s influence was introduced
via the relative deviation between non-spherical and spherical spectra. Results for the
different cell shapes suggest that below 1 MHz the effective dielectric properties of differ-
ent cell shapes at different volume fractions significantly deviate from the spherical case.
Furthermore, the three different cell shapes were compared to a simple serial connection
of the involved materials with scaled thicknesses in order to demonstrate the influence of
the cell membrane. The absolute values for the dielectric parameters of such equivalent
circuit models are significantly larger than for the single-cell models but location and
characteristics of the dispersion are comparable.
Concerning measurability it can be stated that the changes are pronounced in the high
kHz-range but potentially masked by electrode polarization effects. Above the occur-
rence of electrode polarization, starting in the low MHz-range the magnitude of the
deviations due to shape changes decrease and would therefore require a higher sensitiv-
ity of the measurement setup.
The SF turned out to be a suitable parametrization method for non-axisymmetric shaped
biological cells, also applicable to test a functional dependence between environmental
changes (concentration of a species, pressure, temperature, etc.) and the shape of a sur-
face. As an example the RBC shape strongly depends on the electrolyte concentration
in the blood plasma. Although completely asymmetrical shapes cannot be generated by
the SF this drawback could e.g. be compensated by a an additional ”deformation” func-
tion acting on the supershape. Furthermore, multiplying the SF with other functions or
another SF would also extend the variety of possible shapes [106].
Followed by FEM simulations of dielectric spectra of the mentioned cell models the
overall method is very flexible for single cell and tissue modeling. However, in order to
establish an efficient and reliable macroscopic tissue model the influence of other aspects
such as ion channels, proteins, organelles, etc. have to be investigated as well, especially
for frequencies above 50 MHz.
On the microscopic scale itself the developed models can be used in order to analyze
the local distribution of applied electromagnetic fields in order to investigate potential
non-thermal effects.
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5 The multiscale approach
Multiscale modeling usually contains a combination of information on several temporal
and spatial scales while several physical processes may be involved [123]. Multiscale
modeling is quite popular e.g. in mechanics [124] and [125]. For the calculation of
dielectric properties of tissueo no general multiscale model has been presented so far,
although the idea already exists for some time [126].
As already mentioned in Section 1.1 modeling of microscopical geometry details on
macroscale remains challenging if not impossible: If considering a coaxial probe with
outer dimensions of approximately 2 cm and a very roughly estimated penetration depth
of 2 mm, if including cells with an extent of few µm not speaking of the cell membrane
in the order of nm the number of degrees of freedoms (DOFs) would explode. Therefore,
a way has to be found how to avoid modeling of small details while allowing for an
accurate incorporation of structural information. A method for solving this problem is
outlined in this chapter.

5.1 Concept

Although the external electric field is inhomogeneous on the macroscale its approximate
homogeneity on the microscale suggests representing each tissue type by the effective
permittivity of its unit cell. The idea is to consider the material as a quasi-periodic
structure and to calculate average properties for a unit cell on a particular scale, pass
the so-obtained effective/averaged value to the next scale. This can be considered as
an n-step homogenization. By defining a cubic unit cell of the structure (containing
one biological cell embedded in extracellular medium in the simplest case of stratum
corneum (SC) packing) the complex effective dielectric tensor ε̄∗

ε̄∗eff =

 εxx,eff 0 0

0 εyy,eff 0

0 0 εzz,eff

 (5.1)

can be calculated al already elucidated in Section 4.2. If the tissue contains quasi-
periodic structures on a smaller (subcellular) or larger (mesoscopic) scale the procedure
can be iteratively repeated in a sort of recursion scheme by starting at the smallest scale,
calculating the effective dielectric parameters of the unit cell, building up a structure
in a new unit cell on the next-higher scale with assigned material parameters from the
previous scale, again calculating the effective parameters of this new unit cell, and so
on. For a better understanding the general procedure is depicted in Figure 5.1.
An application of this idea will be presented in Chapter 7 [127] for the dielectric spec-
troscopy of the human skin in the MHz region, employing a fringing-field sensor.
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Figure 5.1: Scheme of the dielectric homogenization procedure for a material with (quasi-)-
periodic on one or more scales. Depicted is the step for one hierarchy or scale step, j. (*)
The tracking of the material anisotropy is only possible if the geometry consists of a cubic
unit cell with walls parallel to the xy-, yz- and xz-planes and the electric field is applied to
the z-, x- and y-direction, respectively in order to obtain the dielectric tensor of the material.
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5.2 Statistical variations and required size of unit cell

(a) (b) (c) (d)

Figure 5.2: Arrays of tilted ellipsoidal particles with statistically distributed deviations (pseudo-
normal distribution) in polar and azimuthal angles with respect to a preferred orientation.
5.2(a) Single tilted homogeneous ellipsoidal particle with φ = 45° and θ = 60°[111]. 5.2(b)
5.2(c) and 5.2(d) [222]-, [333]- and [555]-arrays with tilted particles with standard deviation
of ± 10 ° for φ and θ with respect to the [111]-array.

5.2 Statistical variations and required size of unit cell

Since cells either in suspensions or in tissue are not perfectly equal the question arises how
much can a certain parameter vary in order to obtain effective dielectric parameters that
vary only in a defined range or what is the smallest possible unit cell. The hypothesis
is that depending on the standard deviation the error will converge as a function of
array sizes. The question is what is the deviation between the effective properties of
an array where the particles have a standard deviation from a certain orientation and
the reference (single particle with the defined orientation). The homogeneous ellipsoidal
inclusion E1 (for parameters see Table 3.1) with a volume fraction of ϕ = 0.1 is taken
as a test structure. The investigated arrays are given in Figure 5.2. The corresponding
deviations in dielectric parameters with respect to a single ellipsoidal particle rotated
by the azimuthal angle θ = 60° and polar angle φ = 45°, are shown in Figure 5.3. It
can be seen that the deviation decreases with increasing size of the unit cell as expected.
Furthermore, the deviation is practically frequency independent.
The required size of the unit cell in order stay under a certain deviation threshold with
respect to a single particle is supposed to be larger with increasing volume fraction due to
stronger interparticle interactions. However, this assumption would have to be verified
with simulations.

5.3 Anisotropy propagation

In this section it is investigated how much impact does anisotropy have if it occurs in
certain directions either in the host or inclusion phase of a two-phase mixture. One phase
is always isotropic, In the first case the host medium can be fully or partly anisotropic,
in the second case host and inclusion change roles. The isotropic-isotropic case serves
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Figure 5.3: Deviations of effective permittivity (a) and conductivity (b) of [222]-, [333]- and
[555]-arrays of a tilted particles with statistically distributed variations in azimuthal and
polar angles from Figures 5.2, (b) to (d) with respect to those obtained for the single particle,
the [111]-array in Figure 5.2(a).

as reference for each of the two cases. All possible combination are listed on the following.

Case 1

· Reference: Host isotropic (isotropic parameters of fully anisotropic inclusion), in-
clusion isotropic

· Host anisotropic, inclusion isotropic

· Host xy-isotropic, inclusion isotropic

· Host xz-isotropic, inclusion isotropic

· Host yz-isotropic, inclusion isotropic

Case 2

· Reference: Host isotropic, inclusion isotropic (isotropic parameters of fully anisotropic
inclusion)

· Host isotropic, inclusion anisotropic

· Host isotropic, inclusion xy-isotropic

· Host isotropic, inclusion xz-isotropic

· Host isotropic, inclusion yz-isotropic

The dielectric parameters for the anisotropic phase are always obtained from the mixture
of shelled ellipsoids ES1 with a volume fraction of ϕ = 0.1 (for parameters see Table 3.1).
The isotropic phase has a frequency-independent ε = 80 and σ = 1.2 [S/m] (parameters
also used for the extracellular medium). The geometric structure corresponds to the
homogeneous sphere S1 at a volume fraction of ϕ = 0.1. The results are displayed in
Figure 5.4.
It can be seen that effective parameters are far more sensitive to the anisotropy in the
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Figure 5.4: Single, untilted ellipsoidal inclusion E1 (for parameters see Table 3.1), [111]-
array. Expression of anisotropy in all possible directions with respect to the case isotropic
host/isotropic inclusion. Deviations in effective permittivity (a) and conductivity (b) for the
combination anisotropic host/isotropic inclusion for isotropic host/anisotropic inclusion in
(c) and (d) from the fully isotropic reference scenario.

inclusion, even though the volume fraction of the inclusion is much smaller. In the first
case the absolute maximum sensitivity is around 25%, in the second case only approx. 3
%. Permittivity and sensitivity exhibit the same sensitivity spectra. Another interesting
aspect is the frequency dependency of the anisotropy sensitivity. The sensitivity has a
maximum below the center frequency of the main dispersion of the anisotropic phase at
around 100 kHz and strongly decreases for frequencies above 50 MHz.

5.4 Conclusion

In this chapter a framework for modeling of the effective dielectric properties of tissue
while incorporating information fromu multiple spatial scales was introduced. A question
which automatically arises concerns the size limits of a scale. In other words, how large
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has the unit cell to be in order to accurately approximate the bulk material? Using
specific examples, the influence of statistical distribution of particle orientation was
demonstrated and quantified comparing the effective dielectric properties of particle
arrays of different sizes. Furthermore, the impact of anisotropy either in the host or
inclusion in a two-phase system was investigated as well. The unit cell size and anisotropy
impact depend on the specific structure and problem and have to be reevaluated for each
specific geometry. For example in [83] a higher sensitivity for anisotropy in 2D case than
in 3D (‘paradox of anisotropy’) is claimed which could be investigated with the presented
approach.
In order to answer the question when a geometry has to be considered on two consecutive
scales one could e. g. investigate a three-shelled sphere with εh, ε1, ε2, ε3 and ε4. Then
the minimal size of inner single-shelled sphere (ε3 and ε4) would be assessed from which
on it is necessary to geometrically include it in the three-shelled model. This investigation
could be performed for both, MG and HB formulas as well as for ellipsoids, e.g. with an
oblate center particle in prolate outer particle. This would allow to decide up to which
extent the dielectric properties of smaller structures can be simulated on its own scale
or if a more complex model with larger aspect ratios is required.
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6 Multilayer systems and fringing
fields

Since many important physiological phenomena are reflected by changes of the dielectric
properties of the human skin, i.e. in the epidermis and dermis layers, it seems to be
straight forward to apply dielectric spectroscopy as a monitoring technique. Parameters
of interest include glucose levels of diabetes patients, benefits of moisturizers in cosmetics
or the characterization of membrane activity for drug delivery, respectively. The tech-
nique was already used to monitor pathological changes caused by diseases like cancer
[128] or auto-immune disorders of the skin [129]. Applications of dielectric spectroscopy
to the measurement of dielectric properties of human skin were reported in various pub-
lications [130], [131] and [132].
To some extent attempts were made to correlate physiological conditions with measured
dielectric data [6] and [133]. However, there have been challenges in the unequivocal
assignment of the measured signal change as well as the sensitivity. These issues have
to be resolved in order to employ dielectric spectroscopy for tracking of physiological
data in clinical use. The question of sensitivity and related aspects are well treated in
this work, while a general uniqueness analysis is out of scope. Nevertheless, the latter
issue is also fundamental: Correlating changes of certain parameters in a multi-layer
system can also be described as the solution of an inverse problem, which is usually
non-trivial [45]. As reported e.g. in [134] techniques based on dielectric or impedance
spectroscopy of multilayer materials and their spatial reconstruction is an ill-posed prob-
lem. The solution is non-unique and as a consequence, various parameter combinations
yield the same result. Already the reconstruction of a 1D profile is rather challenging as
shown in an extensive study for a distribution of dielectric mechanisms and parameters
in [135]. Therefore, a possibility to reduce the complexity of the inverse problem is to
gather as much information as possible about the system [136]. Then a forward model
is established in such a way that the number of parameters is minimized turning the
problem into a well-posed one. For this reason the presented work solely focuses on the
assessment of the forward problem of a dielectric skin model and potential variations of
effective parameters.
In addition to the skin itself being the target system, a consistent forward model could
potentially also be applied to subtract the skin’s contribution from measurements of
tissues located below the skin layers.
Non-invasive monitoring of changes in dielectric properties within the epidermal and
dermal layers requires the design of a sensor geometry featuring maximal measurement
sensitivity regarding the target quantity. In the case of human skin, non-invasive mea-
surements allow only one-sided access and thus suggest the application of coplanar elec-
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trodes. Different designs of coplanar electrode systems are available, e.g. coaxial probes
[137], [138] and [139], interdigitated sensors [140], [141], [142], [143] and [144], or mesh-
type sensors [145] and [146].

In this chapter effective dielectric parameters of a three-layer human skin model un-
der different probe geometries are numerically evaluated between 100 kHz and 100 MHz.
First, a coaxial probe geometry is employed in order to assess the number of necessary
layers and to perform an extensive sensitivity analysis for dielectric and thickness pa-
rameter variations in the second layer. The measurement sensitivity is derived without
taking noise and biological variations into account. Additionally, the dependency of
the sensitivity as a function of a relative parameter change is assessed at two different
frequencies. In the framework of the sensitivity analysis the importance of dispersive
dielectric parameters for each layer is demonstrated. Furthermore, the specificity of
changes in effective dielectric parameters is investigated by means of sign patterns ob-
tained from the sensitivity spectra and their first and second derivatives. Then, the
transferability of these results to less symmetric probe geometries is investigated. As
an example of such a geometry, a multi-electrode probe in a coplanar design employed
in clinical use is chosen. The effective dielectric properties obtained by this probe are
compared with coaxial probes to show the transferability of the obtained results. Finally,
employing the proposed sensitivity analysis technique, the efficiency of space utilization
in terms of inter-electrode distance is investigated. This investigation is performed by
comparing an interdigitated probe with a coaxial probe geometry.
The model applied for the investigation of sensitivity and specificity can be divided into
two components. One component is the model of the probe and the other is an approx-
imate model of the complex biological structure of skin. Three different probes are used
in the numerical simulations.

6.1 Extraction of dielectric parameters

In this chapter the quasi-static regime applies as outlined Section 4.2. As in Chapter
4 simulations were performed using the FEM software COMSOL Multiphysicsr Version
3.5a.

The solution of the numerical simulation provides the input admittance of the system
consisting of a probe and material under test (i.e. the three-layer system). The effective
dielectric parameters are extracted using the standard procedure of determination of the
cell constants of the measurement cell [147]. In the equivalent circuit the admittances
Y = G + jωC of probe and material under test are in parallel. In order to remove the
probe’s contribution to the admittance cell constants of the measurement cell, km and
kp are introduced. Then, the real parts of the effective permittivity and conductivity
εeff and σeff for a material under test are then given by

εeff =
Cmaterial − kp

km
(6.1)
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and

σeff =
Gmaterialε0

km
. (6.2)

The geometry characteristic is though still contained in the the electric field pattern.
The cell constants can be calculated when the admittances of two materials with known
dielectric parameters are determined. In this process, one material is air, the second
material usually water or an aqueous electrolyte solution, as NaCl(aq) or KCl(aq)

Y = Yprobe + Ymaterial . (6.3)

The cell constants are calculated according to

km =
CNaCl(aq) − Cair

ε′NaCl(aq) − 1
(6.4)

and

kp = Cair − km. (6.5)

Equations (6.1) and (6.2) are used in the following in order to determine the effective
dielectric parameters of the skin model.

6.2 Probes

The analysis of the multilayer systems was performed with different fringing-field probe
geometries.

6.2.1 Coaxial probe

The open coaxial probe geometry is widely used for characterizing dielectrics and biolog-
ical tissue. Due to the rotational symmetry, the full geometry can be represented by a
2D axial symmetric model. This simplification allows for efficient numerical calculations
of many different scenarios using less computational resources and time compared to full
3D models.
The dimensions of the employed coaxial probe shown in Figure 6.1 are chosen accord-
ing to [148] for measurements on human skin. The inner and outer conductor radii are
ri = 1.05 mm and ro = 3.5 mm, the flange radius is rflange = 10.5 mm. The material
between inner and outer conductor is teflon having the dielectric parameters εr = 2.09
and σ = 0 in the operating frequency range between 100 kHz and 100 MHz.

As described e.g. in [148] and [149] the sensed volume of a coaxial probe is related
to the distance between inner and outer conductor. The measured admittance value
as a function of frequency is determined by the current flowing through the multi-layer
structure. The amplitude and the distribution of the current density is itself dependent
on the corresponding dielectric properties of the different layers.

59



6 Multilayer systems and fringing fields

flanger or

ir

Figure 6.1: Geometry of the coaxial probe. The inner conductor of the coaxial probe has a
radius ri = 1.05 mm, the outer conductor ro = 3.5 mm and the flange radius is denoted with
rflange = 10.5 mm. The dielectric of the probe is teflon (εr = 2.09 and σ = 0).

6.2.2 Interdigitated sensor

In the framework of the sensitivity analysis the coaxial probe is compared to an interdig-
itated sensor geometry. Interdigitated sensors have the advantage, that from a certain
number of digits the structure and therefore the potential can be considered as quasi-
periodic in x-direction and the only relevant dependency is the decay of the electric field
strength in z-direction [142]. A 3D sketch of an interdigitated sensor is given in Figure
6.2(a).
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Figure 6.2: Typical interdigitated sensor (a). Adapted from [150]. Partial 2D cross-section of
an interdigitated sensor in (b). Two periods consisting of one driven and two halves of a
grounded electrode. The substrate is teflon (εr = 2.09 and σ = 0).

The interdigitated sensor is approximated with a 2D model representing an infinite array
(x-direction) of infinitely long electrodes (in y-direction) with alternating polarization.
Figure 6.2(b) depicts one unit cell modeling the infinite array by exploiting periodic
boundary conditions (bold dashed lines). This 2D model excludes edge effects such as
additional fringing fields at the borders of the sensor. The interdigitated sensor has
more independent spatial degrees of freedom compared to the coaxial probe. Starting
from a coaxial probe as a reference geometry the length of the electrodes in y-direction
is set to 2rflange. The normalization consists of setting the inter-electrode distances and
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corresponding electrode areas equal in both probe geometries: The area of the driven
electrode is chosen to be equal to the area of the inner conductor of the coaxial probe.
The inter-electrode distance is chosen to be equal to ro−ri for the corresponding coaxial
probe setting. Finally, the area of the grounded electrode is consequently set equal to the
area of the outer conductor of a coaxial probe. The 40µm thick interdigitated electrodes
are placed on a 1.6 mm thick teflon substrate backed by a top ground plane, similar to
the multi-electrode sensor.
Similar to the coaxial probe the effective dielectric properties of materials sensed by
interdigitated fringing field sensors can be modeled semi-analytically by a technique
based on conformal mapping [2] and [151]. Nevertheless, in this work only FEM is used.

6.2.3 Multi-electrode sensor

The multi-electrode fringing-field sensor1 shown in Figure 6.3 contains three strip-like
driven electrodes Ei with different gap widths si (i = 1, 2, 3). The electrode widths
for each electrode is equal to the corresponding gap widths: s1 = 4 mm, s2 = 1.5 mm
and s3 = 0.3 mm. The lengths of the electrodes are l1 = 16 mm, l2 = 18.5 mm and
l3 = 19.8 mm. The electrode thickness is 40 µm as shown in Figure 6.3(b). The circular
patches at the electrode ends have radii equal to si/2.
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Figure 6.3: (a) Multi-electrode sensor with a ground plane of size b1 = 28 mm and b2 = 47 mm.
(b) Electrode and gap dimensions. The electrode widths are equal to the gap widths: s1 =
4 mm (E1), s2 = 1.5 mm (E2) and s3 = 0.3 mm (E3). The electrode lengths are l1 = 16 mm,
l2 = 18.5 mm and l3 = 19.8 mm. The circular patches at the electrode ends have radii equal
to si/2. The radius of the circular patch in the center of E3 is r3 = 0.5 mm. The substrate
thickness hs is 1.6 mm, the material Rogers RO4350b with εr = 3.48 and σ = 0. (c) Sensor
cross-section. The electrode thickness is delectrode is 40µm.

1 Solianis Monitoring AG, http://www.solianis.com
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The radius of the circular patch in the center of E3 is r3 = 0.5 mm. The total area
of the sensor is Asensor = 1316 mm2. The electrodes are printed on a Rogers RO4350b
substrate with thickness hs = 1.6 mm and εr = 3.48 (σ = 0 S/m). The electrodes are fed
by coaxial connectors on the backside of the sensor, where the inner conductors extend
to vias contacting the middle of each electrode. The outer conductors of the coaxial
feeds are connected to a ground plane on the back of the sensor. The ground planes on
the back and on the front of the sensor are also connected through vias. Similarly to the
coaxial probe the multi-electrode sensor is a capacitive probe with negligible inductance
up to several 100 MHz. Above a certain frequency the sensor starts to resonate and acts
as an antenna. However, according to measurements (not shown here) these resonances
occur above 100 MHz for all three electrodes.

Regarding the sensed volume, a similar relation as for coaxial probes holds for the dis-
tance between driven electrode and the ground plane coplanar to the driven electrodes
in the case of the presented multi-electrode sensor. Consequently, the sensed volume is
different for each electrode. 2D FEM simulations and measurements of non-biological
two-layer systems probed with the presented multi-electrode sensor were performed in
[152].

6.3 Layered skin model

The human skin morphology consists of structures on several spatial scales. On the sub-
microscopic and microscopic level there are organelles, cells and macromolecules. On a
scale in the order of a few 100µm, blood vessels form a network. For the assessment of
changes of the dielectric properties of substructures on the effective dielectric properties
of skin the model has to contain certain information on the skin structure while keeping
the number of model parameters as small as possible. However, the establishment of
a model containing microscopic features would lead to a huge number of parameters,
therefore other ways in order to include the relevant information in the model have to
be found.
Although most types of cells share the same basic structure consisting of extracellular
medium, phospholipid cell membrane and cytoplasm the composition (i.e. water con-
tent) of the generally aqueous extracellular medium and cytoplasm may vary and is also
reflected on the macroscopic scale. As a macroscopic quantity, the water content is the
target quantity in order to subdivide the skin into layers.
The topmost layer, the stratum corneum (SC), has a thickness of around 20µm, consists
of dead cells and contains approximately 20% water. Although composed of different
microstructures, the epidermis (thickness of 100-200µm) and 1-1.2 mm thick dermis ex-
hibit a similar water content between 60 and 70% and are therefore combined to form
the second layer (E/D) in the presented model. Finally, the hypodermis (HYP) consist-
ing mainly of subcutaneous fat with a water content of approximately 20% is forming
the third layer. An MR image of human skin taken at the dorsal upper left arm is
depicted in Figure 7.5. A detailed description of the measurement procedure is given
in Section 7.3.2. The different layers of epidermis, dermis, hypodermis and muscle are
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clearly distinguishable according to [153]. It has to be mentioned that the MR image in-
dicates compositional differences between the epidermis and dermis. Nevertheless, these
two layers are gathered in a first approximation. The uppermost layer of the epidermis,
the stratum corneum, lies below the resolution limit and cannot be visualized. The
three-layer model which is employed in the numerical simulations in order to approxi-
mate human skin is shown in Figure 6.4(a). These three layers represent the stratum
corneum, the dermis/epidermis and the hypodermis. The thicknesses of the layers are
chosen to be d1 = 20µm, d2 = 1 mm and d3 =∞. The model is truncated with d3 = 2
cm (could be in fact even smaller) and the boundary condition n ·E = 0, where n is the
normal vector at the boundary. The question if muscle tissue has to be included into
the model as a fourth layer will be discussed later.

(a) (b)

Figure 6.4: (a) Simplified numerical reference model of human skin and (b) the corresponding
model with parameters of the second layer varied by a factor (1±∆) for the sensitivity and
selectivity analysis.

Since the primary goal of this Chapter is not directly related to tissue microstructure but
the assessement of sensitivity with respect to parameter changes in an entire layer of a
multilayer system the use of Cole-Cole models is considered as justified. As mentionend
in Section 2.3 here, the Cole-Cole models serve as placeholder. In the three layer skin
model, each layer i is represented by a complex permittivity ε∗i characterized by

ε∗i = ε∞,i +
∑
n

∆εn,i
1 + (jωτn,i)(1−αn,i)

+
σDC,i
jωε0

(6.6)

where ε∞,i denotes the optical limit of the permittivity, σDC the static conductivity, τn
the n-th relaxation time, ∆εn the n-th permittivity increment, αn the n-th broaden-
ing parameter and n the number of dispersions. For the stratum corneum parameters
from [130] for the ‘untreated stratum corneum’ case are taken. Since to the author’s
best knowledge there are no parameters for the isolated epidermis/dermis available, this
layer is approximated by blood [34]. Blood vessels are non-uniformly distributed among
the dermis and make up roughly 30% of its volume. But as a large part of the other
epidermis/dermis components are cells with similar water content and dielectric char-
acteristics as blood cells (β-dispersion) and thus the dispersive dielectric parameters of
blood can be used as an approximation for these cells as well. The subcutaneous tissue,
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6 Multilayer systems and fringing fields

Table 6.1: Cole-Cole parameters for each layer in the three-layer skin model. The values refer
to ‘untreated stratum corneum’ from [130] for the SC, ’blood’ for E/D and ’infiltrated fat’
for HYP from [34].

ε∞ σDC [S/m] ∆ε1 τ1 [ps] α1 ∆ε2 τ2 [ns] α2

SC 4.4093 0.188 40.6 35 0 195 2.58 0

E/D 4 0.7 56 8.38 0.1 5200 132.6 0.1

HYP 2.5 0.035 9 79.6 0.2 35 15.92 0.1

∆ε3 τ3 [µs] α3 ∆ε4 τ4 [ms] α4

SC - - - - - -

E/D - - - - - -

HYP 33000 159 0.05 107 15.9 0.01

(a) (b)

Figure 6.5: (a) Effective permittivity and (b) of skin layer models: The stratum corneum is
modeled as ‘untreated stratum corneum’ from [130], the epidermis/dermis as ‘blood’ from
[34] and the hypodermis as ‘infiltrated fat’ from [34]. The corresponding Cole-Cole parameters
are given in Table 6.1.

the hypodermis is approximated by infiltrated fat [34]. The dispersive spectra for the
single layers are shown in Figure 6.5 and the Cole-Cole parameters of each material are
given in Table 6.1.
In order to determine the necessary computational volume in terms of the location of

the boundary conditions and the number of layers to be modeled, the multi-layer system
with and without the muscle below the hypodermis is investigated. For this purpose
a fourth layer representing muscle tissue (exhibiting similar water content as epidermis
and dermis and therefore also approximated with the same dielectric parameters) is in-
cluded below the third layer. For the probe dimensions ri = 1.05 mm and ro = 3.5 mm
it is found that the third layer must be thinner than d3 = 1 mm in order to change both,
the effective permittivity εeff and conductivity σeff by at least 1%. However, in most
parts of the body the fat layer is much thicker than 1 mm and therewith a three-layer
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approximation of the skin in combination with the probe/sensor size is sufficient. Con-
sequently, the third layer in the model is assumed to be an infinite half space.
In the sensitivity analysis, the behaviour of the system employing dispersive as well
as non-dispersive material characteristics will be investigated. The parameters for the
non-dispersive case are taken at 1 MHz and 10 MHz of the Cole-Cole models as follows

· ε1 = 240 (1 MHz) and 235.0460 (10 MHz)

· σ1 = 0.1882 S/m (1 MHz) and 0.2052 S/m (10 MHz)

· ε2 = 3026.3 (1 MHz) and 280.0309 (10 MHz)

· σ2 = 0.8221 S/m (1 MHz) and 1.0967 S/m (10 MHz)

· ε3 = 50.8 (1 MHz) and 29.5813 (10 MHz)

· σ3 = 0.0508 S/m (1 MHz) and 0.0526 S/m (10 MHz).

6.4 Analysis

The sensitivity and selectivity analysis is based on a 2D axial-symmetric FEM analysis of
the coaxial probe introduced in Section 6.2.1. It is investigated how sensitive the system
responds to changes of the dielectric parameters and thickness in the second layer of
the three-layer skin model. Additionally, the effect of dispersive material characteristics
versus constant dielectric parameters in each layer is demonstrated. For this purpose,
the sensitivity analysis is performed both, for dispersive material parameters as well as
for constant values of permittivity and conductivity. Thereafter, the specificity of the
obtained sensitivity spectra is evaluated. In a next step, the transferability of these
findings to other probe geometries is shown in an example where the multi-electrode
sensor geometry (shown in Figure 6.3) is compared with coaxial probes. Finally, the
dependence of the sensitivity on electrode distance is assessed for the coaxial and the
interdigitated sensor geometry introduced in Subsection 6.2.2.

6.4.1 Semi-analytical solution

The effective dielectric properties of materials sensed by coaxial probes, interdigitated
fringing field sensors or general coplanar electrode systems can be modeled with several
techniques, as e.g. analytically by a technique based on conformal mapping [151] and
[2].
For the coaxial probe, semi-analytical solutions are e.g. given in [154], [155],[156], [149]
and [139]. The effective dielectric properties of a layered material under a coaxial probe as
a function of capacitance, admittance or S-parameters are calculated with a variational
method employed e.g. in [154], [157], [158], [159], [155], [160] and [156].
This method is based on a spectral domain analysis/ Hankel transform with respect
to the radial coordinate. It is assumed that only the TEM mode propagates along
the coaxial line, but evanescent TM0n modes are taken into account in order to match
boundary conditions at the probe-material and layer-to-layer interfaces. The theory is
exact but in practice only a finite number of TM0n modes is evaluated. Higher-order
modes were included for the first time in [161], [162] and [163].
Since most publications provide the expressions for a limited number of layers and modes
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(a) (b)

Figure 6.6: Effective permittivity (a) and conductivity (b) of the reference three-layer skin mod-
els (parameters extracted at 1 MHz and 10 MHz; d1 = 20 µm, d2 = 1 mm and d3 →∞) under
a coaxial probe with ri = 1.05 mm and ro = 3.5 mm.

only, here, the procedure is generalized in Appendix C for m layers with corresponding
complex permittivities ε∗m and thicknesses dm taking I evanescent TM0i-modes into
account. The procedure was implemented in MATLABr (for code see Appendix B.5)
in order to save computation time, but first of all for the accuracy assessement of the
numerical model.

6.4.2 Sensitivity

For the sensitivity analysis the system is sensed by a coaxial probe given in Figure 6.1.
The sensitivity of the system is investigated by varying the dielectric parameters as well
as the thickness of the second layer by ∆ = 0.1. This variation is chosen because it is
believed that most of the realistic changes within the skin would not exceed 10%. A
relative measure for the sensitivity of the effective permittivity, ∆εeff , is defined by

∆εeff = 100
εeff − εeff,ref

εeff,ref
. (6.7)

where εeff,ref is the reference effective permittivity (at ∆ = 0) of the second layer. An
analogous definition to is employed for ∆σeff .
In the case of a dispersive material model, the dielectric parameters of the three lay-
ers are given by the Cole-Cole models introduced in Section 6.3. For the sensitivity
analysis, the parameters of the second layer are varied. Seven different scenarios are
investigated, where either the thickness of the layer, the permittivity, the conductivity
or a combination is varied by ∆ = 0.1 in the following way:

· ∆ε̃2,2 = ∆ε2,2(1±∆)

· σ̃2 = σDC,2(1±∆)

· ∆ε̃2,2 = ∆ε2,2(1 + ∆), σ̃DC,2 = σDC,2(1 + ∆)
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· ∆ε̃2,2 = ∆ε2,2(1−∆), σ̃DC,2 = σDC,2(1−∆)

· ∆ε̃2,2 = ∆ε2,2(1 + ∆), σ̃DC,2 = σDC,2(1−∆)

· ∆ε̃2,2 = ∆ε2,2(1−∆), σ̃DC,2 = σDC,2(1 + ∆)

· d̃2 = d2(1±∆) .

In order to assess the influence of the dispersive characteristics of tissue, the sensitivity
analysis is repeated with constant dielectric parameters. In this case, the dielectric
parameters of the three layers are taken at frequencies of 1 MHz and 10 MHz of the
Cole-Cole models. These frequencies are chosen because the layers exhibit a high (at
1 MHz) and a lower (at 10 MHz) dielectric contrast representing two extreme cases. For
the sensitivity analysis the parameters of the second layer are varied by ∆ = 0.1:

· ε̃2 = ε2(1±∆)

· σ̃2 = σ2(1±∆)

· ε̃2 = ε2(1 + ∆), σ̃2 = σ2(1 + ∆)

· ε̃2 = ε2(1−∆), σ̃2 = σ2(1−∆)

· ε̃2 = ε2(1 + ∆), σ̃2 = σ2(1−∆)

· ε̃2 = ε2(1−∆), σ̃2 = σ2(1 + ∆)

· d̃2 = d2(1±∆)

The absolute permittivity and conductivity spectra for the dispersive reference case and
the non-dispersive models are given in Figure 6.6. The dielectric parameters and thick-
nesses of stratum corneum, epidermis/dermis and hypodermis layer are in a such relation
that a layered structure generates a dispersion in the MHz region due to the thin (com-
pared to the inter-electrode distance) and poorly conductive stratum corneum. In the
non-dispersive case with the parameters taken at 1 MHz this effect is more pronounced
than at 10 MHz because of a higher dielectric contrast within a small volume. Although
the mechanisms are the same (interfacial polarization), this dispersion should not be
confused with the β-dispersion.

The sensitivity of a system depends on the sensed volume, which strongly depends on
the probe itself (as mentioned in Section 6.4.2), but also on the measured system. As
an illustrative case, the electric potential and electric field lines at 1 MHz of the sensing
system employing a coaxial probe are shown in Figure 6.7. Two completely different field
distributions and sensing volumes can provide the same effective dielectric parameters:
Figure 6.7(a) shows the field distribution in three-layer system, whereas Figure 6.7(b)
displays the field distribution in a homogeneous material exhibiting the effective ma-
terial properties extracted from the simulation shown in Figure 6.7(a). The plots in
Figure 6.7(a) and 6.7(b) show systems exhibiting the same effective dielectric param-
eters εeff and σeff . It can be seen, that the field distribution strongly depends on the
geometry and the dielectric contrast. In the layered system the field is pushed towards
the sensor by the second, relatively high-ε- and high-σ layer. This leads to a significantly
smaller sensing volume compared to the homogeneous case.
In [59] and [164] the penetration depth is defined as the distance between probe and
sample after lift-off at which the measured value drops to 1% and 3%, respectively of
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Figure 6.7: Plots of the electric field (lines) and electric potential (color-coded intensity plot) at
1 MHz of a coaxial probe from Figure 6.1. In (a) the material under test is composed of three
layers, in (b) the material is homogeneous with the effective dielectric parameters obtained
from the system in (a). Only a part of the electric field lines is displayed. In both subfigures
the field lines have the same starting points on the bottom of the inner condutctor.

the original value. This is ‘dangerous’ since the distances will not be absolute but de-
pend on the measured system (layering and material parameters). In other words the
so-obtained distance for measurements of two different systems might be the same but
the fields having in fact very different penetrations into the material.
In simulations it can be determined up to which layer a defined amount (e.g. 99%) of
the total electric energy and resistive heat is contained.

6.4.3 Specificity

The parameter variations of the second layer cause a shift of the absolute effective di-
electric spectra. This fact can be exploited in order to identify these parameter changes
from the changes of the sensed effective skin parameters. The specificity of the system
is investigated by establishing a characteristic spectral sign pattern from the relative
effective permittivity and conductivity in Equation 6.7 as well as their first and sec-
ond derivatives. This pattern is analyzed in order to investigate if and to what extent
it can be used for a unique identification of a specific parameter change. In order to
be able to adapt the procedure for noisy data (e.g. from measurements) an absolute
threshold value for the sensitivity ts, indicating the lowest detectable ∆εeff and ∆σeff

is introduced. Additionally, as the numerical values for the derivatives can get very
small relative thresholds for the first and second derivative t∂ = ±max(|∂∆εeff

∂f |) and

t∂2 = ±max(|∂2∆εeff
∂f2 |) are defined. In the performed calculations the thresholds are set

to ts = ±0.1 and t∂ = t∂2 = ±0.05.
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ground,1A

electrode,1A

sensorA

1E

2E

3E

Figure 6.8: Graphical description for the area equivalents for the approximation of the effective
properties of the multi-electrode sensor by a coaxial probe. The illustration refers to the
electrode E1: The area Aelectrode,1 corresponds to the contact area of the inner conductor,
the area Aground,1 to area of the outer conductor/flange. The procedure for obtaining the
area equivalents for the the other two electrodes E2 and E3 is the same.

6.4.4 Transferability to other sensor geometries

It is investigated to what extent data obtained by coaxial probes can serve as an approx-
imation for the presented multi-electrode fringing-field sensor. As described e.g. in [149]
the sensed volume of a coaxial probe is strongly related to the distance between inner
and outer conductor (the electrode spacing) ro− ri. Additionally, the effective dielectric
properties also depend on the electrode area. Here, this characteristics is assumed to
be similar for the multi-electrode sensor. Thus, the size of the coaxial probe might be
adjusted in order to mimick the properties of the fringing-field sensor. The dimensions
ri, i, ro, i and rflange, i of the scaled coaxial geometry are given in the following. The area
of the inner coaxial conductor should be the same as the one of the driven electrode of
the multi-electrode sensor

Aelectrode,i = π
(si

2

)2

+ sili (6.8)

and hence the radius of the inner conductor ri, i can be computed from

ri, i =

√
si

li + si

Aelectrode,i

π
. (6.9)

Here, the electrode area of the multi-electrode sensor is multiplied by an empirical cor-
rection factor si/(li + si) in order to capture the deviation of the original electrode from
a circular shape. The electrode spacing is kept constant and hence the radius of the
outer conductor ro, i is given by

ro, i = ri, i + si. (6.10)

Finally, the flange radius rflange, i is obtained by setting the area of the outer conductor
equal to the area multi-electrode sensor ground plane plus the non-driven electrodes
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Aground, i

rflange, i =

√
Aground, i

π
+ r2

o, i (6.11)

with

Aground, i = Asensor −
∑
i

Agap, i −Aelectrode,i (6.12)

and

Agap, i = π

(
3

2
si

)2

+ 3sili −Aelectrode,i . (6.13)

The area of the driven electrode is Aelectrode,i and the area of the gap is denoted with
Agap, i. A graphical description of these areas is given in Figure 6.8.

6.4.5 Sensitivity of different probe geometries

The influence of the spatial utilization of the probe footprint on its sensitivity is analysed
by comparing the coaxial probe to an interdigitated sensor representing another type of
commonly employed sensors. The spatial utilization of the coaxial probe is varied by
changing the electrode distance while keeping the radius of the inner conductor ri and the
total size of the probe constant. This means that the radius of the outer conductor ro and
consequently the area of the outer electrode/conductor Ao are variable. The dimensions
of the interdigital sensor are derived from those for the coaxial probe geometry according
to Subsection 6.2.2.

6.4.6 Geometry simplifications

The full 3D system consisting of sensor and skin model is computationally expensive in
terms of central processing unit (CPU) time and random-access memory (RAM). This
is especially challenging if many simulations, e.g. for the presented sensitivity analysis
have to be performed. Hence, it is desirable to reduce the computational effort of those
simulations. One approach is to approximate the 3D geometry by a 2D representation
as performed in this paragraph. The most important parameter of the multi-electrode
sensor is the electrode spacing, whereas the length of the electrode exhibits a smaller
influence. In the following, the electrodes are assumed to be infinitely long allowing for a
2D simulation. In this way, only the 2D cross section of the electrode has to be modeled,
resulting in a large computational speedup. An additional simplification of the 2D cross-
section can be performed by simulating each electrode as a 2D cross-section separately
(see plots denoted by ’Ei - single’ in Figure 6.21). The driven electrode has the width si
and is again separated by si on each side from the left and right ground electrode. The
widths of the ground electrodes corrspond to half the sum of the grounded electrodes
from the original 2D sensor cross-section.
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6.5 Results and discussion

6.5.1 Semi-analytical vs. numerical solution

The semi-analytical solution for the coaxial probe assumes an infintely long flange, so
the question is from which flange radius on will the difference between semi-analytical
and numerical solution drop below a certain threshold value defined as accurate enough.
The minimum length will depend on the system under test. Deviations of the numerical
solution of the three-layer skin model with dispersive parameters with respect to the semi-
analytical calculation is given in Figure 6.9. The semi-analytical solution involves 5 TM0n

modes. The plots provide the deviation of numerical simulations with increasing flange
radii of the coaxial probe. One would expect that the absolute error converges to zero or
a value near zero with increasing flange radius as the semi-analytical solution assumes
an infintely long flange. Although the error is smaller than 8% for the permittivity
and smaller than 3% for the conductivity in the entire frequency range the mentioned
assumption only holds for f > 10 MHz. In order to answer that question aspects such
as the sensitivity to the discretization on the side of the numerical simulations as well
as the number of TM0n modes and numerical precision of the numerical integrations in
the semi-analytical solution would have to be investigated in detail.
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Figure 6.9: Relative deviations in effective permittivity (a) and conductivity (b) of a coaxial
probe (ri = 1.05 mm and ro = 3.5 mm) on top of the reference three-layer system. Shown
are deviations for the numerical models for different flange radii with respect to the semi-
analytical solution (‘infinite’ flange radius).

6.5.2 Sensitivity

The sensitivity analysis for parameter variations with respect to the reference system
(∆ = 0) are plotted in Figure 6.10 for the three-layer system with dispersive material
characteristics. It can be seen in the spectra that each relative variation exhibits a char-
acteristic behaviour over the frequency. It has to be noted that a simultaneous increase
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(decrease) of both dielectric parameters ∆ε2,2 and σDC,2 qualitatively corresponds to an
increase (decrease) of the layer thickness d2. However, a perfect match of the two cases
could only be realized if both dielectric parameters were varied independently. It can
be seen that the measured change in dielectric properties is sensitive to the kind of the
parameter (∆ε2,2, σDC,2 or d2) and the frequency. The slight asymmetry with respect
to ∆εeff = 0 and ∆σeff = 0 almost vanishes but exists. In the end the crucial quantity
is the resulting dielectric contrast between the layers: Is the contrast increased a higher
sensitivity can be expected, the opposite is true if the change causes a dielectric contrast
reduction.
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Figure 6.10: Relative deviations in effective permittivity (a) and conductivity (b) with respect
to the reference three-layer system (dispersive dielectric parameters given in Figure 6.5 and
d1 = 20 µm, d2 = 1 mm and d3 → ∞) under a coaxial probe with ri = 1.05 mm and ro =
3.5 mm.

For the non-dispersive case, Figure 6.11 shows the sensitivity analysis for dielectric pa-
rameters extracted at 1 MHz and Figure 6.12 for the dielectric parameters extracted at
10 MHz. A comparison the sensitivity spectra shows the importance of the dispersive
skin layers in the model. The sensitivity spectra in the non-dispersive cases which are
assumed to less accurately represent the dielectric behaviour of skin strongly differ from
those for the dispersive case. Therefore, only the model with the dispersive skin layers
will be further investigated.

The sensitivity behaviour as a function of parameter change ∆ is investigated in the
following. For this purpose, the range of parameter variation is extended to ∆ = ±0.2.
The results of this analysis for a parameter change of ∆ε̃2,2 = ∆ε2,2(1 + ∆) in shown in
Figure 6.13(a) for the change of effective permittivity and in (b) for the change of effec-
tive conductivity. The variation of σ̃DC,2 = σDC,2(1 + ∆) in depicted in Figure 6.13(c)
and (d). Variation of both, permittivity and conductivity in the same direction (same
sign of ∆) results in relative deviations of the effective parameters as shown in Fig-
ure 6.14(a) and (b) for ∆ε̃2,2 = ∆ε2,2(1 + ∆) and σ̃DC,2 = σDC,2(1 + ∆). The relative

72



6.5 Results and discussion
∆
ε e

ff
[%

]

f [Hz]
105 106 107 108

−15

−10

−5

0

5

10

15

(a)

 

 

d2 -10%

d2 +10%

ε2 -10%, σ2 +10%

ε2 +10%, σ2 -10%

ε2, σ2 -10%

ε2, σ2 +10%

σ2 -10%

σ2 +10%

ε2 -10%

ε2 +10%

∆
σ
eff
[%

]

f [Hz]
105 106 107 108

−15

−10

−5

0

5

10

15

(b)

Figure 6.11: Relative deviations in effective permittivity (a) and conductivity (b) with respect
to the reference three-layer system (parameters from Figure 6.5 extracted at 1 MHz and d1

= 20 µm, d2 = 1 mm and d3 → ∞) under a coaxial probe with ri = 1.05 mm and ro = 3.5
mm.
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Figure 6.12: Relative deviations in effective permittivity (a) and conductivity (b) with respect
to the reference three-layer system (parameters from Figure 6.5 extracted at 10 MHz and d1

= 20 µm, d2 = 1 mm and d3 → ∞) under a coaxial probe with ri = 1.05 mm and ro = 3.5
mm.

deviations of the effective parameters for a simultaneous change of the dielectric param-
eters in opposite directions (opposite signs of ∆εeff and ∆σeff) ∆ε̃2,2 = ∆ε2,2(1 + ∆)
and σ̃DC,2 = σDC,2(1 − ∆) are reflected in Figure 6.14(c) and (d). Overall, it can be
stated that the sensitivity behaviour is linear at least up to ∆ = 0.2 for variations of the
dielectric parameters. In the case of thickness variation shown in Figure 6.15 the depen-
dency is approximately logarithmic. The dielectric variation and thickness variation do
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Figure 6.14: Relative changes in effective permittivity and conductivity of the dispersive three-
layer system (d1 = 20 µm, d2 = 1 mm and d3 →∞) under a coaxial probe with ri = 1.05 mm
and ro = 3.5mm as a function of the variation. Variations of the following parameters of the
second layer by -0.2 ≤ ∆ ≤ 0.2 are shown: ∆ε̃2,2 = ∆ε2,2(1 + ∆) and σ̃DC,2 = σDC,2(1 + ∆)
in (a) and (b) and ∆ε̃2,2 = ∆ε2,2(1 + ∆) and σ̃DC,2 = σDC,2(1−∆) in (c) and (d).

not scale in the same way as the distribution of the electric field is non-uniform within
the sensing volume.
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Figure 6.13: Relative changes in effective permittivity and conductivity of the dispersive three-
layer system (d1 = 20 µm, d2 = 1 mm and d3 → ∞) under a coaxial probe with ri = 1.05
mm and ro = 3.5mm as a function of the variation. Variations of the following parameters
of the second layer by -0.2 ≤ ∆ ≤ 0.2 are shown: ∆ε̃2,2 = ∆ε2,2(1 + ∆) in (a) and (b) and
σ̃DC,2 = σDC,2(1 + ∆) in (c) and (d).

6.5.3 Specificity

The sensitivity analysis indicates that the origin of the change in the effective properties
can be identified if the ∆εeff and ∆σeff spectra and their derivatives are known. As shown
in Figure 6.16, analysing the ∆ε spectra and their first and second order derivatives
∂∆εeff/∂f and ∂2∆εeff/∂f

2 (and for ∆σ accordingly), each parameter variation shows
a characteristic behaviour over the frequency. The signs of the sensitivity spectra and
their first and second derivatives with respect to the frequency provide an characteristic
pattern. These patterns are shown in Figure 6.17. In the presented setting exhibiting a
significant dielectric contrast, and for the given thresholds, the sign patterns are unique
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Figure 6.15: Relative changes in effective permittivity and conductivity of the dispersive three-
layer system (d1 = 20 µm, d2 = 1 mm and d3 →∞) under a coaxial probe with ri = 1.05 mm

and ro = 3.5mm. Variation of the second layer thickness d2 by -0.2 ≤ ∆ ≤ 0.2, d̃2 = d2(1+∆)
is shown for the permittivity (a) and conductivity (b).
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Figure 6.16: Relative deviations in effective permittivity (a) and conductivity (b) and the
derivatives for the case σ̃2 = σ2(1 − ∆) and ∆ = 0.1. Reference three-layer system (dis-
persive dielectric parameters, d1 = 20 µm, d2 = 1 mm and d3 → ∞) under a coaxial probe
with ri = 1.05 mm and ro = 3.5 mm. Additionally the absolute threshold bounds of ± 10
% for the sensitivity curve are shown (ts = ±0.1) as well as the relative threshold bounds
for each derivative of ± 5% of the corresponding maximal value (t∂ = t∂2 = ±0.05). The
corresponding thresholds are denoted by dashed lines.

and therefore show a specificity for parameter changes of the second layer. However, the
uniqueness strongly depends on the measurement precision (signal-to-noise ratio) as well
as on the numerical precision of the evaluation of the derivatives.

75



6 Multilayer systems and fringing fields

(a)

(b)

Figure 6.17: Sign patterns for the difference spectra and their first and second derivatives for
the permittivity (a) and conductivity (b): ∆ (left, absolute threshold value ts = ± 0.1),
∂∆ (middle, relative threshold value t∂ = ± 0.05) and ∂2∆ (right, relative threshold value
t∂2 = ± 0.05).
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Figure 6.18: Effective permittivity (a) and conductivity (b) for the multi-electrode (ME) sensor
displayed in Figure 6.3 and the coaxial probe geometry from Figure 6.1 with scaled inner and
outer radii with respect to the electrodes of the ME sensor, E1, E2 and E3.

.

6.5.4 Transferability to other probe geometries

A comparison between the dielectric spectra obtained with the multi-electrode sensor
and the scaled coaxial probes is presented in Figure 6.18. It can be seen that the
approximation works best for the electrode E1 and to a lesser extend for E3. This can be
explained with the shape of the electrode, as E1 has the largest ratio between electrode
width and length and therefore the smallest deviation from the circular shape among
all three electrodes. Overall, the general behaviour of the multi-electrode sensor can be
approximated by a coaxial geometry, which means that the sensitivity analysis presented
in Section 6.4.2 can be transferred also to other types of sensors.
The results also indicate that, up to a certain ratio between electrode width and length,
the 2D axial symmetric analysis can be used as a quick evaluation of the sensitivity
and specificity for less symmetric coplanar electrodes as well. Furthermore, the results
underline the influence of the interelectrode distance on the effective properties of a
layered system.

6.5.5 Sensitivity of different probe geometries

A sensitivity analysis of two different probe geometries (coaxial and interdigital) as a
function of electrode distance is performed at 1 MHz and 10 MHz. The results of this
analysis are plotted in Figure 6.19(a) and (b) for a variation of ∆ε̃2,2 = ∆ε2,2(1 ±∆),
and σ̃DC,2 = σDC,2(1 ± ∆) in Figure 6.19(c) and (d). The simultaneous variation of
∆ε̃2,2 = ∆ε̃2,2(1 ± ∆) and σ̃DC,2 = σDC,2(1 ± ∆) is shown in Figure 6.20(a) and (b).
Simultaneous variation of ∆ε̃2,2 = ∆ε̃2,2(1±∆) and σ̃DC,2 = σDC,2(1∓∆) are plotted
in Figure 6.20(c) and (d).
It can be seen that the coaxial probe is more sensitive, except for εeff in case of a change
in σDC,2 for electrode distances between 1 mm to 6.25 mm at 10 MHz. The field of the
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Figure 6.19: Comparison of relative changes in effective permittivity and conductivity of the
dispersive three-layer system (d1 = 20 µm, d2 = 1 mm and d3 →∞) under a coaxial probe
and an 2D model of an interdigitated sensor (denoted as ID in the legend) as a function of
the electrode distance. Variations (∆ = 0.1) of the following parameters of the second layer:
∆ε̃2,2 = ∆ε2,2(1±∆) in (a) and (b), and σ̃DC,2 = σDC,2(1±∆) in (c) and (d).

coaxial probe is more concentrated close to the inner conductor as in the case of the
interdigitated sensor, where the electric field decays slower in the negative z-direction
(normal to the electrode surface, see Figure 6.2(b)) and is more uniform in x-direction.
Except for the variation of σDC,2 the sensitivity is also higher for both geometries at
1 MHz.
It has to be noted that only one parameter setting for the interdigitated geometry is
investigated. It is expected that its sensitivity rises as the total electrode area increases
for a larger number of digits. Another possible parameter variation for a total fixed
sensor area and sground = sdriven = s would be to find the optimum number of digits.
In any case, the interdigital geometry provides a larger number of degrees of freedom
than the coaxial geometry and finding an electrode configuration providing the highest
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Figure 6.20: Comparison of relative changes in effective permittivity and conductivity of the
dispersive three-layer system (d1 = 20 µm, d2 = 1 mm and d3 →∞) under a coaxial probe
and an 2D model of an interdigitated sensor (denoted as ID in the legend) as a function of
the electrode distance. Variations (∆ = 0.1) of the following parameters of the second layer:
∆ε̃2,2 = ∆ε̃2,2(1 ±∆) and σ̃DC,2 = σDC,2(1 ±∆) in (a) and (b), and ∆ε̃2,2 = ∆ε̃2,2(1 ±∆)
and σ̃DC,2 = σDC,2(1∓∆) in (c) and (d).

sensitivity depends on the system under test and is a matter of optimization.

6.5.6 Geometry simplifications

A 2D simulation of the multi-electrode sensor consumes approximately 8 % computer
memory and 0.6 % CPU time of the corresponding 3D problem. The relative deviation
with respect to a 3D reference simulation is shown in Figure 6.21. The largest relative
error (with respect to the 3D model) of approximately 15 % exhibits electrode E1 due
to the large curvatures at the electrode ends compared to the electrode length.
An additional simplification of the 2D cross-section can be performed by simulating each
electrode as a 2D cross-section separately (see plots denoted by ‘Ei - single electrode’ in
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Figure 6.21: Relative deviations in effective permittivity ∆εeff (a) and conductivity ∆σeff (b)
of the 2D model from the 3D simulation of a simplified three-layer skin model probed by the
multi-electrode sensor shown in Figure 6.3.

Figure 6.3(c)). The driven electrode has the width si and is again separated by si on
each side from the left and right ground electrode. The widths of the ground electrodes
corrspond to half the sum of the grounded electrodes from the original 2D sensor cross-
section.
Since 2D simulations are computationally very efficient, they can serve as a good ap-
proximation of the real structure yielding results which indicate the characteristics of
the sensor. It has to be mentioned that, especially in the presented model with the very
thin topmost layer, the electrode thickness of 40 µm of the sensor electrodes has to be
included in the model. The difference between infinitely thin electrodes and electrodes
with finite thickness of 40µm reaches up to 20% for the smallest electrode E3. This has
to be considered if the material under test is touching the substrate. Therefore, there is
a large difference between sensing a solid, soft surface and a liquid.

6.6 Conclusion

The effective dielectric properties of a multilayer system probed by a coaxial probe were
successfully calculated using an semi-analytical as well as a numerical method. The
semi-analytical method served as a validation and was shown to be an alternative in
case of very thin layers where the large aspect ration in numerical solution might lead
to large errors.

In the framework of the sensitivity analysis the importance of using dispersive dielectric
parameters for each layer of the skin model is demonstrated. The concept of a sensitiv-
ity and specificity analysis based on numerical simulations was successfully applied to
different fringing-field electrode geometries probing a multi-layer system approximately
representing human skin. It was found that the sensitivity strongly depends on fre-

80



6.6 Conclusion

quency, but is generally highest at the lower end of the frequency range from 100 kHz
up to 100 MHz. Changes in the effective dielectric parameters can be uniquely assigned
to specific changes in permittivity and conductivity within the second layer based on
an analysis of the dielectric spectra. Changes in the thickness of the second layer also
cause a change in the effective dielectric parameters but exhibit an almost constant shift
in the spectrum. Overall it is shown that as much information about the spectral be-
haviour as possible is needed in order to increase the possibility to distinguish between
different types of changes. The presented procedure not only can be used to determine
mechanisms causing detectable changes in dielectric properties in a specific layer of a
layered system, but also for the optimization of a specific sensor design. Moreover, the
procedure is generally applicable to other kinds of multi-layer structures. In the specific
case of human skin a sufficiently precise skin model could be used to calibrate out the
influence of the skin upper layer allowing to monitor deeper-lying tissues.
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7 Application to human skin
In Chapter 6 it was demonstrated in the macroscopic multilayer model that layers with
constant parameters are insufficient for tissue modeling in the MHz region and the in-
fluence of the cell membrane has to be included. The aim of this chapter is to gather
the findings from Chapters 4 to 6 and applying them in order to establish a dielectric
model of human skin based on its morphology and material properties. The skin will be
represented as a composite on multiple spatial scales.

To date no comprehensive (continuous) set of the dielectric properties of skin sublay-
ers SC, epidermis, dermis and hypodermis is available in the frequency range between
1 MHz and 100 MHz. In [132] and [165] the dielectric properties of the uppermost layer,
the SC have been assessed by in vivo measurements of skin with and without this top
layer. Coaxial probes of different sizes were employed in order to distinguish the SC, epi-
dermis/dermis and hypodermis (subcutaneous fat), providing permittivity estimations
for these layers, however, only at single frequencies [132]. The dielectric properties of
skin and subuctaneous fat on human abdomen were assessed in [166]. Powdered native
SC was also measured with a coaxial probe using the time domain reflectometry (TDR)
method in [130] including an identification and quantification of two relaxation processes
in the microwave frequency range. In vivo skin measurements as well as measurements
of blood, infiltrated and non-infiltrated fat were performed in [34], also providing Cole-
Cole relaxation models for all measured materials. In [33] human skin was measured in
vivo, also including a Cole-Cole fit. As observed in [167] the Cole-Cole fits are a popular
and useful tool in order to describe dielectric spectra of tissue in general. However, as
already pointed out in Chapter 2 an unambiguous physical and physiological interpre-
tation of the obtained Cole-Cole parameters remains difficult, because the impact of the
numerous morphological and dielectric parameters as well as their variations has only
partially been assessed so far.
Alternative modeling methods of other tissues or tissue-like structures using mixing for-
mulas in the context of the effective medium approach or numerical methods have been
presented e.g. in [3], [88] or [168]. The modeling method in this work is a combination
of those methods including a multi-scale approach introduced in [126] and [102].

In [169] it is claimend that in order to minimize the effect of anisotropy on measurements
of electrical properties of tissues, it is necessary to use modeling techniques to decouple
the sample geometry from the measured tissue resistivity. In this work the opposite ap-
proach is followed by establishing a numerical model which accounts for the anisotropy
of tissue, no matter which probe geometry is used.

Depending on the probe geometry effective dielectric parameters of layered structures as
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Figure 7.1: Structure of human skin adapted from [170].

the skin are usually a combination of the dielectric properties of the sublayers. In order
to obtain the dielectric behaviour at different depths within the skin in this work a sensor
with multiple planar electrodes is employed. The wider the distance from the driven to
ground electrode the deeper the penetration of the electric field into the material.

7.1 Morphology of human skin

The human skin has a protective function. It regulates the body temperature and acts
as a chemical and biochemical barrier. Also many physiological processes take place in
the skin.

It was found in Chapters 3 and 4 that the cell shape has a significant influence on
the effective dielectric properties at frequencies < 10 MHz. In order to be able to decide
which features are likely to be included in an appropriate skin model detailed knowledge
of the skin morphology is necessary. Therefore, a brief literature review on skin anatomy
is given in the following. The review is similar to the one in Section 6.3 but contains
more details.

7.1.1 Stratum corneum

The SC contains flat hexagonally shaped corneocytes embedded in a lipid matrix form-
ing a so-called ”brick-and-mortar” structure [171], [172] and [173]. The diameter of a
corneocyte is 40 µm, the height 0.8 µm [174]. The intercellular distance is approx. 0.1
µm which provides a cellular volume fraction of ϕcorneocyte = 0.91 [175]. The cytoplasm
contains ceramides, free fatty acids, cholesterol, proteins (keratin) and water. In con-
trary to most other cells the corneocyte does not contain a nucleus. The extracellular
matrix, the ”mortar” mainly consists of lipids and proteins and very little bound water
(less than a monolayer). The total water volume fraction in the SC is 0.15-0.25, while
90% of the water is contained in within corneocyte [176] and [177]. By definition the SC
belongs to the epidermis, but due to the high lipid and protein and low water content it
differs significantly from the lower-lying epidermal layers and is here therefore considered
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separately. The SC thickness strongly depends on the body site but exhibits only little
interindividual variations among healthy subjects. On the dorsal site of the upper arm
the SC is approximately 20 µm thick [171], [172], [173] and [178].

7.1.2 Epidermis

The living epidermis (E) mainly consists of keratinocytes. The cuboidal to columnar
epidermal cells are gap-connected and occupy a volume fraction of ϕkeratinocyte = 0.83
[90]. The overall water volume fraction in the dermis of 0.7 is equally distributed among
intra- and extracellular space [179]. The epidermis is approximately 0.1-0.2 mm [180]
thick.

7.1.3 Dermo-epidermal junction

The transition zone between epidermis and dermis, the so-called dermo-epidermal junc-
tion is not planar but forms papillae with a depth of approximately 50 µm [181].

7.1.4 Dermis

The papillary dermis (PD) occupies the upper 10% of the dermis and consists of a dense
collagen network [182] and blood (ϕblood = 0.04 [183]). The major part of the der-
mis, the reticular dermis (RD) consists of irregular connective tissue, lymphatic vessels,
nerves, blood vessels, stromal cells such as fibroblasts and other cellular components, e.g.
macrophages or plasma cells. The capillaries in the approx. 50 µm long dermal papil-
lae are oriented more or less perpendicular to the skin surface, while the upper vessel
plexus (UVP) is a dense vascular network parallel to the skin surface with a thickness
of dUVP = 80µm and blood content of ϕblood,UVP = 0.3. The sparsely distributed blood
vessels of the supply layer (SL) (dSL = 1.3 mm, ϕblood,SL = 0.04) are as well perpen-
dicular to the skin surface. The lowest layer is again a dense vascular network parallel
to the skin surface, the deeper vessel plexus (DVP) (dDVP = 100 µm, ϕblood,DVP = 0.1)
[183]. The cellular volume fraction in the dermis is much smaller than in epidermis
[41]. The cellular components in the dermis are mainly stellar-shaped fibroblasts which
form a continuous network making a determination of the cell limits rather difficult.
According to [184] the ”body” of the cell has an approximate diameter of 5 - 10 µm,
the extensions called stellae (4-6 per cell) are approx. 70 µm long. The collagen fibers
are aligned parallel to the skin surface. Collagen is a major component embedded in the
dermal matrix (ϕcollagen,dry = 0.17 [185]). A thick collagen bundle can reach 2 to 15 µm
in diameter. Besides collagen and elastin the extracellular space is mainly composed of
glycosaminoglycans, gelatin, and sugars embedded in water. Collagen comprises about
75% of the fat free dry weight and 18-30% of the volume of dermis.

7.1.5 Hypodermis

The subcutis or hypodermis (HYP) mainly consists of white fat cells, the adipocytes
building the subcutaneous fat. White adipocytes are spherically shaped with a mean
cell diameter of 82.6 µm [186] (88.5 µm in [187]). The intracellular fat forms a spherical
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droplet pushing the cytoplasm including nucleus towards the cell membrane. The volume
fraction of the lipid droplet within the cytoplasm is ϕfat,intracellular = 0.9 [188] the aqueous
phase volume fraction is therefore only 0.1. The HYP thickness is subject to large intra-
and interindividual variations.

7.1.6 Muscle

Finally, muscular tissue (M) consisting of tightly packed narrow cells is situated beneath
the hypodermis. Muscle cells are oriented with their long axis parallel to long axis of
the humerus (upper arm bone). Muscular tissue is highly anisotropic [189]. In [94] a cell
radius of 50 µm and a minimum distance among cells of 1 µm is used for a simplified
model of skeletal muscle in the transversal plane.

7.1.7 Other structures

Features such as hair follicles, sweat ducts and sebaceous glands cross the entire skin
down to the hypodermis [190] are mentioned for completeness, but not considered for
further modeling.

7.2 Skin models and scaling hierarchies

Due to the high computational cost to date it is currently not realistic to simultaneously
model single cells and the presented fringing field sensor. The scale of a cell membrane
is in the range of nanometers while the electrode distance is up to few millimeters.
Therefore, alternatives for transferring structural information from micro- to macro-
scale have to be found.
A first attempt to numerically model the effective dielectric parameters of the skin in the
MHz frequency range is presented in Chapter 6. The skin is subdivided into three layers
(SC, epidermis and dermis (E/D) and hypodermis (HYP)) according to the differing
water contents of these tissue types. Then, Cole-Cole models from literature are assigned
to each layer and in a FEM simulation the layered system is probed by a fringing field
probes. However, as already mentioned Cole-Cole models are to be avoided in this work
because of the difficult assignment of spectral features to the microstructure.
Here, the setup of a general dielectric tissue model for quasi-static electric fields presented
in Chapter 5 is applied to the skin. The principal idea is to consider tissue as a quasi-
periodic structure exposed to a homogeneous external electric field [102] and to perform
multi-step homogenization procedure.
The first step in the application of the homogenization scheme to human skin consists
again of a subdivison into macroscopic layers. As mentioned in Section 7.1.3 in come
cases the interface between skin layers is not planar. However, in a first approximation
all layer interfaces are assumed as planar. In course of a refinement step the non=planar
transition region could be replaced by a layer with effective properties obtained according
to the introduced homogenization procedure.
Then each layer is investigated with respect to quasi-periodic structures. Some skin
layers only contain quasi-periodicity on the cellular scale (single biological cell composed
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Figure 7.2: 2D cross-section sketch of the layered skin model consisting of stratum corneum
(SC) , epidermis (E) , dermis (D) , hypodermis (HYP) and M . In the basic model denoted as
MGW the epidermis and dermis are concatenated to one single layer denoted as epidermis and
dermis (E/D). In the most refined model the dermis is subdivided into papillary dermis (PD)
and reticular dermis (RD), whereas the latter contains the upper vessel plexus (UVP) , the
supply layer (SL) and the deeper vessel plexus (DVP) . A sketch of the microstructure of the
skin layers is given on the left.

of water and fatty, dry biological material), other skin layers suggest the use of a multi-
step homogenization, as e.g. the dermis. For each layer ε̄∗eff and its dispersive features
are then analytically or numerically calculated and finally inserted into the numerical
macroscopic model. The overall procedure for the model with the highest complexity is
later depicted in Figure 7.3. Except for muscle tissue the skin is supposed to be isotropic
in the x-y-plane with the z-axis of the coordinate system is perpendicular to the layer
boundaries and the effective dielectric tensor reduces to

ε̄∗eff =

(
εxx,eff 0

0 εzz,eff

)
(7.1)

in the 2D model. The final skin models are experimentally validated. As the SC has a
large influence on the effective dielectric properties its removal is used as an additional
validation criterium.

As already mentioned the first macroscopic subdivision of skin happens according to
the the water content of the layers. It was found in Chapter 6 that for the model of
intact skin with SC a model down to the hypodermis is sufficient, i.e. the electric field
does not penetrate beyond this layer. However, after removal of the rather insulating
SC the penetration depth extends down to muscle tissue assuming a HYP thickness of 5
mm extracted from the MR image. Therefore, muscle is included in the model as well.
After defining the macroscopic model the dielectric properties of each of the sublayers
have to be defined. The complexity of the different models follows the subsequential
inclusion of features that are likely to affect the dielectric spectrum. In the MHz region
the β-dispersion, the short-circuiting of the cell membranes [27] is the dominant feature
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and has therefore be reproduced by a valid model. Other dispersion mechanisms such
as electrode polarization and α-dispersion below 1 MHz and the relaxation of free water
(γ-dispersion) in the low GHz region occur outside of the considered frequency range.
Therefore, those mechanisms are said not to affect the spectrum in the MHz range and
are not included in the model. The weak δ-dispersion above 100 MHz caused by the re-
laxation of bound water and proteins might extend into the upper part of the frequency
region of interest between 1 and 100 MHz, but is neglected here because of its weakness
compared to the β-dispersion. From the structural point of view on the sub-cellular scale
the simplification with the largest impact consists of not including organelles and cell
nucleus in the models as shown in Chapters 3 and 4.
In the following the models for the effective properties of each layer are introduced. The
model order follows a hierarchy given by the increasing degree of complexity in terms of
number of layers as well as number of components and stages for the homogenization of
the dielectric parameters.

Electrode surface roughness, the influence of a potentially occurring air or sweat layer,
pressure variations and structural features crossing the entire skin (sweat ducts, hair
follicles) are potential sources of error or variation, but were not included in the model.

7.2.1 Maxwell-Garnett water content model (MGW)

The first model consists of representing the skin layers as two-phase mixtures. Biological
tissue in general mainly consists of an aqueous phase (extracellular liquid, cytoplasm)
and a lipid phase (cell membrane, intra- and extracellular lipids) being distinct from a
dielectric point of view. The aqueous phase basically consisting of water and electrolytes

with the approximate dielectric parameters ε
(1)
1 = 78 and σ

(1)
DC,1 = 1.2 S/m. On the

other hand the lipid phase approximated by oleic acid has a low permittivity ε
(1)
2 = 2.5

and is practically non-conducting σ
(1)
DC,2 = 0 S/m [191]. Since the water contents of

the skin layers differ significantly (ϕwater,SC = 0.2 [177], ϕwater,E = 0.7, ϕwater,D = 0.7,
ϕwater,HYP = 0.25 [183] and ϕwater,M = 0.8), the volume fractions of the aqueous and
lipid phase, respectively, a simple two-phase model is set up in order to characterize each

layer. The effective dielectric parameters ε
(1)
eff and σ

(1)
eff of the so-defined binary mixtures

are calculated with the MG mixture formula [46] in Equation 7.2. Here, j = 1 and ma-
terial 2 is embedded in material 1. Equation 7.2 provides the exact (first-order) solution
for the effective permittivity of a spherical inclusion for volume fractions up to ϕ = 0.1,
but since geometry is not considered in this model it actually has no significance. The
dielectric parameters for this model are all scalar.

ε
∗,(j)
eff − ε∗,(j)1

2ε
∗,(j)
eff − ε∗,(j)1

= ϕ
(j)
2

ε
∗,(j)
2 − ε∗,(j)1

2ε
∗,(j)
2 − ε∗,(j)1

(7.2)

88



7.2
S

k
in

m
o
d

els
an

d
scalin

g
h

ierarch
ies

Table 7.1: Material and geometrical parameters for the models MGI, MGA, LOI and HBA. Each layer within a model provides a
dielectric tensor ε̄∗,(j) which is inserted into the macroscopic model. Some phases at scale level j are already mixtures with ε̄∗,(j−1)

at a lower scale. (∗) The parameters for blood are frequency dependent.

Skin layer Sub-phase Geometry Material parameters

Dielectric

Phase parameters

Shape of inclusion ϕi (dx dy dz) dshells ε
(j)
i σ

(j)
DC,i

[µm] [nm] [S/m]

SC extracellular extracellular medium 80 0.53

sphere 0.95 dry biological material 2.5 0

SC cytoplasm extracellular medium 80 0.53

sphere 0.8 dry biological material 2.5 0

SC extracellular

SC shelled ellipsoid 0.91 (20 20 0.8) 7 cell membrane 9.04 10−6

SC cytoplasm

extracellular medium 80 0.53

E shelled ellipsoid 0.83 (5.97 5.97 11.95) 7 cell membrane 9.04 10−6

cytoplasm 50 0.12

collagen extracellular medium 80 0.53

cylinder 0.17 (∞ 100 100) dry biological material 2.5 0

dermis ”matrix” collagen (xy-isotropic)

shelled ellipsoid 0.315 (70 70 7) 7 cell membrane 9.04 10−6

cytoplasm 50 0.12

D UVP dermis ”matrix”

cylinder (xy-isotropic) 0.3 (∞ 50 50) blood∗ [34] [34]

SL dermis ”matrix”

cylinder 0.04 (50 50 ∞) blood∗ [34] [34]

DVP dermis ”matrix”

cylinder (xy-isotropic) 0.1 (∞ 50 50) blood∗ [34] [34]

extracellular medium 80 0.53

HYP double-shelled sphere 0.8 (45 45 45) 7 cell membrane 9.04 10−6

ϕfat = 0.771 3.76·103 cytoplasm 50 0.12

dry biological material 2.5 0

extracellular medium 80 0.53

M shelled ellipsoid 0.85 (0.5 2 0.5) 7 cell membrane 9.04 10−6

cytoplasm 50 0.1289



7 Application to human skin

7.2.2 Maxwell-Garnett isotropic model (MGI)

For the following models, the initial subdivision of skin into three layers is refined.
The layer thicknesses are the following: dSC = 20µm, dE = 100µm, dD,PD = 150µm,
dD,UV P = 80µm, dSL = 1mm, dDV P = 100µm, dHY P = 5mm. Finally, muscle tissue
terminates the model (dM = 2cm, ∞). The system consisting of sensor and layer struc-
ture is depicted in Figure 7.2.
A first attempt to truly incorporate microstructural information into a skin layer model
is undertaken by approximating single tissue cells by shelled ellipsoids. This has already
been performed in order to calculate dielectric parameters of e.g. suspensions of E.
coli cells [58], red blood cells [87] or rat liver tissue [59]. Since the MG formula can
be generalized for multi-shelled confocal ellipsoids [61] it is employed here in order to
calculate the effective dielectric parameters of the skin layers modeled as a suspension
of randomly oriented single-shelled ellipsoids. The cell dimensions, volume fractions and
material compositions were estimated based on literature values given in Section 7.1.
The dielectric parameters for extracellular medium, cell membrane and cytoplasm were
set according to [192]. All geometrical and material parameters are given in Table 7.1.
As the membrane thickness dm = 7 nm is much larger than the cell dimensions the con-
centric approximation of the shelled ellipsoid (see Figure 3.8) was considered as justified.
Compared to the relatively straight-forward representations of SC and HYP the model-
ing of the epidermis and dermis imposes some challenges. Although the water content
is similar in dermis and epidermis (ϕwater = 0.7) a unified morphological description of
the two layers is rather difficult. The structural properties even suggest to subdivide at
least the dermis into sublayers. The cellular volume in the dermis is so small that the
influence of the cell shapes on the dielectric properties will probably be much smaller
than the other features such as the collagen network or orientation of blood vessels.
Therefore, the goal for the dermis model was first to directly or indirectly include single
cells and second, to capture main anisotropy directions likely to be seen in dielectric
spectra. Especially, the dermis anisotropy is not described in terms unit cells on a single
cell level anymore, but at a larger scale the distribution of blood vessels embedded in a
collagen network replaces this measure. Consequently, the E/D is partitioned into the
joint layer consisting of epidermis and capillary layer of the papillary dermis (PD), the
upper vessel plexus (UVP) the supply layer (SUP) and finally the deeper vessel plexus
(DVP). The dimensions (scaling of the dermis thickness obtained by MRI) and param-
eters for blood volume fractions were set according to [183]. The PD was entirely ap-
proximated by densely simple cubic packed columnar keratinocytes (ϕkeratinocyte = 0.83,
dx = dy < dz) given in Figure 7.4(e). The deeper lying layers were analytically modeled
using the Hanai-Bruggeman formula given by Equation 3.12 for aligned cylinders in an
anisotropic collagen matrix. The cylinder material consisted of blood with parameters
obtained from [34], the radius according to [193] for capillaries. The volume fractions of
the cylinders and their orientation (perpendicular or parallel to the skin surface) were
set as introduced in the previous subsection. The parameters for the collagen matrix
itself were again calculated with the MG formula. The mixture consisted of collagen
cylinders parallel to the skin surface, embedded in extracellular medium. The volume
fraction and collagen fiber radius for collagen were taken from [194].
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stratum 
corneum

epidermis

dermis

hypodermis
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parameter in next step
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Figure 7.3: Complete mixing scheme for the final dielectric human skin model (NUM). (*) The
effective parameters for blood were taken from [34]. Abbrevations for dermis subdivision:
upper vessel plexus (UVP), supply layer (SL) and deeper vessel plexus (DVP).

In the case of the MGI model the particle orientations are averaged out and the effective
material is isotropic.
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7.2.3 Landau-Lifshitz-Looyenga isotropic model (LOI)

The Landau-Lifshitz-Looyenga isotropic model (LOI) model is set up in the same manner
as the MGI model. The effective dielectric properties of the inclusion (material with
index i = 2) are calculated using the MG formula, but the final step is calculated with
the LLL formula in Equation 3.14 also leading to an averaging of particle orientation.
Since the LLL formula averages the anisotropy and the mixing formula is symmetric, a
major part of the geometrical information is not contained.

7.2.4 Maxwell-Garnett anisotropic model (MGA)

For aligned particles the ε̄
∗,(1)
eff calculated with the MG formula does not reduce to a

scalar and anisotropy can be accounted for. Accordingly, the MGA model corresponds
to the MGI model, up to the fact that the cells are aligned. The parameters are given
in Table 7.1. As mentioned, the MG formula is only valid for inclusion volume fractions
ϕinclusion < 0.1 since interparticle interactions are neglected [46]. Above this volume
fraction limit, also occuring in the case of all skin layers presented here the MG formula
is only an approximation.

7.2.5 Hanai-Bruggeman anisotropic model (HBA)

In order to overcome the volume fraction restriction of the MG formula in the the
HB formula (valid for volume fractions up to ϕinclusion < 0.8) given in Equation 3.12 is
employed in the HBA model. In analogy to the MGA model, the HB solution for aligned
single-shelled ellipsoidal particles provides the ε̄∗eff .

7.2.6 Model with numerically calculated dielectric parameters (NUM)

Both, MG as well as the HB formula impose a volume fraction limit due to interparticle
interaction as well as due to the quasi-periodic structure and resulting simple cubic
packing. The aim of the NUM model was to include features and aspects that are
not part of the previous models but expected to affect the dielectric spectra up to the
macroscale. In order to keep the computational effort reasonable the focus in the NUM
model was put once again on the following features:

· Cellular volume fraction ϕ

· Approximate composition of extracellular medium and cytoplasm

· Intercellular interactions (cell shape, ordering)

Since the shape of biological cells usually differs from ellipsoidal and the volume fraction
in tissue often exceeds even the densest possible packing of ellipsoids (ϕinclusion = 0.7707
[89]) a motivation for the refinement of the MGA/HBA models arises. In terms of a
more flexible geometry the effective dielectric parameters of particles can be calculated
analytically using the spectral density function approach [53], [68]. But as the expressions
get very complicated with increasing shape complexity numerical simulations were used
in the NUM model. The cell shapes were generated with the SF introduced in Section
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4.3.1. Following the approach in [102] the cell is placed in a parallel plate capacitor
filled with extracellular medium in order to generate the corresponding electric field
background for the determination of the effective dielectric properties. Its dimensions
are determined by the volume fraction of the cell and the maximal distances of the cell
shape in x-, y- and z-direction. In order to obtain the diagonal dielectric tensor ε̄∗eff

(Equation 5.1) as for the MGA and HBA models the electric field is first applied in x-,
then in y- and finally in z-direction with Neumann boundary conditions on boundaries
perpendicular to the electrodes in each corresponding case. This geometric setup implies
as already mentioned in conjunction with Equation 5.1 a periodic structure in the plane
perpendicular to the applied electric field due to the mirror images.

Table 7.2: Supershape parameters for selected skin cells. Both corneocyte model are addition-
ally scaled down in z-direction by a factor of 0.02. The corneocyte cubic, keratinocyte and
adipocyte cubic models were employed in the numerical (NUM) model.

Cell type Skin layer Supershape parameters Figure 7.4

a b m n1 n2 n3 d

Corneocyte SC 1 1 6 4 4 2 60 (a)

Corneocyte D4h SC 1 1 4 8 8 8 60 (b)

Keratinocyte 1 E 1 0.5 4 4 4 4 30 (c)

Keratinocyte 2 E 1 1 4 4 4 4 30 (d)

Keratinocyte 3 E 0.5 0.5 4 4 4 4 30 (e)

Fibroblast dermis (D) 1 1 4 0.5 1 0.75 60 (f)

Adipocyte HYP 1 1 4 4 4 4 40 (g)

Muscle cell M 3 0.3 4 2 2 2 200 (h)

The application of supershapes (see 4.3.1) in dielectric modeling of cell suspensions
and tissues has already successfully been performed in [102]. Diverse types of cell shapes
occurring in the skin can be created using the SF and are given in Figure 7.4, for
the corresponding shape parameters see Table 7.2. The three-dimensional ordering of
the corneocytes, which can be approximated by flat hexagons ordered in a hexagonally
close packed HCP unit cell. But since the presented procedure requires a unit cell
with perpendicular walls two approximations were performed. The first approximation
rendering the cell shape correctly is a BCC unit cell with hexagonal corneocytes. As it
is not possible to reach the required volume fraction of ϕcorneocyte = 0.91, the second
approximation consists of flattened cubes instead of hexagons in a BCC unit cell, allowing
to reach the required volume fraction. The keratinocytes of the epidermis are also
modeled numerically in order to reach the desired volume fraction and to better render
the shape. With increasing distance from the skin surface a smooth shape transition
from corneocyte to the basal kerationcyte occurs. This transition can also be reproduced
with the SF and is sketched in Figures 7.4 (a) to (e). However, for simplicity reasons the
epidermis is entirely represented by cubic columnar cells in this model. Although the SF
can describe even complicated shapes as fibroblast-like cells given in Figure 7.4(f) and
approximate almost any cell type, the dermis structure on the cellular level is due to
the large number of constituents so heterogeneous that the NUM model uses the same
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4: Estimated shapes of cells occurring in the skin parameterized with the Superformula.
Only the red-coloured cell shapes ((b), (e) and (g)) were used in the NUM model. The more
realistic corneocyte hexagonal shape in (a) was replaced by the D4h-shape in (b) in order
to model a realistic volume fraction and to be able to establish a BCC unit cell. The same
holds for the adipocyte in (g). The corresponding shape parameters are given in Table 7.2.

model parameters for the dermis sublayers as the MGI, LOI, MGA and HBA models.
The HYP is modeled using the same idea as for SC. However, the densest possible packing
of spheres (lipid phase of the adipocyte interior) provides only a maximal volume fraction
of ϕ = 0.744, obtained either with HCP or BCC unit cells. As the actual adipocyte
volume fraction must be higher than this value again, cuboidal-shaped cells in a BCC
unit cell are used in order to conform with the large cellular volume fraction.

7.3 Measurements

7.3.1 Dielectric measurements

Dielectric measurements were performed between 5 and 100 MHz using the multi-electrode
sensor shown in Figure 6.3 connected to a HP8753ES vector network analyzer (VNA).
The voltage between driven electrode and ground was 1V; the other two electrodes were
set to ground, repeating the procedure for all three electrodes (denoted as E1, E2 and
E3 in Figure 6.3). The setup was calibrated with air and deionized water with known
static conductivity. The left upper arm was chosen as measurement site because of its
accessibility, relative homogeneity of tissue parallel to the sensor surface compared to
other body parts (e.g. wrist) and ability to tightly attach the sensor on the skin. The
sensor was placed on the upper arm with the longer axes of the electrodes (y-direction)
being parallel to the long axis of the humerus and attached with rubber bands.
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7.3 Measurements

After measuring untreated, dry skin the SC was removed by consecutive stripping with
adhesive tape [138] and [195]. After each stripping the admittance was measured. The
stripping was terminated after 40 strippings [195] and the SC considered to be removed.
All measurements were carried out at room temperature. The dielectric parameters were
extracted according to the procedure described in Section 6.1. The removal of th SC in
experiment (and model as well) was used as a validation criterion.

7.3.2 Skin layer thickness determination with MRI

Skin layer thicknesses exhibit significant intra- and inter-individual variations [196], [197]
and should be carefully estimated. Literature values are provided in [132], [198], [199]
and [132]. In the present work MRI scans of the site of dielectric measurement were
recorded in order to determine skin layer thicknesses. The instrumentation consisted
of a 1.5T Philips Achieva MRI scanner in connection with a Philips microscopy coil
having an inner diameter of 23 mm and the following scan protocol: T1-weighted 3D
fast field echo, TR 600; TE 14, flip angle 90°, FOV 25x25 mm, matrix 256x256, acquired
resolution 0.06x0.9 mm, slice thickness 1.25 mm reconstructed to 0.4 mm, bandwidth
9.8Hz/pixel, 2 signal averages, 30 slices in the coronal plane.

epidermis (E)

dermis (D)

hypodermis (HYP)

muscle (M)

Figure 7.5: 1.5T MR image of the skin (dorsal upper left arm) used in determination of the
skin layers on the site of the dielectric measurement. E, D, HYP and M can clearly be
distinguished.

According to [153] the epidermis, dermis, subcutaneous fat and muscle can clearly be
distinguished in Figure 7.5. The outer high-signal zone (0.2 mm) corresponds to the
epidermis, the low-signal zone (1.3 mm) to the dermis. The image suggests significant
compositional differences between E and D. The thick, approximately 5 mm high-signal
zone is assigned to the hypodermis and the lower-lying low-signal zone under the hypo-
dermis corresponds to muscle.
The thickness of the SC cannot be resolved with MRI and is different on different body
sites. Nevertheless, it does not exhibit large variation among healthy individuals for a
specific body site and therefore, the SC thickness for the upper arm, dSC = 20µm, is
adapted from literature [171], [172] and [173].
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7.4 Results and discussion

According to Figure 7.6 the measured data before stripping lies in the same range and
exhibits a very similar characteristic as literature values obtained from measurements of
dry skin with open-ended coaxial probes [34], [33]. The measurements show that above
200 MHz resonances connected to the electrical length of the electrode/sensor system
occur. Therefore, above 200 MHz the quasi-static regime does not suffice anymore and a
full-wave numerical model of the sensor and tissue multilayers would be required in order
to correctly reproduce the measured data. In order to exclude effects due to electrode
polarization, large measurement uncertainties of the VNA at low frequencies as well as
the mentioned resonances the frequency region of interest was reduced to the range from
5 to 100 MHz.
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Figure 7.6: Comparison between effective permittivity (a) and conductivity (b) of dry skin
measured with the multi-electrode sensor shown in Figure 6.3 and parameters obtained from
measurements with coaxial probes of different sizes published in literature [33] and [34].

The dielectric parameters and thicknesses of SC, viable skin and hypodermis (also
compared to the inter-electrode distance) are in a such relation that a layered model
with each layer’s water content as a characteristic parameter (model Maxwell-Garnett
water content model (MGW)) generates a relaxation in the lower MHz region due to
the thin, poorly conductive SC between electrode and viable skin. On the other hand
measurements of skin also exhibit a strong dispersion in this region, the mentioned β-
dispersion [34] caused by interfacial polarization at the cell membranes. In order to test
the suitability of the models the SC was removed. Measurements show a prominent in-
crease in both εeff and σeff for the E3 and E2 electrode and a decrease of εeff and increase
of σeff for the E1 electrode after removal of the SC. As expected the MGW model could
not reproduce this behaviour. The contrast between viable skin and subcutaneous fat is
too poor because the E/D is about 2 orders of magnitude thicker than the SC and has
larger permittivity and especially conductivity. Therefore, the observed values will not
be reconstructed by the model and the contribution of the layering to the total spatial
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Figure 7.7: Effective permittivity ((a), (c) and (e)) and conductivity ((b), (d) and (f)) of in-
tact skin probed by three different electrodes of the multi-electrode sensor from Figure 6.3.
Measured data (mean value for all measurements of one subject) and models.
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Figure 7.8: Effective permittivtiy ((a), (c) and (e)) and conductivity ((b), (d) and (f)) of skin
without SC probed by three different electrodes of the multi-electrode sensor from Figure
6.3. Measured data (mean value for all measurements of one subject) and models.
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Figure 7.9: Effective permittivity (a) and conductivity (b) of measured (mean value of four mea-
surements on one subject and corresponding standard deviation) and modeled (NUM model)
intact skin.
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Figure 7.10: Effective permittivity (a) and conductivity (b) of measured (mean value of four
measurements on one subject and corresponding standard deviation) and modeled (NUM
model) skin without SC.

dispersion is very small. These results also indicate that the theory, where the SC is
strongly contributing at lower frequencies and E/D dominating at higher frequencies (>
100 MHz) [138] might be wrong. The contribution can be equal but caused by other pa-
rameters such as by the water content for whose the contrast between layers is smaller.
This could e.g. be assessed by evaluating the electric energy and resistive heating in the
layers. An additional argument against a significant lacking of contribution of the SC is
also provided in [27].
Furthermore, according to [34] the two-phase formulas are reliably applicable only at fre-
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quencies above 400 MHz, which makes sense because in the lower MHz range β-dispersion
dominates and masks the influence of free water.
Modeling the ε and σ of each layer as shelled particles embedded in a host medium is a
good initial approach in order to reproduce trends based on morphological parameters
and material composition on the cellular level, even though the initial presented MGI
model is not accurate yet. With the LOI model a small improvement is achieved by
averaging out the deviations from realistic cell shapes according to Figures 7.7 and 7.8.
The comparison between the models MGI/LOI and the MGA model shows that the
oriented ellipsoidal particles resulting in anisotropic dielectric parameters (especially for
SC) also provide a better reproduction of the measured data than isotropic mixtures of
randomly oriented particles. The MGA model qualitatively reproduces the observed fre-
quency dispersions in the measurements after removal of the SC (rise of εeff and σeff), at
least for the E2 and E3 electrodes. For E1, the decrease of εeff could not be reproduced.
But it has to be noted that the penetration depths of the electric fields of E2 and E3

are smaller than of E1 and therefore the accumulated uncertainty due to assumptions
on layer properties as well. Several aspects such as the constitution, anisotropic bound
water shells [87] or the inclusion of organelles [47] can be accounted for already using
an analytical or semi-analytical mixing rule. A comparison between the MGA and HBA
models from Figures 7.7 and 7.8 shows an even better agreement of the HBA model with
the measurement data due to the account for high cellular volume fractions.

While inspecting the dispersion spectra an overall comparison of all models suggests
that the NUM model is most suitable for the reproduction of the dispersion characteris-
tics of the skin and also has the largest potential for improvement due to the flexibility
concerning cell shape. The NUM model without SC provides a good agreement with the
measured data. However, the NUM model of intact skin suggests that the SC might be
less conductive than modeled. It is very likely, that an adjustment of the conductivity
of the water phase in the SC also moves the dispersion characteristics into the correct
direction. The dependency of the dielectric parameters on the gap widths of the elec-
trodes also indicated a similar direction of model improvement.

An additional advantage of the NUM model consist in the ability to model wet skin.
In dry skin the volume fraction of extracellular water is very small. By wetting the
skin this volume fraction increases, which can be easily incorporated into the model.
It was shown previously e.g. in [189] and [33] that the permittivity and conductivity
of wet skin is significantly larger than of dry skin. This can be explained with the in-
crease of dielectric contrast between extracellular medium and cell membrane and also
between cytoplasm and membrane. If exposed to water the corneocytes themselves start
to absorb water, so the intracellular water volume fraction increases as well.

7.5 Conclusion

The presented results suggest the need for a complex model of human skin in the fre-
quency range between 5 and 100 MHz. The model with the biphasic water mixtures fails
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7.5 Conclusion

to reproduce the skin’s dielectric properties after removal of the stratum corneum. The
latter model type characterized only by the water content of each layer as the relevant pa-
rameter is only applicable above 400 MHz as reported previously. If the entire frequency
region between 100 kHz and 1 GHz is considered at least the basic structure of tissue
(cells) has to be taken into account in order to correctly reproduce trends in the spec-
tra. MG- or HB-mixtures of shelled particles already provide correct trends. Comparing
measurement and simulation the model containing dielectric parameters of numerically
calculated cell-like structures with more realistic shapes resulting in anisotropic effective
dielectric properties for each skin layer provides the best results. The removal of the
stratum corneum as a validation criterion for the need for at least three-phase mixtures
containing approximated cells was successfully proven. The presented results suggest a
suitability for adaption of the concept for other tissues. Model improvement is expected
to happen after incorporation of mass transport on the microscale. This would directly
enable to assess the sensitivity of dielectric spectroscopy to physiological changes and
processes.
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8 Conclusion
A flexible framework for the modeling of dielectric parameters of biological tissue was
successfuly established using mixing formuals and numerical models within a multiscale
approach. The approach applied to modeling of human skin and was validated with
measurements. Moreover, prosperously using the removal of the stratum corneum in
model and experiment as an additional validation criterion substantiated the suggested
modeling method.

To the author’s best knowledge the presented model is the only one available which
is entirely based on morphology and material composition information without any fit-
ting of parameters to measured data.
Focusing on the microsctrucure it was shown that for frequecies up to few 100 MHz
shape and volume fraction of cells strongly influence the dielectric spectra of biological
bulk materials such as cell suspensions and tissues. Above 100 MHz shape and volume
fraction lose their importance and the principal characteristic in effective properties is
determined by the volume fractions of the different constituents only. In other words
for dielectric modeling of biological tissue below 100 MHz cell shape and cellular vol-
ume fraction has to be well represented in the model. Mixing formulas can serve as
a first approximation, but for more realistic scenarios only numerical simulations offer
the required flexiblity and accuracy. A limitation is the actual shape generation in the
employed software.
As some tissues exhibit a layered substructure on the macro- or submacroscopic scale
the uniqueness of effective properties as well as the sensitivity in the latter to parameter
changes was investigated. Generally, the reconstruction is an ill-posed problem. Only
if the range of unknowns is sufficiently small one can potentially assign the origin of
a certain change with respect to a reference scenario in the effective parameters to a
parameter variation in a specific layer.

The multiscale concept was succesfully validated by measurements on human skin. How-
ever, further research is needed in order to to improve the accuracy of the model and to
validate it for other tissues. Furthermore, the experimental setup for measurements on
skin has to be re-designed focusing on reproducibility and capturing of effects on mea-
sured data due to environmental changes. This will especially be important for tracking
of physiological parameters requiring high sensitivity.
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9 Outlook
In the currently available form the presented framework can be employed for the assesse-
ment of the origin of observed changes in effective dielectric parameters as well as for
optimization of sensor geometries for specific applications. However, it is suggested to
refine the tissue model. Due to the modular structure of the framework this is assumed
to need only limited effort, at least on the conceptional level.

In terms of material models a combination of the multiscale approach with the self-
similar or fractal character of tissue, surfaces and cell membranes [60] could lead to
improvements in efficiency. The fractal dimension is useful to describe irregularity and
shape complexity in systems that appear to display scaling correlations (between struc-
tural units) over several orders of length or size [200]. Attempts to describe dielectric
properties of tissue within the framework of fractal theory have been performed in [201]
and [202].
Aiming for higher frequencies than few hundred MHz while using frininging-field sensors
in the dimensions of centimeters the presented electroquasistatic approximation does not
hold anymore because the probe starts to resonate, requiring a full-wave electrodynamic
model. Also the incorporation of other physical processes and multiple time scales would
improve material models of cells, tissues, nanocomposites and other structures in general.
For example the comprehensive multiphysics multiscale model of the heart presented in
[203] could serve as an example. It comprises soft tissue mechanics, reaction-diffusion
equations governing current flow and Navier-Stokes equations solved for coronary blood
flow as well as the transport of oxygen and metabolites, coupled to energy-dependent
cellular processes.
Concerning both, the micro- and macroscopic model incorporating kinetics of charge
carriers (Nernst-Planck equation) the electrode polarization which is reported to have
a large impact at low frequences (α-dispersion) could be included in order to better
reproduce measured data. The coupling with thermodynamics would allow for a better
understanding of electrothermal interactions between tissue and electromagnetic fields
due to the more precise dielectric model.
On the microscopic scale model refinment could be achieved incorporating ion channels,
macromolecules (proteins) and organelles as well as a more detailed model of bound
water for modeling of the δ-dispersion. Combining electromagnetic simulations with
other physical processes the shape parametrization would also allow for the impact of
cell deformation due to interactions such as mechanical stress, variations in ion concen-
trations or temperature as well as possibly cell differentiation on the dielectric spectra.
Furthermore, an advanced model could help to answer the so far unanswered question
if electromagnetic fields have non-thermal effects on biological material or if weak fields
influence the temperature dependency of biochemical processes [204].
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Focusing on the technical aspects the implementation of an own FEM code would be a
benefit in order to be able to fully control the hand-over of geometry and mesh to the
establishment of the matrices due to the critical aspect ratios and the involved numerical
inaccuracies. With the presented framework also virtual cell [205], a software environ-
ment for computational cell biology enabling the establishment of a cell model based on
the choice of different physical processes for a chosen geometry could be extended by
electromagnetics.

The field of non-invasive monitoring of physiological parameters could be further ex-
plored. Since in approprietly set up models sensitivity analysis spectra provide specific
information on the underlying parameter variations mechanisms leading to dielectric
changes could possibly be identified, such as e.g. for the glucose level in blood. It was
found [206] that when the glucose level rises and the effective parameters of skin are
measured εeff and σeff both drop in the MHz range and vice versa. Yet, the mechanism
for this phenomenon is still unknown. Possible explanations are an altered ion channel
activity or a shift of interstitial water. The latter effect has e.g. been demonstrated
with optical coherence tomography (OCT) measurements [207] and [208]. The transport
through the involved cell types results in changes of transmembrane potential and ion
channel activity, potentially observable in dielectric measurements.
Another effect suggests that the changes in osmotic pressure caused by the hydrophilic
glucose molecule [209], which can lead to a so-called stress-generated potential (piezoelec-
tric effect) in the epidermis and dermal collagen [210] and [211]. However, the question if
a sensor pressed onto the skin contributes to the stress-generated potential and enhances
the effect of osmotic pressure would have to be investigated as well. In a mentioned mul-
tiphysics model combining mass transport, tissue mechanics and electromagnetics this
theory could be investigated.

In terms of measurement self-similar electrode arrays might be a solution in order to
provide a variety of penetration depths of the electric field per available surface.
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Surface triangulation
The presented general algorithm in this section is based on Delaunay and Voronoi tri-
angulation, suitable for any kind of unbordered surface and based on the works of [113]
and [117].
The principle is based on identification and separation of Voronoi vertices with respect
to their relative position (inside or outside) to the 3D point cloud. Voronoi vertices
approximating the medial axis/the surface normals are denoted as poles

1. Introduce a bounding box B consisting of 8 vertices which is approximately 5 times
larger than the tightest bounding box.

2. Compute the Delaunay and Voronoi diagram of S∪B including circumsphere radii
(Voronoi balls) and quality factors of the tetrahedrons (Glassmeier parameter and
Robert/Roux parameter [212]).

3. Filter out NaNs, Infs and bad quality tetrahedrons.

4. Identify outer convex poles XP as outer poles of the points of S belonging to the
convex hull.

5. Identify poles for each sample point in S.

· Let p+ be the farthest vertex of the Voronoi cell of si.

· Let p− be the farthest vertex of the Voronoi cell of si with a negative dot

product of sip
+
i and sip

−
i .

6. Identify outer seed poles as the poles (p+ or p−) that are Voronoi vertices of
tetrahedrons with at least one point from B. The corresponding inner seed pole is
the other pole (p− or p+) in the same Voronoi cell.

7. Label all poles as ‘inner’ or ‘outer’:

· Push all p+ and p− that are not seed poles into the ‘unlabeled’ queue.

· Put seed poles into the ‘labeled’ queue. Label them as ‘inner’ or ’outer’.

· Take a pole from the ‘labeled’ queue. This pole is the current pole.

· All poles inside the current pole’s Voronoi ball have the same label as the
current pole. Mark the opposite poles belonging to the same si with the
opposite label as the current pole.

· Remove the labeled poles out of the ‘unlabeled’ queue, push them into the
‘labeled’ queue.
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· Remove the current pole from the ‘labeled’ queue.

· Return to step 3 and repeat procedure until all poles are labeled.

8. Extract outer concave poles OCP as outer poles not belonging to XP .

9. Compute the Delaunay triangulation of S ∪B ∪OCP .

10. Tetrahedrons: Extract only those tetrahedrons with all vertices from S.

11. Triangles: Extract only those tetrahedrons with exactly one vertex from B∪OCP
and three vertices from S. From the selected tetrahedrons extract only those
triangles with all vertices from S.

12. Repair mesh if required.

In Step 5. the range-searching data structure k-D tree is employed in order to deter-
mine poles within the respective Voronoi ball. The corresponding MATLABr files were
downloaded from the file exchange [213].

This general algorithm is suitable for any kind of unbordered surfaces and could be
extended to process bordered surfaces if necessary. It requires i) an initial Delaunay and
Voronoi triangulation of n+ 8 points and ii) a final Delaunay triangulation of n+ 8 + q
points where n is the number of points of S and q the number of OCP .
A detailed theoretical description is provided in [117] numerical issues such as the exclu-
sion of bad quality tetrahedrons (mentioned in [113]) and points out that their presented
algorithm does not need a heuristic which is not exactly true. Low-quality tetrahedrons
always occur and cause problems. In this case false inner seed poles can be obtained
from almost tangential very thin/flat tetrahedrons. The Voronoi vertices p− of these
tetrahedrons have the required negative dot product and the largest distance from si in
the half-space/corresponding Voronoi cell but lie outside of the object. In other words
the Voronoi cell extends beyond the object instead of being completely inside in this
half-space.
Also the occurrence of holes or edges in undersampled regions is not addressed. In the
case of supershapes undersampling is - although indirectly - an issue if the triangulation
is used for geometry generation (in COMSOL Multiphysicsr ): Although the sampling
density can be almost arbitrarily high the distance and size of faces in the FEM software
cannot be arbitrarily small for further processing. This fact has either to be taken into
account if modeling complicated shapes or the number of points close to the critical
(0, 0,±z) points can be reduced. For a fixed d the parameter c denotes the number of
removed θ discretization values directly following −π/2 and directly preceding +π/2.
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Implementation
This appendix contains MATLABr source codes of selected functions used in this work.

B.1 Mixing formulas

The MG and HB formulas were implemented by setting up a recursive routine for the
complex permittivity of the particle. The following features are available:

· Volume fractions of inclusion: 0 < ϕ < 1 (ϕ 6= 0, 1)

· Axes: Arbitrary axes between 0 and ’∞’ (The difference between smallest and
largest axis should not exceed 1012. This is especially important in the case of
cylinders, which require the choice of a high number in order to substitute ∞.)

· Shells: Arbitrary number of shells

· Orientation: Full, random in xy-direction and oriented in z-direction, random in
yz-direction and oriented in x-direction, random in xz-direction and oriented in
y-direction, random

· Full parametrization: Simultaneous or consecutive variation of an arbitrary number
of all geometrical and material parameters

Although for the HB formula there are several analytical solutions for special cases, as
e.g. shelled spheres [63] or randomly oriented shelled spheroids in [214], in this work it
was implemented for arbitrary shapes (from sphere, ellipsoid to cylinder, disk or needle),
meaning arbitrary values for the depolarization factors Lk. The numerical integration
and solution of Equation 3.12 was performed with the quad and an initial guess for the
numerical solution for high volume fractions of aligned particles:

εeff,j =
εi,j − εh,j

εh,j + (εi,j − εh,j)Lj
(B.1)

The initial guess for the numerical solution for randomly oriented particles is the mean
value of the three εeff -components for aligned particles.
The implementation of the LLL formula is straight-forward.

B.1.1 Maxwell-Garnett formula

function cdata = calcMaxwellGarnett(params)
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systemParams = params.systemParams;

geomParams = params.geomParams;

materialParams = params.materialParams;

fnames = fieldnames(geomParams);

for jj = 1:length(fnames)

if iscell(geomParams.(fnames{jj}))

geomParams.(fnames{jj}) = cell2mat(geomParams.(fnames{jj}));

end

end

%-----------------------------------------------------------------------------------------

% systemParams.systemname: system name

% systemParams.freq: frequency

% systemParams.locfile: file for saving calculated dielectric properties

% geomParams.phi: volume fraction of particle

% geomParams.axesAbs: outermost axes (absolute values) of particle

% geomParams.shellsAbs: shell thicknesses (absolute values)

% confocal ellipsoids: size(shellsAbs,1) == 1

% concentric ellipsoids approximation:

% size(shellsAbs,1) == 3

% geomParams.shellsIndex: reference axis for shell thickness for confocal

% ellipsoids

% (x = 1; y = 2; z = 3)

% materialParams.name: material names

% materialParams.loc: location of material parameters in results "data"

% structure

% if loc does not exist material

% parameters are taken from database

% function getDielectricData

% materialParams.locfile: .mat-file where "data" structure is located

% materialParams.iso: indication if isotropic values are required

% (fully isotropic: ’xyz’; ’xy’; ’xz’; ’yz’)

% materialParams.particle: get effective properties of

% dispersed phase only

%-----------------------------------------------------------------------------------------

getcd = cd;

disp(strcat(’Calculated system:’,systemParams.systemname))

format long

eps0 = 8.8541878176e-12;

freq = systemParams.freq;

lf = length(freq);

omega = 2*pi*freq;

omegaVec = repmat(omega,3,1);

lm = length(materialParams.name);

mm = lm-1;

%-----------------------------------------------------------------------------------------

% Calculation of dielectric parameters for each phase

%-----------------------------------------------------------------------------------------

epsilon = zeros(3,lm,lf);
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cd ..

cd(’Dielectric data’)

materialParams.cmplx = 1; % get complex epsilon

materialParams = getDielectricTensor(materialParams,freq); % Materials

epsilonTensor = materialParams.epsilonTensor;

for kk = 1:lm

epskk(:,:,1) = epsilonTensor{kk};

epsilon(:,kk,:) = permute(epskk,[1 3 2]);

end

cd(getcd)

%-----------------------------------------------------------------------------------------

% Calculation of absolute geometry (confocal ellipsoids in general)

%-----------------------------------------------------------------------------------------

if isfield(geomParams,’axesAbs’)

if size(geomParams.axesAbs,1) == 1

% sphere

axesAllAbs = repmat(geomParams.axesAbs,3,mm);

elseif size(geomParams.axesAbs,1) == 3

% ellipsoid

axesAllAbs = repmat(geomParams.axesAbs,1,mm);

else

error(’The number of rows of the "axesAbs"-vector must be either 1 or 3.’)

end

if isfield(geomParams,’shellsAbs’)

if isfield(geomParams,’shellsIndex’)

% confocal ellipsoid

xi = 2*geomParams.axesAbs(geomParams.shellsIndex)*geomParams.shellsAbs - ...

geomParams.shellsAbs.^2;

xi = repmat(xi,3,1);

axesAllAbs = (axesAllAbs.^2 - xi).^(1/2);

else

% shelled sphere

axesAllAbs = axesAllAbs - repmat(geomParams.shellsAbs,3,1);

if any(geomParams.axesAbs(1)~=geomParams.axesAbs) == 1

% concentric ellipsoid

disp(strcat(’Inner ellipsoids are not confocal. The Maxwell-Garnett ...

solution is only an approximation.’))

end

end

end

else

% sphere, only defined by volume fraction

axesAllAbs = repmat(((3/4*pi)*geomParams.phi).^(1/3),3,1);

end

%-----------------------------------------------------------------------------------------

% Relative values for all semiaxes

%-----------------------------------------------------------------------------------------

axf = ((geomParams.phi*3)/(4*pi*axesAllAbs(1,1)*axesAllAbs(2,1)*axesAllAbs(3,1)))^(1/3);

axesAll = axf*axesAllAbs;
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%-----------------------------------------------------------------------------------------

% Depolarisation factors n; (shape factor u: %u(:,ii) = (1-n(:,ii))./n(:,ii);

% infThresh: axesAllAbs(j,:) > infThresh = Inf

% Calculation with initial absolute values for semiaxes

%-----------------------------------------------------------------------------------------

getDepolar = @(a,b,c) ((1/2)*(a.*b.*c).*...

quad(@(s) (1./((s+a.^2).*((s+a.^2).*(s+b.^2).*(s+c.^2)).^(1/2))),0,1e9));

n = zeros(3,mm);

for ii = 1:mm

nx = getDepolar(axesAll(1,ii),axesAll(2,ii),axesAll(3,ii));

ny = getDepolar(axesAll(2,ii),axesAll(1,ii),axesAll(3,ii));

nz = getDepolar(axesAll(3,ii),axesAll(1,ii),axesAll(2,ii));

n(:,ii) = [nx; ny; nz];

end

n = repmat(n,[1 1 lf]);

%-----------------------------------------------------------------------------------------

% Actual calculation of the dielectric parameters

%-----------------------------------------------------------------------------------------

epsOut = epsilon(:,1,:);

e_high = epsilon(:,2:end,:);

e_low = epsilon(:,1:end-1,:);

vUp = e_high + n.*(e_low - e_high);

vDown = n.*(1-n).*(e_high - e_low);

mUp = e_high - e_low;

mDown = e_low + n.*(e_high - e_low);

axesProduct = prod(axesAll);

indxAxes = 1;

for ii = 1:mm

indxvecNew = zeros(1,2^(ii-1));

indxvecNew(1:2:end) = indxAxes;

indxvecNew(2:2:end) = ii;

indxAxes = indxvecNew;

end

tUp = zeros(3,2^(mm-1),lf);

tDown = zeros(3,2^(mm-1),lf);

for ii = 1:mm

jj = mm-ii+1;

mUp_i = repmat(mUp(:,jj,:),[1 2^(jj-1) 1]);

mDown_i = repmat(mDown(:,jj,:),[1 2^(jj-1) 1]);

vUp_i = repmat(vUp(:,jj,:),[1 2^(jj-1) 1]);

vDown_i = repmat(vDown(:,jj,:),[1 2^(jj-1) 1]);

fQuot = axesProduct(indxAxes);

fQuot = repmat(fQuot,[3 2 lf]);

indxAxes = indxAxes(1:2:end);

tUp_i = (fQuot(:,2:2:end,:)./fQuot(:,1:2:end,:)).*mUp_i + vUp_i.*tUp;

tDown_i = mDown_i+ vDown_i.*tDown;
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tUpdate = tUp_i./tDown_i;

tUp = tUpdate(:,1:2:end,:);

tDown = tUpdate(:,2:2:end,:);

end

%-----------------------------------------------------------------------------------------

% Anisotropic

%-----------------------------------------------------------------------------------------

e = tUpdate;

epsEff = epsOut + (geomParams.phi*epsOut .*e)./(1-geomParams.phi*n(:,1,:).*e);

% only particle

ov = ones(3,1,lf);

epsParticle = epsOut.*((e + ov - n(:,1,:).*e)./(ov - n(:,1,:).*e));

%-----------------------------------------------------------------------------------------

% Isotropic (random orientation)

%-----------------------------------------------------------------------------------------

sum1 = sum(e);

sum2 = sum(n(:,1,:).*e);

term3 = (geomParams.phi/3)*sum1./(1-(geomParams.phi/3)*sum2);

term3 = repmat(term3,[3 1 1]);

epsEffiso = sum(epsOut(:,:,:) + epsOut(:,:,:).*term3,1)/3;

% isotropic only in x-y-direction

sum1 = sum(e(1:2,:,:));

sum2 = sum(n(1:2,1,:).*e(1:2,:,:));

term3 = (geomParams.phi/2)*sum1./(1-(geomParams.phi/2)*sum2);

term3 = repmat(term3,[2 1 1]);

epsEffiso_i = sum(epsOut(1:2,:,:) + epsOut(1:2,:,:).*term3,1)/2;

epsEffisoXY = [epsEffiso_i;epsEffiso_i;epsEff(3,:,:)];

% isotropic only in x-z-direction

sum1 = sum([e(1,:,:);e(3,:,:)]);

sum2 = sum([n(1,1,:).*e(1,:,:);n(3,1,:).*e(3,:,:)]);

term3 = (geomParams.phi/2)*sum1./(1-(geomParams.phi/2)*sum2);

term3 = repmat(term3,[2 1 1]);

epsEffiso_i = sum([epsOut(1,:,:);epsOut(3,:,:)] + [epsOut(1,:,:);epsOut(3,:,:)].*term3,1)/2;

epsEffisoXZ = [epsEffiso_i;epsEff(2,:,:);epsEffiso_i];

% isotropic only in x-y-direction

sum1 = sum(e(2:3,:,:));

sum2 = sum(n(2:3,1,:).*e(2:3,:,:));

term3 = (geomParams.phi/2)*sum1./(1-(geomParams.phi/2)*sum2);

term3 = repmat(term3,[2 1 1]);

epsEffiso_i = sum(epsOut(2:3,:,:) + epsOut(2:3,:,:).*term3,1)/2;

epsEffisoYZ = [epsEff(1,:,:);epsEffiso_i;epsEffiso_i];

%-----------------------------------------------------------------------------------------

epsEff = squeeze(permute(epsEff,[1,3,2]));

epsEffisoXY = squeeze(permute(epsEffisoXY,[1,3,2]));

epsEffisoXZ = squeeze(permute(epsEffisoXZ,[1,3,2]));

epsEffisoYZ = squeeze(permute(epsEffisoYZ,[1,3,2]));

epsEffiso = squeeze(permute(epsEffiso,[1,3,2]));

epsParticle = squeeze(permute(epsParticle,[1,3,2]));

sigEff = 1i*epsEff.*omegaVec*eps0;
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sigEffisoXY = 1i*epsEffisoXY.*omegaVec*eps0;

sigEffisoXZ = 1i*epsEffisoXZ.*omegaVec*eps0;

sigEffisoYZ = 1i*epsEffisoYZ.*omegaVec*eps0;

sigEffiso = 1i*epsEffiso.*omega*eps0;

sigParticle = 1i*epsParticle.*omegaVec*eps0;

% Save data

if exist(’xi’,’var’)

cdata.geomParams.xi = xi(1,:);

end

cdata.systemParams = systemParams;

cdata.geomParams = geomParams;

cdata.materialParams = materialParams;

cdata.freq = freq;

cdata.epsEff = epsEff;

cdata.epsEffiso = epsEffiso;

cdata.epsEffisoXY = epsEffisoXY;

cdata.epsEffisoXZ = epsEffisoXZ;

cdata.epsEffisoYZ = epsEffisoYZ;

cdata.sigEff = sigEff;

cdata.sigEffiso = sigEffiso;

cdata.sigEffisoXY = sigEffisoXY;

cdata.sigEffisoXZ = sigEffisoXZ;

cdata.sigEffisoYZ = sigEffisoYZ;

if exist(’epsParticle’,’var’)

cdata.epsParticle = epsParticle;

cdata.sigParticle = sigParticle;

end

cdata.date = datestr(now);

cd(getcd)

end

B.1.2 Hanai-Bruggeman formula

function cdata = calcHanaiBrugg(params)

The first part of this function including the setup of the geometry corresponds to the one
used in the previous subsection up to the paragraph ‘Actual calculation of the dielectric
parameters’.

%-----------------------------------------------------------------------------------------

% Anisotropic

%-----------------------------------------------------------------------------------------

epsOut = epsilon(:,1,:);

ax_high = axesAll(:,2:end);

ax_low = axesAll(:,1:end-1);

nu_i = prod(ax_high)./prod(ax_low);

nu = repmat(nu_i,[3 1 lf]);

ov = ones(3,1,lf);

epsParticle = epsilon(:,end,:);

for ii = 1:lm-2

jj = lm-ii;
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epsShell = epsilon(:,jj,:);

sum4 = epsParticle - epsShell;

epsParticle = ...

epsShell.*(ov + ((nu(:,jj-1,:).*sum4)./...

(epsShell + n(:,jj,:).*sum4 - nu(:,jj-1,:).*n(:,jj-1,:).*sum4)));

end

%-----------------------------------------------------------------------------------------

% Extension to high volume fractions

%-----------------------------------------------------------------------------------------

phiterm = repmat(1-geomParams.phi,[3 1 lf]);

fa = @(q) ((((q - epsParticle)./...

(epsOut - epsParticle)).*((epsOut./q).^n(:,1,:)))-phiterm);

% Initial guesses for integration (solution of regular MGHB for small

% volume fractions)

epsGuess = geomParams.phi*((epsParticle - epsOut)./...

(epsOut + n(:,1,:).*(epsParticle - epsOut))).*epsOut.*(1 - n(:,1,:)) + epsOut;

epsEffp = fsolve(fa,epsGuess);

epsEff = squeeze(permute(epsEffp,[1 3 2]));

sigEff = real(1i*epsEff.*omegaVec*eps0);

epsGuess = squeeze(permute(epsGuess,[1 3 2]));

sigGuess = real(1i*epsGuess.*omegaVec*eps0);

%-----------------------------------------------------------------------------------------

% Isotropic (random orientation)

%-----------------------------------------------------------------------------------------

epsEffiso = zeros(1,lf);

epsGuessiso = zeros(1,lf);

for ii = 1:lf

n_i = squeeze(permute(n(:,1,ii),[1 3 2]));

epsParticle_i = squeeze(permute(epsParticle(:,1,ii),[1 3 2]));

epsOut_i = squeeze(permute(epsOut(1,:,ii),[1 3 2]));

epsGuess_i = squeeze(permute(mean(epsEffp(:,1,ii)),[1 3 2]));

epsGuessiso(1,ii) = epsGuess_i;

epsEffiso(1,ii) = fsolve(@(q) calcHanaiBrugg_integrate...

(q,epsParticle_i,n_i,epsOut_i,geomParams.phi),epsGuess_i);

end

sigEffiso = 1j*epsEffiso.*omega*eps0;

sigGuessiso = 1j*epsGuessiso.*omega*eps0;

% Save data

if exist(’xi’,’var’)

cdata.geomParams.xi = xi(1,:);

end

cdata.systemParams = systemParams;

cdata.geomParams = geomParams;

cdata.materialParams = materialParams;
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cdata.freq = freq;

cdata.epsEff = epsEff;

cdata.sigEff = sigEff;

cdata.epsEffiso = epsEffiso;

cdata.sigEffiso = sigEffiso;

cdata.date = datestr(now);

cd(getcd)

end

%-----------------------------------------------------------------------------------------

% SUBFUNCTIONS

%-----------------------------------------------------------------------------------------

function y = calcHanaiBrugg_integrate(qeps,qepsParticle,qn,qepsOut,qphi)

y = integrated(qeps,qepsParticle,qn,qepsOut) - log(1 - qphi);

function yy = integrated(qeps,qepsParticle,qn,qepsOut)

yy = quadv(@(qeps) integrand(qeps,qepsParticle,qn),qepsOut,qeps);

function yyy = integrand(qeps,qepsParticle,qn)

yyy = 3./(qeps.*(sum((qeps - qepsParticle)./(qeps + (qepsParticle -...

qeps).*qn))));

end

end

end

B.2 Transfer of the dielectric tensor

function materialParams = getDielectricTensor(materialParams,freq)

%-----------------------------------------------------------------------------------------

% Get diagonal dielectric tensor for all materials from the system to

% calculate

%-----------------------------------------------------------------------------------------

% INPUT

%-----------------------------------------------------------------------------------------

% materialParams.name: material names

% materialParams.loc: location of material parameters in results

% "data" structure

% if loc does not exist material

% parameters are taken from database

% function getDielectricData

% materialParams.locfile: .mat-file where "data" structure is located

% materialParams.iso: indication if isotropic values

% are required

% (fully istoropic: ’xyz’; ’xy’; ’xz’; ’yz’)

% materialParams.particle: get effective properties of

% dispersed phase only

% freq: frequency

%-----------------------------------------------------------------------------------------
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% OUTPUT

%-----------------------------------------------------------------------------------------

% materialParams.epsilonTensor(spatial component,material number,frequency point)

% materialParams.sigmaTensor(spatial component,material number,frequency point)

%-----------------------------------------------------------------------------------------

getcd = cd;

lm = length(materialParams.name);

epsilonTensor = cell(1,lm);

sigmaTensor = cell(1,lm);

for kk = 1:lm

% Material in data structure as result

if isfield(materialParams,’loc’) && ~isempty(materialParams.loc{kk})

mname = char(materialParams.name(kk));

cd ..

cd(’Results’)

% Get file where data is located

if isfield(materialParams,’locfile’)

if iscell(materialParams.locfile)

load(materialParams.locfile{kk})

else

load(materialParams.locfile)

end

else

load mydatabase

end

% Only particle parameters

if isfield(materialParams,’particle’) && ~isempty(materialParams.particle{kk})

epsStr = ’epsParticle’;

% Isotropy in certain space directions?

elseif ~isfield(materialParams,’iso’) || isempty(materialParams.iso{kk})

epsStr = ’epsEff’;

elseif isequal(materialParams.iso{kk},’xyz’)

epsStr = ’epsEffiso’;

elseif isequal(materialParams.iso{kk},’xy’)

epsStr = ’epsEffisoXY’;

elseif isequal(materialParams.iso{kk},’xz’)

epsStr = ’epsEffisoXZ’;

elseif isequal(materialParams.iso{kk},’yz’)

epsStr = ’epsEffisoYZ’;

end

sigStr = strrep(epsStr,’eps’,’sig’);

matLocation = eval(strcat(materialParams.loc{kk},’.’,mname));

if iscell(matLocation)

matLocation = matLocation{1};

end
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epskk = matLocation.(epsStr);

sigkk = matLocation.(sigStr);

freqi = matLocation.freq;

% Interpolate in case of unequal frequency vectors

if ~isequal(freq,freqi)

epskk = interp1(freqi’,epskk’,freq’,’nearest’,’extrap’)’;

sigkk = interp1(freqi’,sigkk’,freq’,’nearest’,’extrap’)’;

disp(’Unequal frequency vectors. Dielectric parameters have been interpolated.’);

end

% Material in database

else

cd ..

cd(’Dielectric data’)

if ~isnumeric(materialParams.name{kk})

mname = char(materialParams.name(kk));

else

mname = materialParams.name{kk};

end

if ~isfield(materialParams, ’conc’) || isempty(materialParams.conc{kk})

[epsCmplx, sigCmplx] = getDielectricData(mname,freq);

else

[epsCmplx, sigCmplx] = getDielectricData(mname,freq,materialParams.conc{kk});

end

if ~isempty(epsCmplx)

if ~isfield(materialParams,’cmplx’) || isequal(materialParams.cmplx,0)

epskk = real(epsCmplx);

sigkk = real(sigCmplx);

else

epskk = epsCmplx;

sigkk = sigCmplx;

end

end

cd(getcd);

end

% Extend to diagonal tensor if material isotropic

if isequal(size(epskk,1),1)

epsilonTensor{kk} = repmat(epskk,3,1);

sigmaTensor{kk} = repmat(sigkk,3,1);

else

epsilonTensor{kk} = epskk;

sigmaTensor{kk} = sigkk;

end

materialParams.epsilonTensor = epsilonTensor;

materialParams.sigmaTensor = sigmaTensor;
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end

B.3 Effective dielectric parameters of a simple cubic unit cell

In COMSOL Multiphysicsr version 3.5a the necessary steps in order to obtain a super-
shape geometry which can be used for further processing are as follows:

1. Remove poles

2. Create iso-z-curves with function poly

3. Coerce to faces with function solid2

4. Linear lofting with function loft

5. Embed into 3D geometry with function embed

6. Transform into a solid object with functions geomcomp and geomcoerce

It is crucial to ensure that points are connected linearly and not using spline interpo-
lation. Due to the small distance between original and offset surface this leads to an
overlap of the curves and surfaces and consequently, to an incorrect topology with addi-
tional domains.

The main function evaluating the admittance of a unit cell containing a supershape
with arbitrary number of shells is given on the following.

Another technical issue concerns the appropriate choice of a solver. It was found that
iterative solvers sometimes converge to the wrong solution (geometric multigrid, [215])
or are extremely slow (GMRES). Therefore, the solver of choice will be an direct one.
The best experience was made with PARDISO although if the number of degrees of
freedom exceeds a certain value (usually around 4 million) an internal error occurs.

function fem = comsolSupershape(params,structinfo)

% GET PARAMETERS

%-----------------------------------------------------------------------------------------

timeTotal = tic;

getcd = cd;

disp([’System: ’,params.systemParams.systemname])

structinfo.systemname = params.systemParams.systemname;

% SOLVE (and sweep parameters if available)

%-----------------------------------------------------------------------------------------

if ~isfield(params.systemParams,’loopParams’)

simresults = comsolSolveFunction(params);

else

loopParamsInfo = comsolGetParamsMulti(params);

pnumstotal = loopParamsInfo.pnumstotal;

pnums = loopParamsInfo.pnums;

pinds = loopParamsInfo.pinds;
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ginds = [isequal(numel(pnums),1) pnums];

simresults = cell(ginds(ginds > 0));

for mm = 1:loopParamsInfo.pnumstotal

disp([’Parameter step ’, num2str(mm),’ of ’,num2str(pnumstotal)])

disp(’Parameter indices: ’)

disp(pinds(mm,:))

[params,indcell] = comsolSetParamsMulti(params,loopParamsInfo,mm);

simresultsi = comsolSolveFunction(params);

simresults(indcell{:}) = {simresultsi};

end

end

cd ..

cd(’Results’)

saveMyData(structinfo,simresults,systemParams.matfilename)

cd(getcd);

timeTotal = toc(timeTotal);

disp([’Total CPU time: ’,num2str(timeTotal),’ [s]’])

%-----------------------------------------------------------------------------------------

% SOLVE PROBLEM

%-----------------------------------------------------------------------------------------

function cdata = comsolSolveFunction(params)

geomParams = params.geomParams;

meshParams = params.meshParams ;

materialParams = params.materialParams;

systemParams = params.systemParams;

% DEFINE QUANTITIES, PREALLOCATE

%---------------------------------------------------------------------------------

eps0 = 8.8541878176e-12;

freq = systemParams.freq;

freqpts = length(freq);

reY = zeros(1,freqpts);

imY = zeros(1,freqpts);

epsEff = zeros(3,freqpts);

sigEff = zeros(3,freqpts);

timeStep = zeros(1,freqpts);

% GET MATERIAL DATA

%---------------------------------------------------------------------------------

cd ..

cd(’Dielectric data’)

materialParams = getDielectricTensor(materialParams,freq);

cd(getcd);

% GEOMETRY

%---------------------------------------------------------------------------------
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geomParams.numberOfMaterials = length(materialParams.name);

[fem,geomParams] = comsolGeometrySupershape(geomParams);

% BOUNDARY AND SUBDOMAIN IDENTIFICATION

%---------------------------------------------------------------------------------

idParams = comsolIdentifyBndsSubdomains(fem,geomParams);

% MESH

%---------------------------------------------------------------------------------

meshParams.geomdim = geominfo(fem.geom,’out’,{’gd’});

fem = comsolMesh(meshParams,fem);

% APPLICATION VARIABLES

%---------------------------------------------------------------------------------

clear appl

appl.mode.class = ’QuasiStatics’;

appl.name = ’emqvw’;

appl.module = ’ACDC’;

appl.shape = {’shlag(2,’’lm1’’)’,’shlag(2,’’V’’)’};

appl.gporder = {10,4};

appl.border = ’on’;

appl.assignsuffix = ’_emqvw’;

clear prop

prop.elemdefault=’Lag2’;

prop.analysis=’smallcurr’;

clear weakconstr

weakconstr.value = ’on’;

weakconstr.dim = {’lm1’,’tlmx’,’tlmy’,’tlmz’,’lm2’};

prop.weakconstr = weakconstr;

appl.prop = prop;

fem1 = fem;

vinp = {’1’ ’2’ ’3’}; % Switch electrodes

for jj = 1:length(vinp)

bndParams.inp = vinp{jj};

bndParams.id = idParams.forBnd;

appl = comsolBndEllipsoid(appl,bndParams); % Boundaries

% FREQUENCY SWEEP

%------------------------------------------------------------------------------

for ii = 1:freqpts

time1 = tic;

disp([’Frequency step: ’,num2str(jj),’ ’,num2str(ii)])

fem = fem1;

appl = comsolMaterialEllipsoid(materialParams,freq,appl,ii,idParams);

% MORE APPLICATION VARIABLES

%--------------------------------------------------------------------------

fem.appl{1} = appl;

fem.border = 1;

clear units;
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units.basesystem = ’SI’;

fem.units = units;

clear ode

clear units;

units.basesystem = ’SI’;

ode.units = units;

fem.ode=ode;

% SOLVING

%--------------------------------------------------------------------------

fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, ...

’solcomp’,{’lm1’,’V’}, ...

’outcomp’,{’lm1’,’V’}, ...

’blocksize’,’auto’, ...

’linsolver’,’pardiso’);

%femstruct{ii} = fem;

% POST-EVALUATION

%--------------------------------------------------------------------------

rY = posteval(fem,’real(Y11_emqvw)’);

reY(jj,ii) = rY.d(’u’);

iY = posteval(fem,’imag(Y11_emqvw)’);

imY(jj,ii) = iY.d(’u’);

C = imY(jj,ii)./(2*pi*freq(ii));

indx = [1 2 3];

indxn = str2double(vinp{jj});

unitCellDims.d = geomParams.unitCellDims(indxn);

unitCellDims.A = geomParams.unitCellDims(indxn ~= indx);

epsEff(jj,ii) = (C*unitCellDims.d)/(prod(unitCellDims.A)*eps0);

sigEff(jj,ii) = reY(jj,ii)*unitCellDims.d/prod(unitCellDims.A);

timeStep(jj,ii) = toc(time1);

disp([’CPU time per frequency step: ’,num2str(timeStep(jj,ii)),’ [s]’])

end

end

% SAVE DATA

%----------------------------------------------------------------------------------

cdata.date = datestr(now);

cdata.systemParams = systemParams;

cdata.geomParams = geomParams;

cdata.meshParams = meshParams;

cdata.materialParams = materialParams;

cdata.timeStep = timeStep;

cdata.freq = freq;

cdata.reY = reY;

cdata.imY = imY;

cdata.epsEff = epsEff;
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cdata.sigEff = sigEff;

%cdata.femstruct = femstruct;

end

end

%-----------------------------------------------------------------------------------------

% SUBFUNCTIONS

%-----------------------------------------------------------------------------------------

%-----------------------------------------------------------------------------------------

% GEOMETRY

%-----------------------------------------------------------------------------------------

function [fem,geomParams] = comsolGeometrySupershape(geomParams)

% Calculate geometry, offset surface for triangulation and shape volume

%-----------------------------------------------------------------------------------------

sfParams = geomParams.sfParams;

[x,y,z,nv,p,nvp,xcu,ycu,zcu] = superformula3D(sfParams.d,...

sfParams.a,...

sfParams.b,...

sfParams.m,...

sfParams.n1,...

sfParams.n2,...

sfParams.n3,...

sfParams);

close gcf

close gcf

if ~isfield(sfParams,’fd’) || isempty(sfParams.fd)

fd = 10/sfParams.d;

else

fd = params.fd;

end

p3 = p + fd*nvp;

[tri,tet,eu,em] = triangulateSimple(p,p3);

volumeRelative = sum(getTetVolume(p,tet));

surftri(tri,p,eu,em)

close gcf

% Scaling

%-----------------------------------------------------------------------------------------

shellsAbs = repmat(geomParams.shellsAbs,3,1);

axesRelative = [max(max(xcu)) - min(min(xcu));...

max(max(ycu)) - min(min(ycu));...

max(max(zcu)) - min(min(zcu))];

scl = geomParams.axesAbs/axesRelative(geomParams.axesIndex);

% disp(scl)

dmRelative = shellsAbs(1,2)/scl;

volumeAbs = scl^3*volumeRelative;

% disp(vol)

axesAll = scl*axesRelative;

qax = axesAll./geomParams.axesAbs;
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% environment box

boxUnitVol = volumeAbs/geomParams.phi;

boxUnitLength = boxUnitVol^(1/3);

boxUnitValRef = boxUnitLength/(prod(qax))^(1/3);

boxUnitVal = qax*boxUnitValRef;

geomParams.unitCellDims = geomParams.array.*boxUnitVal;

boxDisplc = boxUnitVal.*(geomParams.array > 1);

midUnitVal = boxUnitVal/2;

axesAll = repmat(axesAll/2,[1 geomParams.numberOfMaterials-1]);

axesAll = axesAll - shellsAbs;

% Removal of overlapping points @ x = xmin for each z

%-----------------------------------------------------------------------------------------

% outer surface

xcr = xcu;

ycr = ycu;

zcr = zcu;

xyz = cat(3,xcr,ycr,zcr);

xyzr = permute(xyz,[2 3 1]);

% inner offset surface

nvOff = nv((3+sfParams.cut):end-(2+sfParams.cut),1:end-1,:);

xOff = xcu(:,1:end-1) - dmRelative*nvOff(:,:,1);

yOff = ycu(:,1:end-1) - dmRelative*nvOff(:,:,2);

zOff = zcu(:,1:end-1) - dmRelative*nvOff(:,:,3);

xyzOff = cat(3,xOff,yOff,zOff);

xyzrOff = permute(xyzOff,[2 3 1]);

% Curves || x-y-plane and loft

%-----------------------------------------------------------------------------------------

numslcs = size(xcr,1);

numslcsOff = size(xOff,1);

slcs = cell(1,numslcs);

eltoel = cell(1,numslcs);

slcsOff = cell(1,numslcsOff);

eltoelOff = cell(1,numslcsOff);

jj = 1;

jj2 = 1;

for ii = 1:numslcs

crv = poly1(xyzr(:,1,ii),xyzr(:,2,ii));

slcs{ii} = solid2(crv);

slcs{ii} = crv;

eltoel{ii} = 1;

if isequal(ii,1) || isequal(ii,numslcs)

slcsEnd{jj} = solid2(crv);

planeCoo{jj} = [0 1 0;0 0 1;xyzr(1,3,ii) xyzr(1,3,ii) xyzr(1,3,ii)];

jj = jj+1;

end

if ii <= numslcsOff

crvOff = poly1(xyzrOff(:,1,ii),xyzrOff(:,2,ii));

slcsOff{ii} = solid2(crvOff);

slcsOff{ii} = crvOff;

eltoelOff{ii} = 1;
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if isequal(ii,1) || isequal(ii,numslcsOff)

slcsEndOff{jj2} = solid2(crvOff);

planeCooOff{jj2} =...

[0 1 0;0 0 1;xyzrOff(1,3,ii) xyzrOff(1,3,ii) xyzrOff(1,3,ii)];

jj2 = jj2+1;

end

end

end

tiltrot = zeros(2,numslcs);

intrrot = zeros(1,numslcs);

zshift = [zeros(2,numslcs);zcr(:,1)’];

dvr = {zshift,tiltrot,intrrot};

g1 = loft(slcs,’loftEdge’,eltoel,’loftSecPos’,dvr,’loftMethod’,’linear’);

q1 = slcsEnd{1};

q2 = slcsEnd{2};

q1 = embed(q1,’wrkpln’,planeCoo{1});

q2 = embed(q2,’wrkpln’,planeCoo{2});

g1a = geomcomp({g1 q1 q2});

g1 = geomcoerce(’solid’,g1a);

tiltrotOff = zeros(2,numslcsOff);

intrrotOff = zeros(1,numslcsOff);

zshiftOff = [zeros(2,numslcsOff);zOff(:,1)’];

dvrOff = {zshiftOff,tiltrotOff,intrrotOff};

g2 = loft(slcsOff,’loftEdge’,eltoelOff,’loftSecPos’,dvrOff,’loftMethod’,’linear’);

q1Off = slcsEndOff{1};

q2Off = slcsEndOff{2};

q1Off = embed(q1Off,’wrkpln’,planeCooOff{1});

q2Off = embed(q2Off,’wrkpln’,planeCooOff{2});

g2aOff = geomcomp({g2 q1Off q2Off});

g2 = geomcoerce(’solid’,g2aOff);

% crv = geomspline(xyzr(:,1:2,ii)’,...

% ’splinemethod’,’foley’,’closed’,’on’);

% wghts = repmat(0.1,2,numslcs-1);

% wghtsOff = repmat(0.1,2,numslcsOff-1);

% g1 = loft(slcs,’loftEdge’,eltoel,’loftSecPos’,dvr,’loftWeights’,wghts);

% g2 =

% loft(slcsOff,’loftEdge’,eltoelOff,’loftSecPos’,dvrOff,’loftWeights’,wghtsOff);

% Scale and move supershape

%-----------------------------------------------------------------------------------------

g1 = scale(g1,scl,scl,scl);

g2 = scale(g2,scl,scl,scl);

shp1 = move(g1,midUnitVal(1),midUnitVal(2),midUnitVal(3));

shp2 = move(g2,midUnitVal(1),midUnitVal(2),midUnitVal(3));

outerbox =block3(geomParams.unitCellDims(1),...

geomParams.unitCellDims(2),...

geomParams.unitCellDims(3),...

’base’,’corner’,’pos’,{’0’,’0’,’0’},’axis’,{’0’,’0’,’1’},’rot’,’0’);

% Assemble geometry
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%-----------------------------------------------------------------------------------------

reptol = 1e-6;

particlesUnit=geomcomp({shp1 shp2},’ns’,’sf’,’face’,’none’,’edge’,’all’,’repairtol’,reptol);

particlesCopy = geomarrayr(particlesUnit,boxDisplc(1),boxDisplc(2),boxDisplc(3),...

geomParams.array(1),geomParams.array(2),geomParams.array(3));

% If available: rotate each particle

%-----------------------------------------------------------------------------------------

if isfield(geomParams,’angl’) && (all(geomParams.angl.theta) && all(geomParams.angl.phi))

% check Matlab version

vrsnm = version;

vk = strfind(vrsnm,’.’);

vnum1 = str2double(vrsnm(1:vk(1)-1));

vnum2 = str2double(vrsnm(vk(1)+1:vk(2)-1));

if vnum1 > 7 || vnum2 > 9

hdegtorad = @degtorad;

else

hdegtorad = @deg2rad;

end

particles = cell(1,prod(array));

kk = 1;

for iiz = 1:array(3)

for iix = 1:array(1)

for iiy = 1:array(2) % geomarrayr sweeps y before x!!

iphi = hdegtorad(angl.phi(iix,iiy,iiz));

itheta = hdegtorad(angl.theta(iix,iiy,iiz));

rotax = [sin(iphi) -sin(itheta).*cos(iphi) 0];

cntr = [(2*iix - 1) (2*iiy - 1) (2*iiz - 1)].*midUnitVal’;

if ~isequal(itheta,0)

particles{kk} = rotate(particlesCopy{kk},-itheta,rotax,cntr);

else

particles{kk} = particlesCopy{kk};

end

kk = kk + 1;

end

end

end

else

particles = particlesCopy;

end

particles{end+1} = outerbox;

objsAll = particles;

clear s

s.objs=objsAll;

fem.draw=struct(’s’,s);

fem.geom=geomcsg(fem,’repairtol’,reptol);

end

%-----------------------------------------------------------------------------------------

% GEOMETRY INFO
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%-----------------------------------------------------------------------------------------

function idParams = comsolIdentifyBndsSubdomains(fem,geomParams)

numberOfMaterials = geomParams.numberOfMaterials;

% Orientation of faces relative to subdomains

%-----------------------------------------------------------------------------------------

adj = geominfo(fem.geom,’out’,{’adj’},’odp’,[2;3]);

[no,ud,nbs,rng] = geominfo(fem.geom,’out’,{’no’,’ud’,’nbs’,’rng’},’od’,[1 2 3]);

numSd = no(3);

vec = zeros(1,nbs);

subdomain = cell(numberOfMaterials,1);

subdomainBin = cell(numberOfMaterials,1);

% identify outer boundaries

[outerRow, outerCol] = find(ud == 0);

outerBin = vec;

outerBin(outerCol) = 1;

outerLog = logical(outerBin);

outerud = ud(:,outerLog);

subdomainBin{1}{1} = logical(outerBin);

% determine number of environment subdomain

[r,c,subdomEnv] = find(outerud);

subdomEnv = subdomEnv(1);

subdomain{1} = subdomEnv;

[firstRow, firstCol] = find(ud == subdomEnv);

firstBin = vec;

firstBin(firstCol) = 1;

firstLog = logical(firstBin) & ~outerLog;

firstud = ud(:,firstLog);

firstud(firstud == subdomEnv) = 0;

[r,c,subdomVec] = find(firstud);

% Subdomain numbers for first layers

%-----------------------------------------------------------------------------------------

ii = 1;

while (any(subdomVec) == 1)

[r c subdomVec] = find(subdomVec);

subdomNmbr = subdomVec(1);

subdomain{2}(ii) = subdomNmbr;

subdomVec(subdomVec == subdomNmbr) = 0;

% create binary vector for current subdomain number

[rb cb] = find(ud == subdomNmbr);

subdomBin = vec;

subdomBin(cb) = 1;

subdomainBin{2}{ii} = logical(subdomBin);

ii = ii+1;

end

clear ii

% Subdomain numbers for all other layers

%-----------------------------------------------------------------------------------------
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for jj = 2:numberOfMaterials-1

for kk = 1:length(subdomain{2})

% number of previous subdomain

subdomNmbrPv = subdomain{jj}(kk);

% vector containing all el. with number of prev. subdomain

subdomVecPv = ud(:,(subdomainBin{jj}{kk}));

% exclude environment subdomain and previous neighbour subdomain

subdomVec = subdomVecPv((subdomVecPv ~= subdomain{1}) &...

(subdomVecPv ~= subdomNmbrPv));

subdomNmbr = subdomVec(1);

subdomain{jj+1}(kk) = subdomNmbr;

% create binary vector for current subdomain number

[rb cb] = find(ud == subdomNmbr);

subdomBin = vec;

subdomBin(cb) = 1;

subdomainBin{jj+1}{kk} = logical(subdomBin);

end

end

clear jj

idParams.sdParams.subdomainBin = subdomainBin;

idParams.sdParams.sdNumber = numberOfMaterials;

idParams.sdParams.subdomain = subdomain;

% Relative position of outer boundaries

%-----------------------------------------------------------------------------------------

% u-v-grid, only starting and end point required

[u,v] = meshgrid(0:1,0:1);

% prepare u-v-grid for one boundary

Sm(1,:,:) = deal([u(:) v(:)]);

% stack u-v-grid for all 6 outer boundaries

Sm = repmat(Sm,[6 1 1]);

% vector with numbers of outer boundaries

Bm = outerCol;

% get x,y,z coordinates for all 6 outer faces

xx = geominfo(fem.geom,’out’,{’xx’},’par’,{Bm Sm});

% compensate numerical error for 0-coordinates (if value is smaller than

% th*(shortest edge), set it to 0) as all block coordinates are >= 0 and

% no edge < thresheold*smallest outer edge

th = 1e-6;

xx(xx < th*min(geomParams.unitCellDims)) = 0;

xc = xx(:,:,1);

yc = xx(:,:,2);

zc = xx(:,:,3);

% bndid: boundary position identification vector

% bndid(1,2,3): face at x,y,z = 0

% bndid(4,5,6): face at xmax(bx),ymax(by),zmax(bz)

bndid(1) = find(~sum(xc,2));

bndid(2) = find(~sum(yc,2));

bndid(3) = find(~sum(zc,2));

bndid(4) = find((xc(:,1) & xc(:,2) & xc(:,3) & xc(:,4)));

bndid(5) = find((yc(:,1) & yc(:,2) & yc(:,3) & yc(:,4)));
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bndid(6) = find((zc(:,1) & zc(:,2) & zc(:,3) & zc(:,4)));

bndid = bndid’;

% assign boundary numbers to id vector

idParams.forBnd.bndIdNumber = outerCol(bndid);

idParams.forBnd.bndNumber = nbs;

end

%-----------------------------------------------------------------------------------------

% BOUNDARY SETTINGS

%-----------------------------------------------------------------------------------------

function appl = comsolBndEllipsoid(appl,bndParams)

clear bnd

bnd.inport = {0,0,1,0};

bnd.eltype = {’nJ0’,’V0’,’port’,’cont’};

bnd.magtype = {’A0’,’A0’,’A0’,’cont’};

bnd.wcshape = 1;

bnd.ind = 4*ones(1,bndParams.id.bndNumber);

switch bndParams.inp

case(’1’)

% set x = 0 boundary as inport

bnd.ind(bndParams.id.bndIdNumber(1)) = 3;

% set xmax boundary to ground

bnd.ind(bndParams.id.bndIdNumber(4)) = 2;

% set other to insulation

bnd.ind(bndParams.id.bndIdNumber([2 3 5 6])) = 1;

case(’2’)

% set y = 0 boundary as inport

bnd.ind(bndParams.id.bndIdNumber(2)) = 3;

% set ymax boundary to ground

bnd.ind(bndParams.id.bndIdNumber(5)) = 2;

% set other to insulation

bnd.ind(bndParams.id.bndIdNumber([1 3 4 6])) = 1;

case(’3’)

% set z = 0 boundary as inport

bnd.ind(bndParams.id.bndIdNumber(3)) = 3;

% set zmax boundary to ground

bnd.ind(bndParams.id.bndIdNumber(6)) = 2;

% set other to insulation

bnd.ind(bndParams.id.bndIdNumber([1 2 4 5])) = 1;

end

appl.bnd = bnd;

end

%-----------------------------------------------------------------------------------------

% ASSIGN DIELECTRIC PARAMETERS TO SUBDOMAINS

%-----------------------------------------------------------------------------------------

function appl = comsolMaterialEllipsoid(materialParams,freq,appl,freqpoint,idParams)
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clear equ

equ.gporder = 2;

equ.epsilonr = cell(1,idParams.sdParams.sdNumber);

equ.sigma = cell(1,idParams.sdParams.sdNumber);

for ii = 1:idParams.sdParams.sdNumber

sdIndx = idParams.sdParams.subdomain{ii}(:);

equ.epsilonr(1,ii) = {materialParams.epsilonTensor{ii}(freqpoint)};

equ.sigma(1,ii) = {materialParams.sigmaTensor{ii}(freqpoint)};

equ.ind(sdIndx) = ii;

end

equ.shape = 2;

appl.equ = equ;

appl.var = {’nu’,freq(freqpoint)};

end

B.4 Replacement of a geometrical domain by a boundary condition

In COMSOL Multiphysicsr the introduction of a discontiunity of the solution variable,
the potential V is only possible if the geometry is composed of an assembly, so to each
’side’ of a boundary denoted as ’source’ and ’destination’ different properties can be
assigned, e.g. different types of mesh elements or in the case at hand different values of
the solution variable. The discontinuity can be characterized in terms of thickness and
material parameters. Although this option is not readily available in the user interface
one can define the following boundary parameters on the in order to obtain the wanted
solution. The following example holds for a boundary segment, the identitiy pair number
9, denoted as ip9.

· order of basis function on the boundary element: 1 bnd.shape = 1

· constraint forces: bnd.constrf = test(-V) and bnd.constrf =

test(V0port_emqvw-V)

· constraints on elements: bnd.constr = -V and V0port_emqvw-V

· weak constraints: bnd.weak = if(src2dst_ip9,(sigmaext_emqvw

· j*omega_emqvw*epsilon0_emqvw*epsilonrext_emqvw)*(src2dst_ip9(V)-V)*
· (dVolbnd_emqvw*V_test-src2dst_ip9(dVolbnd_emqvw)*
· test(src2dst_ip9(V)))/dbnd_emqvw,0)

B.5 Multilayer system under a coaxial probe

The semi-analytical calculation of εeff of a layered structure under a coaxial probe was
implemented in MATLABr . The roots of the equation system consisting of equations
are calculated using fsolve with the initial guess pi,guess pi,guess = pi(1) + pk and the
integrals Pij with quad and the integration limits a = 0 and b = 50. quad is less likely to
produce NaNs than quadgk which is actually tailored for oscillating integrands vanishing
for x → ∞. Unfortunately, the attempt to vectorize the procedure within a frequency
band failed because quadv produced NaNs.
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function calcCoaxVariational(params,structinfo)

%-----------------------------------------------------------------------------------------

% params.systemParams.name: system name

% params.systemParams.freq: frequency

% params.systemParams.locfile: file for saving calculated dielectric properties

% params.systemParams.pguess: initial guess for alpha, beta and p_i calculation

% params.systemParams.numterms: number of TM0n modes

% params.geomParams.dzLayer: vector with layer thicknesses

% params.geomParams.a: radius of inner conductor

% params.geomParms.b: radius of outer conductor

% params.materialParams.name: material names

% params.materialParams.substrate: material name of material between

% conductors

% params.materialParams.loc: location of material parameters in results "data"

% structure

% if loc does not exist material

% parameters are taken from database

% function getDielectricData

% params.materialParams.locfile: .mat-file where "data" structure is

% located

%-----------------------------------------------------------------------------------------

% GET PARAMETERS

%-----------------------------------------------------------------------------------------

timeTotal = tic;

getcd = cd;

disp([’System: ’,params.systemParams.systemname])

structinfo.method = ’variational’;

structinfo.systemname = params.systemParams.systemname;

% SOLVE (and sweep parameters if available)

%-----------------------------------------------------------------------------------------

if ~isfield(params.systemParams,’loopParams’)

simresults = coaxVariational(params);

else

loopParamsInfo = comsolGetParams(params);

pnumstotal = loopParamsInfo.pnumstotal;

pnums = loopParamsInfo.pnums;

pinds = loopParamsInfo.pinds;

ginds = [isequal(numel(pnums),1) pnums];

simresults = cell(ginds(ginds > 0));

for mm = 1:loopParamsInfo.pnumstotal

disp([’Parameter step ’, num2str(mm),’ of ’,num2str(pnumstotal)])

disp(’Parameter indices: ’)

disp(pinds(mm,:))

[params,indcell] = comsolSetParams(params,loopParamsInfo,mm);

simresultsi = coaxVariational(params);

% if probe geometry changes, cell constants have to be recalculated
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% each time

if isfield(params.systemParams,’getconstants’) && ...

isequal(params.systemParams.getconstants.mode,’local’)

% keep original parameter settings

%(changed in case of recalculation of cell constants)

paramsprotect = params;

disp(’Cell constants are recalculated.’)

if isfield(params.materialParams,’loc’)

params.materialParams = rmfield(params.materialParams,’loc’);

end

for pp = 1:length(params.materialParams.name)

params.materialParams.name{pp} = ’air’;

end

simresultsi.air = coaxVariational(params);

for pp = 1:length(params.materialParams.name)

params.materialParams.name{pp} = ’NaCl’;

params.materialParams.conc{pp} = 0.001;

end

simresultsi.NaCl0001 = coaxVariational(params);

pms.structdirect = simresultsi;

pms.matRef = params.systemParams.getconstants.matRef;

pms.matMeasured = params.systemParams.getconstants.matMeasured;

simresultsi = calcCellConstantsFinal(pms);

params = paramsprotect;

end

simresults(indcell{:}) = {simresultsi};

end

end

cd ..

cd(’Results’)

saveMyData(structinfo,simresults,systemParams.matfilename)

cd(getcd);

timeTotal = toc(timeTotal);

disp([’Total CPU time: ’,num2str(timeTotal),’ [s]’])

% SOLVE PROBLEM

%-----------------------------------------------------------------------------------------

function cdata = coaxVariational(params)

systemParams = params.systemParams;

geomParams = params.geomParams;

materialParams = params.materialParams;

% DEFINE QUANTITIES AND FUNCTIONS, PREALLOCATE
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%---------------------------------------------------------------------------------

format long

eps0 = 8.8541878176e-12;

%

% % Add f = 1Hz for sigStat calculation

freq = systemParams.freq;

numterms = systemParams.numterms;

pguess = systemParams.pguess;

ptol = systemParams.ptol;

V = systemParams.V;

scalefactor = systemParams.scalefactor;

fnames = fieldnames(geomParams);

for jj = 1:length(fnames)

if iscell(geomParams.(fnames{jj}))

geomParams.(fnames{jj}) = cell2mat(geomParams.(fnames{jj}));

end

end

a = geomParams.a/scalefactor;

b = geomParams.b/scalefactor;

dzLayer = geomParams.dzLayer/scalefactor;

lf = length(freq);

lm = length(materialParams.name);

epsilon = zeros(3,lm,lf);

epsilonSubstrate = zeros(3,lf);

p_i = zeros(1,numterms);

t_i = zeros(1,numterms);

alpha_i = zeros(1,numterms);

beta_i = zeros(1,numterms);

C = zeros(1,lf);

timeStep = zeros(1,lf);

tfun = @(alpha_,beta_,p_) ...

(b.^2/2).*(alpha_.*besselj(1,b.*p_) + beta_.*bessely(1,b.*p_)).^2 - ...

(a.^2/2).*(alpha_.*besselj(1,a.*p_) + beta_.*bessely(1,a.*p_)).^2;

% GET MATERIAL PARAMETERS

%---------------------------------------------------------------------------------

cd ..

cd(’Dielectric data’)

materialParams.cmplx = 1; % get complex epsilon

materialParams = getDielectricTensor(materialParams,freq); % Materials

epsilonTensor = materialParams.epsilonTensor;

for kk = 1:lm

epskk(:,:,1) = epsilonTensor{kk};

epsilon(:,kk,:) = permute(epskk,[1 3 2]);

end

materialParamsSubstrate.name = materialParams.substrate;

materialParamsSubstrate.cmplx = 1;
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materialParamsSubstrate = getDielectricTensor(materialParamsSubstrate,freq);

epsilonSubstrate(:,:,1) = materialParamsSubstrate.epsilonTensor{1};

epsilon = epsilon(1,:,:);

epsilonSubstrate = epsilonSubstrate(1,:,:);

cd(getcd)

% CALCULATE P_i COEFFICIENTS AND NORMALIZATION CONSTANTS ALPHA AND BETA

%---------------------------------------------------------------------------------

pguess_i = pguess(1);

%fpguess = pguess(2);

options = optimset(’TolX’,ptol);

for ii = 1:numterms

x0 = [pguess_i;0.5;0.5];

pab = fsolve(@(x) calcCoaxVariational_AlphaBetaP(x,a,b),x0,options);

p_k = pab(1);

alpha_k = pab(2);

beta_k = pab(3);

t_i(ii) = tfun(alpha_k,beta_k,p_k);

p_i(ii) = p_k;

alpha_i(ii) = alpha_k;

beta_i(ii) = beta_k;

pguess_i = p_i(1)+p_k;

end

alpha_i = [0 alpha_i];

beta_i = [0 beta_i];

p_ii = [0 p_i];

for ff = 1:lf

time1 = tic;

disp([’Frequency step: ’,num2str(ff)])

epsMaterial = squeeze(permute(epsilon(1,:,ff),[3 2 1]));

epsSubstrate = epsilonSubstrate(1,ff);

P_ij = zeros(numterms+1);

% Calculation of P_ij

%-----------------------------------------------------------------------------

for jj = 1:(numterms + 1)

for kk = jj:(numterms + 1)

alpha_1 = alpha_i(jj);

beta_1 = beta_i(jj);

p_1 = p_ii(jj);

alpha_2 = alpha_i(kk);

beta_2 = beta_i(kk);

p_2 = p_ii(kk);
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P_ij(jj,kk) = quad(@(x)...

calcCoaxVariational_Pij(x,a,b,V,alpha_1,alpha_2,beta_1,beta_2,...

p_1,p_2,epsMaterial,dzLayer),...

0,25);

end

end

% expand to full matrix

P_ij = P_ij.’ + triu(P_ij,1);

Pzero = P_ij(1,2:end);

Pnonzero = P_ij(2:end,2:end);

% Pnonzero_diag*g = Pzero - > solve for g

Pnonzero_diag = Pnonzero + diag((V.^2).*(epsSubstrate./epsMaterial(1)).*p_i.*t_i);

g = Pnonzero_diag\(-Pzero.’);

P00 = P_ij(1,1);

Pmat = [Pzero;Pnonzero];

Pterm = P00 + [2 g.’]*(Pmat*g);

C(1,ff) = scalefactor*2*pi*eps0*(epsMaterial(1)*Pterm/(V^2) +...

epsSubstrate(1).*sum((g.’).^2.*p_i.*t_i));

timeStep(1,ii) = toc(time1);

disp([’CPU time per frequency step: ’,num2str(timeStep(1,ii)),’ [s]’])

end

reY = -2*pi*freq.*imag(C);

imY = 2*pi*freq.*real(C);

%----------------------------------------------------------------------------------

cdata.freq = freq;

cdata.systemParams = systemParams;

cdata.geomParams = geomParams;

cdata.materialParams = materialParams;

cdata.reY = reY;

cdata.imY = imY;

cdata.timeStep = timeStep;

cdata.date = datestr(now);

end

cd(getcd)

end

%-----------------------------------------------------------------------------------------

% SUBFUNCTIONS

%-----------------------------------------------------------------------------------------

%-----------------------------------------------------------------------------------------

% Calculation of p_i

%-----------------------------------------------------------------------------------------

function y = calcCoaxVariational_AlphaBetaP(x,a,b)

y = [x(2,:).*besselj(0,x(1,:).*a) + x(3,:).*bessely(0,x(1,:).*a);
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x(2,:).*besselj(0,x(1,:).*b) + x(3,:).*bessely(0,x(1,:).*b);

x(2,:).^2 + x(3,:).^2 - 1];

end

%-----------------------------------------------------------------------------------------

% Calculation of integrands

%-----------------------------------------------------------------------------------------

function P_arg = ...

calcCoaxVariational_Pij(x,a,b,V,alpha1,alpha2,beta1,beta2,p1,p2,epsMaterial,d)

% Calculation of dielectric contrast term

%-----------------------------------------------------------------------------------------

numlayers = length(epsMaterial);

Rterm = 1;

for ii = 1:numlayers-1

nn = numlayers - ii;

R = (epsMaterial(nn) - epsMaterial(nn+1))./(epsMaterial(nn) + epsMaterial(nn+1));

Rterm = (R + Rterm.*exp(-2*x.*d(nn+1)))./(1 + R.*Rterm.*exp(-2*x.*d(nn+1)));

end

% Calculation of F_i and F_j (alpha, beta, p as (2x1)-vectors and for-loop

% from 1 to 2 doesn’t work!!!)

%-----------------------------------------------------------------------------------------

if isequal([alpha1 beta1 p1],[0 0 0])

F1 = (V./(log(b./a).^(1/2).*x)).*(besselj(0,b.*x) - besselj(0,a.*x));

else

F1 = (((V.*x.*p1)./(p1.^2 - x.^2))).*...

(b.*besselj(0,b.*x).*(alpha1.*besselj(1,b.*p1) +...

beta1.*bessely(1,b.*p1)) -...

a.*besselj(0,a.*x).*(alpha1.*besselj(1,a.*p1) +...

beta1.*bessely(1,a.*p1)));

end

if isequal([alpha2 beta2 p2],[0 0 0])

F2 = (V./(log(b./a).^(1/2).*x)).*(besselj(0,b.*x) - besselj(0,a.*x));

else

F2 = (((V.*x.*p2)./(p2.^2 - x.^2))).*...

(b.*besselj(0,b.*x).*(alpha2.*besselj(1,b.*p2) +...

beta2.*bessely(1,b.*p2)) -...

a.*besselj(0,a.*x).*(alpha2.*besselj(1,a.*p2) +...

beta2.*bessely(1,a.*p2)));

end

P_arg = F1.*F2.*((1 - Rterm.*exp(-2.*x.*d(1)))./(1 + Rterm.*exp(-2.*x.*d(1))));

end
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B.6 Parametrization functions

The following functions allow to parametrize the problem in arbitrary dimensions. A
simultaneous update of two or more parameters is also enabled.

B.6.1 Get parameters

function loopParamsInfo = comsolGetParamsMulti(params)

geomParams = params.geomParams;

meshParams = params.meshParams;

materialParams = params.materialParams;

loopParams = params.systemParams.loopParams;

disp(’Additional looped parameters:’)

disp(loopParams.ptype)

disp(loopParams.pname)

if isfield(loopParams,’pindx’)

disp(loopParams.pindx)

end

ndims = length(loopParams.ptype);

pnums = zeros(1,ndims);

pvals = cell(1,ndims);

pmulti = zeros(1,ndims);

% GET PARAMETER VALUES

%-----------------------------------------------------------------------------------------

for iiout = 1:ndims

numPmulti = length(loopParams.ptype{iiout});

for jj = 1:numPmulti

ptype_i = eval(loopParams.ptype{iiout}{jj});

if ~isfield(loopParams,’pindx’) || isempty(loopParams.pindx{iiout}{jj})

numP = length(ptype_i.(loopParams.pname{iiout}{jj}));

pval = {ptype_i.(loopParams.pname{iiout}{jj})};

else

if isnumeric(ptype_i.(loopParams.pname{iiout}{jj})...

(loopParams.pindx{iiout}{jj}))

numP = ...

length(ptype_i.(loopParams.pname{iiout}{jj})...

(loopParams.pindx{iiout}{jj}));

else

numP = ...

length(ptype_i.(loopParams.pname{iiout}{jj})...

{loopParams.pindx{iiout}{jj}});

end

pval = ptype_i.(loopParams.pname{iiout}{jj})(loopParams.pindx{iiout}{jj});

end

pvals{iiout}{jj} = pval;
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end

pnums(1,iiout) = numP;

pmulti(1,iiout) = numPmulti;

end

pnumstotal = prod(pnums);

% GET INDICES (different behaviour of ind2sub for different Matlab versions)

%-----------------------------------------------------------------------------------------

vrsnm = version;

vk = strfind(vrsnm,’.’);

vnum1 = str2double(vrsnm(1:vk(1)-1));

vnum2 = str2double(vrsnm(vk(1)+1:vk(2)-1));

if vnum1 > 7 || vnum2 > 9 % everything ok

inds = cell(1,ndims);

[inds{:}] = ind2sub(pnums,linspace(1,pnumstotal,pnumstotal));

inds = cell2mat(inds);

inds = reshape(inds,[pnumstotal ndims]);

else

% Matlab versions < 2010

% replacement of ind2sub because number of parameters n for indices [i1,...in] unknown

% ind2sub requires explicit array for indices

% [varargout{1:nargout}] = ind2sub(pnums,pnumstotal) crashes...

inds = zeros(pnumstotal,ndims);

pold = 1;

for iip = 1:ndims

pnew = prod(pnums(1:iip));

indsi = repmat(linspace(1,pnums(iip),pnums(iip))’,[pnumstotal/pnew 1]);

indsii = reshape(repmat(indsi’,[pold 1]),pnumstotal,1);

inds(:,iip) = indsii;

pold = pnew;

end

end

loopParamsInfo.ndims = ndims;

loopParamsInfo.pnumstotal = pnumstotal;

loopParamsInfo.pnums = pnums;

loopParamsInfo.pvals = pvals;

loopParamsInfo.pinds = inds;

loopParamsInfo.pmulti = pmulti;

end

B.6.2 Set parameters

function [params,indcell] = comsolSetParamsMulti(params,loopParamsInfo,pnumCurrent)

geomParams = params.geomParams;

meshParams = params.meshParams ;
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materialParams = params.materialParams;

loopParams = params.systemParams.loopParams;

ndims = loopParamsInfo.ndims;

pvals = loopParamsInfo.pvals;

pinds = loopParamsInfo.pinds;

pmulti = loopParamsInfo.pmulti;

indcell = cell(1,ndims);

for iip = 1:ndims

for jj = 1:pmulti(1,iip)

pvalCell = pvals{iip}{jj};

pvalCell = pvalCell{1};

pvalCurrent = pvalCell{pinds(pnumCurrent,iip)};

if ~isfield(loopParams,’pindx’) || isempty(loopParams.pindx{iip}{jj})

structstr = strcat(loopParams.ptype{iip}{jj},’.’,...

loopParams.pname{iip}{jj});

else

structstr = strcat(loopParams.ptype{iip}{jj},’.’,...

loopParams.pname{iip}{jj},...

’{’,num2str(loopParams.pindx{iip}{jj}),’}’);

end

if isnumeric(pvalCurrent)

eval(strcat(structstr,’= pvalCurrent;’));

else

eval(strcat(structstr,’= char(pvalCurrent);’));

end

indcell{1,iip} = pinds(pnumCurrent,iip);

end

end

params.geomParams = geomParams;

params.meshParams = meshParams;

params.materialParams = materialParams;

end
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Multilayer system under a coaxial
probe - semi-analytical solution
The effective dielectric properties of a layered material under a coaxial probe as a func-
tion of capacitance, admittance or S-parameters can be calculated with a variational
method employed e.g. in [154], [157], [158], [159], [155], [160] and [156]. The procedure
is outlined on the following.

The capacitance of an arbitrary structure where two conductors are at potentials zero
and V0 can be expressed as a functional of the potential function V

C =
1

V 2
0

∫
v

ε(∆V )2dv (C.1)

where v is the volume of the capacitor. Using a cylindrical coordinate system (r, φ, z)
and omitting the azimuthal dependence due to the cylindrical symmetry the potential
V can be expressed as

Vout(r, z) =

∞∫
0

f0(λ)e−λzJ0(λr)λdλ, z ≥ 0 (C.2)

in the infinite half-space z ≥ 0 with homogeneous dielectric and as

Vin(r, z) = V0
ln(r/b)

ln(a/b)
+ V0

I∑
i=1

giTi(r)e
piz, z ≤ 0 and a ≤ r ≤ b (C.3)

inside the probe, with the eigenfunctions

Ti = αiJ0(pir) + βiY0(pir). (C.4)

J0 and Y0 are Bessel functions of the first and second kind, defined in Equations C.5 and
C.6.

Jp(x) =

∞∑
m=0

(−1)m(x/2)2m+p

m!(m+ p)!
(C.5)
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Yp(x) =
Jp(x) cos(pπ)− J−p(x)

sin(pπ)
(C.6)

The coefficients of the eigenfunctions Ti(r) are numerically determined from the bound-
ary condition Ti(a) = Ti(b) = 0 (Et = Er = ~0 at the conductors) and the normalization
condition (Bessel functions are orthogonal):

αiJ0(pia) + βiY0(pia) = 0 (C.7)

αiJ0(pib) + βiY0(pib) = 0 (C.8)

α2
i + β2

i = 1 (C.9)

The vector with all pi is given by

p =


p1

p2

...

pI

 . (C.10)

Setting z = 0 in C.2 and writing the inverse Hankel transform one gets

f0 =

∞∫
0

V1(0, r)J0(λr)rdr. (C.11)

Since V1(0, r) = V0 as r ≤ a, V1(0, r) = 0 as r ≥ b and V1(0, r) = Vsubstrate(0, r) as
a ≤ r ≤ b Equation C.11 can be written as

f0 = V0

a∫
0

J0(λr)rdr +

b∫
a

Vsubstrate(0, r)J0(λ, r)rdr. (C.12)

Substituting Vsubstrate(0, r) from Equation C.3 the integrals can be expressed as the sum

f0(λ) = F0(λ)

I∑
i=1

giFi(λ) (C.13)

where

F0(λ) =
V0

λ
√

ln(a/b)
[J0(λb)− J0(λa)] (C.14)

Fi(λ) =
V0λpi
p2
i − λ2

(bJ0(λb)[αiJ1(pib)+βiY1(pib)]−aJ0(λa)[αiJ1(pia)+βiY1(pia)]). (C.15)

The unknown coefficients gi in Equation C.3 are determined by the continuity condition
for the electric flux density over the substrate-medium interface at z = 0 and a ≤ r ≤ b.

ε1
∂V1

∂z
= ε1

∂Vsubstrate

∂z
(C.16)

142



In order to be able to use this condition even if the series in Equation C.3 is finite the
eigenfunctions Ti are used as weighting functions. The approximate solution is the

b∫
a

ε1
∂V1

∂z
Tj(r)rdr =

b∫
a

εsubstrate
∂Vsubstrate

∂z
Tj(r)rdr. j = 1...I (C.17)

The orthogonality of the eigenfunctions Ti provides

b∫
a

Ti(r)Tj(r)rdr = δij (C.18)

with δij the Kronecker delta.

Rk =
rk +Rk−1e

−2λd(m−k+1)

1 + rkRk−1e−2λd(m−k+1)
(C.19)

with

rk =
ε∗m−k − ε∗m−k+1

ε∗m−k + ε∗m−k+1

(C.20)

Pij =

∞∫
0

Fi(λ)Fj(λ) tanh(λd1Rm−1)dλ (C.21)

ti =

b∫
a

T 2
i (r)dr =

b2

2

[
αiJ1(pib) + βiY1(pib)

]2
− a2

2

[
αiJ1(pia) + βiY1(pia)

]2
(C.22)

t =


t1

t2

...

tI

 (C.23)

P0 =


P01

P02

...

P0I

 (C.24)

Pk =


P11 P12 ... P1I

P21 P22 ... P2I

...
...

. . .
...

PI1 PI2 ... PII

 (C.25)

143



Appendix C Multilayer system under a coaxial probe - semi-analytical solution

The coefficients gi are components of the vector

G =


g1

g2

...

gI

 . (C.26)

In order to obtain G the system given by the matrix equation

(Pk + V 2
0

ε∗substrate

ε∗1
δij(pt

T ) ·G = P0 (C.27)

has to be solved. The contribution of the exchange integrals can be written as

P = P00 + 2GT

((
PT0
Pk

)
G

)
(C.28)

finally providing the total complex capacitance

C =
2πε0

V 2
0

ε∗1P + ε∗substrate

I∑
i=1

g2
i piti. (C.29)

The effective dielectric properties can be obtained by transformation of the complex
capacitance C into the admittance with Y = −ωIm {C}+ jωRe {C} and with the cali-
bration procedure described in Section 6.1. The accuracy of the semi-analytical solution
will depend on the number of involved TM0n modes as well as on the numerical evalua-
tion of the integrals.
In order to be able to calculate the effective dielectric properties for anisotropic sublayers
one would have to be able to perform a coordinate transformation for cartesian ¯εeff

∗ into
cylindrical ¯εeff

∗ coordinates.
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mal and altered human erythrocyte shapes by a new parametric equation: Applica-
tion to the calculation of induced transmembrane potentials,” Bioelectromagnetics,
vol. 27, pp. 521–527, 2006.

[94] D. O. H. Suzuki, A. Ramos, and J. L. B. Marques, “Modeling environment for
numerical simulation of applied electric fields on biological cells,” Electromagnetic
Biology and Medicine, vol. 26, pp. 239–250, 2007.

[95] E. Tuncer, S. M. Gubanski, and B. Nettelblad, “Dielectric relaxation in dielectric
mixtures: Application of the finite element method and its comparison with di-
electric mixture formulas,” Journal of Applied Physics, vol. 89(12), pp. 8092–8100,
2001.
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