
ETH Library

Clinker Simulation

Master Thesis

Author(s):
Nikolakopoulos, Ilias

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010294753

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010294753
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Ilias Nikolakopoulos

Clinker Simulation

Master’s Thesis
Computational Science and Engineering (CSE)

Group of Computational Physics for Engineering Materials (comphys)
Institute for Building Materials (IfB)

Swiss Federal Institute of Technology (ETH Zürich)

Supervisor

Prof. Dr. Hans J. Herrmann

Advisors

Dr. Falk Wittel
Dr. Miller Mendoza Jimenez

April 3, 2013

Abstract

A geometrical method for simulating Clinker is developed. The Clinker is treated as a granular
system composed of single crystals (grains) of its major phase, Alite. The focus is on repro-
ducing the primary constituent’s volume-fraction and, roughly, the grain size distribution. The
grains are considered to be convex polyhedra. Relevant statistical microstructural information
is extracted from 2D micrographs and predefined grain shapes are used, estimated by direc-
tional cleavage energies. Two stages are involved: (1) Alite grains are placed without overlaps
within a spherical volume and packed to a sufficiently high volume fraction and (2) the volume
fraction is “boosted” by either compaction or expansion of the grains. Simulations show that
this procedure results in a realistic volume fraction for Alite and seems promising in terms of
easily incorporating other convex phases. The resulting clinker sample is evaluated by visual
inspection of 2D slices of the clinker sample and a final size distribution check.

Contents

1 Introduction 1

2 The microstructure of Clinker 2
2.1 The four main phases, properties and volume fractions 2
2.2 Estimation of Alite’s Miller indices from directional cleavage energies 3
2.3 Recovering Alite’s grain size distribution from a 2d micrograph 3

3 Simulating Clinker as a multiphase granular system 9
3.1 Computer models for mesoscale microstructure simulations 9
3.2 Clinker simulation by multi-phase grain packing & clipping 14

4 Results 22
4.1 Simulating multigrained Clinker of Alite . 22
4.2 Performance of the simulation algorithm . 23
4.3 Clinker sample volume fraction, grain size distribution & 2D profile 24
4.4 Quantifying the microstructure distortion . 26

5 Conclusions & Outlook 30

A Matlab Code 33

Acknowledgements 52

References 53

iii

List of Figures

2.1 Alite & Belite molecular models . 3
2.2 Alite possible equilibrium shape . 4
2.3 Stereology of 2D profiles of spheres . 5
2.4 2D to 3D grain size distribution . 6
2.5 2D micrograph of Clinker with the four major phases online 6
2.6 2D micrograph of Clinker . 7
2.7 Boundary tracking of Alite planar sections . 8

3.1 Comparison of grain growth models . 12
3.2 Cellular Automaton representation of a microstructure 13
3.3 Clipping of two expanded Alite grains . 18
3.4 Triangle-Plane, Triangle-Triangle intersection . 19
3.5 Clipping of two tetrahedra . 20
3.6 Polyhedral intersection computation 1 . 20
3.7 Polyhedral intersection computation 2 . 21

4.1 Alite Pool generation . 23
4.2 Alite initial spatial configuration in Clinker . 24
4.3 Clinker before & after expansion and clipping . 25
4.4 Alite-composed Clinker final form . 27
4.5 2D Slice of Alite-composed Clinker . 28
4.6 Grain size distribution before & after Clipping for S = 1.5, 1.7, 1.9 29

iv

Chapter 1

Introduction

Concrete is one of the most common materials of everyday life, although rarely noticed due to
its abundancy in the modern world. It is composed of sand and aggregates “glued” together
by an appropriate hydraulic binder, cement. Cement (or Portland cement, the name coined
for the most typical variant) is manufactured via an energetically-intensive procedure, during
which 80% minerals and 20% clays are co-grinded, calcined and burnt in a kiln, delivering a
quenched (mainly) four-phase material, known as Clinker. Its four major phases are known
as Alite, Belite, Aluminate and Ferrite [1], the first two of which are crystalline with the rest
being amorphous. The Clinker is grinded down to a powder of certain specific surface to yield
the final product that constitutes Portland cement. Several improvements have been conceived
[2] in order to boost the efficiency of the aforementioned manufacturing process. In particular,
fragmentation studies have indicated, that a potential refinement of the comminution stage
could substantially reduce the energy consumption of the overall cement production.

In past research, statistical models for brittle fragmentation and corresponding simulation
schemes have been developed, as presented in [3] and references therein. As far as the mod-
els are concerned, micro-mechanisms related to propagating crack merging, crack instability &
branching, fragment size distribution, damage-fragmentation transition, and criticality prob-
ing have been systematically investigated. Simulations based on Lennard-Jones (MD) systems,
continuum-, elastic element-, beam- and lattice models have, on their part, reproduced quite
nicely the observed behaviour. Most materials usually include more than one phases of single
crystals (grains), however for the sake of simplicity and to increase computational efficiency,
many simulations only address single phase material fragmentation.

This project addresses the issue of modelling a more realistic multi-phase Clinker, meant to
assist ongoing fragmentation studies. Although several models for simulating microstructures
are available, spanning from microscale spin models to purely geometrical ones (e.g. based on
Voronoi tesselations), this work deems expedient to model Clinker by directly incorporating
microstructural information from micrographic data and atomistic simulations [4]. The work is
arranged as follows: Chapter 2 discusses briefly the Clinker’s main phases, their, in this context,
most relevant statistical properties and how these can be derived from 2D micrographs; Chapter
3 provides a short overview of some of the possible modelling approaches before describing in
detail the one implemented in this project; Chapter 4 reports on the simulation results and com-
pares to available data and, finally, Chapter 5 draws conclusions, accompanied by an outlook
to potential improvements and extensions of the work.

1

Chapter 2

The microstructure of Clinker

Simulations or even statistical modelling of fragmentation, this being instantaneous or continu-
ous, blast- or impact-induced, yield meaningful macroscopic results in the high energy regime,
even when the particular shape of the grains composing the system under loading is not taken
into account in all detail. However, in the low energy regime the microstructure is expected
to have a significant impact on the evolution of the fragmentation process. There is, therefore,
room for possible improvements on these computational models, namely the incorporation of
more microstructural information. In this Chapter the microstructure of Clinker is briefly pre-
sented, with the attention being focused on the four main phases and in more detail on the two
of particular interest for this work: Alite and Belite.

In the first Section the general properties of the phases are described as well as their role
in cement, in the second Section the estimation of Miller indices of a possible equilibrium shape
for Alite [4] from directional cleavage energies is shortly described and in the final section a
grain-size distribution for Alite is estimated based on a single 2D micrograph. Everything done
for Alite can be adopted for incorporating Belite (or any other phase composed of convex grains,
for that matter) in the model, and is, for this reason, omitted.

2.1 The four main phases, properties and volume fractions

By heating limestone, clay and potentially other admixtures to temperatures up to 1450◦,
reached in a cement kiln, partial fusion results in a nodule known as Clinker, which upon grind-
ing yields the Portland cement [1]. The Clinker’s four major phases are Alite, Belite, Aluminate
and Ferrite and their corresponding chemical notation and volume fractions are summarized in
Table 2.1.

The most important of those phases, in terms of cement hardening, are the first two. Moreover,
they are also the only two crystalline ones to be incorporated in a geometric treatment of the

Phase Cement Chemist Notation Volume fraction

Alite C3S 50-70%
Belite C2S 15-30%
Aluminate C3A 5-10%
Ferrite C4AF 5-15%

Table 2.1: The four major phases in Clinker.

2

Clinker’s microstructure simulation. Results from their molecular modelling, as done in [4],
are shown in Fig. 2.1, along with respective crystal structure information. A microstructural

Figure 2.1: C3S and C2S molecular models (super cell dimension: 1×2×1 and 2×2×2 respectively)
[4]. The cell parameters of C3S, a = 1.2235, b = 0.7073, c = 0.9298 nm and β = 116.31◦ can be
used [5] to obtain the shape of Fig. 2.2 in Cartesian coordinates.

picture is given in Fig. 2.5 and 2.6. According to that, the Alite grains exhibit sharp edges and
angles and appear to be in touch at distinct grain boundaries. In addition, their 2D profiles
display a not particularly complex shape, thus making its approximation by a simple convex
polyhedron a plausible approach. The Belite grain profiles are also clearly formed and well
separated from the Alite. In contrast to Alite, though, they possess no sharp angles and in
some cases they appear to be non-convex. Their roundish shape makes them more complex
to geometrically approximate. The Aluminate is observed as an amorphous phase of rod-like
domains. Its very complex and irregular shape, alike Ferrite, shall be excluded from this first
approach to Clinker simulation.

2.2 Estimation of Alite’s Miller indices from directional cleav-
age energies

An equilibrium shape of Alite is one that exhibits minimal surface energy. A face of this
shape contributes to minimizing the energy, if cleaving parallel to it requires minimal energy
w.r.t. other cleavage plane orientations. The energy required for cleaving a material along
some oriented plane is directly related to the energy of the atomic bonds this plane intersects.
Therefore, atomistic simulations, which attempt to cleave the material by means of several
differently oriented planes, can determine possible face orientations that minimize the surface
energy. Such simulations have been performed [4] and the results were used to estimate a
possible equilibrium shape for Alite. In Fig. 2.2 the Miller indices of such faces are shown,
accompanied by the corresponding cleavage energies. A subset of those indices, which give
minimal cleavage energy, was chosen to yield the shape depicted in the same figure. However,
this Alite shape - actually its transformation to Cartesian coordinates - does not seem to be in
agreement with the micrographic data available and only some of its main features (e.g. number
of faces) will be taken into account in this work.

2.3 Recovering Alite’s grain size distribution from a 2d micro-
graph

The grain size distribution of a crystalline phase (at least a plausible estimation of it) is a pre-
requisite for any microstructural simulation. It can be used either to initialize a representative

3

Figure 2.2: C3S equilibrium shape based on the depicted directional cleavage energies [4]. The
seven appearing faces correspond to a set of indices of the lowest cleavage energies.

population of grains, or to perform a verification test, i.e. have a realistic quantity to com-
pare the resulting microstructure with. Usually, such statistical microstructural information is
contained in two-dimensional micrographs, obtained by means of some tomographic technique.
It is assumed, that the spatial resolution of a micrograph allows for a reliable measurement
of relevant sizes of the particles appearing in it. However, one faces the challenge of drawing
conclusions for 3D quantities, based on 2D cross-sections. Such problems are addressed via
stereological methods.

In this work the grain size distribution of Alite is measured from a single micrograph. To
proceed, a valid assumption on the shape of a typical Alite grain is required. This is, however,
an irregular convex polyhedron, which renders most of the relatively simple stereological tech-
niques impractical. For this reason, the assumption is made, that the grains are spherical and
the problem reduces to determining the grain size distribution of a polydisperse system (same
shape, different size) of spherical particles. By size, the max caliper diameter is meant, which
for spheres reduces to the diameter.

The approach presented here was adopted from [6] and a more general discussion can be found
in [7, 8]. A test case is first examined (Fig. 2.3). The sphere-sizes and the 2d profile-sizes are
considered distributed into 4 bins. As shown in the first equation of Fig. 2.3, the probability
of a sphere (green) in the 4-th bin of sphere-sizes, NA(4), to give a circular profile with size
within the 4-th bin of profile-sizes (blue), is given by K44 (red). That is, a large profile size can
only stem from the intersection of a large sphere. On the other hand, as depicted in the 2nd
equation of Fig. 2.3, a profile of very small size could be coming from spheres of all sizes; most
likely from one of the same size, less likely from larger ones and least likely from the largest
(since this would mean that an NV (4) sphere was intersected close to a pole). Applying this
consideration to all possible binned profiles, the system of the last row of Fig. 2.3 is obtained.
Note that all columns sum up to a fully red sphere, i.e. they are normalized. For spheres, the

4

Figure 2.3: Equations relating the 2D circular profile densities (i.e. number of profiles per area,
with size within each bin) with the 3D spherical densities (i.e. number of spheres per volume,
with size within each bin). The circular profiles are the ones observed in a micrograph, while
the green ones are unknown. The coefficients K relate those two densities and are known for
special cases, such as spherical systems. In the first row a large profile is associated with the
largest sphere, in the 2nd, a small profile could result from various weighted scenarios and in
the 3d row, all equations are gathered in a system. Fig. from [6].

matrix K is known to be upper triangular with entries

Kij =
1

n

(√
j2 − (i− 1)2 −

√
j2 − i2

)
, j ≥ i

n being the number of bins. With K known and the profile distribution obtained from the
micrograph, the 3D size distribution can be computed by

NV =
1

dmax
K−1NA

where dmax is the maximum size for profiles and spheres, assumed to be the same for both.
It can be set to one by scaling NA. Applying this technique to the micrograph of Fig. 2.7,
the distribution of Fig. 2.4 is obtained. It should be noted, that the entries of the matrix K
can be readily computed only for special cases. However, as previously described, these entries
represent the probabilities that a known 3D shape has given a certain 2D profile after it was
intersected with a random plane. Therefore, if the shape of the system is known and constant,
the corresponding matrix K (aka the kernel) can be estimated by simulation [9, 8]: one can
create random planes, intersect them with a shape of unitary size and then measure the size of
the profile-sizes. This is not completely trivial, since the whole idea is based on the randomness
of the plane selection; the planes should be able to produce all possible intersections, that could
occur in practice, with the same probability.

5

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

Grain Size (pixels)

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Size

F
re

qu
en

cy

Figure 2.4: Left : The 2D grain size distribution of the Alite grains for Fig. 2.7 and Right : The
3D distribution obtained by means of the stereological equation under the assumption that the
Alite phase is a polydisperse spherical system. Only the shapes of the two distributions are
relevant.

Figure 2.5: Planar section of a Clinker sample. 2D profiles of the four main phases can be readily
identified as well as their characteristics. Alite is a sharp convex grain, Belite a roundish, partly
non-convex one and the two amorphous phases, Aluminate & Ferrite almost fill the inserstitial
space with irregular formations. Image from [10].

6

Figure 2.6: Micrograph of 2D Portland Clinker. As in Fig. 2.5, the major phases can be
identified and, additionaly, a better idea about their relative arrangement and their volume
fraction can be obtained. In particular, Alite clearly covers a quite high fraction of the space,
although in this figure Belite can not be reliably individualized. Image courtesy of Jan Bisschop.

7

Figure 2.7: The boundaries of the planar sections of Alite grains are tracked on a 2D micro-
graph. A Clinker micrograph is fist converted into a black-and-white image and subsequently a
boundary tracking method [11] is used to detect the boundary pixels (red). It should be pointed
out that the density of planar sections of grains is not indicative of the Alite’s volume fraction
in Clinker; some (few) objects were considered artifacts of the overall image processing and re-
moved (i.e. it was unclear whether they were, in fact, two or more adjacent grains and if so, how
those should be separated). Evidently, even after the preprocessing, not all shapes are convex
and some of them could again be several, incorrectly grouped together. Further refinement of
the image processing procedure, however, is not deemed important, since the objective of this
work is to qualitatively investigate a method not expected to be particularly sensitive to small
changes in the grain size distribution. Original image courtesy of Jan Bisschop.

8

Chapter 3

Simulating Clinker as a multiphase
granular system

Most engineering materials feature, in general, multiphase structures, each composed of distinct
domains of single phase material, e.g. single crystals or grains. For the following discussion,
grain will mean a single constituent of a phase, i.e. a single crystal, in case of crystalline phases
or a spatially distinct domain of single phase, in case of amorphous phases. The characteristics
of these phases as well as those of each of their constituents largely determine the macroscopic
properties a material exhibits. Such characteristics could be: the volume fraction of each phase,
the relative arrangement of the phases, the grain size distribution of the grains comprising a
crystalline phase, their shape and orientation. In this respect, any model attempting to sim-
ulate such a material is evaluated by its capability to realistically reproduce as many of the
aforementioned properties as possible.

This Chapter is dedicated to the modelling possibilities for the simulation of Clinker. In the
first Section, various models are described, that could potentially serve as a viable solution to
the problem at hand. After clarifying why those models where not opted for, the second Sec-
tion discusses in detail the method used in this work for modelling Clinker or other multiphase
materials. The two basic stages of the procedure are demonstrated through experimentation on
small test systems, which are easier to visually inspect. Finally, some of the algorithms involved
are briefly described.

3.1 Computer models for mesoscale microstructure simulations

Possible approaches to the problem of mesoscale microstructure modelling adhere, naturally, to
one of the following perspectives: one that focuses on the physical process behind the growth
or, more generally, formation of the material under investigation, and one that focuses on its
final state (geometry and statistical characteristics). In the former case, one is interested in
the physical laws, which govern the evolution of an original configuration towards the final mi-
crostructure. In the latter, the physics behind a material’s formation and the formation itself
don’t matter as far as one can persuasively reconstruct the finally appearing microstructure.
For instance, studying the driving micro-mechanisms of grain-growth, e.g. the curvature-driven
boundary migration, requires that one allows for an initial configuration to evolve under certain
physical rules, which translate accordingly within the model’s framework, and observes several
snapshots of this evolution. Data corresponding to what would be the final snapshot of such an
evolutionary scheme might be, however, directly available from X-ray tomography (Fig. 2.7),

9

thus calling for a more immediate approach. Indeed, in cases where one is interested only in the
final microstructure of material confined in a certain volume, as it happens in fragmentation
simulations, it seems much more straightforward to mimic the structure by putting together
geometrical objects of certain statistical characteristics (e.g. grain size distribution). A final
note to make the distinction between the two views more clear is that in the first case, every
snapshot of the evolving system should be a possible, naturally occurring situation, while in
the second, one tries to “reverse engineer” the last snapshot alone. The reason why a growth
view is also relevant to the simulation of Clinker is because, in principle, Clinker is formed after
grain growth following sintering.

With these introductory comments in mind, the following paragraphs describe computational
models related to microstructure evolution as well as geometrical polycrystalline modelling cor-
responding to the two discussed approaches, respectively. Some of the models, mostly used in
grain growth studies, are conventionally classified as sharp-interface or diffuse-interface. This
distinction indicates how grain boundaries (interfaces) are represented in the model: discrete
sites on the two sides of a sharp boundary belong to different phases, whereas a diffuse boundary
separates two phases, as one of them continuously “fades” to the other. Corresponding tags are
shown next to each model title. Finally, a few models which don’t fall into any category are
also discussed. The list should by no means considered complete.

Potts model (Sharp-interface)

Since its appearance in 1952 as an extension to the ferromagnetic Ising model, the Potts model
has been often employed for the study of several systems that allow for a lattice representa-
tion. As thoroughly reviewed in [12], the model was introduced in the field of grain growth
in [13] due to the evident resemblance between grains and spin (or, generally, state) clusters,
usually occuring in the context of magnetic system simulations. Except for the model’s success
in studies on grain growth kinetics, it has been also proven suitable for conveniently generating
microstructures, an otherwise intricate endeavor.

The basic MC algorithm suffered, however, certain physical and numerical deficiencies due
to its purely stochastic nature. Notably, it undervalued the theoretically expected grain growth
exponent in the small grain size regime, it allowed for artificial nucleation events and was compu-
tationally very expensive. Several improvements were proposed, spanning from computational
ones (n-fold method) to ones gradually incorporating grain growth physics in the Monte Carlo
algorithm [14, 15, 16]. In [17], more recent understanding of the grain growth mechanics led
to further modifications, to wit, the dependence of the grain boundary mobility on both grain
boundary misorientation and grain boundary inclination was effectively taken into account.

Phase-field model (Diffuse-interface)

A rather different, though quite popular, approach to the simulation of grain growth is the
phase-field model with early work by [18, 19], more recently in [20] and reviewed in [21].
Within its framework, a microstructure is described by a set of spatially dependent contin-
uous field variables, conventionally denoted by ηi(r), i indicating classification with respect to
some (discretized) microstructural property. A field variable has also a pre-defined range, say
[−1, 1]. For example, if i labels the crystallographic orientation, i.e. a discretized version of
it, then η1(r) = 1 means that the material at position r has the orientation corresponding to
i=1. It is understood that, ideally, one needs an infinite number of field variables. In the above

10

example, for instance, there should be one for each orientation. However, it is known that even
a small number of them, in practice > 36, is usually enough to capture most microstructural
characteristics [20].

The field variables may be conserved (e.g. a composition field) or non-conserved (e.g. the
crystallographic orientations field described earlier). For conserved fields, the temporal evolu-
tion satisfies the Cahn-Hilliard equation

∂η

∂t
= −∇ · J ,

a diffusion equation, where the current J is proportional to ∇µ, µ being the chemical potential,
in turn related to the free energy (F) of the system. In the case of a non-conserved field, the
evolution is dictated by the Ginzburg-Landau equation

∂ηi(r, t)

dt
= −Li

δF

δηi(r, t)
∀i ,

a relaxation equation, where Li are relaxation constants (coefficients describing the grain bound-
ary mobilities). The key part of the model is, consequently, to mindfully construct/assume the
free energy density functional f(η1, η2, . . .), so that the total free energy of the system

F = F0 +

∫ [
f(η1, η2, . . .) +

∑
i

κi
2
(∇ηi(r))

2

]
d3r ,

where κi are the so-called energy gradient coefficients, has an energy minimum for each field
variable.

In short, the free energy minimization accounts for the temporal evolution of the field vari-
ables, while the boundary topology is being only implicitly modified. This way, there is no need
for any modification rules for the boundaries as could be the case in Potts-, Vertex- a.o. models.
On the downside, the indirect incorporation of boundaries in the model leads to them having
finite thickness; a phase turns into another one fast but continuously nevertheless. This limited
boundary resolution as well as its considerable computational requirements might render the
model unattractive, depending on the case study. The elegance, however, of several important
features following from the minimization of a single meaningful quantity, cannot be overlooked.

Vertex & Front-tracking models (Sharp-interface)

Vertex and/or front-tracking models, sometimes considered the same model under two different
names [22], were analytically introduced in 2D grain growth in [23]. The basic idea behind them
is conveyed in [24], where an early extension to 3D is also reported. A microstructure is repre-
sented as a discretized topological network, as the two-dimensional one shown in Fig. 3.1 (a).
In its simplified form, the discretization accommodates only vertices of the network, implying
that only straight segments connect these. Keeping track of the positions of the vertices and
considering only their motion is, therfore, enough (it then is a pure Vertex model). In its full ex-
tent, additionally to the vertices, the whole interfacial network is discretized by points, allowing
for curved boundaries too. It then becomes a front-tracking, since the interfacial points track
the boundary motion. The motion of the points is dictated by two factors: (i) equations stem-
ming from curvature-driven surface energy reduction and (ii) topological effects such as vertex
collisions. Additionaly, other topological constraints, markedly, enforcement of certain angles

11

Figure 3.1: Comparison of three grain growth models: Vertex, Phase-field and Potts, one per
row, respectively. Left : The differences in the modeling approach, (a) Explicit (sharp) boundary
motion by means of the vertex/front-tracking model: points of discretized boundaries move
with velocity perpendicular to the boundary, depending on its mobility µ, surface tension γ and
curvature κ. (b) Implicit (diffuse) boundary motion via the phase-field model: the boundary
is not clearly defined. (c) Stochastic boundary migration under the Potts model. Right : Final
snapshots of microstructures generated by the three methods, to give an idea of how those could
look like. Images from [22].

12

between lines tangent on edges that meet on vertices (2D), introduce further complications.
These can be resolved by carefully setting up deterministic sets of rules, a not trivial undertak-
ing, especially in 3D. Apart from its relatively complicated nature, the model is very precise, in
particular in studying problems focused on the exact grain boundary topology. Time is also nat-
urally defined, since equations of motion are solved, in contrast to the Potts model, for instance.

Cellular Automaton models (Sharp-interface)

A microstructural evolution model based on a Cellular Automaton (CA), in a basic form in
[25, 26] and after more recent refinement in [27, 28], suggests a discretization in space, time and
state of a microstructure. A CA is a mathematical representation of a system, under which space
is considered a large grid of cells being in a number of finite states (cf. Fig. 3.2). The larger

Figure 3.2: Left : A simple CA showing how a simple function can be applied to the neighbour-
hood of a cell to generate the next state (Fig. from [25]). Right : A more recent approach to
CA, where fractional states are considered, which allow to explicitly identify grain boundaries
in cells of fractional states (Fig. from[27]).

the grid, the higher the spatial resolution. The evolution of the system is fully determined by
an initial configuration and a predefined set of transition rules. The transition rules change the
state of a cell according to the states of the other cells in its neighbourhood. The neighbourhood
itself is, in turn, something that needs to be defined. In a basic approach, the neighbours of
a cell are the cell itself as well as its next nearest neighbours. Then, a transition rule can be
thought of, as a mathematical function F of the form

x(i, j, t+ dt) = F (x(i, j, t), x(i− 1, j, t), x(i+ 1, j, t), x(i, j − 1, t), x(i, j + 1, t))

where x denotes the state of cell (i, j) at time t. It is understood, that the physics behind the
evolution is introduced to the model through the transition rules. As a result, the quality of
the final “evolved” microstructure depends on how carefully those have been defined.

13

DEM-oriented models

Discrete Element Models (DEM), dating back to 1979, have attracted considerable attention
in the last decade, in particular in fragmentation simulations. Unlike the previously described
grain growth models, they do not attempt to simulate the microstructure evolution; they focus
on generating a single version of a microsctructure. In this view, they could potentially be
used in combination with one of the previously presented models, i.e. use the final simulated
microstructure from a grain growth moded and convert it to one for DEM simulation.

In DEM-oriented models, agreggates are modelled as clusters of particles held together by
cohesive forces, which keep the relative dispacement between pairs of particles within a certain
range. Beams are used to express these particle-particle interactions and breaking thresholds
are introduced to simulate fracture occurrence. DEMs provide a versatile simulation scheme,
particularly in terms of fragmentation, due to the fact that they bridge the simulation to the
actual phenomenon at all stages: crack initiation, propagation realistic & customizable bonding
parameterization. Samples used by DEMs have been modelled both in 2D and 3D, with agreg-
gates of spherical shape being the most commonplace choice. Such shapes are, clearly, easier
to deal with, though not completely realistic. In 3D few attempts to construct realistic DEM
samples of polyhedral particles exist [29, 30, 31], with most recent being [32], for which some
shape assumption or spherical approximation is employed in order to facilitate contact/collision
detection and efficient space filling, while maintaining shape information and grain size distri-
bution. Finally, X-Ray tomography combined with pattern recognition has also been exploited
to build realistic DEM samples [33].

Other models

Other models, which are not discussed here in detail, include models based on Voronoi tes-
selations (often employed to generate an initial configuration for some other model but also
used on their own), Mosaic models (they tessellate 2D (mostly) space by appropriately inter-
secting straight lines; specialized in cement simulations) and Packing models (attempting to
sufficiently pack a set of - usually - simplified shapes). The model used in this work is a packing
model.

3.2 Clinker simulation by multi-phase grain packing & clipping

As already mentioned, the aim is set at designing a method able to randomly generate a mul-
tiphase material, the Clinker. This work focuses on the main constituent of the Clinker, the
Alite, which is the phase occuppying over 75% of its volume. The reason behind this is that the
techniques involved should provide the means for dealing with other phases as well, as long as
they are composed by convex grains of some known shape and grain size distribution. Through-
out this Section, the words grain, shape and single crystal are used interchangeably and are
thought of as convex polyhedra. Growth will be always refering to shape-evolution.

Since the Clinker sample is meant to be used in fragmentation simulations and since in this
project the interest does not lie in studying the grain-formation during sintering, the way Alite
is originally formed, it seems reasonable to consider grains at the mesoscale, instead of consid-
ering detailed grain-growth physical models. This does by no means imply that those models
couldn’t produce a representative Clinker microstructure. They were not chosen simply because

14

the available data provide solely shape-related information, while deep understanding of the sin-
tering mechanisms is missing. Moreover, most of those models, start and evolve microstructures
which fill the space. However, observing the micrograph in Fig. 2.5, one immediately recognises
the complex formations of the Aluminate and Ferrite phases. It seems unlikely that rules could
be set, which would lead to precise formation of such a microstructure, starting from a filled
space. For these reasons, it is considered more practical to start from the convex phases (i.e.
not a filled volume) and generate a microstructure w.r.t. those first.

Alite being a crystal, its shape contains information that should be exploited, namely planes
that correspond to certain minimum cleavage energies. To incorporate this information into the
model, we use previously computed Miller indices [4], which determine a possible equilibrium
shape for Alite. The size of a grain is defined as its maximum caliper diameter. The grain-size
distribution is the last piece of information to be considered known throughout this Section
needed to create an Alite-grained Clinker.

Shape generation

In a preliminary step, a number of grains, which the Clinker sample will be initialized with, are
generated and stored in a shape-pool (Table 3.1). Some shape-evolution considerations follow
the ideas in [34]. The simplest way to initialize the pool is to simply scale an initial equilibrium
shape in a number of instances. This corresponds to shape-evolution with equal perpendicular
velocities assigned to each crystal face, which seems to be a reasonable assumption. As a first
approach, this is followed throughout the project. Alternatively, one could also generate shapes
- corresponding to a certain grain-size - after assigning different velocities to each crystal shape,
as long as one has reason to do so. This would correspond to an Alite grain growing in an
anisotropic (local) environment, in which case further information on certain sintering condi-
tions, e.g. average temperature gradient around an Alite grain, should be available. The latter
choice for shape evolution should yield a much greater shape-diversity, thus making a random
Clinker sample more realistic, although affecting the behaviour of the system under packing,
e.g. the time for reaching a certain packing density, if reaching it at all.

In any case, one must make sure that the range of grains-sizes in the pool is broad enough
to effectively reproduce the desired grain-size distribution. Additionally, it is helpful, as it is
natural according to the previously described procedure, to store the shapes in order of increas-
ing size. This reduces the problem of sampling grain-sizes from a certain statistical distribution
to sampling the corresponding indices according to the corresponding discrete distribution.

Packing

After having to our disposal the shape-pool, a number of grains can be sampled and placed
within a pre-specified Clinker volume. A spherical volume is preferred, within which the Clinker
is built. The initial configuration consists on randomly placed Alite grains in an arrangement,
under which the corresponding circumscribed spheres (w.r.t. each grain-radius) do not overlap.
After the desired number of grains is in place, the size-distribution constraint is already satisfied
and the shapes encode all the information regarding the crystal structure of the phase. It
then boils down to achieving a realistic volume-fraction for this phase while distorting the
aforementioned characteristics as less as possible. To this end, a simple packing algorithm is
applied: for a sufficiently large number of steps, a grain is chosen at random and the following
transformations are applied to it

1. A random translation within some range [0,ds].

15

Grain Structure

Vertices Vertex coordinates
Edges Edge connectivity table (optional & changeable)
Faces Face connectivity table (necessary & changeable)
Face2Vtx Face2Vtx(i): indices of faces intersecting on vertex i
Normals Face normals (optional)
GState Geometric crystal state (the h vector)
Centroid Centroid of the grain polyhedron
Size The max caliper diameter of the grain
Radius The max distance between the centroid and a vertex (segment of Size)
K A triangulation of the grain’s surface
Volume The grain volume
MaxSize The maximum size possible to find in the shape pool
MinSize The minimumm size possible to find in the shape pool

Table 3.1: The fields of the grain structure. Not all of them need to be calculated and stored
in the structure upfront but this improves efficiency during the intersection computations. Fur-
thermore, some might need to be altered on the course of the simulation, namely every time a
grain is scaled or clipped.

2. A random rotation around each axis, within some range [0,dθ].

3. With probability P = 0.5, a random translation in the range [0,dr] towards the center of
the sphere (radial translation).

The move is only accepted if the new position does not cause an overlap, otherwise it is rejected
and a new random grain is chosen.

The translation towards the center guarantees that the granular system will eventually move to
higher packing density (depending on the initial configuration, of course, which in our case is
one of very low density). However, it only occurs with a certain probability in order to allow for
sufficient freedom for the grains to re-arrange, even when the density has increased, and to avoid
blockings. For example, it makes possible for a grain to step back and change its orientation
before attempting to move towards the center again. The parameters ds, dθ, dr are chosen
arbitrarily, although potential tuning of those could probably yield faster and tighter packing.

Note: Each grain posesses a local coordinate system which can either be rotated and trans-
lated with it at each step, or once at some later point. In the latter case and if one uses the face
orientation to recover this system, it is crucial that this happens before clipping, which changes
the face connectivity table.

Clipping

After the grains have been sufficiently packed, which can be checked either by visual inspection
or by keeping track of the density change over time and consider the system packed when no
significant change occurs anymore, one observes that the volume-fraction remains way lower
than one wishes. This is to be expected, since it is virtually impossible to fill space efficiently
with randomly shaped polyhedra. Further action needs, therefore, to be taken for higher density
to be reached. Two different approaches have been tested and are described in the following.

16

Clipping approach I: Clipping after collective central translation

Under this approach, a subsequent collective translation is applied, with all grains being trans-
lated by some radial displacement dr towards the center of the spherical Clinker volume. At
this step only, all overlaps are allowed. This will, almost surely, lead to several undesired grain
intersections, which must, in turn, be resolved. By keeping in mind that this last move was
meant to reduce the empty volume within the spherical boundary defining the Clinker, it be-
comes clear that the grains should be modified in a way that would distort their shape as little
as possible, while allowing them to retain as much of their volume as possible. Thinking in this
direction, we do the following for each (distinct) pair of grains:

1. The convex intersection of the two grains is explicitely computed as well as its centroid.

2. The plane passing from the intersection’s centroid and whose normal is parallel to the
vector connecting the two grain-centroids is determined.

3. The two grains are clipped w.r.t. this plane at a pre-defined separating distance (e.g. the
machine precission).

This treatment of the grain overlaps is plausible for two reasons: (1) the displacement that
causes the overlaps is chosen to be considerably smaller that the typical grain-size and, con-
sequently, the overlaps are not expected to be large and (2) the larger overlaps should be the
ones between subsequent radial layers of grains and, intuitively, most of these grains would be
in contact at their lowest area faces (it simply makes sense for a tighter packing relative to the
initial one).

The overall compacting strategy is itself justified by considering how the volume-fraction be-
haves under the imposed change: while the collective central translation explicitly reduces the
spherical volume containing the Clinker by reducing its radius by dr (Vsph ∝ R3), the small
grain-overlaps, which, presumably, lead to small clipped-out volumes off of the involved grains,
make the original total Alite volume decrease by a much smaller amount. Consequently, the
ratio of occuppied to available space is expected to increase.

It should be stressed out that the random Clinker nodule generated by the described procedure
is expected to exhibit significant porosity, since the interstitial volume between the grains is
only stochastically reduced.

The just-mentioned clipping approach was applied and proved to only slightly increase the
volume fraction of the Alite phase. Therefore, it will be no further discussed.

Clipping approach II: Clipping after grain expansion

The second clipping approach consists in a grain expansion step preceding the grain clipping.
It results in a configuration with all grain centroids retaining their previous positions, while
arbitrary overlaps between grains occur. The purpose of this step is, simply, to occupy as much
volume as possible at the cost of arbitrary shape deformation. However, this does not necessar-
ily suggest a physically impossible situation: if one considers a pair of grains and their centroids
as growth points, it is to be expcted that, at some point during shape-evolution, the two grain
surfaces will come in contact and the growth along a certain direction (the one between their
centroids) will be disrupted, with a new face, most probably, appearing on the grain surface.
The evolution of the remaining faces goes on naturally. Therefore, clipping the pair of expanded
grains is justifiable, since it only implies that all faces of the first grain, which are involved in the

17

clipping, reached the faces of the second grain, which are also involved in the clipping, exactly
at the centroid of their intersection (Fig. 3.3). This has, in turn, certain implications on the
corresponding face velocities or the textrure of the material. It could mean, for instance, that
one of the faces grows faster or that they grow at the same speed but have certain angles w.r.t
the plane.

The subsequent clipping follows the three-step procedure described in the preceding paragraph,
Clipping approach I. In contrast to the strategy based on compaction though, the one based on
expansion fills space from the inside instead of shrinking the Clinker’s spherical boundary and
the final product is, thus, expected to exhibit lower porosity.

Figure 3.3: Two expanded and overlaping Alite grains are being clipped. Their centroids are
also depicted as well as the clipping plane with normal parallel to the line connecting the two
centroids and passing through the intersection’s centroid.

Related Algorithms

This paragraph offers a brief description of the main algorithms that have been used for im-
plementing the packing and clipping of the granular system. Several geometric computations,
which were available as part of the Matlab libraries [35, 36] have been extensively used. More-
over, all figures of Matlab plots have been converted to .eps format from Matlab’s .fig by means
of the tools in [37]. The essential function, that enables packing is one that performs checks for

18

Figure 3.4: 3D triangle-plane and triangle-triangle intersection. Left : I1I2 is determined by
intersecting the lines P0P1 and P0P2 with the plane P2. Right : Triangle-plane intersections be-
tween the pairs (T1,P2), (T2,P1) result to two respective overlaping line-segments (in case there
is, in fact, an intersection), which by projection to a (non-perpendicular to the segments) axis
and sorting yield the endpoints of I11I22. The routines that implement the basic triangle-plane
intersection, the intersection of two colinear 3D segments and find an appropriate projection
axis are listed in Appendix A. Fig. from [38].

intersection of two convex polyhedra. For the clipping part, we wish to compute the intersection
explicitly, i.e. obtain all vertices of the polyhedron that defines it. Therefore, a slightly modified
version of the second algorithm can be used for the intersection checks as well - although not
efficiently - so we only need describe this.

Given the vertices and faces of two arbitrary convex polyhedra, a straightforward convex inter-
section computation is implemented (cf. Appendix A), based on triangle-triangle intersections.
The vertices of the shape comprising the intersection are collected in two steps: in the first step
all vertices lying on one of the two surfaces are determined and in the second step all intruding
vertices of each shape into the other are determined. For the first step, the faces of both shapes
are triangulated, if not provided as such, and all triangle-triangle intersections are specified (for
a non-triangular face, the intersection of adjacent triangles with a plane will give a recurring
vertex). For the second step a point-in-polyhedron check [36] is performed for the vertices of
the first shape w.r.t. the second and vice-versa. The set of (unique) collected vertices is the
vertex representation of the convex polyhedral intersection (Fig. 3.6, 3.7).

Concerning the clipping part, Fig. 3.5, 3.3, the mesh of shape is simply clipped to the clipping
plane, by means of a corresponding function in [35].

19

Figure 3.5: Clipping method for separating two overlaping tetrahedral grains. Left : A pair of
grains in their initial overlaping configuration, the green colored intersection volume and the
computed clipping plane. Right : The pair of grains after having been clipped w.r.t. the depicted
clipping plane. The two grains are tetrahedral, for clear access to visual inspection.

Figure 3.6: Explicit intersection computation fot two special cases of overlaping tetrahedra.
Left : A vertex of the rightmost shape lies within the first. Right : No vertices of one shape are
included by the other one. Green: The convex hull of each intersection with the corresponding
volumes depicted on top of the plots. The intersection is computed as a triangulation, although
this is not obvious in the above cases, since both intersections happen to be tetrahedral. The
two grains are tetrahedral themselves, for clear access to visual inspection.

20

Figure 3.7: Explicit intersection computation for two (more complicated) special cases of over-
laping tetrahedra. In both cases, the polyhedral intersection needs to be computed by face-face
intersections as well as vertex inclusion checks. Green: The convex hull of each intersection with
the corresponding volumes depicted on top of the plots. The triangulated intersection surfaces
show clearly in the above two plots. The two grains are tetrahedral, for clear access to visual
inspection.

21

Chapter 4

Results

This Chapter reports on the results obtained after simulating Clinker by means of the method
proposed in this work. The setup of the simulation is explained and the resulting Clinker sample
is examined. Moreover, the efficiency of the used algorithm is discussed, particularly w.r.t. its
weak points. Finally, the results are tested against available data.

4.1 Simulating multigrained Clinker of Alite

Simulation of the Clinker as a polydispersed (same shape, different size) granular system of
Alite was performed. A shape-pool was generated by scaling a simple Alite shape to thirty
instances. For simplicity, the original shape was obtained by truncating a rectangular cuboid of
side length 0.5×1×1 and was afterwards scaled by an arbitrarily chosen scaling factor, S = 1.05
(cf. Fig. 4.1). Although this gave an arbitrary shape-size range, polydispersity alone was con-
sidered good enough for a first experiment. The shape chosen is not completely irrelevant, since
it has the same number of faces as an expected Alite equilibrium shape (Fig. 2.2) and a set of
its parallel faces.

In the initial configuration, 100 grains were picked, whose size followed a Gamma-like dis-
tribution. In practice, this was done by sampling the indices of the shapes in the shape-pool,
using a Poissonian distribution. The grains were randomly placed within a sphere of radius
R=12 without overlaps and with random orientation. The result was an initial configuration
of very low density. This was chosen to be low, for the grains to be rapidly placed. The initial
configuration of the Alite phase is depicted in Fig. 4.2 and its grain size distribution in Fig.
4.6.

The system was then packed by the algorithm described in Chapter 3. The translational step
was set to vary in ds ∈ [0, 0.02], the rotational in dtheta ∈ [0, π/100] for all three axes and the
probability for the extra central displacement was set to P =0.6. The number of iterations was
initialized to fourty thousand, though progressively raised to fifty- and, finally, sixty thousand,
since potential for higher packing density was evident. The result of the packing process is
shown in Fig. 4.3.

It is evident, even by mere visual inspection, that the packing density remained quite low
w.r.t. the desired one, i.e. ≈ 80%. The packing was, therefore, followed by expansion of all
grains and clipping of the sample, as described in Chapter 3, in order to recover the no-overlap
constraint. The scaling factor used in the grain expansion was varied within {1.5, 1.7, 1.9}, with
S = 1.9 being the first to yield an acceptable volume fraction of ≈ 78%. The Clinker sample

22

Figure 4.1: Five scaled instances (blue) of an original Alite grain (red) are generated in order
to be placed into the shape-pool.

after clipping is plotted in Fig. 4.4 and its new grain size distribution in Fig. 4.6.

4.2 Performance of the simulation algorithm

It is clear, that the most computationally intensive part of the Clinker simulation is the packing
of convex polyhedral grains. This is due to the fact that at each iteration a grain is randomly
moved and then checked for overlap against all other grains in its neighbourhood. Although the
space surrounding each grain is mostly empty in the initial configuration, this soon changes, as
the grains tend to gather towards the center of a sphere. As a result, the simulation becomes
quite slow after a few thousand iterations. The major reason for that is the naive implementa-
tion of the convex intersection checks, which intersects two convex polyhedra as two triangulated
surfaces, i.e. triangle-triangle. Considering that the grains used have a surface triangulation
of 14 triangles, even a single check becomes quite expensive. This also imposes a constraint
on the shapes one might employ and, this way, phases composed of more complex polyhedra,
are highly disfavoured; e.g. the Belite. Actually, even the shapes employed in this work, are
complex enough to effectively hinder any attempt for serious experimentation. Namely, the
Clinker sample presented in this Chapter took more than three days to pack1. Of course, such
computational complexity is to be expected, when dealing with arbitrary convex polyhedra but
far more efficient approaches exist and are discussed in Chapter 5.

Due to the above-mentioned restrictions, the packing rules could not be optimized. The param-
eters defining the random movements of the grains were intuitively chosen and could probably
be configured to speed-up the packing procedure. The rejection ratio (ratio of rejected moves to

1On an Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz, under standard Matlab configuration.

23

Figure 4.2: A polydisperse system of 100 Alite grains is initialized inside a spherical volume
by randomly placing the grains without overlaps and randomly oriented. Their centroids are
also plotted to emphasize the difference in sizes. For the grains to be placed fast, a high initial
sparsity was allowed. The grain size distribution is the original one plotted in 4.6. The system
is centered around the origin.

total number of moves) during packing was measured and found to rise sharply after the grains
started to approach each other, to finally lie within 55− 60%.

Clipping also makes use of the intersection computation and is also considered expensive. How-
ever, since it is applied only once for each pair of grains, the time-cost is limited within some
acceptable range. In the simulation reported in this Chapter, it took 30-40 minutes for the
packed & expanded sample to be clipped, the time increasing with the expansion factor.

4.3 Clinker sample volume fraction, grain size distribution &
2D profile

The volume fraction of a phase is the volume of Clinker, occuppied by this phase. It was the
main objective of the simulation to obtain a realistic volume fraction for the Alite phase. This

24

Figure 4.3: Close-up on the Clinker sample right after the packing and after the clipping (final).
The packing artifacts of the merely packed sample are evident; there are even grains, which
barely touch the bulk of the sample. However, after the expansion & clipping, the sample
appears to be solid and dense, especially within an evident spherical interior bulk.

25

was achieved by raising the expansion factor to S = 1.9. However, determining the Clinker’s
volume is not trivial, since the outermost layer of the sample is highly inhomogeneous (cf. Fig.
4.4). One could, for instance, define the Clinker’s volume to be that of a sphere centered at the
system’s center of mass, with radius being the average distance between the center of mass and
some of the centroids of the outermost grains. This would, though, still be problematic, due to
several prodruding grains on the surface (a packing artifact). Their centroids would cause the
sphere’s radius to be overestimated and the volume fraction to be substantially underestimated
(the volume of a sphere is ∝R3, R being the radius).

After this observation, the volume of the Clinker is approximately (visually) determined, as
indicated by the spherical surface depicted in Fig. 4.4. It is assumed, that the volume of the
grains protruding this sphere, could actually fit within. Under this approximation, the volume
fraction is reported to be ≈ 78%.

Next, the grain size distribution of the sample is computed for three different values of the
expansion factor, S. The results are shown in Fig. 4.6. As expected, due to the expansion of
the grains, the distribution is shifted towards higher grain sizes, depending on S. It could also
be observed, that the distribution tends to look like a Gaussian, although a safe comment on
that would require far better statistics. What is expected, is that grains lying on the spherical
Clinker surface are much less affected by the clipping, since they have very few neighbours,
in comparison to the interior grains. As a consequence, those are the ones that tend to keep
the distribution at its original form, while all interior ones are irregularly clipped. This might
be the reason, why for S = 1.5 and 1.7 the distribution seems to be maintaining its original
positive skewness, whereas at S= 1.9 the interior grains are more extensively clipped, leading
to a distribution of negligible skewness.

A 2D profile of the Clinker sample is useful to compare against a micrograph of Chapter 2
(cf. Fig. 2.7). To this end, the sample was intersected near its center with a plane of arbitrary
orientation (in this case, parallel to an axis) and the grain profiles are depicted in Fig. 4.5. The
comparison with the available micrograph can only be done in an abstract level, since (i) there
is no solid evidence that the original Alite shape closely resembles the ones giving the profiles
in the micrograph 2.7, (ii) even if it did, the use of same shapes for all grains is not realistic
and (iii) the clipping procedure anyway distorts the grain-shapes in an unpredictable manner.

4.4 Quantifying the microstructure distortion

It is assumed that the original microstructure has the statistical characteristics of the Clinker
sample just after it has been packed, i.e. original size distribution, random orientation and no
shape distortion. Clipping does not affect the orientation of a grain but it could change its
shape considerably. With this in mind, the quantification of the microstructure distortion is
done by computing the average number of faces for the Alite grains in the final sample. This is
found to be 12.19, indicating an important increase in the number of faces for each grain but
no relevant data is available to compare with.

26

Figure 4.4: The final sample of Alite-composed Clinker. Depicted are the final shapes of the
grains, their centroids and the sphere (light blue) considered to confine the Clinker volume. The
grains have been packed, expanded with scaling factor S=1.9 and finally clipped. Protruding
grains, which are a packing artifact, are still obvious but the bulk of the material under the
outermost layer is considered to be homogeneous. The average number of faces for a grain in
this sample is raised from 7 (before clipping) to 12.19 (after).

27

Figure 4.5: Top: Nine parallel planes intersect the simulated Clinker sample of 4.4 giving 2D
slices to qualitatively compare with micrographs such as 2.5, 2.7. Bottom Left : a single 2D slice
of the sample near the center. Plotted are the plane of intersection, all grains which intersect
with it as well as their 2D profiles. Bottom Right : The singled out individual 2D grain profiles
as seen from a frontal view. 28

1 1.5 2 2.5
0

5

10

15

20

25

30
Original Size Distribution

1.5 2 2.5 3
0

5

10

15

20

25
Size Distribution at S=1.5

1.5 2 2.5 3 3.5
0

5

10

15

20
Size Distribution at S=1.7

1.5 2 2.5 3 3.5
0

5

10

15

20

25

30
Size Distribution at S=1.9

Figure 4.6: The original grain size distribution followed by the computed one after expanding
all grains by a scaling factor S=1.5, S=1.7 and S=1.9, respectively. Except for the expected
shifting to larger sizes, the positive skewness of the original distribution appears to be subsiding
with S.

29

Chapter 5

Conclusions & Outlook

Simulation of multigrained Clinker composed by Alite, its major phase, was performed by means
of a conceptually simple method, based on packing and clipping. A polydispersed system of 100
convex Alite grains of simplified shape was initialized inside a spherical volume. The system
was then packed, partly by random and partly by collective motion towards the center of the
sphere, the grains were expanded by a certain scaling factor and finally clipped to eliminate
possible overlaps.

The resulting Clinker sample (Fig. 4.4) yields an reasonable volume fraction of ≈ 78%, which
could be modified by the choice for the scaling factor. Due to the grain expansion, the distortion
of the grain shapes was anavoidable, with the sharp increase of the number of faces per grain be-
ing the predominant effect. It is also understood that the shape of outermost grains was far less
affected by the clipping. Some packing artifacts were also detected, namely grains being barely
in contact with the bulk of the sample and, thus, destroying the homogeneity of the outermost
layer of the Clinker. Two-dimensional slices of the sample (Fig. 4.5) showed reasonable grain
profiles. The grain size distribution of the grains (Fig. 4.6), initially a Gamma-like distribution,
was found be deformed from positive to zero skewness, depending on the scaling factor S. Based
on the above observations, only qualitative agreement between the 2D Alite grain profiles, Fig.
(Fig. 2.7 & 4.5), can be concluded. For the microstructural statistical properties of the sample
to be consistently incorporated into the method, several changes/variations should be further
considered and experimented with.

In view of the geometrical approach employed in this work, the goal is set to simulate Clinker
as a microstructure composed by two crystalline and two amorphous phases. I assume that
the concept of starting with shapes consistent with the ones estimated by 2D profiles, found in
tomographic micrographs, remains in effect. One would then need to re-arrange these shapes,
in order to obtain the desired packing density, orientation distribution etc. Existing methods
to exhaustively exploit the available micrographic input [8] are known and could serve as a
better start. In particular, even if there is no information about the grain shape of a phase, one
could estimate certain of its characteristics from 2D profiles alone. If the shape is known, its
characteristics can be estimated more precisely by simulating its 2D profiles as random planar
intersections with its original form.

As far as the packing part is concerned, there seem to be several attractive options. Ex-
cept for the shape itself, there are numerous parameters that could affect the effectiveness of
the packing. For instance, the range of sizes in the initial size distribution, the shape diver-
sity (different shapes, e.g., with different number of faces, are valid and correspond to a single

30

size), the shape itself (if only one is used), the initial positions of the grains and, of course, the
packing rules. The rejection method of random displacement with additional collective motion
towards the center of the confining volume applied in this work, is a set of packing rules that
can certainly be improved. One can think of more relaxed rejection criteria, such as allowing
low-volume overlaps that might be resolved in one of the next steps. Extensive experimentation
with variations such as: applying either a translation or a rotation on a grain but not both
in one move, optimizing the translational and/or rotational steps (ds,dtheta), optimizing the
probability for the central displacement, changing the central nature of the overall motion and,
perhaps, introducing Molecular Dynamics in the system (e.g. repulsive contact forces), could
considerably improve the packing (w.r.t. both speed-up and/or packing density).

Since packing arbitrary polyhedra is unlikely to yield a sufficiently high packing density, a
clipping step (or some other sort of “final re-arrangement”) should be, in any case, needed. In
contrast to the generic rule used in this work, namely clipping of two overlaping grains based
on, roughly, minimizing the discarded volume, while convexity is retained, more careful analysis
could give better insight as to how to optimize this step. For instance, the ratio of the part of the
intersection volume that belongs to each grain to that grain’s volume could be another criterion
driving the clipping plane selection. Finally, considering the grains’ centroids as growth points
(seeds) and asignment of face velocities to grains, could give rise to much more sophisticated
clipping rules, which could, potentially, reverse engineer the grain growth.

For testing the above ideas, a much more efficient algorithm needs to be designed. More
importantly, the algorithm that tests for (convex) grain overlaps should be separated from the
one that explicitly computes the overlap. In the former case, an implementation of a check
based on the Separating Axis Theorem (SAT) [39, 40] seems to be the best choice, if the grain
shapes don’t have many edges. In the latter case, algorithms used in games for real-time col-
lision detection [40], prominently, the Gilbert-Johnson-Keerthi (GJK) algorithm, are expected
to substantially speed-up the convex intersection computations. Further suggestions to this
direction would point to a hierarchical representation of all convex grains (Dobkin Kirkpatrick
hierarchy), which can also be combined with the GJK algorithm. This would boost the ef-
ficiency even more, especially for convex shapes of high complexity and this way, additional
phases featuring grains with more complicated surfaces could be added to the simulation. For
instance, Belite was not simulated along with Alite for this very reason; it is shown to exhibit a
roundish 2D profile (Fig. 2.5) and would, therefore, require a grain shape of rather complex sur-
face, something that would render the simulation (under inefficiently implemented intersection
computations) practically stagnant. Under this perspective, the propositions in these paragraph
should be considered with the highest priority, since they would make possible to test much
larger systems, much faster and under various configurations, thus allowing for optimization of
the method.

31

Listings

A.1 makeShapePool.m . 33
A.2 initConfig.m . 34
A.3 packSystem.m . 36
A.4 expandClip.m . 38
A.5 createGrainBnd.m . 40
A.6 slice2d.m . 41
A.7 analyzeInitConfig.m . 42
A.8 analyzePacking.m . 42
A.9 computeHState.m . 43
A.10 getNeighbors.m . 44
A.11 grainOverlaps.m . 44
A.12 posGood.m . 45
A.13 updateCentroids.m . 45
A.14 fastConvexIntersection.m . 46
A.15 convexIntersectionCheck.m . 47
A.16 intersectTrianglePlane.m . 48
A.17 colinearSegmentIntersection.m . 49
A.18 appropriateProjectionAxis.m . 50
A.19 trackBoundary.m . 50

32

Appendix A

Matlab Code

Listing A.1: makeShapePool.m

1 % makeShapePool .m
2 c l e a r a l l ;
3 % Scr ip t that gene ra t e s a shape−pool and saves i t in 'Pool . mat ' .
4 %
5 % An i n i t i a l shape i s de f ined and i t i s s c a l ed by a de f ined s c a l i n g f a c t o r
6 % and f o r a de f ined number o f t imes .
7 %
8 % Shapes (or Crys ta l s or Grains) in the pool are convex and repre s ent ed
9 % by s t r u c t u r e s with the f o l l ow i n g f i e l d s :

10 %
11 % Ver t i c e s The v e r t i c e s o f the gra in .
12 % Edges The edges o f the gra in .
13 % Faces The f a c e s o f the gra in .
14 % Normals The face−normals .
15 % Centroid The cen t r o id .
16 % Size The max−c a l l i p e r diameter .
17 % Radius The rad iu s o f the sma l l e s t sphere conta in ing the gra in .
18 % K The su r f a c e t r i a n gu l a t i o n o f the gra in .
19 % Volume The Volume .
20 % maxSize The maximum s i z e o f a shape in the pool .
21 % minSize The minimum s i z e o f a shape in the pool .
22

23 % Plo t t i ng f l a g .
24 p f l a g = 1 ;
25

26 % I n i t i a l i z e a shape that l ooks l i k e a l i t e in equ i l i b r i um .
27 [v e f] = createCube ;
28

29 % Create c l i p p i n g p lanes to t runcate the cube .
30 Plane1 = createP lane ([0 . 4 0 0] , [1 0 0]) ;
31 Plane2 = createP lane ([0 . 3 0 .8 0 . 9] , [0 1 1]) ;
32 [v , f] = clipConvexPolyhedronHP (v , f , Plane1) ;
33 [v , f] = clipConvexPolyhedronHP (v , f , Plane2) ;
34

35 i f (p f l a g)
36 f i gu r e , ax i s equal , view (3) ;
37 drawMesh (v , f , ' f a c ea lpha ' , 0 . 4) ;
38 end
39

40 N = normal ize (faceNormal (v , f)) ;
41

33

42 % I n i t i a l i z e vars .
43 maxSize = 0 ;
44 minSize = 1e5 ;
45

46 % Def ine number o f shapes in the pool .
47 nShapes = 5 ;
48

49 % Create the s t r u c tu r e ho ld ing the shapes .
50 f o r k = 1 : nShapes
51

52 D = pd i s t (v) ; % pa i rw i s e d i s t ance between v e r t i c e s .
53 Z = squareform (D) ; % put i t i n to square form .
54

55 Crysta l . Ve r t i c e s = v ;
56 %Crysta l . Edges = e ;
57 Crysta l . Faces = f ;
58 Crysta l . Normals = N;
59 Crysta l . Centroid = polyhedronCentroid (v , f) ;
60 Crysta l . S i z e = max(D) ;
61

62 % vidx (ver tex i n d i c e s) cor re spond ing to d i s t ance max(D) .
63 [I , J] = f i nd (Z==Crysta l . S i z e) ;
64 Crysta l . Radius = Z(I (1) , J (1)) ; % rad iu s o f c i r cumscr ibed sphere .
65

66 [Crys ta l .K, Crysta l . Volume] = convhul l (v) ;
67

68 i f (Crys ta l . S ize>maxSize) , maxSize=Crysta l . S i z e ; end ;
69 i f (Crys ta l . S ize<minSize) , minSize=Crysta l . S i z e ; end ;
70

71 C{k} = Crysta l ;
72

73 ST = crea t eSca l i ng3d (1 . 0 5) ;
74 v = transformPoint3d (v ,ST) ;
75

76 i f (p f l a g)
77 drawPolyhedron (v , f , ' f a c ea lpha ' , 0 . 4 , ' f a c e c o l o r ' , 'b ') ;
78 end
79

80 end
81

82 i f (p f l a g)
83 ax i s equal , x l ab e l ('x ') , y l ab e l ('y ') , z l a b e l (' z ') , view (3) ;
84 end
85

86 % Save maxSize and minSize o f the Pool in a l l g r a i n s .
87 f o r j = 1 : k
88 C{ j } . MaxSize = maxSize ;
89 C{ j } . MinSize = minSize ;
90 end
91

92 % Save the shape−pool .
93 % save (' Pool . mat ' , 'C ') ;

Listing A.2: initConfig.m

1 % in i tCon f i g .m
2 c l e a r a l l ;
3 % Places po lyhedra l g r a i n s at random po in t s with in a sphere .
4 % The g ra in s are p laced in a way that t h e i r c i r cumscr ibed sphere s don ' t

34

5 % over lap .
6 %
7 % The g ra in s are loaded by the f i l e 'Pool . mat ' , which i s assumed to have
8 % been generated by the s c r i p t makeShapePool .m.
9

10 % Load Shape−Pool .
11 load ('Pool . mat ' , 'C ') ;
12

13 nObj = 10 ; % Des i red number o f ob j e c t s to be placed .
14 nObjPlaced = 0 ; % Number o f ob j ec t s , which have been placed .
15

16 % I n i t i a l i z e the c e l l array o f g r a i n s .
17 Grains = c e l l (nObj , 1) ;
18

19 R0 = 0 ; % Sphere cente r .
20 R = 12 ; % Sphere rad iu s .
21

22 whi le nObjPlaced < nObj
23

24 % Random d i r e c t i o n .
25 [phi , theta] = randomAngle3d ;
26

27 % Pick a shape from the Pool ,
28 % sample the i n d i c e s with a Poisson d i s t r i b u t i o n .
29 s idx = po i s s rnd (5) + 1 ;
30 Shape = C{ s idx } ;
31

32 % Pick a rad iu s ∗ conta ined ∗ in the volume .
33 rho = R0 + R∗ rand − Shape . Radius ;
34

35 % New cen t ro id .
36 newCentroid = sph2cart2 (phi , theta , rho) ;
37

38 % Check i f newCentroid i s a good po s i t i o n (no ove r l ap s) .
39 i f (¬posGood (Grains , Shape . Radius , newCentroid))
40 cont inue ;
41 end
42

43 % Trans la t i on vec to r .
44 tVector = newCentroid − Shape . Centroid ;
45

46 % Create t r a n s l a t i o n trans form .
47 TSL = crea t eTrans l a t i on3d (tVector) ;
48

49 % Create random ro t a t i on trans forms .
50 Rx = createRotat ionOx (newCentroid , rand∗ pi) ;
51 Ry = createRotat ionOy (newCentroid , rand∗ pi) ;
52 Rz = createRotat ionOz (newCentroid , rand∗ pi) ;
53

54 % Create f i n a l trans form .
55 TF = composeTransforms3d (TSL,Rx ,Ry ,Rz) ;
56

57 % Apply trans form .
58 v = transformPoint3d (Shape . Ver t i c e s ,TF) ;
59

60 Shape . Ve r t i c e s = v ; % Updated Ve r t i c e s .
61 Shape . Centroid = newCentroid ; % Updated Centroid .
62

63 nObjPlaced = nObjPlaced + 1
64 Grains {nObjPlaced} = Shape ; % Updated Conf igurat ion .

35

65

66 end
67

68 % Save the i n i t i a l c on f i g u r a t i on .
69 save (' SystemInit . mat ' , ' Grains ') ;

Listing A.3: packSystem.m

1 % packSystem .m
2 c l e a r a l l ;
3 % Packs a granu lar system o f non−over lapp ing convex g ra i n s .
4 %
5 % The con f i g u r a t i on i s loaded from the f i l e ' SystemInit . mat ' , which i s
6 % assumed to have been generated by the s c r i p t i n i tCon f i g .m .
7

8 % Load i n i t i a l c on f i gu r a t i on .
9 load (' SystemInit . mat ' , ' Grains ') ;

10

11 % Reset the Random Number Generator .
12 rng (' s h u f f l e ') ;
13

14 % Plo t t i ng f l a g .
15 p f l a g = 0 ;
16

17 nGrains = s i z e (Grains , 1) ;
18

19 % Radius o f the con f i n i ng s ph e r i c a l volume .
20 R = 12 ;
21

22 i f (p f l a g)
23 % Plot i n i t i a l c on f i g u r a t i on .
24 f i g u r e ; hold on ; view (3) ;
25 ax i s ([−R R −R R −R R]) ;
26 drawSphere ([0 0 0] ,R, ' f a c e c o l o r ' , ' blue ' , ' f a c ea lpha ' , 0 . 1) ;
27 f o r k = 1 : nGrains
28 drawMesh (Grains {k } . Ver t i c e s , Grains {k } . Faces , . . .
29 ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 4) ;
30 drawPoint3d (Grains {k } . Centroid) ;
31 end
32 pause (0 . 1) ;
33 end
34

35 nRep = 10000 ; % Number o f i t e r a t i o n s .
36 r r a t i o = 0 ; % Re jec t i on r a t i o .
37

38 % Def ine i n f i n i t e s im a l t r a n s l a t i o n / r o t a t i on bounds .
39 ds = 0 . 0 2 ;
40 dtheta = pi /100 ;
41

42 % Pick random gra in i n d i c e s f o r the whole p roce s s .
43 gidx = c e i l (nGrains∗ rand (nRep , 1)) ;
44

45 % Uncomment f o r movie gene ra t i on .
46 % frameId = 1 ;
47

48 % For a number o f r e p e t i t i o n s do .
49 f o r i r e p = 1 : nRep
50

51 % Every 100 r e p e t i t i o n s p r i n t i n f o .

36

52 i f (mod(i rep , 1 0)==0)
53 i r e p
54 r r a t i o ∗100/ i r e p
55 end
56

57 % Pick a p a r t i c l e at random .
58 iGra in = Grains { gidx (i r e p) } ;
59

60 % Pick t r a n s l a t i o n a l / r o t a t i o n a l params randomly .
61 i d s = ds∗ randc (1 , 3) ;
62 i d the ta = dtheta ∗ randc (1 , 3) ;
63

64 % Trans late ; With P=0.6 add a t r a n s l a t i o n part towards the cente r .
65 i f (rand<0.6) , iTSL = crea t eTrans l a t i on3d (i d s) ;
66 e l s e iTSL = crea t eTrans l a t i on3d (i d s +([0 0 0]− iGra in . Centroid) ∗0 .01) ;
67 end
68

69 % Rotate .
70 iRx = createRotationOx (iGra in . Centroid , i d the ta (1)) ;
71 iRy = createRotationOy (iGra in . Centroid , i d the ta (2)) ;
72 iRz = createRotat ionOz (iGra in . Centroid , i d the ta (3)) ;
73

74 % Compose trans forms .
75 iTF = composeTransforms3d (iRx , iRy , iRz , iTSL) ;
76

77 % Apply trans forms .
78 iGra in . Ve r t i c e s = transformPoint3d (iGra in . Ver t i c e s , iTF) ;
79 iGra in . Centroid = transformPoint3d (iGra in . Centroid , iTSL) ;
80

81 % I f the moved gra in ove r l ap s with another , r e j e c t .
82 i f (gra inOver laps (Grains , iGrain , g idx (i r e p)))
83 r r a t i o = r r a t i o + 1 ;
84 cont inue ;
85 end ;
86

87 % The gra in has been moved , update ver tex / c en t r o id p o s i t i o n s .
88 Grains { gidx (i r e p) } . Ve r t i c e s = iGrain . Ve r t i c e s ;
89 Grains { gidx (i r e p) } . Centroid = iGrain . Centroid ;
90

91 % Plo t t i ng update .
92 i f (p f l a g)
93 i f (mod(i rep , 100)==0) % p lo t
94 c l f ; hold on ; view (3) ;
95 ax i s ([−R R −R R −R R]) ;
96 drawSphere ([0 0 0] ,R, ' f a c e c o l o r ' , ' blue ' , ' f a c ea lpha ' , 0 . 1) ;
97 f o r k = 1 : nGrains
98 drawMesh (Grains {k } . Ver t i c e s , Grains {k } . Faces , . . .
99 ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 4) ;

100 drawPoint3d (Grains {k } . Centroid) ;
101 end
102 % Uncomment to generate movie .
103 % M(frameId) = getframe ;
104 % frameId = frameId + 1 ;
105

106 % pause (0 . 1) ;
107 end
108 end
109

110 end
111

37

112 % Print r e j e c t i o n r a t i o .
113 r r a t i o = r r a t i o ∗100 / nRep
114

115 % Save the packed con f i gu r a t i on .
116 save (' AlitePacked .mat ' , ' Grains ') ;
117

118 % Uncomment to save movie .
119 % save (' AlitePacked Movie .mat ' , 'M') ;

Listing A.4: expandClip.m

1 % expandClip .m
2 c l e a r a l l ;
3 % Blows up (expands) a l l g r a i n s in the system & then c l i p s them .
4 % Plot s the system be f o r e and a f t e r .
5 %
6 % NOTE: Right a f t e r c l i p p i n g i s done , the c en t r o i d s should be updated by
7 % means o f the s c r i p t updateCentroids .m .
8 %
9 % The g ra in s are loaded from the f i l e ' AlitePacked .mat ' , which i s assumed

10 % to have been created by the s c r i p t packSystem .m .
11

12 % Load the packed con f i gu r a t i on .
13 load (' AlitePacked .mat ' , ' Grains ') ;
14 nGrains = s i z e (Grains , 1) ;
15

16 % Plo t t i ng f l a g .
17 p f l a g = 1 ;
18

19 i f (p f l a g)
20 f i g u r e ;
21 subplot (1 , 2 , 1) , hold on , ax i s equal , view (3) ;
22 t i t l e (' I n i t i a l ') ;
23 f o r k = 1 : nGrains
24 drawMesh (Grains {k } . Ver t i c e s , Grains {k } . Faces , . . .
25 ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 3) ;
26 drawPoint3d (Grains {k } . Centroid) ;
27 end
28 end
29

30 % Expansion (s c a l i n g) f a c t o r .
31 S = 1 . 7 ;
32

33 f o r k = 1 : nGrains
34

35 % Trans la t i on vec to r .
36 tVector = [0 0 0] − Grains {k } . Centroid ;
37

38 % Trans late to the o r i g i n .
39 Grains {k } . Ve r t i c e s = . . .
40 Grains {k } . Ve r t i c e s + repmat (tVector , s i z e (Grains {k } . Ver t i c e s , 1) , 1) ;
41

42 % Sca l e (blow up) .
43 Grains {k } . Ve r t i c e s = transformPoint3d (Grains {k } . Ver t i c e s , . . .
44 c r ea t eSca l i ng3d (S)) ;
45

46 % Move back to o r i g i n a l p o s i t i o n .
47 Grains {k } . Ve r t i c e s = . . .
48 Grains {k } . Ve r t i c e s + repmat(−tVector , s i z e (Grains {k } . Ver t i c e s , 1) , 1) ;

38

49

50 end
51

52 % CLIPPING
53

54 % Get the neighbor− l i s t s f o r a l l g r a i n s .
55 [L i s t s , N] = getNeighbors (Grains) ;
56

57 counter = 1 ;
58

59 % For each gra in . . .
60 f o r k = 1 : nGrains
61

62 Grain1 = Grains {k } ;
63

64 % For each ' neighbor ' o f k−th gra in . .
65 f o r q = 1 : s i z e (L i s t s {k } , 2)
66

67 % Print p rog r e s s .
68 s p r i n t f ('%d/%d ' , counter , N)
69 counter = counter+1;
70

71 Grain2 = Grains { L i s t s {k}(q) } ;
72

73 % Exp l i c i t l y compute convex i n t e r s e c t i o n .
74 [iPo int s , ips , K, Vol , f l a g] = . . .
75 f a s tConvex In t e r s e c t i on (Grain1 . Ver t i c e s , [] , Grain1 . Faces , . . .
76 Grain2 . Vert i c e s , [] , Grain2 . Faces) ;
77

78 % I f no i n t e r s e c t i o n , cont inue .
79 i f (¬ f l a g) , cont inue, end ;
80

81 % Compute c l i p p i n g plane .
82 iCent ro id = cen t ro id (iPo in t s) ;
83 pNormal = normal izeVector3d (c reateVector (Grain1 . Centroid , . . .
84 Grain2 . Centroid)) ;
85 c l iP l an e = createP lane (iCentro id , pNormal) ;
86

87 % Clip the pa i r o f g r a i n s w. r . t . c l i P l an e .
88 [Grain1 . Ver t i ce s , Grain1 . Faces , Grain2 . Ver t i c e s , Grain2 . Faces] = . . .
89 createGrainBnd (Grain1 . Ver t i ce s , Grain1 . Faces , . . .
90 Grain1 . Centroid , Grain2 . Ver t i c e s , Grain2 . Faces , c l iP l ane , 2∗ eps) ;
91

92 % Update Ve r t i c e s & Faces .
93 Grains {k } . Ve r t i c e s = Grain1 . Ve r t i c e s ;
94 Grains {k } . Faces = Grain1 . Faces ;
95 Grains { L i s t s {k}(q) } . Ve r t i c e s = Grain2 . Ve r t i c e s ;
96 Grains { L i s t s {k}(q) } . Faces = Grain2 . Faces ;
97

98 % Centro ids updated a f t e r c l i p p i n g by ' updateCentroids .m' .
99 end

100 end
101

102 i f (p f l a g)
103 subplot (1 , 2 , 2) , hold on , ax i s equal , view (3) ;
104 t i t l e (' Fina l ') ;
105 f o r k = 1 : nGrains
106 drawMesh (Grains {k } . Ver t i c e s , Grains {k } . Faces , . . .
107 ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 3) ;
108 drawPoint3d (Grains {k } . Centroid) ;

39

109 end
110 end
111

112 % Save the f i n a l expanded & c l i pped sample .
113 % save (' Al i te100S1 . 9 PckBlownUpClip .mat ' , ' Grains ') ;

Listing A.5: createGrainBnd.m

1 f unc t i on [v1 , f1 , v2 , f 2] = createGrainBnd (V1 , F1 ,C1 , V2 , F2 , cPlane , sep)
2 % Cl ips two convex g ra i n s to a plane .
3 %
4 % INPUT
5 % V1, F1 ,V2 , F2 Ve r t i c e s & Faces o f the two convex g ra i n s .
6 % C1 Grain c en t r o id .
7 % cPlane Cl ipp ing plane .
8 % sep Separat ion d i s t ance (not lower than eps) .
9 %

10 % OUTPUT
11 % v1 , f1 , v2 , f 2 : Ve r t i c e s & Faces o f the c l i pped g ra i n s .
12 %
13 i f (sep<2∗eps)
14 e r r o r (' Separat ion d i s t anc e too smal l (sep≥2∗ eps) . ') ;
15 end
16

17 % Distance from cPlane to push away each gra in .
18 d = sep /2 ;
19

20 % I t should be c e r t a i n that both c en t r o i d s cannot be on one s i d e o f cPlane .
21 i f (i sBelowPlane (C1 , cPlane))
22

23 cPlane1 = pa r a l l e lP l a n e (cPlane ,− sep) ;
24 [v1 , f 1] = clipConvexPolyhedronHP (V1 , F1 , cPlane1) ;
25

26 % Reverse c l i p p i n g plane o r i e n t a t i o n .
27 cPlane = cPlane ([1 2 3 7 8 9 4 5 6]) ;
28

29 % Pa r a l l e l t r a n s l a t e i t by d i s t ance d away from the other g ra in .
30 cPlane2 = pa r a l l e lP l a n e (cPlane ,−d) ;
31

32 [v2 , f 2] = clipConvexPolyhedronHP (V2 , F2 , cPlane2) ;
33

34 e l s e
35

36 cPlane2 = pa r a l l e lP l a n e (cPlane ,−d) ;
37 [v2 , f 2]=clipConvexPolyhedronHP (V2 , F2 , cPlane2) ;
38

39 % Reverse c l i p p i n g plane o r i e n t a t i o n .
40 cPlane = cPlane ([1 2 3 7 8 9 4 5 6]) ;
41

42 % Pa r a l l e l t r a n s l a t e i t by d i s t ance d away from the other g ra in .
43 cPlane1 = pa r a l l e lP l a n e (cPlane ,−d) ;
44

45 [v1 , f 1] = clipConvexPolyhedronHP (V1 , F1 , cPlane1) ;
46

47 end
48

49 re turn

40

Listing A.6: slice2d.m

1 % s l i c e 2 d .m
2 c l e a r a l l ;
3 % Scr ip t that i n t e r s e c t s the c l i n k e r sample with a plane and computes the
4 % 2D p r o f i l e s o f the g ra i n s .
5

6 % Load Cl inker sample .
7 load (' Al i te100S1 . 9 PckBlownUpClip . mat ' , ' Grains ') ;
8

9 p f l a g = 1 ;
10

11 % S l i c e plane normal .
12 pNormal = [0 1 0] ;
13

14 % Point on the s l i c e plane .
15 % pPoint = [0 −5.5 0] ;
16 pPoint = [0 0 0] ;
17

18 f i g u r e ; hold on ;
19 ax i s ([−5 5 −6 6 −4 5]) ;
20 view (3) ;
21

22 f o r i t e r = 1 :1
23

24 % pPoint (2)= pPoint (2) +1.2 ;
25

26 % Create s l i c i n g plane .
27 sPlane = createP lane (pPoint , pNormal) ;
28

29 % In t e r s e c t with a l l g r a i n s .
30 f o r k = 1 : s i z e (Grains , 1)
31

32 v = Grains {k } . Ve r t i c e s ;
33

34 % I f they a l l l i e on one s i d e o f sPlane , cont inue .
35 i f (a l l (i sBelowPlane (v , sPlane)) | | a l l (¬i sBelowPlane (v , sPlane)))
36 cont inue ;
37 end
38

39 f = Grains {k } . Faces ;
40

41 % In t e r s e c t the plane with the shape ' s mesh .
42 iPo ly = po lyhedronS l i c e (v , f , sPlane) ;
43

44 % Sample the c h a r a c t e r i s t i c you ' re i n t e r e s t e d in .
45 i f (isempty (iPo ly)) , cont inue ; end ;
46

47 % Plot
48 i f (p f l a g)
49 drawMesh (v , f , ' f a c e c o l o r ' , 'b ') ;
50 drawPolygon3d (iPoly , ' c o l o r ' , ' black ' , 'LineWidth ' , 2) ;
51 ax i s equal , view (3) ;
52 end
53

54 end
55

56 drawPlane3d (sPlane , 'b ') ;
57 alpha (0 . 7) ;
58 ax i s equal ;
59 end

41

Listing A.7: analyzeInitConfig.m

1 % ana ly z e In i tCon f i g .m
2 c l e a r a l l ;
3 % Scr ip t intended to v i s u a l i z e the i n i t i a l c on f i gu r a t i on o f g r a i n s .
4 %
5 % The i n i t i a l c on f i gu r a t i on i s loaded from the f i l e ' SystemInit . mat ' , which
6 % i s assumed to have been generated by the s c r i p t i n i tCon f i g .m .
7

8 % Load the i n i t i a l c on f i g u r a t i on .
9 load (' SystemInit . mat ' , ' Grains ') ;

10 nGrains = s i z e (Grains , 1) ;
11

12 Volume = 0 ; % Volume f r a c t i o n .
13 g r a i nS i z e = ze ro s (nGrains , 1) ; % Grain s i z e histogram .
14

15 R = 12 ; % Radius o f the s ph e r i c a l c on f i n i ng volume) .
16

17 % I n i t i a l i z e p l o t .
18 hold on ;
19 ax i s ([−R R −R R −R R]) ;
20 drawSphere ([0 0 0] ,R, ' f a c e c o l o r ' , ' blue ' , ' f a c ea lpha ' , 0 . 1) ;
21 view (3) ; ax i s equal ; g r i d on ;
22

23 f o r k = 1 : nGrains
24

25 Grain = Grains {k } ;
26

27 Volume = Volume + Grain . Volume ;
28 g r a i nS i z e (k) = Grain . S i z e ;
29

30 drawMesh (Grain . Ver t i c e s , Grain . Faces , ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 4) ;
31 drawPoint3d (Grain . Centroid) ;
32

33 end
34

35 f i g u r e ;
36 h i s t (g r a i nS i z e) ;
37

38 % Rough est imate o f the volume f r a c t i o n .
39 (Volume∗100) / ((4/3) ∗ pi ∗(Rˆ3))

Listing A.8: analyzePacking.m

1 % analyzePacking .m
2 c l e a r a l l ;
3 % Scr ip t intended to v i s u a l i z e the packed system .
4 %
5 % I t p l o t the g r a i n s and a con f i n i ng s ph e r i c a l volume , whose rad iu s has to
6 % be manually i n s e r t e d (R) .
7 %
8 % The packed con f i gu r a t i on i s loaded from the f i l e ' AlitePacked .mat ' , which
9 % i s assumed to have been generated by the s c r i p t packSystem .m .

10

11 % Load packed con f i gu r a t i on .
12 load (' AlitePacked .mat ' , ' Grains ') ;
13

14 % Radius o f the con f i n i ng s ph e r i c a l volume .
15 R = 4 ;
16

42

17 % Total volume .
18 Vol = 0 ;
19

20 f i g u r e ; hold on , ax i s ([−R R −R R −R R]) , view (3) ;
21 drawSphere ([0 0 0] ,R, ' f a c e c o l o r ' , 'b ' , ' f a c ea lpha ' , 0 . 1) ;
22

23 f o r k = 1 : s i z e (Grains , 1)
24 drawMesh (Grains {k } . Ver t i c e s , Grains {k } . Faces , . . .
25 ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 4) ;
26 drawPoint3d (Grains {k } . Centroid) ;
27

28 % Compute gra in volume .
29 [¬ , kVol] = convhul l (Grains {k } . Ve r t i c e s) ;
30 Vol = Vol + kVol ;
31

32 end
33

34 % Estimate volume f r a c t i on , assuming the sphere
35 % of rad iu s R r ep r e s en t s the approximate Cl inker ' s volume .
36 Vol ∗100/((4/3) ∗ pi ∗(Rˆ3))

Listing A.9: computeHState.m

1 % computeHState .m
2 c l e a r a l l ;
3 % Scr ip t that computes the h−vec to r (i . e . v e c t o r s from the centro id ,
4 % perpend i cu l a r l y po in t ing to each f a c e with magnitude d(centro id , f a c e)) .
5 %
6 % NOTE: The cen t r o id must be updated a f t e r c l i p p i n g by the s c r i p t
7 % updateCentroids .m .
8

9 % Load Cl inker sample .
10 load (' Al i te100S1 . 5 PckBlownUpClip . mat ' , ' Grains ') ;
11

12 % Plo t t i ng f l a g
13 p f l a g = 0 ;
14

15 % Sphere rad iu s .
16 R = 5 ;
17

18 i f (p f l a g)
19 f i gu r e , hold on , ax i s ([−R R −R R −R R]) , view (3) ;
20 drawSphere ([0 0 0] ,R, ' f a c e c o l o r ' , 'b ' , ' f a c ea lpha ' , 0 . 1) ;
21 end
22

23

24 f o r k = 1 : s i z e (Grains , 1)
25

26 i f (p f l a g)
27 drawMesh (Grains {k } . Ver t i c e s , Grains {k } . Faces , . . .
28 ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 6) ;
29 end
30

31 Normals = faceNormal (Grains {k } . Ver t i c e s , Grains {k } . Faces) ;
32

33 nFaces = s i z e (Grains {k } . Faces , 2) ;
34

35 P = ze ro s (nFaces , 3) ;
36

43

37 f o r j = 1 : s i z e (Grains {k } . Faces , 2)
38

39 Line=createL ine3d (Grains {k } . Centroid , . . .
40 Normals (j , 1) , Normals (j , 2) , Normals (j , 3)) ;
41

42 Plane=createP lane (Grains {k } . Ve r t i c e s (Grains {k } . Faces{ j } (1 : 3) , :)) ;
43

44 P(j , :) = in t e r s e c tL in eP l ane (Line , Plane) ; % i n t e r s e c t i o n po int .
45

46 end
47

48 p lo t3 (P(: , 1) ,P(: , 2) ,P(: , 3) , ' . ' , ' c o l o r ' , ' blue ') ;
49

50 h = createVector (repmat (Grains {k } . Centroid , nFaces , 1) , P) ;
51 drawVector3d (repmat (Grains {k } . Centroid , nFaces , 1) ,h , 'b ') ;
52 end

Listing A.10: getNeighbors.m

1 f unc t i on [L i s t s , N] = getNeighbors (Grains)
2 % Computes the ne ighbor l i s t s f o r a l l g r a i n s in c e l l array Grains .
3 %
4 % INPUT
5 % Grains A gra in c on f i g u r a t i on .
6 % OUTPUT
7 % L i s t s The neighbour l i s t s .
8 % N The t o t a l number o f ne ighbours f o r a l l g r a i n s .
9

10 N = 0 ;
11 nGrains = s i z e (Grains , 1) ;
12

13 % Al l unique pa i r s .
14 [J I] = f i nd (t r i l (squareform (ones (nGrains ∗(nGrains−1) /2 ,1)))) ;
15

16 nPairs = length (J) ;
17

18 % I n i t i a l i z e neighbour l i s t s .
19 L i s t s = c e l l (nGrains , 1) ;
20

21 f o r k = 1 : nPairs
22

23 i f (Grains { I (k) } . Radius + Grains {J (k) } . Radius > . . .
24 norm(Grains { I (k) } . Centroid − Grains {J (k) } . Centroid))
25

26 % Update l i s t s .
27 L i s t s { I (k) } = [L i s t s { I (k) } J (k)] ;
28

29 N = N+1;
30 end
31

32 end

Listing A.11: grainOverlaps.m

1 f unc t i on f l a g = gra inOver laps (Grains , iGrain , g idx)
2 % True i f Grain{ gidx } ove r l ap s with another from the c e l l−array Grains .
3 f l a g = 0 ;

44

4

5 f o r k = 1 : (gidx−1)
6

7 % Make sure the computation o f Grain . Radius g i v e s always the
8 % expected r e s u l t .
9

10 i f (norm(Grains {k } . Centroid−iGra in . Centroid) ≤ . . .
11 Grains {k } . Radius + iGrain . Radius)
12

13 % check f o r over lap .
14 f l a g = convexInter sect ionCheck (Grains {k } . Ver t i c e s , . . .
15 [] , Grains {k } . Faces , iGra in . Ver t i c e s , [] , iGra in . Faces) ;
16

17 i f (f l a g) , r e turn ; end
18

19 end
20

21 end
22

23 % sk ipp ing the iGra in i t s e l f . . .
24

25 f o r k = (gidx+1) : s i z e (Grains , 1)
26

27 i f (norm(Grains {k } . Centroid−iGra in . Centroid) ≤ . . .
28 Grains {k } . Radius + iGrain . Radius)
29

30 f l a g = convexInter sect ionCheck (Grains {k } . Ver t i c e s , . . .
31 [] , Grains {k } . Faces , iGra in . Ver t i c e s , [] , iGra in . Faces) ;
32

33 i f (f l a g) , r e turn ; end ;
34

35 end
36

37 end
38

39

40 re turn ;

Listing A.12: posGood.m

1 f unc t i on f l a g = posGood (Grains , iGrainRadius , pos)
2 % POSGOOD True i f pos guarantees no ove r l ap s with other Grains .
3 f l a g = 0 ;
4 f o r k = 1 : s i z e (Grains , 1)
5 i f (isempty (Grains {k})) , break ; end ;
6 i f (norm(Grains {k } . Centroid − pos) ≤ Grains {k } . Radius+iGrainRadius)
7 re turn ;
8 end
9 end

10 f l a g =1;
11 re turn ;

Listing A.13: updateCentroids.m

1 % updateCentroids .m
2 c l e a r a l l ;
3 % Scr ip t that updates the c en t r o i d s a f t e r Cl ipp ing .

45

4

5 p f l a g = 0 ;
6

7 % Load c l i pped con f i gu r a t i on .
8 load (' Al i te100S1 . 7 PckBlownUpClip . mat ' , ' Grains ') ;
9

10 nGrains = s i z e (Grains , 1) ;
11

12 % Update c en t r o i d s .
13 f o r k = 1 : nGrains
14 Grains {k } . Centroid = . . .
15 polyhedronCentroid (Grains {k } . Ver t i c e s , Grains {k } . Faces) ;
16 end
17

18 % Plot
19 i f (p f l a g)
20 f i g u r e ;
21 f o r k = 1 : nGrains
22 drawMesh (Grains {k } . Ver t i c e s , Grains {k } . Faces , . . .
23 ' f a c e c o l o r ' , ' r ' , ' f a c ea lpha ' , 0 . 3) ;
24 drawPoint3d (Grains {k } . Centroid) ;
25 end
26 ax i s equal , view (3) ;
27 end
28

29 % Save f i n a l c on f i gu r a t i on .

Listing A.14: fastConvexIntersection.m

1 f unc t i on [iPo int s , ips , K, Vol , f l a g] = ...
f a s tConvex In t e r s e c t i on (V1 ,¬ ,F1 ,V2 ,¬ ,F2)

2 % Computes the convex i n t e r s e c t i o n o f two convex polyhedra .
3 %
4 % INPUT
5 % V1, F1 Ve r t i c e s and Faces o f a convex polyhedron .
6 % V2, F2 Ve r t i c e s and Faces o f a second convex polyhedron .
7 %
8 % OUTPUT
9 % iPo in t s The po in t s whose convex hu l l i s the i n t e r s e c t i o n .

10 % ip s iPo in t s (ips , :) i s the l a s t po int on a f a c e o f P1 , P2 , the
11 % re s t are i n t e r i o r .
12 % K Tr iangu la t i on o f the i n t e r s e c t i o n .
13 % Vol I n t e r s e c t i o n Volume .
14 % f l a g 1 i f the re i s i n t e r s e c t i o n , 0 otherw i s e .
15

16 iPo in t s = [] ;
17

18 [t r i 1 , ¬] = t r i angu l a t eFac e s (F1) ;
19 [t r i 2 , ¬] = t r i angu l a t eFac e s (F2) ;
20

21 % In t e r s e c t a l l t r i a n g l e s o f t r i 1 with a l l o f t r i 2 .
22 f o r k1 = 1 : s i z e (t r i 1 , 1)
23

24 f o r k2 = 1 : s i z e (t r i 2 , 1)
25

26 Points1 = V1(t r i 1 (k1 , :) , :) ; % Red .
27 Points2 = V2(t r i 2 (k2 , :) , :) ; % White .
28

29 Plane1 = createP lane (Points1) ;

46

30 Plane2 = createP lane (Points2) ;
31

32 [IP12 , f l a g 12] = in t e r s e c tT r i ang l eP l an e (Points1 , Plane2) ;
33 [IP21 , f l a g 21] = in t e r s e c tT r i ang l eP l an e (Points2 , Plane1) ;
34

35 % I f one o f the t r i ang l e−plane i n t e r s e c t i o n s doesn ' t ex i s t ,
36 % there i s no t r i a ng l e−t r i a n l e i n t e r s e c t i o n at a l l .
37 i f (¬(f l a g 12 & f l a g21)) %#ok<AND2>
38 cont inue ;
39 end
40

41 % In t e r s e c t i o n o f the c o l i n e a r segments IP12 , IP21 .
42 [Segm , s f l a g] = co l i n ea rS egment In t e r s e c t i on (IP12 , IP21) ;
43

44 i f (s f l a g)
45 iPo in t s = [iPo in t s ; Segm] ; %#ok<∗AGROW>
46 end
47 end
48 end
49

50 iPo in t s = unique (iPo int s , ' rows ') ;
51

52 % ip s i s the index o f the l a s t po int on a face , i n t e r i o r po in t s f o l l ow .
53 i p s = s i z e (iPo int s , 1) ;
54

55 % vidx o f V1 that l i e with in P2 .
56 inIdx12 = i nhu l l (V1 ,V2 , t r i 2) ;
57 % vidx o f V2 that l i e with in P1 .
58 inIdx21 = i nhu l l (V2 ,V1 , t r i 1) ;
59

60 iPo in t s = [iPo in t s ; V1(inIdx12 , :)] ;
61 iPo in t s = [iPo in t s ; V2(inIdx21 , :)] ;
62

63 i f (ips >0)
64 [K, Vol] = convhul l (iPo in t s (: , 1) , iPo in t s (: , 2) , iPo in t s (: , 3)) ;
65 f l a g = 1 ;
66 e l s e
67 K = [] ;
68 Vol = 0 ;
69 f l a g = 0 ;
70 end
71

72 re turn ;

Listing A.15: convexIntersectionCheck.m

1 f unc t i on i f l a g = convexInter sect ionCheck (V1 ,¬ ,F1 ,V2 ,¬ ,F2)
2 % Checks f o r i n t e r s e c t i o n o f two convex polyhedra .
3 i f l a g = 0 ;
4

5 [t r i 1 , ¬] = t r i angu l a t eFac e s (F1) ; % This can be precomputed .
6 [t r i 2 , ¬] = t r i angu l a t eFac e s (F2) ; % This can be precomputed .
7

8 % I f a ver tex ov V1 l i e s with in the convhul l o f V2 , re turn 1 .
9 i f (sum(i n hu l l (V1 ,V2 , t r i 2))>0)

10 i f l a g =1;
11 re turn ;
12 end
13

47

14 % I f a ver tex ov V2 l i e s with in the convhul l o f V1 , re turn 1 .
15 i f (sum(i n hu l l (V2 ,V1 , t r i 1)>0))
16 i f l a g =1;
17 re turn ;
18 end
19

20 % In t e r s e c t a l l t r i a n g l e s o f t r i 1 with a l l o f t r i 2 .
21 f o r k1 = 1 : s i z e (t r i 1 , 1)
22

23 f o r k2 = 1 : s i z e (t r i 2 , 1)
24

25 Points1 = V1(t r i 1 (k1 , :) , :) ; % Red .
26 Points2 = V2(t r i 2 (k2 , :) , :) ; % White .
27

28 Plane1 = createP lane (Points1) ;
29 Plane2 = createP lane (Points2) ;
30

31 [IP12 , f l a g 12] = in t e r s e c tT r i ang l eP l an e (Points1 , Plane2) ;
32 [IP21 , f l a g 21] = in t e r s e c tT r i ang l eP l an e (Points2 , Plane1) ;
33

34 % I f one o f the t r i ang l e−plane i n t e r s e c t i o n s doesn ' t ex i s t ,
35 % there i s no t r i a ng l e−t r i a n l e i n t e r s e c t i o n at a l l .
36 i f (¬(f l a g 12 & f l a g21)) %#ok<AND2>
37 cont inue ;
38 end
39

40 % In t e r s e c t i o n o f the c o l i n e a r segments IP12 , IP21 .
41 [¬ , i f l a g] = co l i n ea rS egment In t e r s e c t i on (IP12 , IP21) ;
42

43 i f (i f l a g)
44 re turn ;
45 end
46

47 end
48 end
49

50 re turn ;

Listing A.16: intersectTrianglePlane.m

1 f unc t i on [IP , f l a g] = in t e r s e c tT r i ang l eP l an e (Points , Plane)
2 % In t e r s e c t s a t r i a n g l e with a plane .
3 %
4 % INPUT
5 % Points The v e r t i c e s o f the t r i a n g l e .
6 % Plane The plane in the form returned by ' createPlane '/ geom3d .
7 % OUTPUT
8 % IP 2x3 matrix with rows the i n t e r s e c t i o n po in t s .
9 % f l a g 1 i f the re i s i n t e r s e c t i o n , 0 otherw i s e .

10

11 % Do the t r i a n g l e and the plane i n t e r s e c t ?
12 Below = isBelowPlane (Points , Plane) ;
13

14 % I f a l l v e r t i c e s l i e on one s i d e o f the plane , no i n t e r s e c t i o n .
15 i f (a l l (Below==Below (1)))
16 IP = [NaN NaN NaN] ;
17 f l a g = 0 ;
18 re turn ;
19 end

48

20

21 idx1 = f i nd (Below) ; % Points below .
22 idx2 = s e t d i f f (1 : 3 , idx1) ; % Points above .
23

24 i f (l ength (idx1) > l ength (idx2))
25 % (i . e . po int idx2 i s on one s i d e and po in t s idx1 on the other .)
26

27 % Segment 1 .
28 s e g 1 s t a r t = Points (idx2 , :) ;
29 seg1 end = Points (idx1 (1) , :) ;
30 Line1 = createL ine3d (s e g1 s t a r t , seg1 end) ;
31

32 % Segment 2 .
33 s e g 2 s t a r t = Points (idx2 , :) ;
34 seg2 end = Points (idx1 (2) , :) ;
35 Line2 = createL ine3d (s e g2 s t a r t , seg2 end) ;
36 e l s e
37 % (i . e . po int idx1 i s on one s i d e and po in t s idx2 on the other .)
38

39 % Segment 1 .
40 s e g 1 s t a r t = Points (idx1 , :) ;
41 seg1 end = Points (idx2 (1) , :) ;
42 Line1 = createL ine3d (s e g1 s t a r t , seg1 end) ;
43

44 % Segment 2 .
45 s e g 2 s t a r t = Points (idx1 , :) ;
46 seg2 end = Points (idx2 (2) , :) ;
47 Line2 = createL ine3d (s e g2 s t a r t , seg2 end) ;
48 end
49

50 % Find the i n t e r s e c t i o n s o f the two segments with the plane .
51

52 IP1 = in t e r s e c tL in eP l ane (Line1 , Plane) ;
53 IP2 = in t e r s e c tL in eP l ane (Line2 , Plane) ;
54

55 % Output
56 IP = [IP1 ; IP2] ;
57 f l a g = 1 ;
58

59 re turn ;

Listing A.17: colinearSegmentIntersection.m

1 f unc t i on [SegIP , f l a g] = co l i n ea rSegment In t e r s e c t i on (seg1 , seg2)
2 % Returns the i n t e r s e c t i o n o f two c o l i n e a r segments .
3 %
4 % INPUT
5 % seg1 , seg2 2x3 matr i ce s with an endpoint on each row .
6 %
7 % OUTPUT
8 % SegIP 2x3 matrix with rows the endpoints o f the i n t e r s e c t i o n segment .
9 % f l a g I n t e r s e c t i o n f l a g : 0 i f no i n t e r s e c t i o n , 1 otherw i s e .

10

11 SegIP = [] ;
12 f l a g = 0 ;
13

14 i f (s i z e (seg1 , 1)>2 | s i z e (seg2 , 1)>2) %#ok<∗OR2>
15 e r r o r (' Segment has not exac t l y two endpoints . ') ;
16 end

49

17

18 % Pro j ec t on appropr ia t e ax i s .
19 ax i s I d = appropr i a t ePro j e c t i onAx i s (seg1) ;
20 switch ax i s I d
21 case 1
22 p r o j a x i s = createL ine3d ([0 0 0] , [1 0 0]) ; % x−ax i s
23 case 2
24 p r o j a x i s = createL ine3d ([0 0 0] , [0 1 0]) ; % y−ax i s
25 case 3
26 p r o j a x i s = createL ine3d ([0 0 0] , [0 0 1]) ; % z−ax i s
27 end
28

29 P = [seg1 ; seg2] ;
30

31 % Pro j ec t the four endpoints on p r o j a x i s .
32 p r o j p o i n t s = projPointOnLine3d (P, p r o j a x i s) ;
33

34 % Sort po in t s w. r . t . the appropr ia te coord .
35 [¬ , I] = so r t (p r o j p o i n t s (: , a x i s I d)) ;
36

37 % I f the segments are d i s j o i n t , r e turn .
38 i f (isempty (s e t d i f f (1 : 2 , I (1 : 2))) | isempty (s e t d i f f (3 : 4 , I (1 : 2))))
39 re turn ;
40 end
41

42 % Otherwise the i n t e r s e c t i o n−segment ' s endpoints are the two middle ones .
43 SegIP = P(I (2 : 3) , :) ;
44 f l a g = 1 ;
45

46 re turn ;

Listing A.18: appropriateProjectionAxis.m

1 f unc t i on ax i s = appropr i a t ePro j e c t i onAx i s (Points)
2 % Returns an ax i s index in [1 2 3] − f o r [x y z] − which corresponds to a
3 % va l i d p r o j e c t i o n axis , in terms o f s o r t i n g c o l i n e a r po in t s . I t s imply
4 % avoids the axes pe rpend i cu la r to the l i n e de f ined by the points , that i s .
5

6 % NOTE: Points are assumed c o l i n e a r .
7

8 % Get i n d i c e s o f columns (i . e . coords) without r e cu r r i n g va lue s .
9 A = f ind (any (Points (1 : 2 , :)−repmat (Points (1 , :) , 2 , 1))) ;

10 ax i s = A(1) ; % Pick the f i r s t o f the non−perpend i cu la r axes .
11

12 re turn

Listing A.19: trackBoundary.m

1 % trackBoundary .m
2 c l e a r a l l ;
3 c l f ;
4 % Scr ip t that t r a ck s the boundar ies o f A l i t e g r a i n s on a 2d micrograph .
5

6 % Load Black−and−White micrograph .
7 X=imread (' c l i n k e r 0 2 . jpg ') ;
8

9 % Convert to binary image .

50

10 I=im2bw(X, graythresh (X)) ;
11

12 % Track boundar ies .
13 [B, L ,N] = bwboundaries (I , 4) ; % watch out the conne c t i v i t y
14

15 % Show image .
16 imshow (I) ;
17

18 hold on ;
19

20 g r a i n s i z e=ze ro s (l ength (B) ,1) ;
21

22 % Draw boundar ies and compute gra in s i z e s (max−c a l l i p e r diameter) .
23 f o r k = 1 : l ength (B) ,
24 boundary = B{k } ;
25 i f (k>N)
26 p lo t (boundary (: , 2) , boundary (: , 1) , ' g ' , 'LineWidth ' , 2) ;
27 e l s e
28 p lo t (boundary (: , 2) , boundary (: , 1) , ' r ' , 'LineWidth ' , 2) ;
29 end
30 % Save the max diameter o f a l l g r a i n s
31 g r a i n s i z e (k)=max(pd i s t (boundary)) ;
32 end
33

34 %f i g u r e ;
35 %h i s t (g r a i n s i z e (g r a i n s i z e >5) , 30)

51

Acknowledgements

I would hereby like to sincerely thank Dr. Falk Wittel and Dr. Miller
Mendoza Jimenez for the numerous discussions we had regarding this thesis.
Apart from assisting with technical advice, Dr. Wittel also gave me very
useful advice with respect to the writing of the report. Dr. Mendoza’s
lasting support was essential for completing this work. Moreover, Dr.
Ratan Mishra was kind enough to share with me his insights into the
clinker’s chemistry in several occasions. Last, but not least, I thank Prof.
Dr. Hans Herrmann, who pointed to the right direction at the right moment.

Funding by The Alexander S. Onassis Public Benefit Foundation in
Greece during the whole period of this Master’s thesis is gratefully
acknowledged.

52

References

[1] F.W. Taylor, Harry. Cement Chemistry. Thomas Telford, 2nd edition, 1997.

[2] Robert J. Flatt, Nicolas Roussel, and Christopher R. Cheeseman. Concrete: An eco ma-
terial that needs to be improved. Journal of the European Ceramic Society, 32(11):2787 –
2798, 2012. Special Issue: ECerS XII, 12th Conference of the European Ceramic Society.

[3] J. A. Åström. Statistical models of brittle fragmentation. Advances in Physics, 55(3-
4):247–278, 2006.

[4] Ratan K. Mishra. Simulation of Interfaces in Construction Materials: Tricalcium Silicate,
Gypsum, and Organic Modifiers. PhD thesis, University of Akron, Polymer Engineering,
2012.

[5] Yongchun Zhang, Jacob P. Sizemore, and Michael F. Doherty. Shape evolution of 3-
dimensional faceted crystals. AIChE Journal, 52(5):1906–1915, 2006.

[6] Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Stereological techniques for solid
textures. ACM Trans. Graph., 23(3):329–335, August 2004.

[7] G. Mertens and J. Elsen. Use of computer assisted image analysis for the determination
of the grain-size distribution of sands used in mortars. Cement and Concrete Research,
36(8):1453 – 1459, 2006. 10th EUROSEMINAR on microscopy applied to building mate-
rials, University of Paisley, June 21-25, 2005.

[8] Joachim Ohser and Frank Mücklich. Statistical Analysis of Microstructures. John Wiley
& Sons, Ltd, 2000.

[9] Russ C. John. Practical Stereology. Plenum Press, 1986.

[10] Paul Stutzman. Scanning electron microscopy imaging of hydraulic cement microstructure.
Cement and Concrete Composites, 26(8):957 – 966, 2004. Scanning electron microscopy of
cements and concretes.

[11] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. Digital Image Processing
Using MATLAB. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

[12] Elizabeth A. Holm and Corbett C. Battaile. The computer simulation of microstructural
evolution. JOM, 53(9):20–23, 2001.

[13] M.P Anderson, D.J Srolovitz, G.S Grest, and P.S Sahni. Computer simulation of grain
growth - I. kinetics. Acta Metallurgica, 32(5):783 – 791, 1984.

[14] B. Radhakrishnan and T. Zacharia. Simulation of curvature-driven grain growth by using a
modified Monte Carlo algorithm. Metallurgical and Materials Transactions A, 26:167–180,
1995.

53

[15] Qiang Yu and Sven K. Esche. A Monte Carlo algorithm for single phase normal grain
growth with improved accuracy and efficiency. Computational Materials Science, 27(3):259
– 270, 2003.

[16] C. Ming Huang, C.L. Joanne, B.S.V. Patnaik, and R Jayaganthan. Monte Carlo simulation
of grain growth in polycrystalline materials. Applied Surface Science, 252(11):3997 – 4002,
2006. ICMAT 2005: Symposium L.

[17] O.M. Ivasishin, S.V. Shevchenko, and S.L. Semiatin. Implementation of exact grain-
boundary geometry into a 3-d Monte-Carlo (Potts) model for microstructure evolution.
Acta Materialia, 57(9):2834 – 2844, 2009.

[18] L.-Q. Chen. Novel computer simulation technique for modeling grain growth. Scripta
Metallurgica et Materialia, 32:115–120, January 1995.

[19] Long-Qing Chen and Yunzhi Wang. The continuum field approach to modeling microstruc-
tural evolution. JOM, 48(12):13–18, 1996.

[20] Liangliang Liu, Feng Gao, Guoxin Hu, and Jiangnan Liu. Phase field simulation for the
evolution of textured ceramics microstructure. Ceramics International, 38(7):5425 – 5432,
2012.

[21] Long-Qing Chen. Phase field model for microstructure evolution. Annual Review of Mate-
rials Research, 32(1):113–140, 2002.

[22] Mark A. Miodownik. A review of microstructural computer models used to simulate grain
growth and recrystallisation in aluminium alloys. Journal of Light Metals, 2(3):125 – 135,
2002. Modelling of Light Metals.

[23] Kyozi Kawasaki, Tatsuzo Nagai, and Katsuya Nakashima. Vertex models for two-
dimensional grain growth. Philosophical Magazine Part B, 60(3):399–421, 1989.

[24] D. Weygand, Y. Brechet, and J. Lepinoux. A Vertex simulation of grain growth in 2d and
3d. Advanced Engineering Materials, 3(1-2):67–71, 2001.

[25] Y. Liu, T. Baudin, and R. Penelle. Simulation of normal grain growth by Cellular Au-
tomata. Scripta Materialia, 34(11):1679 – 1683, 1996.

[26] J. Geiger, A. Rosz, and P. Barkczy. Simulation of grain coarsening in two dimensions by
Cellular Automaton. Acta Materialia, 49(4):623 – 629, 2001.

[27] S. Raghavan and Satyam S. Sahay. Modeling the grain growth kinetics by Cellular Au-
tomaton. Materials Science and Engineering: A, 445446(0):203 – 209, 2007.

[28] S. Raghavan and Satyam S. Sahay. Modeling the topological features during grain growth
by Cellular Automaton. Computational Materials Science, 46(1):92 – 99, 2009.

[29] S.A. Galindo-Torres, D.M. Pedroso, D.J. Williams, and L. Li. Breaking processes in three-
dimensional bonded granular materials with general shapes. Computer Physics Communi-
cations, 183(2):266 – 277, 2012.

[30] M. Lu and G.R. McDowell. The importance of modelling ballast particle shape in the
Discrete Element Method. Granular Matter, 9:69–80, 2007.

54

[31] Y. Liu and Z. You. Visualization and simulation of asphalt concrete with randomly gener-
ated three-dimensional models. Journal of Computing in Civil Engineering, 23(6):340–347,
2009.

[32] D. Zhang, X. Huang, and Y. Zhao. Algorithms for generating three-dimensional aggregates
and asphalt mixture samples by the Discrete-Element Method. Journal of Computing in
Civil Engineering, 27(2):111–117, 2013.

[33] Linbing Wang, Jin-Young Park, and Yanrong Fu. Representation of real particles for DEM
simulation using X-ray tomography. Construction and Building Materials, 21(2):338 – 346,
2007.

[34] Christian Borchert and Kai Sundmacher. Efficient formulation of crystal shape evolution
equations. Chemical Engineering Science, 84(0):85 – 99, 2012.

[35] David Legland. geom3d. http://www.mathworks.com/matlabcentral/fileexchange/

24484, June 2009.

[36] John D’Errico. inhull. http://www.mathworks.com/matlabcentral/fileexchange/

10226-inhull, September 2012.

[37] Oliver Woodford. Exportfig. http://www.mathworks.com/matlabcentral/

fileexchange/23629-exportfig, December 2012.

[38] http://geomalgorithms.com/a06-_intersect-2.html.

[39] S. Torquato and Y. Jiao. Dense packings of the Platonic and Archimedean solids. Nature,
460:876–879, August 2009.

[40] C. Ericson. Real-Time Collision Detection. CRC Press, har/cdr edition, 2004.

[41] H. A. Carmona, F. K. Wittel, F. Kun, and H. J. Herrmann. Fragmentation processes in
impact of spheres. Phys. Rev. E, 77:051302, May 2008.

[42] G. Timár, F. Kun, H. A. Carmona, and H. J. Herrmann. Scaling laws for impact fragmen-
tation of spherical solids. Phys. Rev. E, 86:016113, Jul 2012.

55

http://www.mathworks.com/matlabcentral/fileexchange/24484
http://www.mathworks.com/matlabcentral/fileexchange/24484
http://www.mathworks.com/matlabcentral/fileexchange/10226-inhull
http://www.mathworks.com/matlabcentral/fileexchange/10226-inhull
http://www.mathworks.com/matlabcentral/fileexchange/23629-exportfig
http://www.mathworks.com/matlabcentral/fileexchange/23629-exportfig
http://geomalgorithms.com/a06-_intersect-2.html

