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∗he loves thee too little/who loves anything together with thee/which he
loves not for thy sake. This phrase is to be understood in the sense that I love mathematics
because I love God, and that I do mathematics in order to glorify God. Any other (historical)
(mis)interpretation of this quote by any denomination or person is theirs, not mine.





Abstract

In this thesis, we develop a new framework for modelling financial markets which
does not depend on an ex-ante choice of a currency unit and a numéraire. In
this framework, we then study central concepts of mathematical finance like
(no-)arbitrage or financial bubbles. The motivation for doing this is to overcome
several deficiencies of the standard modelling approach in mathematical finance,
first and foremost the initial choice of currency unit and numéraire, which is not
justified from an economic point of view. In addition, our framework can be seen
as a great unifying paradigm encompassing various other recent approaches to
modelling financial markets and studying (no-)arbitrage.

Numéraire-independent modelling starts by describing a financial market not
by a single process but by an equivalence class of processes. As a consequence,
familiar concepts such as admissible trading strategies, contingent claims or super-
replication prices have to be revisited and redefined in a numéraire-independent
way. In particular—even though this sounds absurd—we have to give a numéraire-
independent definition of the key notion of “numéraire” itself.

After this groundwork has been finished, we translate in our framework the
catchphrase that arbitrage means “making a profit out of nothing without risk”
into a rigorous mathematical definition as literally as possible by saying that a
market satisfies numéraire-independent no-arbitrage (NINA) if and only if there
does not exist a nonzero contingent claim (“the profit”) which can be superrep-
licated for free (“out of nothing”). We study this notion in detail and compare it
to classic no-arbitrage concepts from the literature.

If a market fails NINA, a natural question is whether there is a stopping time
σ such that strictly before σ, we can never “make a profit out of nothing without
risk”, and immediately after σ, we always can. Another interesting question in
the same setup is whether it is possible to find a probability measure Q that is
absolutely continuous to the physical measure P such that the market satisfies
NINA under Q. We answer both questions in the affirmative and in full generality.

On the other hand, if a market satisfies NINA, an important mathematical
problem is to find a dual characterisation of that property. We show that the
corresponding dual objects are pairs (η,Q) of numéraire strategies and equivalent
σ-martingale measures. Of course, we also compare this numéraire-independent
version of the fundamental theorem of asset pricing to the classic result by Del-
baen and Schachermayer.

Last but not least, we propose a numéraire-independent approach to modelling
financial bubbles. Unlike most papers in the recent literature we do not define
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bubbles by a dual object, usually a strict local martingale measure, but start from
primary concepts that are economically motivated. To this end, we introduce the
notions of static and dynamic viability and efficiency of a market and derive
their dual characterisations. In particular, we show that strict local martingale
measures arise naturally in the context of modelling financial bubbles.



Kurzfassung

In dieser Arbeit entwickeln wir einen neuen Modellierungsansatz für Finanzmärk-
te, welcher nicht von der Vorab-Wahl einer Währungseinheit und eines Numérai-
res abhängt. Innerhalb dieses Ansatzes studieren wir dann zentrale Konzepte der
Finanzmathematik wie Arbitrage(freiheit) oder Spekulationsblasen. Die Motiva-
tion dafür ist, mehrere Schwächen des Standardmodellierungsansatzes der Fi-
nanzmathematik zu überwinden, vor allem die Vorab-Wahl von Währungseinheit
und Numéraire, welche aus ökonomischer Sicht nicht gerechtfertigt ist. Unseren
Modellierungsansatz kann man zudem als ein grosses einheitliches Paradigma be-
trachten, in das sich zahlreiche andere neuere Modellierungsansätze für Finanz-
märkte und Arbitrage(freiheit) einordnen lassen.

Numéraire-unabhängige Modellierung beginnt damit, dass man Finanzmärk-
te nicht durch einen einzigen Prozess, sondern eine Äquivalenzklasse von Pro-
zessen beschreibt. Folglich muss man bekannte Konzepte wie zulässige Handels-
strategien, Eventualforderungen oder Superreplikationspreise überdenken und in
Numéraire-unhabhängiger Weise neu definieren. Insbesondere – auch wenn das
absurd klingt – muss man den Schlüsselbegriff „Numéraire“ selbst Numéraire-
unhabhängig definieren.

Nach Abschluss dieser Vorarbeit, übersetzen wir innerhalb unseres Model-
lierungsansatzes den Allgemeinplatz, das Arbitrage bedeutet „aus Nichts einen
Gewinn ohne Risiko zu erzielen“, so wörtlich wie möglich in eine präzise mathe-
matische Definition, indem wir sagen, dass ein Markt genau dann Numéraire-
unhabhängige Arbitragefreiheit (NINA1) erfüllt, wenn es keine Eventualforderung
(„den Gewinn“) gibt, der kostenlos („aus nichts“) superrepliziert werden kann.
Wir studieren dann diesen Begriff sorgfältig und vergleichen ihn mit klassischen
Konzepten der Arbitrage(freiheit) aus der Literatur.

Wenn ein Markt NINA nicht erfüllt, stellt sich ganz natürlich die Frage, ob
eine Stoppzeit σ existiert, so dass man strikt vor σ in keinem Fall „aus Nichts
einen Gewinn ohne Risiko erzielen“ kann, aber unmittelbar nach σ dies immer
kann. Eine weitere interessante Frage unter der gleichen Voraussetzung ist, ob es
möglich ist, ein Wahrscheinlichkeitsmass Q zu finden, welches absolut stetig zum
physischen Mass P ist, so dass der Markt NINA unter Q erfüllt. Wir geben auf
beide Fragen eine positive Antwort und dies in voller Allgemeinheit.

Im anderen Fall, dass der Mark NINA erfüllt, besteht ein wichtiges mathema-
tisches Problem darin, eine duale Charakterisierung dieser Eigenschaft zu finden.

1Dies ist die englische Abkürzung des Begriffs, die wir im Folgenden aus Konsistenzgünden
verwenden.
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Wir zeigen, dass die geeigneten dualen Objekte Paare (η,Q) von Numéraire-
Strategien und äquivalenten σ-Martingalmassen sind. Selbstverständlich verglei-
chen wir diese Numéraire-unhabhängige Version des Fundamentalsatzes der An-
lagenbewertung mit dem klassischen Resultat von Delbaen und Schachermayer.

Zum Schluss schlagen wir einen Numéraire-unhabhängigen Modellierungsan-
satz für Spekulationsblasen vor. Anders als die meisten neueren Artikel in der
Literatur definieren wir dabei eine Spekulationsblase nicht mittels eines dualen
Objekts, normalerweise eines strikt lokalen Martingalmasses, sondern starten von
primären Konzepten, die ökonomisch motiviert sind. Dazu führen wir die Begrif-
fe der statischen und dynamischen Viabilität und Effizienz ein und leiten deren
duale Charakterisierung her. Insbesondere zeigen wir, dass strikt lokale Martin-
galmasse auf ganz natürliche Weise im Zusammenhang mit Spekulationsblasen
auftauchen.
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Chapter I

Introduction

The standard modelling approach in mathematical finance consists of four steps.
First, one chooses a currency unit. This is a label attaching numbers over time
to real commodities and services. Examples are an ounce of gold, a Euro, or its
precursor, the European currency unit (ECU). Second, one describes in that unit
the evolution of N financial assets by a stochastic process S̃ = (S̃1

t , . . . , S̃
N
t )t∈[0,T ].

Third, one chooses in that unit a numéraire, which for the moment may be un-
derstood to mean the positive price process S̃k of a basic asset. (A bit more
precisely, we need that P[inft∈[0,T ] S̃

k
t > 0] = 1.) Fourth, one expresses all other

assets in units of the numéraire asset S̃k by defining X i := S̃i/S̃k. After rela-
belling the assets, the numéraire asset k is called “asset 0” or bank account ; the
other d := N − 1 assets X1, . . . , Xd are called risky assets, and it is often said
that they are discounted by or in units of the bank account.

The vast majority of papers in mathematical finance—with an obvious excep-
tion in the literature on interest rate modelling—starts only after the final step
of the above procedure. These papers consider from the beginning an Rd-valued
process X and call this the (discounted) price process of d (risky) assets. Almost
always, they also assume (but very often do not mention explicitly) that there is
in addition to X a (riskless) bank account whose price is identically 1. Moreover,
it is sometimes said and probably widely believed throughout the community that
starting right away with X can be done without loss of generality, i.e., that doing
this is a purely mathematical convenience.

However, starting with X is a loss of generality in two respects. First, this
implicitly assumes that the price process of at least one of the basic assets is
positive. To illustrate this point, consider a market with two assets S̃1 and S̃2

which both may default with positive probability, but on disjoint events, i.e.,
inf0≤t≤T |S̃it | = 0 on Ai with 0 < P [Ai] < 1 and P[A1 ∩ A2] = 0. Then neither
S̃1 nor S̃2 can be used for discounting. Second, and this is the crucial point,
when passing from S̃ to X, two important pieces of information are lost: one
forgets the original currency unit of S̃ and the price process S̃k of the numéraire
asset in the original currency unit. From an economic perspective, it makes a
difference whether the currency unit of S̃ is EUR or USD, say, or whether S̃k is
a deterministic function or a geometric Brownian motion, say.
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If we ignore the first point for the moment, one might well be led to think the
second point does not really matter when studying only qualitative and preference-
independent properties of the market, such as absence of arbitrage. We think that
it is in this sense that people generally understand the statement that starting
with X can be done without loss of generality. However, it is an unfortunate fact
that this intuitive understanding does not rest on solid foundations. The most
basic definition in the standard framework, the notion of admissible strategies [9],
crucially depends on the original currency unit of S̃ and on the price process of
the numéraire asset S̃k. This is because it imposes a (strategy-dependent) credit
line, which is expressed in quantities of the numéraire asset S̃k. As a consequence,
all the classic no-arbitrage concepts like no-arbitrage (NA) [9], no free lunch with
vanishing risk (NFLVR) [9] and no unbounded profit with bounded risk (NUPBR)
[46, 73] depend by their very definition, at least formally, on the currency unit
and on the numéraire chosen in the four steps above. The same holds for the
notion of maximal strategies in the sense of Delbaen and Schachermayer [11, 12]
because their comparison class consists of admissible strategies. It would be more
appropriate to call such strategies (asset 0)-admissible and to speak of (asset 0)-
NA, (asset 0)-NFLVR, etc., to emphasise the dependence on (the choice of) asset 0
also in the notation.

In view of the above dependence, calling failure of NFLVR simply “arbitrage”
and thereby suggesting a preference-independent concept is misleading. This
has led to some results in the recent literature which might be surprising at a
first glance. For example, in the benchmark approach [65], a market may have
“arbitrage” (violate NFLVR); but in units of the numéraire portfolio, the theory
works as if there was no arbitrage. For stochastic portfolio theory and relative
arbitrage [22, 70], a market may have “arbitrage”; but studying portfolio choice
still makes sense, and Delta hedging still works. Finally, financial bubbles in the
sense of Protter et al. [40, 41, 67] and “arbitrage” seem to be two sides of the same
coin in the sense that if (1, X) is a “bubble model”, then (1/X, 1) is an “arbitrage
model”; see also [27]. On closer inspection, however, none of the above situations
is really astonishing: Failure of NFLVR is a preference-dependent concept—the
preference is encoded in the original currency unit of S̃ and the price process
of the numéraire asset S̃k—and so the use of the (preference-independent) word
“arbitrage” is simply misleading in each case.

To some extent, specialists are aware of the dependence of the standard frame-
work on the choice of a currency unit and a numéraire. (Let us stress that the no-
tion of “numéraire” in the standard framework implicitly assumes that a currency
unit has been chosen. A numéraire is always a numéraire in some fixed currency
unit; cf. the discussion after Remark II.3.2 below.) Delbaen and Schachermayer
[11, 12] fix a currency unit and an initial “good” numéraire (in the sense that X
satisfies NFLVR), and then study how properties transfer from one numéraire to
another. They analyse for example how NFLVR for X is related to NFLVR for
X ′, where X ′i = S̃i/S̃k

′ . The experts in the field also know that the no-arbitrage
conditions of no-arbitrage of the first kind (NA1) [48], no cheap thrills [56] or
NUPBR are equivalent, and it is folklore that they do not depend on the choice
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of a numéraire (in a given fixed currency unit)—even though (in the case of
NUPBR) this is not trivial and does not appear to have been rigorously proved.1
But these results are based on initial choices of a currency unit and a numéraire
to even define the concepts involved; an example where all the assets can default
is not included. This is discussed in more detail in Chapter III.3.3.

The goal of this thesis is to tackle the root of the problem explained above—
we want to define and study, in a systematic way, concepts like no-arbitrage or
financial bubbles without first choosing a currency unit and a numéraire. To this
end, we develop a new modelling framework and reconsider from scratch how
to describe markets, trading strategies, etc. in that setting. This needs care,
and sometimes apparently familiar concepts must be re-introduced to explain
the subtle differences. We call our approach numéraire-independent because it is
based upon concepts that do not fix a currency unit or a numéraire.2

1 Numéraire-independent modelling in a nutshell

Before providing a short overview over the material presented in this thesis, let
us briefly sketch some of the key ideas of numéraire-independent modelling.

The starting point of our work is to recall that mathematical finance can only
describe relative prices of traded assets (e.g. stocks, derivatives or interest rate
products) in terms of a given currency unit, or the relative price of one currency
unit in terms of another, i.e., an exchange rate. For this reason, we model a
financial market not by a single price process S, but by an equivalence class S
of processes S. Each S ∈ S describes the evolution of asset prices in one of the
(infinitely many) possible currency units. Economic sense then dictates that all
definitions and results must be formulated in such a way that they hold for some
representative S ∈ S if and only if they hold for every S ∈ S. This gives a truly
numéraire-independent framework.

Trading in the market S is “as usual” restricted to self-financing strategies,
and we show that the self-financing concept is numéraire-independent. Again
“as usual”, we need some additional conditions to exclude doubling phenomena
when there are infinitely many trading dates. The familiar notion of (asset 0)-
admissibility cannot be used since it is based on initial choices of a currency unit
and a numéraire. Instead, we consider self-financing strategies with nonnegative
value processes. If the value process of an undefaultable strategy η is positive,
we call η a numéraire strategy. For each such η, there is a unique numéraire
representative S(η) ∈ S in whose units the value process of η is identically 1.

1For instance, it is stated in Schweizer and Takaoka [73, before Proposition 2.7, italics added]
that NUPBR is a “numéraire-free property in a certain sense”, but this is not made precise.
Moreover, in [73, Proposition 2.7] there is a change of dimension, and so this result is strictly
speaking not numéraire-free.

2The more precise terminology currency-unit- and numéraire-independent is too long to be
useful. Moreover, we note in passing that the paper by Yan [83] on a numéraire-free framework
is a misnomer; it uses as initial numéraire (in the original currency unit) instead of one basic
asset S̃k their sum

∑N
i=1 S̃

i.
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This simple observation has remarkably far-reaching consequences. Instead of
imposing on S that one asset is positive in some (and hence in every) currency
unit, we only need to require that there exists a (dynamic) numéraire strategy
for S. This allows us to deal with very general situations, including the above
example where all assets can default.

We next want to introduce a no-arbitrage condition which is not based on
initial choices of a currency unit and a numéraire (strategy). Simply modifying
the classic concepts of (asset 0)-NA and (asset 0)-NFLVR by replacing (asset 0)-
admissible strategies in the definitions by undefaultable strategies starting at 0
does not work; see the discussion after Proposition III.3.21 below. Instead, we go
back to the fundamental economic catchphrase that arbitrage means “making a
profit out of nothing without risk”. This can be rephrased as “anything good and
riskless must cost something”, and so we say that a market S satisfies numéraire-
independent no-arbitrage (NINA) if every nonzero (nonnegative) contingent claim
has a positive superreplication price. Making this rigorous also involves defining,
like the market S, the notions of a contingent claim and a superreplication price
in a numéraire-independent way.

In the standard framework, the dual characterisation of no-arbitrage is given
by the classic fundamental theorem of asset pricing (FTAP), in its most general
form due to Delbaen and Schachermayer [9, 13]. It says that the (asset 0)-
denominated price process (1, X) satisfies (asset 0)-NFLVR if and only if there
exists an equivalent σ-martingale measure (EσMM) Q for X. One of our main
results is a numéraire-independent version of the FTAP. We show in Theorem
VI.1.10 below that a market S satisfies NINA (which is strictly weaker than
(asset 0)-NFLVR) if and only if there exists a pair (η,Q), where η is a “good” nu-
méraire strategy and Q an EσMM for the corresponding numéraire representative
S(η). So our dual characterisation includes the existence of a suitable “good” nu-
méraire, which can be different from any of the basic assets, and which is neither
given nor chosen ex ante. For this reason, we think that our version of the FTAP
is more natural from an economic perspective.

2 Overview of the thesis
The concepts and results obtained in this thesis are presented in seven chapters.
The last chapter, which is joint work with Martin Schweizer, is unlike the others
largely self-contained, and so there are some redundancies there. The material
for Chapter II is mainly taken from [30], Chapters III, VI and VII are based on
[31] and [32], and Chapters IV, V and VIII are unpublished material.

II Key concepts of numéraire-independent modelling. In this chapter,
we motivate and develop the key concepts of numéraire-independent modelling.
After explaining in Section II.1 what we understand under a market in our frame-
work, we discuss in Section II.2 how trading can be described in a numéraire-
independent way. In Section II.3, we define the central concepts of numéraire
strategies and numéraire representatives and compare them to the classic notion
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of a numéraire (in a fixed currency unit). In Section II.4, we introduce strategy
cones and show in which sense the prime example of undefaultable strategies is the
numéraire-independent counterpart of the classic notion of admissible strategies.
In Section II.5, we look at contingent claims from a numéraire-independent per-
spective and discuss the notion of numéraire-independent derivative securities.
In Section II.6, we study in our framework two notions of superreplication prices,
which we call ordinary and limit quantile superreplication prices. The first one is
the numéraire-independent counterpart of superreplication prices in the standard
framework; the second one is new and captures a slightly relaxed version of the
concept of superreplication. It has nicer (continuity) properties than the first one
and is the cornerstone of our concept of (no-)arbitrage in Chapter III. Finally, we
show in Section II.7, that limit quantile superreplication prices enjoy a robust-
ness property that ordinary superreplication prices lack. Theorem II.7.3, which is
mathematically the most sophisticated result in this chapter, is also the technical
anchor of the results in Chapter V.

III Numéraire-independent no-arbitrage (NINA). In this chapter, we
study the concept of (no-)arbitrage in our numéraire-independent framework. In
Section III.1, we introduce a very general and quantitative notion of arbitrage,
called gratis events, based on limit quantile superreplication prices. The results in
Section III.1 also lay the ground for Chapters IV and V. For the most relevant case
of undefaultable strategies, we derive an equivalent and simpler characterisation
of the absence of gratis events based on ordinary superreplication prices in Sec-
tion III.2. We call the corresponding notion numéraire-independent no-arbitrage
(NINA). In Section III.3, we compare NINA to classic notions of no-arbitrage
including no-arbitrage (NA), no free lunch with vanishing risk (NFLVR) and
no unbounded profit with bounded risk (NUPBR) by presenting a new unifying
characterisation of those concepts in terms of maximal strategies. The results in
Section III.3 are also foundational for Chapter VI.

IV Separating stopping times for markets failing NINA. In this chapter,
we study markets failing NINA. We seek to find a stopping time σ such that (1)
strictly before σ, we can never “make a profit out of nothing without risk”, and (2)
immediately after σ, we always can. It is natural to call σ a separating stopping
time for the market S. After making the above concept mathematically precise
and establishing a preliminary lemma in Section IV.1, we show the existence of
a smallest separating stopping time in Section IV.2 and prove the existence of
a largest separating stopping time in Section IV.3. We conclude the chapter by
illustrating our results by several examples in Section IV.4.

V Absolutely continuous measures for markets failing NINA. In this
chapter, we study markets which fail NINA under the physical measure P. We
seek to answer the question whether it is then possible to find an absolutely
continuous probability measure Q � P on FT such that the market satisfies
NINA under Q. After addressing some technical issues related to an absolutely
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continuous change of measure in Section V.1, we explain in Section V.2 how to
construct Q in the case of continuous markets. The more difficult general case is
fully solved in Section V.3.

VI Dual characterisation of markets satisfying NINA. In this chapter,
we study markets satisfying NINA. After proving the existence of nonzero strongly
maximal (numéraire) strategies, we derive a numéraire-independent version of the
fundamental theorem of asset pricing (FTAP) in Section VI.1. In Section VI.2,
we provide a dual characterisation of (weakly and strongly) maximal strategies
and provide conditions for the existence of (true) martingale representatives. In
Section VI.3, we derive a numéraire-independent dual characterisation of super-
replication prices and discuss the notion of (strongly) maximal and (strongly)
attainable contingent claims.

VII Comparison to other modelling frameworks. In this short chapter,
we compare our numéraire-independent approach of modelling financial markets
and studying no-arbitrage to the standard and other recent approaches to these
issues.

VIII Bubbles from a numéraire-independent perspective. In this final
chapter, we develop a new approach for modelling financial bubbles using our
numéraire-independent paradigm. Unlike most papers in the recent literature,
e.g. [56, 8, 40, 41, 67], we do not define bubbles by a dual object, usually a strict
local martingale measure, but start from primary notions that are economically
motivated. After explaining the main concepts of static and dynamic viability
and efficiency in Section VIII.1, we illustrate them by several examples in Section
VIII.2 before deriving their dual characterisations in Section VIII.3. In particular,
we show that strict local martingale measures arise naturally in the context of
modelling financial bubbles; see Theorem VIII.3.22. After providing some further
examples of what we call nontrivial bubbly markets in Section VIII.4, we compare
our definitions and results to the existing literature on bubbles in Section VIII.5.

3 Probabilistic setup and general notation

We always work on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) satisfying
the usual conditions of right-continuity and completeness; T > 0 is a finite time
horizon. We assume that F0 is P-trivial. We denote the collection of all P-nullsets
in FT by N and the set of all stopping times with values in [0, T ] by T[0,T ]. We
also consider stopping times with values in [0, T ]∪{+∞} and agree as usual that
inf ∅ = +∞.

We set R+ := [0,∞), R++ := (0,∞), R+ := R+ ∪ {+∞}, R+ := R+ ∪ {−∞}
and R+ := R+ ∪ {+∞}∪ {−∞}. All these sets are convex cones, when we agree
that c +∞ = ∞ + c = ∞ for c ∈ R+, −∞ + c = c − ∞ = −∞ for c ∈ R+,
c × (±∞) = ±∞ for c ∈ R++, and 0 × (±∞) = 0. For τ ∈ T[0,T ], we denote
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by L0
+(Fτ ), L0

++(Fτ ), L
0

+(Fτ ), L0
+(Fτ ) and L

0

+(Fτ ) the sets of all Fτ -measurable
random variables taking values in R+, R++, R+, R+, and R+, respectively.

An RN -valued predictable process ζ = (ζ1
t , . . . , ζ

N
t )t∈[0,T ] is called bounded if

there exists a constant K > 0 such that supt∈[0,T ] ‖ζt‖ ≤ K P-a.s., where ‖ · ‖
denotes any norm in RN . It is called simple predictable if it is bounded and
if there exist stopping times 0 = τ0 ≤ · · · ≤ τn = T in T[0,T ] and RN -valued
Fτk−1

-measurable3 random vectors ξk such that

ζ = ξ01J0K +
n∑
k=1

ξk1Kτk−1,τkK P-a.s.

For an RN -valued semimartingale X = (X1
t , . . . , X

N
t )t∈[0,T ], we denote by

L(X) the set of all RN -valued predictable processes ζ = (ζ1
t , . . . , ζ

N
t )t∈[0,T ] that

are integrable with respect to X in the sense of N -dimensional (vector) stochastic
integration (consult Jacod and Shiryaev [37] for details). For ζ ∈ L(X) and
0 ≤ t ≤ T , we write ζ •Xt for the stochastic integral

∫
(0,t]

ζu dXu and ζt ·Xt for
the inner product

∑N
k=1 ζ

k
t X

k
t .

3with τ−1 := 0.
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Chapter II

Key concepts of numéraire-
independent modelling

In this chapter, we motivate and develop the key concepts of numéraire-inde-
pendent modelling. After explaining in Section 1 what we understand under a
market in our framework, we discuss in Section 2 how trading can be described in a
numéraire-independent way. In Section 3, we define the central concepts of numé-
raire strategies and numéraire representatives and compare them to the classic no-
tion of a numéraire (in a fixed currency unit). In Section 4, we introduce strategy
cones and show in which sense the prime example of undefaultable strategies is the
numéraire-independent counterpart of the classic notion of admissible strategies.
In Section 5, we look at contingent claims from a numéraire-independent per-
spective and discuss the notion of numéraire-independent derivative securities.
In Section 6, we study in our framework two notions of superreplication prices,
which we call ordinary and limit quantile superreplication prices. The first one
is the numéraire-independent counterpart of superreplication prices in the stand-
ard framework; the second one is new and captures a slightly relaxed version
of the concept of superreplication. It has nicer (continuity) properties than the
first one and is the cornerstone of our concept of (no-)arbitrage in Chapter III.
Finally, we show in Section 7, that limit quantile superreplication prices enjoy
a robustness property that ordinary superreplication prices lack. Theorem 7.3,
which is mathematically the most sophisticated result in this chapter, is also the
technical anchor of the results in Chapter V. The material for this chapter closely
follows [30].

1 Exchange rate processes and markets

One primal economic entity in financial markets is a currency unit. But since
mathematical finance can only model relative prices of one currency unit in terms
of another,1 the corresponding primal mathematical entity is an exchange rate
process.

1For an excellent discussion of this fact, we refer to the introduction of Vecer [80].
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Definition 1.1. An exchange rate process is a positive semimartingale D satis-
fying

inf
0≤t≤T

Dt > 0 P-a.s. (1.1)

We denote the set of all exchange rate processes by D.

If S = (S1, . . . , SN) is an RN -valued semimartingale describing the evolution
of N assets in EUR and D is the exchange rate process of EUR against USD, i.e.,
1 EUR corresponds to Dt USD at time t, then S ′ = DS describes the evolution
of the assets in USD. Clearly, S and S ′ describe the same financial market, and
so we should treat them as one object, not two.

Definition 1.2. Two RN -valued semimartingales S and S ′ are called economic-
ally equivalent if S ′ = DS P-a.s. for some D ∈ D.

It is easy to check that economic equivalence is indeed a mathematical equi-
valence relation, this uses (1.1).

Let us repeat: If S describes N assets in some currency unit and S ′ is econom-
ically equivalent to S, then S ′ describes the same assets in another currency unit.
So instead of just considering S, we can consider the set S of all semimartinga-
les which are economically equivalent to S—or to S ′. Since it does not matter,
whether S was derived from S or from S ′, we obtain a numéraire-independent
(i.e., a currency-unit- and numéraire-independent) description of the assets.

Definition 1.3. A set S 6= ∅ of RN -valued semimartingales is called an (N -
dimensional) market if S = {DS : D ∈ D} for some (and hence every) S ∈ S
and if some (and hence every) S ∈ S satisfies

inf
0≤t≤T

N∑
i=1

|Sit | > 0 P-a.s. (1.2)

Each S ∈ S is called a representative of S. S is called nonnegative if some (and
hence every) S ∈ S is P-a.s. componentwise nonnegative; it is called continuous
if there exists a representative S ∈ S which has P-a.s. continuous trajectories.

To define a market S, one usually starts with an (RN -valued) semimartingale
S satisfying (1.2) describing the evolution of the market in some currency unit,
and then sets S := {DS : D ∈ D}, which we also call the market generated by S.
A special case is

S = (1, X), (1.3)

where X = (X1, . . . , Xd) denotes d = N − 1 “risky” asset and 1 a “riskless” asset,
in “discounted” units. We refer to (1.3) as a classic model in the sequel; note the
index shift Si+1 = X i.

Remark 1.4. Note that (1.2) is strictly weaker than inf0≤t≤T S
i
t > 0 P-a.s. for

some i = 1, . . . , N ; see the discussion in Chapter I. Mathematically, (1.2) implies
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that for each pair (S, S ′) ∈ S × S, there exists a P-a.s. unique exchange rate
process D satisfying S ′ = DS P-a.s.; this follows from the identity

D =

∑N
i=1 |S ′i|∑N
i=1 |Si|

P-a.s.

Economically, (1.2) is a very weak nondegeneracy condition on the market; it
requires in particular that there do not exist a stopping time τ ∈ T[0,T ] and an
event Aτ ∈ Fτ with P[Aτ ] > 0 on which all assets have no value whatsoever and
where one could exchange any position in the assets against any other position.2

Since our approach is numéraire-independent, we must be careful with in-
terpretations. If we pick an arbitrary representative S ∈ S, an expression like
S1

1 = 100 does not have any financial meaning whatsoever unless we also have
precise information about the currency unit corresponding to S. Similarly, an
expression like S1

1 = 100, S2
1 = 300 in general only conveys the information that

at time 1, we can exchange 3 = 300/100 quantities (think of stock certificates) of
asset 1 against 1 quantity of asset 2.

Remark 1.5. If one generalises the notion of exchange rate processes to non-
negative semimartingales which satisfy (1.1) only strictly prior to a (predictable)
stopping time τ ∈ T[0,T ] and says that S and S ′ are economically equivalent if
S ′ = DS P-a.s. on J0, τJ for some generalised exchange rate process D, one can
extend the notion of a market correspondingly. Economically, this captures the
notion of defaulting/exploding exchange rates. For a setup with two represent-
atives S$ and Se and one exchange rate process X, we refer to Carr et al. [7].

2 Position processes, investment processes
and self-financing strategies

We proceed to describe trading in our numéraire-independent framework. We
always assume that an (N -dimensional) market S is exogenously given and that
there are no market frictions such as transaction costs or liquidity premia. Nev-
ertheless, this is not a completely trivial exercise. On the one hand, the standard
definition of self-financing strategies found in most textbooks on continuous-time
mathematical finance assumes the classic framework, and so we cannot use it.
On the other hand, unlike in the classic framework, we also have to consider
strategies which are not self-financing; see the discussion after Corollary 3.8.

2.1 Position processes

First, trading can be seen statically : At each stopping time τ ∈ T[0,T ], one looks at
the position ϕτ = (ϕ1

τ , . . . , ϕ
N
τ ) held in the assets. This can be interpreted as the

point of view of tax or regulatory authorities, which check at some point in time
2For a precise definition of a position in a market, we refer to the following section.
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the inventory of some market participant. Note that this static view does not say
anything about how changes in positions are made. Therefore, mathematically,
we only have to require that for each stopping time τ ∈ T[0,T ], the quantity ϕτ
only depends upon information available up to time τ , i.e., is Fτ -measurable.

Definition 2.1. A position process for the market S is an RN -valued progressive
process ϕ = (ϕ1

t , . . . , ϕ
N
t )t∈[0,1]. For each S ∈ S, the process V (ϕ)(S) defined by

Vt(ϕ)(S) := ϕt · St, t ∈ [0, T ],

is called the position value process of ϕ in the currency unit corresponding to S.

If S ∈ S describes the evolution of the assets in EUR, then Vt(ϕ)(S) is the
value in EUR of the position ϕt held at t. Formally, V (ϕ) is a map from S to the
space of progressive processes, which for all S ∈ S and all D ∈ D satisfies the
exchange rate consistency condition

V (ϕ)(DS) = ϕ · (DS) = D(ϕ · S) = DV (ϕ)(S) P-a.s. (2.1)

Thus, if one knows V (ϕ)(S) for some S ∈ S, one also knows it via (2.1) for every
S ∈ S, without any need for explicit knowledge of ϕ.

Remark 2.2. We often write V (ϕ) ≥ 0 P-a.s., or P[Vτ (ϕ) > 0] > 0, etc. as a
shorthand for V (ϕ)(S) ≥ 0 P-a.s. for all S ∈ S, or P[Vτ (ϕ)(S) > 0] > 0 for all
S ∈ S, etc. We use this notation only if the validity of the expression for some
S ∈ S implies its validity for every S ∈ S. This is for instance not the case in
expressions like P[Vτ (ϕ)(S) > c] for c 6= 0.

2.2 Investment processes

Positions in our terminology are for static views. Now we take a dynamic per-
spective: A position process ϕ for the market S is not just held, but actually
invested into the assets, and thereby generates cash flows which have to be meas-
ured in some currency unit. Replacing ϕ by ζ to emphasise this dynamic view
in the notation as well, we obtain for each S ∈ S a cumulative cash flow pro-
cess ζ • S and, together with an initial position ζ0, an investment value process
ζ0 · S0 + ζ • S, both expressed in the currency unit corresponding to S. One can
interpret this dynamic perspective as the point of view of a broker, who carries
out the transactions of an investor and reports back how the positions have per-
formed over time. Note that this dynamic view still does not say anything about
how the investment is financed, i.e., how changes from ζs to ζt for s < t are paid
for. Mathematically, two additional assumptions on ζ (as opposed to ϕ) have
to be made. First, since an investor at time s < t does not know the market
situation at time t, ζ must be predictable. Second, due to the continuous-time
setup, we have to assume that ζ ∈ L(S) in order to make sense of the stochastic
integral ζ • S.
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Definition 2.3. An investment process for the representative S ∈ S is a position
process ζ = (ζ1

t , . . . , ζ
N
t )t∈[0,T ] that is predictable and satisfies ζ ∈ L(S). The

process Ṽ (ζ)(S) defined by

Ṽt(ζ)(S) := ζ0 · S0 + ζ • St, t ∈ [0, T ],

is called the investment value process of ζ in the currency unit corresponding to S.

Investment processes are—unlike position processes—in general not numé-
raire-independent objects. This is because the condition ζ ∈ L(S) refers to a
specific representative S ∈ S. But even if ζ is such that Ṽ (ζ)(S) is defined for
all S ∈ S, Ṽ (ζ) satisfies an exchange rate consistency condition similar to (2.1)
only if ζ is self-financing ; see Lemma 2.5 below.

2.3 Self-financing strategies

There is no general link between the static and the dynamic perspective of trad-
ing. Notwithstanding, if an investor neither consumes nor receives any further
endowment, then his value and investment value process must coincide. We use
yet another notation ϑ to reflect this below.

Definition 2.4. A self-financing strategy for the market S is a position process
ϑ = (ϑ1

t , . . . , ϑ
N)t∈[0,T ] that is an investment process for every S ∈ S and satisfies

for every S ∈ S,

ϑ · S = V (ϑ)(S) = Ṽ (ϑ)(S) = ϑ0 · S0 + ϑ • S P-a.s. (2.2)

We call V (ϑ)(S) = Ṽ (ϑ)(S) the value process of ϑ in the currency unit corres-
ponding to S. We denote the vector space of all self-financing strategies for S by
Lsf(S) or just Lsf .

The next result provides two equivalent but formally weaker characterisations
of self-financing strategies. The first one, which seems to be new, shows that
an investment process is self-financing if and only if its investment value process
satisfies an exchange rate consistency condition like (2.1). The second one, which
is probably due to Xia and Yan [81, Theorem 2.1],3 shows that the self-financing
condition (2.2) is numéraire-independent. A similar calculation as in our proof
also appears in Schweizer and Takaoka [73, proof of Proposition 2.7 (ii)].

Lemma 2.5. Let ϑ be a position process for S. Then the following are equivalent:

(a) ϑ is a self-financing strategy for S.

(b) ϑ is an investment process for all S ∈ S, and the investment value process
Ṽ (ϑ) satisfies for all S ∈ S and all D ∈ D the exchange rate consistency
condition

Ṽ (ϑ)(DS) = DṼ (ϑ)(S) P-a.s. (2.3)
3The economic statement as such is of course much older. For continuous price processes,

the proof can be traced back at least to El Karoui et al. [17, Proposition 1].
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(c) ϑ is an investment process for some S ∈ S, and V (ϑ)(S) = Ṽ (ϑ)(S) P-a.s.

Proof. “(a) ⇒ (b)”. This follows immediately from (2.2) and (2.1).
“(b) ⇒ (c)”. Fix S ∈ S. Then for all D ∈ D, (2.3), the product rule for

semimartingales and associativity and linearity of the stochastic integral give

0 = DṼ (ϑ)(S)− Ṽ (ϑ)(DS)

= D(ϑ0 · S0 + ϑ • S)−
(
ϑ0 · (D0S0) + ϑ • (DS)

)
= D0(ϑ0 · S0) +D− • (ϑ • S) + (ϑ0 · S0 + ϑ • S)− •D + [D,ϑ • S]

−D0(ϑ0 · S0)− ϑ • (D− • S + S− •D + [D,S])

= (ϑ0 · S0 + ϑ • S− − ϑ · S−) •D P-a.s. (2.4)

Since (2.4) holds simultaneously for all D ∈ D, an easy exercise in stochastic
analysis shows that ϑ0 · S0 + ϑ • S− − ϑ · S− ≡ 0 P-a.s., and hence,

V (ϑ)(S) = ϑ · S = ϑ · S− + ϑ ·∆S = ϑ0 · S0 + ϑ • S− + ϑ ·∆S
= Ṽ (ϑ)(S) P-a.s. (2.5)

“(c) ⇒ (a)”. Let S ∈ S be such that ϑ ∈ L(S) and V (ϑ)(S) = Ṽ (ϑ)(S) P-a.s.
Then using that ϑ ·∆S = ∆(ϑ • S), the same calculation as in (2.5) gives

ϑ0 · S0 + (ϑ • S)− = ϑ · S− P-a.s. (2.6)

Let S ′ ∈ S be arbitrary and D ∈ D such that S ′ = DS. Now the claim follows
from the product rule for semimartingales, (2.1) and (2.6).

3 Numéraire strategies and representatives

Self-financing strategies are conceptually the good objects to describe trading in
our framework. But how does one check in practice that an investment process ζ
for some S ∈ S is a self-financing strategy? Using Definition 2.4 or Lemma 2.5,
this is a very hard task in general since we have to check (2.2) for all stopping times
τ ∈ T[0,T ]. In this section, we provide a satisfactory solution to this problem—the
main ingredient being the central concepts of numéraire strategies and numéraire
representatives.

Definition 3.1. A numéraire strategy for the market S is a self-financing strategy
η ∈ Lsf satisfying inft∈[0,T ] Vt(η)(S) > 0 for some (and hence every) S ∈ S, i.e.,
Vt(η)(S) is an exchange rate process for some (and hence every) S ∈ S. If a
numéraire strategy for S exists, S is called a numéraire market.

Remark 3.2. For a nonnegative market S, the market portfolio ηS := (1, . . . , 1)
is always a numéraire strategy. This follows immediately from (1.2). In general,
however, there need not exist a numéraire strategy. Indeed, consider the one-
period market S generated by S = (S1

k , S
2
k)k∈{0,1}, where S1

0 = S2
0 = 1 and
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S1
1 = N1 and S2

1 = N2 are independent standard normal random variables.4 Then
any ϑ ∈ Lsf can be identified with a vector (ϑ1, ϑ2) ∈ R2, and the corresponding
value process V (ϑ) satisfies

V1(ϑ)(S) = ϑ1N1 + ϑ2N2.

Since ϑ1N1+ϑ2N2 is normally distributed with mean 0 and variance (ϑ1)2+(ϑ2)2,
it cannot be positive.

A numéraire strategy is the currency-unit-independent counterpart of a “nu-
méraire” in the standard framework. Indeed, in the classic setup, one first fixes
a currency unit and then calls any positive value process (in that unit) of a self-
financing strategy a “numéraire”. So in our terminology, a classic “numéraire”
is the value process of a numéraire strategy in a fixed currency unit. So oddly
enough, the classic notion of “numéraire” is not numéraire-independent (in the
sense of currency-unit-independent) because it is based on the initial choice of a
currency unit. By contrast, our notion of numéraire strategy clearly is currency-
unit-independent.

To each numéraire strategy η, there corresponds a unique numéraire repres-
entative S(η) ∈ S in which units the value process of η is identically 1.

Proposition 3.3. Let S be numéraire market and η a numéraire strategy. Then
there exists a P-a.s. unique representative S(η) ∈ S satisfying

V (η)(S(η)) ≡ 1 P-a.s.

Starting from any S ∈ S, it can be computed by

S(η) =
S

V (η)(S)
P-a.s. (3.1)

Moreover, if S is continuous, S(η) has P-a.s. continuous paths.

Proof. Existence and uniqueness of S(η) follow from (3.1) and the exchange rate
consistency (2.1) of V (η). If S is continuous, there exists a representative S ∈ S
which has P-a.s. continuous paths. Then V (η)(S) has P-a.s. continuous paths,
and by (3.1), S(η) has so, too.

For some results, it is important that a numéraire market does not only contain
some arbitrary numéraire strategy but one that is bounded or simple predictable
and whose numéraire representative is bounded, too.

Definition 3.4. Amarket S is called a bounded numéraire market if there exists a
bounded numéraire strategy η such that also S(η) is bounded. It is called a simple
predictable numéraire market if in addition η can be chosen simple predictable.

4This can of course be easily embedded into our general setup.
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A nonnegative market S is always a simple predictable numéraire market.
Indeed, the market portfolio ηS = (1, . . . , 1) is a simple predictable numéraire
strategy by (1.2) and its (nonnegative) numéraire representative S(η) satisfies∑N

i=1 S
(η),i = 1, where N is the dimension of the market. Hence, ‖S(η)‖ ≤ 1

P-a.s., where ‖ · ‖ denotes the maximum norm in RN .

Remark 3.5. Even if there exists a simple predictable or bounded numéraire
strategy η, S need not be a simple predictable or bounded numéraire market
because its numéraire representative S(η) may fail to be bounded. Indeed, consider
the one-period market S generated by a classic model S = (1, Xk)k∈{0,1}, where
X0 = 1 and X1 = N is a standard normal random variable. Then any ϑ ∈ Lsf

can be identified with a random vector (ϑ1, ϑ2) ∈ R2, and its corresponding value
process V (ϑ) satisfies

V1(ϑ)(S) = ϑ1 + ϑ2N.

Since ϑ1 + ϑ2N is normally distributed with mean ϑ1 and variance (ϑ2)2, the
value process V (ϑ)(S) is a exchange rate process if and only if ϑ1 > 0 and ϑ2 = 0.
Hence, every numéraire strategy is of the form η = (η1, 0) and in particular simple
predictable, but by (3.1), its numéraire representative S(η) satisfies

S
(η),2
1 =

S2
1

V1(η)(S)
=
X1

η1
=
N

η1
P-a.s.,

and is therefore unbounded.

The following easy but important example shows that a classic model (1.3) is
nothing else than a special case of a numéraire representative.

Example 3.6. Let S be the market generated by a classic model S = (1, X).
Then e1 := (1, 0, . . . , 0), the buy-and-hold strategy of the “bank account”, is a
numéraire strategy for S since V (e1)(S) = 1 P-a.s. Moreover, by (3.1),

S(e1) = S = (1, X).

We proceed to establish the main result of this section that given one numé-
raire strategy η, all self-financing strategies for S can be easily described. This
kind of result is well known in the standard framework, i.e., for markets S gener-
ated by a classic model S = (1, X) and the numéraire strategy e1 = (1, 0, . . . , 0);
see Corollary 3.8 (b).

Theorem 3.7. Let S be a numéraire market and η a numéraire strategy. Then
for all investment processes ζ for S(η), there exists ϑ ∈ Lsf such that

Ṽ (ϑ)(S(η)) = ϑ0 · S(η)
0 + ϑ • S(η) = ζ0 · S(η)

0 + ζ • S(η) = Ṽ (ζ)(S(η)) P-a.s.

Moreover, if η, S(η), ζ and ζ • S(η) are bounded, ϑ can be chosen bounded, and
if η and ζ are simple predictable and S(η) is bounded, ϑ can be chosen simple
predictable.
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Proof. Fix an investment process ζ for S(η). Writing ζ = ζ ′+ζ ′′ with ζ ′ := ζ0 and
ζ ′′ := ζ − ζ0 and noting that constant processes are trivially self-financing shows
that we may assume without loss of generality that ζ0 = 0. For 0 ≤ t ≤ T , set
ζ0
t := (ζ • S(η))t − ζt · S(η)

t . Then ζ0 is predictable since

ζ0 = (ζ • S(η))− + ∆(ζ • S(η))− ζ · S(η) = (ζ • S(η))− − ζ · S(η)
− P-a.s.

Moreover, η • S(η) = V (η)(S(η)) − η0 · S(η)
0 ≡ 1 − η0 · S(η)

0 P-a.s. trivially gives
ζ0 ∈ L(η • S(η)), and so ζ0η ∈ L(S(η)) by associativity of the stochastic integral.
Set ϑ := ζ + ζ0η. Then ϑ is an investment process for S(η) with ϑ0 = 0 and
satisfies

Ṽ (ϑ)(S(η)) = ϑ • S(η) = ζ • S(η) + (ζ0η) • S(η) = ζ • S(η) + ζ0 • (1− η0 · S(η)
0 )

= ζ • S(η) = ζ0 + ζ · S(η) = ζ0(η · S(η)) + ζ · S(η) = ϑ · S(η)

= V (ϑ)(S(η)) P-a.s.

By Lemma 2.5, ϑ is a self-financing strategy for S. Moreover, if η, S(η), ζ and
ζ • S(η) are bounded, then by construction, ζ0 and ϑ are bounded, and if η and
ζ are simple predictable processes and S(η) is bounded, it is an easy exercise to
show that ζ0 and ϑ are simple predictable.

The following corollary links the above result to the standard framework. To
this end, recall from Example 3.6 that a classic model S = (1, X) is nothing else
than the numéraire representative S(e1), where e1 = (1, 0, . . . , 0) is the buy-and-
hold strategy of the “bank account”.

Corollary 3.8. Let S be the market generated by a classic model S = (1, X).

(a) For each investment process ζ for S = S(e1), there exists a self-financing
strategy ϑ such that

Ṽ (ϑ)(S) = Ṽ (ζ)(S) P-a.s. and ϑi = ζ i, i = 2, . . . , N = d+ 1.

(b) For each v0 ∈ R and each Rd-valued predictable process ζ ∈ L(X), there
exists a real-valued predictable process ϑ1 such that ϑ = (ϑ1, ζ) is a self-
financing strategy for S and satisfies

V (ϑ)(S) = v0 + ζ •X P-a.s.

Corollary 3.8 (b) shows that for a market S that is generated by a classic
model S = (1, X), one can identify each self-financing strategy ϑ for S with a pair
(v0, ζ) consisting of an “initial capital” v0 ∈ R in the currency unit corresponding
to S = S(e1) and a predictable process ζ which is integrable with respect to
the “discounted risky” assets X. This identification is tacitly done throughout
most of the literature on mathematical finance, and sometimes—in an abuse of
notation—the d-dimensional process ζ itself is called “self-financing”. But this
hides the fact that one needs apart from the d “risky” assets X a “riskless” asset 1
to implement trading in a self-financing manner.
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Remark 3.9. The concept of numéraire strategies and numéraire representatives
can be slightly generalised. First, we say that a real-valued semimartingale D
is a signed exchange rate process if inft∈[0,T ] |Dt| > 0. Second, if S is an N -
dimensional market, we say that an N -dimensional semimartingale S is a signed
representative of S if there exist S ∈ S and a signed exchange rate process D
such that S = DS P-a.s. We denote the set of all signed representatives of S by
S and call this a signed market. It is not difficult to show that the exchange rate
consistency of value processes (2.1) and the self-financing property (2.2) extend
to signed markets. Third, we say that a self-financing strategy η ∈ Lsf is a signed
numéraire strategy if for some (and hence every) signed representative S ∈ S,
the value process V (η)(S) is a signed exchange rate process, and call S a signed
numéraire market if such an η exists. It can then be shown that there exist a
P-a.s. unique signed representative S(η) ∈ S such that V (η)(S

(η)
) ≡ 1 P-a.s. and

that Theorem 3.7 carries over to signed numéraire markets.

4 Strategy cones, undefaultable strategies
and admissible investment processes

As in the standard framework, to exclude doubling phenomena if there are in-
finitely many trading dates, we have to take proper subsets of self-financing
strategies to describe “allowed” trading.

Definition 4.1. A strategy cone for the market S is a convex cone Γ ⊂ Lsf

containing 0. If Γ is a strategy cone, we denote by bΓ and sΓ the subcone of all
bounded and simple predictable strategies in Γ, respectively.

Basic examples of strategy cones include buy-and-hold strategies or self-fin-
ancing strategies with some short-selling constraint, e.g. all ϑ ∈ Lsf satisfying
ϑi ≥ 0 for 1 ≤ i ≤ N . Another prime example is given in the following definition.

Definition 4.2. An undefaultable strategy is a self-financing strategies ϑ ∈ Lsf

satisfying V (ϑ) ≥ 0 P-a.s. The strategy cone of all such strategies is denoted by
U(S) or just U .

U is the “natural” strategy cone for studying no-arbitrage in a numéraire-
independent setup; see Chapter III.3.3. This has already been noted by El Karoui
et al. [17].

Next, we introduce S(η)-admissible investment processes, a generalisation of
the classic key concept of admissible strategies. This is clearly not a numéraire-
independent notion; see also Proposition 4.4 below.

Definition 4.3. Let S be a numéraire market and η a numéraire strategy. An
investment process ζ for S(η) with ζ0 = 0 is called an a-S(η)-admissible investment
process, where a ≥ 0, if

ζ • S(η) ≥ −a P-a.s. (4.1)

We write ζ ∈ Lad(S(η), a). The union of all Lad(S(η), a) over all a ≥ 0 is denoted
by Lad(S(η)), and its elements are called S(η)-admissible investment processes.
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If S = (1, X) is a classic model, then a (classic) admissible strategy is a d-
dimensional predictable process ζ ∈ L(X) with ζ0 = 0 such that ζ•X ≥ −a P-a.s.
for some a ≥ 0; see e.g. Delbaen and Schachermayer [14, Section 8.1]. From a
purely mathematical point of view, if S is a d-dimensional (sic!) market, S(η) ∈ S
a numéraire representative and ζ an S(η)-admissible investment process, then ζ is
a classic admissible strategy for the (d+ 1)-dimensional classic model S = (1, X)
with (X1, . . . , Xd) = (S(η),1, . . . , S(η),d). Thus, all results for classic admissible
strategies carry over to S(η)-admissible investment processes. From an economic
perspective, however, there is a fundamental difference: In the standard frame-
work, there is the “riskless” traded asset 1 in the background, and so every classic
admissible strategy ζ can be extended to a (d + 1)-dimensional self-financing
strategy (ϑ1, ζ); see Corollary 3.8. By contrast, for S(η)-admissible investment
processes, there is no traded constant asset in the background, and so a direct
extension to self-financing strategies is not possible—an indirect identification,
however, is.

Proposition 4.4. Let S be a numéraire market and η a numéraire strategy. Then
for each ζ ∈ Lad(S(η)), there exists ϑ ∈ Lsf (with ϑ0 · S(η)

0 = 0) such that

V (ϑ)(S(η)) = ϑ • S(η) = ζ • S(η) P-a.s. (4.2)

Moreover, for all a ≥ 0 with ζ ∈ Lad(S(η), a), there exists ϑ̃ ∈ U such that
ϑ = ϑ̃− aη.

We interpret ϑ̃ as the “numéraire-independent” and aη as the “numéraire-
dependent” part of ζ.

Proof. Fix ζ ∈ Lad(S(η)). Then ζ ∈ L(S(η)) and Theorem 3.7 gives ϑ ∈ Lsf

satisfying (4.2). Let a ≥ 0 be such that ζ • S(η) ≥ −a P-a.s. and set ϑ̃ := ϑ+ aη.
Then ϑ̃ ∈ Lsf . Since V (η)(S(η)) ≡ 1, the claim follows from (4.2) and the choice
of a via

V (ϑ̃)(S(η)) = V (ϑ)(S(η)) + aV (η)(S(η)) = ζ • S(η) + a ≥ 0 P-a.s.

The following corollary shows that undefaultable strategies implicitly appear
rather frequently in the literature on mathematical finance, e.g. in the context of
utility maximisation on R+.

Corollary 4.5. Let S be a numéraire market, η a numéraire strategy, v0 ≥ 0 and
ζ ∈ Lad(S(η)). Suppose that v0 + ζ •S(η) ≥ 0 P-a.s. Then there is ϑ ∈ U such that

V (ϑ)(S(η)) = ϑ0 · S(η)
0 + ϑ • S(η) = v0 + ζ • S(η) P-a.s.

5 Contingent claims
In this section, we introduce a numéraire-independent notion of contingent claims
for a market S. Moreover, we look at the concept of numéraire-independent
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derivative securities and show that even plain vanilla call options are in general
not in that class.

A contingent claim due at time τ pays “something” at time τ depending on
the state of the world at time τ . Therefore, a contingent claim is usually mod-
elled as a nonnegative Fτ -measurable random variable. This, however, implicitly
assumes that the units in which “something” is measured are known, i.e., that
some representative S ∈ S is fixed. But as our paradigm consists in not fixing
any representative, the definition of a contingent claim in our framework requires
some thought.

Recall that L
0

+, L0
+ and L

0

+ denote the set of all random variables taking
values in R+ = R+ ∪ {+∞}, R+ = R+ ∪ {−∞} and R+ = R+ ∪ {+∞}∪{−∞},
respectively, and that we have the conventions c+∞ =∞+ c = +∞ for c ∈ R+,
−∞ + c = c − ∞ = −∞ for c ∈ R+, c × (±∞) = ±∞ for c ∈ R++, and
0× (±∞) = 0.

Definition 5.1. A generalised contingent claim at time τ ∈ T[0,T ] for the market
S is a map F : S → L

0

+(Fτ ) satisfying for all S ∈ S and all D ∈ D the exchange
rate consistency condition

F (DS) = DτF (S) P-a.s. (5.1)

F is called an improper contingent claim if it is valued in L
0

+(Fτ ), it is called
a defaultable contingent claim if it is valued in L0

+(Fτ ), it is called a contingent
claim if it is valued in L0

+(Fτ ), and it is called a positive contingent claim if it is
valued in L0

++(Fτ ).

Remark 5.2. (a) The notions of generalised, improper and defaultable contin-
gent claims are introduced for technical reasons; from an economic perspective,
only (positive) contingent claims are relevant.

(b) It is easy to check that the set of all (generalised, improper, defaultable)
continent claims at time τ is a convex cone containing 0.

(c) The idea that a contingent claim is a map satisfying an exchange rate
consistency condition is implicitly also behind the definition of a contingent claim
in Carr et al. [7]; cf. Remark 1.5.

(d) We often write F ≥ 0 P-a.s. or P[F > 0] > 0, etc., as a shorthand
for F (S) ≥ 0 P-a.s. for all S ∈ S, or P[F (S) > 0] > 0 for all S ∈ S, etc.;
cf. Remark 2.2.

A generalised contingent claim is uniquely characterised by a representative
S ∈ S (fixing a currency unit) and a random variable g (describing the payoff
structure in that unit). This is easy.

Proposition 5.3. Let S be a market and τ ∈ T[0,T ]. For any pair (S, g), where
S ∈ S and g ∈ L

0

+(Fτ ), there exists a P-a.s.-unique generalised contingent claim
F at time τ satisfying F (S) = g P-a.s. It is given by F (DS) := Dτg, where
D ∈ D is arbitrary.
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Directly linked to the notion of a contingent claim is the notion of a derivative
security. Loosely speaking, a derivative security is a contingent claim which can
be described by some payoff function h : RN → R+ only.

Definition 5.4. A contingent claim F at time τ ∈ T[0,T ] for the (N -dimensional)
market S is called a numéraire-independent derivative security if there exists a
measurable function h : RN → R+, called the payoff function of F , such that

F (S) = h(Sτ ) for all S ∈ S.

It follows immediately from the exchange rate consistency condition (5.1) and
Proposition 5.3 that F is a numéraire-independent derivative security if and only
if h is positively homogeneous of degree 1, i.e., h(λx) = λh(x) for all λ > 0,
x ∈ RN . Note that F and h are mathematically completely different objects—F
goes from processes to random variables while h goes from RN to R+.

Even plain vanilla call options are only in special cases numéraire-independent
derivative securities. Indeed, let S be the market generated by S = (S1

t , S
2
t )t∈[0,T ],

where S1 := exp(
∫ ·

0
rs ds) describes the evolution of a bank account in EUR

with some (possibly stochastic) short rate process (rt)t∈[0,T ] and S2 models the
evolution of a stock in EUR. A European call option written on S2 with strike
K > 0 (denoted in EUR) and maturity T is the contingent claim F at time T
from Proposition 5.3 satisfying

F (S) = (S2
T −K)+ = (S2

T − K̃S1
T )+,

where K̃ := K exp(−
∫ T

0
rs ds). Clearly, F is a numéraire-independent derivat-

ive security if and only if K̃ is deterministic, e.g. if the short rate process r is
deterministic. In that case, the call option can be interpreted as an exchange
option, where one can exchange K̃ units of S1 against 1 unit of S2 at time T
if this gives a profit. This insight is already apparent in the paper on exchange
options by Margrabe [61]. The key point here, however, is that in general we
cannot describe the call option by only specifying the strike K as a number—we
also have to specify the units of that number.

6 Superreplication prices
When considering a contingent claim F at time τ ∈ T[0,T ], one fundamental
question is how to attach to F a price today.5 Loosely speaking, a “price” is a
number expressed in some currency unit. If we change the currency unit, then
the number will change, notwithstanding that both numbers describe the same
economic entity (“price of F at time 0”). If we consider this economic entity

5The term price suggests that it is objective or preference-independent. In incomplete
markets, however, it is well known that an objective “price” of a contingent claim does not exist
in general. Therefore, one should better speak of a value instead of the price of a contingent
claim. Nevertheless, in order to be consistent with the existing literature, we have chosen to
use the somewhat misleading word “price” instead of the correct term “value”.
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as “price”, then it is natural to define “price” as a mapping from representatives
(fixing a currency unit) to nonnegative real numbers satisfying an exchange rate
consistency condition like (5.1) at time 0. Put differently, a (time 0) “price” is
nothing else than a contingent claim at time 0.

We study two notions of superreplication prices in our framework: ordinary
and limit quantile superreplication prices—quantile superreplication prices are
mainly an intermediate concept, introduced for technical convenience. Ordinary
superreplication prices are the numéraire-independent counterpart of superrepli-
cation prices in the standard framework, whereas limit quantile superreplication
prices are based on a slightly relaxed version of the concept of superreplication,
which has nicer continuity properties than the ordinary concept of superreplica-
tion. Limit quantile superreplication prices are also the cornerstone of our notion
of (no-)arbitrage in Chapter III.

6.1 Ordinary superreplication prices

Definition 6.1. Let S be a market, Γ a strategy cone and F a generalised
contingent claim at time τ ∈ T[0,T ]. The ordinary superreplication price of F for
Γ is the map Π(F |Γ) : S → [0,∞] given by

Π(F |Γ)(S) = inf{v ≥ 0 : there exists ϑ ∈ Γ with
V0(ϑ)(S) = v and Vτ (ϑ)(S) ≥ F (S) P-a.s.}

If S ∈ S describes the evolution of asset prices in EUR, then Π(F |Γ)(S) is
the classic superreplication price in EUR of the classic contingent claim F (S) in
EUR.

Remark 6.2. It is easy to check that Π(F |Γ) is an improper contingent claim at
time 0. So in view of Proposition 5.3, it suffices to compute Π(F |Γ)(S) for one
S ∈ S. In particular, Π(F |Γ)(S) = Π(F |Γ)(S̃) if S0 = S̃0, which suggests that
when looking for a dual characterisation of Π(F |Γ)(S) for some fixed S ∈ S, we
should consider all S̃ ∈ S with S̃0 = S0; see Chapter VI.3.

The next two results provide a useful characterisation of ordinary superrepli-
cation prices in terms of strategies and collect their basic properties. The proofs
are easy and hence omitted.

Proposition 6.3. Let S be a market, Γ a strategy cone and F a generalised
contingent claim at time τ ∈ T[0,T ] with Π(F |Γ) <∞. Then for each δ > 0 and
each positive contingent claim C at time 0, there is ϑ ∈ Γ satisfying

V0(ϑ) ≤ Π(F |Γ) + δC and Vτ (ϑ) ≥ F P-a.s.

Proposition 6.4. Let S be a market, Γ a strategy cone, F, F1, F2, G generalised
contingent claims at time τ ∈ T[0,T ] with F ≤ G P-a.s. and λ ≥ 0. Then

Π(F |Γ) ≤ Π(G |Γ) (monotonicity),
Π(λF |Γ) = λΠ(F |Γ) (positive homogeneity),

Π(F1 + F2 |Γ) ≤ Π(F1 |Γ) + Π(F2 |Γ) (subadditivity).
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Remark 6.5. The above properties of ordinary superreplication prices are re-
miniscent of coherent risk measures; only cash-invariance is missing. Indeed, for
fixed S ∈ S, τ ∈ T[0,T ] and Γ, consider the map ρ : L0

−(Fτ ) → [0,∞] defined by
ρ(X) = Πτ (F |Γ)(S), where F is the contingent claim at time τ from Proposi-
tion 5.3 satisfying F (S) = −X P-a.s. Then ρ is a coherent capital requirement, a
generalisation of risk measures introduced by Fritelli and Scandolo [23].

6.2 Quantile superreplication prices

The ordinary superreplication price Π(F |Γ) of a contingent claim F is the chea-
pest initial “capital”—to be understood in a numéraire-independent sense—that
is needed to find a strategy ϑ in a given class Γ whose value process dominates
F at maturity τ almost surely. If we relax the latter condition and only require
V (ϑ) to dominate F with a high probability, we are lead to the concept of quantile
superreplication prices.

Definition 6.6. Let S be a market, Γ a strategy cone, F a generalised contingent
claim at time τ ∈ T[0,T ] and ε ∈ (0, 1). The ε-quantile superreplication price of F
for Γ is the map Πε(F |Γ) : S → [0,∞] given by

Πε(F |Γ)(S) = inf{v ≥ 0 : there exists ϑ ∈ Γ such that
V0(ϑ)(S) = v and P[Vτ (ϑ)(S) ≥ F (S)] ≥ 1− ε}.

If S ∈ S describes the evolution of asset prices in EUR, then Πε(F |Γ)(S)
may be interpreted as the price in EUR of a quantile superhedge for F (S) with
shortfall risk ε. Regarding the notion of quantile hedging, we refer to Föllmer
and Schied [25, Section 8.1].

Remark 6.7. (a) It is easy to check that Πε(F |Γ) is an improper contingent
claim at time 0.

(b) One conceptual drawback of the notion of quantile superreplication prices
is that only the probability that F is superreplicated but not the size of the
shortfall F − Vτ (ϑ) in case that F is not superreplicated is taken into account.

The following result links quantile superreplication prices to ordinary super-
replication prices. The proof is easy and hence omitted.

Proposition 6.8. Let S be a market, Γ a strategy cone, F a generalised contin-
gent claim at time τ ∈ T[0,T ] and ε ∈ (0, 1).

(a) For all A ∈ Fτ with P[A] ≤ ε,

Πε(F |Γ) ≤ Π(F −∞1A |Γ).

(b) For each δ > 0 and each positive contingent claim C at time 0, there exists
A ∈ Fτ with P[A] ≤ ε such that

Π(F −∞1A |Γ) ≤ Πε(F |Γ) + δC.
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Moreover, if Γ ⊂ U , Π(F − ∞1A |Γ) can be replaced by Π(F1Ac |Γ) in both
assertions.

For a fixed ε ∈ (0, 1), quantile superreplication prices are clearly monotonic
and positively homogeneous. But unlike classic superreplication prices they are
not subadditive. However, if we do not insist on fixing ε, we get some sort of
subadditivity.

Proposition 6.9. Let S be a market, Γ a strategy cone, F, F1, F2, G generalised
contingent claims at time τ ∈ T[0,T ] with F ≤ G P-a.s. and λ ≥ 0. Then for all
ε ∈ (0, 1),

Πε(F |Γ) ≤ Πε(G |Γ) (monotonicity),
Πε(λF |Γ) = λΠε(F |Γ) (positive homogeneity),

Πε(F1 + F2 |Γ) ≤ Πε/2(F1 |Γ) + Πε/2(F2 |Γ) (semi-subadditivity).

Proof. We only prove semi-subadditivity. To this end, we may assume without
loss of generality that Πε/2(F1 |Γ),Πε/2(F2 |Γ) <∞. Let C be a positive contin-
gent claim at time 0 and δ > 0. By Proposition 6.8 (b), there exist A1, A2 ∈ Fτ
with P[Ai] ≤ ε/2 such that

Π(Fi −∞1Ai |Γ) ≤ Πε/2(Fi |Γ) +
δ

2
C.

Set A := A1 ∪A2. Then A ∈ Fτ with P[A] ≤ ε. By Propositions 6.8 (a) and 6.4,

Πε(F1 + F2 |Γ) ≤ Π((F1 + F2)−∞1A |Γ)

= Π((F1 −∞1A1) + (F2 −∞1A2) |Γ)

≤ Π(F1 −∞1A1 |Γ) + Π(F2 −∞1A2 |Γ)

≤ Πε/2(F1 |Γ) + Πε/2(F2 |Γ) + δC.

Letting δ ↘ 0 establishes the claim.

6.3 Limit quantile superreplication prices

Quantile superreplication prices are clearly decreasing in ε. So it is natural to
consider the limit limε↘0 Πε(F |Γ). From an economic perspective, this captures
the idea of superreplication with an “arbitrary high probability” (cf. Corollary
6.15).

Definition 6.10. Let S be a market, Γ a strategy cone and F a generalised
contingent claim at time τ ∈ T[0,T ]. The limit quantile superreplication price of F
for Γ is the map Π∗(F |Γ) : S → [0,∞] given by

Π∗(F |Γ) = lim
ε↘0

Πε(F |Γ). (6.1)

Remark 6.11. It is not difficult to check that Π∗(F |Γ) is an improper contingent
claim at time 0.
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Since quantile superreplication prices are dominated by ordinary superrepli-
cation prices, for each contingent F claim at time τ ∈ T[0,T ] and each strategy
cone Γ, we have the inequality

Π∗(F |Γ) ≤ Π(F |Γ). (6.2)

The following example shows that the inequality (6.2) may be strict even in the
case of a one-period model with countable Ω.

Example 6.12. Let Ω := {ω1, ω2, . . .}, F := 2Ω, P be a probability measure
on (Ω,F) charging every singleton {ωn}, F0 := {∅,Ω} and F1 := F . Let S
be the market generated by the classic model S = (1, Xk)k∈{0,1} where X0 = 1
and X1(ωn) := 1 + 2−n. Let F := V (e1), where e1 = (1, 0). We claim that
Π(F | U) = V0(e1) > 0 and Π∗(F | U) = 0.

For the first claim, note that U can be identified with the set{
ϑ ∈ R2 : ϑ2 ≥ 0 and ϑ1 ≥ −ϑ2, or ϑ2 < 0 and ϑ1 > −3

2
ϑ2
}
.

Let ϑ ∈ U be such that V1(ϑ)(S) ≥ F (S) P-a.s. Then

ϑ1 + ϑ2(1 + 2−n) ≥ 1, n ∈ N.

Letting n→∞, yields ϑ1 +ϑ2 ≥ 1. Thus, V0(ϑ)(S) ≥ 1 and so Π(F | U) = V0(e1).
For the second claim, let ε ∈ (0, 1). Choose n ∈ N large enough that

P[{ω1, . . . , ωn}] ≥ 1− ε and set ϑ(n) := (−2n, 2n) ∈ U . Then

V1(ϑ(n))(S)(ωk) = 2n−k ≥ 1 = F (S)(ωk), k ≤ n,

and so Πε(F | U) = 0. Letting ε↘ 0 yields Π∗(F | U) = 0.

Remark 6.13. The market in Example 6.12 clearly admits arbitrage in a very
strong sense. Indeed, one can show that in markets which satisfy numéraire-
independent no-arbitrage (NINA) (see Chapter III.2), ordinary and limit quantile
superreplication prices for U coincide (see [31, Theorem 7.28] and note that NINA
is called NGE there).

Despite the last example, ordinary and limit quantile superreplication prices
are “close”, in the following sense.

Proposition 6.14. Let S be a market, Γ a strategy cone and F a generalised
contingent claim at time τ ∈ T[0,T ]. Then for each ε ∈ (0, 1), there exists A ∈ Fτ
with P[A] ≤ ε such that

Π(F −∞1A |Γ) ≤ Π∗(F |Γ).

Moreover, if Γ ⊂ U , Π(F −∞1A |Γ) can be replaced by Π(F1Ac |Γ).
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Proof. The second claim follows immediately from the first one by noting that
Π(F − ∞1A |Γ) = Π(F1Ac |Γ) if Γ ⊂ U . For the first claim, we may assume
without loss of generality that Π∗(F |Γ) <∞. Let ε ∈ (0, 1) and C be a positive
contingent claim at time 0. Then by Proposition 6.8 (b), there exists a sequence
(An)n∈N in Fτ with P[An] ≤ ε 2−n such that

Π(F −∞1An |Γ) ≤ Πε 2−n(F |Γ) + 2−nC ≤ Π∗(F |Γ) + 2−nC.

Set A =
⋃
n∈NAn. Then A ∈ Fτ and P[A] ≤ ε. Moreover, monotonicity of

ordinary superreplication prices and the above construction give

Π(F − 1A |Γ) ≤ Π(F − 1An |Γ) ≤ Π∗(F |Γ) + 2−nC.

Letting n→∞ establishes the claim.

The following corollary provides an economic interpretation of limit quantile
superreplication prices by showing that if F can be superreplicated in the limit
quantile sense, in any currency unit S ∈ S, with arbitrarily little more initial
capital than Π∗(F |Γ)(S) and with a probability arbitrarily close to 1, there exists
a strategy ϑ ∈ Γ which superreplicates F (S) at time τ with that probability.

Corollary 6.15. Let S be a market, Γ a strategy cone and F a generalised con-
tingent claim at time τ ∈ T[0,T ] with Π∗(F |Γ) < ∞. Then for each ε ∈ (0, 1),
each δ > 0 and each positive contingent claim C at time 0, there exists ϑ ∈ Γ
satisfying

V0(ϑ) ≤ Π∗(F |Γ) + δC P-a.s. and P[Vτ (ϑ) ≥ F ] ≥ 1− ε.

Proof. Fix ε, δ and C as above. By Proposition 6.14, there exists A ∈ Fτ with
P[A] ≤ ε such that Π(F −∞1A |Γ) ≤ Π∗(F |Γ). Moreover, by Proposition 6.3,
there exists ϑ ∈ Γ satisfying

V0(ϑ) ≤ Π(F −∞1A |Γ) + δC and Vτ (ϑ) ≥ F −∞1A P-a.s.

Since P[Vτ (ϑ) ≥ F ] ≥ P[Ac] ≥ 1− ε, this establishes the claim.

Like ordinary superreplication prices, limit quantile superreplication prices
are monotonic, positively homogeneous and subadditive.

Proposition 6.16. Let S be a market, Γ a strategy cone, F, F1, F2, G generalised
contingent claims at time τ ∈ T[0,T ] with F ≤ G P-a.s. and λ ≥ 0. Then

Π∗(F |Γ) ≤ Π∗(G |Γ) (monotonicity),
Π∗(λF |Γ) = λΠ∗(F |Γ) (positive homogeneity),

Π∗(F1 + F2 |Γ) ≤ Π∗(F1 |Γ) + Π∗(F2 |Γ) (subadditivity).

Proof. All three assertions follow from Proposition 6.9 by letting ε↘ 0.
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Remark 6.17. In the same way as ordinary superreplication prices, limit quantile
superreplication prices can be identified with (generalised) coherent risk measures.
Indeed, for fixed S ∈ S, τ ∈ T[0,T ] and Γ, the map ρ : L0

−(Fτ )→ [0,∞] defined by
ρ(X) = Π∗τ (F |Γ)(S), where F is the contingent claim at time τ from Proposition
5.3 satisfying F (S) = −X P-a.s., is a coherent capital requirement ; see [23].

Limit quantile superreplication prices enjoy in addition a monotone conver-
gence property. This makes them mathematically much nicer than ordinary su-
perreplication prices, which lack this property.

Lemma 6.18. Let S be a market, Γ a strategy cone, (Fn)n∈N an nondecreasing
sequence of generalised contingent claims at time τ ∈ T[0,T ], and assume that
F := limn→∞ Fn <∞ P-a.s. Then

lim
n→∞

Π∗(Fn |Γ) = Π∗(F |Γ).

Proof. By monotonicity of limit quantile superreplication prices, it suffices to
show that

lim inf
n→∞

Π∗(Fn |Γ) ≥ Π∗(F |Γ). (6.3)

Let ε ∈ (0, 1) be given. Since each Fn and F are valued inR+, it is straightforward
to check that

lim
n→∞

P[(1 + ε)Fn ≥ F ] = 1.

Choose N ∈ N large enough that P[(1+ε)FN < F ] ≤ ε
2
, and let BN in Fτ be such

that BN = {(1 + ε)FN < F} P-a.s. By Proposition 6.14, there exists AN ∈ Fτ
with P[AN ] ≤ ε

2
such that

Π∗(FN |Γ) ≥ Π(FN −∞1AN |Γ).

Note that P[BN ∪ AN ] ≤ ε. Now, by Propositions 6.16, 6.4 and 6.8 (a),

lim inf
n→∞

Π∗(Fn |Γ) ≥ Π∗(FN |Γ) ≥ Π(FN −∞1AN |Γ)

=
1

1 + ε
Π((1 + ε)FN −∞1AN |Γ)

≥ 1

1 + ε
Π((1 + ε)FN −∞1AN∪BN |Γ)

≥ 1

1 + ε
Π(F −∞1AN∪BN |Γ)

≥ 1

1 + ε
Πε(F |Γ).

Letting ε↘ 0 establishes (6.3).

Remark 6.19. If we identify limit quantile superreplication prices with general-
ised coherent risk measures (cf. Remark 6.17), Lemma 6.18 shows that these risk
measures are continuous from above or equivalently satisfy the Fatou property ;
see [25, Section 4.2] for the definition and implications of the above properties in
terms of the robust representation of risk measures.
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All objects that are defined almost surely are trivially invariant under an
equivalent change of measure. We proceed to establish the nontrivial fact that
limit quantile superreplication prices are invariant under an equivalent change of
measure, even though quantile superreplication prices are clearly not invariant
under an equivalent change of measure.

In the following result we indicate by a left superscript the measure under
which limit quantile and quantile superreplication prices are taken.

Proposition 6.20. Let S be a market, Γ a strategy cone, F a generalised contin-
gent claim at time τ ∈ T[0,T ] and Q ≈ P on FT an equivalent probability measure.
Then

PΠ∗(F |Γ) = QΠ∗(F |Γ).

Proof. By the symmetry of the claim in P and Q and the definition of limit
quantile superreplication prices, it suffices to show that for all ε ∈ (0, 1),

PΠ∗(F |Γ) ≥ QΠε(F |Γ).

Let ε > 0 be given. Since Q � P there exists δ ∈ (0, 1) such that Q[A] ≤ ε
for all A ∈ Fτ with P[A] ≤ δ (see Kallenberg [50, Theorem 7.37]). Moreover, by
Proposition 6.14, there exists A ∈ Fτ with P[A] ≤ δ such that

PΠ(F −∞1A |Γ) ≤ PΠ∗(F |Γ).

Then Q[A] ≤ ε, and by Proposition 6.9 (a), we may conclude that
PΠ∗(F |Γ) ≥ PΠ(F −∞1A |Γ) = QΠ(F −∞1A |Γ) ≥ QΠε(F |Γ) P-a.s.

7 Robustness of limit quantile
superreplication prices

In this section, we show that under a mild technical condition, limit quantile
superreplication prices for bounded and general undefaultable strategies coincide.
For continuous markets, we prove that even limit quantile superreplication prices
for simple predictable and general undefaultable strategies coincide.

This robustness of limit quantile superreplication is significant in two respects:
From an economic perspective, it means that properties of the market that are
(or can be) formulated in terms of limit quantile superreplication prices for gen-
eral undefaultable strategies—the key example being the notion of numéraire-
independent no-arbitrage (NINA) (see Chapter III.2)—can be reformulated in
terms of bounded or even simple predictable undefaultable strategies, which
are somewhat closer to reality. From a mathematical perspective, considering
bounded undefaultable strategies only has the technical advantage that they can
be integrated with respect to any semimartingale under any measure that is
absolutely continuous with respect to the physical measure P; see Chapter V.

Before proving this robustness property of limit quantile superreplication
prices, we present a counter-example showing that ordinary superreplication lack
this property.
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Example 7.1. Let (Ω,F ,P) be a probability space supporting a (0, 1)-uniformly
distributed random variable U , F0

t := σ({U ≤ u} : u ≤ t), and Ft := σ(F0
t ,N ),

t ∈ [0, 1], where N denotes the P-null sets in F0
1 . It is not difficult to check

that (Ft)t∈[0,1] satisfies the usual condition and that U is an (Ft)t∈[0,1]-stopping
time. Let S be the market generated by the classic model S = (1, Xt)t∈[0,1],
where Xt := (1 − U)1JU,1K. Set F := V1(e1), where e1 = (1, 0). We claim that
Π(F |bU) = V0(η) > 0 and Π(F | U) = 0.

To establish both claims, note that for each ϑ ∈ U ,

V1(ϑ)(S) = V0(ϑ)(S) + ϑ2
U(1− U) P-a.s.

Thus, if ϑ is bounded, V1(ϑ)(S) ≥ 1 P-a.s. if and only if V0(ϑ)(S) ≥ 1, which
gives the first claim. The second claim follows from observing that the strategy
ϑ∗ := (1KU,1K,

1
1−t1J0,UK) is in U and satisfies V0(ϑ∗) = 0 and V1(ϑ∗) ≥ V1(e1) P-a.s.

The following technical lemma is the key ingredient for the proof of Theorem
7.3 below. It shows that if one can superreplicate a contingent claim F with a
general undefaultable strategy, one can, with a little more initial capital and with
probability almost 1, even superreplicate F with a bounded or—if the market is
continuous—with a simple predictable undefaultable strategy.

Recall from Definition 3.4 that a numéraire market is called bounded if there
exists a bounded numéraire strategy η such that S(η) is bounded, and simple
predictable if in addition η can be chosen simple predictable. Moreover, recall
from Proposition 3.3 that if a market is continuous each numéraire representative
has P-a.s. continuous paths.

Lemma 7.2. Let S be a bounded numéraire market and F a contingent claim at
time τ ∈ T[0,T ]. Suppose there exists ϑ ∈ U such that Vτ (ϑ) ≥ F P-a.s. Then for
each ε ∈ (0, 1), each δ > 0 and each positive contingent claim C at time 0, there
exists ϑ̃ ∈ bU satisfying

V0(ϑ̃) = V0(ϑ) + δC and P[Vτ (ϑ̃) ≥ F ] ≥ 1− ε. (7.1)

If S is in addition simple predictable and continuous, ϑ̃ can be chosen in sU .

Proof. Throughout this proof, denote by ‖ · ‖ the maximum norm in RN , where
N is the dimension of S. Let η be a bounded (or simple predictable) numéraire
strategy such that S(η) is bounded. Fix ε, δ and C as above. Since all contingent
claims at time 0 coincide up to a constant (this uses that F0 is P-trivial), we may
assume without loss of generality that C = V0(η). Choose K > 0 large enough
that supt∈[0,T ] max(‖ηt‖, ‖S(η)

t ‖) ≤ K P-a.s.
Step 1. By an approximation argument—which is different in both cases—,

we construct a bounded (or simple predictable) process ζ̃(1) such that

ζ̃
(1)
0 · S

(η)
0 + ζ̃(1) • S(η) ≥ −δ P-a.s., (7.2)

P
[
ζ̃

(1)
0 · S

(η)
0 + ζ̃(1) • S(η)

T ≥ VT (ϑ)(S(η))− δ
]
≥ 1− ε

2
(7.3)
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If S is a general bounded numéraire market, set ζ(n) := ϑ1{‖ϑ‖≤n}, n ∈ N.
Then ζ(n) • S(η) converges to ϑ • S(η) in the semimartingale topology (see Memin
[63, Lemme V.3]) and a fortiori uniformly in probability on compact intervals (see
Emery [20, p. 264]). Hence, there exists M ∈ N such that

P
[

sup
0≤t≤T

∣∣∣ζ(M) • S(η)
t − ϑ • S

(η)
t

∣∣∣ ≥ δ
]
≤ ε/2.

Since F0 is trivial, we may assume (after possibly enlarging M) that in addition
ζ

(M)
0 = ϑ0. Define the stopping time

σ1 := inf
{
t ∈ [0, T ] : sup

0≤s≤t

∣∣ζ(M) • S(η)
s − ϑ • S(η)

s

∣∣ ≥ δ
}
.

By construction, σ1 > 0 P-a.s. and P[σ1 =∞] ≥ 1− ε/2. Set

ζ̃(1) := ζ(M)1J0,σ1K.

Then ‖ζ̃(1)‖ ≤M , and

ζ̃
(1)
0 · S

(η)
0 + ζ̃(1) • S(η)

T ≥ VT (ϑ)(S(η))− δ on {σ1 = +∞}, (7.4)

which gives (7.3). To establish (7.2), due to ζ(M)
0 = ϑ0, is suffices to show that

ζ̃(1) • S(η) ≥ −ϑ0 · S(η)
0 − δ.

Fix 0 ≤ t ≤ T . Then on {t < σ1},

ζ̃(1) • S(η)
t = ζ(M) • S(η)

t ≥ ϑ • S(η)
t − sup

0≤s≤t
|ζ(M) • S(η)

s − ϑ • S(η)
s |

≥ Vt(ϑ)(S(η))− ϑ0 · S(η)
0 − δ ≥ 0− ϑ0 · S(η)

0 − δ P-a.s.,

on {t ≥ σ1} ∩ {‖ϑσ1‖ ≤M},

ζ̃(1) • S(η)
t = ζ(M) • S(η)

σ1
= ζ(M) • S(η)

σ1− + ζ(M)
σ ·∆S(η)

σ1

≥ ϑ • S(η)
σ1− + ϑσ1 ·∆S(η)

σ1
− sup

0≤s<σ1

|ζ(M) • S(η)
s − ϑ • S(η)

s |

≥ Vσ1(ϑ)(S(η))− ϑ0 · S(η)
0 − δ ≥ 0− ϑ0 · S(η)

0 − δ P-a.s.,

and on {t ≥ σ1} ∩ {‖ϑσ1‖ > M},

ζ̃(1) • S(η)
t = ζ(M) • S(η)

σ1
= ζ(M) • S(η)

σ1− + 0 ·∆S(η)
σ1

≥ ϑ • S(η)
σ1− − sup

0≤s<σ1

|ζ(M) • S(η)
s − ϑ • S(η)

s |

≥ Vσ1−(ϑ)(S(η))− ϑ0 · S(η)
0 − δ ≥ 0− ϑ0 · S(η)

0 − δ P-a.s.

If S is simple predictable and continuous, by (a trivial extension of) Stricker
[78, Proposition 2], there is a sequence (ζ(n))n∈N in sL(S(η)) such that ζ(n)

0 = ζ0,
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n ∈ N, and the sequence of stochastic integrals (ζ(n) • S(η))n∈N converges to
ϑ • S(η) in the semimartingale topology and a fortiori uniformly in probability on
compact intervals. DefineM , σ1 and ζ̃(1) as above—noting that now ζ̃(1) is simple
predictable. This gives (7.3), and (7.2) follows by a similar (but easier) argument
as above using that ∆S

(η)
σ1 = 0 on {σ1 < ∞} because S(η) has P-a.s. continuous

paths.
Step 2. Set

ζ̃(2) := ζ̃(1) + δη.

Then ζ̃(2) is bounded (or simple predictable) and satisfies

‖ζ̃(2)‖ ≤ ‖ζ̃(1)‖+ δ‖η‖ ≤M + δK.

Moreover, by construction and the first step,

ζ̃
(2)
0 · S

(η)
0 = V0(ϑ)(S(η)) + δV0(η)(S(η)), (7.5)

ζ̃(2) · S(η)
0 + ζ̃(2) • S(η) ≥ 0 P-a.s., (7.6)

ζ̃(2) · S(η)
0 + ζ̃(2) • S(η) ≥ V (ϑ)(S(η)) on {σ1 =∞}. (7.7)

Step 3. Choose M̃ ∈ N large enough that

P

[
sup

0≤t≤T

∣∣∣ζ̃(2) • S(η)
t

∣∣∣ ≥ M̃

]
≤ ε

2

and define the stopping time

σ2 := inf

{
t ∈ [0, T ] : sup

0≤s≤t

∣∣∣ζ̃(2) • S(η)
s

∣∣∣ ≥ M̃

}
.

By construction, σ2 > 0 P-a.s. and P[σ2 =∞] ≥ 1−ε/2. Moreover, on {σ2 <∞},

|∆ζ̃(2) • S(η)
σ2
| = |ζ̃(2)

σ2
·∆S(η)

σ2
| ≤ N‖ζ̃(2)

σ2
‖(‖S(η)

σ2
‖+ ‖S(η)

σ2−‖)
≤ N(M + δK)(2K) = 2NK(M + δK). (7.8)

Set
ζ̃(3) := ζ̃(2)1J0,σ2K.

Then ζ̃(3) is bounded (or simple predictable) and satisfies ‖ζ̃(3)‖ ≤ M + δK. In
addition, by construction, (7.5)–(7.7), the definition of σ2 and (7.8),

ζ̃
(3)
0 · S

(η)
0 = V0(ϑ)(S(η)) + δV0(η)(S(η)), (7.9)

ζ̃(3) · S(η)
0 + ζ̃(3) • S(η) ≥ 0 P-a.s., (7.10)

ζ̃(3) · S(η)
0 + ζ̃(3) • S(η) ≥ V (ϑ)(S(η)) on {σ1 ∧ σ2 =∞}, (7.11)

sup
0≤t≤T

|ζ̃(3) • S(η)
t | ≤ M̃ + 2NK(M + δK) P-a.s. (7.12)
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Step 4. Since η, S(η), ζ̃(3) and ζ̃(3) •S(η) are bounded (and η is simple predict-
able), Theorem 3.7 gives ϑ̃ ∈ bLsf (or ϑ̃ ∈ sLsf) with

V (ϑ̃)(S(η)) = ζ̃(3) · S(η)
0 + ζ̃(3) • S(η) P-a.s.

Moreover, (7.10) gives ϑ̃ ∈ bU (or ϑ̃ ∈ sU), and the claim follows from (7.9) and
(7.11) together with P[σ1 ∧ σ2 =∞] ≥ 1− ε.

Now we can prove the main result oft this section.

Theorem 7.3. Let S be a bounded numéraire market and F a contingent claim
at time τ ∈ T[0,T ]. Then

Π∗(F | U) = Π∗(F |bU). (7.13)

If S is in addition simple predictable and continuous, then

Π∗(F | U) = Π∗(F |bU) = Π∗(F | sU). (7.14)

Proof. We only establish (7.13); (7.14) follows by a similar argument.
Since bU ⊂ U , the inequality “≤” in (7.13) follows easily from the definitions

of quantile and limit quantile superreplication prices.
For the reverse inequality “≥”, by the definition of limit quantile superrepli-

cation prices, it suffices to show that, for all ε ∈ (0, 1),

Πε(F |bU) ≤ Π∗(F | U). (7.15)

So let ε ∈ (0, 1) be given. By Proposition 6.14, there is A ∈ Fτ with P[A] ≤ ε/2
such that Π∗(F | U) ≥ Π(F1Ac | U). In order to establish (7.15), it suffices to
show that

Πε(F |bU) ≤ Π(F1Ac | U). (7.16)

We may assume without loss of generality that Π(F1Ac | U) < ∞. Let η be
a bounded numéraire strategy such that also S(η) is bounded, δ > 0 and C a
contingent claim at time 0. By Proposition 6.3, there exists ϑ ∈ U such that

V0(ϑ) ≤ Πτ (F1Ac | U) +
δ

2
C and Vτ (ϑ) ≥ F1Ac P-a.s. (7.17)

Next, by Lemma 7.2, there exists ϑ̃ ∈ bU such that

V0(ϑ̃) = V0(ϑ) +
δ

2
C and P[Vτ (ϑ̃) ≥ F1Ac ] ≥ 1− ε. (7.18)

Thus,
Πε(F |bU) ≤ Π(F1cA | U) + δC,

and letting δ ↘ 0 yields (7.16).



Chapter III

Numéraire-independent
no-arbitrage (NINA)

In this chapter, we study the fundamental concept of (no-)arbitrage in our nu-
méraire-independent framework. In Section 1, we introduce a very general and
quantitative notion of arbitrage, called gratis events, based on limit quantile su-
perreplication prices. The results in Section 1 also lay the ground for Chapters
IV and V. For the most relevant case of undefaultable strategies, we derive an
equivalent and simpler characterisation of the absence of gratis events based on
ordinary superreplication prices in Section 2. We call the corresponding notion
numéraire-independent no-arbitrage (NINA). In Section 3, we compare NINA to
classic notions of no-arbitrage including no-arbitrage (NA), no free lunch with
vanishing risk (NFLVR) and no unbounded profit with bounded risk (NUPBR)
by presenting a new unifying characterisation of those concepts in terms of max-
imal strategies. The results in Section 3 are also foundational for Chapter VI. The
material presented in this chapter is for the main part taken from [31] and [32].

1 Gratis events

Loosely speaking, arbitrage means “making a profit out of nothing without risk”. If
we fix a strategy cone Γ, e.g. Γ = U , and interpret this to describe the investments
which we consider “without risk”, a rather intuitive translation of this catchphrase
into a mathematical definition is the existence of a nonzero contingent claim
F (“the profit”) which can be superreplicated for free (“out of nothing”) using
strategies in Γ.

Before making the above idea precise, we introduce the support of a contingent
claim.

Definition 1.1. Let S be a market, Γ a strategy cone and F a contingent claim
at time τ ∈ T[0,T ]. A set A ∈ Fτ satisfying A = {F > 0} P-a.s. is called a support
of F . We write A = suppF P-a.s. and say that F is supported on A.

Clearly, the support of a contingent claim F is P-a.s. unique.
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For the next definition, recall that the collection of all P-null sets in FT is
denoted by N .

Definition 1.2. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. A set
A ∈ Fτ \N is called a gratis event of S at time τ for Γ if there exists a contingent
claim F at time τ such that

A = suppF P-a.s. and Π∗(F |Γ) = 0.

We denote by Gτ (Γ) the collection of all gratis events of S at time τ for Γ.

Remark 1.3. One could define an analogous notion of gratis events based on
ordinary superreplication prices. It turns out, however, that this is far less use-
ful than the above concept based on limit quantile superreplication prices. The
reason is that ordinary (as opposed to limit quantile) superreplication prices do
not satisfy a monotone convergence property (cf. Lemma II.6.18). Notwithstand-
ing, in the important case of undefaultable strategies, the absence of gratis events
can equivalently be characterised by ordinary superreplication prices; see Sec-
tion 2.

First, we collect two basic properties of the set Gτ (Γ), which follow imme-
diately from subadditivity and monotonicity of limit quantile superreplication
prices (cf. Proposition II.6.16).

Proposition 1.4. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. Then
Gτ (Γ) is closed under finite unions. Moreover, if A ∈ Gτ (Γ) and B ∈ Fτ \N with
B ⊂ A P-a.s., then B ∈ Gτ (Γ).

Second, we establish that the limit quantile superreplication price of every
contingent claim supported on a gratis event is indeed gratis.

Proposition 1.5. Let S be a market, Γ a strategy cone and F a contingent claim
at time τ ∈ T[0,T ] with suppF ∈ Gτ (Γ). Then

Π∗(F |Γ) = 0.

Proof. Since suppF ∈ Gτ (Γ), by the definition of gratis events, there exists a
contingent claim G at time τ with suppG = suppF P-a.s. and Π∗(G |Γ) = 0.
For n ∈ N, set Fn := F1{F≤nG}. Then Fn ≤ Fn+1 P-a.s., and F = limn→∞ Fn
P-a.s. Moreover, since Fn ≤ nG P-a.s., monotonicity and positive homogeneity
of limit quantile superreplication prices (cf. Proposition II.6.16) yield

Π∗(Fn |Γ) ≤ Π∗(nG |Γ) = nΠ∗(G |Γ) = 0.

Now the claim follows from Lemma II.6.18.

The last result shows that if A ∈ Gτ (Γ) is a gratis event and we fix any repres-
entative S ∈ S and consider the Arrow-Debreu type security 1A in the currency
unit determined by S, i.e., the contingent claim F at time τ from Proposition
II.5.3 satisfying F (S) = 1A, then its limit quantile superreplication price is 0.
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Remark 1.6. (a) The notion of gratis events can be seen as a numéraire-in-
dependent version of the notion of cheap thrills introduced by Loewenstein and
Willard [56, Definition 2]. Indeed, fix any representative S ∈ S and any set
A ∈ Gτ (Γ). Let F be the contingent claim at time τ satisfying F (S) = 1A P-a.s.
and C the positive contingent claim at time 0 satisfying C(S) = 1 (cf. Proposi-
tion II.5.3). Then for each n ∈ N, Π∗(nF |Γ) = nΠ∗(F |Γ) = 0, and so Corollary
II.6.15 gives an undefaultable strategy ϑn satisfying

V0(ϑn)(S) ≤ 1

n
and P[Vτ (ϑn)(S) ≥ n1A] ≥ 1− 1

n
.

Hence, on a gratis event A, in any currency unit, we can get arbitrarily much
with probability almost 1 with arbitrarily low initial investment using strategies
having nonnegative value processes.

(b) If we fix S ∈ S, τ ∈ T[0,T ] and Γ and define the generalised coherent risk
measure ρτ : L0

−(Fτ ) → [0,∞] by ρτ (X) := Π∗(F |Γ)(S), where F is the contin-
gent claim at time τ from Proposition II.5.3 satisfying F (S) = −X (cf. Remark
II.6.17), then Gτ (Γ) = ∅ is equivalent to saying that the generalised risk meas-
ure ρτ is relevant or sensitive; see [25, Definition 4.32]. This kind of connection
between sensitive generalised risk measures and absence of arbitrage deserves a
more careful analysis, which we postpone to future research.

The following corollary provides a characterisation of gratis events solely in
terms of strategies.

Corollary 1.7. Let S be a market, Γ a strategy cone and F a nonzero contingent
claim at time τ . Then suppF ∈ Gτ (Γ) if and only if for each ε ∈ (0, 1), each
δ > 0 and each positive contingent claim C at time 0, there exists ϑ ∈ Γ satisfying

V0(ϑ) ≤ δC and P[Vτ (ϑ) ≥ F ] ≥ 1− ε. (1.1)

Proof. First, assume that suppF ∈ Gτ (Γ). Proposition 1.5 gives Π∗(F |Γ) = 0,
and (1.1) follows from Corollary II.6.15. Conversely, assuming (1.1), letting first
δ ↘ 0 establishes Πε(F |Γ) = 0 for all ε ∈ (0, 1), and letting then ε ↘ 0 yields
Π∗(F |Γ) = 0, which gives suppF ∈ Gτ (Γ).

Next, we show that limit quantile superreplication prices of (generalised) con-
tingent claims are determined “outside of gratis events”.

Proposition 1.8. Let S be a market, Γ a strategy cone and F a generalised
contingent claim at time τ ∈ T[0,T ]. Then for each A ∈ Gτ (Γ),

Π∗(F |Γ) = Π∗(F −∞1A |Γ).

Proof. We may assume without loss of generality that Gτ (Γ) 6= ∅. Pick A ∈ Gτ (Γ).
By monotonicity and the definition of limit quantile superreplication prices, it
suffices to show that for each ε ∈ (0, 1), each δ > 0, and each positive contingent
claim C at time 0,

Πε(F |Γ) ≤ Π∗(F −∞1A |Γ) + δC. (1.2)
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So let ε, δ and C be as above. It suffices to consider the case Π∗(F−∞1A |Γ) <∞.
By Corollary II.6.15, there exists ϑ(1) ∈ Γ satisfying

V0(ϑ(1)) ≤ Π∗(F −∞1A |Γ) +
δ

2
C and P[Vτ (ϑ

(1)) ≥ F −∞1A] ≥ 1− ε

2
.

Set G :=
(
F1{F≥0} + |Vτ (ϑ(1))|

)
1A. Then G is a contingent claim at time τ with

{G > 0} ⊂ A, and so Π∗(G |Γ) = 0 by Propositions 1.4 and 1.5 if P[G > 0] > 0,
and trivially if G = 0 P-a.s. Hence, by Corollary 1.7, there exists ϑ(2) ∈ Γ
satisfying

V0(ϑ(2)) ≤ δ

2
C and P[Vτ (ϑ

(2)) ≥ G] ≥ 1− ε

2
.

Set ϑ := ϑ(1) + ϑ(2) ∈ Γ. Then V0(ϑ) ≤ Π∗(F −∞1A |Γ) + δC and

P[Vτ (ϑ) ≥ F ] ≥ P[G+ Vτ (ϑ
(2)) ≥ F ]− ε

2
= 1− ε.

This gives (1.2).

We proceed to show that the set Gτ (Γ) is also closed under countable unions.

Lemma 1.9. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. Then Gτ (Γ) is
closed under countable unions.

Proof. We may assume without loss of generality that Gτ (Γ) 6= ∅. Let F be a
positive contingent claim at time τ and (An)n∈N a sequence in Gτ (Γ). For n ∈ N,
define Bn :=

⋃
1≤k≤nAk, and set A :=

⋃
n∈NAn =

⋃
n∈NBn. Then (Bn)n∈N is

a sequence in Gτ (Γ) by Proposition 1.4 and (F1Bn)n∈N is a monotone increasing
sequence of contingent claims satisfying

lim
n→∞

F1Bn = F1A.

Thus, Proposition 1.5 and Lemma II.6.18 imply that

Π∗(F1A |Γ) = lim
n→∞

Π∗(F1Bn |Γ) = 0.

An important consequence of Lemma 1.9 is the existence of maximal elements
in Gτ (Γ).

Definition 1.10. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. Assume
that Gτ (Γ) 6= ∅. Then G ∈ Gτ (Γ) is called a maximal gratis event at time τ for Γ
if A ⊂ G P-a.s. for all A ∈ Gτ (Γ).

It is clear from the definition that maximal gratis events, if they exists, are
P-a.s. unique.

Corollary 1.11. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. Assume
that Gτ (Γ) 6= ∅. Then there exists a maximal gratis event at time τ for Γ.

Proof. Since Gτ (Γ) is closed under countable unions by Lemma 1.9, this is a
standard argument. Set γ := supG∈Gτ (Γ)P[G] and let (Gn)n∈N be a sequence
in Gτ (Γ) satisfying limn→∞P[Gn] = γ. Set G :=

⋃
n∈NGn. Then G ∈ G(Γ)

by Lemma 1.9 and P[G] = γ. Seeking a contradiction, suppose there exists
A ∈ Gτ (Γ) with P[A \ G] > 0. Then G ∪ A ∈ Gτ (Γ) by Proposition 1.4 and
P[G ∪ A] > γ, which is a contradiction.
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2 Numéraire-independent no-arbitrage (NINA)
It is clear from an economic perspective, that a “reasonable” market should not
admit gratis events for undefaultable strategies. So we might say that a market
satisfies numéraire-independent no-arbitrage (NINA) if Gτ (U) = ∅ for all stopping
times τ ∈ T[0,T ]. But even though this definition is economically compelling, it
is not practical as on the on hand, it involves a condition on all stopping times
τ ∈ T[0,T ], and on the other hand, it is based on the rather complicated notion of
limit quantile superreplication prices. The the goal of this section is to derive a
simpler equivalent characterisation, which we then take as definition of NINA.

First, we consider the sets Gτ (Γ) as a function of τ ∈ T[0,T ], and we do this—
also for future reference in Chapter IV—for general strategy cones Γ. In order
to get interesting results, we have to assume that S is a numéraire market and
that Γ is rich enough to allow at each stopping time to switch to some numéraire
strategy.

Definition 2.1. Let S be a numéraire market. A strategy cone Γ is said to allow
switching to numéraire strategies if for all τ ∈ T[0,T ], there exists a numéraire
strategy η, called (a) switching numéraire strategy at time τ , which may depend
on τ and which is such that for all ϑ ∈ Γ,

ϑ1J0,τK + Vτ (ϑ)(S(η))η1Kτ,T K ∈ Γ.

If S is a numéraire market, Lsf and U allow switching to numéraire strategies,
and any numéraire strategy can be taken as switching numéraire strategy at all
stopping times. Moreover, if S is a bounded or simple predictable numéraire
market (cf. Definition II.3.4), bLsf and bU or sLsf and sU allow switching to
numéraire strategies, and any bounded or simple predictable numéraire strategy
with a bounded numéraire representative can be taken as switching numéraire
strategy at all stopping times. In particular, if S is a nonnegative market, Lsf , U ,
bLsf , bU , sLsf and sU allow switching to numéraire strategies, and the market
portfolio ηS = (1, . . . , 1) can be taken as switching numéraire strategy at all
stopping times. Another important class of strategy cones which allow switching
to numéraires are undefaultable strategies outside the gratis events of another
strategy cone Γ; see Chapter V.3.

For strategy cones which allow switching to numéraire strategies, the notion of
gratis events is time-consistent in the sense that gratis events propagate forward
in time.

Proposition 2.2. Let S be a numéraire market, Γ a strategy cone which allows
switching to numéraire strategies and τ1, τ2 ∈ T[0,T ] with τ1 ≤ τ2 P-a.s. Then

Gτ1(Γ) ⊂ Gτ2(Γ).

In particular, Gτ (Γ) ⊂ GT (Γ) for all τ ∈ T[0,T ].

Proof. Let η be a switching numéraire strategy at time τ1. We may assume
without loss of generality that there exists A ∈ Gτ1(Γ) with P[A] > 0. By the
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definition of gratis events, there exists a contingent claim F1 at time τ1 with
suppF1 = A P-a.s. Set g := F1(S(η)). Then g is Fτ1-measurable because F1 is a
contingent claim at time τ1 and also Fτ2-measurable since Fτ1 ⊂ Fτ2 . Let F2 be
the contingent claim at time τ2 from Proposition II.5.3 satisfying F2(S(η)) = g.
Then suppF2 = A P-a.s. We proceed to show that Π∗(F2 |Γ) = 0. To this end,
let ε ∈ (0, 1), δ > 0, and C be a positive contingent claim at time 0. By Corollary
1.7, there exists ϑ ∈ Γ such that

V0(ϑ) ≤ δC P-a.s. and P[Vτ1(ϑ) ≥ F1] ≥ 1− ε.

Set ϑ̃ := ϑ1J0,τ1K +Vτ1(ϑ)(S(η))η1Kτ1,T K ∈ Γ. Then V0(ϑ̃) = V0(ϑ) ≤ δC. Moreover,

P[Vτ2(ϑ̃) ≥ F2] = P[Vτ2(ϑ̃)(S(η)) ≥ g] = P[Vτ1(ϑ)(S(η)) ≥ g] ≥ 1− ε.

Now the claim follows from Corollary 1.7.

Remark 2.3. In Lemma IV.1.3, we prove a refinement of Proposition 2.2, show-
ing that Gτ1(Γ)∩{τ1 ≤ τ2} ⊂ Gτ2(Γ)∪N for arbitrary stopping times τ1, τ2 ∈ T[0,T ]

provided that Γ ⊂ U .

Thanks to Proposition 2.2, in order to check that Gτ (U) = ∅ for all stopping
times τ ∈ T[0,T ], it suffices to check that GT (U) = ∅. By the definition of gratis
events, this is equivalent to

Π∗(F | U) > 0 (2.1)

for all nonzero contingent claims F at time T . One drawback of condition (2.1)
is that it involves the rather complicated notion of limit quantile superreplication
prices. The next result shows that (2.1) is equivalent to the same condition for
ordinary superreplication prices.

Proposition 2.4. Let S be a market, Γ ⊂ U a strategy cone and τ ∈ T[0,T ].
Then Π∗(F |Γ) > 0 for all nonzero contingent claims F at time τ if and only if
Π(F |Γ) > 0 for all nonzero contingent claims F at time τ .

Note that Proposition 2.4 does not say that for some fixed nonzero contingent
claim F at time τ , Π∗(F |Γ) > 0 if and only if Π(F |Γ) > 0. This is wrong as
can be seen from Example II.6.12.

Proof. First, if Π∗(F |Γ) > 0 for all nonzero contingent claim F at time τ , then
a fortiori Π(F |Γ) > 0 for all nonzero contingent claim F at time τ by (II.6.2).
Conversely, by way of contradiction, suppose Π(F |Γ) > 0 for all nonzero contin-
gent claim F at time τ but Π∗(F̃ |Γ) = 0 for some nonzero contingent claim F̃ at
time τ . Set ε := 1

2
P[supp F̃ ]. Then ε ∈ (0, 1), and by Proposition II.6.14, there

exists A ∈ Fτ with P[A] ≤ ε such that

Π(F̃1Ac |Γ) ≤ Π∗(F̃ |Γ) = 0.

Since F̃1Ac is a nonzero contingent claim, we arrive at a contradiction.



3 Maximal strategies 39

After the above preparations, we can now state our definition of numéraire-
independent no-arbitrage (NINA).

Definition 2.5. A market S is said to satisfy numéraire-independent no-arbitrage
(NINA) if for all nonzero contingent claims F at time T ,

Π(F | U) > 0.

We finish this section by providing a couple of equivalent characterisations
of NINA. From an economic perspective, in particular the characterisations in
(d) and (e) are interesting, as they only involve bounded or simple predictable
undefaultable strategies.

Lemma 2.6. Let S be a numéraire market. Then the following are equivalent:

(a) S satisfies NINA.

(b) For all nonzero contingent claims F at time T , Π∗(F | U) > 0.

(c) For all stopping times τ ∈ T[0,T ] and all nonzero contingent claims F at
time τ , Π∗(F | U) > 0.

If S is a bounded numéraire market, (a) – (c) are equivalent to

(d) For all nonzero contingent claims F at time T , Π∗(F |bU) > 0.

If S is continuous and simple predictable, (a) – (d) are equivalent to

(e) For all nonzero contingent claims F at time T , Π∗(F | sU) > 0.

Proof. The equivalence (a) ⇔ (b) follows from Proposition 2.4, and the equival-
ence (b)⇔ (c) follows from Proposition 2.2 since U allows switching to numéraire
strategies. The equivalence (c)⇔ (d) if S is a bounded numéraire market and the
equivalence (c) ⇔ (e) if S is a continuous simple predictable numéraire market
follow from Theorem II.7.3.

3 Maximal strategies
The goal of this section is to compare our no-arbitrage concept of numéraire-
independent no-arbitrage (NINA) to classic no-arbitrage notions including no-
arbitrage (NA), no-free lunch with vanishing risk (NFLVR) and no unbounded
profit with bounded risk (NUPBR). To this end, we develop a new unifying
characterisation of those concepts in terms of maximal strategies, which explains
in particular how the classic notions of no-arbitrage depend on the choice of
currency unit and numéraire.

To motivate the concept of maximal strategies, fix a strategy cone Γ of possible
trading opportunities. A strategy ϑ ∈ Γ can be considered as a “reasonable
investment” from that class on J0, τK for some stopping time τ ∈ T[0,T ] only if
by using self-financing strategies in Γ, (1) one cannot create more wealth at time
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τ with the same (or a lower) initial investment, and (2) one cannot create the
same wealth at time τ with a lower initial investment. It is natural to call such
a strategy ϑ maximal—and this can be made mathematically precise in different
ways leading to the two notions of weakly and strongly maximal strategies; see
also Remarks 3.2 and 3.12 below for more comments.

3.1 Weakly maximal strategies

First, we introduce a weak notion of maximality.

Definition 3.1. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. A strategy
ϑ ∈ Γ is called weakly maximal at time τ for Γ if there does not exist ϑ̃ ∈ Γ with

V0(ϑ̃) ≤ V0(ϑ) and Vτ (ϑ̃) ≥ Vτ (ϑ) P-a.s.

such that one of the two inequalities is strict with positive probability. If ϑ ∈ Γ
is weakly maximal at each time τ ∈ T[0,T ] for Γ, it is called weakly maximal for Γ.
We often omit the qualifier “for Γ”.

Remark 3.2. The terminology “maximal strategies” goes back at least to Delbaen
and Schachermayer [12]. However, the setting there is different from here so that
also maximality has a different meaning. More precisely, [12] is cast in the classic
setup, i.e., it considers a classic model S = (1, X), uses for Γ the class A of classic
admissible strategies which is not numéraire-independent (cf. the discussion after
Definition II.4.3), and also imposes ex ante the absense-of-arbitrage condition
NFLVR. In our terminology, a maximal strategy in the sense of [12] is then
weakly maximal at time T for A. For this reason, some of our results on weakly
maximal strategies are similar to results in [12].

The zero strategy plays a key role when studying weakly maximal strategies.
This is easy.

Proposition 3.3. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. Then
ϑ ∈ Γ is weakly maximal at time τ only if the zero strategy 0 is weakly maximal
at time τ .

We illustrate by a counter-example that the converse of Proposition 3.3 is
false.

Example 3.4. Let W = (Wt)t∈[0,1] be a Brownian motion on some filtered prob-
ability space (Ω,F , (Ft)t∈[0,1],P). Let S be the market generated by the classic
model S = (1, Xt)t∈[0,1], where

Xt := 1 +

∫ τ∧t

0

1

1− s
dWs and τ := inf

{
t ∈ [0, 1] :

∫ t

0

1

1− s
dWs = −1

2

}
.

Note that S2 = X is a strict local martingale with S2
1 = 1

2
P-a.s. We claim that the

zero strategy 0 is weakly maximal at time 1 for U but that the numéraire strategy
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e2 = (0, 1) is not. For the first claim, suppose by way of contradiction that there
is ϑ ∈ U with V0(ϑ) = 0 and P[V1(ϑ) > 0] > 0. (We cannot have V0(ϑ) < 0
because ϑ ∈ U .) Then V (ϑ)(S) = ϑ • S is a nonnegative local martingale and
a supermartingale. Hence, E[V1(ϑ)(S)] ≤ V0(ϑ)(S) = 0, and we arrive at a
contradiction. For the second claim, consider the numéraire strategy e1 = (1, 0).
Then V0(e1)(S) = V0(e2)(S) = 1 and V1(e1)(S) = 1 > 1

2
= V1(e2)(S), which

shows that e2 fails to be weakly maximal for U . More precisely, and anticipating
ourselves, since V (e1)(S) ≡ 1 is (trivially) a martingale, it follows from Theorem
VI.2.1 below that e1 is a dominating maximal strategy for e2 (cf. Theorem VI.1.1
below).

The following result shows that strategies which are not weakly maximal al-
ways fail to satisfy condition (1) of a “reasonable investment” (see above) under
a mild technical condition. We omit the straightforward proof.

Proposition 3.5. Let S be a numéraire market, τ ∈ T[0,T ] and Γ a strategy cone
containing a numéraire strategy. If ϑ ∈ Γ is not weakly maximal at time τ , there
exists ϑ̃ ∈ Γ such that

V0(ϑ̃) = V0(ϑ), Vτ (ϑ̃) ≥ Vτ (ϑ) P-a.s. and P[Vτ (ϑ̃) > Vτ (ϑ)] > 0.

Our next goal is to establish that the notion of weak maximality is time-
consistent. To this end, we have to assume that S is a numéraire market and
that Γ is rich enough to allow switching to a dominated strategy at each stopping
time. This is a weak analogue of predictable convexity, considered in the standard
framework for the set of (constrained) admissible strategies.

Definition 3.6. Let S be a numéraire market. A strategy cone Γ is said to allow
switching to dominated strategies if for all τ ∈ T[0,T ], there exists a numéraire
strategy η, called (a) switching numéraire strategy at time τ , which may depend
on τ and which is such that for all ϑ, ϑ̃ ∈ Γ,

ϑ1J0,τK +
(
1{Vτ (ϑ)<Vτ (ϑ̃)}ϑ+ 1{Vτ (ϑ)≥Vτ (ϑ̃)}

(
ϑ̃+ Vτ (ϑ− ϑ̃)(S(η))η

))
1Kτ,T K ∈ Γ.

If S is a numéraire market, then U allows switching to dominated strategies.
Indeed, any numéraire strategy can be taken as switching numéraire strategy at
all stopping times.

Remark 3.7. If S is a numéraire market and Γ ⊂ U allows switching to domin-
ated strategies, it allows in particular switching to numéraire strategies (cf. Defin-
ition 2.1). Indeed, take ϑ̃ = 0 in Definition 3.6. Therefore, it is justified to call η
in both cases a “switching numéraire strategy”.

Proposition 3.8. Let S be a numéraire market, τ1 ≤ τ2 ∈ T[0,T ] stopping times
and Γ a strategy cone which allows switching to dominated strategies. If ϑ ∈ Γ is
weakly maximal at time τ2, it is also weakly maximal at time τ1. As a consequence,
ϑ ∈ Γ is weakly maximal if and only if it is weakly maximal at time T .
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Proof. By contraposition, suppose ϑ ∈ Γ is not weakly maximal at time τ1. By
Proposition 3.5, there exists ϑ̃ with V0(ϑ̃) = V0(ϑ), Vτ1(ϑ̃) ≥ Vτ1(ϑ) P-a.s. and
P[Vτ1(ϑ̃) > Vτ1(ϑ)] > 0. Let η be a switching numéraire strategy at time τ . Set
ϑ̂ := ϑ̃1J0,τ1K+

(
ϑ+Vτ1(ϑ̃−ϑ)(S(η))η

)
1Kτ1,T K ∈ Γ. Then V0(ϑ̂) = V0(ϑ̃) = V0(ϑ) and

Vτ2(ϑ̂) = Vτ2(ϑ)+
(
Vτ1(ϑ̃−ϑ)(S(η))

)
Vτ2(η) P-a.s. Since P[Vτ1(ϑ̃−ϑ)(S(η)) > 0] > 0,

ϑ is not weakly maximal at time τ2, and we arrive at a contradiction.

We proceed to show that if a weakly maximal strategy is dominated by another
strategy at some stopping time τ ∈ T[0,T ], it is also dominated at all earlier
stopping times σ ≤ τ .

Proposition 3.9. Let S be a numéraire market, Γ a strategy cone which allows
switching to dominated strategies and τ ∈ T[0,T ]. Suppose that ϑ ∈ Γ is weakly
maximal at time τ and ϑ̃ ∈ Γ satisfies Vτ (ϑ̃) ≥ Vτ (ϑ) P-a.s. Then V (ϑ̃) ≥ V (ϑ)
P-a.s. on J0, τK.

Proof. Seeking a contradiction, suppose there is a stopping time σ ≤ τ with
P[Vσ(ϑ̃) < Vσ(ϑ)] > 0. Let η be a switching numéraire strategy at time σ, and
set ϑ̂ := ϑ1J0,σK+

(
1{Vσ(ϑ)<Vσ(ϑ̃)}ϑ+1{Vσ(ϑ)≥Vσ(ϑ̃)}(ϑ̃+Vσ(ϑ−ϑ̃)(S(η))η)

)
1Kσ,T K ∈ Γ.

Then V0(ϑ̂) = V0(ϑ), and using that Vτ (ϑ̃) ≥ Vτ (ϑ) P-a.s. gives

Vτ (ϑ̂) = 1{Vσ(ϑ)<Vσ(ϑ̃)}Vτ (ϑ) + 1{Vσ(ϑ)≥Vσ(ϑ̃)}

(
Vτ (ϑ̃) + Vσ(ϑ− ϑ̃)(S(η))Vτ (η)

)
≥ 1{Vσ(ϑ)<Vσ(ϑ̃)}Vτ (ϑ) + 1{Vσ(ϑ)≥Vσ(ϑ̃)}

(
Vτ (ϑ) + Vσ(ϑ− ϑ̃)(S(η))Vτ (η)

)
= Vτ (ϑ) + 1{Vσ(ϑ)>Vσ(ϑ̃)}Vσ(ϑ− ϑ̃)(S(η))Vτ (η) P-a.s.

Since P[Vσ(ϑ − ϑ̃)(S(η)) > 0] > 0, ϑ fails to be weakly maximal at time τ , and
we arrive at a contradiction.

An important consequence of the above result is that weakly maximal stra-
tegies in U form a convex cone. This can be seen as a numéraire-independent
version of [12, Theorem 2.12].

Corollary 3.10. Let S be a numéraire market and τ ∈ T[0,T ]. If ϑ(1), ϑ(2) ∈ U
are weakly maximal at time τ for U , then ϑ(1) +ϑ(2) is so, too. As a consequence,
weakly maximal strategies in U form a convex cone.

Proof. Seeking a contradiction, suppose there are ϑ(1), ϑ(2) ∈ U such that ϑ(1)

and ϑ(2) but not ϑ(1) + ϑ(2) are weakly maximal at time τ . By Proposition 3.5,
there is ϑ̃ ∈ U satisfying V0(ϑ̃) = V0(ϑ(1) + ϑ(2)), Vτ (ϑ̃) ≥ Vτ (ϑ

(1) + ϑ(2)) P-a.s.
and P[Vτ (ϑ̃) > Vτ (ϑ

(1) + ϑ(2))] > 0. Let η ∈ U be a numéraire strategy and
ϑ := (ϑ̃− ϑ(2))1J0,τK + (Vτ (ϑ̃− ϑ(2))(S(η))η)1Kτ,T K. Then ϑ is in U by Proposition
3.9, V0(ϑ) = V0(ϑ(1)), Vτ (ϑ) ≥ Vτ (ϑ

(1)) P-a.s. and P[Vτ (ϑ) > Vτ (ϑ
(1))] > 0. Thus,

we arrive at a contradiction.
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3.2 Strongly maximal strategies

Next, we study a strong notion of maximality.

Definition 3.11. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. A strategy
ϑ ∈ Γ is called strongly maximal at time τ for Γ if Π(Vτ (ϑ) |Γ) = V0(ϑ) and if for
all nonzero contingent claims F at time τ ,

Π(Vτ (ϑ) + F |Γ) > V0(ϑ). (3.1)

If ϑ ∈ Γ is strongly maximal at each time τ ∈ T[0,T ] for Γ, it is called strongly
maximal for Γ. We often omit the qualifier “for Γ”.

Remark 3.12. (a) The concept of strongly maximal strategies is to the best of
our knowledge entirely new and has also not been considered in any form in the
standard framework before.

(b) One could in principle define two notions of strong maximality: one using
ordinary superreplication prices as above and one using limit quantile superre-
plication prices. This has been done in [31]. However, it turns out that both
concepts coincide for undefaultable strategies; see [31, Proposition 5.6]. For this
reason, we only consider here the more relevant and technically easier notion
based on ordinary superreplication prices.

The following result justifies our terminology.

Proposition 3.13. Let S be a market, τ ∈ T[0,T ] and Γ a strategy cone. If ϑ ∈ Γ
is strongly maximal at time τ , then it is also weakly maximal at time τ .

Proof. By way of contradiction, suppose there is ϑ ∈ Γ which is strongly but not
weakly maximal at time τ . Then there exists ϑ̃ ∈ Γ with V0(ϑ̃) ≤ V0(ϑ) and
Vτ (ϑ̃) ≥ Vτ (ϑ) P-a.s., and either V0(ϑ̃) < V0(ϑ) or P[Vτ (ϑ̃) > Vτ (ϑ)] > 0. In
the first case, we arrive at the contradiction Π(Vτ (ϑ) |Γ) ≤ V0(ϑ̃) < V0(ϑ), and
in the second case, setting F = Vτ (ϑ̃) − Vτ (ϑ), we arrive at the contradiction
Π(Vτ (ϑ) + F |Γ) = Π(Vτ (ϑ̃) |Γ) ≤ V0(ϑ̃) = V0(ϑ).

The following counter-example, which is inspired by [33], shows that the con-
verse of Proposition 3.13 does not hold.

Example 3.14. Let (Ω,F ,P) be a probability space supporting a random vari-
able U , uniformly distributed on (0, 1). Set F0

t := σ({U ≤ u} : u ≤ t) and
Ft := σ(F0

t ,N ), t ∈ [0, 1], where N denotes the P-null sets in F0
1 . It is not

difficult to check that (Ft)t∈[0,1] satisfies the usual conditions, U is an (Ft)t∈[0,1]-
stopping time, and for each (Ft)t∈[0,1]-predictable process H = (Ht)t∈[0,1], there is
a deterministic measurable function h : [0, 1] → R with H1J0,UK = h1J0,UK P-a.s.
Let S be the market generated by the classic model S = (1, Xt)t∈[0,1], where
Xt = A(t)1{t<U} +B(U)1{t≥U} and A,B : [0, 1]→ R are given by

A(t) :=

{
1 + s− 2

3
s2, t ∈ [0, 1

2
]

4
3
, t ∈ (1

2
, 1]

and B(t) :=

{
1
3

+ 3s− 2s2, t ∈ [0, 1
2
]

4
3
, t ∈ (1

2
, 1].
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Note that S2 = X is constant after U ∧ 1
2
. We claim that each ϑ ∈ U is weakly

but not strongly maximal at time 1 for U .
For the first claim, fix ϑ ∈ U and let ϑ̃ ∈ U be such that V0(ϑ̃) = V0(ϑ)

and V1(ϑ̃) ≥ V1(ϑ) P-a.s. Let h : [0, 1] → R be a measurable function satisfying
h1J0,UK = (ϑ̃2 − ϑ2)1J0,UK. Then

V1(ϑ̃)(S)− V1(ϑ)(S) = (ϑ̃2 − ϑ2) • S2
1 = (ϑ̃2 − ϑ2) • S2

U∧ 1
2

=

∫ U∧ 1
2

0

h(s) dA(s) + h(U)(B(U)− A(U))1{U<1/2} P-a.s.

The assumption that V1(ϑ̃)(S) ≥ V1(ϑ)(S) P-a.s. implies that∫ t

0

h(s)

(
1− 4

3
s

)
ds ≥ h(t)

2

3
(1− t)(1− 2t) for a.e. t ∈ (0, 1/2), (3.2)∫ 1

2

0

h(s)

(
1− 4

3
s

)
ds ≥ 0. (3.3)

A version of Gronwall’s inequality [74, Lemma D.2] implies that h(t) ≤ 0 for a.e.
t ∈ (0, 1/2). (Clearly, (3.2) remains valid when replacing h by h+.) This together
with (3.3) shows that h(t) = 0 for a.e. t ∈ (0, 1/2). Hence V1(ϑ̃) = V1(ϑ) P-a.s.,
and the claim follows from Proposition 3.5.

For the second claim, by Proposition 3.15 below, it suffices to show that the
zero strategy 0 is not strongly maximal at time 1 for U . Let F be the contingent
claim at time 1 from Proposition II.5.3 satisfying F (S) = 1{U≥1/2}. We claim
that Π(F | U) = 0. Since F is nonzero, this establishes the claim. By Remark
II.6.2 and the definition of ordinary superreplication prices, it suffices to show
that for each δ > 0, there is ϑ ∈ U with V0(ϑ)(S) ≤ δ and V1(ϑ)(S) ≥ F (S)
P-a.s. To this end, by Corollary II.3.8 (b), it suffices to find ζ ∈ L(X) with

δ + ζ •X ≥ 0 P-a.s. and δ + ζ •X1 ≥ F (S) = 1{U≥1/2} P-a.s. (3.4)

So let δ ∈ (0, 2
3
). Set ζt := 3

2
δ

1−2t
1K`(δ),r(δ)K, t ∈ [0, 1], where `(δ) := 1

2
(1− 3

2
δ) and

r(δ) = 1
2
(1− 3

2
δ exp(−4

δ
)). Note that 0 < `(δ) < r(δ) < 1

2
. To establish the first

part of (3.4), it suffices to consider δ + ζ •X on {U > `(δ)} × (`(δ), r(δ)]. So fix
t ∈ (`(δ), r(δ)]. Then on {t < U},

δ + ζ •Xt = δ +

∫ t

`(δ)

ζs dA(s) = δ +

∫ t

`(δ)

3

2

δ

1− 2s

(
1− 4

3
s

)
ds ≥ δ ≥ 0 P-a.s.,

and on {t ≥ U > `(δ)},

δ + ζ •Xt = δ +

∫ U

`(δ)

ζs dA(s) + ζU(B(U)− A(U))

= δ +

∫ U

`(δ)

3

2

δ

1− 2s

(
1− 4

3
s

)
ds+

3

2

δ

1− 2U

2

3
(U − 1)(1− 2U)

= δ + δ

(
U − `(δ) +

1

4
log

1− 2`(δ)

1− 2U

)
− δ(1− U) ≥ 0 P-a.s.
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Finally, on {U ≥ 1/2},

δ + ζ •X1 = δ +

∫ r(δ)

`(δ)

3

2

δ

1− 2s

(
1− 4

3
s

)
= δ + δ

(
r(δ)− `(δ) +

1

4
log

1− 2`(δ)

1− 2r(δ)

)
≥ 1 = F (S) P-a.s.,

which gives the second part of (3.4). This ends the example.

As in the case of weakly maximal strategies (cf. Proposition 3.3), the zero
strategy plays a fundamental role when studying strongly maximal strategies.
We omit the easy proof.

Proposition 3.15. Let S be a market, Γ a strategy cone and τ ∈ T[0,T ]. Then
ϑ ∈ Γ is strongly maximal at time τ only if the zero strategy 0 is strongly maximal
at time τ .

We demonstrate by a counter-example that the converse of Proposition 3.15
is false.

Example 3.16. Consider the setup of Example 3.4. We claim that the zero
strategy 0 is strongly maximal at time 1 for U but that the numéraire strategy
e1 = (0, 1) is not. The second claim follows immediately from Proposition 3.13
and the fact that e1 is not even weakly maximal at time 1 for U (see Example
3.4). For the first claim, seeking a contradiction, suppose there exists a nonzero
contingent claim F at time 1 with Π(F | U) = 0. Let 0 < δ < E[F (S)] and
C be the positive contingent claim at time 0 from Proposition II.5.3 satisfying
C(S) = 1. Then Proposition II.6.3 gives ϑ ∈ U with V0(ϑ) ≤ δC and V1(ϑ) ≥ F
P-a.s. Since V (ϑ) = ϑ0 · S0 + ϑ • S is a nonnegative local martingale and a
supermartingale, we arrive at the contradiction

V0(ϑ)(S) ≥ E[V1(ϑ)(S)] ≥ E[F (S)] > δ = δC(S) ≥ V0(ϑ)(S).

Also Propositions 3.5 and 3.8 have analogues for strongly maximal strategies;
the proof of Propositions 3.17 is easy and hence omitted.

Proposition 3.17. Let S be a numéraire market, τ ∈ T[0,T ] and Γ a strategy cone
containing a numéraire strategy. If ϑ ∈ Γ is not strongly maximal at time τ , there
exists a nonzero contingent claim F at time τ such that Π(Vτ (ϑ)+F |Γ) ≤ V0(ϑ).

Proposition 3.18. Let S be a numéraire market, τ1 ≤ τ2 ∈ T[0,T ] and Γ a strategy
cone which allows switching to dominated strategies. If ϑ ∈ Γ is strongly maximal
at time τ2, it is also strongly maximal at time τ1. As a consequence, ϑ ∈ Γ is
strongly maximal if and only if it is strongly maximal at time T .

Proof. The argument is somewhat similar to the proof of Proposition 2.2. By
contraposition, suppose that ϑ ∈ Γ is not strongly maximal at time τ1. By
Proposition 3.17, there exists a nonzero contingent claim F1 at time τ1 satisfying
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Π(Vτ1(ϑ) + F1 |Γ) ≤ V0(ϑ). Let η be a switching numéraire strategy at time τ1

and set g = F (S(η)). Then g is Fτ1-measurable because F1 is a contingent claim
at time τ1 and also Fτ2-measurable since Fτ1 ⊂ Fτ2 . Let F2 be the contingent
claim at time τ2 from Proposition II.5.3 satisfying F2(S(η)) = g, δ > 0, and C
a positive contingent claim at time 0. By Proposition II.6.3, there exist ϑ̃ ∈ Γ
with V0(ϑ̃) ≤ V0(ϑ) + δC and Vτ1(ϑ̃) ≥ Vτ1(ϑ) + F1 P-a.s. Define ϑ̂ ∈ Γ by
ϑ̂ := ϑ̃1J0,τ1K +

(
ϑ+ Vτ1(ϑ̃−ϑ)(S(η))η

)
1Kτ1,T K. Then V0(ϑ̂) = V0(ϑ̃) ≤ V0(ϑ) + δC,

and using that V (η)(S(η)) ≡ 1 and Vτ1(ϑ̃− ϑ) ≥ F1 gives

Vτ2(ϑ̂)(S(η)) = Vτ2(ϑ)(S(η)) + Vτ1(ϑ̃− ϑ)(S(η)) ≥ Vτ2(ϑ)(S(η)) + F1(S(η))

= Vτ2(ϑ)(S(η)) + g = Vτ2(ϑ)(S(η)) + F2(S(η)) P-a.s.

This yields Π(Vτ2(ϑ) + F2 |Γ) ≤ V0(ϑ) + δC. Letting δ ↘ 0 shows that ϑ is not
strongly maximal at time τ2.

For the important special case Γ = U , we almost have a converse to Proposi-
tion 3.13.

Proposition 3.19. Let S be a numéraire market and τ ∈ T[0,T ]. Suppose that the
zero strategy 0 is strongly maximal for U at time τ . Then every strategy ϑ ∈ U
that is weakly maximal for U at time τ is also strongly maximal for U at time τ .

Proof. Seeking a contradiction, suppose ϑ ∈ U is weakly but not strongly maximal
at time τ for U . By Proposition 3.17, there is a nonzero contingent claim F at
time τ with Π(Vτ (ϑ) + F | U) ≤ V0(ϑ). Let δ > 0 and C be a positive contingent
claim at time 0. By Proposition II.6.3, there is ϑ̃ ∈ U with V0(ϑ̃) ≤ V0(ϑ) + δC
and Vτ (ϑ̃) ≥ Vτ (ϑ) +F P-a.s. Let η be a numéraire strategy and define ϑ ∈ Γ by
ϑ := ϑ̃1J0,τK + (ϑ+ Vτ (ϑ̃− ϑ)(Sη))η)1Kτ,T K. Proposition 3.9 gives ϑ̂ := ϑ− ϑ ∈ U .
Moreover, V0(ϑ̂) ≤ δC and Vτ (ϑ̂) ≥ F P-a.s., and so Π(F | U) ≤ δC. Letting
δ ↘ 0 gives Π(F | U) = 0, which implies that 0 is not strongly maximal at time
τ for U . Hence, we arrive at a contradiction.

3.3 No-arbitrage and maximal strategies

We now use our paradigm of maximal strategies to compare our concept of nu-
méraire-independent no-arbitrage (NINA) to classic no-arbitrage conditions like
NA, NFLVR or NUPBR.1 To this end, we first introduce some compact notation.

Definition 3.20. Let S be a market and ϑ ∈ U . We say that we have

• wm(ϑ) if ϑ is weakly maximal for U .

• sm(ϑ) if ϑ is strongly maximal for U .

The implication structure between wm(0), wm(ϑ), sm(0) and sm(ϑ) follows
directly from the results and counter-examples in Sections 3.1 and 3.2.

1For an excellent guided tour through the zoo of classic notions of no-arbitrage for a con-
tinuous classic model S = (1, X), we refer to the Ph.D. thesis of Hulley [35].
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Proposition 3.21. Let S be a numéraire market and ϑ ∈ U . Then:(
wm(ϑ) & sm(0)

)
⇔ sm(ϑ)

⇒
6⇐

wm(ϑ)

6⇑ ⇓ 6⇑ ⇓

sm(0)
⇒
6⇐

wm(0).

If we want to interpret wm(ϑ) or sm(ϑ) as no-arbitrage conditions for the mar-
ket S, the above result gives two insights. First, wm(0) or sm(0) are the weakest
of such conditions. Second, if we have wm(ϑ) or sm(ϑ) for some fixed ϑ ∈ U , we
do not have wm(ϑ̃) or sm(ϑ̃) for a different ϑ̃ ∈ U in general. Therefore, neither
wm(ϑ) nor sm(ϑ) for ϑ 6= 0 are good notions of no-arbitrage, as they crucially
depend on an arbitrary choice of some ϑ ∈ U . (Anticipating ourselves a bit, we
note that in the standard framework one chooses for ϑ the numéraire strategy
e1 = (1, 0, . . . , 0).) So we are left with wm(0) and sm(0). One can show that in
finite discrete time, both concepts are equivalent. In infinite discrete and continu-
ous time, however, wm(0) is too weak.2 As Example 3.16 demonstrates, under
wm(0) one may still become arbitrarily rich with positive probability (1/2 in the
example) by using an undefaultable strategy ϑ with initial cost V (ϑ)(S) ≤ δ,
where δ > 0 can be chosen arbitrarily small. From an economic perspective, such
a situation should clearly be called arbitrage. This also shows that in the stand-
ard framework, i.e., for a classic model S = (1, X), working with 0-admissible
strategies, i.e., the set A0 := {ϑ ∈ L(X) : ϑ0 = 0 and ϑ •X ≥ 0}, does not lead
to a good concept of no-arbitrage since under wm(0), {ϑ •XT : ϑ ∈ A0} = {0},
and so the corresponding notions “0-NA” or “0-NFLVR” are trivially satisfied
even in a situation as above. Thus sm(0) is the only candidate for a numéraire-
independent notion of no-arbitrage, and by Proposition 3.18 this is exactly what
we have called numéraire-independent no-arbitrage (NINA) in Definition 2.5. Let
us stress again that NINA or sm(0) are completely general concepts. They do not
assume that a numéraire strategy for S exists, they do not involve any topological
concept, and they are economically compelling: Every nonzero contingent claim
must have a positive (superreplication) price.

We proceed to show how the classic no-arbitrage conditions no-arbitrage (NA)
[9], no free lunch with vanishing risk (NFLVR) [9], BK or no unbounded profit
with bounded risk (NUPBR) [42, 46], no-arbitrage of the first kind (NA1) [48]
and no cheap thrills [56] can be neatly characterized by our concept of maximal
strategies. They are formulated for a classic model S = (1, X), i.e., for the nu-
méraire representative S(e1) of e1 = (1, 0, . . . , 0); cf. Example II.3.6. To compare
them to our framework, we have to generalise them to general numéraire strategies
(as opposed to η = e1). Let us repeat that all those classic notions depend a priori
by their very definition on an initial choice of a numéraire strategy η. We indicate
this—despite its clumsiness—also in the notation, and speak henceforth of NA(η)

instead of NA, NFLVR(η) instead of NFLVR, and so forth.
2In the classic setup and for continuous markets, the analogue of wm(0) has been studied

under the names NA+ and NA+ by Strasser [77] and Hulley [35], respectively.
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Definition 3.22. Let S be a numéraire market and η a numéraire strategy. Set

K0(S(η)) := {ζ • S(η)
T : ζ ∈ Lad(S(η))},

K1
0(S(η)) := {ζ • S(η)

T : ζ ∈ Lad(S(η), 1)},
C(S(η)) := {g ∈ L∞(FT ) : g ≤ f for some f ∈ K0(S(η))}

= (K0(S(η))− L0
+(FT )) ∩ L∞(FT ).

Then S(η) is said to satisfy

• NA(η) if K0(S(η)) ∩ L0
+(FT ) = {0},

• NFLVR(η) if C(S(η)) ∩ L∞+ (FT ) = {0}, where C(S(η)) denotes the closure of
C(S(η)) in the norm topology of L∞(FT ),

• BK(η) or NUPBR(η) if K1
0(S(η)) is bounded in probability,

• NA(η)
1 if there does not exist a nonzero random variable ξ ∈ L0

+(FT ) such
that for all x > 0, there exists ζ ∈ Lad(S(η), x) with x+ ζ • S(η)

T ≥ ξ P-a.s.,

• (η)-no cheap thrills if there are no A ∈ FT with P[A] > 0 and strategies
ζ(n) ∈ Lad(S(η), 1/n), n ∈ N, with lim

n→∞
ζ(n) • S(η) =∞ on A P-a.s.

Remark 3.23. The above notions are good generalisations of the corresponding
classic concepts. Indeed, if we interpret S(η),1, . . . , S(η),N as d = N discounted
“risky” assets in a standard framework, we recover the classic definitions; cf. the
discussion after Definition II.4.3.

It is easy to check that NA(η)
1 and (η)-no cheap thrills are equivalent. It is

shown in [47, Proposition 1] that the latter two are also equivalent to BK(η)/
NUPBR(η). Moreover, it is not difficult to establish that a numéraire represent-
ative S(η) satisfies NA(η)

1 /(η)-no cheap thrills (and hence also BK(η)/NUPBR(η)) if
and only if we have sm(0), i.e., if and only if the market S satisfies NINA. How-
ever, strictly speaking, one cannot say that NA(η)

1 /(η)-no cheap thrills/BK(η)/
NUPBR(η) are equivalent to NINA since the former classic notions all depend
on an initial choice of a numéraire strategy η. In particular, if S fails to be a
numéraire market, it is not immediately clear how to formulate corresponding
notions, whereas NINA clearly depends neither on the choice nor the existence
of a numéraire strategy.

We proceed to characterize the above concepts in terms of maximal strategies
in our sense.

Proposition 3.24. Let S be a numéraire market and η a fixed numéraire strategy.
Then:

(a) S(η) satisfies NA(η) if and only if we have wm(η).

(b) S(η) satisfies BK(η)/NUPBR(η)/NA(η)
1 /(η)-no cheap thrills if and only if we

have sm(0).
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(c) S(η) satisfies NFLVR(η) if and only if we have sm(η).

Proof. (a) follows easily from Proposition II.4.4, (b) follows from the discussion
preceding the result, and (c) follows from (a) and (b) using the equivalence of
s(η) and (wm(η) & sm(0)) (Proposition 3.21) and the equivalence of NFLVR(η)

and (NA(η) & BK(η)) [42, Lemma 2.2].

Remark 3.25. (a) The above result shows in particular that the most famil-
iar no-arbitrage conditions NA = NA(e1) and NFLVR = NFLVR(e1) for a classic
model S = (1, X) (cf. Example II.3.6) implicitly assume that e1 = (1, 0, . . . , 0),
the buy-and-hold strategy of the “bank account”, is weakly or strongly maximal.
From an economic perspective, this means that investing in the bank account
is a “reasonable investment” (cf. the introduction to Section 3.1). This assump-
tion is at least debatable, and so we consider NINA a more natural no-arbitrage
condition.

(b) For a market S generated by a classic model S = (1, X), our notion of
NINA for the market S is equivalent to the notion of NUPBR = NUPBR(e1) for
the numéraire representative S(e1) = S. So why do we not just stick to NUPBR
and S? First, S might not be generated by a classic model, so this identification
is not always possible. Second, even if S is generated by a classic model, it is not
clear from the definition that NUPBR = NUPBR(e1) is a numéraire-independent
property.3 Third, and this the crucial point, for a dual characterisation of NINA
for a market S (generated by a classic model or otherwise), sticking to one rep-
resentative S will not do; see Chapter VI.1.

3We are not aware of any reference in the literature, where this statement is rigorously
proved. It is stated in [73, before Proposition 2.7, italics added] that NUPBR is a “numéraire-
free property in a certain sense”, but this is not made precise. Moreover, in [73, Proposition
2.7] there is a change of dimension, and so this result is not numéraire-independent in our sense.
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Chapter IV

Separating stopping times
for markets failing NINA

In this chapter, we study numéraire markets failing numéraire-independent no-
arbitrage (NINA); see Definition III.2.5. We seek to find a stopping time σ such
that (1) strictly before σ, we can never “make a profit out of nothing without risk”,
and (2) immediately after σ, we always can. It is natural to call σ a separating
stopping time for the market S.

After making the above concept mathematically precise and establishing a
preliminary lemma in Section 1, we show the existence of a smallest separating
stopping time in Section 2; the existence of a largest separating stopping time
in proved in Section 3. We conclude the chapter by illustrating our results with
several examples in Section 4.

1 Conceptual prélude
We first introduce some additional notation. For the next definition, recall the
notion of gratis events from Definition III.1.2.

Definition 1.1. Let S be a market and Γ a strategy cone. A stopping time
τ ∈ T[0,T ] is called a gratis event time of S for Γ if Gτ (Γ) 6= ∅ and a no gratis
event time of S for Γ if Gτ (Γ) = ∅. We write Tge(Γ) and Tnge(Γ) for the respective
subsets of T[0,T ].

Clearly, T[0,T ] is the disjoint union of Tge(Γ) and Tnge(Γ). As explained above,
our goal is to find a stopping time σ which “separates” the two sets Tge(Γ) and
Tnge(Γ). Since the set T[0,T ] is partially but not totally ordered, this is a delicate
issue. For the next definition, recall that N denotes the collection of all P-null
sets in FT .
Definition 1.2. Let S be a market and Γ a strategy cone. A stopping time
σ ∈ T[0,T ] is called a separating stopping time of S for Γ if

(1) Gτ (Γ) ∩ {τ < σ} ⊂ N , for all τ ∈ T[0,T ] with P[τ < σ] > 0, (1.1)

(2) Gτ (Γ) ∩ {τ > σ} 6⊂ N , for all τ ∈ T[0,T ] with P[τ > σ] > 0. (1.2)
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Let us briefly comment on the above definition. Property (1.1) encodes the
idea that strictly before σ, we cannot “make a profit out of nothing without risk”.
This implies in particular that τ ∈ Tnge if τ < σ P-a.s. The interpretation of (1.2)
is that immediately after time σ, we can “make a profit out of nothing without
risk” in the sense that there exists a gratis event A ⊂ {τ > σ} at time τ for Γ—
without specifying, however, how large A is. Anticipating ourselves a bit, we note
that the extreme case that A = {τ > σ} corresponds to the largest separating
stopping time; see Section 3. Moreover, (1.2) implies that σ ≥ τ for all τ ∈ Tnge.
This is the starting point for the definition of the smallest separating stopping
time; see Section 2. Finally, note that noting is said about σ itself—we may have
σ ∈ Tnge or σ ∈ Tge.

The cornerstone of the subsequent results is a refinement of Proposition III.2.2.
To this end, recall from Definition III.2.1 that a strategy cone Γ is said to allow
switching to numéraire strategies if for all τ ∈ T[0,T ], there exists a (switching)
numéraire strategy η such that ϑ1J0,τK +Vτ (ϑ)(S(η))η1Kτ,T K ∈ Γ for all ϑ ∈ Γ. Also
recall that the key example of such a strategy cone is Γ = U , the collection of all
undefaultable strategies (cf. Definition II.4.2).

Lemma 1.3. Let S be a numéraire market, Γ ⊂ U a strategy cone which allows
switching to numéraire strategies and τ1, τ2 ∈ T[0,T ]. Then

(a) Gτ1(Γ) ∩ {τ1 ≤ τ2} ⊂ Gτ2(Γ) ∪N ,

(b) Gτ1(Γ) ∩ {τ1 < τ2} ⊂ Gτ2(Γ) ∪N ,

(c) Gτ1(Γ) ∩ {τ1 = τ2} ⊂ Gτ2(Γ) ∪N .

Moreover, if τ1 ≤ τ2 P-a.s., Gτ1(Γ) ⊂ Gτ2(Γ).

Note that the assumption Γ ⊂ U is crucial.

Proof. We only establish (a); the proofs of (b) and (c) are analogous.
Let η be a switching numéraire strategy at time τ1. We may assume without

loss of generality that there exists A ∈ Gτ1(Γ) ∩ {τ1 ≤ τ2} with P[A] > 0. By
the definition of gratis events, there exists a contingent claim F1 at time τ1 with
suppF1 = A P-a.s. Set g := F1(S(η)). We claim that g is Fτ2-measurable. Indeed,
let c > 0. Then {g > c} ∈ Fτ1 because F1 is a contingent claim at time τ1.
P-completeness of Fτ2 and the fact that {g > 0} = A ⊂ {τ1 ≤ τ2} P-a.s. give
{g > c} = {g > c} ∩ {g > 0} ∈ Fτ2 , and the claim follows from nonnegativity
of g. Let F2 be the contingent claim at time τ2 from Proposition II.5.3 satisfying
F2(S(η)) = g. Then suppF2 = A P-a.s. We proceed to show that Π∗(F2 |Γ) = 0.
To this end, let ε ∈ (0, 1), δ > 0 and C be a positive contingent claim at time 0.
By Corollary III.1.7, there exists ϑ ∈ Γ such that

V0(ϑ) ≤ δC P-a.s. and P[Vτ1(ϑ) ≥ F1] ≥ 1− ε.

Set ϑ̃ := ϑ1J0,τ1K + Vτ1(ϑ)(S(η))η1Kτ1,T K ∈ Γ. Then V0(ϑ̃) = V0(ϑ) ≤ δC and
Vτ2(ϑ̃)(S(η)) ≥ 0 = g on {g = 0} because Γ ⊂ U . This together with the fact that
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{g > 0} ⊂ {τ1 ≤ τ2} P-a.s. gives

P[Vτ2(ϑ̃) < F2] = P[Vτ2(ϑ̃)(S(η)) < g] = P[{Vτ2(ϑ̃)(S(η)) < g} ∩ {g > 0}]
≤ P[{Vτ2(ϑ̃)(S(η)) < g} ∩ {τ1 ≤ τ2}]
= P[{Vτ1(ϑ)(S(η)) < g} ∩ {τ1 ≤ τ2}]
≤ P[Vτ1(ϑ)(S(η)) < g] = P[Vτ1(ϑ) < F1] ≤ ε.

Now the claim follows from Corollary III.1.7.

2 The lower separating stopping time
In this section, we show the existence of a smallest separating stopping time under
a mild technical condition. As already noted in the discussion after Definition 1.2,
if a separating stopping time σ for a strategy cone Γ exists, then necessarily σ ≥ τ
for all τ ∈ Tnge. So a natural candidate for a separating stopping time σ is the
smallest stopping time that dominates all stopping times in Tnge.

Theorem 2.1. Let S be a numéraire market and Γ ⊂ U a strategy cone which
allows switching to numéraire strategies. Then there exists a smallest separating
stopping time for Γ, which we denote by σΓ and call the lower separating stopping
time of S for Γ. It is explicitly given by

σΓ := ess sup
τ∈Tnge(Γ)

τ. (2.1)

Note that for Tge(Γ) = ∅, trivially σΓ = T .

Proof. First, we show that the set Tnge(Γ) is closed under taking maxima. Let
τ1, τ2 ∈ Tnge(Γ) and set τ̃ := τ1 ∨ τ2. Then by Lemma 1.3 (c) and the fact that
Gτi(Γ) = ∅, i = 1, 2,

Gτ̃ (Γ) = (Gτ̃ (Γ) ∩ {τ̃ = τ1}) ∪ (Gτ̃ (Γ) ∩ {τ̃ = τ2}) ⊂ N ,

and so τ̃ ∈ Tnge(Γ).
Next, define σΓ by (2.1). We proceed to establish that this is indeed a separ-

ating stopping time for Γ. That it is a stopping time follows from the first step
because closedness of Tnge(Γ) under taking maxima implies that there exists a
nondecreasing sequence (τn)n∈N in Tnge(Γ) such that

σΓ = lim
n→∞

τn P-a.s. (2.2)

To establish (1.1) for σΓ, let τ ∈ T[0,T ] with P[τ < σ] > 0 and (τn)n∈N be a
nondecreasing sequence in Tnge(Γ) satisfying (2.2). Then by Lemma 1.3 (b) and
the fact that each Gτn(Γ) = ∅,

Gτ (Γ) ∩ {τ < σΓ} ⊂
⋃
n∈N

Gτ (Γ) ∩ {τ < τn} ∪ N = N .
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Property (1.2) for σΓ follows immediately from the definition of σΓ.
Finally, it follows from the discussion preceding this theorem and the definition

of the essential supremum, that σΓ defined by (2.1) is the smallest separating
stopping time for Γ.

Note that we either have σΓ ∈ Tnge(Γ) or σΓ ∈ Tge(Γ); see the examples in
Section 4. In the first case, σΓ can be interpreted as the last time, when there
are no gratis events in the market. In the second case, σΓ can be interpreted as
the first time, when there are gratis events in the market. Moreover, there exists
a nondecreasing sequence (τn)n∈N in Tnge(Γ) which foretells when gratis events
“enter the market”. More precisely, it is easy to check that σΓ is predictable on
GσΓ

, where GσΓ
∈ GσΓ

(Γ) is a maximal gratis event at time σΓ for Γ (cf. Definition
III.1.10 and Corollary III.1.11).

3 The upper separating stopping time
In this section, we show the existence of a largest separating stopping time. As
already noted in the discussion after Definition 1.2, property (1.2) of a separating
stopping time σ for Γ gives for each τ ∈ T[0,T ] with P[τ > σ] > 0 a gratis event
Aτ ⊂ {τ > σ} at time τ for Γ. The extreme case is of course that {τ > σ}
itself is a gratis event at time τ for Γ. From an economic perspective, this
means that strictly after time σ, in any currency unit, one can get arbitrarily
much with probability almost 1 with an arbitrarily low initial investment using
strategies having nonnegative value processes (cf. Proposition III.1.5 and Remark
III.1.6 (a)).

Theorem 3.1. Let S be a numéraire market and Γ ⊂ U a strategy cone which
allows switching to numéraire strategies. Then there exists a largest separating
stopping time for Γ, which we denote by σΓ and call the upper separating stopping
time of S for Γ. It satisfies

(2’) {τ > σΓ} ⊂ Gτ (Γ), for all τ ∈ T[0,T ] with P[τ > σΓ] > 0. (3.1)

Note that for Tge(Γ) = ∅, trivially σΓ = T .

Proof. First, we show that if a separating stopping time σ for Γ satisfies (3.1),
then it is the largest one. Seeking a contradiction, suppose there exists another
separating stopping time σ̃ for Γ with P[σ̃ > σ] > 0. Then there is r ∈ (0, T )
with P[σ < r < σ̃] > 0. By property (3.1) for σ, {σ < r} ∈ Gr(Γ), and so
{σ < r < σ̃} ∈ Gr(Γ) ∩ {r < σ̃} by Proposition III.1.4. On the other hand,
Gr(Γ) ∩ {r < σ̃} ⊂ N by (1.1) for σ̃, and we arrive at a contradiction.

Next, we establish the existence of a separating stopping time for Γ satisfying
(3.1). To this end, for τ ∈ Tnge(Γ), set Gτ := ∅, and for τ ∈ Tge(Γ), let Gτ ∈ Gτ (Γ)
be a maximal gratis event (cf. Definition III.1.10 and Corollary III.1.11). Define
the process Z = (Zt)t∈[0,T ] by Zt := 1Gt . Intuitively, we would like to define σΓ

as the first time that Z takes the value 1. For technical reasons, however, things
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are not so easy because Z might not have càdlàg paths. Therefore, we have to
argue more carefully and work with suitable modifications of the process Z. To
this end, set L0 := ∅, and for 0 < t ≤ T , define

Lt :=
⋃
r<t

r rational

Gr.

Moreover, set UT := Ω, and for 0 ≤ t < T define

Ut :=
⋂
r>t

r rational

Lr.

Then for all 0 ≤ s < t ≤ T ,

Ls ⊂ Us ⊂ Lt ⊂ Ut.

In addition, for any increasing sequence (tn)n∈N in [0, T ] with limn→∞ tn = t,

Lt =
⋃
r<t

r rational

Gr ⊂
⋃
r<t

r rational

Lr+ t−r
2
⊂
⋃
n∈N

Ltn ⊂
⋃
n∈N

Utn ⊂ Lt. (3.2)

Likewise, for any decreasing sequence (tn)n∈N in [0, T ] with limn→∞ tn = t,

Ut ⊂
⋂
n∈N

Utn ⊂
⋂
n∈N

Ltn ⊂
⋂
r>t

r rational

Lr = Ut. (3.3)

Define the processes X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ] by Xt := 1Lt and
Yt := 1Ut . Then X and Y are {0, 1}-valued increasing adapted processes; (3.2)
implies that for all ω and all 0 < t ≤ T ,

Xt = lim
s↑t

Xs = lim
s↑t

Ys,

and (3.3) implies that for all ω and for all 0 ≤ t < T ,

Yt = lim
s↓t

Ys = lim
s↓t

Xs. (3.4)

We proceed to show that for all τ ∈ T[0,T ],

Xτ ≤ 1Gτ ≤ Yτ P-a.s. (3.5)

For deterministic t ∈ [0, T ], by construction of Gt and Ut and Lemma 1.3,

Lt ⊂ Gt ⊂ Ut P-a.s.,

and so (3.5) holds for all deterministic t ∈ [0, T ]. For a general stopping time
τ ∈ T[0,T ], we establish (3.5) by an approximation argument. To this end, for
n ∈ N, define the processes X(n) = (X

(n)
t )t∈[0,T ] and Y (n) = (Y

(n)
t )t∈[0,T ] by

X
(n)
t =

2n∑
k=1

X k−1
2n

T1{ k−1
2n

T≤t< k
2n
T} +XT1{t=T},

Y
(n)
t = Y01{t=0} +

2n∑
k=1

Y k
2n
T1{ k−1

2n
T<t≤ k

2n
T}.
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Left-continuity of X and right-continuity of Y give for all ω,

lim
n→∞

X(n) = X and lim
n→∞

Y (n) = Y.

Thus, to establish (3.5), it suffices to show that for all n ∈ N and all τ ∈ T[0,T ],

X(n)
τ ≤ 1Gτ ≤ Y (n)

τ P-a.s.

Let τ ∈ T[0,T ] and n ∈ N. By Lemma 1.3 and (3.5) for deterministic t ∈ [0, T ],

X(n)
τ =

2n∑
k=1

1L k−1
2n

T
1{ k−1

2n
T≤τ< k

2n
T} + 1LT1{τ=T}

≤
2n∑
k=1

1G k−1
2n

T
1{ k−1

2n
T≤τ< k

2n
T} + 1GT1{τ=T}

≤
2n∑
k=1

1Gτ1{ k−1
2n

T≤τ< k
2n
T} + 1Gτ1{τ=T}

= 1Gτ

= 1Gτ1{τ=0} +
2n∑
k=1

1Gτ1{ k−1
2n

T<τ≤ k
2n
T}

≤ 1G01{τ=0} +
2n∑
k=1

1G k
2n

T
1{ k−1

2n
T<τ≤ k

2n
T}

≤ 1U01{τ=0} +
2n∑
k=1

1U k
2n

T
1{ k−1

2n
T<τ≤ k

2n
T}

= Y (n)
τ P-a.s.

Finally, define the stopping time σΓ ∈ T[0,T ] by

σΓ := inf{t ≥ 0 : Xt = 1} = inf{t ≥ 0 : Yt = 1}, (3.6)

where the equality follows from (3.4). We proceed to show that σΓ satisfies (1.1)
and (3.1). To establish (1.1), let τ ∈ T[0,T ] with P[τ < σΓ] > 0. We may assume
without loss of generality that Gτ (Γ) 6= ∅. So let A ∈ Gτ (Γ). Then by maximality
of Gτ in Gτ (Γ), (3.5) and (3.6),

1A∩{τ<σΓ} = 1A1{τ<σΓ} ≤ 1Gτ1{τ<σΓ} ≤ Yτ1{τ<σΓ} = 0 P-a.s.

To establish (3.1), let τ ∈ T[0,T ] with P[τ > σΓ] > 0. Then (3.6) and (3.5) yield

1{τ>σΓ} = Xτ1{τ>σΓ} ≤ Xτ ≤ 1Gτ P-a.s.

Thus, P[Gτ ] > 0, Gτ (Γ) 6= ∅, and the claim follows from Proposition III.1.4.

As in the case of the lower separating stopping time for Γ, we either have
σΓ ∈ Tnge(Γ) or σΓ ∈ Tge(Γ); see the examples in Section 4. In the first case, the
lower and upper stopping time for Γ coincide.
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Corollary 3.2. Let S be a numéraire market and Γ ⊂ U a strategy cone which
allows switching to numéraire strategies. If σΓ ∈ Tnge(Γ), then σΓ = σΓ and
σΓ ∈ Tnge(Γ).

Proof. The inequality σΓ ≤ σΓ is trivial, and the other inequality follows imme-
diately from the fact that σΓ ∈ Tnge(Γ) and the representation (2.1) of σΓ.

4 Examples
We illustrate the above results by several examples. They show that the lower
and the upper separating stopping time may coincide or be different. In the first
case, σΓ = σΓ may be either in Tnge(Γ) or in Tge(Γ). In the second case, by
Corollary 3.2, we necessarily have σΓ ∈ Tge(Γ), but σΓ may be either in Tnge(Γ)
or in Tge(Γ).

Example 4.1. Let (Nt)t∈[0,1] be a standard Poisson process with parameter λ > 0
on some filtered probability space (Ω,F , (Ft)t∈[0,1],P) satisfying the usual condi-
tions with F0 being P-a.s. trivial. Let S be the market generated by the classic
model S = (1, Xt)t∈[0,1], where

(a) Xt := 1 + 1{t≥1/2},

(b) Xt := 1 + (t− 1/2)1{t≥1/2},

(c) Xt := 1 +Nt,

(d) Xt := 1 +Nt1{t≥1/2}.

Then, with σ denoting the first jump time of N , i.e., σ = inf{t ≥ 0 : Nt = 1},

(a) σU = σU = 1/2 ∈ Tge(U).

(b) σU = σU = 1/2 ∈ Tnge(U).

(c) σU = 0 ∈ Tnge(U) and σU = σ ∧ 1 ∈ Tge(U).

(d) σU = 1/2 ∈ Tge(U) and σU = (σ ∨ 1/2) ∧ 1 ∈ Tge(U).

We only establish the most difficult case (d); the arguments for (a) and (b)
are easy, and the argument for (c) is similar to the one for (d).

To establish that σU = 1/2, by the explicit representation (2.1), it suffices
to show that there exists a nondecreasing sequence (τn)n∈N of stopping times
in Tnge(U) with limn→∞ τn = 1/2 and that all τ ∈ T[0,T ] with P[τ > 1/2] > 0
are in Tge(U). The first assertion follows from considering τn := 1/2 − 1

1+n
,

n ∈ N. For the second assertion, take τ ∈ T[0,T ] with P[τ > 1/2] > 0. Set
ϑ(1) := (−1, 1) and note that ϑ(1) ∈ U with V0(ϑ(1)) = 0. We proceed to show
that E[Vτ (ϑ

(1))(S)] > 0, which immediately gives τ ∈ Tge(U). To this end, denote
by (Ñt)t∈[0,1] the compensated Poisson process, i.e., Ñt = Nt − λt, t ∈ [0, 1], and



58 IV Separating stopping times for markets failing NINA

define the process (Mt)t∈[0,1] byMt := (Ñt−Ñ1/2)1{t≥1/2}. ThenM is a uniformly
integrable martingale since Ñ is so. Monotonicity of N and the optional stopping
theorem for M give

E[Vτ (ϑ
(1))(S)] = E[Nτ1{τ≥1/2}] ≥ E[(Nτ −N1/2)1{τ≥1/2}]

= E[Mτ + λ(τ − 1/2)1{τ≥1/2}] = 0 + λE[(τ − 1/2)1{τ≥1/2}]

= λE[(τ − 1/2)1{τ>1/2}] > 0,

where the last inequality follows from the fact that P[τ > 1/2] > 0.
To establish that σU = (σ ∨ 1/2) ∧ 1, we have to check (1.1) and (3.1). For,

(1.1), take τ ∈ T[0,T ] with P[τ < (σ ∨ 1/2) ∧ 1] > 0. Seeking a contradiction, we
may assume without loss of generality that Gτ (U) 6= ∅ and that there is A ∈ Gτ (U)
with A ⊂ {τ < (σ∨ 1/2)∧ 1} P-a.s. By the definition of gratis events, there exist
a nonzero contingent claim F at time τ with {F > 0} = A P-a.s. Fix S ∈ S
and let C be the contingent claim at time 0 from Proposition II.5.3 satisfying
C(S) = 1 . Choose ε > 0 small enough that P[F (S) ≥ ε] ≥ ε, and note that
P[A] ≥ ε. By Corollary III.1.7, there is ϑ ∈ U such that

V0(ϑ) ≤ ε

2
C and P[Vτ (ϑ) ≥ F ] ≥ 1− ε

2

This together with the choice of ε implies that

P[{Vτ (ϑ)(S) ≥ ε} ∩ A] ≥ P[A]− ε

2
> 0.

By the definition of X in (d), we arrive at the contradiction

Vτ (ϑ)(S) = V0(ϑ)(S) ≤ ε

2
< ε on A ⊂ {τ < (σ ∨ 1/2) ∧ 1} P-a.s.

For (3.1), take τ ∈ T[0,T ] with P[τ > (σ ∨ 1/2) ∧ 1] > 0. Set ϑ(1) := (−1, 1) ∈ U
and ϑ(2) := (1, 0) ∈ U . Then

V0(ϑ(1)) = 0 and Vτ (ϑ
(1)) ≥ Vτ (ϑ

(2))1{τ>(σ∨1/2)∧1},

and so {(σ ∨ 1/2) ∧ 1 < τ} ∈ Gτ (U) since

suppVτ (ϑ
(2))1{τ>(σ∨1/2)∧1} = {(σ ∨ 1/2) ∧ 1 < τ} P-a.s.

Finally, σU ∈ Tge(Γ) by Corollary 3.2 and the fact that P[σU < σU ] > 0.
To show that σU ∈ Tge(Γ), let ϑ(1) = (−1, 1) and ϑ(2) = (1, 0) be as above.
Then F := 1{σ≤1/2}V1/2(ϑ(2)) is a nonzero contingent claim at time 1/2 by the
fact that σ is exponentially distributed with parameter λ and V1/2(ϑ(2)) is a
positive contingent claim. As V0(ϑ(1)) = 0 and V1/2(ϑ(1)) = F , this implies that
G1/2(U) 6= ∅. This ends the example.



Chapter V

Absolutely continuous measures
for markets failing NINA

In this chapter, we study markets which fail numéraire-independent no-arbitrage
(NINA) (see Definition III.2.5) under the physical measure P. We seek to an-
swer the question whether it is then possible to find an absolutely continuous
probability measure Q� P on FT such that the market satisfies NINA under Q.

The basic idea how to tackle this problem is rather simple: Pick a maximal
gratis event GT ∈ GT (U(S)) and assume that P[GT ] < 1; note that if P[GT ] = 1,
there is no hope to construct Q (cf. Corollaries 2.4 and 3.13). Define the probab-
ility measure Q� P on FT by dQ := 1GcT

1
P[GcT ]

dP. Then Q is supported outside
of GT (U(S)), and one might hope that the market satisfies NINA under Q.

After addressing some technical issues related to an absolutely continuous
change of measure in Section 1, we show that the above procedure works perfectly
well for continuous markets. For general markets, however, things are not so easy.
The crucial problem is that a strategy which is undefaultable under Q might not
be so under P, and the obvious quick fix of stopping a strategy when it becomes
negative under P only works for continuous markets. This problem can even arise
in finite discrete time with countable Ω; see Example 3.1. Therefore, we have to
refine the argument for general markets. This is carried out in Section 3.

A problem somewhat similar to the one considered in this chapter has been
studied by Levental and Skorokhod [54], Delbaen and Schachermayer [10] and
Strasser [77]. They consider a classic model S = (1, X) (II.1.3) which is assumed
to satisfy NA but might fail NFLVR under P. They show that ifX has continuous
paths, there exists an absolutely continuous measure Q� P on FT such that X
satisfies NFLVR under Q.

1 Technical preliminaries

When passing from P to a probability measure Q which is absolutely continuous
but not equivalent to P on FT , several (mainly technical) issues have to be ad-
dressed: If we start with a market S under P, what is the corresponding market
under Q? If ϑ is a self-financing strategy under Q, does there exist a self-financing
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strategy ϑ̃ under P such that ϑ and ϑ̃ are indistinguishable under Q? How are
superreplication prices under P related to superreplication prices under Q?

The goal of this section is to answer the above and other questions and to lay
the ground for the following sections. Throughout this section, let Q � P be a
probability measure that is absolutely continuous with respect to P on FT .

1.1 Semimartingales under P and Q

We write (QFt)0≤t≤T for the completion of the filtration (Ft)0≤t≤T with respect to
Q. Then Ft ⊂ QFt for all 0 ≤ t ≤ T and (Ω, QF , (QFt)0≤t≤T ,Q) satisfies the usual
conditions with QF0 being Q-trivial. We write EQ[·] for the expectation under
Q, QN for the set of all Q-null sets in QFT , QT[0,T ] for the set of all Q-stopping
times taking values in [0, T ], and so forth. For an RN -valued Q-semimartingale
X = (X1, . . . , XN), we denote by QL(X) the set of all RN -valued Q-predictable
processes that are Q-integrable with respect to X, and for ζ ∈ QL(X), we denote
by ζ

Q
• X the stochastic integral (

∫
(0,t]

ζu dXu)0≤t≤T computed under Q.
The following technical result recalls the relationship between P- and Q-

semimartingales and P- and Q-predictable processes.

Proposition 1.1. Let X be an RN -valued P-semimartingale. Then X is a Q-
semimartingale, L(X) ⊂ QL(X), and for each ζ ∈ L(X) ⊂ QL(X), ζ

Q
• X is

Q-indistinguishable from ζ •X. Moreover, for all bounded Q-predictable processes
ζ, there is a bounded P-predictable process ζ̃ which is Q-indistinguishable from ζ.

Proof. The first three claims follow from [38, Theorème 7.24 (c)] and [63, Lemme
V.2]. For the final claim, let ζ be bounded Q-predictable. Choose K > 0 large
enough that supt∈[0,T ] ‖ζt‖ ≤ K Q-a.s., where ‖ · ‖ denotes any norm in RN .
By [38, Proposition 1.1 (b)], there exists a P-predictable process ζ̂ which is Q-
indistinguishable from ζ. Set ζ̃ := ζ̂1{‖ζ̂‖≤K}. Then ζ̃ is bounded P-predictable
and Q-indistinguishable from ζ since{

sup
t∈[0,t]

‖ζ̃t‖ > K
}
⊂
{
ζ̂ 6= ζ

}
∪
{

sup
t∈[0,T ]

‖ζt‖ > K
}
.

1.2 Markets, contingent claims, etc. under P and Q

Any P-exchange rate process is a fortiori a Q-exchange rate process, but in gen-
eral, there are more Q-exchange rate processes than P-exchange rate processes.
Therefore, if we want to consider a P-market S under Q, we have to extend S in
an appropriate way.

Definition 1.2. Let S be a P-market. TheQ-market corresponding to S, denoted
by QS, is the Q-market generated by some (and hence every) S ∈ S.

Clearly, S ⊂ QS. We denote the set of all Q-self-financing strategies for QS
by Lsf(QS), and the set of all Q-undefaultable strategies for QS by U(QS). Note
that if ϑ ∈ Lsf(QS) is P-predictable, it is not necessarily in Lsf(S), and likewise,
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if ϑ ∈ U(QS) is P-predictable, it is not necessarily in U(S) (or in Lsf(S)). This
is because Q is in general not equivalent to P on FT , and so there are Q-nullsets
which have positive probability under P.

We proceed to link properties of P-markets to Q-markets. For convenience,
we simply write market instead of P-market in the sequel.

First, we show that P-self-financing strategies are Q-self-financing, too.

Proposition 1.3. Let S be a market. Then Lsf(S) ⊂ Lsf(QS).

Proof. Let ϑ ∈ Lsf(S). Pick S ∈ S ⊂ QS. Then by Proposition 1.1,

ϑ · S = ϑ0 · S0 + ϑ • S = ϑ0 · S0 + ϑ
Q
• S Q-a.s.,

and the claim follows from Lemma II.2.5.

Corollary 1.4. Let S be a market. Then a strategy cone for S is also a strategy
cone for QS. Moreover, U(S) ⊂ U(QS) and bU(S) ⊂ bU(QS).

Next, we establish the technically important result, that the value process of a
bounded Q-self-financing strategy is Q-indistinguishable from the value process of
a bounded P-self-financing strategy under a mild technical condition. To this end,
recall from Definition II.3.4 that a market S is called a bounded numéraire market
if there exist a bounded numéraire strategy η such that also S(η) is bounded.

Lemma 1.5. Let S be a bounded numéraire market. Then for each ϑ ∈ bLsf(QS),
there exists ϑ̃ ∈ bLsf(S) ⊂ bLsf(QS) such that V (ϑ̃)(S) is Q-indistinguishable
from V (ϑ)(S) for some (and hence every) S ∈ QS.

Note that Lemma 1.5 does not say that ϑ̃ itself is Q-indistinguishable from ϑ;
the assertion only holds for the value processes V (ϑ̃) and V (ϑ).

Proof. Let ϑ ∈ bLsf(QS) and η be a bounded numéraire strategy for S such that
also S(η) ∈ S ⊂ QS is bounded. By Proposition 1.1, there exists a bounded
P-predictable process ζ̃ which is Q-indistinguishable from ϑ, and by Theorem
II.3.7, there exist ϑ̃ ∈ bLsf(S) such that

V (ϑ̃)(S(η)) = ϑ̃0 · S(η)
0 + ϑ̃ • S(η) = ζ̃0 · S(η)

0 + ζ̃ • S(η) P-a.s.

Thus, by Proposition 1.1 and the fact that ζ̃ is Q-indistinguishable from ϑ,

V (ϑ̃)(S(η)) = ϑ̃0 · S(η)
0 + ϑ̃

Q
• S(η) = ζ̃0 · S(η)

0 + ζ̃
Q
• S(η)

= ϑ0 · S(η)
0 + ϑ

Q
• S(η) = V (ϑ)(S(η)) Q-a.s.

We now consider the relationship between (generalised) P-contingent claims
for the market S and (generalised) Q-contingent claims for the Q-market QS.

Proposition 1.6. Let S be a market and F a generalised P-contingent claim
at time τ ∈ T[0,T ] ⊂ QT[0,T ] for S. Then there exists a Q-a.s. unique general-
ised Q-contingent claim QF at time τ for QS satisfying QF (S) = F (S) for all
S ∈ S. Moreover, if F is improper, defaultable, a contingent claim or a positive
contingent claim, then QF is so, too.
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Proof. Fix S ∈ S ⊂ QS and set g := F (S). By Proposition II.5.3, there exists
a Q-a.s. unique Q-contingent claim QF at time τ such that QF (S) = g = F (S).
This gives uniqueness of QF . Existence follows from the exchange rate consistency
(II.5.1) of F and QF . The remaining claims are straightforward.

The next result gives a converse of Proposition 1.6 by showing that every
(generalised) Q-contingent claim for QS can be identified with a (generalised)
P-contingent claim for S, provided of course that the stopping time τ ∈ QS is
also a P-stopping time, e.g. a deterministic time.

Proposition 1.7. Let S be a market and F a generalised Q-contingent claim at
time τ ∈ T[0,T ] ⊂ QT[0,T ] for QS. Then there exists a generalised P-contingent
claim F̃ at time τ for S such that F = QF̃ . Moreover, if F is improper, de-
faultable, a contingent claim or a positive contingent claim, F̃ can be chosen so,
too.

Proof. Fix S ∈ S ⊂ QS. Then g := F (S) is QFτ = σ(Fτ , QN )-measurable, and
hence there exists an Fτ -measurable function h satisfying g = h Q-a.s. (see [44,
Lemma 1.25]). Let Zτ be a version of the Radon-Nikodým density of Q with
respect to P on Fτ ⊂ QFτ . Set h̃ := h1{Zτ>0} + 1{Zτ=0} and let F̃ be the P-a.s.
unique generalised P-contingent claim at time τ from Proposition II.5.3 satisfying
F̃ (S) = h̃ P-a.s. Then F̃ (S) = h̃ = h = g = F (S) Q-a.s. by construction. Thus
F = QF̃ by the uniqueness statement in Proposition 1.6. The remaining claims
follow from the construction of F̃ .

Finally, we compare (ordinary and limit quantile) superreplication prices and
gratis events under P and Q. To this end, for a Q-contingent claim F at time
τ ∈ QT[0,T ] and a strategy cone Γ for QS, we write QΠ(F |Γ) and QΠ∗(F |Γ) for
the ordinary and limit quantile Q-superreplication price of F for Γ. Moreover,
we write QGτ (Γ) for the collection of all Q-gratis events for QS at time τ for Γ.

Proposition 1.8. Let S be a market, Γ a strategy cone for S (and for QS) and
F a generalised P-contingent claim at time τ ∈ T[0,T ] ⊂ QT[0,T ] for S. Then

(a) QΠ(QF |Γ) ≤ Q(Π(F |Γ)),

(b) QΠ∗(QF |Γ) ≤ Q(Π∗(F |Γ)).

Note that we cannot compare the generalised Q-contingent claims QΠ(QF |Γ)
or QΠ∗(QF |Γ) to the generalised P-contingent claims Π(F |Γ) or Π∗(F |Γ) dir-
ectly.

Proof. By the exchange rate consistency (II.5.1), it suffices to prove both state-
ments for fixed S ∈ S ⊂ QS. Then, part (a) is immediate, and part (b) follows
from a similar argument as the one used in the proof of Proposition II.6.20.

Corollary 1.9. Let S be a market, Γ a strategy cone for S (and for QS) and
τ ∈ T[0,T ] ⊂ QT[0,T ]. Then

Gτ (Γ) ⊂ QGτ (Γ).
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2 Continuous markets
After these technical preliminaries, we now address the problem posed at the
beginning of the chapter for continuous markets. Recall from Definition II.1.3
that a market is called continuous if there exists a representative S ∈ S which
has P-a.s. continuous trajectories.

Before proving the main result of this section, we introduce the important
concept of a default time of a self-financing strategy.

Definition 2.1. Let S be a market and ϑ ∈ Lsf(S). A default time of ϑ is a
stopping time δϑ satisfying

δϑ = inf{t ∈ [0, T ] : Vt(ϑ) < 0} P-a.s. (2.1)

It is straightforward to check that a default time δϑ of ϑ exists and is P-a.s.
unique.1

One distinguishing property of continuous markets is that the value process
of any self-financing strategy ϑ vanishes at any default time δϑ (if the latter is
finite).

Proposition 2.2. Let S be a continuous market and ϑ ∈ Lsf(S). Then, for any
default time δϑ of S,

Vδϑ(ϑ) = 0 P-a.s. on {δϑ <∞} and ϑ1J0,δϑK ∈ U(S).

Proof. By the exchange rate consistency (II.2.1) of Vδϑ(ϑ), it suffices to show the
first claim for some representative S ∈ S. Fix a continuous representative S ∈ S.
Then V (ϑ)(S) has P-a.s. continuous trajectories, and by definition of δϑ,

Vδϑ(ϑ)(S) = 0 P-a.s.

The second claim follows immediately from the first one.

We proceed to prove the main result of this section.

Theorem 2.3. Let S be a continuous bounded numéraire market which fails
NINA. Let GT ∈ GT (U(S)) be a maximal gratis event at time T and assume that
P[GT ] < 1. Define the probability measure Q� P on FT by dQ := 1GcT

1
P[GcT ]

dP.
Then QS satisfies NINA.

Proof. By Lemma III.2.6, it suffices to show that QΠ∗(F |bU(QS)) > 0 for all
nonzero Q-contingent claims F at time T . Seeking a contradiction, suppose that
there exists a nonzero Q-contingent claim F at time T satisfying

QΠ∗(F |bU(QS)) = 0. (2.2)
1Fix S ∈ S and set δϑ := inf{t ∈ [0, T ] : Vt(ϑ)(S) < 0}. Then δϑ satisfies (2.1) by right-

continuity and the exchange rate consistency (II.2.1) of value processes. The latter also gives
P-a.s.-uniqueness of δϑ.
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By Proposition 1.7, F = QF̃ for some P-contingent claim F̃ at time T . Note that
F̃ is also nonzero. We proceed to show that

Π∗(F̃ |bU(S)) = 0. (2.3)

To this end, by Proposition III.1.8 and Corollary III.1.7, it suffices to show that
for each ε ∈ (0, 1), each δ > 0 and each positive P-contingent claim C at time 0,

Πε(F̃ −∞1GT |bU(S)) ≤ δC. (2.4)

Let ε, δ, C be as above and pick S ∈ S ⊂ QS. Then by (2.2), the fact that
F = QF̃ and Corollary III.1.7, there exists ϑ ∈ bU(QS) such that

V0(ϑ)(S) ≤ δC(S) and Q[VT (ϑ)(S) ≥ F̃ (S)] ≥ 1− ε (2.5)

By Lemma 1.5, we may assume without loss of generality that ϑ ∈ bLsf(S). Set
ϑ̃ := ϑ1J0,δϑK, where δϑ is a default time of ϑ. Then ϑ̃ ∈ bU(S) by Proposition
2.2 and ϑ̃ = ϑ Q-a.s. because δϑ = +∞ Q-a.s. by the fact that ϑ ∈ bU(QS). Now
(2.5) and the definition of Q give V0(ϑ̃)(S) ≤ δC(S) and

P[VT (ϑ̃)(S) ≥ F̃ (S)−∞1GT ] = P[GT ] + P[(GT )c]Q[VT (ϑ̃)(S) ≥ F̃ (S)]

= P[GT ] + P[(GT )c]Q[VT (ϑ)(S) ≥ F̃ (S)]

≥ P[GT ] + P[(GT )c](1− ε)
≥ 1− ε.

Thus, {F̃ (S) > 0} ∈ GT (bU(S)) ⊂ GT (U(S)), and so {F̃ (S) > 0} ⊂ GT P-a.s.
By the fact that F is a nonzero Q-contingent claim,

P[{F (S) > 0} \GT ] = P[(GT )c]Q[F̃ (S) > 0] = P[(GT )c]Q[F (S) > 0] > 0,

and we arrive at a contradiction.

The following corollary shows that the measure Q in Theorem 2.3 has the
largest support among all absolutely continuous measures Q̃ � P on FT for
which Q̃S satisfies NINA. In particular, if Ω ∈ GT (U(S)), an absolutely continuous
probability measure Q̃� P on FT such that Q̃S satisfies NINA does not exist.

Corollary 2.4. Let S be a continuous bounded numéraire market which fails
NINA and GT ∈ GT (U(S)) a maximal gratis event at time T . Suppose there
exists a probability measure Q̃ � P on FT such that Q̃S satisfies NINA. Then
P[GT ] < 1 and dQ̃� dQ on FT , where Q is as in Theorem 2.3

Proof. It suffices to show that Q̃[A] = 0 for all A ∈ GT (U(S)), since this together
with Q̃ � P on FT first implies that P[GT ] < 1 and then yields Q̃ � Q by the
definition of Q.

Seeking a contradiction, suppose there exists A ∈ GT (U(S)) with Q̃[A] > 0.
Let F be a contingent claim at time T with {F > 0} = A P-a.s., and Q̃F
the corresponding Q̃-contingent claim from Proposition 1.6. Then Q̃ � P gives
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{Q̃F > 0} = A Q̃-a.s., and so Q̃F is a nonzero Q̃-contingent claim. Now Corollary
1.4 and Proposition 1.8 yield

Q̃Π∗(Q̃F | U(Q̃S)) ≤ Q̃Π∗(Q̃F | U(S)) ≤ Q̃ (Π∗(F | U(S))) = Q̃0 = 0.

But this is a contradiction to the hypothesis that Q̃S satisfies NINA.

3 General markets
The key step in the proof of Theorem 2.3 is to pass from ϑ ∈ bLsf(S) to
ϑ̃ = ϑ1J0,δϑK ∈ bU(S). For this, continuity of S is crucial. The following example
shows that without the continuity assumption on S, even in the very simple setup
of a three-period model with finite Ω, Theorem 2.3 is wrong.

Example 3.1. Let S be the market generated by S = (1, Xk)k∈{0,...,3}, where the
movements of X are described by the following event tree, where the numbers
beside the branches describe transition probabilities.

1

0.5

0.25 0.5
1

1
3

0.7 0.7
12

3
1
3

0.9 0.9 0.9
11

1
3

1.5 1.5 1.5
11

1
3

We assume that the underlying probability space (Ω,F ,P) is minimal in the sense
that Ω = {ω1, ω2, ω3, ω4} with {X3 = 1.5} = {ω1}, {X3 = 0.9} = {ω2}, etc., and
that (Fk)k=0,...,3 is the natural filtration of X. It is straightforward to check that
G3(U(S)) = {{ω4}}, and so {ω4} is a maximal gratis event for G3(U(S)). If we
define the probability measure Q� P on F3 by dQ := 1{ω1,ω2,ω3}

1
P[{ω1,ω2,ω3}] dP,

then QG3(QU(S)) = {{ω3}, {ω4}, {ω3, ω4}}, and so QS fails to satisfy NINA.

Let us briefly comment on what goes wrong in Example 3.1. Due to the
simple setup, Q-undefaultable strategies can be identified with P-self-financing
strategies which (possibly) default on a gratis event for P-undefaultable strategies.
The analogue of Theorem 2.3 fails because there are more gratis events for those
strategies than for P-undefaultable ones.

This insight is the motivation for the following definition.

Definition 3.2. Let S be a market and Γ a strategy cone. An undefaultable
strategy outside the gratis events of Γ is a self-financing strategy ϑ ∈ Lsf(S)
satisfying {δϑ ≤ T} ∈ GT (Γ) ∪ N , where δϑ is any default time of ϑ. The
collection of all such strategies is denoted by U(S |Γ).
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If S is a numéraire market and Γ a strategy cones which allows switching to
numéraire strategies, then Gτ (Γ) ⊂ GT (Γ) for all stopping times τ ∈ T[0,T ] by
Proposition III.2.2. This justifies our terminology—at least for strategy cones
which allows switching to numéraire strategies.

The following straightforward result collects some properties of U(S |Γ).

Proposition 3.3. Let S be a market and Γ1 ⊂ Γ2 strategy cones. Then U(S |Γ1)
and U(S |Γ2) are again strategy cones and satisfy

U(S) ⊂ U(S |Γ1) ⊂ U(S |Γ2) ⊂ Lsf(S).

Moreover, if S is a numéraire market, U(S |Γ1) and U(S |Γ2) allow switching to
numéraire strategies.

We illustrate Definition 3.2 by elaborating on Example 3.1.

Example 3.4. Consider the market in Example 3.1. It is easy to check that

U(S | U(S)) =
{
ϑ ∈ Lsf(S) : V (ϑ) ≥ 0 on {ω1, ω2, ω3}

}
,

U(S | U(S | U(S))) =
{
ϑ ∈ Lsf(S) : V (ϑ) ≥ 0 on {ω1, ω2}

}
,

U(S | U(S | U(S | U(S)))) =
{
ϑ ∈ Lsf(S) : V (ϑ) ≥ 0 on {ω1, ω2}

}
,

U(S |Lsf(S)) =
{
ϑ ∈ Lsf(S) : V (ϑ) ≥ 0 on {ω1, ω2}

}
,

U(S | U(S |Lsf(S))) =
{
ϑ ∈ Lsf(S) : V (ϑ) ≥ 0 on {ω1, ω2}

}
.

In Example 3.1/3.4, Γ ( U(S |Γ) for Γ = U(S),U(S | U(S)), Γ ) U(S |Γ) for
Γ = Lsf(S), and Γ = U(S |Γ) for Γ = U(S | U(S | U(S)) = U(S |Lsf(S)). These
different possible behaviours of a strategy cone Γ are the motivation for the next
definition.

Definition 3.5. Let S be a market. A strategy cone Γ is called

• sub-balanced if Γ ⊂ U(S |Γ),

• super-balanced if Γ ⊃ U(S |Γ),

• balanced if Γ = U(S |Γ).

We denote the collection of all sub-balanced, super-balanced and balanced stra-
tegy cones for S by B(S), B(S) and B(S), respectively.

It follows directly from Definition 3.2 that U(S) ∈ B(S) and Lsf(S) ∈ B(S)
for any market S. However, it is not obvious that B(S) = B(S) ∩B(S) 6= ∅ for
all markets S.

Using the above terminology, let us comment again on Example 3.1/3.4. The
analogue of Theorem 2.3 fails because U(S) is sub-balanced but not balanced.
So, a natural idea how to extend Theorem 2.3 to general markets is to take a
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maximal gratis event for the smallest balanced strategy cone of S (as opposed to
U(S)) in the definition of the absolutely continuous measure Q. Before showing
that this procedure works in full generality, let us check it in the simple setup of
Example 3.1.

Example 3.6. Consider the market in Example 3.1. Then U(S | U(S | U(S))) is
balanced by Example 3.4. To see that it is the smallest balanced strategy cone, let
Γ be another balanced strategy cone. Then U(S) ⊂ U(S |Γ) = Γ by Proposition
3.3, and iterating the argument yields U(S | U(S)) ⊂ Γ and U(S | U(S | U(S)) ⊂ Γ.
Clearly, {ω3, ω4} is a maximal gratis event for G3(U(S | U(S | U(S)))). Define
Q� P on F3 by dQ := 1{ω1,ω2}

1
P[{ω1,ω2}] dP. Then it is not difficult to check that

QGT (QU(S)) = ∅, and so QS satisfies NINA.

The next result collects some basic but important “closedness” properties of
the sets B(S), B(S) and B(S).

Proposition 3.7. Let S be a market and Γ a strategy cone in B(S), B(S), or
B(S). Then U(S |Γ) is in B(S), B(S), or B(S), too.

Proof. The first claim follows from Proposition 3.3 with Γ1 = Γ and Γ2 = U(S |Γ),
the second one follows from Proposition 3.3 with Γ1 = U(S |Γ) and Γ2 = Γ, and
the third one is trivial.

The sets B(S) and B(S) are in addition closed under arbitrary unions and
intersections, respectively. More precisely, since the union (as opposed to the
intersection) of cones is in general no longer a cone, we need to consider the cone
generated by the union of the strategy cones. If (Γi)i∈I is a family of cones, we
write cone(Γi, i ∈ I) for the cone generated by the Γi.

Proposition 3.8. Let S be a market and (Γi)i∈I a family of strategy cones.

(a) If Γi ∈ B(S) for all i ∈ I, then cone(Γi, i ∈ I) ∈ B(S).

(b) If Γi ∈ B(S) for all i ∈ I, then
⋂
i∈I Γi ∈ B(S).

Proof. We only establish (a), part (b) follows by a similar but slightly easier
argument. Let ϑ ∈ cone(Γi, i ∈ I). Then there exist n ∈ N, i1, . . . , in ∈ I and
λ1, . . . , λn > 0 such that ϑ =

∑n
k=1 λkϑ

(k), where ϑ(k) ∈ Γik . Now the claim
follows from Proposition III.1.4 because

{δϑ(k) ≤ T} ∈ G(Γik) ∪N ⊂ G(cone(Γi, i ∈ I)) ∪N ,

for each k ∈ {1, . . . , n}, since Γk ∈ B(S) and Γk ⊂ cone(Γi, i ∈ I), and so

{δϑ ≤ T} ⊂
n⋃
k=1

{δϑ(k) ≤ T} ∈ G(cone(Γi, i ∈ I)) ∪N .

Using the above properties, we can now show the existence of a smallest
balanced strategy cone.
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Lemma 3.9. Let S be a market. Then B(S) 6= ∅. Moreover,

U(S) :=
⋂

Γ∈B(S)

Γ,

is the smallest balanced strategy cone for S. It satisfies U(S) ⊂ U(S).

We call ϑ ∈ U(S) a generalised undefaultable strategy. This terminology is
justified by the discussion preceding Example 3.6.

Proof. Proposition 3.8 implies that U(S) is the smallest element in B(S), and
Proposition 3.7 shows that U(S) ⊃ U(S | U(S)) ∈ B(S). The latter together with
minimality U(S) in B(S) establishes the main claim. The final claim follows from
Proposition 3.3.

It is straightforward to check that U(S) = U(S) if S satisfies NINA. For
continuous market, we have a general simple representation of U(S).

Proposition 3.10. Let S be a continuous market. Then U(S) = U(S | U(S))
and GT (U(S)) = GT (U(S)).

Proof. It suffices to show that

GT (U(S | U(S))) ⊂ GT (U(S)). (3.1)

Indeed, (3.1) gives U(S | U(S | U(S))) ⊂ U(S | U(S)), and so U(S | U(S)) ∈ B(S).
Since U(S | U(S)) ⊂ U(S | U(S)) = U(S) by Proposition 3.3 and Lemma 3.9,
the first claim follows from minimality of U(S) in B(S). The second claim
is an immediate consequence of (3.1) and the first claim because the inclusion
GT (U(S)) ⊃ GT (U(S)) is trivial.

For (3.1), we may assume without loss of generality that GT (U(S | U(S))) 6= ∅.
Suppose by way of contradiction there exists A ∈ GT (U(S | U(S))) \ GT (U(S))
with P[A] > 0. By the definition of gratis events, there exist a contingent claim
F at time T such that suppF = A P-a.s. Let ε ∈ (0, 1), δ > 0 and C be a positive
contingent claim at time 0. By Corollary III.1.7, there exists ϑ̃ ∈ U(S | U(S)) such
that

V0(ϑ̃) ≤ δC and P[Vτ (ϑ̃) ≥ F ] ≥ 1− ε.

Set ϑ := ϑ̃1J0,δϑ̃K, where δϑ is a default time of ϑ. Then ϑ ∈ U(S) by Pro-
position 2.2 and {δϑ̃ ≤ T} ∩ {F > 0} ∈ N since {δϑ̃ ≤ T} ∈ GT (U(S)) and
{F > 0} ∈ GT (U(S | U(S))) \ GT (U(S)). Thus,

V0(ϑ) ≤ δC and P[Vτ (ϑ) ≥ F ] ≥ 1− ε.

By Corollary III.1.7 we arrive at the contradiction {F > 0} ∈ GT (U(S)).

Before stating and proving the main result of this section, we have to study
generalised undefaultable strategies under an absolutely continuous change of
measure (cf. Section 1).
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Proposition 3.11. Let S be a market and Q� P on FT . Then

U(S) ⊂ U(QS).

Proof. Denote by U all sub-balanced P-strategy cones that are contained in
U(QS). Then U 6= ∅ because U(S) ⊂ U(QS) ⊂ U(QS) by Corollary 1.4 and
Lemma 3.9. Set ΓU := cone(Γ : Γ ∈ U). Proposition 3.8 shows that ΓU is the
largest element in U ⊂ B(S). Using this, the fact that U(S |Γ) ⊂ U(QS |Γ),
Proposition 3.3 and the fact that U(QS) ∈ B(QS) yields

ΓU ⊂ U(S |ΓU) ⊂ U(QS |ΓU) ⊂ U(QS | U(QS)) = U(QS).

This together with Proposition 3.7 gives U(S |ΓU) ∈ U. Now, the maximality of
ΓU in U implies that ΓU ∈ B(S). Finally, since U(S) is the smallest element in
B(S), we may conclude that

U(S) ⊂ ΓU ⊂ U(QS).

We proceed to prove the main result of this chapter.

Theorem 3.12. Let S be a bounded numéraire market which fails NINA. Let
GT ∈ GT (U(S)) be a maximal gratis event and suppose that P[GT ] < 1. Define
the probability measure Q� P on FT by dQ := 1GcT

1
P[GcT ]

dP. Then QS satisfies
NINA.

Theorem 2.3 is a direct consequence of Theorem 3.12. Indeed, for continuous
markets, it follows from Proposition 3.10 that GT ∈ FT is a maximal gratis event
for GT (U(S)) if and only if it is a maximal gratis event for GT (U(S)).

Proof. The proof is similar to the proof of Theorem 2.3; the main difference is
that we work with bU(S) instead of bU(S) and use that U(S) is balanced.

By Lemma III.2.6, it suffices to show that QΠ∗T (F |bU(QS)) = 0 for all nonzero
Q-contingent claims F at time T . Seeking a contradiction, suppose there exists
a nonzero Q-contingent claim F at time T satisfying

QΠ∗T (F |bU(QS)) = 0. (3.2)

By Proposition 1.7, F = QF̃ , for some P-contingent claim F̃ at time T . Note
that F̃ is also nonzero. We proceed to show that

Π∗(F̃ |bU(S)) = 0. (3.3)

To this end, by Proposition III.1.8 and Corollary III.1.7, it suffices to show that
for each ε ∈ (0, 1), each δ > 0 and each positive contingent claim C at time 0,

Πε(F̃ −∞1GT |bU(S)) ≤ δC. (3.4)

So let ε, δ, C be as above and pick S ∈ S ⊂ QS. Then by (3.2), the fact that
F = QF̃ and Corollary III.1.7, there exists ϑ ∈ bU(QS) such that

V0(ϑ)(S) ≤ δC(S) and Q[VT (ϑ)(S) ≥ F (S)] ≥ 1− ε (3.5)
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By Lemma 1.5, we may assume without loss of generality that ϑ ∈ bLsf(S). Let
δϑ be a default time of ϑ. As ϑ is undefaultable under Q, {δϑ ≤ T} ∈ GT (U(S)).
Moreover, since U(S) is balanced, ϑ ∈ U(S), and since ϑ is bounded, ϑ ∈ bU(S).
Now (3.5) and the definition of Q give V0(ϑ)(S) ≤ δC(S) and

P[VT (ϑ)(S) ≥ F̃ (S)−∞1GT ] = P[GT ] + P[(GT )c]Q[VT (ϑ)(S) ≥ F̃ (S)]

≥ P[GT ] + P[(GT )c](1− ε)
≥ 1− ε.

Thus, {F̃ (S) > 0} ∈ GT (bU(S)) ⊂ GT (U(S)) and so {F̃ (S) > 0} ⊂ GT P-a.s. By
the fact that F is a nonzero Q-contingent claim,

P[{F (S) > 0} \GT ] = P[(GT )c]Q[F̃ (S) > 0] = P[(GT )c]Q[F (S) > 0] > 0,

and we arrive at a contradiction.

The following corollary is the general version of Corollary 2.4.

Corollary 3.13. Let S be a bounded numéraire market which fails NINA and
GT ∈ GT (U(S)) a maximal gratis event at time T . Suppose there exists a probab-
ility measure Q̃ � P on FT such that Q̃S satisfies NINA. Then P[GT ] < 1 and
dQ̃� dQ on FT , where Q is as in Theorem 3.12.

Corollary 2.4 is a direct consequence of Corollary 3.13. This follows as above
from Proposition 3.10.

Proof. The proof is very similar to the proof of Corollary 2.4; the main difference
is that we work with U(S) instead of U(S).

It suffices to show that Q̃[A] = 0 for all A ∈ GT (U(S)). Seeking a contradic-
tion, suppose there exists A ∈ GT (U(S)) with Q̃[A] > 0. Let F be a contingent
claim at time T with {F > 0} = A P-a.s., and Q̃F the corresponding Q̃-contingent
claim from Proposition 1.6. Then Q̃� P gives {Q̃F > 0} = A Q̃-a.s. Moreover,
by the fact that Q̃S satisfies NINA, Propositions 3.11 and 1.8,

Q̃Π∗(Q̃F | U(Q̃S)) = Q̃Π∗(Q̃F | U(Q̃S)) ≤ Q̃Π∗(Q̃F | U(S))

≤ Q̃
(
Π∗(F | U(S))

)
= Q̃0 = 0.

But this is a contradiction to the hypothesis that Q̃S satisfies NINA.



Chapter VI

Dual characterisation of markets
satisfying NINA

In this chapter, we study numéraire markets satisfying numéraire-independent no-
arbitrage (NINA); see Definition III.2.5. After proving the existence of nonzero
strongly maximal (numéraire) strategies, we derive a numéraire-independent ver-
sion of the fundamental theorem of asset pricing (FTAP) in Section 1. In Sec-
tion 2, we provide a dual characterisation of (weakly and strongly) maximal
strategies and give conditions for the existence of (true) martingale representat-
ives. In Section 3, we derive a numéraire-independent dual characterisation of su-
perreplication prices and discuss the notion of (strongly) maximal and (strongly)
attainable contingent claims. The material for this chapter is taken from [32].

1 Dominating maximal strategies and numéraire-
independent FTAP

In Chapter III.3, we have argued that a strategy ϑ ∈ U is a “reasonable invest-
ment” only if it is (weakly or strongly) maximal for U . Suppose now that ϑ is not
strongly maximal for U . Is it then possible to replace ϑ by another “dominating”
strategy ϑ∗ ∈ U which is strongly maximal, requires the same initial investment
and yields the same or more wealth at the end? Clearly, by Proposition III.3.15,
we can expect a positive answer to this question only if the zero strategy 0 is
strongly maximal for U—or equivalently if the market satisfies NINA (cf. the dis-
cussion after Proposition III.3.21). Perhaps surprisingly, this necessary condition
is also sufficient for numéraire market.

Theorem 1.1. Let S be a numéraire market satisfying NINA and ϑ ∈ U . Then
there exists a (non-unique) strongly maximal strategy ϑ∗ ∈ U such that

V0(ϑ∗) = V0(ϑ) and VT (ϑ∗) ≥ VT (ϑ) P-a.s. (1.1)

We call ϑ∗ a dominating maximal strategy for ϑ.

By Proposition III.3.19, it suffices to find a weakly maximal strategy ϑ∗ ∈ U
satisfying (1.1). Using this insight, we reformulate Theorem 1.1 in the language of
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admissible investment processes (cf. Definition II.4.3) in order to use arguments
from Delbaen and Schachermayer [9] and Kabanov [42]. For the next result recall
from Definition III.3.22 the notion of BK(η)/NUPBR(η).

Lemma 1.2. Let S be a numéraire market and η a numéraire strategy. Suppose
that S(η) satisfies BK(η)/NUPBR(η). Then for each ζ ∈ Lad(S(η), 1), there is
ζ∗ ∈ Lad(S(η), 1) such that ζ∗ •ST ≥ ζ •ST P-a.s. and there is no ζ̃ ∈ Lad(S(η), 1)
with

ζ̃ • ST ≥ ζ∗ • ST P-a.s. and P[ζ̃ • ST > ζ∗ • ST ] > 0.

To see that Theorem 1.1 and Lemma 1.2 are indeed equivalent, note that by
the discussion after Proposition III.3.21 and Proposition III.3.24 (b), S satisfies
NINA (i.e., we have sm(0)) if and only if S(η) satisfies BK(η)/NUPBR(η), and by
Proposition II.4.4, we can identify ζ and ζ∗ in Lemma 1.2 with ϑ− η and ϑ∗− η,
where ϑ and ϑ∗ are as in Theorem 1.1.

The quite technical proof of Lemma 1.2 is given below in Section 4. Here we
just sketch the main idea. First, one constructs a sequence (ζn)n∈N in Lad(S(η), 1)
such that for each n, ζn dominates ζ, and as n grows, ζn becomes more and more
“close” to a weakly maximal strategy. Then, one modifies that sequence such that
the modified sequence (ζ̂n)n∈N converges in the semimartingale topology (see [63])
to some weakly maximal strategy ζ∗ ∈ Lad(S(η), 1) dominating ζ.

Our next goal is to establish the existence of strongly maximal numéraire
strategies for numéraire markets satisfying NINA. To this end, we have to explore
what happens when the value process of an undefaultable strategy becomes 0.

Definition 1.3. Let S be a market and ϑ ∈ U . An absorption time of ϑ is a
stopping time aϑ satisfying

aϑ = inf{t ∈ [0, T ] : Vt(ϑ) = 0 or Vt−(ϑ) = 0} P-a.s. (1.2)

It is straightforward to check that an absorption time for ϑ exists and is P-a.s.
unique.1 The next result explains our terminology.

Proposition 1.4. Let S be a numéraire market satisfying NINA. Then for all
ϑ ∈ U and any absorption time aϑ of ϑ,

V (ϑ) ≡ 0 on Jaϑ, T K P-a.s.

As a consequence, η ∈ U is a numéraire strategy if and only if VT (η) > 0 P-a.s.

Proof. Let η be a numéraire strategy and ϑ ∈ U . For c > 0, let τc be the (P-a.s.
unique) stopping time with τc = inf{t > aϑ : Vt(ϑ) ≥ cVt(η)} P-a.s. It suffices to
show that τc = +∞ P-a.s. for all c > 0. Seeking a contradiction, suppose there is
c > 0 with P[τc < ∞] > 0. Then F := cVτc∧T (η)1{τc<∞} is a nonzero contingent

1Fix S ∈ S and set aϑ := inf{t ∈ [0, T ] : Vt(ϑ)(S) = 0 or Vt−(ϑ)(S) = 0}. Then aϑ satisfies
(1.2) by right-continuity and the exchange rate consistency (II.2.1) of value processes. The
latter also gives P-a.s. uniqueness of aϑ. The same kind of reasoning applies to the stopping
time τc and σN defined in the proof of Proposition 1.4 below.
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at time τc ∧ T . For n ∈ N, let σn be the (P-a.s. unique) stopping time with
σn = inf{t > 0 : Vt(ϑ) ≤ 1

n
Vt(η)} ∧ T P-a.s. Then σn ≤ aϑ ≤ τc P-a.s. for each

n. Let δ > 0 and choose N large enough that 1
N
< min(δ, c). Right-continuity of

each S ∈ S gives σN < τc P-a.s. on {τc <∞}. Set

ϑ̃ :=
1

N
η1J0,σN K +

(
ϑ+ VσN

(
1

N
η − ϑ

)
(S(η))η

)
1KσN ,T K ∈ U . (1.3)

Then V0(ϑ̃) = 1
N
V0(η) ≤ δV0(η) and

Vτc∧T (ϑ̃) ≥ Vτc∧T (ϑ̃)1{τc<∞} =
(
Vτc∧T (ϑ) + VσN

( 1

N
η − ϑ

)
(S(η))Vτc∧T (η)

)
1{τc<∞}

≥ cVτc∧T (η)1{τc<∞} = F P-a.s.

Since δ > 0 was arbitrary, Πτc∧T (F | U) = 0, and so S fails NINA, in contradiction
to the hypothesis.

Remark 1.5. Once Theorem 1.10 below has been established, Proposition 1.4
follows from the minimum principle for nonnegative supermartingales [44, The-
orem 7.32]. But since Proposition 1.4 is needed for the proof of Theorem 1.10,
the above direct argument is really necessary.

An immediate but important consequence of Theorem 1.1 and Proposition
1.4 is that in numéraire markets satisfying NINA, there are “enough” strongly
maximal numéraire strategies.

Theorem 1.6. Let S be a numéraire market satisfying NINA. Then for each
numéraire strategy η, there exists a dominating maximal numéraire strategy η∗.

To derive a dual characterisation of numéraire markets satisfying NINA, we
have to find the analogue to the concept of an equivalent σ-martingale measure
(EσMM) in our framework. Since we do not work with a fixed representative, like
S = (1, X) in the standard framework, the notion of an EσMM alone does not
make sense. Dual objects are rather pairs (S,Q) consisting of a representative S
and an equivalent measure Q ≈ P on FT under which S is a Q-σ-martingale.

Definition 1.7. Let S be an (N -dimensional) market and Q ≈ P on FT an
equivalent probability measure. S = (S1, . . . , SN) ∈ S is called a Q-σ-martingale
representative, if S1, . . . , SN are σ-martingales under Q. We often omit the qual-
ifier “Q” and call S an equivalent σ-martingale representative. We denote the set
of all Q-σ-martingale representatives of S byMQ.

Remark 1.8. (a) For S ∈ MQ and ϑ ∈ U , V (ϑ)(S) is a nonnegative local Q-
martingale and Q-supermartingale by Ansel and Stricker [1, Corollaire 3.5] and
Fatou’s lemma.

(b) By Bayes’ theorem for (true) martingales/σ-martingales [45, Proposition
5.1], the existence of equivalent (true) martingale/σ-martingale representatives
depends on the measure P only through its nullsets.
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Before formulating the numéraire-independent version of the FTAP, we recall
the classic FTAP by Delbaen and Schachermayer [13, Theorem 1.1] using our
terminology.

Theorem 1.9 (Classic FTAP). Let S be a numéraire market and assume that
e1 = (1, 0, . . . , 0) is a numéraire strategy. Then the following are equivalent:

(a) S(e1) satisfies NFLVR(e1), i.e., the numéraire strategy e1 is strongly maximal
for U .

(b) There exists Q ≈ P on FT such that S(e1) ∈MQ.

The classic FTAP fixes the numéraire strategy e1 and works in units corres-
ponding to S(e1) = (1, X), cf. Example II.3.6. It says that e1, the buy-and-hold
strategy of the “bank account”, is “good” (strongly maximal for U), if and only if
there is an EσMM Q ≈ P for S(e1). It is clear from the discussion after Definition
II.4.3, that we can replace e1 in Theorem 1.9 by any other numéraire strategy η.
This “generalised” version of the FTAP then says that η is strongly maximal for
U , if and only if there is an EσMM Q ≈ P for S(η). But this still assumes that
the numéraire strategy η has ex ante been chosen. For a numéraire-independent
FTAP, strong maximality of η cannot be an ex-ante assumption; it must be part
of the dual characterisation.

Theorem 1.10 (Numéraire-independent FTAP). Let S be a numéraire market.
Then the following are equivalent:

(a) S satisfies NINA, i.e., the zero strategy 0 is strongly maximal for U .

(b) There exists a pair (η,Q), where η is a numéraire strategy and Q ≈ P on
FT , such that S(η) ∈MQ. For each such pair, η is strongly maximal for U .

(c) There exists a numéraire strategy η which is strongly maximal for U . For
each such η, there exists Q ≈ P on FT such that S(η) ∈MQ.

(d) There exists Q ≈ P on FT such thatMQ 6= ∅.

(e) For each Q ≈ P on FT ,MQ 6= ∅.

Proof. “(a) ⇒ (c)”. The first claim follows from Theorem 1.6 and the second one
from (the discussion subsequent to) Theorem 1.9.

“(c) ⇒ (b)”. The first claim is trivial, and the second one follows from (the
discussion subsequent to) Theorem 1.9.

“(b) ⇒ (d)”. This is trivial.
“(d) ⇒ (e)”. This follows from Remark 1.8 (b).
“(e)⇒ (a)”. Seeking a contradiction, suppose there exists a nonzero contingent

claim F at time T with Π(F | U) = 0. Let S ∈ MP, C be the contingent claim
at time 0 from Proposition II.5.3 satisfying C(S) = 1 and δ := E[F (S)]/2 > 0.
By Proposition II.6.3, there exists ϑ ∈ U with V0(ϑ) ≤ δC and VT (ϑ) ≥ F P-a.s.
By the (P-)supermartingale property of V (ϑ)(S), we arrive at the contradiction

δC(S) ≥ V0(ϑ)(S) ≥ E[VT (ϑ)(S)] ≥ E[F (S)] = 2δ > δC(S).
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Remark 1.11. Independently from and partly parallel to our work, the equival-
ence “(a) ⇔ (d)” (for Q = P) has been derived by Kardaras [48] (for N = 2) and
by Schweizer and Takaoka [73] (for general N), where in essence “(a) ⇔ (b)” is
shown. However, neither [48] nor [73] have recognised the numéraire-independent
structure of the dual objects (η,Q) in any way. We conjecture that the equival-
ence “(a) ⇔ (d)” remains valid even if S fails to be a numéraire market; however
this would require a completely different proof technique.

2 Martingale properties
In numéraire markets satisfying NINA, there is no difference between the notions
of weakly and strongly maximal strategies for U , this follows from Proposition
III.3.19. Therefore, we call such strategies simply maximal strategies for U in the
sequel; we also often omit the qualifier “for U ”.

The following result provides a dual characterisation of maximal strategies in
terms of the (true) martingale property of their value processes. It can be seen
as a numéraire-independent version of [11, Theorem 13], where it is shown that
the value process of a maximal admissible strategy in the sense of Delbaen and
Schachermayer is a (true) Q-martingale for some EσMM Q.

Theorem 2.1. Let S be a numéraire market satisfying NINA and ϑ ∈ U . Then
the following are equivalent:

(a) ϑ is maximal for U .

(b) There exists a pair (η,Q), where η is a numéraire strategy and Q ≈ P

on FT , such that S(η) ∈MQ and V (ϑ)(S(η)) is a Q-martingale uniformly
bounded by 1.

(c) For each maximal numéraire strategy η, there exists Q ≈ P on FT such that
S(η) ∈MQ and V (ϑ)(S(η)) is a Q-martingale.

(d) There exist Q ≈ P on FT and S ∈ MQ such that V (ϑ)(S) is a Q-
martingale.

(e) For each Q ≈ P on FT , there exists S ∈ MQ such that V (ϑ)(S) is a
Q-martingale.

Note that by Theorem 1.10 (b), the numéraire strategy η in (b) is automatic-
ally (strongly) maximal for U .

Proof. “(a) ⇒ (b)”. Let ϑ ∈ U be a maximal strategy. By Theorem 1.10 (b),
there exists a maximal numéraire strategy η̂ ∈ U . Set η := η̂ + ϑ. Then η is a
numéraire strategy and (weakly) maximal by Corollary III.3.10. Theorem 1.10 (c)
gives Q ≈ P on FT such that S(η) ∈ MQ. Hence V (ϑ)(S(η)) is a nonnegative
local Q-martingale. It is even a (true) Q-martingale since

V (ϑ)(S(η)) ≤ V (η̂ + ϑ)(S(η)) = V (η)(S(η)) ≡ 1 Q-a.s.
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“(a) ⇒ (c)”. Let ϑ ∈ U be a maximal strategy and η a maximal numéraire
strategy. Set η̃ := η + ϑ. Arguing as in “(a) ⇒ (b)” shows that η̃ is a maximal
numéraire strategy and that there is Q̃ ≈ P on FT such that S(η̃) ∈ MQ̃ and
V (ϑ)(S(η̃)) and V (η)(S(η̃)) are Q̃-martingales (uniformly bounded by 1). Since
V (η)(S(η̃)) is positive, we can define Q ≈ Q̃ on FT by dQ := ZT

Z0
dQ̃, where

Z := V (η)(S(η̃)). Then S(η) = S(η̃)/Z P-a.s. by (II.3.1), and the exchange rate
consistency of value processes (II.2.1) (for the exchange rate process D = 1

Z
) gives

V (ϑ)(S(η)) = V (ϑ)(S(η̃))/Z P-a.s. Since V (ϑ)(S(η̃)) and Z are Q̃-martingales
and S(η̃) is a Q̃-σ-martingale, S(η) is a Q-σ-martingale and V (ϑ)(S(η)) is a Q-
martingale by Bayes’ theorem for (σ-)martingales; see [45, Proposition 5.1].

“(b), (c) ⇒ (d)”. This is trivial—noting that a maximal numéraire strategy
exists by Theorem 1.6.

“(d) ⇒ (e)”. This follows from Bayes’ theorem by arguing as in the final part
of “(a) ⇒ (c)”.

“(e) ⇒ (a)”. Let S ∈ MP be such that V (ϑ)(S) is a (P-)martingale. Sup-
pose by way of contradiction that ϑ fails to be (weakly) maximal for U . By
Proposition III.3.8, it then fails to be weakly maximal at time T for U . Hence,
by Proposition III.3.5, there is ϑ̃ ∈ U with

V0(ϑ̃) = V0(ϑ), VT (ϑ̃) ≥ VT (ϑ) P-a.s. and P[VT (ϑ̃) > VT (ϑ)] > 0.

By the supermartingale property of V (ϑ̃)(S) and the martingale property of
V (ϑ)(S), we arrive at the contradiction

V0(ϑ̃)(S) ≥ E[VT (ϑ̃)(S)] > E[VT (ϑ)(S)] = V0(ϑ)(S).

Theorem 1.10 shows that in a numéraire market satisfying NINA, the set of
all Q-σ-martingale representatives MQ is nonempty for some (and hence each)
Q ≈ P. We now address the question under which conditions MQ contains a
(true) Q-martingale representative.

For the following result, recall from Definition II.4.1 that bΓ denotes the
collection of all bounded strategies in a given strategy cone Γ.

Lemma 2.2. Let S be a numéraire market. Suppose there exist Q ≈ P on FT
and S ∈MQ such that S is a (true) Q-martingale representative. Then:

(a) For each ϑ ∈ bLsf , the value process V (ϑ)(S) is a Q-martingale.

(b) Each ϑ ∈ bU is maximal for U .

(c) S(η) is an equivalent (true) martingale representative for every bounded nu-
méraire strategy η.

Proof. Let N be the dimension of S, and denote by ‖ · ‖ the maximum norm in
RN . By Remark 1.8 (b), we may assume without loss of generality that Q = P.

(a) Fix ϑ ∈ bLsf . Then V (ϑ)(S) is a local (P-)martingale, and it is even
a (true) martingale since it is of class (D), i.e., the family (Vτ (ϑ)(S))τ∈T[0,T ]

is
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uniformly integrable. Indeed,

|Vτ (ϑ)(S)| = |ϑτ · Sτ | ≤ ‖ϑ‖
N∑
i=1

|Siτ |, τ ∈ T[0,T ],

and for each i, the family (|Siτ |)τ∈T[0,T ]
is uniformly integrable because Si is a

(true) martingale.
(b) This follows immediately from (a) and Theorem 2.1 (d).
(c) Let η be a bounded numéraire strategy. Then by part (a), V (η)(S) is a

positive (P-)martingale. Define Q ≈ P on FT by dQ = VT (η)(S)
V0(η)(S)

dP. Then S(η) is
a (true) Q-martingale representative by arguing as in the proof of “(a) ⇒ (c)” in
Theorem 2.1.

Remark 2.3. It follows immediately from the proof that part (a) of Lemma 2.2
does not need the existence of a numéraire strategy. It can be reformulated in
an abstract setting as follows: Let X be an N-dimensional martingale and H a
bounded predictable process satisfying

H •X = H ·X −H0 ·X0. (2.1)

Then the stochastic integral H • X is again a martingale. Without assumption
(2.1), this is false; see Herdegen and Herrmann [33, Section 5.2] for a counter-
example.

Under a mild additional hypothesis, Lemma 2.2 can be strengthened. Recall
from Definition II.3.4 that a numéraire market is called bounded if there exists a
bounded numéraire strategy η such that S(η) is bounded.

Corollary 2.4. Let S be a bounded numéraire market. Then the following are
equivalent:

(a) There exists Q ≈ P on FT and S ∈ MQ such that S is a Q-martingale
representative.

(b) Each ϑ ∈ bU is strongly maximal for U .

(c) S(η) is an equivalent martingale representative for each bounded numéraire
strategy η.

(d) There exists a strongly maximal numéraire η such that both η and S(η) are
bounded.

Moreover, if one of the above assertions holds, S satisfies NINA.

Proof. The final assertion follows from the fact that (a) implies part (d) in The-
orem 1.10.

“(a) ⇒ (c) ⇒ (b) ⇒ (d)”. This follows from Lemma 2.2 and the hypothesis
that S is a bounded numéraire market.

“(d) ⇒ (a)”. By Theorem 1.10 (c), S(η) is a bounded equivalent σ-martingale
representative and so an equivalent (true) martingale representative.



78 VI Dual characterisation of markets satisfying NINA

In the case of nonnegative markets, the market portfolio ηS = (1, . . . , 1) is
a bounded numéraire strategy and S(ηS) is bounded. Thus, we get a further
criterion for the existence of (true) equivalent martingale representatives.

Corollary 2.5. Let S be a nonnegative (N-dimensional) market. Then the fol-
lowing are equivalent:

(a) There exists Q ≈ P on FT and S ∈ MQ such that S is a Q-martingale
representative.

(b) For each i = 1, . . . , N , ei = (0, . . . , 0, 1, 0, . . . , 0), the buy-and-hold strategy
of the i-th asset, where the 1 is at position i, is strongly maximal for U .

(c) The market portfolio ηS = (1, . . . , 1) is strongly maximal for U .

Proof. “(a) ⇒ (b)”. This follows from Corollary 2.4.
“(b) ⇒ (c)”. By Proposition III.3.13, each ei is weakly maximal for U , and so

is ηS =
∑N

i=1 ei by Corollary III.3.10. Now the claim follows from Propositions
III.3.15 and III.3.19.

“(c)⇒ (a)”. This follows from Corollary 2.4 because ηS and S(ηS) are bounded.

Remark 2.6. Weak maximality (for U) of the buy-and-hold strategies of the
primary assets has been called no-dominance (ND) in the literature (see e.g. Mer-
ton [62] or Jarrow and Larsson [39]), and has recently been studied in the context
of financial bubbles as a possible requirement in addition to NFLVR (cf. Jarrow et
al. [41]). In a classic model S = (1, X), NFLVR and ND together have been shown
to be equivalent to the existence of a (true) equivalent martingale measure for X;
see [39, Theorem 3.2]. Our Corollary 2.5 can be seen as a numéraire-independent
version of that result because by Proposition III.3.24 (c), strong maximality of e1

implies NFLVR(e1) (which is just a more precise terminology for NFLVR in the
classic sense; see Definition III.3.22). For a detailed discussion of the exact rela-
tionship between maximal strategies, bubbles and market efficiency (see [39]) in
a numéraire-independent setup, we refer to Chapter VIII.

3 Dual characterisation of superreplication prices
and strong attainability of contingent claims

In this section, we derive a numéraire-independent dual characterisation of su-
perreplication prices and briefly address the topic of attainability of contingent
claims.

First, we recall—using our terminology—the classic result by Kramkov [52]
and Föllmer and Kabanov [24] on the dual representation of superreplication
prices. To this end, for a strongly maximal numéraire strategy η, we denote by
Q(S(η)) the set of all probability measures Q ≈ P on FT such that S(η) is a
Q-σ-martingale; note that Q(S(η)) 6= ∅ by Theorem 1.10 (c).
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Proposition 3.1. Let S be a numéraire market satisfying NINA, η a maximal
numéraire strategy and F a contingent claim at time τ ∈ T[0,T ]. Suppose that
supQ∈Q(S(η))EQ[F (S(η))] <∞. Then there is ϑ ∈ U with Vτ (ϑ) ≥ F P-a.s. and

Π(F (S(η)) | U)(S(η)) = V0(ϑ)(S(η)) = sup
Q∈Q(S(η))

EQ[F (S(η))].

To derive a numéraire-independent version of the above result, we have to
replace the (η-dependent) set Q(S(η)) by a numéraire-independent object. For
Q ≈ P on FT and s ∈ Rd \ {0}, set MQ(s) := {S ∈ MQ : S0 = s}. If η is a
strongly maximal numéraire strategy and Q ≈ P on FT , then each Q̃ ∈ Q(S(η))

can be identified with ZS(η) ∈ MQ(S
(η)
0 ), where Z is the density process of Q̃

with respect to Q. Moreover, if F is a contingent claim at time τ ∈ T[0,T ], then

EQ̃[F (S(η))] = EQ[ZτF (S(η))] = EQ[F (ZS(η))]. (3.1)

Note, however, that in general there are S ∈ MQ(S
(η)
0 ), for which the unique

exchange rate process D from Remark II.1.4 satisfying S(η) = DS P-a.s. is not a
density process of some Q̃ ∈ Q(S(η)) with respect to Q.

After these preparations, we can prove the main result of this section.

Theorem 3.2. Let S be a numéraire market satisfying NINA and F a contingent
claim at time τ ∈ T[0,T ]. Then for each S ∈ S and each Q ≈ P on FT ,

Π(F | U)(S) = sup
S̃∈MQ(S0)

EQ[F (S̃)]. (3.2)

Moreover, if supS̃∈MQ(S0)EQ[F (S̃)] <∞ for some S ∈ S and some Q ≈ P, there
exists a maximal strategy ϑ∗ ∈ U such that

V0(ϑ∗) = Π(F | U) and Vτ (ϑ
∗) ≥ F P-a.s. (3.3)

It follows from (3.2) and Remark II.6.2 that supS̃∈MQ(S0)EQ[F (S̃)] <∞ holds
for some S ∈ S and some Q ≈ P if and only if it holds for every S ∈ S and every
Q ≈ P.

Proof. First, we establish the easy inequality “≥” in (3.2) in the nontrivial case
Π(F | U) < ∞. Fix Q ≈ P on FT and S ∈ S and let S̃ ∈ MQ(S0) be arbitrary;
note thatMQ 6= ∅ by Theorem 1.10. Since Π(F | U)(S) = Π(F | U)(S̃) by Remark
II.6.2, it suffices to show that Π(F | U)(S̃) ≥ EQ[F (S̃)]. Let δ > 0 and C be a
positive contingent claim at time 0. By Proposition II.6.3, there is ϑ ∈ U with
V0(ϑ) ≤ Π(F | U) + δC and Vτ (ϑ) ≥ F P-a.s. By the Q-supermartingale property
of V (ϑ)(S̃),

Π(F | U)(S̃) + δC(S̃) ≥ V0(ϑ)(S̃) ≥ EQ
[
Vτ (ϑ)(S̃)

]
≥ EQ

[
F (S̃)

]
.

Letting δ ↘ 0 establishes the claim.
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Next, if supS̃∈M(S0)EQ[F (S̃)] = ∞ for each S ∈ S and each Q ≈ P, then
the claim follows from the first step. Otherwise, fix S ∈ S and Q ≈ P such
that supS̃∈M(S0)EQ[F (S̃)] < ∞. Let η be a maximal numéraire strategy (which
exists by Theorem 1.6) and D the unique exchange rate process from Remark
II.1.4 satisfying S(η) = DS P-a.s. Then the first part of the proof, the fact that
MQ(S0) = 1

D0
MQ(D0S0) = 1

D0
MQ(S

(η)
0 ), (3.1), Proposition 3.1 and Remark

II.6.2 yield

Π(F | U)(S) ≥ sup
S̃∈MQ(S0)

EQ[F (S̃)] =
1

D0

sup
S̃∈MQ(S

(η)
0 )

EQ[F (S̃)]

≥ 1

D0

sup
Q̃∈Q(S(η))

EQ̃[F (S(η))] =
1

D0

Π(F | U)(S(η)) = Π(F | U)(S),

which establishes (3.2). Proposition 3.1 yields ϑ ∈ U with V0(ϑ) = Π(F | U)
and VT (ϑ) ≥ F P-a.s., and Theorem 1.1 gives a (dominating) maximal strategy
ϑ∗ ∈ U for ϑ satisfying (3.3).

The supremum in (3.2) is in general not attained. We proceed to show that
it is so if and only if the inequality in (3.3) is an equality. To this end, we briefly
discuss the topic of attainability of contingent claims. In the standard framework,
it is well known that in continuous time, the existence of a replicating strategy for
a contingent claim alone is not enough to guarantee that the value process of the
replicating portfolio is a (true) martingale under an EσMM—assuming of course
that the market satisfies NFLVR. We show that in our numéraire-independent
framework, the good notion of attainability is the existence of a strongly max-
imal replicating strategy; for this reason we also speak of strong attainability.
Moreover, we introduce the closely related notion of strongly maximal contin-
gent claims. In the standard framework, similar concepts have been discussed by
Delbaen and Schachermayer [12].

Definition 3.3. Let S be a market and Γ a strategy cone. A contingent claim
F at time τ ∈ T[0,T ] with Π(F |Γ) <∞ is called strongly maximal for Γ if for all
nonzero contingent claims G at time τ ,

Π(F +G |Γ) > Π(F |Γ).

It is called strongly attainable for Γ if there exists a strategy ϑ ∈ Γ which is
strongly maximal at time τ for Γ and satisfies

Vτ (ϑ) = F P-a.s.

Remark 3.4. One could of course also introduce the notion of weakly attainable
contingent claims but this turns out to be of little use because the existence of a
contingent claim which is strongly maximal for U implies that the market satisfies
NINA, and in this case, the notions of weakly and strongly attainable contingent
claims for U coincide.
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It follows from the definition of strongly maximal strategies that a strongly
attainable contingent claim is a fortiori strongly maximal. The following result
shows that in numéraire markets satisfying NINA, the converse is also true for
Γ = U . This kind of result is well known in the standard framework; see [13,
Theorem 5.16].

Lemma 3.5. Let S be a numéraire market satisfying NINA and F a contingent
claim at time τ ∈ T[0,T ] with Π(F | U) <∞. Then the following are equivalent:

(a) F is strongly maximal for U .

(b) F is strongly attainable for U .

(c) There exists a pair (η,Q), where η is a numéraire strategy and Q ≈ P on
FT , such that S(η) ∈MQ and Π(F | U)(S(η)) = EQ[F (S(η))].

(d) For each maximal numéraire strategy η, there exists Q ≈ P on FT such that
S(η) ∈MQ and Π(F | U)(S(η)) = EQ[F (S(η))].

(e) There exist Q ≈ P on FT and S ∈MQ such that Π(F | U)(S) = EQ[F (S)].

(f) For each Q ≈ P on FT , there is S ∈MQ with Π(F | U)(S) = EQ[F (S)].

Note that by Theorem 1.10 (b), the numéraire strategy η in (c) is automatic-
ally strongly maximal for U .

Proof. “(a) ⇒ (b)”. By Theorem 3.2, there is a strongly maximal strategy ϑ ∈ U
such that V0(ϑ) = Π(F | U) and Vτ (ϑ) ≥ F P-a.s. Thus, Π(Vτ (ϑ) | U) ≤ V0(ϑ) by
the definition of superreplication prices, which together with strong maximality
of F establishes the claim.

“(b) ⇒ (d)”. Let ϑ ∈ U be a maximal strategy satisfying Vτ (ϑ) = F P-a.s.
and η a maximal numéraire strategy. Theorem 2.1 gives Q ≈ P on FT such
that S(η) ∈ MQ and V (ϑ)(S(η)) is a true Q-martingale. Theorem 3.2, the Q-
martingale property of V (ϑ)(S(η)) and the definition of superreplication prices
yield

Π(F | U)(S(η)) ≥ EQ[F (S(η))] = EQ[Vτ (ϑ)(S(η))] = V0(ϑ)(S(η))

≥ Π(F | U)(S(η)).

“(d) ⇒ (c)”. This is easy—a strongly maximal numéraire strategy η exists by
Theorem 1.6.

“(c) ⇒ (e)”. This is trivial setting S := S(η).
“(e) ⇒ (f)”. Fix Q2 ≈ P on FT . By assumption, there exists Q1 ≈ P on FT

and S(1) ∈MQ1 such that

Π(F | U)(S(1)) = EQ1 [F (S(1))]. (3.4)
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Let Z be the density process of Q2 with respect to Q1. Set S(2) := S(1)

Z
. Then

S
(2)
0 = S

(1)
0 and S(2) ∈ MQ2 by Bayes’ theorem for σ-martingales; see [45, Pro-

position 5.1]. Thus Remark II.6.2, the exchange rate consistency of contingent
claims (II.5.1) and (3.4) give

Π(F | U)(S(2)) = Π(F | U)(S(1)) = EQ1 [F (S(1))] = EQ1

[
ZτF

(
S(1)

Z

)]
= EQ2 [F (S(2))].

“(f)⇒ (a)”. Let G be a nonzero contingent claim at time τ and S ∈MP such
that Π(F | U)(S) = E[F (S)]. Theorem 3.2 gives

Π(F +G | U)(S) ≥ E[F (S) +G(S)] > E[F (S)] = Π(F | U)(S).

4 Appendix
The goal of this appendix is to prove Lemma 1.2. To this end, we need one further
definition and one further result.

Definition 4.1. Let S be a numéraire market, η a numéraire strategy, and
ζ ∈ Lad(S(η), 1). A sequence (ζn)n∈N in Lad(S(η), 1) is called a maximalising se-
quence for ζ if for all n ∈ N,

ζn+1 • S(η)
T ≥ ζn • S(η)

T ≥ ζ • S(η)
T P-a.s.,

and there is no ζ̃n ∈ Lad(S(η), 1) satisfying

ζ̃n • S(η)
T ≥ ζn • S(η)

T P-a.s. and P[ζ̃n • S(η)
T ≥ ζn • S(η) + 2−n] ≥ 2−n.

Proposition 4.2. Let S be a numéraire market η a numéraire strategy and
ζ0 ∈ Lad(S(η), 1). If S(η) satisfies BK(η)/NUPBR(η), there exists a maximal-
ising sequence for ζ0. Moreover, if (ζn)n∈N is a maximalising sequence for ζ0

and (ζ̂n)n∈N any other sequence with ζ̂n ∈ conv{ζn, ζn+1, . . .} for all n ∈ N, then
(ζ̂n)n∈N has a subsequence which is a maximalising sequence for ζ0.

Proof. For ζ ∈ Lad(S(η), 1) and n ∈ N, set

B(η)(ζ) :=
{
ζ̃ ∈ Lad(S(η), 1) : ζ̃ • S(η)

T ≥ ζ • S(η)
T P-a.s.

}
,

B(η)
n (ζ) :=

{
ζ̃ ∈ B(η) : P[ζ̃ • S(η)

T ≥ ζ • S(η)
T + 2−n] ≥ 2−n

}
,

A(η)
n (ζ) :=

{
ζ̃ ∈ B(η)(ζ) : B(η)

n (ζ̃) = ∅
}
.

Clearly, (ζn)n∈N in Lad(S(η), 1) is a maximalising sequence for ζ0 if and only if for
all n ∈ N,

ζn ∈ B(η)(ζn−1) and B(η)
n (ζn) = ∅. (4.1)
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For the first claim, it suffices to show that A(η)
n (ζ) 6= ∅ for all ζ ∈ Lad(S(η), 1),

since we can then recursively construct a sequence (ζn)n∈N in Lad(S(η), 1) such that
ζn ∈ A(η)

n (ζn−1) for all n ∈ N, yielding (4.1) for (ζn)n∈N. Seeking a contradiction,
suppose there are ζ̃0 ∈ Lad(S(η), 1) and N ∈ N with A(η)

N (ζ̃0) = ∅. By induction,
we construct a sequence (ζ̃n)n∈N in Lad(S(η), 1) satisfying

A
(η)
N (ζ̃n) = ∅ and ζ̃n ∈ B(η)

N (ζ̃n−1), n ∈ N. (4.2)

First, A(η)
N (ζ̃0) = ∅ and ζ̃0 ∈ B(η)(ζ̃0) give ζ̃1 ∈ B

(η)
N (ζ̃0) ⊂ B(η)(ζ̃0), yielding

B(η)(ζ̃1) ⊂ B(η)(ζ̃0) and implying A(η)
N (ζ̃1) ⊂ A

(η)
N (ζ̃0) = ∅. Next, if A(η)

N (ζ̃n) = ∅
for n ∈ N, ζ̃n ∈ B(η)(ζ̃n) yields as above ζ̃n+1 ∈ B

(η)
N (ζ̃n) with A

(η)
N (ζ̃n+1) = ∅.

Now, set an := ζ̃n • S(η)
T − ζ̃n−1 • S(η)

T , n ∈ N, and A := lim supn→∞{an ≥ 2−N}.
Then P[A] ≥ 2−N since P[an ≥ 2−N ] ≥ 2−N for each n because ζ̃n ∈ B(η)

N (ζ̃n−1).
Thus, limn→∞ ζ̃n • S(η)

T = ζ̃0 • S(η)
T +

∑∞
k=1 ak ≥ −1 +∞ = ∞ P-a.s. on A, in

contradiction to the hypothesis that S(η) satisfies BK(η)/NUPBR(η).
For the second claim, define h(n) := min

{
k ≥ n : ζ̂n ∈ conv{ζn, . . . , ζk}

}
,

n ∈ N. Moreover, set n1 := 1 and define recursively nk+1 := h(nk) + 1. Since
(ζn • S(η)

T )n∈N is P-a.s. increasing and ζ̂n ∈ conv{ζn, ζn+1, . . .}, for all n ∈ N,

ζ̂n • S(η)
T ≥ ζn • S(η)

T ≥ ζ • T P-a.s., (4.3)

and by the definition of h, for all k ∈ N,

ζ̂nk+1
• S(η)

T ≥ ζh(nk)+1 • S(η)
T ≥ ζ̂nk • S

(η)
T P-a.s. (4.4)

Since (ζnk)k∈N is a fortiori a maximalising sequence for ζ, (4.3) and (4.4) imply
that (ζ̂nk)k∈N is a maximalising sequence for ζ.

Proof of Lemma 1.2. First, by Proposition 4.2 (a), there exists a maximalising
sequence (ζn)n∈N in Lad(S(η), 1) for ζ. Second, arguing as in [9, Lemma 4.5]
(with the exception that we do not need to pass to convex combinations due
to the monotonicity structure of a maximalising sequence) yields a subsequence,
called again (ζn)n∈N, such that the sequence of integral processes (ζn • S(η))n∈N
converges P-a.s in the uniform topology to some càdlàg adapted process Ξ. Third,
[42]—or in essence [9]—gives a sequence (ζ̂n)n∈N with ζ̂n ∈ conv{ζn, ζn+1, . . .}
such that the sequence of integral processes (ζ̂n • S(η))n∈N converges to Ξ in the
semimartingale topology (cf. [63]). Next, by Proposition 4.2 (b), (ζ̂n)n∈N has a
subsequence, called again (ζ̂n)n∈N, which is a maximalising sequence for ζ. By
Mémin’s theorem (see [63], Theorem V.4), there exists ζ∗ ∈ L(S(η)) with ζ∗0 = 0
such that Ξ = ζ∗ • S(η) P-a.s. Since all the ζ̂n are in Lad(S(η), 1) and convergence
in the semimartingale topology implies uniform convergence in probability (on
a finite time horizon), Ξ ≥ −1 P-a.s. and ζ∗ ∈ Lad(S(η), 1). Moreover, since
the sequence (ζ̂n • S(η)

T )n∈N is increasing and converges in probability, we have
ζ∗•S(η)

T ≥ ζ̂n•S(η)
T ≥ ζ̂ •ST P-a.s. for each n. Using this and the fact that (ζ̂n)n∈N

is maximalising for ζ, it is straightforward to check that ζ∗ is as desired.
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Chapter VII

Comparison to other modelling
frameworks

In this short chapter, we compare our numéraire-independent approach to model-
ling financial markets and studying no-arbitrage to the standard and other recent
approaches to these issues. The material for this chapter is taken from [32].

1 The standard modelling framework

Let us first summarise how our approach relates to the standard framework and
highlight some limitations and (hidden) assumptions of classic modelling. Re-
call from Example II.3.6 that a classic model S = (1, X) with d “risky” as-
sets X1, . . . , Xd and one “riskless” asset/“bank account” 1 corresponds to the
N -dimensional market S generated by S, N = d + 1, where one works with the
numéraire representative S(e1) of e1 = (1, 0, . . . , 0), the buy-and-hold strategy of
the bank account. This assumes that the bank account cannot default, which
is a restriction. For admissible trading, one considers self-financing strategies of
the form ϑ = ϑ̃ − ae1, where ϑ̃ ∈ U and a ≥ 0; cf. Corollary II.3.8 (b) and the
subsequent discussion.

The no-arbitrage notions NA or NFLVR for S = (1, X) (or just for X) are bet-
ter expressed in our terminology by saying that S(e1) satisfies NA(e1) or NFLVR(e1)

and are equivalent to weak or strong maximality of e1 for U ; see Chapter III.3.3
and in particular, Proposition III.3.24. They tacitly include the ex-ante assump-
tion that investing in the bank account is a “good” investment. However, this is
unduly restrictive: Even if S(e1) fails NA(e1) or NFLVR(e1), one can make “a profit
out of nothing without risk” via undefaultable (as opposed to S(e1)-admissible)
strategies only if S also fails NINA; otherwise the only thing one can (and def-
initely should) do is to invest one’s money better than in the bank account.

By contrast, the numéraire-independent concept NINA really captures the
idea of forbidding to “make a profit out of nothing without risk”: If S fails NINA,
with some fixed positive probability, one can get as much as one likes in any
currency unit one chooses and with as tiny an initial investment as one likes; see
Remark III.1.6 (a). Conversely, if S satisfies NINA, there exist enough “good”,
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i.e., strongly maximal, numéraire strategies η∗; see Theorem VI.1.6. The only, but
crucial caveat is that one cannot ex ante choose an arbitrary numéraire strategy
and expect to have good properties in the currency unit corresponding to this par-
ticular numéraire representative. A moment of thought makes it clear that the
last caveat is very natural. It is simply too much to assume that the particular
numéraire strategy e1 = (1, 0, . . . , 0) is strongly maximal. One should better only
assume NINA; then one can replace e1 = (1, 0, . . . , 0) by a dominating maximal
numéraire strategy η∗; see Theorem VI.1.6. The corresponding numéraire rep-
resentative S(η∗) is “close” to S(e1) in the sense of Theorem VI.1.1, and one has
NFLVR(η∗) for S(η∗), see Proposition III.3.24. Thus, interpreting V (η∗)(S(η∗)) as
“riskless” asset and S(η∗),1, . . . , S(η∗),N as “risky” assets, one can then use in these
units all results from mathematical finance that are formulated in the standard
framework.

2 The fair market framework

Our framework also ties up with the concepts of fair markets and allowable
strategies developed by Yan [81, 82, 83].

[82] starts with a (d + 1)-dimensional semimartingale Y = (Y 0, . . . , Y d) de-
scribing the evolution of d + 1 positive assets (where we write Y instead of the
usual S for notational convenience).1 He considers discounted asset prices, where
one either discounts by one of the basic assets Y 0, . . . , Y d or by their sum

∑d
i=0 Yi.

A market is called fair if (Y 0)-discounted prices admit a (true) equivalent mar-
tingale measure (EMM). It is shown that a market is fair if and only if the prices
discounted by any of the assets Y 0, . . . Y d admits an EMM. A (self-financing)
strategy is called allowable if it is bounded from below by −a

∑d
i=0 Y

i for some
a > 0, and it is shown that a market is fair if and only if Y satisfies NFLVR for
allowable strategies.

From the perspective of numéraire-independent modelling, one considers the
market S generated by S = (S1, . . . SN) := (Y 0, . . . , Y d), N = d+1, and assumes
that for each asset i, its buy-and-hold strategy ei is a numéraire strategy. The
market is fair if S(e1) is a (true) equivalent martingale representative. By Corol-
laries VI.2.4 and VI.2.5, this is the case if and only if each S(ei) and S(ηS) are
equivalent martingale representatives, where ηS = (1, . . . , 1) denotes the market
portfolio. An allowable strategy is simply an S(ηS)-admissible investment process,
and Proposition III.3.24 (c) and Corollary VI.2.5 imply that a market is fair if and
only if S(ηS) satisfies NFLVR(ηS). So we recover the results of [82]. Note, however,
that the concept of a fair market is not numéraire-independent: It depends on
the original currency unit of S̃ and on the sum

∑N
i=1 S̃

i of the price processes
of all assets—in the same way as the standard approach depends on the original
currency unit of S̃ and on the price process of the numéraire asset S̃k; cf. also the

1In [83], it is only assumed that asset prices are nonnegative but that their sum
∑d

i=0 Yi is
positive. (To be precise, the setup in [83] is more symmetric and there is no asset 0.) Otherwise,
the concepts are the same as in [82].
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discussion in Chapter I. So the framework in [83] is not numéraire-free and the
title a misnomer.

3 The numéraire portfolio and the benchmark
approach

Next, our approach sheds new light on the numéraire portfolio studied by various
authors in increasing generality (see for instance [59, 2, 46]), and on the closely
related benchmark approach of Platen [65].

There one usually starts out with a classic model S = (1, X) and looks for a
self-financing strategy ρ (parametrised in fractions of wealth) with positive wealth
(=value) processW ρ (andW ρ

0 = 1) such that the relative wealth processW π/W ρ

for every self-financing strategy π is a P-supermartingale. Such a strategy ρ (or
alternatively its wealth process W ρ) is called the numéraire portfolio or growth
optimal portfolio (GOP) or benchmark portfolio. If it exists, it is unique and
has several compelling features, e.g. in terms of utility maximisation; see [46,
Remark 3.2]. Given the existence of the GOP, the benchmark approach consists
in discounting S by the GOP; the so discounted assets or portfolios are called
benchmarked assets or portfolios. This procedure is appealing for two reasons:
First, benchmarked securities and portfolios are P-supermartingales, and hedging
and pricing can be done under the physical measure P. This has a clear economic
meaning, in contrast to pricing in the standard framework under a risk-neutral
measure Q, which often lacks a straightforward economic interpretation in incom-
plete markets. Second, the GOP can also exist in markets “admitting arbitrage”
in the sense that X fails NFLVR. More precisely, the GOP exists if and only if
X satisfies NUPBR; see [46, Theorem 4.12]. Thus, the benchmark approach is a
bit more general than the standard framework.

From the perspective of numéraire-independent modelling, one considers the
market S generated by S = (1, X). The numéraire portfolio corresponds to a
numéraire strategy η∗ with the property that for each other numéraire strategy
η, the value process V (η)(S(η∗)) is a P-supermartingale. (Note that if we do not
fix a currency unit ex ante, η∗ is only unique up to multiplication with positive
constants.) If such an η∗ exists, a similar argument as in the proof of Theorem
VI.2.1 shows that η∗ is strongly maximal for U . Thus, S satisfies NINA by
Proposition III.3.15. Conversely, NINA implies the existence of η∗ as follows:
NINA implies NUPBR(e1) for S(e1) by Proposition III.3.24 (b), and the existence
of η∗ follows from [46].

Remark 3.1. Of course, it would be nice to deduce the last implication directly
from our numéraire-independent framework. Using [2, Theorem 4.5], it would be
sufficient to show that there exists a maximal numéraire strategy η∗ such that

sup
η num.

E

[
log

VT (η)(S(η∗))

V0(η)(S(η∗))

]
<∞, (3.1)

where “num.” stands for “numéraire strategy”, and the denominator is needed for
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normalisation. Moreover, by Theorem VI.1.6, it even suffices to consider in (3.1)
only maximal numéraire strategies. Using (II.3.1), (3.1) is therefore equivalent to

inf
η̃ max. num.

sup
η max. num.

E

[
log

(
VT (η)(S)

VT (η̃)(S)

V0(η̃)(S)

VT (η)(S)

)]
<∞, (3.2)

where “max. num.” stands for “maximal numéraire strategy” and S ∈ S is arbit-
rary. At present, however, we do not know whether (3.2) can be proved directly
from NINA without excessive effort.

4 The equivalent local martingale deflator
framework

Last but not least, our approach can also be linked to the concept of equivalent
local martingale deflators [48, 73].

In the approach of [48] and [73], one starts out with a classic model S = (1, X).
An equivalent local martingale deflator (ELMD) is a positive local martingale Z
with Z0 = 1 such that ZW is a local martingale for any nonnegative wealth
process W . Using semimartingale characteristics [48], or a change of numéraire
argument [73],2 it is shown that an ELMD exists if and only if S satisfies NA1.

From the perspective of numéraire-independent modelling, one considers the
market S generated by S = (1, X) and works with the numéraire representat-
ive S(e1) of e1. An ELMD is a (normalised) exchange rate process D with the
property that DS(e1) is a local (P-)martingale representative. Since S(e1),1 ≡ 1,
this automatically implies that D is a local martingale. Since NA(e1)

1 for S(e1) is
equivalent to S satisfying NINA (Proposition III.3.24 (b)), we recover the main
results in [48, 73] from our Theorem VI.1.10; see also Remark VI.1.11.

2The result of [73] has been developed completely independent from and parallel to our work.
Notwithstanding, since the methods are somewhat related, the proof of Proposition 2.7 (i) in
[73] is similar to the proof of our Proposition VI.1.4, and the first part of the proof of Theorem
2.6 in [73] uses similar arguments as the proof of our Theorem VI.1.1.



Chapter VIII

Bubbles from a numéraire-
independent perspective

In this final chapter, we develop a new approach for modelling financial bubbles
using our numéraire-independent paradigm. Unlike most papers in the recent lit-
erature, e.g. [56, 8, 40, 41, 67], we do not define bubbles by a dual object, usually
a strict local martingale measure, but start from primary notions that are eco-
nomically motivated. After explaining the main concepts of static and dynamic
viability and efficiency in Section 1, we illustrate them by several examples in
Section 2 before deriving their dual characterisations in Section 3. In particular,
we show that strict local martingale measures arise naturally in the context of
modelling financial bubbles; see Theorem 3.22. After providing some further ex-
amples of what we call nontrivial bubbly markets in Section 4, we compare our
definitions and results to the existing literature on bubbles in Section 5.

This chapter, which is joint work with Martin Schweizer, uses a somewhat
different setup than the previous chapters. This is partly more and partly less
general than the setup of Chapter II. For this reason, we give a largely self-
contained presentation, even though this creates some redundancies.

In the sequel we also consider trading strategies which start at some stopping
time σ ∈ T[0,T ] later than 0. To this end, we have to introduce some additional
notation. For σ ∈ T[0,T ], we set T[σ,T ] := {τ ∈ T[0,T ] : τ ≥ σ}. A product-
measurable process ξ = (ξt)t∈[0,T ] is called predictable on Jσ, T K if the random vari-
able ξσ is Fσ-measurable and the process ξ1Kσ,T K is predictable. So if ξ is predict-
able on Jσ, T K and Aσ ∈ Fσ, also ξ1Aσ is predictable on Jσ, T K. For an RN -valued
semimartingale X = (X1

t , . . . , X
N
t )t∈[0,T ] and σ ∈ T[0,T ], we denote by Lσ(X)

the set of all RN -valued processes ζ = (ζ1
t , . . . , ζ

N
t )t∈[0,T ] which are predictable

on Jσ, T K and for which the stochastic integral
∫ T
σ
ζs dXs :=

∫
(0,T ]

ζs1Kσ,T K(s) dXs

is defined in the sense of N -dimensional stochastic integration (consult [37] for
details).
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1 Main concepts
As in the previous chapters, we consider a financial market consisting of N > 1
assets. We initially denote by S̃ = (S̃1

t , . . . , S̃
N
t )t∈[0,T ] the price process of the N

assets in some fixed but not specified currency unit. This unit may or may not
be tradable (e.g. in the form of a bank account); we deliberately do not assume
that one of the assets is identically 1, nor that there exists a “bank account”
S̃0 somewhere in the background. All we initially impose is that the process S̃
is RN -valued, adapted and RCLL, that S̃i ≥ 0 P-a.s. for each i, since we have
primary assets in mind, and that the financial market is nondegenerate in the
sense that

inf
t∈[0,T ]

N∑
i=1

S̃it > 0 P-a.s. (1.1)

This excludes the case that all assets default and we are left with a nonexistent
market; see also the discussion after Definition II.1.3.

It is a folklore result in mathematical finance that in a reasonable financial
market, relative prices should be semimartingales after some suitable discounting;
see for example Kardaras and Platen [49] or Beiglböck and Schachermayer [3]
and the references therein. To capture this idea in a more rigorous form, we first
introduce the set D̃ of all real-valued adapted RCLL processes D̃ = (D̃t)t∈[0,T ]

with
inf

t∈[0,T ]
D̃t > 0 P-a.s. (1.2)

We call the elements of D̃ generalised exchange rate processes. We assume that

there exists some D̃ ∈ D̃ such that D̃S̃ is a semimartingale, (1.3)

and we choose and fix one such D̃ and the corresponding process S := D̃S̃. We
also call S a semimartingale representative of the market described by S̃.

From economic considerations, it is clear that all prices are relative, and that
the basic qualitative properties of a model should not depend on the chosen
currency unit. To make this precise, we call a process S̃ ′ economically equivalent
to S̃ if S̃ ′ is also RN -valued, adapted and RCLL, and if we can write S̃ ′ = D̃′S̃
for some D̃′ ∈ D̃. In other words, two processes are economically equivalent if
they describe the same assets in possibly different currency units.

Our first simple result shows that our modelling approach does not depend
on the initial choice of S̃ and has nice semimartingale properties, in the following
sense.

Lemma 1.1. Suppose that S̃ and S̃ ′ are economically equivalent. If S̃ satisfies
(1.1) or (1.3), then so does S̃ ′. If S̃ satisfies both (1.1) and (1.3) and we choose a
semimartingale representative S = D̄S̃, then each semimartingale representative
S ′ = D̄′S̃ ′ is economically equivalent to S with an exchange rate process D ∈ D̃
which is even a semimartingale.

Proof. Since D̃′ > 0 in the sense of (1.2), (1.1) directly transfers from S̃ to
S̃ ′ = D̃′S̃. From (1.3) for S̃, we obtain S = D̃S̃ for some semimartingale S and
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some D̃ ∈ D̃. So S = D̃(S̃ ′/D̃′) = (D̃/D̃′)S̃ ′ is a semimartingale and D̃/D̃′ is
in D̃, and we see that S̃ ′ also satisfies (1.3). If S ′ = D̄′S̃ ′ is a semimartingale,
we can use S̃ ′ = D̃′S̃ to write S ′ = DS with D := D̄′(D̃′/D̄) which is clearly
in D̃. But S = D̃S̃ and S ′ = D̃′S̃ ′ both also satisfy (1.1), and so we can write
D = (

∑N
i=1 S

′i)/(
∑N

i=1 S
i) to see that D is also a semimartingale.

In the sequel, we always assume that (1.1) and (1.3) are satisfied, and
we choose a semimartingale representative S. All other semimartingale
representatives are then economically equivalent to S with a (semimartingale)
exchange rate process, and we introduce the set of exchange rate processes,

D := D̃ ∩ {semimartingales}
= {all real-valued semimartingales D = (Dt)t∈[0,T ] with inft∈[0,T ] Dt > 0},

and the market generated by S, which is

S := {S ′ = DS : D ∈ D}.

The key difference between S and S̃ is that S is a semimartingale, and we ex-
ploit this when we formalise trading and self-financing strategies with the help of
stochastic integrals. Up to a change of currency unit, however, S and S̃ agree; so
we can view the choice of working with S as merely dictated by convenience, and
we could always rewrite everything back into the units of S̃ if that is preferred
for some reason; see also Remark 1.5 below for more details.

Example 1.2 (Classic setup of mathematical finance). One particular case is
what we call the classic setup of mathematical finance. Suppose there is one
asset which has for P-almost all ω, a positive price. (A bit more precisely, we
need that P[inft∈[0,T ] S̃

k
t > 0] = 1 for some k, so that S̃k ∈ D̃ is a generalised

exchange rate process.) Then we can express all other assets in units of that
special asset by defining X i := S̃i/S̃k and then relabel the assets; we call that
particular asset k now asset 0 or bank account, and we call the other d := N − 1
assets the risky assets, discounted by the bank account. Then we have N = d+ 1
basic assets; but they are not symmetric because one of them is a riskless bank
account which can never reach the value 0. Moreover, if there are initially several
assets like S̃k, there is arbitrariness in the choice of the one we use for discounting.
As a consequence, if we define concepts in terms of X, they depend implicitly on
the choice of the exchange rate process S̃k, and it may become quite difficult to
keep track of this all the time.

The vast majority of papers in mathematical finance works with the end result
of the above setup. Usually, they start with an Rd-valued process X and call this
the (discounted) price process of d risky assets. Almost without exception, it is
also assumed (but very often not mentioned explicitly) that there is in addition
to X a riskless bank account whose price is identically 1—and this assumption
is exploited in the standard problem formulations. (The papers also assume
that X is a semimartingale, which corresponds to our choice of a semimartingale
representative S.)
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As one can see, the classic setup is intrinsically asymmetric. This hides or
obscures a number of important phenomena, and we therefore want to start with
a symmetric treatment of all assets. Since we make no assumptions on D̃ in (1.2)
except strict positivity, all our results include the classic setup with nonnegative
prices; but they do not exploit its assumptions and asymmetry, and hence they
are both more general and in our view more natural. The simplest example of
a model which cannot be formulated in the classic setup is one with two assets
(N = 2); they are both nonnegative, but both can default, i.e., become 0. One
of them hits 0 at some (maybe random) time on a set A only; the other hits 0 on
Ac only. If 0 < P[A] < 1, this cannot be put into the form of the classic setup.
For a more detailed and intuitive formulation, see Example 2.1 below.

Remark 1.3. One could of course argue in the above example that adding a
third asset of the form S3 = αS1 + (1− α)S2 with α ∈ (0, 1) would lead us back
into the classic setup without changing the market because we have the same
trading opportunities. However, this easy way out is an ad hoc problem fix, and
it also raises the question how the resulting classic setup depends perhaps on the
choice of α. Rather than trying to find a case-by-case approach, we prefer to deal
with (1.1) and (1.3) in a general and systematic way.

Now let us return to our basic model. We want to describe (frictionless)
continuous trading and work with self-financing strategies; so we need to use
stochastic integrals, and therefore exploit below that S is a semimartingale.
Again, this includes the classic setup.

One direct consequence of our symmetric formulation is as follows. If D′ ∈ D̃
is any generalised exchange rate process, the process S ′ := D′S describes the same
market, but in a different currency unit. (Like the original currency unit, the new
unit induced by the “exchange rate” D may or may not be available for trade.)
So our initially chosen S ∈ S is just one fixed semimartingale representative of
the market S generated by S or S̃.

In the sequel, we only want to work with notions which are independent of
the choice of a specific semimartingale representative S ′ ∈ S (or a particular
currency unit). More precisely, we want to have that a notion holds for our fixed
semimartingale representative S if and only if it holds for each S ′ ∈ S, in which
case we also say that the notion holds for the market S and call it “numéraire-
independent”. Wherever this “numéraire independence” is not directly clear from
the context or the definitions, we shall make a comment or give an explanation.

1.1 Self-financing strategies, numéraires and strategy cones

In this section, we introduce trading strategies. This is almost standard, with
small (but important) differences because we are not in the classic setup. Recall
that S ∈ S is a semimartingale representative of the market S.

Definition 1.4. Fix a stopping time σ ∈ T[0,T ]. A self-financing strategy (for S)
on Jσ, T K is an N -dimensional product-measurable process ϑ which is predictable
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on Jσ, T K, in Lσ(S), and such that

V (ϑ)(S) := ϑ · S = ϑσ · Sσ +

∫ ·
σ

ϑu dSu P-a.s. on Jσ, T K (1.4)

We denote the space of all these strategies by Lsf
σ (S) or just Lsf

σ , and we call
V (ϑ)(S) the value process of ϑ (in the currency unit corresponding to S).

It is not immediately obvious but true that the concept of a self-financing
strategy as above is “numéraire-independent”. Indeed, the result and the proof
of Lemma II.2.5 for σ 6= 0 is mutatis mutandis the same as for σ = 0, and so
if ϑ is in Lσ(S) and satisfies (1.4), then it is also in Lσ(S ′) and satisfies (1.4)
for S ′ instead of S. In particular, writing Lsf

σ (S) and not Lsf
σ (S) is justified.

Another consequence of the above argument is that the value process of a self-
financing strategy ϑ satisfies the “exchange rate consistency property” (or change-
of-numéraire formula)

V (ϑ)(DS) = DV (ϑ)(S) for every exchange rate process D ∈ D. (1.5)

This means that when we change units from S to S ′ = DS, the wealth from ϑ in
new units is simply the old wealth multiplied by D—as one expects from basic
financial intuition.

Remark 1.5. (a) The exchange rate consistency (1.5) is economically completely
natural. It has appeared, among others, in El Karoui et al. [17], Gouriéroux et
al. [26] or Schweizer and Takaoka [73]. Since (1.5) follows from the definition (1.4)
for any semimartingale representative S, it is natural to extend it by definition
to all other representatives S̃ as well. So if we want to work with self-financing
strategies not for S, but the original (possibly non-semimartingale) S̃ = (1/D̃)S,
we rewrite the self-financing condition (1.4) in the units corresponding to S̃ as

V (ϑ)(S̃) := ϑ · S̃ = ϑσ · S̃σ +
1

D̃

∫ ·
σ

ϑu dSu

= ϑσ · S̃σ +
1

D̃

∫ ·
σ

ϑu d(D̃S̃)u P-a.s. on Jσ, T K, (1.6)

i.e., by multiplying everything by the exchange rate process 1/D̃ at the appro-
priate time. This avoids the need of defining stochastic integrals with respect to
S̃ (which might even be impossible).

(b) In the classic setup with N = d+1, S = (1, X) and discounted asset prices
given by the Rd-valued semimartingale X, self-financing strategies on Jσ, T K can
be identified with pairs (vσ, ψ) of Fσ-measurable random variables vσ and Rd-
valued predictable X-integrable processes ψ. This is because we can write (1.4)
for a strategy ϑ = (η, ψ) in S = (1, X) as

η = V (ϑ)(S)− ψ ·X = vσ +

∫ ·
σ

ϑu dXu,
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setting vσ := Vσ(ϑ)(S) and using that asset 0 has a constant price of 1; see
for example Bingham and Kiesel [5, Proposition 4.1.3] or Elliott and Kopp [18,
Lemma 2.2.1]. Since it is so familiar, this identification of ϑ with (vσ, ψ) is usually
done even without mention in most papers. In our symmetric setup, such a simple
identification is no longer possible; trading strategies must be treated as processes
of dimension N = d+1, and the self-financing condition (1.4) imposes a nontrivial
linear constraint on their coordinates.

Clearly, Lsf
σ is a vector space. It is also closed under multiplication with Fσ-

measurable random variables, which means that on Jσ, T K, we can scale a strategy
not only by a constant (as follows from the vector space structure), but even by
a random factor if this is known at the beginning σ of the time period on which
we trade.

To avoid doubling phenomena, we usually consider sub-cones of Lsf
σ for “al-

lowed” trading. We first give the abstract definition.

Definition 1.6. For a stopping time σ ∈ T[0,T ], a strategy cone (for S) on Jσ, T K
is a nonempty subset Γ ⊆ Lsf

σ with the properties

(a) if ϑ(1), ϑ(2) ∈ Γ and c(1)
σ , c

(2)
σ ∈ L0

+(Fσ), then c(1)
σ ϑ(1) + c

(2)
σ ϑ(2) ∈ Γ,

(b) if (ϑ(n))n∈N is a countable family in Γ and (An)n∈N an Fσ-measurable par-
tition of Ω, then

∑∞
n=1 1Anϑ

(n) ∈ Γ.

A family of strategy cones (Γσ)σ∈T[0,T ]
, where each Γσ is a strategy cone on Jσ, T K,

is called time-consistent if Γσ1 ⊆ Γσ2 for σ1 ≤ σ2 in T[0,T ].

The simplest example of a strategy cone on Jσ, T K is Lsf
σ itself. Moreover, the

family (Lsf
σ )σ∈T[0,T ]

is clearly time-consistent. Another example is given below in
Definition 1.8.

If Γ ⊆ Lsf
σ is a strategy cone on Jσ, T K, we set, for any norm ‖ · ‖ in RN ,

bΓ :=
{
ϑ ∈ Γ : sup

(ω,t)∈Ω×[0,T ]

‖ϑ1Jσ,T K‖ ≤ cσ for some cσ ∈ L0
+(Fσ)

}
,

hΓ :=
{
ϑ ∈ Γ : ϑ1Jσ,T K = ϑσ1Jσ,T K

}
.

It is straightforward to check that {0} ⊆ hΓ ⊆ bΓ ⊆ Γ, and that hΓ and bΓ
are again strategy cones on Jσ, T K. We call ϑ ∈ bΓ a bounded strategy in Γ
and ϑ ∈ hΓ an invest-and-keep strategy in Γ. Note that if (Γσ)σ∈T[0,T ]

is a time-
consistent family of strategy cones, then (bΓσ)σ∈T[0,T ]

and (hΓσ)σ∈T[0,T ]
are so,

too.

Remark 1.7. (a) An invest-and-keep strategy is the simplest and most naive
strategy, and requires from the investor only one decision: He should decide
when to start his investment and how much of each asset he wants to have. After
that, he just waits until the end T of the trading interval.

(b) Calling strategies in bΓ bounded may seem puzzling at first sight. How-
ever, each ϑ ∈ bΓ is uniformly bounded on Jσ, T K by an Fσ-measurable random
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variable, and the latter play the role of “constants” on Jσ, T K. (Recall that sim-
ilarly, Lsf

σ is closed under multiplication with Fσ-measurable random variables,
and we also stipulate the cone structure in Definition 1.6 for nonnegative Fσ-
measurable random variables.) In particular, for σ = 0, we recover the usual
concept of a bounded strategy.

It is well known that to avoid undesirable phenomena in a financial market,
one must exclude doubling-type strategies. The usual way to do that is to impose
solvency constraints, i.e., strategies are allowable for trading only if their value
processes are bounded below by some quantity. If this should not depend on a
specific currency unit, then the only possible choice for the lower bound is 0. This
motivates the following definition.

Definition 1.8. Fix a stopping time σ ∈ T[0,T ]. We call a strategy ϑ ∈ Lsf
σ an

undefaultable strategy on Jσ, T K and write ϑ ∈ Uσ if

V (ϑ)(S) ≥ 0 P-a.s. on Jσ, T K.

The notion of an undefaultable strategy is clearly numéraire-independent.
Moreover, each Uσ is a strategy cone, and (Uσ)σ∈T[0,T ]

is a time-consistent family
of strategy cones.

The next concept we need is a “numéraire”. We first give the definition and
then some comments.

Definition 1.9. A strategy η ∈ Lsf
0 is called a numéraire strategy (for the market

S) if inft∈[0,T ] Vt(η)(S) > 0 P-a.s., i.e., if V (η)(S) is an exchange rate process. If
such an η exists, S is called a numéraire market.

Note that the above concept is numéraire-independent since V (η)(S) > 0
holds for some S ∈ S if and only if it holds for all S ′ ∈ S, due to (1.5). Note also
that any numéraire strategy is automatically in U0.

By our nondegeneracy assumption (1.1), the market portfolio ηS := (1, . . . , 1)
of holding one unit of each asset is always a numéraire strategy, and lies in hU0.
Similarly, in the classic setup S = (B, Y ) with N = d + 1 assets, where B de-
notes an undiscounted “bank account” satisfying inft∈[0,T ] Bt > 0 and Y denotes
d undiscounted “risky assets”, the buy-and-hold strategy e1 = (1, 0, . . . , 0) of the
“bank account” is a numéraire strategy. For general η, in the classic setup, one
calls V (η)(S) (which equals B in the latter example) a “numéraire” or “tradable
numéraire”. But doing this implies that we work in the currency unit correspond-
ing to the particular representative S, and such a dependence is precisely what
we want to avoid. We therefore describe “numéraires” not by their wealth, but in
terms of their asset holdings, which do not depend on any currency unit.

For each numéraire strategy η, there exists a P-a.s. unique numéraire rep-
resentative S(η) ∈ S such that V (η)(S(η)) ≡ 1. It is given explicitly by “V (η)-
discounted prices”

S(η) :=
S

V (η)(S)
. (1.7)
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Note that S(η) is well defined because V (η) satisfies the exchange rate consist-
ency property (1.5) (or (1.6)); this ensures that the right-hand side of (1.7)
yields the same result for any other representative S ′ = DS of S. In the classic
setup as above with a bank account B and e1 = (1, 0, . . . , 0), (1.7) reduces to
S(e1) = S/B = (1, X) as in Example 1.2.

1.2 Maximal strategies

Suppose we are given a class Γ of possible strategies. A strategy ϑ ∈ Γ can
be considered as a “reasonable investment” from that class only if it cannot be
directly improved by another strategy from the same class. More precisely, using
strategies in Γ with the same (or a lower) initial investment should not allow one
to create more wealth at time T . It is natural to call such a strategy ϑ maximal ;
see Remark 1.12 below for more comments.

Definition 1.10. Let σ ∈ T[0,T ] be a stopping time and Γ a strategy cone on
Jσ, T K. Then a strategy ϑ ∈ Γ is called weakly maximal for Γ if there is no pair
(f, ϑ̄) consisting of a nonzero random variable f ∈ L0

+(FT ) \ {0} and a strategy
ϑ̄ ∈ Γ such that

Vσ(ϑ̄)(S) ≤ Vσ(ϑ)(S) P-a.s. and VT (ϑ̄)(S) ≥ VT (ϑ)(S) + f P-a.s. (1.8)

Note above that f , which satisfies f ≥ 0 P-a.s. and P[f > 0] > 0, stands for
the extra wealth at time T , on top of what we get from ϑ, that we generate by ϑ̄
without increasing the initial capital at time σ. If we require for maximality that
(1.8) is impossible even in an approximate sense, we are led to a stronger notion
of maximality.

Definition 1.11. Let σ ∈ T[0,T ] be a stopping time and Γ a strategy cone on
Jσ, T K. Then a strategy ϑ ∈ Γ is called strongly maximal for Γ if there is no
nonzero random variable f ∈ L0

+(FT ) \ {0} such that for all ε > 0, there exists a
strategy ϑ̄ ∈ Γ with

Vσ(ϑ̄)(S) ≤ Vσ(ϑ)(S) + ε P-a.s. and VT (ϑ̄)(S) ≥ VT (ϑ)(S) + f P-a.s. (1.9)

Again, f stands for the nontrivial extra wealth we should like to achieve by
changing ϑ to ϑ̄; and if ϑ is strongly maximal, this cannot be done, not even if
we are allowed a small but strictly positive increase of initial capital at σ. Both
concepts are clearly numéraire-independent.

Remark 1.12. (a) The terminology “maximal strategy” goes back at least to
Delbaen and Schachermayer; see [12]. However, the setting there is different from
here so that also maximality has a different meaning. More precisely, [12] is cast
in the classic setup, uses for Γ the class A (which is not numéraire-independent
in our sense) of so-called admissible strategies on [0, T ], and a priori also imposes
some absence-of-arbitrage conditions. In our terminology, a maximal strategy in
the sense of [12] is then weakly maximal for A.
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(b) Both above definitions of maximality are slightly different from the Defin-
itions III.3.1 and III.3.11 above. However, if Γ is a strategy cone (on J0, T K)
which allows switching to numéraires (see Definition III.2.1), e.g. Γ = U0, using
Propositions III.3.5, III.3.8, III.3.17 and III.3.18, it is not difficult to check that
both definitions coincide (for strategy cones on J0, T K).

(c) It is clear that strong implies weak maximality, but the converse does not
hold in general; indeed, Example III.3.14 shows that there are markets, where
every ϑ ∈ U0 is weakly maximal for U0, but no ϑ ∈ U0 is strongly maximal for
U0. Notwithstanding, if the zero strategy 0 is strongly maximal for Uσ, σ ∈ T[0,T ],
then weak implies strong maximality for Uσ; see Lemma 3.10 below.

1.3 Viability and efficiency criteria for markets

A financial market should behave in a reasonable manner, and this should be
reflected in the properties of its model description. Let us formalise this and then
explain the intuition.

Definition 1.13. A market S is called

• statically viable if the zero strategy 0 is strongly maximal for hUσ, for each
σ ∈ T[0,T ].

• dynamically viable if the zero strategy 0 is strongly maximal for Uσ, for each
σ ∈ T[0,T ].

Static viability means that at every stopping time σ, just doing nothing can-
not be improved by a naive invest-and-keep strategy. Dynamic viability is even
stronger—one cannot improve on inactivity by trading, even if one trades con-
tinuously in time. Of course, in both cases, one must observe the constraint (from
Uσ) of keeping wealth nonnegative.

Dynamic viability by its definition implies static viability, but the converse
is not true. Even in a finite-state discrete-time setup (with more than one time
period), static viability is strictly weaker than dynamic viability; see Example 2.5
below. For finite discrete time, we show below in Lemma 1.18 that dynamic viabil-
ity is equivalent to the classic no-arbitrage condition NA. In general, Corollary 3.9
below implies that a market S is dynamically viable if and only if the zero strategy
is strongly maximal for U0; in other words, it is enough to check maximality for
the starting time 0 instead of all σ ∈ T[0,T ]. Hence, dynamic viability is equivalent
to numéraire-independent no-arbitrage (NINA); see Chapter III.

The next concept strengthens viability.

Definition 1.14. A market S is called

• statically efficient if each strategy ϑ ∈ hUσ is strongly maximal for hUσ, for
each σ ∈ T[0,T ].

• dynamically efficient if each strategy ϑ ∈ hUσ is strongly maximal for Uσ,
for each σ ∈ T[0,T ].
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Viability means that one cannot improve the zero strategy of doing nothing.
Efficiency means that the market has even more structure—all naive invest-and-
keep strategies are good in the sense that they cannot be improved, in a certain
class, without risk. It is clear from the definition that dynamic efficiency im-
plies static efficiency, and like for viability, the converse is not true; this is also
illustrated below in Example 2.5.

The connection between viability and efficiency is more subtle. It is clear that
efficiency (dynamic or static) implies viability (of the same kind). At first sight,
one might expect that the converse holds as well—why should it make a difference
whether one tries to improve zero or a general naive invest-and-keep strategy?
But it turns out that there is a difference, and the reason behind this is that
one must look for improvements in the class of undefaultable strategies. This is
a cone, but not a linear space. If the strategy to be improved is changed from 0
to another strategy, this upsets the balance with the strategies we are allowed to
use for improvement. In general, when we take differences to construct something
better, this leads us outside a cone—except of course if we subtract zero.

Interestingly and notably, the above difference between efficiency and viability
does not yet appear in finite discrete time. In fact, we show below in Lemmas 1.18
and 1.19 that static/dynamic efficiency is equivalent to static/dynamic viability
in finite discrete time. This reflects the well-known fact that if one can achieve
arbitrage in finite discrete time with a general strategy, one can also achieve
arbitrage with an undefaultable strategy. This result is specific to finite discrete
time because the proof relies on backward induction; see for example Elliott and
Kopp [18, Section 2.2] or Lamberton and Lapeyre [53, Lemma 1.2.7].

In a market with infinitely many trading dates, things change. In continuous
time, Example 4.1 shows that static/dynamic viability in general does not imply
static/dynamic efficiency. So the next concept is meaningful.

Definition 1.15. Amarket S is called a bubbly market if it fails to be dynamically
efficient. It is called a nontrivial bubbly market if in addition S is dynamically
viable and statically efficient.

The idea behind this definition is simple. We call S a bubbly market if there
is some naive invest-and-keep strategy which can be improved (approximately)
by dynamic trading. Of course, this will happen if S “allows arbitrage”, i.e., if
S is not dynamically viable; but this is not the really interesting situation of a
bubbly market. It is much more challenging to study what happens if S does
not admit arbitrage (i.e., is dynamically viable), and nevertheless, naive invest-
and-keep strategies in the underlying assets can be improved—however, not by
other naive invest-and-keep strategies (i.e., S is statically efficient), but only by
genuinely dynamic trading (i.e., S is not dynamically efficient).

Note that a nontrivial bubbly market can only appear in a model with infin-
itely many trading dates. In finite discrete time (see Lemma 1.18), the equivalence
of dynamic efficiency and the no-arbitrage property NA implies that every bub-
bly market allows arbitrage and hence cannot be nontrivially bubbly. We believe
that this dichotomy is natural and that some interesting phenomena inherently
hinge on an infinite set of trading dates.
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Remark 1.16. (a) Throughout this paper, we consider a setting where there is a
last trading date; we either work in continuous time on the (right-closed) interval
[0, T ] or in discrete time on {0, 1, . . . , T} (then with T ∈ N). We believe that
results like those for [0, T ] can also be developed for trading dates in [0,∞) or in
N0 = {0, 1, 2, . . . }, but one must take some extra care as time goes to ∞. This
is left for future research.

(b) Note that in contrast to much of the existing work on bubbles, our defin-
itions do not involve any martingale or strict local martingale property of some
asset prices. Our approach is to start with an economically compelling notion
of a bubbly market, and then to prove that there must be a close connection to
strict local martingales. This is done below in Theorem 3.22.

(c) Another contrast to existing work is that we do not try to define, for one
single (or multivariate) asset, whether or not this asset itself is a bubble. We
look instead at the market as a whole and try to define (and then characterise)
whether or not it contains a “bubble” somewhere. We discuss the connections to
the literature in more detail in Section 5.

1.4 The case of finite discrete time

In this section, we show that many concepts and results simplify in a model with
finite discrete time. This is of course no surprise since that setting is well known
to be much easier than a situation with infinitely many trading dates.

Definition 1.17. We say that the market S satisfies no arbitrage (NA) if there
is no strategy ϑ ∈ U0 satisfying, for some (or equivalently all) S ∈ S,

V0(ϑ)(S) = 0, VT (ϑ)(S) ≥ 0 P-a.s. and P[VT (ϑ)(S) > 0] > 0. (1.10)

For finite discrete time and the classic setup as in Example 1.2, the above is
just the standard classic definition of absence of arbitrage; see for example Elliott
and Kopp [18, Definition 2.2.3 and the subsequent section]. For a continuous-
time model in the classic setup, the above condition was studied under the names
NA+ or NA+ by Strasser [77] and Hulley [35]. Note also that Definition 1.17 is
numéraire-independent, and that the explicit requirement VT (ϑ)(S) ≥ 0 P-a.s. is
actually redundant since ϑ ∈ U0.

Lemma 1.18. For a market S in finite discrete time, the following are equivalent:

(a) S satisfies NA.

(b) S is dynamically viable.

(c) S is dynamically efficient.

(d) For each numéraire strategy η, there exists a probability measure Q ≈ P

on FT such that the V (η)-discounted price process S(η) = S
V (η)(S)

is a Q-
martingale.
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Proof. We show below in Theorem 3.11 that (d) implies (c), and it is clear that (c)
implies (b). Next, (b) implies that 0 is (strongly and a fortiori) weakly maximal
for U0, which is in turn equivalent to S satisfying NA, and we obtain (a). So
it only remains to argue that (a) implies (d), and this is where we exploit the
setting of finite discrete time.

Let η be a numéraire strategy, e.g. the market portfolio ηS = (1, . . . , 1). Then
we have (1.10), with S replaced by X := S(η). We claim that for t ∈ {1, . . . , T},
there is no Ft−1-measurable RN -valued random vector ξ = (ξ1, . . . , ξN) such that

ξ · (Xt −Xt−1) ≥ 0 P-a.s. and P[ξ · (Xt −Xt−1) > 0] > 0. (1.11)

Indeed, if we have such t and ξ, we can define an RN -valued predictable process
ϑ by

ϑk =


0, k ≤ t− 1,

ξ − (ξ ·Xt−1)ηt, k = t,

ξ · (Xt −Xt−1)ηk, k > t.

It is easy to check that ϑ is in U0 due to (1.11), and because V (η)(S(η)) ≡ 1, ϑ
satisfies

V0(ϑ)(S(η)) = 0 and P[VT (ϑ)(S(η)) > 0] = P [ξ · (Xt −Xt−1) > 0] > 0,

contradicting (1.10). Thus, applying Föllmer and Schied [25, Proposition 5.11
and Theorem 5.16] to the model (1, X) gives Q ≈ P on FT such that X = S(η) is
a Q-martingale, and we have (d).

Lemma 1.19. For a market S in finite discrete time, the following are equivalent:

(a) S is statically viable.

(b) S is statically efficient.

Proof. It is clear that (b) implies (a). For the converse, due to Lemma 6.2 below,
it suffices to show that 0 is weakly maximal for hLsf

s , for each s ∈ {0, . . . , T}. Sup-
pose to the contrary that we have s ∈ {0, . . . , T} and ϑ ∈ hLsf

s with Vs(ϑ)(S) ≤ 0
P-a.s., VT (ϑ)(S) ≥ 0 P-a.s. and P[VT (ϑ)(S) > 0] > 0. Now if P[Vt(ϑ)(S) < 0] = 0
for t ∈ {s, . . . , T−1}, then ϑ is in hUs and Vs(ϑ)(S) = 0 P-a.s., and so 0 fails to be
weakly, hence also strongly maximal for hUs, in contradiction to static viability.
Thus, the set At := {Vt(ϑ)(S) < 0} has P[At] > 0 for some t ∈ {s, . . . , T−1}. Let
t∗ = max{t ∈ {s, . . . , T − 1} : P[At] > 0} and take η to be a numéraire strategy
in hUt∗ (e.g. the market portfolio ηS = (1, . . . , 1)). From the definitions of t∗ and
At∗ , it is not difficult to check that the strategy ϑ∗ := 1At∗ (ϑ − Vt∗(ϑ)(S(η))η) is
in hUt∗ and satisfies

Vt∗(ϑ
∗)(S(η)) = 0 P-a.s. and VT (ϑ∗)(S(η)) ≥ −1At∗Vt∗(ϑ)(S(η)) P-a.s.

Because Vt∗(ϑ)(S(η)) < 0 on At∗ and P[At∗ ] > 0, this shows that 0 is not weakly,
hence also not strongly maximal for hUt∗ , in contradiction to static viability
of S.
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2 First examples
In this section, we give a number of examples to illustrate the ideas and concepts
introduced so far, focussing mainly on the (sometimes subtle) differences between
different notions. With the exception of Example 2.3, we do not yet need here
the dual characterisations presented in Section 3.

We start with an explicit example to show that our approach is more general
than the classic setup of mathematical finance discussed in Example 1.2.

Example 2.1 (A market that does not fit into the classic setup). Consider two
independent Brownian motions W 1 = (W 1

t )t∈[0,T ] and W 2 = (W 2
t )t∈[0,T ] and

two stopping times τ1 and τ2 with P[0 < τi < T ] > 0, i = 1, 2, for the
usual (augmented) filtration generated by W 1 and W 2. In addition, let X1

and X2 be random variables which are independent of W 1 and W 2 and sat-
isfy P[Xi = −1] = pi, P[Xi = αi] = 1 − pi with αi > 0, pi ∈ (0, 1), i = 1, 2, and
P[X1 = −1, X2 = −1] = 0. Define the one-jump processes N i = (N i

t )t∈[0,T ] by
N i
t = Xi1{t≥τi}, i = 1, 2, and let (Ft)t∈[0,T ] be the (augmented) filtration gener-

ated by W 1,W 2, N1, N2. Let µ1, µ2 ∈ R and σ1, σ2 > 0, and define the process
S = (S1

t , S
2
t )t∈[0,T ] by the SDEs

dSit = Sit−(µi dt+ σi dW
i
t + dN i

t ), Si0 = si > 0, i = 1, 2.

It is straightforward to see that for i = 1, 2, prior to τi, Si is a geometric Brownian
motion with drift µi and volatility σi. At τi, it either jumps to zero (if Xi = −1)
and stays there, or it jumps to (1 + αi)S

i
τi− (if Xi = αi) and evolves from there

as a geometric Brownian motion with the same parameters µi, σi as before the
jump.

Note that both S1 and S2 may jump to zero with positive probability; but
because of P[X1 = −1, X2 = −1] = 0, at least one of them stays positive until
time T . This shows that (1.1) is satisfied for S, and (1.3) also holds (with D ≡ 1)
since S is a semimartingale. It is clear that this example cannot be treated in the
classic setup since no asset price process is guaranteed to remain positive with
probability 1.

One intuitive (but somewhat extreme) situation where this model is natural
is as follows. Suppose τ1 = τ2 =: τ and X1 = −X2, which forces α1 = α2 = 1.
Then both S1 and S2 evolve as (independent) geometric Brownian motions up
to the random time τ , which can be interpreted as the time that some important
announcement is made. One of the two assets then drops to 0, while the other
instantaneously doubles its price and then continues as a GBM. Which of the
two assets “defaults” is determined by the value of X1, which can therefore be
interpreted as a signal to the market at time τ . For instance, S1, S2 could be the
market values of two firms competing for a monopoly in the same market sector,
and X1 = +1 means that firm 1 gets control of that sector—for example because
it obtains the single licence available for a telecom market.

Remark 2.2. In the above example, we have processes that jump to zero when
they default. One could also construct analogous examples where the processes
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are continuous and creep down to zero. Our reason for using a jump process is
just that this gives a simpler construction.

Because of its purpose, Example 2.1 cannot be formulated in the classic setup.
However, all the subsequent examples in this section have one asset whose price is
identically 1; this means that they can be realised in the familiar classic setup—
however, we still work with our concepts which are based on undefaultable as
opposed to classic admissible strategies.

Our second example, which is essentially taken from Delbaen and Schacher-
mayer [11], exhibits a model and an explicit strategy which is not maximal. It
also has other properties to which we shall return later.

Example 2.3 (A strategy which is not maximal). Let W = (Wt)t∈[0,T ] be a
Brownian motion with respect to a given filtration (Ft)t∈[0,T ]; this need not be gen-
erated by W . Consider the market S generated by S = (S1, S2) = (1, Xt)t∈[0,T ],
where X is the well-known three-dimensional Bessel process BES3, i.e., the
unique strong solution of the SDE

dXt =
dt

Xt

+ dWt, X0 = s0 > 0. (2.1)

We claim that the buy-and-hold strategy e1 = (1, 0) of the first asset fails to be
weakly (and a fortiori strongly) maximal for U0; in other words, it is not a good
idea in this market to put money into the bank account.

To see this, we first look at the buy-and-hold strategy e2 = (0, 1) of the second
asset. Note that S(e2) = (1/X, 1). Itô’s formula shows that Y := 1/X satisfies
the SDE

dYt = −|Yt|2 dWt, Y0 = 1/s0, (2.2)

and so Y is a local P-martingale. In fact, it is well known that Y is even a strict
local P-martingale; see e.g. Revuz and Yor [69, Proposition VI.3.3 and Exercise
V.2.13]. Due to Theorem 3.1 below, the market S is dynamically viable, and
by Lemma 3.10 below, weak and strong maximality for each Uσ are therefore
equivalent.

In order to establish that e1 is not maximal for U0, we use Theorem VI.2.1.
Since S(e2) = (1/X, 1) = (Y, 1) is a local P-martingale and V (e2)(S(e2)) ≡ 1
is a (true) P-martingale, the numéraire strategy e2 is maximal for U0 by The-
orem VI.2.1 (d). Therefore, by Theorem VI.2.1 (c), it suffices to show that for
every Q ≈ P on FT for which S(e2) is a local Q-martingale, V (e1)(S(e2)) = Y
is a strict local Q-martingale. So let Q ≈ P be such that S(e2) = (Y, 1) is a
local Q-martingale. Then Y still satisfies the SDE (2.2), written for clarity as
dYt = −|Yt|2 dWP

t , so that 〈Y 〉t =
∫ t

0
|Ys|4 ds. Moreover, since Y = 1/X is pos-

itive, we can write WP =
∫
− 1
|Y |2 dY . The latter process is a continuous local

Q-martingale like Y , and it has quadratic variation 〈WP〉t =
∫ t

0
1
|Ys|4 d〈Y 〉s = t,

t ∈ [0, T ]. Hence, by Lévy’s characterisation of Brownian motion, WP is also a
Q-Brownian motionWQ, and so Y has the same distribution under Q as under P.
In particular, Y is also a strict local Q-martingale, and so e1 fails to be maximal
for U0.
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Of course, this example is classic; it is well known that the BES3 process
can be used to construct counterexamples, and the non-maximality of e1 is also
already pointed out in [11, Remark after Corollary 5] (even if maximality there
has a slightly different meaning, as discussed in Remark 1.12). One small but
neat novelty of the present example is that we do not need to assume that the
filtration is generated by W or by X.

Remark 2.4. Although the filtration in Example 2.3 is general, the model is
nevertheless quite special because it is complete for its own filtration. More
precisely, if we denote by (FSt )t∈[0,T ] the (augmented) filtration generated by S (or
equivalently by W or by Y , due to (2.2)), then the local Q-martingale Y = 1/X
has in (FSt )t∈[0,T ] the predictable representation property. We shall see below in
Example 4.3 another natural example which is genuinely incomplete.

For both viability and efficiency, we have introduced a static and a dynamic
version. The next, very simple example shows that the two concepts are different.
It also clarifies where the difference comes from.

Example 2.5 (Static versus dynamic viability/efficiency). Let S be the market
generated by S = (S1, S2) = (1, Xk)k∈{0,1,2} with X given by the following event
tree, where each branch is assumed to have positive probability.

X : 1

1
1/2

3/2

2
3/2

5/2

The key feature of this model is that from time 0 directly to the final time
2 and from every node at time 1 to time 2, the asset price S2 = X can both go
strictly up and down. Hence each such “one-step” model is arbitrage-free, naive
invest-and-keep trading (which precisely corresponds to trading in such a one-step
model) cannot improve the zero strategy, and so S is statically efficient, and a
fortiori statically viable. Note that this is because our invest-and-keep strategies
must always be kept until the end (T = 2 here). However, from time 0 to time
1, X stays the same or goes up; so the one-step model in this sub-tree already
admits arbitrage, then so does the whole model S, and S is not dynamically
viable (and a fortiori not dynamically efficient either). So both for viability and
efficiency, the static version is weaker than the dynamic one.

3 Dual characterisation of nontrivial
bubbly markets

Even though they are mathematically rigorous, the definitions of viability, effi-
ciency and of a bubbly market are economic by nature and intuition. For working
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with them and for proving further results, however, it is more useful to have an
equivalent description in terms of dual objects. Our goal in this section is to
provide such dual characterisations.

3.1 Dual objects in numéraire-independent modelling

To motivate the subsequent definitions, let us first recall the well-known primal
and dual objects in the classic setup of mathematical finance; see Example 1.2.
There one starts with an Rd-valued process X and thinks of this as modelling
the prices of d risky assets, expressed in units of a further asset labelled 0 and
called bank account. Sometimes one also says that the bank account (or asset
0) is used as numéraire. (It is actually rare to find a precise definition of the
term “numéraire”; the expression seems to be viewed as self-explaining.) With
the above notations, primal objects are self-financing strategies, and these can be
parametrised by pairs (v0, ψ) of initial wealths v0 ∈ L0(F0) and Rd-valued pre-
dictable X-integrable processes ψ describing the holdings in the risky assets; see
Remark 1.5. Dual objects are then equivalent local martingale measures (ELMMs)
for X, i.e., probability measures Q equivalent to P on FT , Q ≈ P on FT , such that
X is a local Q-martingale. (We do not need σ-martingales when price processes
are nonnegative.) Finally, the fundamental theorem of asset pricing (FTAP) says
that absence of arbitrage for X under P (in the sense that X satisfies the condi-
tion NFLVR of no free lunch with vanishing risk) is equivalent to the existence
of an ELMM Q ≈ P on FT for X.

In the above classic setup, the very first step is to choose and fix a “nu-
méraire”, namely asset 0 (the “bank account”). All subsequent definitions and
results depend on this, and some concepts even cannot be defined without this.
(A more thorough discussion can be found in Chapter I.) In our more general
setup, all N = d+ 1 assets in S are treated symmetrically and we do not (and do
not want to) choose a priori any particular numéraire. Primal objects are again
self-financing strategies, which are now parametrised by RN -valued predictable
S-integrable processes ϑ which satisfy the self-financing constraint (1.4). But dual
objects, as can be seen in Chapter VI, are now pairs consisting of a numéraire η
and an ELMM Q for the corresponding discounted prices.

To make this precise, we first need a clear (and numéraire-independent) defin-
ition of “numéraire”. This has already been given above in Definition 1.9 where we
have introduced the concept of a numéraire strategy. With that terminology, we
can now precisely describe the dual objects in our numéraire-independent frame-
work. They are pairs (η,Q), where η is a numéraire strategy and Q is an ELMM
for the numéraire representative S(η). To illustrate this, we recall from Chapter
VI the numéraire-independent version of the FTAP in the setup of this chapter;
i.e., for nonnegative (numéraire) markets.

Theorem 3.1. The following are equivalent:

(a) S is dynamically viable.
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(b) S satisfies numéraire-independent no-arbitrage (NINA), i.e., the zero stra-
tegy 0 is strongly maximal for U0.

(c) There exists a pair (η,Q), where η is a numéraire strategy and Q ≈ P on
FT , such that S(η) is a local Q-martingale.

(d) There exist a representative S̄ ∈ S and Q ≈ P on FT such that S̄ is a local
Q-martingale.

Note that in general S(η) or S̄ might fail to be true Q-martingales.

Proof. The equivalence of (b), (c) and (d) follows from the equivalence of (a), (b)
and (d) in Theorem VI.1.10. (a) implies (b) by the Definition 1.13 of dynamic
viability, and that (b) implies (a) is shown below in Corollary 3.9.

Remark 3.2. As mentioned before, we get local martingales and not only σ-
martingales because our prices are nonnegative. For a comparison of the above
result to the classic FTAP, we refer to Chapter VI.

3.2 Contingent claims and superreplication prices

We proceed to recall the notions of contingent claims and superreplication prices
from Chapter II and extend them to the setup of this chapter.

Definition 3.3. An improper contingent claim at time τ ∈ T[0,T ] for the market
S is a map F : S → L

0

+(Fτ ) satisfying the exchange rate consistency condition

F (DS) = DτF (S) P-a.s. for all S ∈ S and D ∈ D. (3.1)

F is called a contingent claim at time τ if it is valued in L0
+(Fτ ), and positive if

it is valued in L0
++(Fτ ).

A contingent claim in our abstract setup is a mapping which assigns to each
semimartingale representative S (corresponding to one particular choice of cur-
rency unit) a payoff F (S) at time τ (in the same unit), which is then just an
Fτ -measurable random variable. The simplest example is the value process Vτ (ϑ)
at time τ of any self-financing strategy ϑ. The property (3.1) here follows directly
from (1.5). The canonical and most general example is obtained as follows: We
fix a random variable g ∈ L0

+(Fτ ), choose a representative S ∈ S and define F
by F (S ′) = F (DS) := Dτg for any S ′ = DS in S. Then g represents a payoff in
the currency units corresponding to S, and we could call F , which is well-defined
due to (3.1), the contingent claim at time τ induced by g with respect to S; see
also Proposition II.5.3.

Remark 3.4. As for the self-financing condition in (1.6), we extend the relation
(3.1) to arbitrary representatives S̃ = D̃S by setting

F (S̃) := D̃τF (S).
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Definition 3.5. Let σ ≤ τ ∈ T[0,T ] be stopping times, Γ a strategy cone on
Jσ, T K and F a contingent claim at time τ . The function Πσ(F |Γ) : S → L

0

+(Fσ)
defined by

Πσ(F |Γ)(S) := ess inf
{
v ∈ L

0

+(Fσ) : there is ϑ ∈ Γ such that on {v <∞},
Vσ(ϑ)(S) ≤ v P-a.s. and Vτ (ϑ)(S) ≥ F (S) P-a.s.

}
is called the superreplication price of F at time σ for Γ.

It is not difficult to check that Πσ(F |Γ) is an improper contingent claim at
time σ. The following result lists some other basic properties. Note that these
are properties of functions on S, and that they are all numéraire-independent in
the (usual) sense that they hold for some S ∈ S if and only if they hold for all
S ′ ∈ S; this is due to the exchange rate consistency property (3.1). The proofs
are straightforward and hence omitted.

Proposition 3.6. Let σ ≤ τ ∈ T[0,T ] be stopping times, Γ a strategy cone on
Jσ, T K and F, F1, F2, G contingent claims at time τ with F ≤ G P-a.s. Let cσ be
a nonnegative Fσ-measurable random variable. Then

Πσ(F |Γ) ≤ Πσ(G |Γ) (monotonicity),
Πσ(cσF |Γ) = cσΠσ(F |Γ) (positive Fσ-homogeneity),

Πσ(F1 + F2 |Γ) ≤ Πσ(F1 |Γ) + Πσ(F2 |Γ) (subadditivity).

Note that positive Fσ-homogeneity implies that Πσ(1AσF |Γ) = 1AσΠσ(F |Γ)
for Aσ ∈ Fσ. In the context of conditional risk measures, this is sometimes called
locality or the local property.

The next auxiliary technical result can be used to approximate superreplica-
tion prices.

Lemma 3.7. Let σ ≤ τ ∈ T[0,T ] be stopping times, Γ a strategy cone on Jσ, T K and
F a contingent claim at time τ with Πσ(F |Γ) <∞ P-a.s. Then for all δ > 0 and
all positive contingent claims C at time σ, there exists a strategy ϑ ∈ Γ satisfying

Vσ(ϑ) ≤ Πσ(F |Γ) + δC P-a.s. and Vτ (ϑ) ≥ F P-a.s. (3.2)

Proof. First, for any positive contingent claim C at time σ, there exists S ′ ∈ S
with C(S ′) = 1 P-a.s. Indeed, set DT := 1/C(S) ∈ L0

++(Fσ) ⊂ L0
++(FT ) (for

some fixed S ∈ S), take Q ≈ P on FT with EQ[DT ] < ∞ and define the ex-
change rate processD as the RCLL version of the Q-martingaleDt = EQ[DT | Ft],
t ∈ [0, T ]. Note that Dσ = EQ[DT | Fσ] = DT P-a.s. since DT is Fσ-measurable.
If we set S ′ = DS, the exchange rate consistency (3.1) for C gives

C(S ′) = C(DS) = DσC(S) = DT
1

DT

= 1 P-a.s.

Now take δ > 0 and note that Πσ(F |Γ) is a contingent claim at time σ and
C(S ′) = 1. So by the exchange rate consistency (3.1), it suffices to show that
there is ϑ ∈ Γ with

Vσ(ϑ)(S ′) ≤ Πσ(F |Γ)(S ′) + δ P-a.s. and Vτ (ϑ)(S ′) ≥ F (S ′) P-a.s. (3.3)
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By assumption, the set

V := {v ∈ L0
+(Fσ) : there is ϑ ∈ Γ with

Vσ(ϑ)(S ′) ≤ v P-a.s. and Vτ (ϑ)(S ′) ≥ F (S ′) P-a.s.}

is nonempty. We claim that it is also closed under taking minima. Indeed,
if v(1), v(2) ∈ V and ϑ(1), ϑ(2) ∈ Γ are such that Vσ(ϑ(i))(S ′) ≤ v(i) P-a.s. and
Vτ (ϑ

(i))(S ′) ≥ F (S ′) P-a.s., then ϑ̂ := ϑ(1)1{v(1)≤v(2)} + ϑ(2)1{v(1)>v(2)} ∈ Γ,
Vσ(ϑ̂)(S ′) ≤ v(1) ∧ v(2) P-a.s. and Vτ (ϑ̂)(S ′) ≥ F (S ′) P-a.s. So there is a nonin-
creasing sequence (vn)n∈N in V with limn→∞ vn = ess inf V = Πσ(F |Γ)(S ′) P-a.s.
If we set Bn := {vn ≤ Πσ(F |Γ)(S ′) + δ}, B0 := ∅ and An := Bn \ Bn−1, then
(An)n∈N is an Fσ-measurable partition of Ω. Let (ϑ(n))n∈N ∈ Γ be such that
Vτ (ϑ

(n))(S ′) ≥ F (S ′) P-a.s. and Vσ(ϑ(n))(S ′) ≤ vn P-a.s. for each n ∈ N. Then
ϑ :=

∑∞
n=1 1Anϑ

(n) is in Γ and satisfies (3.3).

Recall that for σ ∈ T[0,T ] and a strategy cone Γ on Jσ, T K, a strategy ϑ ∈ Γ is
strongly maximal for Γ if there is no random variable f ∈ L0

+(FT )\{0} such that
for all ε > 0, there is a strategy ϑ̄ ∈ Γ with Vσ(ϑ̄)(S) ≤ Vσ(ϑ)(S) + ε P-a.s. and
VT (ϑ̄)(S) ≥ VT (ϑ)(S) + f P-a.s. This can now be reformulated more compactly:
ϑ ∈ Γ is strongly maximal for Γ if and only if there is no nonzero contingent
claim F at time T such that

Πσ

(
VT (ϑ) + F

∣∣Γ) (S) ≤ Vσ(ϑ)(S) P-a.s. (3.4)

The next result shows that superreplication prices for undefaultable strategies
are time-consistent. This exploits that the family of all Uσ is time-consistent; see
Section 1.1.

Proposition 3.8. Let σ1 ≤ σ2 ≤ τ ∈ T[0,T ] be stopping times and F a contingent
claim at time τ with Πσ2(F | Uσ2) <∞ P-a.s. Then

Πσ1(F | Uσ1) = Πσ1

(
Πσ2(F | Uσ2)

∣∣Uσ1

)
P-a.s. (3.5)

Proof. Denote the left- and right-hand sides of (3.5) by L and R, respectively. For
“≤”, it suffices to show the inequality on the set A := {R(S) <∞} ∈ Fσ1 ⊆ Fσ2

for some S ∈ S. By positive Fσi-homogeneity, we may thus replace F by FI{R<∞},
or equivalently assume without loss of generality that R <∞ P-a.s. Analogously,
for proving “≥”, we may assume without loss of generality that L <∞ P-a.s.

“≤”. Fix a numéraire strategy η. Take δ > 0 and denote by Ci the contingent
claim at time σi satisfying Ci(S(η)) = 1, i = 1, 2. In other words, Ci is induced
at time σi by the constant 1 with respect to S(η). By Proposition 3.7, there exist
ϑ(1) ∈ Uσ1 satisfying

Vσ1(ϑ(1)) ≤ R + δC1 P-a.s. and Vσ2(ϑ(1)) ≥ Πσ2(F | Uσ2) P-a.s. (3.6)

and ϑ(2) ∈ Uσ2 satisfying

Vσ2(ϑ(2)) ≤ Πσ2(F | Uσ2) + δC2 P-a.s. and Vτ (ϑ
(2)) ≥ F P-a.s. (3.7)
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By the choice of C2, (3.6) and (3.7),

Vσ2(ϑ(1) + δη)(S(η)) = Vσ2(ϑ(1))(S(η)) + δC2(S(η)) ≥ Vσ2(ϑ(2))(S(η)) P-a.s. (3.8)

Set

ϑ := (ϑ(1) + δη)1Jσ1,σ2K + (ϑ(2) + Vσ2(ϑ(1) + δη − ϑ(2))(S(η))η)1Kσ2,T K.

From (3.8) and the fact that ϑ(i) ∈ Uσi and η ∈ U0 ⊆ Uσi , it is easy to check that
ϑ ∈ Uσ1 . Moreover, the definition of ϑ gives by (3.7), (3.6) and (3.8) that

Vσ1(ϑ) ≤ R + 2δC1 P-a.s. and Vτ (ϑ) ≥ F P-a.s.

Thus Πσ1(F | Uσ1) ≤ R + 2δC1 by the Definition 3.5 of superreplication prices,
and letting δ ↘ 0 yields the claim.

“≥”. Fix δ > 0 and a positive contingent claim C at time σ1. By Proposi-
tion 3.7, there exists ϑ ∈ Uσ1 satisfying

Vσ1(ϑ) ≤ L+ δC P-a.s. and Vτ (ϑ) ≥ F P-a.s.

So the definition of superreplication prices gives first Πσ2(F | Uσ2) ≤ Vσ2(ϑ) P-a.s.
and then

R = Πσ1

(
Πσ2(F | Uσ2)

∣∣Uσ1

)
≤ Vσ1(ϑ) ≤ L+ δC P-a.s.

The claim follows by letting δ ↘ 0.

Proposition 3.8 says that our valuation by superreplication is consistent over
time. This is well known in the classic setup; see for instance Föllmer and Schied
[25, Example 11.2.4] for discrete time or Klöppel and Schweizer [51, Theorem 5.1]
for continuous time. One very useful consequence in our framework is that for
undefaultable strategies, maximality needs only to be tested from time 0, i.e., on
J0, T K.

Corollary 3.9. Let σ1 ≤ σ2 ∈ T[0,T ] be stopping times. If ϑ ∈ Uσ1 is strongly
maximal for Uσ1, it is also strongly maximal for Uσ2. Hence any ϑ ∈ U0 is strongly
maximal for each Uσ, σ ∈ T[0,T ], if and only if it is strongly maximal for U0.

An analogous statement holds for “strong” replaced by “weak”.

Proof. Suppose by way of contradiction that ϑ ∈ Uσ1 ⊆ Uσ2 fails to be strongly
maximal for Uσ2 . Then there exists a nonzero contingent claim F at time T with
Πσ2(VT (ϑ) +F | Uσ2) ≤ Vσ2(ϑ) <∞ P-a.s. Proposition 3.8, monotonicity and the
definition of superreplication prices give

Πσ1

(
VT (ϑ) + F

∣∣Uσ1

)
= Πσ1

(
Πσ2

(
VT (ϑ) + F

∣∣Uσ2

) ∣∣∣Uσ1

)
≤ Πσ1

(
Vσ2(ϑ)

∣∣Uσ1

)
≤ Vσ1(ϑ) P-a.s.,

and so ϑ fails to be strongly maximal for Uσ1 , and we arrive at a contradiction.
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3.3 Dual characterisation of dynamic efficiency

Recall that S is a bubbly market by definition if it is not dynamically efficient,
i.e., if some naive invest-and-keep strategy can be improved (approximately) by
dynamic trading. We want to characterise this via dual objects and martingale
properties, and so we first give a dual characterisation of dynamic efficiency.

In preparation, we need the following useful result already announced in Re-
mark 1.12. It says that under dynamic viability, the notions of weak and strong
maximality for the class U of undefaultable strategies are equivalent. This is a
generalisation of Proposition III.3.19 from an initial trading time 0 to a general
stopping time σ ∈ T[0,T ].

Lemma 3.10. Let S be dynamically viable. Fix σ ∈ T[0,T ]. Then ϑ ∈ Uσ is weakly
maximal for Uσ if and only if it is strongly maximal for Uσ.

Proof. Strong clearly implies weak maximality; so we prove the “only if” part.
Let ϑ ∈ Uσ be weakly maximal.

In a first step, we show that for each ϑ̄ ∈ Uσ with VT (ϑ̄) ≥ VT (ϑ) P-a.s., we
have V (ϑ̄) ≥ V (ϑ) P-a.s. on Jσ, T K, so that ϑ̄− ϑ ∈ Uσ. Indeed, if τ ∈ T[σ,T ] is a
stopping time such that A := {Vτ (ϑ̄) < Vτ (ϑ)} has P[A] > 0, we take a numéraire
strategy η and set

ϑ̂ := ϑ1Jσ,τK +
(
1Acϑ+ 1A

(
ϑ̄+ Vτ (ϑ− ϑ̄)(S(η))η

))
1Kτ,T K.

Then ϑ̂ ∈ Uσ, we have Vσ(ϑ̂) = Vσ(ϑ) P-a.s., and using that VT (ϑ̄) ≥ VT (ϑ) P-a.s.
gives

VT (ϑ̂) = 1AcVT (ϑ) + 1A
(
VT (ϑ̄) + Vτ (ϑ− ϑ̄)(S(η))VT (η)

)
≥ 1AcVT (ϑ) + 1A

(
VT (ϑ) + Vτ (ϑ− ϑ̄)(S(η))VT (η)

)
= VT (ϑ) + 1AVτ (ϑ− ϑ̄)(S(η))VT (η) P-a.s.

Since P[A] > 0 and VT (ϑ̂) > VT (ϑ) on A, this shows that ϑ fails to be weakly
maximal, and we arrive at a contradiction.

We proceed to establish that ϑ is strongly maximal for Uσ. Seeking a contra-
diction, suppose there exists a nonzero contingent claim F at time T satisfying
Πσ(VT (ϑ) + F | Uσ) ≤ Vσ(ϑ) P-a.s. Take δ > 0 and a positive contingent claim C
at time σ. By Proposition 3.7, there is ϑ̄ ∈ Uσ with VT (ϑ̄) ≥ VT (ϑ) + F P-a.s.
and

Vσ(ϑ̄) ≤ Πσ

(
VT (ϑ) + F

∣∣Uσ)+ δC ≤ Vσ(ϑ) + δC P-a.s.

By the first step, ϑ′ := ϑ− ϑ̄ is in Uσ. Moreover, we have VT (ϑ′) ≥ F P-a.s. and
Vσ(ϑ′) ≤ δC P-a.s. so that we get Πσ(F | Uσ) ≤ δC P-a.s. Letting δ ↘ 0 gives
Πσ(F | Uσ) = 0 P-a.s., and so 0 is not strongly maximal for Uσ, in contradiction
to dynamic viability of S.

Our first characterisation of dynamic efficiency now follows by combining two
results from Chapter VI. Recall that due to (1.1), our S is a numéraire market.
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Theorem 3.11. The following are equivalent:

(a) S is dynamically efficient.

(b) For each bounded numéraire strategy η there exists Q ≈ P on FT such that
S(η) is a (true) Q-martingale.

(c) There exists a pair (η,Q), where η is a bounded numéraire strategy and
Q ≈ P on FT , such that S(η) is a (true) Q-martingale.

(d) There exists a representative S̄ ∈ S and Q ≈ P on FT such that S̄ is a
(true) Q-martingale.

Proof. Since S is nonnegative, both the market portfolio ηS = (1, . . . , 1) and the
corresponding representative S(ηS) = S/(

∑N
i=1 S

i) are bounded, as required for
Corollaries VI.2.4 and VI.2.5. Now if we have (a), then ηS is strongly maximal
for U0 and (b) follows from Corollaries VI.2.5, (c) ⇒ (a), and VI.2.4, (a) ⇒ (c).
It is clear that (b) implies (c), and that (c) implies (d).

Suppose we have (d). Fix any stopping time σ ∈ T[0,T ] and any ϑ ∈ hUσ.
As S̄ is a Q-martingale on Jσ, T K, so is V (ϑ)(S̄). If we take any ϑ̄ ∈ Uσ, then
V (ϑ̄)(S̄) is a nonnegative stochastic integral of a Q-martingale and hence a Q-
supermartingale. So if VT (ϑ̄) ≥ VT (ϑ), we get

Vσ(ϑ)(S̄) = EQ[VT (ϑ)(S̄) | Fσ] ≤ EQ[VT (ϑ̄)(S̄) | Fσ] ≤ Vσ(ϑ̄)(S̄),

and this shows that ϑ is weakly maximal for Uσ. But (d) implies by Theorem 3.1
also that S is dynamically viable, and so weak maximality in Uσ is equivalent
to strong maximality in Uσ, by Lemma 3.10. So we get (a) and the proof is
complete.

With the help of the above dual characterisation, we can give some equivalent
primal descriptions of dynamically efficient markets.

Corollary 3.12. The following are equivalent:

(a) S is dynamically efficient.

(b) The market portfolio ηS = (1, . . . , 1) (buy and hold one unit of each asset)
is strongly maximal for U0.

(c) For each i = 1, . . . , N , the strategy ei := (0, . . . , 0, 1, 0, . . . , 0), where the 1 is
at position i, (buy and hold one unit of asset i) is strongly maximal for U0.

(d) For each stopping time σ ∈ T[0,T ], each ϑ ∈ bUσ is strongly maximal for Uσ.

Proof. Because hU ⊆ bU , it is clear that (d) implies (a). Next, (a) trivially
implies (b), which is in turn equivalent to (c) by Corollary VI.2.5. Finally, to
establish (b)⇒ (d), we first show that V (ϑ)(S(ηS)) is a true martingale on Jσ, T K
for each ϑ ∈ bUσ by arguing as in Lemma VI.2.2 and then proceed as in the second
part of the proof of Theorem 3.11, with ϑ ∈ hUσ there replaced by ϑ ∈ bUσ.
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The following characterisation is immediate from Corollary 3.12. It clarifies
precisely what makes a market S a bubbly market.

Corollary 3.13. S is a bubbly market if and only if there exists at least one index
i ∈ {1, . . . , N} such that the buy-and-hold strategy ei of asset i is not strongly
maximal for U0.

In other words, S is a bubbly market if and only if it contains an asset which
is bad (or stupid) enough that its evolution can be beaten by dynamic trading in
the whole market, without running into debt.

If we specialise Corollary 3.13 to the classic setup with S = (1, X), we see
that a bubbly market in our sense can arise in two ways. It may happen that
one of the risky assets in X can be dominated by dynamic trading in the other
risky assets and the bank account; then that asset might be called a bubble. But
it may also happen that the bank account itself can be dominated by trading in
the other (risky assets)—and this would mean that our initial choice of the bank
account as numéraire was rash, because it does not behave well in comparison to
the other assets. Put differently, discounting with such a bank account is maybe
not a good starting point from an economic perspective.

3.4 Dual characterisation of static efficiency

By definition, a nontrivial bubbly market must be statically efficient. So it is
also of interest to characterise static efficiency by dual objects and martingale
properties. Our first result in this section gives such a characterisation, but it is
for most concrete models too complicated to be used in practice. We therefore
provide a second, more tractable description under the additional assumption that
S is statically viable. This combination is almost tailor-made for our applications
because a nontrivial bubbly market must be dynamically (and hence a fortiori
statically) viable.

We first introduce some notation.

Definition 3.14. Let σ ∈ T[0,T ] be a stopping time and η ∈ hUσ an (invest-and-
keep) numéraire strategy. A one-step equivalent martingale measure (EMM) for
S(η) on {σ, T} is a probability measure Q ≈ P on FT with S

(η)
T ∈ L1(Q) and

EQ[S
(η)
T | Fσ] = S

(η)
σ Q-a.s.

In other words, Q is simply an equivalent martingale measure in the classic
sense for the one-period model with G0 = Fσ,G1 = FT and X0 = S

(η)
σ , X1 = S

(η)
T .

We denote below by L(S
(η)
T | Fσ) a regular conditional distribution of S(η)

T given
Fσ, and by ri conv suppµ, for a probability measure µ on RN , the relative interior
of the convex hull of the topological support of µ.

With this, we can formulate a dual characterisation of statically efficient mar-
kets.

Theorem 3.15. The following are equivalent:

(a) S is statically efficient.
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(b) For each stopping time σ ∈ T[0,T ], there exists a pair (η,Q) such that η is a
numéraire strategy in hUσ and Q is a one-step EMM for S(η) on {σ, T}.

(c) For each stopping time σ ∈ T[0,T ], there exists a numéraire strategy η in hUσ
such that S(η)

σ ∈ ri conv suppL(S
(η)
T | Fσ) P-a.s.

Proof. Lemma 6.2 below shows that (a) is equivalent to saying that each ϑ ∈ hLsf
σ

is strongly maximal for hLsf
σ , for each σ ∈ T[0,T ]. The latter is then shown to be

equivalent to (b) as well as to (c) in Lemma 6.1 below.

Theorem 3.15 can be interpreted as follows. Static efficiency means that for
every starting date σ ∈ T[0,T ], the one-period model with trading dates σ and T
must be arbitrage-free. (Note that while the starting time can vary, the end date
is always fixed at T .) From a theoretical point of view, this is very illuminating
and reflects in a natural way the structure of the static efficiency condition. But
since we must verify part (b) or (c) for all stopping times σ, it seems almost
hopeless to use this result in practice.

Our second characterisation below shows that if we already know that our mar-
ket is statically viable, it is enough to look only at deterministic times. This is a
significant improvement if we consider for example markets with diffusion dynam-
ics. There one can first use Theorem 3.1 to check for dynamic viability, because
this implies static viability. For checking Theorem 3.15, in particular its condi-
tion (c), one can then exploit the many known results about transition densities
for diffusion processes—and since these results are only for deterministic times,
it is important that we do not need to check the behaviour at stopping times. An
explicit example to illustrate this procedure can be found in Example 4.2.

Theorem 3.16. Suppose S is statically viable. Then the following are equivalent:

(a) S is statically efficient.

(b) For each deterministic time s ∈ [0, T ], there exists a pair (η,Q) such that
η is a numéraire strategy in hUs(S) and Q is a one-step EMM for S(η) on
{s, T}.

(c) For each deterministic time s ∈ [0, T ], there exists a numéraire strategy η
in hUs(S) such that S(η)

s ∈ ri conv suppL(S
(η)
T | Fs) P-a.s.

Proof. The assumption of static viability of S allows us to use Lemma 6.2 below
and obtain that (a) is equivalent to weak maximality of 0 for hLsf

s , for each
s ∈ [0, T ). By Lemma 6.1 below, with σ := s, the latter is equivalent to (b) as
well as to (c).

In the classic setup, it is well known for finite discrete time and in particular for
one-period models that for absence-of-arbitrage and valuation questions, it does
not matter if one uses all self-financing strategies or only those with nonnegative
wealth; see for instance Elliott and Kopp [18, Section 2.2] or Lamberton and
Lapeyre [53, Lemma 1.2.7]. The next result is a generalisation of this (basically)



3 Dual characterisation of nontrivial bubbly markets 113

one-period property to invest-and-keep strategies in continuous time. The key
ingredient is static efficiency which is equivalent to absence of arbitrage in a
one-period model; see Lemma 1.18 and note that dynamic and static efficiency
coincide for one-period models.

Lemma 3.17. Suppose S is statically efficient and let σ ∈ T[0,T ] be a stopping
time.

(a) If ϑ ∈ hLsf
σ satisfies VT (ϑ) ≥ 0 P-a.s., then ϑ ∈ hUσ: An invest-and-keep

strategy with nonnegative final wealth has nonnegative wealth over its entire
lifetime.

(b) If F is a contingent claim at time T , then

Πσ(F |hUσ) = Πσ(F |hLsf
σ ) P-a.s. (3.9)

If moreover Πσ(F |hUσ) <∞ P-a.s., there exists a strategy ϑ ∈ hUσ with

VT (ϑ) ≥ F P-a.s. and Vσ(ϑ) = Πσ(F |hUσ) P-a.s.:

Valuation with undefaultable or with arbitrary self-financing invest-and-keep
strategies yields the same result; and if the result from superreplication is
finite, the essential infimum from the definition is attained as a minimum.

Proof. (a) is shown in Lemma 6.2 below. For (b), the inequality “≥” in (3.9)
is clear since hUσ ⊆ hLsf

σ . For “≤”, we may assume without loss of generality
that the right-hand side is finite P-a.s.; this is argued as in the proof of Proposi-
tion 3.8 via positive Fσ-homogeneity. From static efficiency, Theorem 3.15 gives
the existence of a one-step EMM for S(η) on {σ, T}, for some numéraire strategy
η ∈ hUσ ⊆ hLsf

σ , and so Lemma 6.1 below yields the existence of some ϑ ∈ hLsf
σ

with
VT (ϑ) ≥ F ≥ 0 P-a.s. and Vσ(ϑ) = Πσ(F |hLsf

σ ) P-a.s.

But now ϑ ∈ hUσ by part (a), and so Πσ(F |hUσ) ≤ Vσ(ϑ) P-a.s. yields “≤” in
(3.9).

3.5 No dominance

It is folklore in mathematical finance that for simple risk-neutral valuation res-
ults, one needs something extra in addition to absence of arbitrage. Like many
important insights, this can be traced back to work of R. Merton who introduced
for this purpose the notion of “no dominance”. In Merton’s words [62], “security
(portfolio) A is dominant over security (portfolio) B, if on some known date in
the future, the return on A will exceed the return on B for some possible states
of the world, and will be at least as large as on B, in all possible states of the
world”, and “a necessary condition for a rational option pricing theory is that the
option be priced such that it is neither a dominant nor a dominated security”.

The above formulation is intuitive, but not very precise. It does not tell us
exactly what a “security” or a “portfolio” is, and it also does not tell us exactly
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what “the return” is. Subsequent papers have therefore developed different math-
ematical formulations for the idea; the key difference lies precisely in the above
two terms.

The works of Protter and co-authors [40, 41, 67] incorporate “return” by the
assumption that each financial product (including basic assets and dynamic trad-
ing strategies) has a market price at each time. It is not explained in detail where
market values come from; results are obtained by imposing certain structural as-
sumptions on market prices, including “no dominance”. In contrast, Jarrow and
Larsson [39] only talk about basic assets and compute the “return” from the value
processes of self-financing strategies. This is more specific than the approach in
[40, 41, 67], but it also gives in our view potentially sharper results with weaker
assumptions on the underlying market. In particular, one can try to impose “no
dominance” only on basic assets and then try to deduce analogous properties for
suitable valuations applied to complex assets, portfolios or derivatives. We there-
fore follow [39] in spirit when we introduce our numéraire-independent versions
of no dominance.

Definition 3.18. The market S is said to satisfy

• static no dominance (static ND) if the market portfolio ηS = (1, . . . , 1) is
weakly maximal for hUσ, for each σ ∈ T[0,T ].

• dynamic no dominance (dynamic ND) if the market portfolio ηS is weakly
maximal for Uσ, for each σ ∈ T[0,T ].

Due to Corollary 3.9, dynamic ND is equivalent to requiring that the mar-
ket portfolio ηS is weakly maximal for U0. Moreover, one can show that ηS is
weakly maximal for U0 if and only if for i = 1, . . . , N , the buy-and-hold strategies
ei = (0, . . . , 0, 1, 0, . . . , 0) of each basic asset i are weakly maximal for U0. In fact,
the “only if” part is clear since any improvement of an ei will also improve ηS , and
the “if” part follows from Corollary III.3.10, where it is shown that the weakly
maximal strategies in U0 form a convex cone. This shows that our definition of
dynamic ND is very close in spirit to the concept of no dominance used in [39].
On the other hand, the concept of static ND seems to be new. It is more delicate
to analyse; we mention for example that static ND is not equivalent to weak
maximality of ηS (or of ei, for i = 1, . . . , N) for hU0. This can be easily seen if we
take Example 2.5 and modify it slightly so that the two possible values of S2

1 at
time 1 are no longer 2 and 1, but 2 and 3/2. We leave the details to the reader.

Our next result connects the notions introduced so far. It shows that no dom-
inance is precisely the extra ingredient that distinguishes efficiency from viability.

Proposition 3.19. The market S is statically/dynamically efficient if and only
if it is statically/dynamically viable and satisfies static/dynamic ND.

Proof. Static/dynamic efficiency trivially implies static/dynamic viability and
yields that ηS is strongly (and a fortiori weakly) maximal for hUσ/Uσ, for each
σ ∈ T[0,T ].
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For the converse direction, we first consider the static case. By Lemma 6.2,
it suffices to show that under static ND, 0 is weakly maximal for hLsf

σ , for each
σ ∈ T[0,T ]. Suppose to the contrary that there are σ ∈ T[0,T ] and ϑ ∈ hLsf

σ with

Vσ(ϑ) ≤ 0 P-a.s., VT (ϑ) ≥ 0 P-a.s. and P[VT (ϑ) > 0] > 0.

Then cσ := 1/(1 +
∑N

i=1 |ϑiσ|) is in L0
++(Fσ), and ϑ̄ := cσϑ + ηS is in hUσ and

satisfies

Vσ(ϑ̄) ≤ Vσ(ηS) P-a.s., VT (ϑ̄) ≥ VT (ηS) P-a.s. and P[VT (ϑ̄) > VT (ηS)] > 0.

Thus ηS fails to be weakly maximal for hUσ, in contradiction to static ND.
For the dynamic case, we know from Lemma 3.10 that under dynamic viability,

weak is equivalent to strong maximality of ηS for U0. So dynamic efficiency follows
from Corollary 3.12.

Remark 3.20. If we look a bit more carefully at the proof of Proposition 3.19,
we see that we have actually proved that static efficiency and static ND are
equivalent.

One of the main results on no dominance in the classic setup is that it is
the extra strengthening of “absence of arbitrage” that is required to obtain the
existence not only of an equivalent local (or σ-)martingale measure, but of a true
martingale measure; see Theorem 3.2 of [39]. Our next result shows that this
connection also holds in our numéraire-independent framework.

Corollary 3.21. The following are equivalent:

(a) S satisfies NINA and dynamic ND.

(b) There exists a pair (η,Q), where η is a bounded numéraire strategy and
Q ≈ P on FT is such that the V (η)-discounted price process S(η) = S

V (η)(S)

is a Q-martingale.

Proof. By Theorem 3.1, NINA or strong maximality of 0 in U0 is equivalent to
dynamic viability of S. Together with dynamic ND, this is by Proposition 3.19
equivalent to dynamic efficiency of S, and this in turn is equivalent to (b) by
Theorem 3.11.

3.6 Bubbly markets and strict local martingales

In this section, we derive the promised connections between nontrivial bubbly
markets and strict local martingales. A large part of the literature on bubbles in
financial markets starts, in the classic setup of Example 1.2, with the assumption
that the discounted price process X is a strict local martingale (sometimes under
P itself, sometimes under a chosen risk-neutral or valuation measure Q). In
distinct contrast, we show here that our definition of a nontrivial bubbly market
leads to the conclusion that we must have strict local martingale properties.
Moreover, this result is robust in the sense that we have it simultaneously under
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all possible valuation measures Q—it cannot happen that we “see” a bubble under
one measure and no bubble under another. In other words, our definition of a
nontrivial bubbly market does not depend on the a priori choice of a valuation or
risk-neutral or martingale measure Q. This is in marked contrast to the approach
of Protter et al. [40, 41, 67]; see also Section 5. To obtain these connections, we
combine our results so far with a result from Chaper VI.

Theorem 3.22. Suppose S is a nontrivial bubbly market. Then

(a) There exist a numéraire strategy η and Q ≈ P on FT such that S(η) is a
local Q-martingale; and for any such pair (η,Q), the process S(η) is a strict
local Q-martingale.

(b) There exists S̄ ∈ S and Q ≈ P on FT such that S̄ is a local Q-martingale;
and for any such pair (S̄,Q), the process S̄ is a strict local Q-martingale.

Proof. Because S is dynamically viable, the existence of (η,Q) as in (a) and (S̄,Q)
as in (b) follows from Theorem 3.1. Because S is not dynamically efficient, we
know from Corollary 3.12 that the market portfolio ηS = (1, . . . , 1) is not strongly
maximal for U0, and so Corollary VI.2.5 implies that there cannot be a pair (S̄,Q)
with S̄ ∈ S, Q ≈ P on FT and S̄ a true Q-martingale. This gives the second part
of (b), and with S̄ := S(η) also the second part of (a).

Note that we are in a market with N > 1 traded primary assets. Saying that
a representative S̄, which is an RN -valued process, is a strict local Q-martingale
means that there is at least one coordinate S̄i with i ∈ {1, . . . , N} which has the
local, but not the true Q-martingale property. This reflects Corollary 3.12 which
says that the market fails to be dynamically efficient if and only if at least one
of the buy-and-hold strategies ei = (0, . . . , 0, 1, 0, . . . , 0) is not strongly maximal
for U0.

Remark 3.23. It follows immediately from Theorems 3.1 and 3.11 that (a) or (b)
in Theorem 3.22 are equivalent to S being a dynamically viable bubbly market.
What is still missing for a nontrivial bubbly market, however, is static efficiency.
So not every market satisfying (a) or (b) in Theorem 3.22 is a nontrivial bubbly
market.

4 Further examples

Our next goal is to relate viability and efficiency. We know from the definitions
that efficiency implies viability, and we have shown in Lemmas 1.18 and 1.19 that
the converse is also true for a market in finite discrete time.

The next example illustrates how the picture changes if we go to continuous
time. We first keep the model simple but abstract, so that one easily sees which
basic properties drive its behaviour, and then give concrete examples of such
models.
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Example 4.1 (Dynamic viability and static/dynamic efficiency). Consider the
market S generated by S = (S1, S2) = (X, 1), where X is a strict local P-
martingale. (So in these units, the bank account is asset 2, for a change.) We
also suppose that S is complete (which means that X has the predictable repres-
entation property in the filtration (Ft)t∈[0,T ] we work with). We claim that S is
dynamically viable, but not dynamically efficient.

To see this, note first that dynamic viability follows directly from Theorem 3.1
when we choose for η the buy-and-hold strategy e2 = (0, 1) of the second as-
set. Next, completeness and continuity of X imply that the only P-martingales
strongly P-orthogonal to X are constants, since F0 is P-trivial. Thus the density
process Z of any ELMM Q for X must be constant, hence 1, so that Q ≡ P.
So because X is a strict local P-martingale, there cannot be any Q ≈ P which
makes X a true Q-martingale, and since this means that (c) in Theorem 3.11
with η = e2 fails, we conclude that S is not dynamically efficient. In particular,
S is a bubbly market.

For S to be a nontrivial bubbly market, since we already know that it is
dynamically viable, we only need to show that it is addition statically efficient.
By Theorem 3.16, this is the case if and only if

Xs ∈ ri conv suppL(XT | Fs) P-a.s. for each s ∈ [0, T ), (4.1)

where suppL(S1
T | Fs) is the (ω-dependent) support of the regular conditional

distribution of XT given Fs, conv denotes the convex hull, and ri the relative
interior.

Example 4.2 (Complete nontrivial bubbly markets). For a concrete example of
a strict local P-martingale which has the predictable representation property, we
can go back to Example 2.3 where S = (1, X) and X is under P a BES3 process.
The representative S(e2) = (1/X, 1) := (Y, 1) is then of the form that we want.
More generally, we could assume that Y is a constant elasticity of variance (CEV)
process, i.e., satisfies the SDE

dYt = σ|Yt|β dWP
t , Y0 = y0 > 0, (4.2)

with σ > 0 and β > 1. It is well known that the SDE (4.2) has a unique
strong solution Y which is a positive continuous strict local P-martingale; see
[55, Section 9.8] for a detailed discussion of the CEV model.1 As in Example 2.3
and Remark 2.4, one can also see that the CEV process has the predictable
representation property for its own filtration (which can equivalently be generated
byWP). Note that the BES3 process in (2.2) is obtained as the special case where
β = 2 and σ = 1.

If we want to check for the above examples the relative interior condition (4.1),
we can use the transition densities f(T, y; s, x) for the conditional distribution at

1It seems to be difficult to find an exact single reference, where it is rigorously shown that the
SDE (4.2) has a unique strong solution and that this solution is a strict local P-martingale. But
of course this follows easily from the general theory of one-dimensional SDEs and the explicit
transition density computed by Emanuel and MacBeth [19, Equation (7)].
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time T , given that we are in x at time s. The explicit formula for the CEV model
can be found for instance in Emanuel and MacBeth [19, Equation (7)]. One can
see from that expression that L(YT |Ys) has all of (0,∞) as its support; so (4.1)
is clearly satisfied and hence S is statically efficient.

We note in passing that Emanuel and MacBeth [19] also say implicitly that
Y is a strict local P-martingale—they mention that computing the mean of the
transition density yields EP[YT |Yt] 6= Yt.

In summary, we see from this example that both the CEV process in (4.2)
and the BES3 process in (2.2) lead to a nontrivial bubbly market.

The preceding example is set in a complete financial markets. The next ex-
ample provides a situation where we have a genuinely incomplete market, and we
comment after the example why this is new and of interest.

Example 4.3 (An incomplete nontrivial bubbly market). Consider two independ-
ent P-Brownian motions WP = (WP

t )t∈[0,T ] and B = (Bt)t∈[0,T ] with respect to a
given filtration (Ft)t∈[0,T ]; the latter need not be generated by WP and B. Let
S be the market generated by S = (S1, S2) = (Xt, 1)t∈[0,T ], where X satisfies the
SDE

dXt = Vt|Xt|β dWP
t , X0 = x0 > 0. (4.3)

Here β > 1 is a constant and the volatility V = (Vt)t∈[0,T ] is stochastic and
satisfies the SDE

dVt = α(Vt − σ)(Vt − σ) dBt, V0 = v0 ∈ (σ, σ), (4.4)

for some constants α > 0 and σ > σ > 0. The SDE (4.3) can be interpreted
as a CEV model (see Example 4.2) with stochastic volatility V and elasticity of
variance β > 1. It is not difficult to check that (4.4) has a unique strong solution
satisfying σ < V < σ P-a.s.; see e.g. Rady [68, Section 3]. We point out that
the exact form of the volatility process V is not important for the argument that
follows; we only use that V is a continuous (Ft)-adapted strong Markov process
that is uniformly bounded from above and below by positive constants.

We proceed to argue that (4.3) has a unique strong solution. More precisely,
we show a more general result, which will be used for other purposes as well: Let
Q ≈ P on FT be such that WP is a Q-Brownian motion (on [0, T ]). Then (4.3)
has a unique strong solution X satisfying EQ[Xt] < x0, t ∈ (0, T ], i.e., X is a
strict local Q-martingale. Moreover, there exists ε ∈ (0, T ] which depends on x0,
but not on v0, such that

EQ[Xε] >
x0

2
. (4.5)

Let us argue the above claims, using Protter [66, Chapter V] as reference.
Uniqueness of a solution to (4.3) under Q (up to a possible explosion time) holds
because the function f : R+ × Ω × R+ → R given by f(t, ω, x) := Vt(ω)|x|β is
uniformly in t locally random Lipschitz in x, i.e., for each n ∈ N, there exists a
finite random variableKn such that supt∈[0,T ] |f(t, ω, x)−f(t, ω, x|) ≤ Kn(ω)|x−y|
for all x, y ∈ [0, n]. To establish existence of a solution to (4.3) under Q and to
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prove the remaining assertions, we use a time-change argument reducing (4.3)
to the SDE of the standard CEV model. To simplify the presentation, we may
assume that after possibly enlarging the original probability space, there exists
a Q-Brownian motion WQ = (WQ

t )t≥0 such that (WQ
t )t∈[0,T ] = WP. Define the

filtration (F̃t)t≥0 by F̃t = Ft∧T ∨ σ(WQ
s ; s ≤ t) ∨ N , where N are the Q-nullsets

in FT ∨ σ(WQ
s ; s ≥ 0). Then the process Ṽ = (Ṽt)t≥0 defined by Ṽt = Vt∧T is a

continuous (F̃t)-adapted process which satisfies (Ṽt)t∈[0,T ] = V and takes values
in (σ, σ) Q-a.s. We are going to construct a strong solution on [0,∞) of the SDE

dX̃t = Ṽt|X̃t|β dWQ
t , X̃0 = x0 > 0, (4.6)

and it is clear that X = (Xt)t∈[0,T ] defined by Xt = X̃t for t ∈ [0, T ] is then a
strong solution to (4.3).

Define the process M̃ = (M̃t)t≥0 by M̃t =
∫ t

0
Ṽs dWQ

s and the process (Λt)t≥0

by Λt =
∫ t

0
|Ṽs|2 ds. Then M̃ is under Q a continuous local (F̃t)-martingale null

at 0, and Λ has Q-a.s. continuous trajectories, is null at 0, strictly increasing, and
satisfies Q-a.s.

σ2t > Λt > σ2t for t ≥ 0. (4.7)

Define the process τ = (τt)t≥0 by τt = inf{s ≥ 0 : Λs ≥ t}. Then τ is an increas-
ing continuous time change for the filtration (F̃t)t≥0. Define the time-changed
filtration (F̂t)t≥0 by F̂t := F̃τt and the time-changed process Ŵ = (Ŵt)t≥0

by Ŵt := M̃τt . Then Ŵ is under Q a continuous local (F̂t)-martingale with
〈Ŵ 〉t = 〈M̃〉τt = Λτt = t Q-a.s. and therefore a Q-Brownian motion for the filtra-
tion (F̂t)t≥0 by Lévy’s characterisation of Brownian motion. In the time-changed
filtration, consider the SDE for the standard CEV model,

dX̂t = |X̂t|β dŴt, X̂0 = x0 > 0. (4.8)

This SDE has a unique strong solution X̂ which is a positive continuous strict local
Q-martingale (cf. Example 4.2). Moreover, it follows from the explicit formula
for the transition density that limt↘0EQ[X̂t] = x0; see [19, Equation (7)]. Define
the process (X̃t)t∈[0,T ] by X̃t = X̂Λt , and note that M̃t = ŴΛt , t ≥ 0. Then
(X̃t)t∈[0,T ] is a positive continuous local Q-martingale for the filtration (F̃t)t∈[0,T ]

and plugging in the definitions and using (4.8) shows that X̃ satisfies the SDE

dX̃t = |X̃t|β dM̃t = Ṽt|X̃t|β dWQ
t , X̃0 = x0.

Moreover, X̃ is under Q a positive (F̃t)-supermartingale by Fatou’s lemma, and
so by (4.7) and the properties of X̂,

EQ[X̃t] = EQ[X̂Λt ] ≤ EQ[X̂σ2t] < x0.

By the same argument, EQ[X̃t] ≥ EQ[X̂σ2t], and since the right-hand side does
not depend on v0, this together with limt↘0EQ[X̂t] = x0 establishes (4.5).

Next, we show that S is dynamically viable but fails to be dynamically effi-
cient. To this end, note that S = S(e2) and X = V (e1)(S(e2)), where e1 = (1, 0)
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and e2 = (0, 1) are the buy-and-hold strategies of the first and second asset. By
the above result for Q = P, X = V (e1)(S(e2)) is a local P-martingale and so S
is dynamically viable by Theorem 3.1. To establish that S is not dynamically
efficient, by Theorem 3.1, it suffices to show that there is no Q ≈ P on FT such
that X = V (e1)(S(e2)) is a (true) Q-martingale. But if X is a local Q-martingale
under Q ≈ P on FT , then WP =

∫
V −1|X|−β dX, by (4.3) and strict posit-

ivity of X and V , is a continuous local Q-martingale with quadratic variation
〈WP〉t =

∫ t
0
V −2
s |Xs|−2β d〈X〉s = t, t ∈ [0, T ], and so WP is also a Q-Brownian

motion. Again by the above result, X is therefore a strict local Q-martingale. So
S is not dynamically efficient.

Finally, we show that S is statically efficient, which together with the above
yields that S is a nontrivial bubbly market. We already know that S is dy-
namically viable, and for each s ∈ [0, T ), e2 is a numéraire strategy in hUs and
S = S(e2). By Theorem 3.16, it is thus enough to find some Q ≈ P on FT such
that Q is a one-step EMM for S(η) on {s, T}, i.e., EQ[XT | Fs] = Xs Q-a.s., and for
that, it even suffices to show P[XT > Xs | Fs] > 0 P-a.s. and P[XT < Xs | Fs] > 0
P-a.s. Now the pair (S, V ) is a strong Markov process for the filtration (Ft)t∈[0,T ];
so it suffices to show Px,v[XT−s > x] > 0 and Px,v[XT−s < x] > 0 for all x > 0
and v ∈ (σ, σ), where we write Px,v for the distribution of the solution (X, V ) of
(4.3) and (4.4) with initial value (x, v).

To make the presentation more transparent, we work from now on without
loss of generality on the canonical space and denote by (S, V ) the canonical
Markov process and by ϑ the shift operator. Fix x > 0 and v ∈ (σ, σ). Then
Ex,v[XT−s] < x by the above general result, and so Px,v[XT−s < x] > 0. For the
other inequality, choose ε ∈ (0, T − s) small enough that E2x,ṽ[Xε] > x for all
ṽ ∈ (σ, σ); see (4.5). Define the stopping times τ ↑x := inf{t ≥ 0 : Xt ≥ x} and
τ ↓x := inf{t ≥ 0 : Xt ≤ x}. We claim that Px̃,ṽ[τ ↑2x < ε] > 0 for x̃ > 0, ṽ ∈ (σ, σ)
and P2x,ṽ[τ

↓
x > ε] > 0 for ṽ ∈ (σ, σ). The first claim follows immediately from the

fact thatX is a strict local Px̃,ṽ-martingale on [0, ε] and hence cannot be uniformly
bounded. The second claim holds because if we had P2x,ṽ[τ

↓
x ≤ ε] = 1 for some

ṽ ∈ (σ, σ), then the choice of ε and the supermartingale property of X under P2x,ṽ

would yield a contradiction via x < E2x,ṽ[Xε] ≤ E2x,ṽ[Xτ↓x
] = E2x,ṽ[x] = x. Note

also that Px,ṽ[XT−s−ε ≤ x] > 0 for ṽ ∈ (σ, σ) by the fact that Ex,ṽ[XT−s−ε] < x.
Combining everything then yields

Px,v[XT−s > x] ≥ Ex,v
[
1{Xε◦ϑT−s−ε>x}1{XT−s−ε≤x}

]
= Ex,v

[
EXT−s−ε,VT−s−ε

[
1{Xε>x}

]
1{XT−s−ε≤x}

]
≥ Ex,v

[
EXT−s−ε,VT−s−ε

[
1{Xε>x}1{τ↑2x<ε}

]
1{XT−s−ε≤x}

]
≥ Ex,v

[
EXT−s−ε,VT−s−ε

[
1{( inf

0≤u≤ε
Xu)◦ϑ

τ
↑
2x

>x}1{τ↑2x<ε}

]
1{XT−s−ε≤x}

]
(4.9)

= Ex,v

[
EXT−s−ε,VT−s−ε

[
E2x,V

τ
↑
2x

[
1{ inf

0≤u≤ε
Xu>x}

]
1{τ↑2x<ε}

]
1{XT−s−ε≤x}

]
= Ex,v

[
EXT−s−ε,VT−s−ε

[
E2x,V

τ
↑
2x

[
1{τ↓x>ε}

]
1{τ↑2x<ε}

]
1{XT−s−ε≤x}

]
> 0,
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where we use at the start a trivial inclusion, the Markov property, another trivial
inclusion, and after (4.9) the strong Markov property and the definition of τ ↓x , and
finally that P2x,ṽ[τ

↓
x > ε] > 0 for ṽ ∈ (σ, σ), Px̃,ṽ[τ ↑2x < ε] > 0 for x̃ > 0, ṽ ∈ (σ, σ)

and Px,v[XT−s−ε ≤ x] > 0. For (4.9), we use that if after time τ ↑2x < ε, we stay
above x for at least ε units of time, then we must be above x at time ε. This
ends the example.

Example 4.3 is of interest for several reasons. First of all, it is a CEV model
with stochastic volatility and therefore quite realistic from a practical perspective.
In fact, if we replace the volatility process V from the SDE (4.4) by a geometric
Brownian motion, we get the well-known SABR model (see [29]). Next, because
X = S1 is a strict local P-martingale, we have a bubble model in the sense of
Loewenstein and Willard [57], Protter et al. [40, 41, 67] or Cox and Hobson [8],
among others; see Section 5. However, we actually have more. In the usual
approaches to bubble modelling in incomplete markets (e.g. [41, 67]), one fixes
an ELMM or risk-neutral measure Q and assumes that the asset price is under
Q a strict local martingale. This should more accurately be called a Q-bubble,
because there might well be another ELMM Q′ under which the asset price is
a true martingale, and so the above notion of a bubble possibly depends in a
crucial way on the choice of the risk-neutral measure one works with. For a more
thorough discussion of that issue, we refer to Section 5. In Example 4.3, this
issue does not arise at all. We have a nontrivial bubbly market, and this means
by Theorem 3.22 that for all possible representatives S ∈ S and all ELMMs
Q, we always have for S under Q a strict local martingale. In other words,
Example 4.3 gives us a market for a bubble which is robust with regard to the
choice of the ELMM one wants to work with. This can also be seen from the
above arguments—we show that whenever we have (4.3) and (4.4) under some
Q ≈ P on FT , we have for X a strict local Q-martingale. Apart from Jarrow and
Larsson [39, Theorem 5.7], such a robust bubble model has not been presented
in the literature so far. (We also point out that in [39, Theorem 5.7] it is not
checked that we have strict local Q-martingales on (any) finite time horizon.)
Last but not least, the market in Example 4.3 is statically efficient and so naive
invest-and-keep trading is still optimal in its own class. Even though this is not
discussed in this chapter, we remark that this property is crucial when studying
economically consistent valuation of contingent claims.

Example 4.3 gives an incomplete market model which is a nontrivial bubbly
market and therefore robust in the sense that the asset price is a strict local
martingale under every ELMM Q. However, it can also happen that we have for
S under some ELMM Q a strict local martingale, but under another ELMM Q′

a true martingale. The next example gives a concrete model where this happens.
Of course, by Theorem 3.22, the market generated by this model is then not
(nontrivial) bubbly in our sense.

Example 4.4 (A Q-bubble which is not a Q′-bubble). Take two Q-Brownian
motions W 1 = (W 1

t )t∈[0,T ] and W 2 = (W 2
t )t∈[0,T ] with respect to a given filtration

(Ft)t∈[0,T ]; this need not be generated by (W 1,W 2). We assume that W 1 and
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W 2 are positively but not perfectly correlated: there exists a constant λ ∈ (0, 1)
such that d〈W 1,W 2〉t = λ dt (we use ρ for something else below). Consider the
market S generated by the process S = (S1, S2) = (1, Xt)t∈[0,T ], where X satisfies
the SDE, for some constant ξ > 0,

dXt = ξXtVt dW 1
t , X0 = x0 > 0. (4.10)

The volatility process V = (Vt)t∈[0,T ] is itself stochastic and satisfies the SDE

dVt = bVt dW 2
t , V0 = 1, (4.11)

for some constant b > 0. It is clear that (4.11) and (4.10) have unique strong
solutions V and X, and we claim that X is a strict local Q-martingale on [0, T ]
and that there exists a probability measure Q′ ≈ Q on FT such that X is a true
Q′-martingale.

To prove this, we use the results of Sin [76]. Setting a := (bλ, b
√

1− λ2),
σ := (ξ, 0) and ρ = 0, we are exactly in the setup of [76, Theorems 3.3 and
3.9] with α = 1. Note that a · σ = ξbλ > 0, and a, σ are not parallel. So we
immediately get the existence of Q′ (called Qa in [76, Theorem 3.9]). However,
to show that X is a strict local Q-martingale on [0, T ], we cannot directly rely on
[76, Theorem 3.3], since a strict local martingale on [0,∞) might still be a true
martingale on a given finite interval. But S2 is a positive local Q-martingale,
hence a Q-supermartingale, and so it suffices to show that E[XT ] < x0. For that,
by [76, Lemma 4.2], it is enough to show that Q[τ̂ < T ] > 0, where τ̂ is the
explosion time of the SDE

dV̂t = bV̂t dŴt + bξλV̂ 2
t dt, V̂0 = 1, (4.12)

with a generic Q-Brownian motion Ŵ = (Ŵt)t≥0. For the rest of the example,
denote by V̂ the canonical process on the path space C([0,∞); (0,∞) ∪ {∆}),
where ∆ is an absorbing cemetery state, by Pv the distribution on the path space
of the solution of (4.12) with initial value v > 0, and by ϑ the shift operator. It
follows from [76, Lemma 4.3] that under each Pv, V̂ explodes in finite time with
positive probability, and is valued in (0,∞) before explosion (the argument in [76]
does not depend on the initial value v). With Tv := inf{T ≥ 0 : Pv[τ̂ < T ] > 0}
for v > 0, this means that Tv < ∞. We claim that in fact Tv = 0 for all v > 0,
and this will complete the proof, because we then have Pv[τ̂ < T ] > 0 for all
T > 0, as desired.

We first establish that v 7→ Tv is decreasing. Suppose to the contrary that
Tv1 < Tv2 for 0 < v1 < v2. Then there is ε ∈ (0, Tv2−Tv1) with Pv1 [τ̂ < Tv1 +ε] > 0
and Pv2 [τ̂ < Tv1 + ε] = 0. With τ ↑y := inf{t ≥ 0 : V̂t ≥ y}, we can then use
τ̂ = τ̂ ◦ ϑτ↑v2 and the strong Markov property to obtain that

0 < Pv1 [τ̂ < Tv1 + ε] = Pv1

[
τ̂ ◦ ϑτ↑v2 < Tv1 + ε

]
= Ev1

[
Pv2 [τ̂ < Tv1 + ε]

]
= 0,

which is a contradiction. So Tv is decreasing in v and T∞ := limv→∞ Tv exists in
[0,∞). If T∞ > 0, then there is ε > 0 such that Pv[τ̂ ≤ ε] = 0 for all v ∈ (0,∞).
Then the Markov property gives for all v ∈ (0,∞) that

Pv[τ̂ ≤ 2ε] = Pv[τ̂ ≤ 2ε, τ̂ > ε] = Pv[τ̂ ◦ ϑε ≤ 2ε] = Ev
[
PV̂ε [τ̂ ≤ ε]

]
= 0.
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Iterating this argument yields Pv[τ̂ ≤ nε] = 0 for all n ∈ N, v ∈ (0,∞), and we
arrive at a contradiction. So T∞ = 0. Finally, we show that Tv = 0 for all v > 0.
If this fails, there exists v0 ∈ (0,∞) such that Tv0 > 0, and then there exists
ε > 0 such that Pv0 [τ̂ ≤ 2ε] = 0. Using that v 7→ Tv is decreasing and T∞ = 0,
pick v1 > v0 large enough that Tv1 < ε; then Pv[τ̂ ≤ ε] > 0 for all v ≥ v1 since Tv
is decreasing in v. Because bξλ > 0, a standard comparison argument for SDEs
(see e.g. [44, Theorem 23.5]) yields V̂ ≥ Ṽ Pv0-a.s., where Ṽ = v0E(bŴ ) satisfies
dṼt = bṼt dŴt, and so Pv0 [V̂ε ≥ v1] ≥ Pv0 [Ṽε ≥ v1] > 0 since Ṽε has a lognormal
distribution. Using the Markov property then gives the contradiction

0 = Pv0 [τ̂ ≤ 2ε] ≥ Pv0 [τ̂ ≤ 2ε, V̂ε ≥ v1, τ̂ > ε] = Pv0 [τ̂ ◦ ϑε ≤ ε, V̂ε ≥ v1]

= Ev0

[
EVε [τ̂ ≤ ε]1{Vε≥v1}

]
> 0.

So we have Tv = 0 for all v > 0, and X is a strict local Q-martingale on [0, T ],
for each T > 0. This ends the example.

5 Comparison to the literature

In this section, we point out some connections of our work to the existing liter-
ature.

5.1 General comments and framework

The literature on bubbles is vast, and it is impossible to survey this here, even only
approximately. The Encyclopedia of Quantitative Finance [43] has for example
a 15-page entry “Bubbles and crashes”, with a list of more than 100 references.
A recent survey article by Scherbina and Schlusche [72] puts more emphasis on
behavioural models and rational models with frictions, and also provides a brief
overview on the history of bubbles. The books of Brunnermeier [6] or Shiller [75]
are often quoted as early classics; and the recent paper by Protter [67] entitled
“A mathematical theory of financial bubbles” also contains around 160 references
plus some discussions of literature.

Our aim in this section is much more modest. We try to compare our defin-
itions and results to some seminal recent papers from the mathematical finance
body of the literature. To that end, it is helpful to first provide a unified frame-
work within which different approaches can be analysed.

In discussions with economists or in the financial economics literature, the
standard description of a bubble says that this is (or is linked to) an asset whose
market value exceeds (or differs from) its fundamental value. To make this more
formal, we fix a time horizon T > 0 and a filtered probability space (Ω,F ,F, P )
with F = (Ft)t∈[0,T ] and describe a dividend-paying asset (D,S) by its cumulative
dividend process D = (Dt)t∈[0,T ] and its ex-dividend price process S = (St)t∈[0,T ],
both in the same fixed units. We also include a bank account B = (Bt)t∈[0,T ]; so
if we hold the asset over a time interval (t, u], meaning that we purchase it at
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time t and sell it at u, we obtain at time u a total cashflow or gain of

Su −
Bu

Bt

St +Bu

∫ u

t

1

Bs

dDs,

whose equivalent discounted back to time t is

Bt

(
Su
Bu

− St
Bt

+

∫ u

t

1

Bs

dDs

)
=: Bt(Wu −Wt).

In discounted units, we therefore have

Wt =
St
Bt

+

∫ t

0

1

Bs

dDs (5.1)

for the discounted gains process from holding one unit of the asset. Of course,
both S and D could be multidimensional, of the same dimension; then we add a
superscript i for S, D and W .

If we now denote by S∗t the (undiscounted) fundamental value of our asset at
time t, then S∗t 6= St (or S∗t < St) would mean that the asset has a bubble, and
the difference βt := St−S∗t is usually called the (size of the) bubble or the bubble
component of the asset.

The big snag with the above description is that it does not tell us what the
“fundamental value” is, nor where it comes from. Axiomatically, it is reasonable
to impose that we have a fundamental value operator which assigns fundamental
values to assets or general financial products. Such an operator is usually mono-
tone and linear, and if we add some mild continuity conditions, it is reasonable
to assume that it has the form, for 0 ≤ t ≤ u ≤ T ,

Φt(S,D) = BtE

[
Zu
Zt

Su
Bu

+

∫ u

t

Zs
Zt

1

Bs

dDs

∣∣∣Ft]
=
E[(Zu/Bu)Su +

∫ u
t

(Zs/Bs) dDs | Ft]
Zt/Bt

, (5.2)

where the positive adapted processes Z and Z/B are often called a deflator or a
state price density, respectively. If we consider the asset “bank account”, we get
with S replaced by B and D replaced by 0 the fundamental value

Φt(B, 0) = BtE

[
Zu
Zt

∣∣∣Ft] .
So if the bank account has no bubble, it is reasonable to assume that Z is a
positive P-martingale. More generally, it is only imposed that Z is a positive local
P-martingale with Z0 = 1. In the martingale case, we can define a probability
measure Q equivalent to P by dQ = ZT dP (assuming Z0 = 1 so that Q = P on
F0) and then rewrite (5.2) as

Φt(S,D) = BtEQ

[
Su
Bu

+

∫ u

t

1

Bs

dDs

∣∣∣Ft]
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by the Bayes rule. (To be accurate, this assumes that D is of finite variation.)
Using (5.1), we can also reformulate this as

Φt(S,D) = BtEQ[Wu −Wt | Ft] + St. (5.3)

So if we decide that the fundamental value of (S,D) at time t is

S∗t := Φt(S,D),

then having a bubble means that W is not a Q-martingale. We emphasise, how-
ever, that this notion of fundamental value and hence also of a bubble depends
on Z or Q; so it would be more accurate to talk about a Q-bubble or a Z-bubble.

With the above terminology, we are now ready to discuss a number of import-
ant papers from the literature.

5.2 Loewenstein and Willard

In a seminal paper [57], these authors start with a financial market (B, S,D) as
described above. All their processes are continuous, B > 0 is of finite variation,
D ≥ 0 is increasing, and S ≥ 0. (Actually, both S and D are RK-valued in their
setup.) They assume that there is a local P-martingale Z > 0 with Z0 = 1 such
that deflated prices Z

B
S +

∫
Z
B

dD form a local P-martingale. They also impose
completeness of the market by assuming that the above Z is unique. Then they
say that asset i has a bubble if its deflated price process Z

B
Si +

∫
Z
B

dDi is a strict
local P-martingale, and that the bank account has a bubble if Z = Z

B
B itself is

a strict local P-martingale. As in (5.2), the fundamental values are defined as

S∗t := Φt(S,D) := BtE
[ZT
Zt

ST
BT

+

∫ T

t

Zs
Zt

1

Bs

dDs

∣∣∣Ft],
B∗t := Φt(B, 0) := BtE

[
ZT
Zt

∣∣∣Ft] ,
and the bubble components of asset i and the bank account are then, for t ∈ [0, T ],

βit := Sit − S
∗,i
t ,

βBt := Bt −B∗t .

The authors emphasise that their definition is in line with the previous economic
literature (e.g. Diba and Grossman [15], Tirole [79], or Santos and Woodford
[71]).

How does this compare with our approach? Suppose for simplicity that there
are no dividends so that D ≡ 0. To avoid confusion in the notation, we write in
the sequel Y instead of S for the stocks in the sense of Loewenstein and Willard,
and reserve S for a representative of a market S in our sense. So let S be the
market generated by S = (B, Y ), where B is a bank account and Y a stock in
the sense of Loewenstein and Willard. In our setup, completeness translates into
saying that for any numéraire strategy η, there is at most one equivalent local
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martingale measure (ELMM) Q for V (η)-discounted prices S(η) = S/V (η)(S).
If S is dynamically viable, there exists a pair (η,Q) such that Q is an ELMM
for S(η); see Theorem 3.1. If S is in addition a bubbly market in our sense, the
(unique) ELMM Q for S(η) is such that for at least one index j, S(η),j is a strict
local Q-martingale; see Theorem 3.11 and Corollary 3.13. Let ZQ be the density
process of Q with respect to P. By Bayes’ theorem, ZQS(η) is a local P-martingale
and ZQS(η),j is a strict local P-martingale. Setting now Z := ZQB/V (η)(S), we
get that Z and Z

B
Y are local P-martingales, and either Z (if j = 1) or Z

B
Y i (for

i = j − 1 if j > 1) is a strict local P-martingale. So under completeness, if
the market S generated by S = (B, Y ) is a dynamically viable bubbly market,
either one of the stocks Y i or the bank account B has a bubble in the sense of
Loewenstein and Willard [57]. It is not difficult to check that also the converse
is true. In this sense, [57] is closest to our setup in the existing literature. Note,
however, that the tricky issue of bubbles in an incomplete financial market is not
addressed there.

We remark in passing that a process Z as above has been called a local mar-
tingale density or a local martingale deflator in the recent literature, and that its
existence, for a setting D ≡ 0 without dividends, has been shown to be equival-
ent to the absence-of-arbitrage condition of no unbounded profit with bounded risk
(NUPBR); see e.g. Kardaras [48] or Takaoka and Schweizer [73]. This condition,
as shown by Kardaras [48], is in turn equivalent to the absence of arbitrage of the
first kind (NA1) or absence of cheap thrills, and it is this latter condition that
appears also in Loewenstein and Willard [56]; see also Chapters III and VI for a
discussion of those concepts from a numéraire-independent perspective. For our
discussion of bubble modelling, these remarks are at present mostly tangential,
but we come back to them a bit later.

5.3 Jarrow, Protter and Shimbo

These authors provide a detailed study of asset price bubbles in two papers—one
for complete [40] and one for incomplete markets [41]. Their basic setup is a
financial market (1, S,D) as above, with B ≡ 1 and S,D ≥ 0 one-dimensional
semimartingales. They work on a right-open stochastic interval J0, τJ with a
stopping time τ and add a liquidation value Xτ at τ to the stock S, but this is
just a minor technical detail; we can replaceXτ by the final stock price ST without
changing the essence of the model. (We also point out that the dividend process
D should actually be increasing for some of the arguments to work.) Instead
of the existence of (a local martingale density) Z (or equivalently NUPBR, as
discussed above in Section 5.2), [40, 41] impose the stronger condition NFLVR
for the gains process W = S + D; so there exists an ELMM Q for W by the
fundamental theorem of asset pricing. The first paper [40] on complete markets
assumes that Q is unique; the second [41] does not, and we denote by Me(W )
the nonempty set of ELMMs Q for W .

For the complete case [40], the fundamental value is defined as

S∗t := Φt(S,D) := EQ[ST + (DT −Dt) | Ft] = EQ[WT −Wt | Ft] + St, (5.4)
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and so an asset price bubble

βt := St − S∗t = Wt − EQ[WT | Ft]

appears if and only if the local Q-martingale W is not a true Q-martingale.
However, unlike in the case of Loewenstein and Willard [57], a bubble in the
bank account is not possible in [40] (and in [41], for that matter) due to the more
restrictive assumption of NFLVR (instead of NUPBR). So similar to [57], the link
between bubbles and strict local martingales is due to the definition (5.4) of the
fundamental value. [40] also introduce different types of bubbles (depending on
the time-horizon), provide a decomposition of bubbles and discuss the valuation
of contingent claims.

The incomplete case in [41] is more challenging. Since Me(W ) is no longer
a singleton, it is not immediately clear which ELMM Q one should use to define
a fundamental value as in (5.4). Just picking one Q and using that throughout
would be ad hoc and would also just lead back to the results from the complete
case. To overcome this problem, [41] propose a mechanism where “the market”
chooses and sometimes (at random times σi) changes the measure used in (5.4),
so that one works with Qi ∈ Me(W ) for times t between σi and σi+1. In effect,
this means that one uses a fundamental value of the form

S∗t := Φt(S,D) := EQt [WT −Wt | Ft] + St, (5.5)

where the measure Qt used at time t now depends on t as well, and so the
analysis of bubbles becomes more involved. In the same spirit, but in a different
setup2, Biagini et al. [4] study the case where Qt moves smoothly from one Q
to another R. In both cases, however, the actual choice of Qi, or Q and R,
is not fully convincing from an economic perspective. For example, [41] makes
the assumptions that there are enough liquidly traded derivatives in the market
to determine the ELMM Q, and that Q can actually be identified from market
prices. In effect, this practically leads us back to the complete case studied in [40].
Moreover, we are not aware of any well-established procedures to implement such
an identification of Q from market prices, and it seems also conceptually difficult
to reconcile a Q determined from liquid derivative prices with possible violations,
due to bubbles, of e.g. put-call parity. In any case, the resulting object should
more accurately be called aQ-bubble, because there might well be another ELMM
Q′ under which the asset price is a true martingale (see Example 4.4), and so the
above notion of a bubble depends in a crucial way on the choice of the risk-neutral
measure one works with. For all these reasons, we prefer an approach which only
uses basic assets as given and does not need partly exogenous inputs to define
bubbles. Hence, our notion of a bubbly market is more restrictive than the notion
of a Q-bubble in the sense of Protter et al. [41], i.e., if S = (1, Y ) has a Q-bubble
(writing as above Y instead of S for a stock in the sense of [41]), the market S
generated by S might not be (nontrivial) bubbly in our sense.

2[41] needs a bigger filtration G to accommodate the σi (which are independent of F),
whereas [4] always stays within F.
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A major part of the analysis in [40, 41] is to study issues of valuation in
markets with bubbles, and we comment on this below in Section 5.4. Protter
[67] also discusses ideas to identify a bubble by statistical methods and gives in
Section 11 an overview with discussion of some other approaches in the literature.
We refer to that instead of repeating it here.

5.4 Bubbles and derivative pricing

Bubbles and strict local martingales have come up in mathematical finance with
some prominence in the area of option pricing, in particular with relation to
violations of put-call parity. Early work on that topic appears in Lewis [55], and
this has been taken up in two seminal papers by Cox and Hobson [8] and Heston,
Loewenstein and Willard [34].

The setup of [8] is like [40] similar to [57] but a bit more restrictive; they have
a model (1, S, 0) without dividends, where S ≥ 0 is a continuous semimartingale,
and they assume NFLVR and completeness so that they have a unique ELMM Q

for S (= W here). They say that S has a bubble if it is a strict local Q-martingale;
so the definition is the same as in [40]. The main focus of [8] is then on valuation
of options in the presence of bubbles, and in particular on violation of put-call
parity.

Heston et al. [34] consider a setup (1, S, 0) without dividends, where S is a
one-dimensional local or stochastic volatility model; so they allow in particular
incomplete markets. They say that “[a]n asset with a nonnegative price has a
“bubble” if there is a self-financing portfolio with pathwise nonnegative wealth
that costs less than the asset and replicates the asset’s price at a fixed future
date. The bubble’s value is the difference between the asset’s price and the
lowest cost replicating strategy” [34, Definition 2.1]. In terms of the discussion in
Section 5.1, this means that they use as fundamental value the superreplication
price. We note in passing that this kind of definition has also appeared in a recent
paper by Loewenstein and Willard [58]. The approach of [34] is closely related
to ours, but their notion of a bubble is more restrictive than ours in the more
relevant case of incomplete markets. Indeed, let S be the market generated by
S = (1, Yt)t∈[0,T ] (writing as above Y instead of S for a stock in the sense of [34]).
If there exists an ELMM Q for S (or for Y , for that matter), then S is dynamically
viable (see Theorem 3.1), and if for each such Q, Y is a strict local Q-martingale,
then S is a bubbly market in our sense (see Theorem 3.22). Denote by Me(Y )
the nonempty set of all ELMMs for Y . Then by the classic dual characterisation
of superreplication prices by Kramkov [52] and Föllmer and Kabanov [24], the
classic superreplication price of Yt is given by supQ∈Me(Y )EQ[Yt], t ∈ [0, T ]. Now
it may happen that Y0 = supQ∈Me(Y )EQ[Yt] for every t even though Y is a strict
local Q-martingale for all Q ∈ Me(Y ). Then S is a bubbly market in our sense
but not in sense of Heston et al. [34]. For complete markets, however, both
concepts coincide; for if there exists only one ELMM for Y , then Y is a strict
local Q-martingale if and only if there exists t ∈ [0, T ] such that Y0 > EQ[Yt].

The main focus of [34] is to relate the existence of bubbles to multiplicity
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(nonuniqueness) of solutions of the valuation PDEs of call and put options, but
they also provide in their specific SV framework necessary and sufficient condi-
tions for various bubbles (on the money market account or on the stock).

Other papers that study failures of option pricing properties in models with
bubbles or strict local martingales are Ekström and Tysk [16] (who use PDE
techniques), Pal and Protter [64] (who use h-transforms) or Madan and Yor [60]
(who connect this to an extension of Itô’s formula), among others.

5.5 Arbitrage aspects

In recent years, there has been a lot of interest in models which do not satisfy
the classic strong absence-of-arbitrage condition NFLVR of Delbaen and Schach-
ermayer [9, 13]. A major motivation has been that a number of empirical ob-
servations do not fit well with the stringent properties imposed by NFLVR, with
prominent examples being stochastic portfolio theory (see Fernholz [21]) or the
benchmark approach (see Platen [65] and Platen and Heath [28]). In most papers
on these subjects, however, the models still satisfy NUPBR, and as discussed in
Section 5.2, this brings us close again to the general setup presented in Section 5.1.

One typical question to ask is if or how hedging still works and if or how one
could exploit the presence of potential arbitrages. The latter aspect is for ex-
ample studied in Fernholz et al. [22]. They consider an Itô process model (1, S, 0)
where each asset is positive and do not assume NFLVR, but (implicitly) that the
market price of risk is P-a.s. square-integrable, which implies the existence of a
local martingale deflator and hence NUPBR. Their goal is to explicitly construct
portfolios which are better that the market portfolio; this is called “relative ar-
bitrage”. In our terminology, they assume that the market is dynamically viable,
but not dynamically efficient. Hence the market portfolio is not maximal, and
so it is not surprising that there exist (maximal) strategies which “improve” it.
But of course the main contribution of stochastic portfolio theory is to provide
explicit formulas for such strategies.

In a similar vein, Ruf [70] discusses “hedging under arbitrage”, i.e., when
NFLVR fails but we still have NUPBR. His setup is very similar to Loewenstein
and Willard [57], but the market is not assumed to be complete. In a Markovian
framework, [70] then uses Feynman–Kac type results to obtain and compute
optimal strategies which superreplicate a given contingent claim with minimal
initial capital. The link to bubbles here is mainly that by definition, bubbles are
identified with assets whose prices follow strict local martingales.

In a quite different direction, one can ask what extra ingredient is needed
to avoid having strict local martingales for asset prices, because many pricing
anomalies turn out to be consequences of bubbles in that sense. As we have seen
in Corollary 3.21, what is needed is a concept of no dominance. This idea goes
back to Merton [62] and was formalised mathematically by Jarrow et al. [40, 41]
in two different ways; related work was done apparently in parallel by Heston et
al. [34]. A detailed study with very clear definitions was then given by Jarrow
and Larsson [39]. They consider a market (1, S, 0), where S is a d-dimensional
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semimartingale for the filtration F = (Ft)t≥0. They say that “the market (F, S)
is [...] efficient on [0, T ] with respect to F if there exist a consumption good
price index ψ and an economy ((Pk)

K
k=1,F, (εk)

K
k=1, (Uk)

K
k=1) for which (ψ, S) is an

equilibrium price process S on [0, T ]”. Here k = 1, . . . , K denote different investors
with beliefs Pk ≈ P (subjective probability measures), endowment streams εk and
(time-dependent) utility functions Uk. [39] show that (F, S) is efficient on [0, T ]
if and only if S satisfies NFLVR and no dominance (ND), i.e., the buy-and-hold
strategy of each risky asset is maximal, or equivalently if and only if there exists
a equivalent (true) martingale measure Q ≈ P on FT . Moreover, they consider
the case of different information sets and finally provide examples of efficient and
inefficient markets, namely local and stochastic volatility models.

Our definition of dynamic efficiency and dynamic no dominance is directly
inspired by [39], and our Corollary 3.21 is a numéraire-independent version of
(part of) their key result [39, Theorem 3.2]. In particular, that result justifies
our terminology of dynamic efficiency and also motivates our notion of static
efficiency. Nevertheless, our definition of dynamic no dominance is (formally) a
bit weaker since it only imposes maximality for the market portfolio, not for all
individual buy-and-hold strategies in all assets.

5.6 Delbaen and Schachermayer

Despite its drawbacks as briefly discussed in Remark 1.12 (a), one important
inspiration for many of our concepts has been the work of Delbaen and Schach-
ermayer, especially [11] for numéraire changes and related topics and [12] for
maximality. We emphasise again that a direct comparison is delicate because
we work with a different notion of admissible strategies. But there is no doubt
that F. Delbaen is also well aware of the close connections between maximal ele-
ments or strategies, bubbles, and strict local martingales. This is illustrated by a
presentation given in June 2012 at the QMF conference in Cairns, Australia. We
quote from these slides that “[a] bubble is something that has a price that is too
high or for the same amount of money you can get something better” and that
“H ·S, acceptable, could be called a bubble if the price of f = (H ·S)∞ is strictly
lower than 0”. Delbaen also proposes some ideas to define non-bubbles; however,
we have not seen any published work or preprint so far.

6 Appendix
In this appendix, we formulate and prove two technical results needed mainly for
the dual characterisation of static efficiency in Section 3.4.

The first technical result gives a dual characterisation of weakly and strongly
maximal strategies in hLsf

σ . The key ingredients are the Dalang–Morton–Willinger
theorem, the one-step superhedging duality or optional decomposition, and the
geometric characterisation of absence of arbitrage (all with contingent initial
data). For the last point, for an RN -valued random vector X and a sub-σ-field
G, we write ri conv suppL(X | G) for the relative interior of the convex hull of the
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(ω-dependent) topological support of the regular conditional distribution of X
given G.

Lemma 6.1. For any stopping time σ ∈ T[0,T ], the following are equivalent:

(a) 0 is weakly maximal for hLsf
σ .

(b) 0 is strongly maximal for hLsf
σ .

(c) Each ϑ ∈ hLsf
σ is strongly (and hence weakly) maximal for hLsf

σ .

(d) For each numéraire strategy η in hLsf
σ , there exists a one-step EMM Q on

{σ, T} for S(η).

(d ′) For each numéraire strategy η in hLsf
σ , we have

S(η)
σ ∈ ri conv suppL(S

(η)
T | Fσ) P-a.s.

(e) There exist a numéraire strategy η in hLsf
σ and a one-step EMM Q on {σ, T}

for S(η).

(e ′) There exists a numéraire strategy η in hLsf
σ such that

S(η)
σ ∈ ri conv suppL(S

(η)
T | Fσ) P-a.s.

Moreover, if one of the above equivalent conditions is satisfied, then for any con-
tingent claim F at time T with Πσ(F |hLsf

σ ) <∞ P-a.s., there is ϑ ∈ hLsf
σ with

Vσ(ϑ) = Πσ

(
F
∣∣hLsf

σ

)
P-a.s. and VT (ϑ) ≥ F P-a.s.

Proof. “(c) ⇒ (b) ⇒ (a)”. This is trivial.
“(b) ⇒ (c)”. Seeking a contradiction, suppose there is ϑ ∈ hLsf

σ which is not
strongly maximal for hLsf

σ . By the characterisation of strong maximality after
Lemma 3.7, there exists a nonzero contingent claim F at time T such that

Πσ(VT (ϑ) + F |Lsf
σ ) ≤ Vσ(ϑ) <∞ P-a.s. (6.1)

Let δ > 0 be arbitrary and C a positive contingent claim at time σ. By Lemma 3.7
applied to F + VT (ϑ) and by (6.1), there exists ϑ̄ ∈ Lsf

σ such that

Vσ(ϑ̄) ≤ Vσ(ϑ̄) + δC P-a.s. and VT (ϑ̄) ≥ VT (ϑ) + F P-a.s.

Set ϑ̂ := ϑ̄− ϑ ∈ hLsf
σ . Then

Vσ(ϑ̂) ≤ δC P-a.s. and VT (ϑ̂) ≥ F P-a.s.

This implies Πσ(F |hLsf
σ ) ≤ δC, and letting δ ↘ 0 gives Πσ(F |hLsf

σ ) = 0. This
contradicts the hypothesis of strong maximality of 0 for hLsf

σ .
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“(a)⇒ (d)”. Take a numéraire strategy η in hLsf
σ and set G0 := Fσ, G1 := FT ,

X0 := S
(η)
σ , X1 := S

(η)
T . Then (a) implies that the classic discounted one-

period model (1, X) is arbitrage-free in the standard sense that there is no
G0-measurable RN -valued random vector ξ with ξ · (X1 − X0) ≥ 0 P-a.s. and
P[ξ · (X1 −X0) > 0] > 0. Indeed, if such a ξ exists, then ϑ := ξ1Jσ,T K− (ξ ·S(η)

σ )η
is in hLsf

σ , and noting that V (η)(S(η)) ≡ 1 due to (1.7), we have

Vσ(ϑ)(S(η)) = ξ · S(η)
σ − (ξ · S(η)

σ ) = 0 P-a.s.,

VT (ϑ)(S(η)) = ξ · S(η)
T − (ξ · S(η)

σ ) = ξ · (X1 −X0) ≥ 0 P-a.s.,

P[VT (ϑ)(S(η)) > 0] = P[ξ · (X1 −X0) > 0] > 0,

which contradicts (a). So by the Dalang–Morton–Willinger theorem, e.g. in the
form of [25, Theorem 1.54]), there exists an EMM Q for the above one-period
model, and translating everything back to our setup, we see that Q is a one-step
EMM on {σ, T} for S(η).

“(d) ⇔ (d′) & (e) ⇔ (e′)”. This follows directly from Jacod and Shiryaev [36,
Theorem 3].

“(d) ⇒ (e)”. This is trivial as the market portfolio ηS = (1, . . . , 1) is a numé-
raire strategy in hLsf

σ .
“(e)⇒ (b) & additional assertion”. Let η and Q be as in (e) and F a contingent

claim at time T with Πσ(F |hLsf
σ ) < ∞ P-a.s. Denote by Q 6= ∅ the set of all

one-step EMMs on {σ, T} for S(η). For each ϑ̄ ∈ hLsf
σ with VT (ϑ̄) ≥ F and each

Q̃ ∈ Q, we then have

Vσ(ϑ̄)(S(η)) = ϑ̄σ · S(η)
σ = EQ̃[ϑ̄σ · S(η)

T | Fσ]

= EQ̃[VT (ϑ̄)(S(η)) | Fσ] ≥ EQ̃[F (S(η)) | Fσ] P-a.s.

Thus, by the definition of superreplication prices,

ess sup
Q̃∈Q

EQ̃[F (S(η)) | Fσ] ≤ Πσ(F |hLsf
σ )(S(η)) <∞ P-a.s. (6.2)

In particular, P[Πσ(F |hLsf
σ )(S(η)) > 0] > 0 if P[F (S(η)) > 0] > 0, which

gives (b) in view of the characterisation of strong maximality after Lemma 3.7.
Now define a one-period market as in “(a) ⇒ (d)” and set γ1 := F (S(η)) and
γ0 := ess supQ̃∈QEQ̃[γ1 | G0] <∞. Then Q is the set of all EMMs for (1, X) and
γ1 is a contingent claim in this market, all in the classic sense. By the super-
hedging duality or optional decomposition (see e.g. [25, Corollary 7.15]), there
exists an RN -valued Fσ-measurable random vector ξ with γ0 + ξ · (X1−X0) ≥ γ1

P-a.s. Set ϑ := ξ1Jσ,T K + (γ0− ξ ·S(η)
σ )η, which is in hLsf

σ . Then as in “(a)⇒ (d)”,

Vσ(ϑ)(S(η)) = ξ · S(η)
σ + (γ0 − ξ · S(η)

σ ) = γ0 = ess sup
Q̃∈Q

EQ̃[F (S(η)) | Fσ] P-a.s.,

VT (ϑ)(S(η)) = ξ · S(η)
T + (γ0 − ξ · S(η)

σ ) = γ0 + ξ · (X1 −X0) ≥ γ1 = F (S(η)) P-a.s.

Together with (6.2) and the definition of superreplication prices, this establishes
the additional assertion.
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The second technical result provides equivalent characterisations of static ef-
ficiency.

Lemma 6.2. The following are equivalent:

(a) S is statically efficient.

(b) S is statically viable, and for each stopping time σ ∈ T[0,T ], every ϑ ∈ hLsf
σ

which satisfies VT (ϑ) ≥ 0 P-a.s. is in hUσ.

(b ′) S is statically viable, and for each deterministic time s ∈ [0, T ), every
ϑ ∈ hLsf

s which satisfies VT (ϑ) ≥ 0 P-a.s. is in hUs.

(c) S is statically viable, and 0 is weakly maximal for hLsf
σ , for each stopping

time σ ∈ T[0,T ].

(c ′) S is statically viable, and 0 is weakly maximal for hLsf
s , for each determin-

istic time s ∈ [0, T ).

(d) The zero strategy 0 is weakly maximal for hLsf
σ , for each stopping time

σ ∈ T[0,T ].

(e) Every strategy ϑ ∈ hLsf
σ is strongly maximal for hLsf

σ , for each stopping time
σ ∈ T[0,T ].

Proof. “(a) ⇒ (b)”. Static viability follows from static efficiency. Fix σ ∈ T[0,T ]

and take ϑ ∈ hLsf
σ with VT (ϑ) ≥ 0 P-a.s. Set |ϑ| := (|ϑ1|, . . . , |ϑd|). Then both

|ϑ| and |ϑ| + ϑ are in hUσ, and VT (|ϑ| + ϑ) ≥ VT (|ϑ|) P-a.s. For any τ ∈ T[σ,T ],
we have |ϑ|, |ϑ|+ ϑ ∈ hUτ . Since |ϑ| is (strongly and hence) weakly maximal for
hUτ by static efficiency, we first conclude that Vτ (ϑ + |ϑ|) ≥ Vτ (|ϑ|) P-a.s. and
hence Vτ (ϑ) ≥ 0 P-a.s. So ϑ ∈ hUσ because τ ∈ T[σ,T ] was arbitrary.

“(b) ⇒ (c)”. Seeking a contradiction, suppose there is σ ∈ T[0,T ] such that 0
is not strongly maximal for hLsf

σ . Then there is ϑ ∈ hLsf
σ such that Vσ(ϑ) ≤ 0

P-a.s. and VT (ϑ) ≥ 0 P-a.s., where the second inequality is strict with positive
probability. Now (b) gives that ϑ ∈ hUσ, and so 0 fails to be weakly (and a
fortiori strongly) maximal for hUσ, in contradiction to static viability of S.

“(c) ⇒ (c ′)”. This is trivial.
“(c ′) ⇒ (b ′)”. Fix s ∈ [0, T ) and take ϑ ∈ hLsf

s with VT (ϑ) ≥ 0 P-a.s. If ϑ
is not in hUs, by right-continuity of the paths of V (ϑ)(S), there exists r ∈ (s, T )
such that P[Vr(ϑ) < 0] > 0. Let η be a numéraire strategy in hLsf

r , e.g. η = ηS,
and set ϑ̃ := (ϑ+|Vr(ϑ)(S(η))|η)1{Vr(ϑ)(S(η))<0}1Jr,T K ∈ hLsf

r . Using that VT (ϑ) ≥ 0
P-a.s., we get

Vr(ϑ̃) = 0 P-a.s. and VT (ϑ̃) ≥ |Vr(ϑ)(S(η))|VT (η)1{Vr(ϑ)(S(η))<0} P-a.s.

Thus, VT (ϑ̃) ≥ 0 P-a.s. and P[VT (ϑ̃) > 0] > 0, in contradiction to strong maxim-
ality of 0 for hLsf

r .
“(b ′) ⇒ (b)”. Note that the second statement in (b ′) trivially also holds

for s = T . Fix σ ∈ T[0,T ] and take ϑ ∈ hLsf
σ with VT (ϑ) ≥ 0 P-a.s. First, let



134 VIII Bubbles from a numéraire-independent perspective

τ ∈ T[σ,T ] be of the form τ =
∑n

i=1 ti1Ai , where n ∈ N, 0 ≤ t1 < · · · < tn ≤ T ,
and (Ai)i∈{1,...,N} is a partition of Ω with Ai ∈ Fti . For i ∈ {1, . . . , n}, set
ϑ(i) := 1Aiϑ ∈ hLsf

τ ∩ hLsf
ti
so that ϑ =

∑n
i=1 ϑ

(i). Since each Vti(ϑ(i)) ≥ 0 P-a.s.
by (b ′), we have Vτ (ϑ) ≥ 0 P-a.s. For general τ ∈ T[σ,T ], there is a nonincreasing
sequence (τn)n∈N of stopping times in T[0,T ] each taking only finitely many values
such that limn→∞ τn = τ . Since each Vτn(ϑ) ≥ 0 P-a.s. by the first part of the
argument, right-continuity of the paths of V (ϑ)(S) yields Vτ (ϑ) ≥ 0 P-a.s. So
ϑ ∈ hUσ because τ ∈ T[σ,T ] was arbitrary.

“(c) ⇒ (d)”. This is trivial.
“(d) ⇒ (e)”. This follows from “(a) ⇒ (c)” in Lemma 6.1.
“(e) ⇒ (a)”. This is clear from hUσ ⊆ hLsf

σ , for each σ ∈ T[0,T ].

Remark 6.3. The equivalence of (c) and (d) in Lemma 6.2 shows that (c) is
in fact equivalent to the same statement without assuming static viability of S.
However, this is not true for statement (c ′).
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