
ETH Library

Development and application of
the adverse outcome pathway
framework for understanding and
predicting chronic toxicity. II. A
focus on growth impairment in fish

Journal Article

Author(s):
Groh, Ksenia J.; Carvalho, Raquel N.; Chipman, James K.; Denslow, Nancy D.; Halder, Marlies; Murphy, Cheryl A.; Roelofs, Dick;
Rolaki, Alexandra; Schirmer, Kristin; Watanabe, Karen H.

Publication date:
2015-02

Permanent link:
https://doi.org/10.3929/ethz-b-000094119

Rights / license:
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

Originally published in:
Chemosphere 120, https://doi.org/10.1016/j.chemosphere.2014.10.006

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000094119
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.1016/j.chemosphere.2014.10.006
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Chemosphere 120 (2015) 778–792
Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier .com/locate /chemosphere
Review
Development and application of the adverse outcome
pathway framework for understanding and predicting
chronic toxicity: II. A focus on growth impairment in fish
http://dx.doi.org/10.1016/j.chemosphere.2014.10.006
0045-6535/� 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

Abbreviations: AO, adverse outcome; AOP, adverse outcome pathway; Cd, cadmium; KE, key event; MIE, molecular initiating event; SSRI, selective serotonin
inhibitor.
⇑ Corresponding author at: Eawag, Ueberlandstrasse 133, PO Box 611, 8600 Dübendorf, Switzerland. Tel.: +41 58 765 5335; fax: +41 58 765 53 11.

E-mail address: ksenia.groh@eawag.ch (K.J. Groh).
Ksenia J. Groh a,b,⇑, Raquel N. Carvalho c, James K. Chipman d, Nancy D. Denslow e, Marlies Halder f,
Cheryl A. Murphy g, Dick Roelofs h, Alexandra Rolaki f, Kristin Schirmer a,i,j, Karen H. Watanabe k

a Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
b ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland
c European Commission, Joint Research Centre, Institute for Environment and Sustainability, Water Resources Unit, 21027 Ispra, Italy
d University of Birmingham, B15 2TT Birmingham, UK
e University of Florida, Department of Physiological Sciences, Center for Environmental and Human Toxicology and Genetics Institute, 32611 Gainesville, FL, USA
f European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
g Michigan State University, Fisheries and Wildlife, Lyman Briggs College, 48824 East Lansing, MI, USA
h VU University, Institute of Ecological Science, 1081 HV Amsterdam, The Netherlands
i ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
j EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
k Oregon Health & Science University, Institute of Environmental Health, Division of Environmental and Biomolecular Systems, 97239-3098 Portland, OR, USA

h i g h l i g h t s

� Development of AOPs for chronic toxicity helps identify alternative tests.
� Interference of chemicals with behavior can cause growth impairment in fish.
� Assessment of locomotion may be used to identify chemicals that may affect growth.
� Reallocation of energy resources induced by chemicals can cause growth impairment.
� Metabolic activity measures may be used to identify chemicals that may affect growth.
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Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of
biological organization. By determining the linkages between toxicity events at different levels, AOPs
lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here,
we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development
for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests
for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to
be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and
downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective sero-
tonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and
SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in
growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment
by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct
influence on appetite may play a more important role. We further discuss which alternative tests could
be used to inform on the predictive key events identified in the case studies. In conclusion, our work dem-
onstrates how the AOP concept can be used in practice to assess critically the knowledge available for
specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

In the preceding paper, we discussed how the adverse outcome
pathway (AOP) concept can be used to improve understanding and
prediction of chronic toxicity and what are the potential venues for
extension of the AOP framework to incorporate additional informa-
tion required for chemical- and site-specific risk assessment (Groh
et al., in press). In the present paper, we focus on growth impair-
ment as an outcome of chronic toxicity in fish and develop three
selected AOP case studies with which we illustrate (i) how the
AOP concept can be used to guide collection and assessment of
available knowledge on specific toxicity cases, (ii) which criteria
can be applied to select specific AOPs or AOP case studies to be
developed, (iii) how AOP case studies can be used to identify
knowledge gaps to guide further research to support development
of generalized AOPs, (iv) what additional aspects should be consid-
ered during chemical- and site-specific risk assessment and (v)
how AOP case studies can be used to identify potential alternative
tests.
2. Justification for focus on fish growth

Impairment of fish growth in response to exposure to diverse
chemicals is frequently observed. Therefore, growth is commonly
assessed as an apical endpoint in fish chronic toxicity tests used
to inform risk assessment for aquatic environments. This individ-
ual-based parameter is plausibly linked to population-level effects,
because many population-relevant processes are size-dependent.
For example, body size affects vulnerability to predation (Law
et al., 2009; Pettorelli et al., 2011), overwinter survival rates
(Quinn and Peterson, 1996) and reproductive success (Jawad and
Busneina, 2000; Rideout and Morgan, 2010). Growth-related met-
rics can be relatively easily incorporated into population models
(Crowder et al., 1992; Weitz and Levin, 2006; Murphy et al.,
2008; Baldwin et al., 2009; Huebert and Peck, 2014).

One drawback of the currently used tests for chronic toxicity to
fish is that they are extremely resource- and labor-intensive, and
typically take weeks to months to complete. This makes it imprac-
tical to perform fish chronic toxicity tests for all chemicals that
may require such testing. Moreover, such tests typically provide
very limited information, which is mostly descriptive with little
mechanistic insights. This severely limits the usefulness of data
derived from these resource-intensive tests for extrapolation
across other chemicals and species. Furthermore, not only econom-
ical, but also ethical concerns underlie the urgent demand for
development of alternative toxicity assessment methods that
could refine or replace the current chronic toxicity tests using large
numbers of fish. Certainly, more mechanistic understanding of
chemical effects on growth in fish would be beneficial, as this
would both increase the value of information obtained in chronic
toxicity tests as well as support the identification and development
of potential alternative tests. Such mechanistic insights can be
gained through developing AOPs that cover diverse facets of
chemical impacts on fish growth. Moreover, in the longer term
the knowledge integrated through AOPs can help to understand
better the consequences of growth impairment in individuals for
population fitness and support the extrapolation from laboratory
to the field as well as across species.
3. AOPs for growth impairment: development strategy and
selection of case studies

In the following subsections we will explain our choice of AOP
development strategy and describe the criteria we used for our
selection of AOP case studies.
3.1. AOPs and AOP development strategies

An AOP depicts the progression of toxicity across biological
organization scales from a molecular initiating event (MIE)
through subsequent key events (KEs) to an adverse outcome
(AO). MIE is a direct chemical-induced perturbation of a molecular
target and as such essentially represents a ‘‘special case’’ of first KE
in the AOP sequence. KEs are toxicity responses at molecular, cel-
lular, suborganismal or organism levels that are measurable and
necessary for an AO to occur. AO is a toxic effect relevant for reg-
ulatory risk assessment. Typical examples of AOs are impacts on
survival, growth or reproduction in individuals, or population-level
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effects. The linkages between MIE, KE and AO are described by key
event relationships, which can be either qualitative or quantitative,
depending on the maturity of the AOP and the availability of
information. Thus, by visualizing the pathways and identifying
the linkages between different events, the AOP provides a basis
for prediction of toxicity effects across levels of biological organiza-
tion (Ankley et al., 2010).

Three approaches to AOP development can be distinguished: (i)
bottom-up, where one starts at an MIE and develops the AOP
forward to an AO, (ii) top-down, where one starts at an AO and
develops the AOP backwards to an MIE and (iii) middle-out, where
one starts at a KE at an intermediate level and develops the AOP in
both directions, to an MIE and to an AO. By definition, AOPs are
non-chemical-specific entities that describe generalized motifs of
biological response to a specific perturbation (i.e., MIE) that results
in an AO through a series of linked events (Villeneuve et al., in
press). In contrast, an AOP case study aims to construct a putative
AOP based on the data obtained from empirical studies with spe-
cific chemicals or chemical groups. Thus, AOP case studies are
chemical-specific. Once enough evidence is collected through such
AOP case studies to support the occurrence of downstream KEs and
AOs that follow a particular MIE, an AOP can be generalized and
consequently becomes non-chemical-specific. In this way, AOP
case studies serve to support the initial development of a general-
ized AOP.

Growth is regulated by a broad array of factors acting at
molecular, cellular and physiological levels. There are many
growth regulation pathways that are susceptible to perturbation
by chemicals. Therefore, developing growth impairment AOPs by
bottom-up or top-down approaches might prove daunting due to
the difficulty of prioritizing the most important MIEs or pathways
on which to focus first. In this context, the middle-out AOP devel-
opment approach can be more efficient. This is because intermedi-
ate-level KEs, while still providing plausible links to an AO in
question, at the same time allow narrowing down the scope of
potential MIEs (Villeneuve et al., 2014). Moreover, specific criteria
can be defined to select the KEs most suitable for particular
purposes of AOP development. Therefore, a middle-out AOP devel-
opment strategy was employed in the current study.

3.2. Criteria for selection of KEs to focus on for middle-out AOP
development

The middle-out AOP development approach has been
previously used to develop AOPs in support of alternative testing
strategies. These strategies aim to prioritize or replace the lengthy
fish early life stage tests for chronic toxicity with the short-term
fish embryo toxicity tests (Villeneuve et al., 2014). In this study,
the selection of KEs was guided by the criteria that the KE should
be related to sublethal morphological endpoints that are easily
observed in embryos and can be plausibly linked, at least theoret-
ically, to adverse outcomes such as reduced survival or growth
impairment past the embryonic stage. Other potentially important
aspects, such as the environmental relevance of effective concen-
trations, received much less attention during the KE selection in
this study (Villeneuve et al., 2014).

In our case, we wanted to ensure that the growth impairment
AOPs, which we select for priority development, would describe
effects occurring at environmentally relevant chemical concentra-
tions and would be applicable across chemicals and species as
broadly as possible. Therefore, we decided to select the KEs
according to the following four criteria: (i) importance of a partic-
ular process associated with this KE for growth regulation, (ii) con-
servation of associated molecular pathway or physiological
response across species, (iii) frequency of occurrence of a certain
disruption (e.g. how many chemicals are suspected to interfere
with the KE in question) and (iv) environmental relevance of chem-
ical-induced effects (e.g. concentrations at which the effects are
observed).

We did not want to limit our KE choices by predefining the test
system where associated processes can be assessed. Instead, we
considered all pathways known to be involved in the regulation
of growth at molecular, cellular and physiological levels, as well
as all chemicals reported to perturb relevant processes. Our main
focus was on somatic growth in fish. However, we also collected
information on conservation of identified pathways and processes
in invertebrates, paying specific attention to similarities between
the effects induced by particular chemicals in different phyla. With
this analysis, several growth regulation pathways susceptible to
interference by chemicals were identified, with KEs located from
the subcellular through to organism levels. Each of these pathways
can potentially be perturbed and thus can constitute an AOP or a
set of AOPs, but discussing all of them is beyond the scope of this
work. Based on the criteria outlined above, we prioritized one
particular KE to focus on for middle-out AOP development in the
current study: reduction in food intake.

3.3. KE ‘‘reduction in food intake’’: choice justification and exploration
of potential underlying mechanisms

An efficient acquisition of food is an important prerequisite to
ensure normal physiological growth. The ability to find and acquire
food can be negatively impacted by chemical exposure in a number
of ways. For example, diverse morphological deformities, such as
vertebral column curvature, non-inflation of swim bladder and cra-
niofacial malformations, can directly impair the ability to catch or
handle prey. Many such morphological defects can already be
detected or predicted by performing toxicity tests in embryos, thus
offering a plausible venue for development of respective AOPs and
alternative testing approaches, as has been suggested previously
(Villeneuve et al., 2014). However, apart from a few cases of specif-
ically acting toxicants, such as the aryl hydrocarbon receptor-
active compounds (Yoshioka et al., 2011; King-Heiden et al.,
2012), severe morphological deformities often manifest only at rel-
atively high concentrations of little environmental relevance
(Carlsson et al., 2013; Ali et al., 2014).

Chemicals are also known to influence behavior in diverse ways,
which can negatively impact the amount and/or quality of
acquired food. Diverse behavioral alterations have been reported
to occur in response to a wide range of toxicants, frequently at con-
centrations much lower than those that induce any visible defects
or mortality (Scott and Sloman, 2004; Sloman and McNeil, 2012;
Melvin and Wilson, 2013). For example, certain toxicants are
known to impair olfaction, interfering with the ability to recognize
prey or causing aversion from particular food sources (Langer-
Jaesrich et al., 2010; Tierney et al., 2010), while others can affect
appetite (Baker et al., 1996; Gaworecki and Klaine, 2008;
Mennigen et al., 2009). Yet other chemicals are reported to impair
cognitive functions (Weis, 2009; Sledge et al., 2011). However, the
most prominent and best-researched type of behavioral alterations
that can be plausibly linked to reduction in food intake is impair-
ment of locomotion, broadly understood as a failure to maintain
normal performance levels of vital locomotory behavior compo-
nents, such as activity patterns, speed of movements and orienta-
tion in space. Such effects have been reported to occur in response
to chemicals belonging to many diverse categories, including
heavy metals, industrial chemicals, insecticides and pharmaceuti-
cals (Scott and Sloman, 2004; Tsai and Liao, 2006; Jordaan et al.,
2013; Selderslaghs et al., 2013; Leon-Olea et al., 2014). Concentra-
tions that affect locomotory behavior are often similar to those
causing growth impairment in the longer-term (Little and Finger,
1990; Melvin and Wilson, 2013). Detrimental effects of chemicals
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on locomotory behavior have also been reported for various inver-
tebrate species (Salanki, 2000; Tu et al., 2010; Hellou, 2011; Pekar,
2012; Oliveira et al., 2013; Pereira et al., 2013; Fong and Ford,
2014) and in some studies directly shown to coincide with reduc-
tion in food intake as well (Das and Khangarot, 2011; Agatz et al.,
2012; Nyman et al., 2013). This suggests that the role in growth
impairment of both KEs, impairment of locomotion and reduction
in food intake, may be conserved in a broad spectra of taxa.

3.4. Selection of AOP case studies

As discussed above, reduction in food intake is frequently
observed across different species in response to a broad variety
of chemicals, often at environmentally relevant concentrations.
Since the links between reduction in food intake, growth impair-
ment (downstream) and impairment of locomotory behavior
(upstream) are plausible, we decided to develop several AOP case
studies with which we aimed to evaluate (i) whether the reduction
in food intake is sufficient to explain growth impairment in all
cases, (ii) whether impairment of locomotory behavior is necessary
and sufficient for the effects on food intake and growth to occur
and thus could be used as an endpoint to establish alternative test-
ing approaches to predict these downstream effects, and (iii) what
other mechanisms, apart from chemical effects on locomotory
behavior, may play a role in each case. It has to be noted that some
chemicals have been reported to cause sustained stimulatory
effects on locomotory behavior, leading to an increase in feeding
rate, as for example in European perch (Perca fluviatilis) exposed
to a benzodiazepine anxiolytic drug, oxazepam (Brodin et al.,
2013). However, as our primary focus here was on the pathways
that cause reduction in food intake, we did not aim to cover such
compounds within the AOP case studies chosen.

For AOP case studies, we chose to focus on growth impairment
in juvenile fish caused by pyrethroids, selective serotonin reuptake
inhibitors (SSRIs) and cadmium. Pyrethroids were selected as an
example of a broadly studied group of chemicals for which their
mode of action (interference with neurotransmission) is relatively
well understood. Selective serotonin reuptake inhibitors were
selected because these less-well studied chemicals are also known
to interfere with central nervous system functions and have been
shown to cause both locomotion impairment and reduction in food
intake. However, the underlying mechanisms might differ from
those playing a role in the case of pyrethroids. Cadmium was
selected as an example of a chemical for which the effects on
growth are well documented, but, although the effects on feeding
Fig. 1. AOP case study for growth impairment by pyrethroids. The boxes describing speci
the bottom panel. Solid arrows denote postulated key event relationships. Dashed arrow
Abbreviations: y-o-y, young-of-year; GH/IGF, growth hormone/insulin-like growth factor
and locomotion have been reported as well, they do not appear
to be the primary mechanism underlying growth impairment in
this case.

In all three case studies (pyrethroids, SSRIs and cadmium), we
linked the individual-level AO ‘‘growth impairment’’ to popula-
tion-level AO ‘‘reduced young-of-year survival’’, because reduction
in growth of juveniles has been shown to negatively affect their
long-term survival (Quinn and Peterson, 1996; Baldwin et al.,
2009; Law et al., 2009; Pettorelli et al., 2011). However, discussing
the details behind these links to the population level is beyond the
scope of this manuscript. Apart from evaluating the upstream links
of the KE ‘‘reduction in food intake’’, we also use these three AOP
case studies to illustrate in support of the preceding paper (Groh
et al., in press) additional aspects that might need to be considered
in each case during chemical- and site-specific ecotoxicological
risk assessment. In the next sections, the three AOP case studies
will be presented and discussed.
4. AOP case study for growth impairment by pyrethroids

Pyrethroids are widely used neurotoxic insecticides frequently
found in aquatic systems worldwide (Jorgenson et al., 2013) and
shown to persist in sediments (Amweg et al., 2005; Weston
et al., 2013). Pyrethroids are highly toxic to non-target organisms,
including aquatic invertebrates and fish (Werner and Moran,
2008).
4.1. Description of AOP for growth impairment by pyrethroids

The proposed AOP for growth impairment caused by pyre-
throids is shown in Fig. 1. The detrimental effects of pyrethroids
on growth have been observed in many different fish species,
including sheepshead minnow (Cyprinodon variegatus) (Hansen
et al., 1983), steelhead trout (Salmo gairdneri) (Curtis et al.,
1985), fathead minnow (Pimephales promelas) (Jarvinen et al.,
1988; Floyd et al., 2008), bluegill sunfish (Lepomis macrochirus)
(Little et al., 1993; Tanner and Knuth, 1996) and freshwater catfish
(Heteropneustes fossilis) (Saha and Kaviraj, 2013).

Both natural and synthetic pyrethroids are known to interact
with voltage-gated sodium and potassium channels, leading to
‘‘delayed closure’’ or ‘‘prolonged opening’’ of individual channels.
This leads to membrane depolarization, repetitive discharges
(repetitive firing) and consequently synaptic disturbances, which
contribute to the hyper-excitatory symptoms of poisoning
fic events are aligned along the increasing levels of biological organization shown in
s indicate that the evidence for hypothesized relationship is currently insufficient.

.
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(Bradbury and Coats, 1989; Soderlund et al., 2002; Shafer and
Meyer, 2004).

At higher concentrations, a complete conduction block occurs,
which likely leads to cardiac arrest (Haverinen and Vornanen,
2014), resulting in mortality. Acute mortality following exposure
to pyrethroids has been shown for sheepshead minnow (Clark
et al., 1985), bluegill sunfish (Fairchild et al., 1992), fathead min-
now (Lozano et al., 1992; Werner et al., 2002; Denton et al.,
2003), guppy (Poecilia reticulata) (Mittal et al., 1994; Baser et al.,
2003), Chinook salmon (Oncorhynchus tshawytscha) (Eder et al.,
2004), Sacramento splittail (Pogonichthys macrolepidotus) (Werner
et al., 2002), tilapia (Oreochromis mossambicus) (Vijayavel and
Balasubramanian, 2007; Prasnanth et al., 2011), red drum (Sciaen-
ops ocellatus) (Parent et al., 2011) and common edible carp (Labeo
rohita) (Tiwari et al., 2012). These studies suggest that susceptibil-
ity to pyrethroid toxicity is well conserved among fish. This is fur-
ther supported by a high degree of sequence homology exhibited
by the molecular target of pyrethroids (the voltage-gated sodium
channel) across different species (LaLone et al., 2013).

Exposure to lower pyrethroid concentrations typically results in
subtle behavioral alterations manifesting as head and body shaking
(tremors), initial hyperactivity followed by hypoactivity and leth-
argy as well as loss of equilibrium. Such abnormalities of locomo-
tory behavior have been documented in bluegill (Little et al., 1993),
Sacramento splittail (Teh et al., 2005), striped bass (Morone saxatil-
is) (Geist et al., 2007), fathead minnow (Floyd et al., 2008; Beggel
et al., 2010, 2011), Nile tilapia (Oreochromis niloticus) (El-Sayed
and Saad, 2008), Delta smelt (Hypomesus transpacificus) (Connon
et al., 2009), zebrafish (Danio rerio) (Jin et al., 2009) and rainbow
trout (Oncorhynchus mykiss) (Goulding et al., 2013). Pyrethroid
concentrations that affect behavior are similar to those causing
growth impairment. Compared to acute LC50 values, they are
around one order of magnitude lower, with deviations depending
on the species and particular chemical.

Pyrethroid-caused impairment of locomotion can be expected
to reduce the ability of fish to catch prey, leading to a reduction
in food intake and a subsequent growth impairment. Indeed, in
esfenvalerate-exposed larval fathead minnow, impaired swimming
was shown to result in a reduction of feeding on a live prey and
was associated with growth impairment (Floyd et al., 2008).
Behavioral abnormalities coinciding with inhibition of growth by
pyrethroids have also been reported for bluegill (Little et al.,
1993) and Sacramento splittail (Teh et al., 2005). Reduction in
post-exposure feeding rates on live prey has also been observed
in guppy, however, growth was not assessed in that study
(Moreira et al., 2010). Although only a few studies simultaneously
assessed the effects of pyrethroids on locomotion, food intake and
growth in fish within the same experiment, the large body of evi-
dence obtained for effects of pyrethroids on locomotion and
growth individually suggests a strong link between locomotion
impairment and growth impairment by pyrethroids, mediated
through reduced foraging abilities. This AOP may appear to be par-
ticularly relevant for predatory fish, while for herbivorous fish we
could not find any studies that directly assessed pyrethroid effects
on feeding. However, decreased feeding rate associated with
growth reduction following pyrethroid exposure has also been
reported in steelhead trout (Curtis et al., 1985) and tilapia
(Vijayavel and Balasubramanian, 2007) fed with formulated diet.
Thus, it is possible that neurotoxic effects of pyrethroids can influ-
ence not only the predatory abilities, but also lead to a disruption
of normal behavioral functions, such as feeding, in general. Inter-
estingly, in invertebrates, pyrethroids were shown to impair loco-
motion in the common prawn (Palaemon serratus) (Oliveira et al.,
2012) and to reduce growth (Pieters et al., 2005) as well as both
locomotion and feeding efficiency (Christensen et al., 2005) in
Daphnia magna. This indicates that the AOP for growth impairment
by pyrethroids mediated via effects on locomotory behavior and
food intake may be conserved across species of a broad taxonomic
origin.

It has to be noted that biochemical and gene expression analy-
ses have also pointed to other potential mechanisms of pyrethroid
action that could be related to their negative effects on growth.
These include perturbation of several enzymes involved in
digestion following continuous exposure (Vijayavel and
Balasubramanian, 2007; Connon et al., 2009), as well as transient
(Beggel et al., 2011) or even persistent (Aksakal et al., 2010) down-
regulation of insulin-like growth factor (IGF) expression following
short-term exposure. Moreover, the influence of pyrethroids on
various other molecular, biochemical and hematological parame-
ters has been documented, most prominently for biomarkers of
oxidative stress (Kaviraj and Gupta, 2014). However, at present,
the extent of these factors’ contribution to growth reduction, com-
pared to the consequences of impaired swimming for food intake,
is not yet clear and might need further investigation.

4.2. Additional considerations

Application of the proposed AOP(s) in quantitative risk assess-
ment would require more detailed quantitative definition of key
event relationships as well as the integration of information on
environmental exposure conditions. This is needed in order to dis-
tinguish between pyrethroid concentrations likely to cause acute
(direct mortality) and sublethal (impairment of locomotion) effects
(Fig. 1). An important exogenous parameter to consider in this case
is water temperature, as lower values are known to result in higher
pyrethroid toxicity (Narahashi et al., 1998; Talent, 2005; Satpute
et al., 2007). This effect of temperature can be explained by both
reduced biotransformation of parent compound and increased
nerve sensitivity at lower temperatures (Harwood et al., 2009).
Another important thing to consider is the frequency and duration
of exposure to pyrethroids, as well as the presence of organic mat-
ter, which could reduce the bioavailability of pyrethroids (Thomas
et al., 2008). In the environment, repeated exposure pulses of short
duration are most likely to occur, because poorly soluble pyre-
throids are usually quickly adsorbed to organic particles and thus
become less bioavailable (Laskowski, 2002; He et al., 2008). Most
of the above-cited studies on sublethal effects of pyrethroids in fish
have been designed following the peak exposure scenario and thus
the obtained information on sublethal toxicity of pyrethroids is
environmentally relevant. Nonetheless, several data gaps may
require further clarification.

Since the effects of pyrethroids on growth can occur at a later
time point than the exposure itself, this may represent a case of
delayed toxicity. For example, in fathead minnow growth impair-
ment was observed following a very short (4 h) exposure to a pyre-
throid followed by 7 d of rearing in clean water, even though
behavioral responses have recovered within 3 d after the treat-
ment, probably coinciding with compound elimination from the
body (Floyd et al., 2008). This reduction in growth observed 7 d
after a peak exposure could be a consequence of severely impaired
locomotion and feeding shortly after the exposure event and insuf-
ficient time for compensatory growth to occur afterwards. How-
ever, another explanation could be that other factors, such as a
lasting interference with growth hormone (GH)/IGFs system
(Aksakal et al., 2010), could play a role in persistent effects of pyre-
throids on growth. In this regard, it might be informative to exam-
ine whether pyrethroids can specifically affect the epigenetic
regulation of respective genes. In addition, the shortest exposure
durations able to induce subsequent growth reduction, the degree
of persistence or reversibility of observed effects as well as the
time needed for organisms to completely recover from exposure
event need to be defined in more detail.



Fig. 2. AOP case study for growth impairment by selective serotonin reuptake inhibitors. The boxes describing specific events are aligned along the increasing levels of
biological organization shown in the bottom panel. Solid arrows denote postulated key event relationships. Dashed arrows indicate that the evidence for hypothesized
relationship is currently insufficient. Abbreviations: SSRI, selective serotonin reuptake inhibitor; y-o-y, young-of-year; 5-HT, 5-hydroxytryptamine (serotonin); CRH,
corticotropin releasing hormone; CART1, cocaine and amphetamine-regulated transcript 1; NPY, neuropeptide Y.
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Chemical-specific quantitative risk assessment of pyrethroids
would need to take into account differences in the toxicokinetic
and toxicodynamic characteristics of different compounds. For
example, compared to type I pyrethroids, type II pyrethroids,
which are characterized by the presence of an a-cyano group, are
generally more potent in inducing toxicity effects (Narahashi
et al., 2007), in particular on swimming performance (Goulding
et al., 2013). This can be explained by the fact that type II pyre-
throids have longer half-lives because they are biotransformed at
a slower rate due to a-cyano group physically blocking the hydro-
lysis of the ester linkage (Muir et al., 1994). In addition, type II
pyrethroids induce a much longer sodium type current, leading
to a faster membrane depolarization (Vijverberg and van den
Bercken, 1990). Moreover, more than 50-fold differences in toxic
potency have been reported for some pyrethroid enantiomers
(Ma et al., 2009; Zhao et al., 2010). Careful consideration of toxic-
okinetic aspects may also be relevant for assessment of mixture
effects with compounds other than pyrethroids. For example,
co-exposure with organophosphate pesticides has been shown to
synergistically increase the toxicity of pyrethroids (Denton et al.,
2003; Belden and Lydy, 2006), explained by the fact that organo-
phosphates inhibit esterases and thus diminish the biotransforma-
tion capacities needed to detoxify pyrethroids.
5. AOP case study for growth impairment by selective serotonin
reuptake inhibitors

Selective serotonin reuptake inhibitors (SSRIs), such as fluoxe-
tine and sertraline, are widely prescribed antidepressants (Wong
et al., 1995). Fluoxetine and its equipotent metabolite norfluoxe-
tine (Hiemke and Haertter, 2000) are fairly resistant to hydrolysis
and photolysis (Kwon and Armbrust, 2006; Styrishave et al., 2011)
and thus are frequently found at concentrations up to low lg L�1 in
the aquatic systems (Vasskog et al., 2008; Metcalfe et al., 2010) and
up to low lg kg�1 in fish tissues (Chu and Metcalfe, 2007).
5.1. Description of AOP for growth impairment by SSRIs

The proposed AOP for growth impairment by SSRIs is shown in
Fig. 2. Growth reduction has been documented for goldfish (Caras-
sius auratus) in response to repeated fluoxetine injections
(Mennigen et al., 2009) and for goldfish (Mennigen et al., 2010),
fathead minnow (Stanley et al., 2007; Painter et al., 2009) and
hybrid striped bass (M. saxatilis �M. chrysops) (Gaworecki and
Klaine, 2008) following waterborne fluoxetine exposure. In most
of these studies, an associated reduction in food intake has also
been observed. Exposure to fluoxetine and sertraline has also been
shown to decrease feeding in fathead minnow (Weinberger and
Klaper, 2014) and European perch (Hedgespeth et al., 2014),
respectively, but the fish growth was not assessed in these studies.
SSRI effects on growth associated with reduced food intake have
also been observed in amphibians Rana pipiens (Foster et al.,
2010) and Xenopus laevis (Conners et al., 2009). Compared to acute
LC50 values, SSRI concentrations that affect feeding and growth are
around two orders of magnitude lower. Based on the presented
evidence, the reduction in food intake can be seen as the primary
reason for growth impairment in response to SSRIs.

Considering the potential causes of food intake reduction, the
effects of SSRIs on locomotion may offer a plausible explanation
at a first glance. Exposure to SSRIs is known to affect behavior in
diverse species, generally eliciting hypoactive responses. For exam-
ple, SSRI exposure slowed predator avoidance behaviors in fathead
minnows (Painter et al., 2009; Weinberger and Klaper, 2014) and
Arabian killifish (Aphanius dispar) (Barry, 2013), reduced anxiety-
like behaviors in zebrafish (Wong et al., 2013), increased lethargy
in western mosquitofish (Gambusia affinis) (Henry and Black,
2008) and reduced swimming activity in Arabian killifish (Barry,
2013) and sheepshead minnow (Winder et al., 2012). SSRI effects
on locomotory behavior have also been observed in several inver-
tebrate species (Fong and Ford, 2014; Hazelton et al., 2014). How-
ever, although SSRIs were also reported to reduce the ability of
hybrid striped bass to capture prey possibly due to decreased loco-
motion (Gaworecki and Klaine, 2008; Bisesi et al., 2014), there is
currently insufficient evidence to support the notion that reduced
food intake caused by SSRIs is mediated through its effects specif-
ically on locomotory abilities.

Another important SSRI effect that can be linked to the
reduction in feeding is the interference with the abundance of
appetite-controlling neuropeptides in the brain, resulting in
decreased appetite and consequently less food intake. In humans,
fluoxetine administration was found to result in weight loss
(Halford et al., 2007) and key feeding circuits are known to be con-
served between fish and mammals (Volkoff et al., 2005; Polakof
et al., 2007). Indeed, the anorexigenic neuropeptides, corticotropin
releasing hormone (CRH) (De Pedro et al., 1993) and cocaine and
amphetamine-regulated transcript (CART1) (Volkoff and Peter,
2000), were found to increase in the goldfish brain following fluox-
etine treatment, while the orexigenic neuropeptide Y (NPY)
decreased (Mennigen et al., 2009, 2010). These responses in fish
are similar to those reported for mammals (Baker et al., 1996).
The decrease in NPY levels was also associated with the decrease
in circulating plasma glucose levels (Mennigen et al., 2010).
Although the direct neuropeptide-mediated influence of SSRIs on
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appetite would be biologically plausible (Halford et al., 2007), also
considering the major role in appetite regulation played by seroto-
nin in general (Overli et al., 1998; Lam and Heisler, 2007), more
research needs to be done to confirm the postulated linkages. For
example, similar investigations need to be carried out in more fish
species and also the conflicting results of opposing neuropeptide
levels found in different brain regions (Mennigen et al., 2009) need
to be resolved.

Another issue that still requires further research is determina-
tion of the exact influence of SSRI exposure on serotonin levels in
fish. SSRIs act to specifically block the presynaptic membrane sero-
tonin transporter (SLC6A4), thereby inhibiting synaptic reuptake
and recycling of serotonin (Wong et al., 1995). Compared to mam-
malian SLC6A4, fish SLC6A4 was found to have more conserved
residues involved in SSRI binding than even birds, with very similar
reuptake inhibition constants found in fish and rat (Gould et al.,
2007). The serotonergic system in general is also highly conserved
between fish and mammals (Kreke and Dietrich, 2008; Rico et al.,
2011). In mammals, the consensus is that SSRI administration leads
to increase in brain serotonin levels, which is one of the main
actions responsible for their effectiveness in treating depression
(Baker et al., 1996). However, contradicting evidence was reported
for fish. While an increase in brain serotonin levels was found in
goldfish after repeated fluoxetine injections (Mennigen et al.,
2009), chronic waterborne exposure to fluoxetine was reported
to cause reduction of serotonin concentrations in the brain of gold-
fish (Mennigen et al., 2010) and hybrid striped bass (Gaworecki
et al., 2012; Bisesi et al., 2014). One proposed explanation is that,
while serotonergic endpoints may still be affected due to target
conservation across fish and mammals, the exact nature of the
modulation itself may differ (Mennigen et al., 2011). Alternatively,
it could be that higher serotonin levels occur only in certain brain
parts or only at certain critical time points during the exposure
(Beyer and Cremers, 2008) and therefore they could be missed at
the time points and brain regions selected for analysis in fish stud-
ies. Moreover, continuous exposure to fluoxetine in water could
lead to feedback inhibition with time, resulting in apparent sup-
pression of serotonin levels at the end of the exposure when they
were analyzed.

5.2. Additional considerations

As discussed in the preceding section, the process of assembling
a putative AOP for SSRI effects on fish growth presented in Fig. 2
has revealed several large data gaps that still need to be filled.
More research is needed to elucidate molecular mechanisms oper-
ating in different species and to establish the quantitative relation-
ships between molecular responses to SSRI exposure and
subsequent outcomes on the organism level. In particular, expo-
sure routes, concentrations and duration that result in specific
effects need to be defined in more detail. A recently published crit-
ical commentary highlighted the widely differing potencies of
SSRIs reported in different studies. It was suggested that some of
these studies, particularly those reporting effects at very low SSRI
concentrations, had considerable limitations. These included lack
of concentration–response relationships, insufficient statistical
power and the use of non-standard endpoints with poorly charac-
terized baselines (Sumpter et al., 2014).

In regard to variable effective concentrations of SSRIs reported
by different studies, it might be important to consider some intrin-
sic chemical properties of these compounds (Brooks, 2014). SSRIs
are ionizable compounds and thus their toxicity and bioaccumula-
tive potential may differ significantly depending on pH (Valenti
et al., 2009; Rendal et al., 2011). For example, in Japanese medaka
(Oryzias latipes), 96-h LC50 values were 5.5, 1.3 and 0.20 mg L�1

and bioconcentration factors for liver were calculated to be 330,
580 and 3100 at pH 7, 8 and 9, respectively (Nakamura et al.,
2008). Moreover, most SSRIs are chiral compounds present as
racemic mixtures often in uncharacterized proportions. Different
enantiomers are known to have different potency. For example,
9.4-fold higher toxicity that caused growth inhibition in fathead
minnows was reported for S-fluoxetine compared to respective
R-enantiomer (Stanley et al., 2007). Therefore, some of the differ-
ences in reported effective concentrations could potentially be
explained by variability in these aspects across studies.

Nonetheless, considerable research gaps remain an obstacle to
understanding the causes of the very high sensitivity to SSRIs
reported for some species; many results do not reconcile with
the read-across hypothesis (Sumpter and Margiotta-Casaluci,
2014). This hypothesis predicts that, provided that the pharmaceu-
tical target is the same (highly conserved serotonin transporter in
the case of SSRIs), similar (behavioral) effects would be expected to
occur in fish or invertebrates at the blood concentrations compara-
ble to human therapeutic concentrations (Hugget et al., 2003;
Rand-Weaver et al., 2013; Sumpter and Margiotta-Casaluci,
2014). In this regard, it should be noted that in fish the metabolism
of fluoxetine was found to be slower (Smith et al., 2010) and its
persistence longer (Paterson and Metcalfe, 2008) than in mam-
mals. Such differences in metabolism could partially explain the
observed discrepancies.
6. AOP case study for growth impairment by cadmium

Cadmium (Cd) is a heavy metal pollutant present in terrestrial
and aquatic environments due to natural emissions as well as
anthropogenic activities such as mining and industrial processes.
In European rivers, Cd concentrations around 1 ppb or lower are
typically reported (Pan et al., 2010), while higher values (up to
1 ppm) can occur in developing countries with rapidly growing
industries (Yabe et al., 2010; Anetor, 2012). Cd is known to exert
genotoxic and also carcinogenic activity (Waisberg et al., 2003;
Bertin and Averbeck, 2006) and thus could possibly contribute to
promotion of tumor formation in the aquatic organisms. However,
Cd effects on individual fitness, such as impacts on growth, may be
more ecologically relevant and have higher prevalence in nature.
6.1. Description of AOP for growth impairment by cadmium

The proposed AOP for growth impairment by Cd is shown in
Fig. 3. Exposure to Cd was documented to cause growth impair-
ment in a variety of fish species, including brook trout (Salvelinus
fontinalis) (Eaton et al., 1978), Atlantic salmon (Salmo salar)
(Rombaugh and Garside, 1982; Peterson et al., 1983), rainbow
trout (Woodworth and Pascoe, 1982; Ricard et al., 1998;
Heydarnejad et al., 2013), white sucker (Catostomus comersoni)
and common shiner (Notropis cornutus) (Borgmann and Ralph,
1986), guppy (Miliou et al., 1998), bull trout (Salvelinus confluentus)
(Hansen et al., 2002b), topsmelt (Atherinops affinis) (Rose et al.,
2005, 2006), common carp (Cyprinus carpio) (Reynders et al.,
2006), brown trout (Salmo trutta) (Brinkman and Hansen, 2007),
European eel (Anguilla anguilla) (Pierron et al., 2007), silver catfish
(Rhamdia quelen) (Benaduce et al., 2008), red sea bream (Pagrus
major) (Cao et al., 2009), Japanese flounder (Paralichthys olivaceus)
(Cao et al., 2010) and ide (Leuciscus idus) (Witeska et al., 2014). In
Aphanius fasciatus collected in the field, a high accumulation of Cd
associated with a decreased growth rate and condition index was
observed (Kessabi et al., 2013). Compared to acute LC50 values,
Cd concentrations that affect growth are 1–3 orders of magnitude
lower, depending on the species and exposure conditions.

In larval topsmelt exposed to Cd, reduction in food intake was
associated with diminished growth (Rose et al., 2006). Association



Fig. 3. AOP case study for growth impairment by cadmium. The boxes describing specific events are aligned along the increasing levels of biological organization shown in
the bottom panel. Solid arrows denote postulated key event relationships. Dashed arrows indicate that the evidence for hypothesized relationship is currently insufficient.
Abbreviations: y-o-y, young-of-year.
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between growth impairment and reduction in food intake was also
observed in Cd-exposed common carp (Ferrari et al., 2011) and
rainbow trout (Heydarnejad et al., 2013). However, a reduced food
intake but no observable effects on growth were noted after Cd
exposure in rainbow trout (McGeer et al., 2000) and Nile tilapia
(Almeida et al., 2002), while in white sucker and common shiner
Cd reduced growth but had no observable effects on feeding
(Borgmann and Ralph, 1986). In the study with topsmelt, food
intake was positively correlated with the final weight in Cd-
exposed fish. This indicated that, although reduction in food intake
may have slightly contributed to the observed growth impairment,
factors other than food consumption have higher significance for
this outcome (Rose et al., 2006).

The available evidence regarding the effects of Cd on locomo-
tory behavior as potential cause of reduction in food intake is
rather inconclusive. Hypoactivity in response to Cd exposure has
been observed in common carp (Eissa et al., 2006) and in Astralohe-
rus facetum, a fish native to Argentina (Eissa et al., 2010). However,
induction of hyperactivity by Cd has also been reported, for exam-
ple, for bluegill sunfish (Ellgaard et al., 1978), rainbow trout
(Majewski and Giles, 1981) and Atlantic salmon (Peterson et al.,
1983). It is possible that the observed discrepancy in Cd effects
on locomotory behavior could partially be due to the use of differ-
ent parameters for final assessment of the hypoactive or hyperac-
tive nature of behavioral alterations. For example, while activity
index decreased in Cd-exposed A. facetum, an increase in swim-
ming velocity was observed at the same time (Eissa et al., 2010).

Do alternative explanations exist for extensively documented
effects of Cd on growth in fish? Exposure to Cd is known to invoke
diverse energy-consuming responses, including hyperactive
behavior as well as diverse compensatory and defense pathways
such as ion imbalance compensation, metallothionein production,
oxidative stress defense, increased cell proliferation and induction
of apoptosis. Therefore, we propose that a ‘‘generic’’ KE of increase
in metabolic demands during exposure to Cd causes a reallocation
of the energy that would have otherwise been directed towards
growth. This in turn results in growth impairment. The supporting
scientific evidence will be discussed in the next paragraphs.
Cd is known to disrupt ion balance through interference with Ca
influx in the gills of freshwater fish (Verbost et al., 1987; Reynders
et al., 2006) as well as with Ca uptake in the kidney and intestine of
marine fish (Schoenmakers et al., 1992) and also by inhibiting Na+/
K+-ATPase activity (Pratap and Wendelaar Bonga, 1993; Lionetto
et al., 2000; Garcia-Santos et al., 2011). Fish exposed to metals
often compensate for the experienced disruption of ion regulation
by increasing the number of chloride cells in the gills, a process
that implies additional energetic demands (Verbost et al., 1987;
Lee et al., 1996; Wong and Wong, 2000). Moreover, additional
energy expenditures may be needed to cope with Cd-caused gill
damage. For example, Cd exposure was shown to result in hyper-
trophy of gill filaments, hyperplasia and necrosis of the gill lamel-
lae and increased mucus secretion in the exposed fish (Evans,
1987; Verbost et al., 1987; Ferrari et al., 2005).

In addition to gills, other organs are known to respond to Cd
exposure with hyperplasia and hypertrophy. For example, liver
size was found to increase after long-term exposure to Cd in rain-
bow trout (Lowe-Jinde and Niimi, 1984) and exposure of gilthead
sea bream (Sparus aurata) to Cd caused an increase in liver size
and upregulation of a cell proliferation marker (proliferating cell
nuclear antigen) in liver and kidney (Garcia-Santos et al., 2011).
Similarly, increased cell proliferation was found in the liver and
kidney of Puntius gonionotus exposed to Cd through the diet. This
effect was assumed to be a response aiming to compensate for con-
comitantly occurring cell necrosis (Rangsayatorn et al., 2004).

Exposure to Cd, similar to many other metals, is also known to
induce a variety of stress responses. An increase in plasma cortisol
levels has been noted in fish exposed to Cd, including tilapia (Fu
et al., 1990; Pratap and Wendelaar Bonga, 1990; Ricard et al.,
1998), hybrid tilapia (Oreochromis sp.) (Wu et al., 2007) and gilt-
head sea bream (Garcia-Santos et al., 2011). The production of
metallothioneins, the proteins that serve to protect the organism
by sequestering metals (Olsson, 1993), is frequently induced by
Cd exposure, as was shown in tilapia (Fu et al., 1990), red sea
bream (Kuroshima et al., 1993), turbot (Scophthalmus maximus)
(George et al., 1996), common carp (De Smet and Blust, 2001),
Atlantic salmon (Berntssen et al., 2001) and yellow catfish
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(Pelteobagrus fulvidraco) (Kim et al., 2012). Furthermore, increased
levels of several ABC transporters, potentially involved in Cd excre-
tion as one of the cellular detoxification mechanisms, have been
observed in Cd-exposed Antarctic fish Trematomus bernacchi
exposed to elevated Cd levels (Zucchi et al., 2010).

Induction of various oxidative stress biomarkers by Cd has
also been frequently measured, for example, in Nile tilapia
(Almeida et al., 2002; Atli and Canli, 2007), Japanese flounder
(Cao et al., 2010), silver catfish (Pretto et al., 2010), marine fish
Salaria basilisca (Messaoudi et al., 2009) and gilthead sea bream
(Souid et al., 2013). An increase in apoptosis, an energetically
costly process of programmed cell death, frequently induced by
ROS signaling (Robertson and Orrenius, 2000), has also been
observed. For example, Cd induced apoptotic DNA fragmentation
or apoptotic cell death in dub (Limanda limanda) (Piechotta et al.,
1999), Atlantic salmon (Berntssen et al., 2001) and topsmelt
(Rose et al., 2006).

Obviously, induction of all these processes increases the
demands on cellular metabolism to provide the required precursor
metabolites as well as energy required to synthesize various pro-
teins and other molecules involved in stress response and defense
pathways. Indeed, an association between high levels of metallo-
thioneins and reduction in energetic reserves and/or growth has
been found in Cd-exposed topsmelt (Rose et al., 2006), tilapia
(Wu et al., 2000) and sea bass (Dicentrarchus labrax) (Cattani
et al., 1996).

Cd exposure has been frequently observed to result in increased
oxygen consumption rates (Suresh et al., 1993; Espina et al., 2000;
Rose et al., 2006; Ferrari et al., 2011). This can be assumed to be a
compensatory response reflecting an increased need for oxidative
metabolism and ATP production required to cope with Cd-induced
stress. An alternative explanation suggested by some authors is
that the increase in oxygen consumption rates could be due to
the hyperactivity induced by Cd exposure. However, Cd-induced
hyperactivity has mostly been reported for shorter-term expo-
sures, while during chronic exposure, increased aerobic metabo-
lism appears to be a more plausible explanation for the rise in
oxygen consumption. Despite the attempt of the organism to
respond to the rising energetic demands by increasing the energy
production, it is likely that all the surplus energy produced, as well
as a significant proportion of basal energy reserves, would be allo-
cated to cover the additional metabolic costs arising due to Cd. In
this way, the energy would be diverted from growth, which would
result in growth impairment. Thus, as depicted in Fig. 3, the ‘‘gen-
eric’’ KEs of increased metabolic demands and toxicant-induced
reallocation of energy resources appear to be the main reason for
the growth impairment caused by Cd, while effects on locomotion
and their potential association with reduced food intake seem to
play only a minor role.

The AOP shown in Fig. 3 is somewhat unique in a sense that it
depicts several upstream KEs that all converge at a single common
KE (increased metabolic demands), as opposed to a conventional
practice of representing individual AOPs as a linear sequence of
single KEs. While each of the paths that lead to the KE of increased
metabolic demands represents a potential contribution, any one of
these individual paths alone may not be sufficient to induce a per-
turbation of energy fluxes that is strong enough to result in an AO.
Thus, the effect of Cd appears to be a net result of multiple pathway
activation that need to be considered in the context of AOP net-
works rather than as a single linear AOPs. The quantitative consid-
eration of how many of these various upstream pathways would
need to be simultaneously impacted in order to result in growth
impairment can be embedded in the key event relationships
between upstream KEs and KE of increased metabolic demands.
Alternatively, the quantitative understanding of the magnitude of
metabolic perturbation that would lead to impairment of growth
could be embedded in the key event relationship between this
KE and AO.

6.2. Additional considerations

In environmental risk assessment of Cd effects, it is necessary to
take into account the influence of water composition and other
external exposure conditions (Peakall and Burger, 2003). For exam-
ple, Cd toxicity was shown to decrease in media with higher hard-
ness (Hansen et al., 2002a,b; Brinkman and Hansen, 2007;
Benaduce et al., 2008) and increase under hypoxic conditions
(Hattlink et al., 2005). In regard to toxicity outcomes, environmen-
tally relevant factors, such as food limitation, have been shown to
affect the degree of Cd toxicity (Rose et al., 2005).

Significant differences in sensitivity to Cd have been reported
across species (Eaton et al., 1978; Hansen et al., 2002a; Tan et al.,
2008; Wang et al., 2013). Various factors can account for this.
These include variations in metabolic rate (Kolath et al., 2006;
Eya et al., 2012; Fuentes et al., 2013) and differential capacities
to induce protective responses such as metallothionein production
(Kalman et al., 2010) or oxidative stress defense (Hauser-Davis
et al., 2012; Srikanth et al., 2013), as well as differences in Cd
uptake and bioaccumulation. In regard to the latter, significant
cross-species differences in Cd uptake rates have been reported
(Niyogi and Wood, 2004; Wang and Rainbow, 2008) and fishes
from higher trophic levels were shown to accumulate higher levels
of some metals, with a positive relationship between species body
weight and metal levels observed (Burger et al., 2002).

Sensitivity differences across life stages are also known. Inter-
estingly, post-swim-up fry are often reported to be more sensitive
to Cd compared to embryos and early larvae. Such is the case in
Atlantic salmon (Peterson et al., 1983) and brown trout
(Brinkman and Hansen, 2007). However, a detailed time-resolved
analysis of Cd toxicity during the first day of development showed
that the earliest life stages of Japanese medaka (up to morula) were
the most sensitive to Cd, with sensitivity rapidly decreasing if
exposure was started at later time points (Michibata et al., 1987).
In juvenile fish, lower body size was shown to be associated with
higher sensitivity to Cd. This was attributed to higher Cd accumu-
lation levels resulting in greater damage occurring before the
upregulation of protective responses (Kuroshima et al., 1993).

The proposed AOP for Cd-caused growth impairment may be
broadly applicable to other metals as many of them are known
to induce similar energetically costly cellular responses
(Monserrat et al., 2007; Yoon et al., 2008; Zhou et al., 2008; Chen
et al., 2012; Hauser-Davis et al., 2012). Apart from metals, many
other compounds were also shown to cause elevation of oxygen
consumption rates associated with diminishment of growth, as
was the case for example for dieldrin exposure in juvenile large-
mouth bass (Micropterus salmoides) (Beyers et al., 1999). Clearly,
energy reallocation can be viewed as a significant ‘‘generic’’ KE
occurring in response to many toxicants. Interestingly, even for
the compounds where a relatively straightforward explanation of
the mode of action appears to be established, as is the case for
pyrethroids’ effects on locomotion through interference with neu-
rotransmission (see Section 4), an alternative explanation for the
observed decrease in locomotion has been suggested to be the dis-
rupted energy allocation, since exposure to pyrethroids could
divert the energy for detoxification and antioxidant protection
instead of swimming (Oliveira et al., 2012). Theoretically, exposure
to pyrethroids could also result in diversion of energy from growth
itself. Recently, it has been shown that dietary supplementation of
ascorbic acid counteracted the detrimental effects of cypermethrin
on growth in the freshwater catfish (Saha and Kaviraj, 2013), but
the exact mechanisms behind this action of ascorbic acid have
not been established yet. In the future, systematic approaches need
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to be developed that allow ‘‘ranking’’ the relative contribution of
energy disruption KEs, compared to those associated with more
specific modes of action, to the emergence of the observed AOs.
Integration of AOP-derived knowledge with computational
approaches, such as dynamic energy budget (DEB) models, used
to characterize toxicant-induced disruption of energy fluxes
(Kooijman and Bedaux, 1996; Jager et al., 2006), may help in estab-
lishing and evaluating the quantitative relationships between dif-
ferent events.
7. Potential alternative methods for prediction of effects on fish
growth identified through AOP case studies

The AOP case studies presented above highlighted several
important KEs plausibly linked to the AO growth impairment, for
which we would now like to discuss the potential venues for devel-
opment of alternative assays.
7.1. KEs ‘‘locomotion impairment’’ and ‘‘reduction in food intake’’

The KE ‘‘reduction in food intake’’ appeared to be strongly
linked to the AO ‘‘growth impairment’’ for two out of the three
AOP case studies examined: pyrethroids and SSRIs. Indeed, the
notion that a sufficient reduction in food intake would likely lead
to growth impairment is biologically plausible. Therefore, once this
relationship is understood quantitatively, the measurement of
chemical effects on food intake could substitute direct measure-
ment of growth. However, measuring food intake in aquatic organ-
isms is challenging because of the need for longer experiment
duration (days to weeks) and the relatively high numbers of ani-
mals needed to account for individual variability and control for
confounding factors. This makes assessing food intake not much
more efficient than measuring growth directly. Therefore, it would
be extremely beneficial if an additional upstream KE could be
established that can predict probable impacts on food intake and
that could be assessed in a more straightforward manner.

The predictive utility of KE ‘‘locomotion impairment’’ for KE
‘‘reduction in food intake’’ appeared to be strong for pyrethroids.
For SSRIs, a direct influence on appetite through interference with
neuropeptides in the brain appeared to play a more significant role
in reduction of feeding, with more research needed to detail these
linkages. However, many other insecticides apart from pyrethroids,
for example organochlorines, organophosphates and carbamates,
are known to interfere with neurotransmission and thus could
potentially influence locomotory and foraging abilities of the ani-
mals. Therefore, the proposed AOP for growth impairment by pyre-
throids mediated through effects on locomotion may prove useful
for several other classes of compounds. Furthermore, behavioral
alterations in fish larvae can be linked to other apical outcomes,
such as survival, and computational modeling approaches, such
as individual-based models (IBM), can be used to predict the
effects on populations (Murphy et al., 2008). All this may justify
an investment into further research on development of locomotion
assays with fish early life stages to be used for prioritization or
even potential replacement of chronic toxicity tests assessing
chemical effects on growth. Automated systems for high-through-
put examination of locomotory responses in young fish already
exist and recently developed computer-assisted platforms can
even be used to study in fish larvae not only locomotion per se
but also more complex behaviors such as prey capture (Bianco
et al., 2011). So far, the most systematic work on fish larvae behav-
ior has been performed with zebrafish (Brustein et al., 2003; Gerlai,
2010; Padilla et al., 2011; Tierney, 2011; Schnoerr et al., 2012;
Ahmad and Richardson, 2013; Kalueff et al., 2013; Selderslaghs
et al., 2013). Further research on fish larvae locomotion as an
endpoint for prediction of prey capture ability and thus potential
effects on growth should focus on (i) characterization of robustness
and persistence of locomotory responses in fish larvae, (ii) evalua-
tion of predictive capacity of behavioral changes assessed in short-
term assays with larvae for longer-term effects on locomotory
behavior and prey catching abilities in older animals, (iii) elucida-
tion of quantitative aspects to support such extrapolation and (iv)
evaluation of comparability of fish larvae behavioral responses
across several different species.

Another question to consider is whether it would be worth-
while to invest in further development of the embryo model with
the goal to substitute direct behavioral observations in later stages
by embryo-based behavioral or molecular tests. If successful, this
‘‘non-animal’’ model could replace testing with animal life stages
that are protected under animal welfare legislation in Europe
(EU, 2010). Indeed, assessment of movement can be done in
embryos and it was recently suggested as a potential assay for
developmental neurotoxicity testing (Selderslaghs et al., 2010,
2013). However, in many cases the patterns of responses as well
as sensitivity to certain toxicants significantly differ between
embryos and later stages (Airhart et al., 2007; Jin et al., 2009;
Lange et al., 2012; Sloman and McNeil, 2012), and one particular
disadvantage of embryonic stages is that spontaneous swimming
activity is not yet established.

Theoretically, the embryos could also be used to assess certain
molecular or biochemical responses related to functioning of
nervous system. For example, one might attempt to examine the
correlation between the changes in the levels of certain neuropep-
tides in the embryos and effects on appetite observed later on. Sim-
ilarly, molecular markers related to performance and control of
movements could be assessed. However, for prediction of effects
on complex physiological responses such as behavior or appetite,
multiple potential molecular mechanisms of disruption would
likely need to be tested in the embryo. Even then, the evidence
for later occurrence of adverse effects on locomotory or feeding
behavior may still remain inconclusive due to the insufficient
knowledge on the crosstalk and compensatory circuits among the
different pathways. Furthermore, certain molecular players may
simply be absent during the embryonic stage due to the yet incom-
plete maturation of the nervous system. In addition, toxicokinetic
aspects such as differences in uptake and biotransformation, as
well as the absence of exogenous feeding, may further contribute
to discrepancies between behavioral responses observed in
embryos and larvae.

Therefore, instead of using the embryos to carry out the incon-
clusive evaluation of movement patterns or multiple molecular
pathways that could later manifest in behavioral alterations, a
much more efficient strategy to assess the effects of chemicals on
locomotory behavior and prey catching ability might be to use
the phenotypic screens during the earliest life stage that would
already exhibit such responses physiologically. Early fish larvae
that already feed exogenously are known to exhibit several robust
locomotory behavior patterns reminiscent of those in juveniles or
adult fish. Moreover, even for certain molecular investigations,
such as studies of appetite-controlling neuropeptides, the use of
exogenously feeding larvae instead of embryos may prove to be a
much more realistic test setup, providing data useful for further
extrapolation to later stages. At the same time, similar to embryos,
the experiments with early larvae still require rather modest space
and resource investments. Therefore, although the use of fish lar-
vae falls within the scope of animal experimentation laws (e.g.
EU, 2010), modification of current practices for chronic toxicity
assessment from prolonged tests with juvenile or adult fish to tar-
geted assessment of relevant physiological responses in the larvae
would still offer a significant improvement in terms of animal wel-
fare, namely refinement.
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Another research direction could focus on a closer evaluation of
locomotion impairment assessment in invertebrates in regard to
its capacity to predict similar effects in vertebrates. In particular
the mechanisms of neurotransmission are known to be well con-
served across these taxa (Narahashi et al., 1998; Salanki, 2000;
Francis et al., 2003). However, both higher CNS functions as well
as toxicokinetic processes are known to differ widely, which may
complicate the establishment of quantitative prediction methods.
7.2. KE ‘‘increased metabolic demands’’

As discussed above, the organisms exposed to Cd attempt to
compensate for increased metabolic demands by increasing their
energy production. ATP is most efficiently produced aerobically
in actively respiring mitochondria through the mechanism of oxi-
dative phosphorylation. Since this process requires oxygen, oxygen
consumption can be used as an indirect measure of metabolic
activity and thus may constitute a valuable assay for the KE
‘‘increased metabolic demands’’. Indeed, exposure to Cd has been
shown to result in higher oxygen consumption rates in a number
of cases (Suresh et al., 1993; Espina et al., 2000; Rose et al.,
2006; Ferrari et al., 2011). Another effective measure of
mitochondrial activity is the ATP/ADP ratio, which is high when
mitochondria are actively respiring and low when ATP production
occurs mainly through anaerobic mechanisms such as glycolysis.
Furthermore, mitochondrial function in fish can be evaluated by
traditional biochemical methods involving isolation of mitochon-
dria or by newer methods, which use fluorescent dyes such as
Mitotracker to measure mitochondrial function in vivo in cells or
even in whole organisms, such as zebrafish embryos (Lin et al.,
2006). In addition, a transgenic zebrafish with fluorescent mito-
chondria has been created, which could be useful for live imaging
of mitochondrial effects (Kim et al., 2008). Thus, the described
alternative assays can be used to obtain information on mitochon-
drial activity and its modulation by chemical exposure, allowing to
screen for chemicals that could act primarily through induction of
cellular toxicity responses resulting in increased metabolic
demands and reallocation of organism energy reserves.
8. Conclusion

In conclusion, the AOPs offer a powerful approach to organize
and assess the available knowledge, as we have demonstrated by
applying the middle-out AOP development strategy on the exam-
ple of growth impairment as an outcome of chronic toxicity in fish.
For selection of KEs to focus on, we suggest to consider (i) impor-
tance of a particular process for outcomes related to the endpoint
in question, (ii) pathway conservation across species, (iii)
frequency of occurrence of a certain disruption and (iv) environ-
mental relevance of chemical-induced effects. Our analysis of
AOP case studies for growth impairment by pyrethroids, SSRIs
and Cd demonstrated that the reduction in food intake is an impor-
tant KE strongly linked to growth impairment in case of pyre-
throids and SSRIs. The involvement of locomotion impairment in
effects on feeding and growth was found to be strong for pyre-
throids. For SSRI-induced reduction in food intake, their direct
effects on appetite may play a role more important than their
impacts on locomotion. In the case of Cd, not the reduction in food
acquisition, but the drastically increased metabolic demands
appear to best explain the observed growth reduction. This points
to a reallocation of energy resources as the main cause of growth
impairment by Cd. With these examples we demonstrate that
thinking in terms of AOPs allows one to critically review the
existing experimental evidence concerning the linkages between
toxicity events at different levels of organization. This in turn
supports identifying important knowledge gaps as well as poten-
tial alternative tests that could be developed for practical risk
assessment purposes. The presented AOP case studies also illus-
trate the difficulties associated with development of single linear
AOPs. This emphasizes the need to understand and quantitatively
characterize the interplay between multiple pathways potentially
contributing to an AO in question. In the future, development of
AOP networks should allow the consideration of the net effects
of chemicals and chemical mixtures in the context of multiple
interlinked AOPs.

The work presented above has been initiated at an international
expert workshop ‘‘Advancing AOPs for integrated toxicology and
regulatory applications’’ that took place on March 2–7th, 2014, in
Somma Lombardo, Italy. Many more aspects related to develop-
ment and applications of AOPs for risk assessment are highlighted
in several other papers originating from the same workshop, which
can be found at https://aopkb.org/saop/. In particular, these manu-
scripts provide a detailed guidance on strategical approaches to
AOP development and discuss weight-of-evidence evaluation of
AOPs, regulatory acceptance of AOPs and use of AOPs in guiding
integrated approaches to testing and assessment.
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