Zur Kurzanzeige

dc.contributor.author
Vogl, Florian
dc.contributor.author
Bernet, Benjamin
dc.contributor.author
Bolognesi, Daniele
dc.contributor.author
Taylor, William R.
dc.date.accessioned
2017-11-15T13:21:15Z
dc.date.available
2017-11-15T10:28:10Z
dc.date.available
2017-11-15T11:31:11Z
dc.date.available
2017-10-06T02:01:56Z
dc.date.available
2017-11-15T13:21:15Z
dc.date.issued
2017-09-07
dc.identifier.issn
1932-6203
dc.identifier.other
10.1371/journal.pone.0182617
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/208767
dc.identifier.doi
10.3929/ethz-b-000208553
dc.description.abstract
Purpose Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. Materials and methods 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. Results A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2–5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter. Conclusions This work has shown the capability of low-frequency quantitative acoustics to reflect changes in porosity and individual pore characteristics and demonstrated that additive manufacturing is an appropriate method that allows the influence of individual bone properties on the wave propagation to be systematically assessed. The results of this work opens perspectives for the efficient development of a multi-frequency, multi-mode approach to screen, diagnose, and monitor bone pathologies in individuals.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
PLOS
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
PLoS ONE
ethz.journal.volume
12
en_US
ethz.journal.issue
9
en_US
ethz.journal.abbreviated
PLoS ONE
ethz.pages.start
e0182617
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
San Francisco, CA
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03994 - Taylor, William R. / Taylor, William R.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03994 - Taylor, William R. / Taylor, William R.
en_US
ethz.date.deposited
2017-10-06T02:02:01Z
ethz.source
FORM
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-11-15T13:21:19Z
ethz.rosetta.lastUpdated
2024-02-02T03:01:13Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/190394
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/208553
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Towards%20assessing%20cortical%20bone%20porosity%20using%20low-frequency%20quantitative%20acoustics:%20A%20phantom-based%20study&rft.jtitle=PLoS%20ONE&rft.date=2017-09-07&rft.volume=12&rft.issue=9&rft.spage=e0182617&rft.issn=1932-6203&rft.au=Vogl,%20Florian&Bernet,%20Benjamin&Bolognesi,%20Daniele&Taylor,%20William%20R.&rft.genre=article&rft_id=info:doi/10.1371/journal.pone.0182617&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige