Show simple item record

dc.contributor.author
Jalal, Sahar
dc.contributor.author
Van de Moortele, Tristan
dc.contributor.author
Nemes, Andras
dc.contributor.author
Amili, Omid
dc.contributor.author
Coletti, Filippo
dc.date.accessioned
2021-08-23T16:07:59Z
dc.date.available
2021-08-20T12:26:16Z
dc.date.available
2021-08-23T16:07:59Z
dc.date.issued
2018-10
dc.identifier.issn
2469-990X
dc.identifier.other
10.1103/physrevfluids.3.103101
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501604
dc.description.abstract
We investigate the steady expiratory and the oscillatory flow in a planar double bifurcation model with geometric proportions relevant to the respiratory human airways. Expanding on a previous study focused on steady inspiration [Jalal et al., Exp. Fluids 57, 148 (2016)], we use magnetic resonance velocimetry to characterize the three-dimensional velocity field for a range of Reynolds (Re) and Womersley (Wo) numbers. During expiration the velocity profiles are flatter than in inspiration, due to stronger secondary motions. The latter are characterized by counter-rotating streamwise vortices induced by curvature at the branch junctions. With increasing Re, the vortices gain strength, and for Re≥1000 they propagate through successive branching generations, profoundly changing the secondary flow pattern. Under oscillatory conditions, as long as the ventilation frequency is in the normal respiration range, the flow topology for both inhalation and exhalation phases is similar to the corresponding steady cases over most of the breathing cycle. On the other hand, in the high-frequency ventilation regime (Wo=12), the acceleration part of both inhalation and exhalation phases show signature features of oscillatory flows, with high-momentum regions located close to the walls. The phenomenon of counterflow is found to be prominent at Wo≥6, with reverse flow pockets marking the velocity field especially during the inhalation-exhalation inversion. With increasing oscillation frequency, the secondary motions become more intense during the inhalation phase but are attenuated during the exhalation phase of the cycle. The cycle-averaged drift is found to be significant at low Wo but decreases with increasing ventilation frequency, suggesting that steady streaming is not the main transport mechanism during high-frequency ventilation.
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
dc.title
Three-dimensional steady and oscillatory flow in a double bifurcation airway model
en_US
dc.type
Journal Article
ethz.journal.title
Physical Review Fluids
ethz.journal.volume
3
en_US
ethz.journal.issue
10
en_US
ethz.journal.abbreviated
Phys. Rev. Fluids
ethz.pages.start
103101
en_US
ethz.size
23 p.
en_US
ethz.publication.place
College Park, MD
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::09709 - Coletti, Filippo / Coletti, Filippo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::09709 - Coletti, Filippo / Coletti, Filippo
en_US
ethz.date.deposited
2021-08-20T12:26:21Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-23T16:08:05Z
ethz.rosetta.lastUpdated
2024-02-02T14:33:20Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Three-dimensional%20steady%20and%20oscillatory%20flow%20in%20a%20double%20bifurcation%20airway%20model&rft.jtitle=Physical%20Review%20Fluids&rft.date=2018-10&rft.volume=3&rft.issue=10&rft.spage=103101&rft.issn=2469-990X&rft.au=Jalal,%20Sahar&Van%20de%20Moortele,%20Tristan&Nemes,%20Andras&Amili,%20Omid&Coletti,%20Filippo&rft.genre=article&rft_id=info:doi/10.1103/physrevfluids.3.103101&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record