DARKSIDE: A Heterogeneous RISC-V Compute Cluster for Extreme-Edge On-Chip DNN Inference and Training
OPEN ACCESS
Loading...
Author / Producer
Date
2022
Publication Type
Journal Article
ETH Bibliography
yes
Citations
Altmetric
OPEN ACCESS
Data
Rights / License
Abstract
On-chip deep neural network (DNN) inference and training at the Extreme-Edge (TinyML) impose strict latency, throughput, accuracy, and flexibility requirements. Heterogeneous clusters are promising solutions to meet the challenge, combining the flexibility of DSP-enhanced cores with the performance and energy boost of dedicated accelerators. We present DARKSIDE, a System-on-Chip with a heterogeneous cluster of eight RISC-V cores enhanced with 2-b to 32-b mixed-precision integer arithmetic. To boost the performance and efficiency on key compute-intensive DNN kernels, the cluster is enriched with three digital accelerators: 1) a specialized engine for low-data-reuse depthwise convolution kernels (up to 30 MAC/cycle); 2) a minimal overhead datamover to marshal 1–32-b data on-the-fly; and 3) a 16-b floating-point tensor product engine (TPE) for tiled matrix-multiplication acceleration. DARKSIDE is implemented in 65-nm CMOS technology. The cluster achieves a peak integer performance of 65 GOPS and a peak efficiency of 835 GOPS/W when working on 2-b integer DNN kernels. When targeting floating-point tensor operations, the TPE provides up to 18.2 GFLOPS of performance or 300 GFLOPS/W of efficiency—enough to enable on-chip floating-point training at competitive speed coupled with ultralow power quantized inference.
Permanent link
Publication status
published
External links
Editor
Book title
Journal / series
Volume
2
Pages / Article No.
231 - 243
Publisher
IEEE
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Heterogeneous cluster; tensor product engine (TPE); ultralow-power AI
Organisational unit
03996 - Benini, Luca / Benini, Luca
Notes
Funding
101034126 - Pilot using Independent Local & Open Technologies (EC)