Show simple item record

dc.contributor.author
Moelling, Karin
dc.contributor.author
Broecker, Felix
dc.contributor.author
Russo, Giancarlo
dc.contributor.author
Sunagawa, Shinichi
dc.date.accessioned
2018-11-22T14:29:04Z
dc.date.available
2017-10-06T03:09:02Z
dc.date.available
2017-10-26T14:23:01Z
dc.date.available
2017-10-27T07:09:09Z
dc.date.available
2018-11-05T13:42:26Z
dc.date.available
2018-11-05T13:55:23Z
dc.date.available
2018-11-22T14:29:04Z
dc.date.issued
2017-09-14
dc.identifier.issn
1664-302X
dc.identifier.other
10.3389/fmicb.2017.01745
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/191353
dc.identifier.doi
10.3929/ethz-b-000191353
dc.description.abstract
Retroviral infections are ‘mini-symbiotic’ events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Media
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
RNase H
en_US
dc.subject
Reverse transcriptase
en_US
dc.subject
Retroviruses
en_US
dc.subject
(Retro)-transposons
en_US
dc.subject
Ribozymes
en_US
dc.subject
Evolution
en_US
dc.subject
Antiviral defense
en_US
dc.subject
Immune systems
en_US
dc.title
RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Frontiers in Microbiology
ethz.journal.volume
8
en_US
ethz.journal.abbreviated
Front Microbiol
ethz.pages.start
1745
en_US
ethz.size
20 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Lausanne
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02520 - Institut für Mikrobiologie / Institute of Microbiology::09583 - Sunagawa, Shinichi / Sunagawa, Shinichi
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02207 - Functional Genomics Center Zurich / Functional Genomics Center Zurich
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02520 - Institut für Mikrobiologie / Institute of Microbiology::09583 - Sunagawa, Shinichi / Sunagawa, Shinichi
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02207 - Functional Genomics Center Zurich / Functional Genomics Center Zurich
en_US
ethz.date.deposited
2017-10-06T03:09:17Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-10-27T07:09:12Z
ethz.rosetta.lastUpdated
2024-02-02T06:39:46Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=RNase%20H%20As%20Gene%20Modifier,%20Driver%20of%20Evolution%20and%20Antiviral%20Defense&rft.jtitle=Frontiers%20in%20Microbiology&rft.date=2017-09-14&rft.volume=8&rft.spage=1745&rft.issn=1664-302X&rft.au=Moelling,%20Karin&Broecker,%20Felix&Russo,%20Giancarlo&Sunagawa,%20Shinichi&rft.genre=article&rft_id=info:doi/10.3389/fmicb.2017.01745&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record