
Open access
Date
2018-01Type
- Conference Paper
ETH Bibliography
yes
Altmetrics
Abstract
A genetic algorithm to design efficient large-scale public transport networks is extended. It goes beyond existing approaches by incorporating a dynamic demand response towards both changes in the network and external disruptions. The algorithm is based on an agent-based (MATSim) simulation and tested for the city of Zurich. Compared to the existing public transport system, it proposes a sparser network with substantially higher frequencies. By doing so, the algorithm predicts a higher transit ridership at a lower level of subsidies, thus increasing the effectiveness of public transportation. Moreover, it reliably identifies corridors for potential capacity upgrades. The approach may help transport planners to assess their existing public transport networks and to plan public transport infrastructure for the era of automated vehicles. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000193259Publication status
publishedBook title
2018 TRB Annual Meeting OnlinePages / Article No.
Publisher
Transportation Research BoardEvent
Organisational unit
03521 - Axhausen, Kay W. / Axhausen, Kay W.
02226 - NSL - Netzwerk Stadt und Landschaft / NSL - Network City and Landscape
02655 - Netzwerk Stadt und Landschaft D-ARCH
Related publications and datasets
Is variant form of: https://doi.org/10.3929/ethz-b-000193148
More
Show all metadata
ETH Bibliography
yes
Altmetrics