Automatic detection of snow avalanches in continuous seismic data using hidden Markov models
dc.contributor.author
Heck, Matthias
dc.contributor.author
Hammer, Conny
dc.contributor.author
Herwijnen, Alec van
dc.contributor.author
Schweizer, Jürg
dc.contributor.author
Fäh, Donat
dc.date.accessioned
2018-02-15T11:00:31Z
dc.date.available
2018-02-07T02:32:13Z
dc.date.available
2018-02-15T11:00:31Z
dc.date.issued
2018-01-25
dc.identifier.issn
1561-8633
dc.identifier.issn
1684-9981
dc.identifier.other
10.5194/nhess-18-383-2018
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/239019
dc.identifier.doi
10.3929/ethz-b-000239019
dc.description.abstract
Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
Copernicus
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Automatic detection of snow avalanches in continuous seismic data using hidden Markov models
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Natural Hazards and Earth System Sciences
ethz.journal.volume
18
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Nat. Hazards Earth Syst. Sci.
ethz.pages.start
383
en_US
ethz.pages.end
396
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
Göttingen
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02818 - Schweiz. Erdbebendienst (SED) / Swiss Seismological Service (SED)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02818 - Schweiz. Erdbebendienst (SED) / Swiss Seismological Service (SED)
ethz.date.deposited
2018-02-07T02:32:22Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-02-15T11:00:39Z
ethz.rosetta.lastUpdated
2024-02-02T03:57:10Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Automatic%20detection%20of%20snow%20avalanches%20in%20continuous%20seismic%20data%20using%20hidden%20Markov%20models&rft.jtitle=Natural%20Hazards%20and%20Earth%20System%20Sciences&rft.date=2018-01-25&rft.volume=18&rft.issue=1&rft.spage=383&rft.epage=396&rft.issn=1561-8633&1684-9981&rft.au=Heck,%20Matthias&Hammer,%20Conny&Herwijnen,%20Alec%20van&Schweizer,%20J%C3%BCrg&F%C3%A4h,%20Donat&rft.genre=article&rft_id=info:doi/10.5194/nhess-18-383-2018&
Files in this item
Publication type
-
Journal Article [130526]