dc.contributor.author
Pilz, Alexander
dc.contributor.author
Schnider, Patrick
dc.date.accessioned
2019-03-22T14:01:03Z
dc.date.available
2019-01-10T09:00:18Z
dc.date.available
2019-03-22T14:01:03Z
dc.date.issued
2018
dc.identifier.issn
1868-8969
dc.identifier.other
10.4230/lipics.isaac.2018.53
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/314755
dc.identifier.doi
10.3929/ethz-b-000314755
dc.description.abstract
The centerpoint theorem is a well-known and widely used result in discrete geometry. It states that for any point set P of n points in R^d, there is a point c, not necessarily from P, such that each halfspace containing c contains at least n/(d+1) points of P. Such a point c is called a centerpoint, and it can be viewed as a generalization of a median to higher dimensions. In other words, a centerpoint can be interpreted as a good representative for the point set P. But what if we allow more than one representative? For example in one-dimensional data sets, often certain quantiles are chosen as representatives instead of the median.
en_US
dc.language.iso
en
en_US
dc.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH
en_US
dc.rights.uri
dc.subject
centerpoint
en_US
dc.subject
point sets
en_US
dc.subject
Tukey depth
en_US
dc.title
Extending the Centerpoint Theorem to Multiple Points
en_US
dc.type
Conference Paper
ethz.journal.title
Leibniz International Proceedings in Informatics (LIPIcs)
ethz.journal.volume
123
en_US
ethz.journal.abbreviated
LIPIcs
ethz.pages.start
53:1
en_US
ethz.pages.end
53:13
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
29th International Symposium on Algorithms and Computation (ISAAC 2018)
en_US
ethz.event.location
Jiaoxi, Taiwan
en_US
ethz.event.date
December 16-19, 2018
en_US
ethz.identifier.scopus
ethz.publication.place
Dagstuhl
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03457 - Welzl, Emo / Welzl, Emo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::03457 - Welzl, Emo / Welzl, Emo
en_US
ethz.date.deposited
2019-01-10T09:00:29Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-03-22T14:01:21Z
ethz.rosetta.lastUpdated
2019-03-22T14:01:21Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.atitle=Extending%20the%20Centerpoint%20Theorem%20to%20Multiple%20Points&amp;rft.jtitle=Leibniz%20International%20Proceedings%20in%20Informatics%20(LIPIcs)&amp;rft.date=2018&amp;rft.volume=123&amp;rft.spage=53:1&amp;rft.epage=53:13&amp;rft.issn=1868-8969&amp;rft.au=Pilz,%20Alexander&amp;Schnider,%20Patrick&amp;rft.genre=proceeding&amp;
﻿ Search via SFX