Show simple item record

dc.contributor.author
Theodoratos, Nikos
dc.contributor.author
Seybold, Hansjörg
dc.contributor.author
Kirchner, James W.
dc.date.accessioned
2019-02-01T08:06:27Z
dc.date.available
2019-02-01T08:06:27Z
dc.date.issued
2018
dc.identifier.issn
2196-632X
dc.identifier.issn
2196-6311
dc.identifier.other
10.5194/esurf-6-779-2018
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/322386
dc.identifier.doi
10.3929/ethz-b-000293162
dc.description.abstract
The scaling and similarity of fluvial landscapes can reveal fundamental aspects of the physics driving their evolution. Here, we perform a dimensional analysis of the governing equation of a widely used landscape evolution model (LEM) that combines stream-power incision and linear diffusion laws. Our analysis assumes that length and height are conceptually distinct dimensions and uses characteristic scales that depend only on the model parameters (incision coefficient, diffusion coefficient, and uplift rate) rather than on the size of the domain or of landscape features. We use previously defined characteristic scales of length, height, and time, but, for the first time, we combine all three in a single analysis. Using these characteristic scales, we non-dimensionalize the LEM such that it includes only dimensionless variables and no parameters. This significantly simplifies the LEM by removing all parameter-related degrees of freedom. The only remaining degrees of freedom are in the boundary and initial conditions. Thus, for any given set of dimensionless boundary and initial conditions, all simulations, regardless of parameters, are just rescaled copies of each other, both in steady state and throughout their evolution. Therefore, the entire model parameter space can be explored by temporally and spatially rescaling a single simulation. This is orders of magnitude faster than performing multiple simulations to span multidimensional parameter spaces. The characteristic scales of length, height and time are geomorphologically interpretable; they define relationships between topography and the relative strengths of landscape-forming processes. The characteristic height scale specifies how drainage areas and slopes must be related to curvatures for a landscape to be in steady state and leads to methods for defining valleys, estimating model parameters, and testing whether real topography follows the LEM. The characteristic length scale is roughly equal to the scale of the transition from diffusion-dominated to advection-dominated propagation of topographic perturbations (e.g., knickpoints). We introduce a modified definition of the landscape Péclet number, which quantifies the relative influence of advective versus diffusive propagation of perturbations. Our Péclet number definition can account for the scaling of basin length with basin area, which depends on topographic convergence versus divergence.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Scaling and similarity of a stream-power incision and linear diffusion landscape evolution model
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-09-25
ethz.journal.title
Earth Surface Dynamics
ethz.journal.volume
6
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Earth Surf. Dynam.
ethz.pages.start
779
en_US
ethz.pages.end
808
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Göttingen
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02722 - Institut für Terrestrische Oekosysteme / Institute of Terrestrial Ecosystems::03798 - Kirchner, James W. / Kirchner, James W.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02722 - Institut für Terrestrische Oekosysteme / Institute of Terrestrial Ecosystems::03798 - Kirchner, James W. / Kirchner, James W.
ethz.date.deposited
2018-10-04T02:50:24Z
ethz.source
WOS
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-02-01T08:06:58Z
ethz.rosetta.lastUpdated
2022-03-28T22:12:40Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/293162
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/321639
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Scaling%20and%20similarity%20of%20a%20stream-power%20incision%20and%20linear%20diffusion%20landscape%20evolution%20model&rft.jtitle=Earth%20Surface%20Dynamics&rft.date=2018&rft.volume=6&rft.issue=3&rft.spage=779&rft.epage=808&rft.issn=2196-632X&2196-6311&rft.au=Theodoratos,%20Nikos&Seybold,%20Hansj%C3%B6rg&Kirchner,%20James%20W.&rft.genre=article&rft_id=info:doi/10.5194/esurf-6-779-2018&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record