Show simple item record

dc.contributor.author
McNally, Daniel E.
dc.contributor.author
Lu, Xingye
dc.contributor.author
Pelliciari, Jonathan
dc.contributor.author
Beck, Sophie
dc.contributor.author
Dantz, Marcus
dc.contributor.author
Naamneh, Muntaser
dc.contributor.author
Shang, Tian
dc.contributor.author
Medarde, Marisa
dc.contributor.author
Schneider, Christof W.
dc.contributor.author
Strocov, Vladimir N.
dc.contributor.author
Pomjakushina, Ekaterina
dc.contributor.author
Ederer, Claude
dc.contributor.author
Radovic, Milan
dc.contributor.author
Schmitt, Thorsten
dc.date.accessioned
2019-02-22T16:18:01Z
dc.date.available
2019-02-17T03:44:58Z
dc.date.available
2019-02-22T16:17:08Z
dc.date.available
2019-02-22T16:18:01Z
dc.date.issued
2019
dc.identifier.issn
2397-4648
dc.identifier.other
10.1038/s41535-019-0146-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/325574
dc.identifier.doi
10.3929/ethz-b-000325574
dc.description.abstract
Understanding and controlling the electronic structure of thin layers of quantum materials is a crucial first step towards designing heterostructures where new phases and phenomena, including the metal-insulator transition (MIT), emerge. Here, we demonstrate control of the MIT via tuning electronic bandwidth and local site environment through selection of the number of atomic layers deposited. We take CaVO3, a correlated metal in its bulk form that has only a single electron in its V4+ 3d manifold, as a representative example. We find that thick films and ultrathin films (≤6 unit cells, u.c.) are metallic and insulating, respectively, while a 10 u.c. CaVO3 film exhibits a clear thermal MIT. Our combined X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) study reveals that the thickness-induced MIT is triggered by electronic bandwidth reduction and local moment formation from V3+ ions, that are both a consequence of the thickness confinement. The thermal MIT in our 10 u.c. CaVO3 film exhibits similar changes in the RIXS response to that of the thickness-induced MIT in terms of reduction of bandwidth and V 3d–O 2p hybridization.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Electronic localization in CaVO3 films via bandwidth control
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2019-02-11
ethz.journal.title
npj Quantum Materials
ethz.journal.volume
4
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
npj Quantum Mater.
ethz.pages.start
6
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03903 - Spaldin, Nicola A. / Spaldin, Nicola A.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03903 - Spaldin, Nicola A. / Spaldin, Nicola A.
ethz.date.deposited
2019-02-17T03:45:00Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-02-22T16:17:31Z
ethz.rosetta.lastUpdated
2024-02-02T07:13:19Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Electronic%20localization%20in%20CaVO3%20films%20via%20bandwidth%20control&rft.jtitle=npj%20Quantum%20Materials&rft.date=2019&rft.volume=4&rft.issue=1&rft.spage=6&rft.issn=2397-4648&rft.au=McNally,%20Daniel%20E.&Lu,%20Xingye&Pelliciari,%20Jonathan&Beck,%20Sophie&Dantz,%20Marcus&rft.genre=article&rft_id=info:doi/10.1038/s41535-019-0146-3&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record