Notice

This is not the latest version of this item. The latest version can be found at: https://www.research-collection.ethz.ch/handle/20.500.11850/347187

Show simple item record

dc.contributor.author
Benatti, Simone
dc.contributor.author
Montagna, Fabio
dc.contributor.author
Kartsch, Victor
dc.contributor.author
Rahimi, Abbas
dc.contributor.author
Rossi, Davide
dc.contributor.author
Benini, Luca
dc.date.accessioned
2019-06-13T06:24:23Z
dc.date.available
2019-06-13T06:24:23Z
dc.date.issued
2019-06
dc.identifier.other
10.1109/TBCAS.2019.2914476
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/347187.1
dc.identifier.doi
10.3929/ethz-b-000339838
dc.description.abstract
This work presents a wearable EMG gesture recognition system based on the hyperdimensional (HD) computing paradigm, running on a programmable Parallel Ultra-Low-Power (PULP) platform. The processing chain includes efficient on-chip training, which leads to a fully embedded implementation with no need to perform any offline training on a personal computer. The proposed solution has been tested on 10 subjects in a typical gesture recognition scenario achieving 85% average accuracy on 11 gestures recognition, which is aligned with the State-Of-the-Art (SoA), with the unique capability of performing online learning. Furthermore, by virtue of the Hardware (HW) friendly algorithm and of the efficient PULP System-on-Chip (SoC) (Mr. Wolf) used for prototyping and evaluation, the energy budget required to run the learning part with 11 gestures is 10.04mJ, and 83.2uJ per classification. The system works with a average power consumption of 10.4mW in classification, ensuring around 29h of autonomy with a 100mAh battery. Finally, the scalability of the system is explored by increasing the number of channels (up-to 256 electrodes), demonstrating the suitability of our approach as universal, energy-efficient biopotential wearable recognition framework.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Electromyography (EMG)
en_US
dc.subject
Online learning
en_US
dc.subject
Embedded systems
en_US
dc.subject
Human-Machine Interface
en_US
dc.title
Online Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power Platform using Hyperdimensional Computing
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-05-02
ethz.journal.title
IEEE Transactions on Biomedical Circuits and Systems (TBioCAS)
ethz.journal.volume
13
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
516
en_US
ethz.pages.end
528
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.grant
Open Transprecision Computing
en_US
ethz.grant
Computation-in-memory architecture based on resistive devices
en_US
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03996 - Benini, Luca / Benini, Luca
en_US
ethz.tag
Hyperdimensional computing
en_US
ethz.tag
PULP platform
en_US
ethz.tag
Gesture Recognition
en_US
ethz.grant.agreementno
732631
ethz.grant.agreementno
780215
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.date.deposited
2019-04-28T13:47:10Z
ethz.source
SCOPUS
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/346507
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/339838
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Online%20Learning%20and%20Classification%20of%20EMG-Based%20Gestures%20on%20a%20Parallel%20Ultra-Low%20Power%20Platform%20using%20Hyperdimensional%20Computing&rft.jtitle=IEEE%20Transactions%20on%20Biomedical%20Circuits%20and%20Systems%20(TBioCAS)&rft.date=2019-06&rft.volume=13&rft.issue=3&rft.spage=516&rft.epage=528&rft.au=Benatti,%20Simone&Montagna,%20Fabio&Kartsch,%20Victor&Rahimi,%20Abbas&Rossi,%20Davide&rft.genre=article&rft_id=info:doi/10.1109/TBCAS.2019.2914476&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record