Show simple item record

dc.contributor.author
Huang, Haijian
dc.contributor.author
Tian, Tian
dc.contributor.author
Pan, Long
dc.contributor.author
Chen, Xi
dc.contributor.author
Tervoort, Elena
dc.contributor.author
Shih, Chih-Jen
dc.contributor.author
Niederberger, Markus
dc.date.accessioned
2019-08-02T14:30:09Z
dc.date.available
2019-07-31T02:08:01Z
dc.date.available
2019-08-02T14:30:09Z
dc.date.issued
2019-07-21
dc.identifier.issn
2050-7488
dc.identifier.issn
2050-7496
dc.identifier.other
10.1039/c9ta05554a
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/355879
dc.identifier.doi
10.3929/ethz-b-000355879
dc.description.abstract
Layer-structured metal vanadates have been regarded as promising candidates for high-rate Na-ion storage. However, without a detailed understanding of the relationship between the interlayer metal ions and the cycling performance, it remains a difficult task to systematically explore layered metal vanadates as high performance electrode materials. Herein, a series of metal vanadates with different interlayer cations such as Co2+ and Zn2+ are prepared and applied as Na-ion battery anodes. First principles simulations and ex situ X-ray diffraction measurements demonstrate that the Na-ion storage performance of the layered metal vanadates is closely related to the structural stress induced by Na+ insertion, and the ion diffusion barrier, as well as the structural reversibility. In addition, a double-interlayer-cation metal vanadate, i.e., Co0.16Zn0.09V2O5·nH2O, is reported for the first time as a high-rate Na-ion battery anode. This compound successfully combines the favorable features of Co0.25V2O5·nH2O and Zn0.25V2O5·nH2O, resulting in the best cycling performance. CV analysis and operando X-ray diffraction measurements reveal a large pseudocapacitive contribution and small volume change of Co0.16Zn0.09V2O5·nH2O during cycling. Our study presents a versatile concept for the optimization of metal vanadates for Na-ion storage, which may open a promising direction for developing high-rate energy storage materials.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society of Chemistry
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/3.0/
dc.title
Layered metal vanadates with different interlayer cations for high-rate Na-ion storage
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 3.0 Unported
dc.date.published
2019-06-28
ethz.journal.title
Journal of Materials Chemistry A
ethz.journal.volume
7
en_US
ethz.journal.issue
27
en_US
ethz.journal.abbreviated
J. Mater. Chem. A
ethz.pages.start
16109
en_US
ethz.pages.end
16116
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
ethz.date.deposited
2019-07-31T02:08:14Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-08-02T14:30:20Z
ethz.rosetta.lastUpdated
2021-02-15T05:27:15Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Layered%20metal%20vanadates%20with%20different%20interlayer%20cations%20for%20high-rate%20Na-ion%20storage&rft.jtitle=Journal%20of%20Materials%20Chemistry%20A&rft.date=2019-07-21&rft.volume=7&rft.issue=27&rft.spage=16109&rft.epage=16116&rft.issn=2050-7488&2050-7496&rft.au=Huang,%20Haijian&Tian,%20Tian&Pan,%20Long&Chen,%20Xi&Tervoort,%20Elena&rft.genre=article&rft_id=info:doi/10.1039/c9ta05554a&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record