Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains
Abstract
Multi-objective optimization (MOO) is widely applied in sustainability problems where several objectives must be accounted for in the analysis. Unfortunately, its complexity grows with the number of objectives, which hampers its practical use. In this paper, we simplify MOO problems via their combination with multi-attribute decision-making (MADM) methods. The approach identifies a unique Pareto solution of the MOO problem, which best reflects the decision-makers’ preferences, by using weighting factors generated via four well-known MADM methods: SWING, SMART, AHP and TRADE OFF. The capabilities of this approach are illustrated through its application to the design and planning of a sugar/ethanol supply chain using questionnaires filled in by academic experts in the problem. We find that the weights obtained using MADM algorithms may well differ from the ones given by standard life-cycle assessment methods employed in systems engineering problems. Overall, our approach simplifies the MOO problem by identifying solutions consistent with the decision-makers’ preferences and by providing valuable insight on how these preferences are articulated in practice. Show more
Publication status
publishedExternal links
Journal / series
Computers & Chemical EngineeringVolume
Pages / Article No.
Publisher
ElsevierSubject
Sustainability; Multi-criteria optimization; Environmental impact; Biorefinery design; Decision-makingOrganisational unit
09655 - Guillén Gosálbez, Gonzalo / Guillén Gosálbez, Gonzalo
More
Show all metadata
ETH Bibliography
no
Altmetrics