The adARC pattern analysis architecture for adaptive human activity recognition systems
dc.contributor.author
Roggen, Daniel
dc.contributor.author
Förster, Kilian
dc.contributor.author
Calatroni, Alberto
dc.contributor.author
Tröster, Gerhard
dc.date.accessioned
2024-05-31T12:55:45Z
dc.date.available
2017-06-09T18:03:47Z
dc.date.available
2024-05-31T12:55:45Z
dc.date.issued
2013-04
dc.identifier.issn
1868-5137
dc.identifier.issn
1868-5145
dc.identifier.other
10.1007/s12652-011-0064-0
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/43029
dc.identifier.doi
10.3929/ethz-b-000043029
dc.description.abstract
Most approaches to recognize human activities rely on pattern recognition techniques that are trained once at design time, and then remain unchanged during usage. This reflects the assumption that the mapping between sensor signal patterns and activity classes is known at design-time. This cannot be guaranteed in mobile and pervasive computing, where unpredictable changes can often occur in open-ended environments. Run-time adaptation can address these issues. We introduce and formalize a data processing architecture extending current approaches that allows for a wide range of realizations of adaptive activity recognition systems. The adaptive activity recognition chain (adARC) includes self-monitoring, adaptation strategies and external feedback as components of the now closed-loop recognition system. We show an adARC capable of unsupervised self-adaptation to run-time changing class distributions. It improves activity recognition accuracy when sensors suffer from on-body displacement. We show an adARC capable of adaptation to changing sensor setups. It allows for scalability by enabling a recognition systems to autonomously exploit newly introduced sensors. We discuss other adaptive recognition systems within the adARC architecture. The results outline that this architecture frames a useful solution space for the real-world deployment of adaptive activity recognition systems. It allows to present and compare recognition systems in a coherent and modular manner. We discuss the challenges and new research directions resulting from this new perspective on adaptive activity recognition.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/2.0/
dc.title
The adARC pattern analysis architecture for adaptive human activity recognition systems
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 2.0 Generic
dc.date.published
2011-08-18
ethz.journal.title
Journal of Ambient Intelligence and Humanized Computing
ethz.journal.volume
4
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
169
en_US
ethz.pages.end
186
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
Received 6 April 2011, Accepted 15 June 2011.
en_US
ethz.identifier.nebis
006090610
ethz.publication.place
Berlin
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02634 - Institut für Elektronik / Institute for Electronics::03388 - Tröster, Gerhard (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02634 - Institut für Elektronik / Institute for Electronics::03388 - Tröster, Gerhard (emeritus)
ethz.date.deposited
2017-06-09T18:03:58Z
ethz.source
ECIT
ethz.identifier.importid
imp59364ec496ae019384
ethz.ecitpid
pub:71519
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-17T07:35:18Z
ethz.rosetta.lastUpdated
2021-02-14T08:16:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=The%20adARC%20pattern%20analysis%20architecture%20for%20adaptive%20human%20activity%20recognition%20systems&rft.jtitle=Journal%20of%20Ambient%20Intelligence%20and%20Humanized%20Computing&rft.date=2013-04&rft.volume=4&rft.issue=2&rft.spage=169&rft.epage=186&rft.issn=1868-5137&1868-5145&rft.au=Roggen,%20Daniel&F%C3%B6rster,%20Kilian&Calatroni,%20Alberto&Tr%C3%B6ster,%20Gerhard&rft.genre=article&rft_id=info:doi/10.1007/s12652-011-0064-0&
Files in this item
Publication type
-
Journal Article [130525]