Show simple item record

dc.contributor.author
Gerlt, Michael S.
dc.contributor.author
Haidas, Dominik
dc.contributor.author
Ratschat, Alexandre
dc.contributor.author
Suter, Philipp
dc.contributor.author
Dittrich, Petra S.
dc.contributor.author
Dual, Jürg
dc.date.accessioned
2021-01-08T10:49:33Z
dc.date.available
2021-01-01T04:21:46Z
dc.date.available
2021-01-08T10:49:33Z
dc.date.issued
2020
dc.identifier.issn
1932-1058
dc.identifier.other
10.1063/5.0036407
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/458791
dc.description.abstract
Droplet microfluidics enables high-throughput screening of single cells and is particularly valuable for applications, where the secreted compounds are analyzed. Typically, optical methods are employed for analysis, which are limited in their applicability as labeling protocols are required. Alternative label-free methods such as mass spectrometry would broaden the range of assays but are harmful to the cells, which is detrimental for some applications such as directed evolution. In this context, separation of cells from supernatant is beneficial prior to the analysis to retain viable cells. In this work, we propose an in-droplet separation method based on contactless and label-free acoustic particle manipulation. In a microfluidic chip, nanoliter droplets containing particles are produced at a T-junction. The particles are trapped in the tip of the droplet by the interplay of acoustic forces in two dimensions and internal flow fields. The droplets are subsequently split at a second T-junction into two daughter droplets-one containing the supernatant and the other containing the corresponding particles. The separation efficiency is measured in detail for polystyrene (PS) beads as a function of droplet speed, size, split ratio, and particle concentration. Further, single-bead (PS) and single-cell (yeast) experiments were carried out. At a throughput of 114 droplets/min, a separation efficiency of 100% +/- 0% was achieved for more than 150 droplets. Finally, mammalian cells and bacteria were introduced into the system to test its versatility. This work demonstrates a robust, non-invasive strategy to perform single yeast cell-supernatant sampling in nanoliter volumes.
en_US
dc.language.iso
en
en_US
dc.publisher
American Institute of Physics
en_US
dc.title
Manipulation of single cells inside nanoliter water droplets using acoustic forces
en_US
dc.type
Journal Article
dc.date.published
2020-12-18
ethz.journal.title
Biomicrofluidics
ethz.journal.volume
14
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
064112
en_US
ethz.size
11 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Melville, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03307 - Dual, Jürg (emeritus) / Dual, Jürg (emeritus)
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03807 - Dittrich, Petra / Dittrich, Petra
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::03307 - Dual, Jürg (emeritus) / Dual, Jürg (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03807 - Dittrich, Petra / Dittrich, Petra
ethz.date.deposited
2021-01-01T04:21:50Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-08T10:49:45Z
ethz.rosetta.lastUpdated
2023-02-06T21:14:25Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Manipulation%20of%20single%20cells%20inside%20nanoliter%20water%20droplets%20using%20acoustic%20forces&rft.jtitle=Biomicrofluidics&rft.date=2020&rft.volume=14&rft.issue=6&rft.spage=064112&rft.issn=1932-1058&rft.au=Gerlt,%20Michael%20S.&Haidas,%20Dominik&Ratschat,%20Alexandre&Suter,%20Philipp&Dittrich,%20Petra%20S.&rft.genre=article&rft_id=info:doi/10.1063/5.0036407&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record