Show simple item record

dc.contributor.author
Pedergnana, Tiemo
dc.contributor.author
Bourquard, Claire
dc.contributor.author
Faure-Beaulieu, Abel
dc.contributor.author
Noiray, Nicolas
dc.date.accessioned
2021-03-19T07:48:38Z
dc.date.available
2021-03-19T04:09:36Z
dc.date.available
2021-03-19T07:48:38Z
dc.date.issued
2021-02
dc.identifier.issn
2469-990X
dc.identifier.other
10.1103/PhysRevFluids.6.023903
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/475408
dc.description.abstract
Hydrodynamic modes in the turbulent mixing layer over a cavity can constructively interact with the acoustic modes of that cavity and lead to aeroacoustic instabilities. The resulting limit cycles can cause undesired structural vibrations or noise pollution in many industrial applications. To further the predictive understanding of this phenomenon, we propose two physics-based models which describe the nonlinear aeroacoustic response of a side branch aperture under harmonic forcing with variable acoustic pressure forcing amplitude pa. One model is based on Howe's classic formulation that describes the shear layer as a thin vortex sheet, and the other is based on an assumed vertical velocity profile in the side branch aperture. These models are validated against experimental data. Particle image velocimetry (PIV) was performed to quantify the turbulent and coherent fluctuations of the shear layer under increasing pa. The specific acoustic impedance Z of the aperture was acquired over a range of frequencies for different bulk flow velocities U and acoustic pressure forcing amplitudes pa. In this work, we show that once the handful of parameters in the two models for Z have been calibrated using experimental data at a given condition, it is possible to make robust analytical predictions of this impedance over a broad range of the frequency, bulk flow velocity, and forcing amplitude. In particular, the models allow prediction of a necessary condition for instability, implied by negative values of the acoustic resistance Re(Z), which corresponds to a reflection coefficient R of the aperture with magnitude larger than 1. Furthermore, we demonstrate that the models are able to describe the nonlinear saturation of the aeroacoustic response caused by alteration of the mean flow at large forcing amplitudes, which was recently reported in literature. This effect stabilizes the coupling between the side branch opening and the acoustic field in the cavity, and its quantitative description may be of value for control of aeroacoustic instabilities. We visualize and compare the models' representations of the hydrodynamic response in the side branch aperture and of the saturation effect under increasing pa. © 2021 American Physical Society
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.title
Modeling the nonlinear aeroacoustic response of a harmonically forced side branch aperture under turbulent grazing flow
en_US
dc.type
Journal Article
dc.date.published
2021-02-25
ethz.journal.title
Physical Review Fluids
ethz.journal.volume
6
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Phys. Rev. Fluids
ethz.pages.start
023903
en_US
ethz.size
22 p.
en_US
ethz.grant
Thermoakustische Instabilitäten in Rohr-Ringbrennkammern
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
College Park, MD
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09471 - Noiray, Nicolas / Noiray, Nicolas
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09471 - Noiray, Nicolas / Noiray, Nicolas
ethz.grant.agreementno
184617
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.relation.isPartOf
10.3929/ethz-b-000664067
ethz.date.deposited
2021-03-19T04:09:40Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-19T07:48:47Z
ethz.rosetta.lastUpdated
2022-03-29T05:52:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Modeling%20the%20nonlinear%20aeroacoustic%20response%20of%20a%20harmonically%20forced%20side%20branch%20aperture%20under%20turbulent%20grazing%20flow&rft.jtitle=Physical%20Review%20Fluids&rft.date=2021-02&rft.volume=6&rft.issue=2&rft.spage=023903&rft.issn=2469-990X&rft.au=Pedergnana,%20Tiemo&Bourquard,%20Claire&Faure-Beaulieu,%20Abel&Noiray,%20Nicolas&rft.genre=article&rft_id=info:doi/10.1103/PhysRevFluids.6.023903&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record